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ABSTRACT

The expected traffic environment for an intercity STOL transportation system
is examined, and operational procedures are discussed in order to identify problem
areas whichimpact STOL avionics requirements, Factors considered include: traffic
densities, STOL /CTOL/VTOL traffic mix, the expected ATC environment, aircraft
noise models and community noise impact, flight paths for noise abatement, wind
considerations affecting landing, approachand landing considerations, STOLport site
selection, runway capacity, and STOL operations at jetports, suburban airports,
and separate STOLports, '
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EXECUTIVE SUMMARY

Prior to the introduction of a new STOL short-haul transportation service, it
isnecessary to identify and understand the expected operational environment. Such
understanding will aid in establishing STOL avionics requirements. This report
examines two aspects of the STOL operating environment. The first, which is called
the Traffic Environment, encompasses such factors as STOL demand, the size and
mix of vehicles (STOL, CTOL, and VTOL), STOLport location, runway and terminal
area capacity, and the air traffic control (ATC) system. The second, entitled
Operational Procedures, addresses STOL noise impact, flight path definition,
atmospheric effects, and interaction with the final-approach landing aids. Considera-
tion is also given to the ATC problems associated with STOL operations at jetports,

suburban airports, and separate STOLports,

It is the intent of the report to provide a better understanding of the STOL
operating environment, and to suggest possible solutions to some problem areas.
An attempt has been made to identify those problem areas which impact avionics
and ground-system requirements. There remain, however, several critical areas
(discussed briefly in this summary) requiring significant additional work prior to

the introduction of commercial STOL service.

. Precading page biank |
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TRAFFIC ENVIRONMENT

The expected traffic environment for an intercity STOL transportation system
is examined in order to facilitate the definition of STOL operating procedures and

to aid in establishing STOL.: avionics requirements.

A description of the expected STOL air traffic environment for planning
purposes should consider two aspects of STOL air traffic: the characteristics of
the traffic — that is, the traffic densities, vehicular types, and the traffic mix
expected in various geographical regions at future times — and the control of the

traffic in terms of air traffic control procedures and policies.
STOL Traffic Characteristics

Conclusions regarding the potential economic viability of STOL air systems
have varied. An interurban STOL air service (the only type to be considered here)
may never materialize. However, a number of the economic and system studies
conducted over the past six years have depicted a successful interurban STOL air
service in which substantial numbers of vehicles are involved. Since the presence
of a large number of STOL vehicles in short-haul air service may pose problems
for the air traffic control system, the traffic characteristics as depicted in two of
these studies are considered further.

The two studies considered are the Northeast Corridor Transportation Project
Report1 and supporting volumes, and the Civil Aeronautics Board's Northeast
Corridor VTOL Investigation, specifically the exhibits prepared by de Havilland
Aircraft of Canada, Ltd.2

The analyses and data presented with respect to V/STOL systems in the
Northeast Corridor Transportation Project Report have been criticized as overly
optimistic in a subsequent report issued by the Department of Tra.nsportation.3 A
particular issue is the cost of providing V/STOL terminals and ATC facilities.
The traffic levels cited herein should therefore be regarded as potential traffic
levels achievable given sufficient time, rather favorable economic circumstances,

and community and passenger acceptance.

It is particularly interesting to note whether any of the terminal sites in the
system would be congested at the operations levels anticipated by the Northeast
Corridor Transportation Project (listedin Table 2.2-1 of the main report). Different
types of terminals are involved: STOLports, large and small general-aviation
airports, and airports having alarge percentage of air carrier traffic. The Manhattan

16



STOLport is the busiest, having 280 operations per day in one instance. Assuming
apeak-to-average-hour operations ratio of 3 whichistypicalof air carrier operations
at the busier airports, this translates into 35 operations during a peak hour —
busy, but not terribly congested. In the case of air carrier airports, the impact of
the indicated STOL operations (e.g., 158 operations per day at La Guardia) cannot
be assessed without further information about the reductions which have presumably
been made possible in short-haul CTOL traffic, and the severity of STOL/CTOL
conflicts, a subject which is discussed in the ATC System Interface section of this
report. STOL operations at the larger general~aviation airports (e.g., 98 operations
per day at Teterboro) are likely to be a problem because of existing congestion at
peak hours. The safety of STOL operations at the busier general-aviation airports

is also open to question.

Similar datataken from the de Havilland exhibits before the Civil Aeronautics
Board are examined in the main report (Table 2.2-2), Once again, except for the
two Manhattan STOLports, daily operations levels should not lead to serious
congestion — the peak hour operations rates calculated as before are all less than
35 per hour. The Manhattan STOLports, however, jointly handle between 50 and 80
operations during peak hours and may present some difficulties, depending on the

adequacy of the STOLport design and the operational procedures employed.

In summary, the data presented in the Northeast Corridor Transportation
Project and de Havilland analyses give an indication of the potential characteristics
of intercity STOL traffic, traffic levels, vehicle types, and traffic mix, Potential
congestion problems are indicated at a few high-density, city-center STOLports
(e.g., New York), at heavily-used general-aviation airfields (e.g., Teterboro or
Hanscom Field), and possibly at air carrier airports, if these are used for STOL

air service.
ATC System Description

This section discusses the current ATC system and its expected evolution.
STOL operations within the ATC system are discussed in the ATC System Interface

section.

The design of suitable avionics and flight control systems for STOL vehicles
requires, in part, a description of STOL air traffic control procedures — the more
detailed the better. However, it is unlikely that STOL procedures will be finalized

until some form of STOL service is actually introduced, given the invigorating nature

17



of practical operating experience. In the interim, projections must be based on
current procedures, the expected evolution of the ATC system, and any special STOL,

operating requirements that can be identified.

The point of view taken herein is that STOL operations should be designed to
interface with the expected evolution of the ATC system. STOL air traffic control
should, whenever possible, be based on the same general principles and procedures
as CTOL air traffic control. This point of view is taken because of the need to

minimize STOL system development costs and disruptive impact,

The objectives of an air traffic control system are to provide a safe, expeditious
flow of air traffic at a minimum system operating cost. It is helpful to visualize
the ATC process in terms of the interacting feedback control loops involved. When
such a ViéW is taken, it is apparent that while advanced airborne equipment may be
useful in tightening the aircraft control loops, it will not necessarily improve the

current ATC system in either capacity or safety.

The air traffic control processis implemented in the current system by means
of regulations, procedures, and various active control facilities. Two facilities of
central importance are the Air Route Traffic Control Centers (ARTCC's) for en
route control, and the Terminal Radar Approach Control Facilities (TRACON's)
for approach/departure control.

The ATC system is currently in the process of transition to the so-called
Third Generation System. For the Third Generation System the FAA is implementing
(1) limited automation to assist the controller, and (2) automated data acquisition
through the Air Traffic Control Radar Beacon System (ATCRBS). The automation
for the ARTCC's is the National Airspace System (NAS) Stage A program,. At the
top 64 teminal facilities, the Advanced Radar Terminal System (ARTS III) program
is being implemented. NAS and ARTS automation is expected toincrease the capacity
of the control sectors by 20%.

The future of the ATC system is the subject of a recent report prepared by
the Department of Transportation's Air Traffic Control Advisory Committee.4 The
Advisory Committee's recommendationsare aimed primarily at upgrading the Third
Generation ATC System to allow it to handle increased traffic levels. Most of their
recommendations for upgrading the Third Generation System have been embodied
in the FAA's research and development plans for the 1970's.

18



If the planned automation proves successful and the current schedule is
maintained, some of the earliest STOL operations — within afew years after initiation
of the service — might be expected to take place within the context of the automated
metering and spacing system5 currently undergoing development, at least in the

busier terminal control areas.

Inasmuch as plans for upgrading the Third Generation ATC System call for
encouraging the development of airborne areanavigation capabilities, it is reasonable
to ask whether or how these capabilities might be used by an automated ATC system
of the future. Area navigation systems having time-of-arrival control capabilities
(4-D RNAV) are being considered for both V/STOL and CTOL ATC applications.
Are such systems compatible with the automated metering and spacing concepts
mentioned above? Would such an airborne capability benefit the currently-planned
ATC system automation? The answers are almost certainly "'yes", but these questions

have not as yet been adequately considered.
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OPERATIONAL PROCEDURES

This part of the report examines a number of operational aspects of STOL
transportation systems which relate to avionics requirements. The areas of interest
are (1) flight paths for noise abatement, (2) the atmospheric environment, (3) approach
and landing considerations, and (4) the ATC system interface. The analysis in each
area is preliminary and should be carried further prior to the required flight test

and demonstration programs.

STOL Noise Impact

This section examines the noise impact of STOL operations. The basic noise
footprints are examined, as well asnoise-abatement procedures. Thenoise measures
used are Perceived Noise Level (PNL), Effective Perceived Noise Level (EPNL),
and Noise Exposure Forecast (NEF).

The 95- and 85-PNdB contours of two representative vehicles have been
examined. These vehicles, designated PNL95 and PNL100, have basic noise levels
of 95 PNdB and 100 PNdB at 500 feet respectively. These basic noise levels are
assumed to be measured at takeoff thrust levels, The thrust level on approach was
assumed to be half of the takeoff thrust level., The noise generation model is
spherical, with no correction for near-ground attenuation or vehicle acceleration.
With this model, halving the thrust produces a somewhat greater reduction in PNL
than doubling the distance from the source (when within about 1,000 feet of the
aircraft),

The noise footprints for these vehicles are small compared with those of current
jet transports. A STOL vehicle with a basic noise level of 95 PNdB at 500 feet
would produce a 95-PNdB contour that contains less than 1.5% of the area of the

corresponding footprint for one of today's 4-engine jet transports.

Some interesting relationships can be observed from the vehicle noise foot-
prints. First, for either the PNL95 or PNL100 vehicles the distance along the
runway centerline to a given contour is about 50% greater with a 10-deg climbout
than with a 15-deg climbout. This same ratio holds for the area enclosed by the
contour. Second, the distance along the runway centerline to the 95-PNdB contour
for the PNL100 vehicle is about 50% greater than for the PNL95 vehicle, while the
enclosed area is about 2.4 times as great. Third, if one had to make a choice
between a PNL100-type vehicle that could climbout at 15 deg, and a PNL85-type
vehicle that could only climbout at 10 deg, it appears that for noise reasons the
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PNLS5 vehicle might be more acceptable, as its centerline distance to the 95-PNdB
contour is about the same as for the PNL100 vehicle, but the sideline distance, and
hence the area, is about 37% smaller, Of course the importance of this reduction
depends on the site and the STOLport configuration. In some cases it may be more
important to reduce the distance along the runway centerline than the sideline distance,

The vehicle noise footprints allow one to estimate the length of ground track
or area along the runway centerline that would lie within a given PNL contour.
For the PNL85 vehicle, assuming a 1,000-foot takeoff roll, a 15-deg climb at full
power, and a -7.5-deg approach at half power, the total 95-PNdB contour extends
about 5,000 feet along the runway centerline,

For an example relating PNL to NEF,#< assume a flight frequency of 100 flights .
per day. For the PNL95 vehicle, the total NEF 30 contour would then extend about
2,700 feet along the runway centerline (assuming a 15-deg, 80-knot climbout, and a
-7.5-deg, 60-knot approach). The contour would not even extend beyond the runway
surface on takeoff. In comparison, the NEF 30 contour for the PNL100 vehicle
requires about 75% more centerline distance (4,700 feet), and more than three times

the area.

Noise- Abatement Procedures

Even though thenoise footprints for standard STOL approaches and departures
are very much smaller than those for CTOL, it is still useful to look at possible

operational procedures for noise reduction.

One procedure which is considered in the main report is a reduééd-thrust
takeoff. Tt was assumed that about one-half the normal takeoff thrust could produce
a flight path angle about one-third as large as the full-thrust value.' It was found
that the area enclosed by the reduced-thrust 95-PNdB contour is less than the
corresponding area for full thrust, but that the distance along the runway centerline

to the contour boundary is almost 50% greater.

In calculating EPNL, on which the NEF measure is based, only the duration
correction was used; no correction was made for pure tones.

¥ This approximate relationship was obtained from the performance envelope of
the MDC-188 (Ref. 6).
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For this kind of takeoff, safety considerations relative to an engine-out failure,
such as reduced climb gradient and/or altitude transient, may outweigh the noise
considerations. Rather than utilize a reduced-thrust takeoff, it is more likely that
a thrust reduction might be employed after some safe altitude had been reached.
An analysis was carried out to show how such a two-segment flight path might be

chosen.

Using this two-segment procedure, the vehicle approaches the listener until
the specified maximum PNL is reached; a thrust cutback is then performed, and
the vehicle continues to climb at a reduced flight path angle. The PNIL, which
decreases when the thrust is reduced, increases again and reaches the specified
maximum level as the vehicle passes over the listener. The PNL then decreases

as the vehicle continues its reduced-thrust climb,

The thrust-cutback technique trades off vehicle proximity (because of the
reduced climb angle) for reduced noise at the source. The results are not always
advantageous for the listener, For example, if the thrust cutback point is selected
to reduce the 95-PNdB contour for the PNL95 vehicle, a 36% reduction in the extent
of the contour is achieved. However, while the 95-PNdB contour is reduced, the
85-PNdB contour is lengthened by over 1,000 feet because the climb angle is reduced
after the thrust cutback. If the thrust cutback is timed to reduce the 85-PNdB
contour, a 32% decrement is achieved. In this case the 95-PNdB contour is not
affected. Similar results are obtained for the PNL100 vehicle.

On the basis of this analysis, it appears that if there is a small, particularly
sensitive area close-in to the STOLport, such as a group of houses, a school, a
hospital, or a concert hall, a thrust cutback can provide some reduction in annoyance.
However, for most listeners the reduction would be barely perceptable (3—5 PNdB).
As the basic vehicle noise decreases, the thrust cutback becomes less meaningful,

as smaller areas can share in the PNL reduction,

Onlanding approach, noise reduction procedures may be limited due to piloting
constraints — such as (1) a reluctance to exceed a rate of descent greater than
about 1,000 ft/min close to the ground, and (2) a desire to be aligned with the runway
and on the final~approach slope when breaking out of the clouds at 200 feetin Category
1 weather conditions. The respective times between breakout and touchdown for
approach slopes of -7 and -9 deg are about 15 and 12.5 sec respectively for an
approach speed of 60 knots. This compares with about 20 sec for a CTOL aircraft
on a 120-knot, -3-deg approach. The acceptability of reducing the final-approach

segment would depend on the performance and reliability of the avionics systems,
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and perhaps the crosswind componént and/or turbulence level. An analysis of the
type discussed in the Approach and Landing Considerations section, extended to
include vehicle dynamics, wind effects, and pilot performance, would be very useful
in helping to determine approach profiles. It is apparent that if NEF 30 is the
guideline for noise acceptability, then approach maneuvering will probably not lead
tovery significant NEF changes for a PNL95-type vehicle, simply because the NEF

30 contour is quite small,
Flight Path Optimization

Supplementing the above STOL noise studies, a steepest-descent optimization
program was used to generate takeoff flight paths that minimize the annoyance
perceived by a number of listeners along the flight track. The program models the
flight of an augmentor-wing jet STOL vehicle on a two-dimensional flight path.
The state variables are velocity, flight path angle, altitude, and downrange; the control
variables are pitch angle, primary thrust, augmentor thrust, and the primary thrust
incidence angle. 1In addition, several cases include the flap angle as a fifth control
variable. The problem includes inequality constraints on both state and control

variables.

The results indicate that in general the vehicle should climb to altitude usihg
full thrust and maximum flight path angle, Over sensitive areas, however, thrust
cutbacks can reduce the maximum PNL, although such a maneuver increases the
peak PNL for the downrange listeners., The thrust cutbacks in this study were
extreme, due to the modeling of listeners as discrete points, In a real situation
more moderate cutbacks would be employed,

The program was run a number of times to include variations in initial
conditions, vehicle thrust-to-weight ratio, and listener location. These variations
did not alter the general conclusion that STOL departures should utilize full thrust
and maximum flight path angle in order to minimize the total annoyance of all
listeners. Further studies should examine the economic and noise tradeoffs involved

in providing STOL. with higher thrust for increased climb angle capability.

Wind Conditions Affecting Lianding
The atmospheric environment is discussed because of its expected impact on

STOL avionics requirements, particularly in the areas of crosswind landing capability

and gust alleviation. Three types of wind conditions are considered: (1) mean wind,
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which is the velocity of the air relative to the ground at some reference altitude;
(2) boundary layer shear, which is the vertical variation of the horizontal wind
velocity; and (3) turbulence, which is a random variation of wind velocities from
the steady-state (mean wind and boundary layer shear) velocities. Methods for

modeling low-altitude turbulence are discussed.

Information is available at many airfields concerning mean winds experienced
over the past few decades, and these records provide a firm base for statistical
analyses of future wind conditions. These records are published in various forms
by U.8. government agencies and generally provide such information as percentage
occurrences of wind speeds and directions, visibilities and ceilings, and useful

correlations of these occurances.

The probabilities of exceedence of critical crosswind velocities in particular
are very important to the STOL aircraft operator. Data for surface winds at South
Weymouth Naval Air Station,7 one of the possible STOLport locations in the Boston
area, has shown that the probabilities of crosswinds to given runway orientations
can be approximated asnormal distributions, although noticeable deviations do occur,
particularly at the higher velocities. Actual data should be used for accurate
predictions of the percentage of incompleted flights due to crosswinds.

The wind shear (vertical gradient of horizontal velocity) in the boundary layer
near the ground may affect an aircraft during final approach, The thickness of the
boundary layer, and hence the shear experienced by the aircraft, depends on the
conditions of the flow — and especially the turbulence in this layer. In order to
predict shear, investigators have attempted to associate it with surface roughness
or thermal atmospheric conditions, which are representative of the amount of

turbulence to be expected.

Turbulence is characterized by its random, and hence generally unpredictable,
nature. It can therefore only be described in terms of expectations — that is, by
the statistics. In this regard, a very useful measure of the turbulence is the power

spectral density (PSD) of the turbulence velocities.

At low altitudes, the von Karman or Dryden spectrum (applicable to turbulence
at altitude) can be scaled by the rms turbulence velocities (ou, T s cw), the frictional
velocity u*, and the scale lengths in the various directions. Moreover, whenever
the air near the ground is thermally unstable, it will be necessary to include a
convective turbulence peak in the low-altitude model of the power spectral density,
The convective peak should be added at a wavelength about 10 times the characteristic
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length of the unmodified spectrum, and should have a peak of up to 10 times the

value of the flat portion of the spectrum.

In order to consider the effect of turbulence onboard the aircraft, the spatial
model statistics must be reformulated in the time domain of the moving aircraft.
The aircraft is pictured as moving through a field of turbulence which is frozen
except that it translates with the mean wind (Taylor's hypothesis). A power spectral

density can then be written in the time domain rather than the space domain.

There are various types of turbulence which do not follow the above behavior.
These include clear air turbulence, turbulence induced by buildings and terrain

features, aircraft-wake turbulence, and turbulence associated with storms.

More extensive information about turbulence would assist in improving turbu-
lence models. Two types of studies would be particurlarly helpful: (1) statistical
studies of turbulence measurements near airfields; and (2) further theoretical work
and measurements designed to assist in the understanding of the basic physics of

turbulence.
Approach and Landing Considerations

This section describes a simple method of examining the approach and landing

constraints for an aircraft nearing an MLS-equipped runway,

The approach and landing phase is modeled as follows: a straight line base
leg (at some angle to the runway centerline), followed by a constant radius turn to
bring the aircraft onto the extended runway centerline for final approach., The turn
is assumed to begin when the localizer beam is intercepted, such that the circular
path is performed within the localizer coverage. The flight path angle is assumed

constant,

The linear dimensions of the problem can be conveniently normalized with
respect tothe aircraft turning radius R; thus the approach is defined by the intercept
angle and the normalized final-approach distance (d/R), where d is measured from

the touchdown point.
Plots are derived which show the allowable intercept angles as a function of

the normalized final approach distance for various localizer and glide slope coverage

angles.
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These plots can be used in two ways: to determine the allowable approach
paths to a given ILS configuration, or to specify ILS coverage to accomodate desired
approach paths. The curves indicate that for a highly maneuverable STOL vehicle,
with R varying between 500 and 1,000 feet, a wide range of approaches can be made

with relatively modest localizer and elevation coverage.

The analysis presented here utilizes a number of simplifying assumptions,
such as no pilot or vehicle response lags. These factors should be incorporated
into the analysis, as well as such effects as headwinds and crosswinds, and pilot

requirements for minimum time on final, etc.
ATC System Interface

STOL operations within the context of the existing and evolving ATC system
are the subject of this section. Operational procedures and problems are discussed,

with emphasis on avionics and ground-system requirements.

Runway Capacity

The STOL demand levels hypothesized indicate that providing adequate runwéy
capacity may be a problem in certain of the larger demand centers. In order to
determine whether or not this is the case it is necessary to know the capacity of a
runway or a set of runways used for STOL operations. It is also necessary to
know how capacity is affected by separation standards, regulations, and operational

procedures, since these may be subject to change.

There are two basic ATC safety requirements which impact the minimum
landing interval for a single runway. The first is the requirement that the runway
be clear of the preceding arrival (or departure) before the landing aircraft crosses
the runway threshold and is committed to land. The second is the requirement that
IFR aircraft be separated by some minimum distance S, which is currently 3 n.mi.
if radar separation procedures are in use and the aircraft are within 40 n.mi. of

the radar installation.

For STOL aircraftusing current IFR procedures, only the second requirement .
would affect the minimum landing interval, because runway occupancy times are
short (on the order of 15 sec if adequate exits are provided), and approach speeds
are slow. The minimum landing interval with a 3-n.mi, separation requirement

and a 60-knot approach speed is 3 min. Reduced separation requirements may of
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course be adopted for STOL operations, but unless the time éeparation in the air
approaches the runway occupancy time (which seems unlikely from the safety point
of view), the general conclusion remains the same: the bottleneck is not the runway
but instead, the approach airspace., From the reaction-time point of view, separation
could certainly be reduced. A 1.5-n.mi. separation with a 60-knot approach speed
results in a 90-sec time separation, more than adequate for controller/pilot

communication and reaction.

The effect on maximum arrival rate of mixing STOL and CTOL aircraft is
examined in the main report for various values of final common path length. Even
a small percentage of STOL trafficin the arrival stream greatly reduces the arrival
rate. This is caused mainly by the low STOL-only arrival rate, but a further

degradation occurs as the length of the final common path is increased.

A funway can be regarded as a service facility. It can be used by only one
aircraft at a time (arrival or departure), and other aircraft seeking to use it must
be delayed until it is free. When the runway occupancy time for arrivals is very
small, the separation requirements in the approach airspace limit the minimum
landing intervals, as we have observed. In this case, arriving aircraft must queue
for the use of the approach airspace as well as the runway, and the approach airspace

can also be regarded as a service facility.

When arunway is used for both arrivals and departures, the situation becomes
considerably more complicated. Departure aircraft form a second queue for runway
usage, and the characteristics of this queue must be examined, Present ATC
procedures give landing aircraft priority over departures for use of the runway, a
practice which can lead to long departure queues and delays. Long departure queues
could not be accomodated at a small STOLport, making the investiga’\cion of the

arrival/departure process particularly pertinent.

To calculate the Practical Hourly Capacity (PHOC AP) of the runway used for
mixed operations, it isnecessary to know both the arrival capacity and the departure
capacity. If the arrival/departure ratio is unity, then the Practical Hourly Capacity
is defined to be twice that of the lower capacity of the two sireams of traffic. In
the normal case when the departure capacity is less than the arrival capacity, the
runway is said to be "departure-limited". In the STOL situation, the runway tends
to be "arrival-limited" because the low STOL approach speed combined with the
short STOL runway occupancy time provides ample opportunities for the release of

departures.
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Inorder tominimize the cost and disruptive impact of STOL operations within
the ATC system, it is desirable to limit specialized procedures and regulations to
only those deemed most essential to the success of the venture. From the runway
capacity point of view, it would appear that special reduced separation regulations
are essential for STOL. The Practical Hourly Capacity under present standards
for mixed operations on the STOL runway at a mean arrival delay of 2 min is only
23 operations per hour (half arrivals and half departures). 1If the required
arrival/arrival separationis reduced from 3n.mi. to0 1.5 n.mi. and the arrival/depar-
ture separation from 2 n.mi. to 1 n.mi., then the Practical Hourly Capacity becomes

52 operations per hour.

A 2-min mean delay level has arbitrarily been selected as acapacity reference.
One of the important areas for future work is to determine acceptable delay levels -
for STOL.V 'STOL transportation systems are shown to be economically feasible or
infeasible on the basis of trip time and costs, both of which increase with increased
terminal area delays. Future economic studies should attempt to include the effects

of congestion and terminal area delays in their considerations.

Finally, the need for empirical dataon STOL runway service times and delays
should be emphasized. Real-time ATC simulations can be of use here, as can flight
test data on runway occupancy times for arrivals and departures, pilot reaction
times, and the like.

STOL Operations at Metropolitan Jetports

Although there are many reasons why one would want to implement -an
independent STOL transportation system operating without congestion from centrally-
located STOLports, the desirability of STOL operations at metropolitan jetports is
less clear. Such operations may be found to benecessaryin some instances because
sites for separate STOLports either cannot be found or are too expensive. Also,
the economics of air transportation may dictate that STOL flights connect with existing
CTOL flights (both long-haul and short-haul) to satify the needs of the air traveling
public. Finally, STOL vehicles may be able to utilize runway facilities not usable
by conventional aircraft due to noise-abatement restrictions, runway-length limita-
tions, or obstacle-clearance problems, and hence increase airport capacity. The
key issue in this case is whether safe, reliable STOL operations can be conducted
without interfering with CTOL operations,

There are three main ways of implementing STOL/CTOL operations at jetports,

These are STOL/CTOL. operations on the same runway, on intersecting runways,
and on parallel runways.
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Upon considering these types of operations in the light of current and evolving
ATC procedures, it is concluded that noninterfering, capacity-enhancing STOL./
CTOL operations at jetports should be possible if the STOL and CTOL vehicles use
separate runways. Under IFR conditions, the two possibilities for noninterfering
landing operations would appear to be (1) simultaneous ILS (or MLS) approaches to
parallel runways, and (2) synchronized operations on intersecting runways (to avoid
possible conflict at the intersection). In the first instance, parallel STOL runways
having sufficient separation (5,000 feet) from the CTOL runways would be needed.
Reducing the required separation is an important avionics and ground-system design
goal. In the second instance, additional aids to the controller (such as the ARTS III
metering and spacing system) would be necessary to increase efficiency and reduce
controller workload, and the 3-n.mi. separation rule (for aircraft on separate
runways) would have to be amended. In examining the tradeoffs between these two
types of operations, particular attention must be paid to taxiing delays caused by

remote runway locations and taxiway/runway interference.

Synchronization of operations might be useful for the reduced-separation
parallel-runway case as well as the intersecting runway case in order to avoid

arrival/departure (or wake turbulence) interference.

A detailed safety analysis of STOL operations at jetports is recommended fo

aid in establishing separation standards and emergency procedures.
STOLport and Suburban Airport Operations

In this final section, the geographic region of interest is expanded beyond the
immediate environs of the jetport to encompass the approach and departure\\ airspace
as well as possible non-jetport STOL terminals in the metropolitan area. An
examination of the proposed STOL terminal sites reveals that the use of both downtown

STOLport facilities and suburban general-aviation airfields is contemplated.

Operational procedures for landing V/STOL aircraft in a congested terminal
areaenvironment (Los Angeles) have been investigated in aNAF EC simulation study.8

With respect to the approach airspace, the most pertinent test results were these:

1. Establishing proper separation betweenthe V/STOL aircraft prior to transition
proved to be a high-workload task.

2. Because of the workload involved in providing separation for the V/STOL
aircraft, an additional controller was required to handle arrivals to the City
Center Metroport (the V/STOL facility).
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3. Separate arrival routes for V/STOL aircraft were found desirable when the
V/STOL and CTOL aircraft landed on independent runways, but were of no

value when they landed on the same runway.

In 1969, an FAA staff study was prepared entitled: "The Feasibility of
Establishing Downtown STOLports in New York City, Los Angeles, and Chicago."9
The study concluded that downtown STOLports would be feasible from an air traffic
control point of view in each of the three cities, but suggested that a network of
suburban STOLports might better serve the transportation needs of the Los Angeles
area. Since the study did not involve simulation of traffic control procedures, the

feasibility conclusion should be regarded as preliminary.

These studies indicate that STOL operations at separate STOLports and
suburban airports within major terminal areas can be accomodated using existing
procedures for the most part. One or more satellite positions at the TRACON may
benecessary, as well as tower controllers for special STOLport facilities, Avionics

and ground-system improvements should concentrate on the following problem areas:

1, Assistance to the controller in establishing pre-transition separation.

2. Methods for standardizing STOL deceleration profiles during transition.
Methods for reducing the airspace required for controlling STOL/STOL
separation on final approach.

4, Ways toimprove the adequacy of navigation aid and radar coverage at certain
problematic STOLport sites.

Methods for enhancing the safety of STOL operations at suburban airports.
Collision avoidance assistance for STOL pilots operating amidst general-avia-

tion traffic in the terminal area.

It is recommended that limited-scale demonstration projects Be undertaken
using actual STOL vehicles to assist in identifying operational problems and in

establishing detailed operating procedures.

30



References for Executive Summary -

1. Nelson, Robert A., et. al., Northeast Corridor Transportation Project Report,
NECTP-209, N70-34648, PB 190929, 1970,

2. De Havilland Aircraft of Canada, Ltd., Exhibits Before the CAB Northeast
Corridor Investigation, 1969.

3. Miller, Myron, et.al., Recommendation for Northeast Corridor Transportation,

3 Vols., Final Report issued by the Department of Transportation, May 1971,

4, Department of Transportation, Report of Department of Transportation Air
Traffic Control Advisory Committee, Vols. 1 and 2, 1969,

5. Computer System Engineering, Inc., Computer-aided Metering and Spacing with
ARTS 1II, FAA-RD-70-82, AD7-8355, 1970.

6. Innis, R.C., Holzhauser, C.A., and Gallant, R.P., Flight Tests Under IFR with
an STOL Transport Aircraft, NASA TN D-4939, Ames Research Center, Moffett
Field, California, Dec. 1968.

7. Summary of Meteorological Observations, Surface, for 1854 - 1968, at South

Weymouth, Mass., Naval Weather Service Command, Asheville, North Carolina,
Nov. 1966.
8. Conway, Robert C., VTOL and STOL Simulation Study, FAA-NA-68-21
(RD-67-68), AD 670006, N68-29057, April 1968. '
9. The Feasibility of Establishing Downtown STOLports in New York City, Los
Angeles, and Chicago, FAA Staff Study, Sept. 1969.

31



PRECEDNG PAGE BLANK NOT FLNEFD

CONCLUSIONS AND RECOMMENDATIONS

The principal conclusions and recommendations which have resulted from this
inquiry into the STOL traffic environment and operational proceduresare summarized
in this section. The reader is referred to the specific sections of the main report

for a detailed discussion and for additional conclusions and comments,
TRAFFIC ENVIRONMENT
STOL, Traffic Characteristics

1, Several recent system studies have indicated the possibility of an economically
successful STOL system in which substantial numbers of vehiclesare involved
(e.g., 3,000 daily operations in the Northeast Corridor by 1982), (Section
2.2)

2, There would be enough traffic at some STOLports to warrant concern about
peak-hour congestion (e.g., 50 to 80 operationsin a peak hour for a Manhattan
STOLport complex in 1982). (Section 2.2)

3. The projected traffic levels indicate potential capacity problems for STOL
operations at heavily-used jetportsand general-aviation airports given current

ATC system policy and procedures, (Section 2.2)
ATC System Description '

1. STOL air traffic control should be based on the same general principles and
procedures as CTOL air traffic control in order to minimize development

costs and disruptive effects, (Section 2,3)

2. If planned ATC automation programs are implemented as scheduled, STOL
operationsin the larger terminal areasmight be expected to take place within
the context of the automated metering and spacing system currently being

developed. (Section 2.3)

3. Theuse of area navigation systems having time-of-arrival control capabilites
(4-D RNAV) appears promising for terminal air traffic control and should be

investigated further. Expected benefits include reduced controller/pilot

| Preceding p;ge blank
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communication, reduced pilot workload through the use of automated systems
onboard theaircraft, and reduced airspace requirements to effect the terminal
ATC process, (Section 2.3)

OPERATIONAL PROCEDURES

STOL Noise Impact

A STOL vehicle with a basic noise level of 95 PNdB at 500 feet would produce
noise contours that contain less than 1.5% of the area of the corresponding

contours of today's 4-engine jet transports. (Section 3,2,3,1)

When both STOL and CTOL are outfitted with quiet engines, STOL: should still
have significantly smaller noise contours due to shorter ground rolls and steeper
flight path angles. Further study is needed to define the noise/cost tradeoffs

involved in increasing engine power for steeper flight path capability,

Assuming 100 operations perday, the NEF 30 contour for the above-mentioned
STOL, if it had a climb capability of 15 deg and an approach slope of -7.5
deg, would extend less than 3,000 feet along the runway centerline., A contour
of this size might be completely contained within the STOLport property limits,
(Section 3,2,3.1)

Thrust cutbacks after takeoff can provide moderate reductions in annoyance
(3-5 PNdB) for certain areas under the flight path, In general the quieter the
vehicle the smaller thearea of noise reduction fora givennoise level. (Section
3.2.3.2)

In’ general the least annoying flight path is one of maximum flight path angle
when listeners are evenly distributed along the flight path, (Section 3.2.4.4)

Three-dimensional flight paths should be examined for their noise-reduction
potential over certain areas, especially in conjunction with thrust cutbacks,
Particular parameters to be defined are minimum IFR/VFR final-approach

distances, and maximum allowable bank angle as a function of altitude.

Wind Conditions Affecting Landing

1.

U.S. government data on winds and ceiling/visibility correlations at a typical
airport show that STOL aircraft will require a crosswind landing capability
of at least 20 mph if they are to have a trip completion ratio of 99.5% or
better (assuming adequate landing capability in poor ceiling/visibility
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conditions). Since some single-runway sites may have unfavorable runway
orientationor higher wind probabilities, STOL crosswind capability may have

to be as high as 30-35 mph, (Section 3.3.1)

Except for storms, low visibility conditions tend to be accompanied by low

winds and low turbulence. (Section 3.3.,1)

The probabilities of runway crosswind velocities can be modeled as Gaussian
distributions, but actual data is necessary for accurate prediction of the

percentages of incompleted flights due to crosswinds, (Section 3.3.1)

Turbulence within about 1,000 feet of the ground can be modeled by considering
the three coordinate directions separately and by adding to the standard von
Karman or Dryden power spectral densities a low-frequency convective peak
centered at about one-tenth the characteristic frequency and having a peak
amplitude of up to 10 times the amplitude of the flat portion of the spectrum.
Although sucha PSD peak would usually occur only on sunny VFR days, analysis
of STOL approaches is needed to determine the effect of this low-frequency

turbulence on glide slope following and touchown accuracy. (Section 3,3.5.2)

Analysis is required in several areas relating to wind effects, notably the
affects of wake turbulence onlongitudinal and lateral separation, and the effects

of wind shear on piloted and automatic landings,

Approach and Landing Considerations

1.

A simple model of the MLS approach and landing interface indicates that a
wide range of approach flight paths for STOL aircraft is possible with modest
landing-aid coverage (localizer and glide slope). This model should be extended
to include such realistic constraints as headwinds and crosswinds, pilot and

vehicle lags, and ground and airborne equipment uncertainties, (Section 3.4.2)

ATC System Interface

It is recommended that special reduced-separation requirements be adopted
for STOL operations in order to assure adequate runway capacity, Reducing
the IFR arrival/arrival separation from 3 n,mi, to 1.5 n.mi, and the arrival/
departure separation from 2m.mi, to 1 n.mi, can more thandouble the Practical
Hourly Capacity of a STOLport, (Section 3.5.1)

Noninterfering, capacity-enhancing STOL/CTOL operations at jetports under
IFR conditions should be possible using simultaneous ILS (or MLS) approaches
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to parallel runways, or (2) synchronized approaches to intersecting runways,
It is recommended that avionics and ground-system requirements for

implementing these procedures be investigated, (Section 3.5.2)

If STOL vehicles are to dperate safely and efficiently in congested terminal
airspace, avionics and ground-system improvements are needed in several
areas (e.g., control of in-trail separation through the transition maneuver,
and collision-avoidance assistance for operations at suburban airports).
(Section 3.5.3)
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DEFINITION OF STOL OPERATING ENVIRONMENT

This section provides an estimate of the STOL operating environment over
the 1975-1990 time period. This estimate, which is based on development plans,
study projections, and engineering judgement, is aimed at aiding STOL flight test
program planning. It is subject to thenormal limits on prognostication, compounded
by the present political and economic uncertainties relating to financing, operating,

and regulating a STOL service,

The operating environment is divided into two time frames, Phases I and 1I,
with the breakpoint separating the two periods in the 1985-1990 period., Phase I
represents the evolution of ground and airborne systems along lines already
established, with automation being employed mainly to improve safety and reduce
controller/pilot communication and workload, Phase II starts with the advent of
airborne 4-D RNAV capability, whichallows a sharing of the system control functions
between ground and onboard systems, and has the potential of providing significant

increases in airspace and runway capacity.

The items below outline our estimate of the Phase I operating environment,

A discussion of Phase II follows the Phase I description,

Phase I Environment

TRAFFIC ENVIRONMENT

STOL Traffic Characteristics N

1, It isassumed that an economically successful intercity STOL system involving
a substantial number of vehicles will be implemented in the 1975-1990 time
period (e.g., 3,000 daily operations inthe Northeast Corridor by 1982), (Section
2.2)

2, STOL operations will take place at STOLports, jetports, and suburbanairfields,
(Section 2.2; Appendix A)

3. The STOL fleet will evolve into a mixture of large jet-STOL vehicles and

small and medium-sized propeller-driven STOL vehicles, (Section 2,2)

4, There will be enough traffic at some STOLports to warrant concern about
peak-hour congestion (e.g., 50 to 80 operationsin a peak hour for a Manhattan
STOLport complex in 1982), (Section 2,2)
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5.

The traffic levels projected for STOL operations at heavily-used jetports and
general-aviation airports will necessitate the development and application of
noninterfering STOL /CTOL operating procedures, (Section 2.2)

ATC System Description

1.

STOL air traffic control will be based on the same general principles and
procedures as CTOL air traffic control in order to minimize development

costs and disruptive effects, (Section 2.3)

Inthe larger terminal areas, STOL operations will take place within the context
of the automated metering and spacing system currently being developed,
(Section 2.3,3)

Anautomatic, digital data link will be inuse for both routine and time-critical
ATC commands, (Section 2,3,3)

Collision avoidance or proximity warning systems (possibly intermittent
positive control) will beused to enhance the safety of STOL operations amidst
general-aviationtraffic inthe terminal areaand at suburbanairfields. (Section
3.5.3)

Additional controllers and tower personnel will be required to handle opera-

tions at separate STOLports within the terminal area., (Section 3.5.3)

OPERATIONAL PROCEDURES

STOL Noise Impact

1.

It is assumed that STOL vehicles operating in the 1975-1990 time period will
have'basic noise levels of 95 PNdB or less at 500 feet. (Appendix B)

In general STOL climbouts will be at maximum flight path angle, as this
minimizes the total annoyance when listeners are evenly distributed along
the flight path., (Section 3.2,4.4)

Thrust cutbacks after takeoff, which result in moderate noise reductions (3-5
PNdB) over certainareas, will be required at some sensitive STOLport sites,
Such maneuvers will probably not be required at most sites however, due to

the low basic noise level of these aircraft. (Section 3.2.3.2)

Curved flight paths will be used frequently for STOL operations in order to -
avoid noise sensitive areas, Analysis is needed to define the effect of such
maneuvering on PNL and NEF contours, Particular parameters to be defined
include minimum IFR/VFR final-approach distances, and maximum allowable
bank angle as a function of altitude.
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Wind Conditions Affecting L.anding

Itis assumed that STOL aircraft will have the capability to land with crosswind
components of at least 20 mph (probably as high as 30-35 mph). This should
allow trip completion ratios of 99.5% or better (assuming adequate landing
capability for poor ceiling/visiblity conditions) at STOLport and jetport sites
where STOL runways may not bealigned favorably with respecttothe prevailing
winds, (Section 3.3.1)

Approach and Landing Considerations

1.

It is assumed that the terminal landing aids will have sufficient coverage and
accuracy to permit curved approaches down to the runway threshold, This
coverage will allow approaches of at least 90 deg to the runway centerline,
followed by a constant-radius turn down to the threshold. Further work is
needed to determine the limits on approach angles and turn radii, and to
determine touchdown accuracy for automatic and piloted landing. (Section
3.4.2)

ATC System Interface

1.

It is postulated that IFR arrival/arrival separation for STOL will be reduced
from 3 n.mi. to 1.5 n.mi. or less, and that the arrival/departure separation
will be reduced from 2 n.mi. to 1 n.mi, or less in order to provide adequate
runway capacity, A safetyanalysisisneeded inorder to verify the practicality

of these reductions, (Section 3.5,1)

Wherever possible, STOL and CTOL operations at jetports will be kept
separate; noninterfering, capacity-enhancing STOL/CTOL operations will be
conducted under IFR conditions using (1) simultaneous ILS (or MLS) approaches
to parallel runways, or (2) synchronized approaches to intersecting runways,
Avionicsand ground-system requirements for implementing these procedures
must be investigated, (Section 3.5.1; 3.5.2)

Separate STOL arrival routes between feeder fixes and STOL runways will
beused inthe terminal area whenever sufficient airspaceisavailable. (Section
3.5.3)

Phase Il Environment

One of the tasks of this project was to define two STOL operating periods,

the second to have more advanced equipment and operating procedures than the

first. Because of the expected evolutionary growth of a STOL system, the selection
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of a breakpoint is somewhat problematic, However, thereis a possible development
in the ATC environment that significantly impacts the equipment and procedures
associated with both ground and airborne control systems; that development is the
introduction of airborne four-dimensional area navigation (4-D RNAV) into the ATC
system, which could occur in the 1985-1990 time period.

The major impact of airborne 4-D RNAV will probably be to reduce com-
munication and separation requirements, which will increase airspace utilization
and runway capacity. This results from a control strategy in which the ground
determines a 4-D flight path (position/time) for each aircraft and. sends this
information to the aircraft via data link. The aircraft then becomes responsible
for maintaining the flight path with great precision using its onboard control,

guidance, and navigation equipment,

It should be pointed out that the automated metering and spacing feature of
the ARTS III terminal area ATC system (see Section 2,3,3) will providea 4-D RNAV
capability as early as 1975, but this capability is expected to provide only small
increases in runway and airspace capacity due to the slow ground-based control
loop and the relatively inaccurate navigation aids available, It is only when a fast
control loopand accurate navigation aids canbe employed together that airport/STOL -
port capacity can be increased significantly,

A necessary component of a 4-D RNAV system isaccurate navigation informa-
tion, since position following is only as good as position information, It is assumed
that by 1985-1990, aircraft navigationaids will provide position information accurate
to within tens of feet. Whether or not the navigation system will be satellite-based
is indeterminate now, but it appears that a satellite system of sufficient accuracy

could be in service by that time.

Theuseofairborne 4-D RNAV appears particularly advantageous for the control
of STOL aircraft in the terminal area. Simulation studies (see Section 3.5.3) have
shown that maintaining accurate time-of-arrival and separation control through the
STOL transition maneuver using ground-based traffic control procedures is difficult
and may forestall the use of reduced longitudinal separation on final approach,
Reduced separationisneeded to provide adequate STOL runway capacity (see Section
3.5.1), Airborne 4-D RNAV systems should be capable of providing the improved

time-of-arrival control needed during the transition maneuver.

The possible evolution of the 4-D RNAV system is outlined in Figure ENV-1,
Shown here are the key features of the ATC and airborne systems arranged in an
estimated timeline, Also shown are the operational procedures corresponding to

the ground/airborne systems' state of development,
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With the exception of the 4-D RNAV capability, the ATC developments are
taken from the FAA ten-year plan for the 1973-1982 period, The advent of 4-D
RNAYV in the 1985-1990 period represents a departure from the established ATC
policy of tactical ground-based control, in that the ground will compute flight paths
strategically and the aircraft will be responsible for maintaining the flight paths;

thus the control responsibility will be shared between airborne and ground systems,

The airborne systems will probably undergo continuous development over the
years, providing capabilities for autoland, curved approaches in conjunction with
the ML:S and datalink, and, with the addition of velocity control for all flight regimes,
precise 4-D RNAV all the way to touchdown for high-capacity terminal area

operations,

Significant problems associated with the introduction of airborne 4-D RNAV..
systemsinclude (1) the possible need tomix RNAV-equipped and non-RNAV-equipped
aircraft in the same airspace, at least during some transitional time period, and
(2) the design of cooperative control algorithms that will allow ground monitoring
of airborne system performance, It is assumed that the benefits to be accrued due
to tighter airborne control of terminal area flight-paths will motivate the solving
of these problems and lead in time to adoption of 4-D RNAV procedures for

controlling at least a portion of the air carrier traffic in the terminal area,
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CHAPTER 1

INTRODUCTION

Prior to the introduction of a new STOL short-haul transportation service, it
isnecessary to identify and understand the expected operational environment, Such
understanding will aid in establishing STOL avionics requirements, This report
examines two aspects of the STOL operating environment, The first, which is called
the Traffic Environment, encompasses such factors as STOL demand, the size and
mix of vehicles (STOL, CTOL, and VTOL), STOLport location, runway and terminal
area capacity, and the air traffic control (ATC) system., The second, entitled
Operational Procedures, addressesnoise impact, flight path definition, atmospheric
effects, and interaction with the final-approach landing aids. Consideration is also
given to the ATC problems associated with STOL operations at jetports, suburban

airports, and separate STOLports,

The air traffic environment is covered in Chapter 2, The discussions on
STOL demand, traffic mix, and STOL.port locations are based on interpretations of
previous studies, The ATC system is examined in its present state, and the planned

evolution of the equipment and procedures is described,

STOL operational procedures are dealt with in Chapter 3. Again, existing
studies are reviewed for their application to STOL operations, The noise section
discusses two methods of defining noise-abating flight paths., The atmospheric
section provides an examination of low-altitude atmospheric turbulence, as well as
discussion and examples relating to ceiling/visibility and runway crosswind data,
The landing approach section presents a method for determining limits on final
approach flight paths as a function of the landing aid geometry., The ATC interface
section discusses STOL operating proceduresat jetports, STOLports, and suburban
airports, as well as STOL runway capacity, The STOL runway capacity analysis is

an appropriate modification of the analysis used for CTOL operations,

It is the intent of the report to provide a better understanding of the potential
STOL operating environment, and to suggest possible solutions to some problem
areas, An attempt has been made to identify those problem areas which impact on |
avionicsand ground-system requirements. Thereremain, however, several critical
areas requiring significant additional work prior to the introduction of commercial
STOL service, These are discussed in the conclusions and recommendations of

the separate sections.
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CHAPTER 2

TRAFFIC ENVIRONMENT

2,1 INTRODUCTION

The intent of this chapter is to examine the expected traffic environment for
anintercity STOL transportation system in order to facilitate the definition of STOL
operating procedures, This in turn should aid in establishing STOL avionics

requirements,

A description of the expected STOL air traffic environment for planning
purposes should consider two aspects of STOL air traffic: the characteristics of
the traffic — that is, the traffic densities, vehicular types, and the traffic mix
expected in various geographical regions at future times — and the control of the
traffic in terms of air traffic control procedures and policies, The expected traffic
characteristics will be discussed in Section 2.2, and the traffic control in Section
2.3.

Traffic characteristics as portrayed in a number of recent system analyses
are examined in Section 2.2 in order to identify possible STOL/CTOL or STOL/STOL
interaction problems, Some of the expected traffic levels are sufficient to cause
congestion problems at the busiest of the proposed STOLports, STOL/CTOL
traffic-conflict problems are indicated for STOL operations at jetports gnd general

aviation airports unless noninterfering operational procedures can be developed,

The current state and expected evolution of the air traffic control system is
reviewed in Section 2.3, For the purpose of developing operational procedures, the
ATC system has been taken as ''given' in order to minimize development costs and
disruptiveimpact. Plans for thedevelopment of automated terminal ATC procedures

are reviewed in some detail,

.
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2.2 TRAFFIC CHARACTERISTICS

Inthe past six yearsalarge number of studies have beendevoted tothe technicai
and economic analysis of STOL (and VTOL) short-haul air transportation systems,

Most of these studies have dealt with the interurban travel market having stage
lengths of less than 500 miles. Some have considered intraurban applications, while

a few have dealt with regional, recreational, or other types of air services.

Conclusions regarding the economic viability of STOL air systems havevaried,
Generally speaking, the economic viability conclusion hinges on assumptions made
regarding transportationdemand and modal preferences, vehicleand service charac=
teristics, terminal locations, operating costs, and the allocation of costs among the
operator, the federal government, and the affected municipalities. In any case,
economic viability (and technical feasibility) hasnot been demonstrated to the extent

necessary to attract the investment capital.

In the absence of a clear plan or commitment on the part of an air carrier or
appropriate government body to implement a STOL air transportation system in
any of the potential interurban domestic markets (the only type of STOL service to
be considered here), it is not possible to be very certain about future traffic
characteristics, Aninterurban STOL air service may never materialize, However,
anumber of the above=-cited economic and system studies have depicted a successful
STOL air service in which substantial numbers of vehicles are involved. Since the
presence of a large number of STOL vehicles in short-haul air service may pose
problems for the air traffic control system, certain of these studies will be considered

in more detail.

In particular, the interurban traffic characteristics as depicted for the
Northeast Corridor by two of the above studies will be considered, These are the
Northeast Corridor Transportation Project Repor’c2 and supporting voiumes, and
the Civil Aeronautics Board's Northeast Corridor VTOL Investigation,™ specifically
the exhibits prepared by de Havilland Aircraft of Canada, I_,’cd.4

1.
A few words are in order about some of the Northeast Corridor's prospects
and problemsastheyrelate to transportationneeds. The prospectsinciude continued
population growth coupled with an increasing disposition to travel, and continued

population migrations., The increasing disposition to travel is reflected by the fact

*
An extensive annotated bibliography will be found in Ref., 1.
TThe term Northeast Corridor as used herein refers to the urbanized northeast

seaboard of the United States from about 50 miles north of Boston, Massachusetts,
to the southern border of Virginia,
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that demand for intercity transportationis growing at more than twice the population
growth rate (4% per annum as opposed to 1.8% per armum).2 The major population
migrations, from rural tourbanareasand from city centers to suburbs, are expected
to continue, leading to still more sparsely settled rural areas and sprawling urban

concentrations,

Most of the transportation problems in the Corridor are related to these
population growth and distribution trends. It is difficult to provide common carrier
transportation to rural and suburban areas without subsidy, This difficulty has led
toincreasingrural isolationand adependence inthe suburbs onthe private automobile
as an intercity mode. Access from suburban areas to airports and city-center
ground transportation terminals has become very difficult as a result of urban

congestion, Demand has been outpacing capacity (at least at peak hours) in both

the highway and air modes as evidenced by highway congestion in the vicinity of -

urban areas and by congestion on the ground and in the air surrounding airports,
Traditional solutions, the construction of new highways and new airport facilities,
areno longer as feasible as they once were, due not only to environmental pollution
considerations, but also to severe space limitations within the urban portions of
the Corridor. The land requirements for both expressway and airport construction
are substantial. For example, a new airport for large, conventional air vehicles
requires from 5,000 to 10,000 acres of land with compatible surroundings, For
this and other reasons, new ways of providing for the area's future intercity
transportation needs seem to be required.

The Northeast Corridor Transportation Project was established as a formal
project within the Department of Commerce in 1964; it was later transferred to the
Department of Transportation. It had as its goal the determination by systems
analysis techniques of intercity transportation facility requirements for the Northeast
Corridor through 1980, A project status report, consisting of eighteen volumes,
was forwarded to Congress on May 4, 1970, The summary volume describes a
cost/benefit analysis of ninealternative transportation system configurations, while

the supporting volumes describe the analysis tools and the calibration data used,

Anumber of mathematical models were developed and applied, An econometric
model was used topredict future changes in population density, employment, personal
income and land use, A demand model of the multiple linear regression type used
econometric and other data to predict the overall demand for transportation, and
distributed the demand among the various modes, Supply models were developed
to describe the characteristics of both the existing and proposed new modes —
trip times, costs, frequencies, and access characteristics, Cost models were used
for determining not only the levels of capital investment required, but also some of

the social and environmental costs, An impact model was developed as an attempt
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to determine the effect of transportation system improvements on the region's future
development, Given the econometric data for some future time and a proposed
transportation network, an iteration was performed using the supply and demand
models until a supply/demand equilibrium was reached, At this point the various

costs and benefits could be evaluated.

Once developed, themodel system wasused to evaluate alternative transporta-
tion system improvements for the 1975 to 1980 time period. The new modes
considered were STOL, VTOL, and several high-speed rail possibilities including
the tracked air cushion vehicle (TACV).*

Figure 2,2-1 shows some of the STOL and VTOL vehicle characteristics
assumed for the alternative system evaluation runs, The first STOL vehicle
considered was the MDC-210G, the proposed commercial version of the MDC-188
(Breguet 941S). Like the Model 188, it uses the deflected slipstream principle and
has four mechanically-interconnected propellers; it differs by being larger and
faster, seating 122 and cruising at 368 mph, During the evaluation runs, it was
found that a smaller vehicle would provide a better match to the Corridor's air
transportation needs in the 1975 to 1980 time period over the routes considered
and would result in more efficient vehicle utilization., Accordingly, some further
runs were made using the DHC-7, a 48-passenger propeller STOL vehicle with a
276 mph cruise speed. The VTOL vehicle considered was the Sikorsky S-65 compound
helicopter which seats 86 and cruisesat 265 mph, This vehicle seemed well matched

to Corridor needs,

Table 2,2-1 lists the number of daily STOL operationsT at variousair terminals
in the Northeast Corridor for three of the evaluation runs.6 In the first of these
runs, the STOL system uses the MDC-210G and competes withauto, bus, conventional
air,and high-speed rail "A" — one of the less expensive high-speed rail alternatives.
In the second case, a competing VTOL network with a different set of terminals
and routes is added using the S-65. In the third case the MDC-210G is replaced by
the smaller DHC-7, Only STOL operations are shown in the body of the table, but

* The analysisand data presented with respect to V/STOL systems in the Northeast
Corridor Transportation Project Report have been criticized as overly optimistic
in a subsequent report issued by the Department of Transportation.5 A particular
issue is the cost of providing V/STOL terminals and ATC facilities, which has not
been sufficiently considered in the analyses described herein, The traffic levels
depicted should therefore be regarded as potential traffic levels achievable given.
sufficient time, rather favorable economic circumstances, and community and
passenger acceptance,

TAn operation is defined as either a landing or a takeoff, There are presumably an
equal number of landings and takeoffs over a day's time, not counting vehicles lost,
stolen or strayed,
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1975 STOL OPERATIONS PER DAY

MDC-210G DHC-"
Market Area Site STOL com=- |STOL com-
MDC-210G | petes with | petes with
STOL S-65 VTOL | S-65 VTOL
Washington College Park 142 114 249
Fairfax
Baltimore, Md. Towson 80 66 160
Wilmington, Del, Greater Wilmington 52 42 104
Philadelphia, Pa, New Media Apt. 64 42 108
North Phila, 76 74 152
Wings Field 64 40 118
Burlington Co. 68 44 124
Trenton, N,J, Mercer Co, 48 46 110
Newark N,J, Newark 66 52 132
Teterboro 50 50 98
New York, N,Y, 57th & Hudson 150 130 280
La Guardia 88 76 158
Bethpage 64 46 124
Westchester Co. 128 82 218
New Haven, Conn, |Bridgeport 78 60 166
Tweed-New Haven 64 74 146
Hartford, Conn, Brainard 86 78 176
Springfield, Mass, |Bowles-Agawam 58 42 112
Providence, R.I, Green 48 40 a0
Worcester, Mass, | Worcester 22 20 36
Boston, Mass, Hanscom 88 66 178
Norwood
TOTAL STOL OPERATIONS: 1584 1284 3032
TOTAL VTOL OPERATIONS: 2840 2852

Other Competing Modes:

auto, bus, CTOL, high speed rail ""A"

Table 2.2-1 Northeast Corridor STOL operations as projected for the Northeast
Corridor Transportation Project (Ref. 6)
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the total number of VTOL operations is shown along with the total number of STOL
operations at the bottom of the table. It can be seen by comparing cases one and
two that competition from VTOL is responsible for only about a twenty percent
drop in the total number of STOL operations, reflecting the fact that the VTOL
network concentrates on shorter stage lengthsthan the STOL network. A comparison
of cases two and three shows that, as might be expected, the number of STOL

operations varies inversely with the vehicle seating capacity,

It is particularly interesting to note whether any of the terminal sites in the
system would be congested at the operations levels listed in the table, Different
types of terminals are involved: STOLports, large and small general aviation
airports,and airports havingalarge percentage of air carrier traffic. The Manhattan
STOLport is the busiest, having 280 operations per day in case three, Assuming a
peak-tOfaverage-hour* operations ratio of 3 whichisatypical number for air carrier
operations at the busier airports,’7 this translates into 35 operations during a peak
hour — busy, but not terribly congested, In the case of the air carrier airports,
the impact of the indicated STOL operations cannot be assessed without further
information about the reductions which have presumably been made possible in
short-haul CTOL traffic, and the severity of STOL/CTOL conflicts, a subject which
is discussed in Section 3,5 of this report. STOL operations at the larger general
aviation airports are likely to be a problem because of existing congestion at peak
hours, Peak-to-average-hour operations ratios for these airports tend to be rather
large, 5.75 for Teterboro in FY 1969, for example.7 In that year, 161 operations
were handled in the peak hour at Teterboro, as compared with 124 at La Guardia,
even though La Guardia handled 40% more traffic on an annual basis, The safety of

STOL operations at the busier general aviationairportsis certainly open to question,

Some other projections of STOL traffic levels and vehicular types, will now
be considered; specifically, those presented by de Havilland Aircraft of Canada,
Ltd., before the Civil Aeronautics Board's Northeast Corridor VTOL Investigation,4

an investigation which concerned itself with both STOL and VTOL air service,

Phase one of the Northeast Corridor VTOL Investigation was conducted
between October 1967, and February 1970, and concluded that VTOL, STOL or
V/STOL intercityair service in the Northeast Corridor is technically and economi-
cally feasible on a nonsubsidized basis. It also concluded that the service would be
in the public interest "in order to reduce congestion and delay in air transportation
and improve the quality of air transportation' in the Corridor, Phase two of the.
Investigation (in progressas of this writing) is to consider certain regulatory issues,

and may include the selection of a carrier or carriers to provide the service,

*
Average-hour operations are found by dividing the total daily operations by 24,
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Detailed economic analyses supporting the feasibility conclusion were carried
out by a number of interested parties, notably, Pan American World Airways, Inc.,
de Havilland Aircraft of Canada, Litd., the McDonnell-Douglas Corp., and the Sikorsky
Aircraft Division of United Aircraft Corp. The results discussed here are from

the de Havilland exhibits.4

The methodology of the de Havilland analysis differed somewhat from the
supply/demand balancing discussed in connection with the Northeast Corridor
Transportation Project, The de Havilland procedure was to extrapolate demand
data from the 1960's for the auto, bus, air and conventional rail modes into the
1970's and then use a modal split model to calculate the penetration of a STOL
network into this extrapolated demand. This method does not,take into account the
induced demand that might result from the introduction of a ﬁew mode, and should
result in conservative estimates in that regard. Competition from high-speed rail

and VTOL was not explicitly considered, however,

Figure 2,2-2, taken from the de Havilland exhibit, shows the impact of the
STOL service on intercity passenger travel, The figure indicates a substantial
patronage for the STOL service, the DHC-7 STOL potential growing from about 6
to 15 million annual passenger trips during the 1970's, The achievable potential
shown in the figure is somewhat less, owing to the elimination of certain routes

having a low frequency of service.

Table 2,2-2 shows STOL daily operations for three different time periods
and for three different vehicle types, the DHC-6 (Twin Otter) seating from 18 to 20
passengers, the DHC-7 seating 48, and an augmentor-wing jet STOL seating 100,
An increase in total daily operations is predicted, in spite of the trend toward use
of the larger vehicles, Usirdg the 1973 and 1978 data, one might estimate about
2000 daily operations for 1975, considerably fewer than the 3000 indicated for case
threeof Table 2,2-1, The variance is due to the different assumptions and methods

used in the two studiesand gives some indication of the range of uncertainty involved,

It is again interesting to examine the traffic levels indicated in Table 2.2-2
for possible congestion problems. Except for the two Manhattan STOLports, the
STOLport daily operations levels listed in the table should not lead to serious
congestion = the peak hour operations rates calculated as before are all less than
35 per hour, The Manhattan STOLports, however, jointly handle between 50 and 80
operations during peak hours and may present some difficulties, depending on the
adequacy of the STOLport design and the operational procedures employed,"
Operations at the larger general aviation airports, such as Hanscom Field, may
also present problems as noted previously. Air carrier airports were not used as

sites in the de Havilland study.
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STOL Operations Per Day

Market Area Site
1973 1978 1982
Washington Union Station 123.8 189.6 226.8
Potomac Site 20.0 42,6 59.4
Bethesda 42,6 92.8 97.0
Alexandria 23.0 71.8 86.6
Baltimore, Md, CBD 62,4 86,8 123.2
Wilmington, Del, CBD 14,2 14.4 15,6
Philadelphia, Pa, CBD 99,6 122,2 181.6
West Phila, 49.4 87.2 115.0
North Phila, 27.0
Trenton N,J. Mercer Co. 39.8 59.0 64.6
Newark, N,J. Passaic 47,2 70.0 126.0
New York, N.Y, Manhattan West 400.0 352,4 295.6
Manhattan East 274.0 346.8
Governors Island 9.6 36.8 82.4
Queens 102.2 143.6 185.8
Westchester Co, 114.0 182.4 183.0
Hartford, Conn, Brainard 87.4 100.4 109.6
Providence, R.I, CBD 49.4 71.8 124.8
Boston, Mass, CBD 113.6 212.4 255.2
South Weymouth 60.2 105.6 106.0
Hanscom Field 60.0 107.4 92.6
Beverly 7.2 32.4 50,2
DHC-6 OPERATIONS: 452 388 392
DHC-7 OPERATIONS: 1076 2068 1204
AUGMENTOR WING OPERATIONS: 1360
TOTAL DAILY OPERATIONS: 1528 2456 2956

Table 2. 2-2 Northeast Corridor STOL operations as projected for the Northeast

Competing Modes:

auto, bus, CTOL, rail

Corridor VTOL Investigation (Ref. 4)
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One other feature of the data which should be noted is the relative persistence
of the market for the smaller STOL vehicles, leading in time to a considerable
disparity in the sizes of vehicles operating from a given STOLport. This is, of

course, a familiar airport phenomenon.

In summary, the data listed in Tables 2.2-1 and 2,2-2 give an indication of
the potential characteristics of intercity STOL traffic, the traffic levels, vehicle
types, and the traffic mix. Potential congestion problems are indicated at a few,
high-density, city-center STOLports, e.,g., New York; at heavily-used general
aviation airfields, e.g., Teterboro or Hanscom Field; and possibly at air carrier

airports, if these are used for STOL air service.

References for Section 2.2

1, University of Toronto, Institute for Aerospace Studies, An Assessment of STOL

Technology, A study prepared for the Canadian Transport Commission,
Research Division, UTIAS Report No, 162, 1970,

2. Nelson, Robert A,, et.al., Northeast Corridor Transportation Project Report,
NECTP-209, N70-34648, PB 190929, 1970,

3. Civil Aeronautics Board, Northeast Corridor VTOL Investigation, Initial

Decision of Examiner E, Robert Seaver, Docket 19078, February 2, 1970.

4, De Havilland Aircraft of Canada, Ltd., Exhibits Before the CAB, Northeast
Corridor Investigation, 1969,

5. Miller, Myron, et,al,, Recommendations for Northeast Corridor Transporta-

tion, 3 Vols,, Final report issued by the Department of Transportation, May
1971,

6. Roberts, Michael J, and Goldman, Donald, Air Mode Service Analysis in the
Northeast Corridor, NECTP-215, N71-11029, PB 190935, MTR-4113, 1969,

7. Federal Aviation Administration, Terminal Area Air Traffic Relationships,

Office of Management Systems, Information and Statistics Division, 1969,
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2,3 ATC SYSTEM DESCRIPTION

The design of suitable avionics and flight control systems for STOL vehicles
requires, in part, a description of STOL air traffic control procedures -— the more
detailed the better. However, it is unlikely that STOL procedures will be finalized
until some form of STOL serviceisactually introduced, given theinvigorating nature
of practical operating experience. In the interim, projections must be based on
current procedures, the expected evolutionof the ATC system, and any special STOL

operating requirements that can be identified.

The point of view taken herein is that STOL operations should be designed to
interface with the expected evolution of the ATC system. STOL air traffic control
should, wherever possible, be based on the same general principles and procedures
as CTOL air traffic control. This conclusion is based on the following lines of

reasoning:

1, The development of totally new ATC systems for STOL operations would be a
costly proposition. It is not reasonable to expect such development costs to be
borne by the STOL system operators with their possibly risky financial situation,
or by the federal government which is facing current ATC system costs of 18,2

billion dollars for the next decade,

2. If a''better' air traffic control system is being proposed for STOL operations,
then why not develop it for all users, CTOL and STOL alike, 'Advanced avionics
can be used by both classes of users, The development of a common ATC system
for air carrier, militaryand general aviation was found to bea practical and economic

necessity, STOL will similarly require a common-system approach,

This is not to say that special procedures will not exist for STOL operations,
Such procedures may arise as a result of the slow approach speed and high
maneuverability of the STOL vehicle, or because of operational problems in certain
terminal environments, Such special procedures must be designed so as to cause

minimal disruption of current system and expected future system operation,

Air traffic control will be discussed from a functional point of view in Section
2.3.1, The current system is then discussed in Section 2.3.2, and the expected
system evolution in Section 2,3.3, Some aspects of STOL operations within the

context of the ATC system are discussed in Section 3.5,
2.3.1 Functional Description

The objectives of anair traffic control system are to provide a safe, expeditious

flow of air traffic at a minimum system operating cost,
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A dichotomy exists bztween ''safe' and "expeditious''. A safe system uses
largeaircraft separation criteria to avoid collisions whereas an expeditious system
uses small separation criteria to obtain a high rate of flow, The tradeoff between

safety and capacity has rarely been made in a systematic manner.

With the possible introduction of advanced avionics equipment as an integral
part of the STOL aircraft into the ATC system, it is useful to review the ATC
system from a general point of view inorder to see the STOL craft and itsassociated
equipment in proper perspective, This view should allow a more realistic judgment
to be made of improvements in safety or capacity which may result from STOL

system use.

The following definitions will aid in the construction of an ATC overview:

Ei: is a flight plan vector associated with aircraft i which describes the

expected flight path,

Ei: is a position vector for aircraft i,
The ATC system works by exercising control over three quantities:

1) (F. - Ei): Flight Plan Deviation, This is the ATC Guidance Loop,

2) (-F—i - _F_‘j): Flight Plan Separation, This is the ATC Conflict Loop.
3) (_13i - E_j): Position Separation, This is the ATC Hazard Loop.

To facilitate this task, controlled airspace is divided into traffic sectors,
Associated with each sector are:

1) one or more traffic controllers
2) a communications channel
3) the controlled aircraft within the sector boundaries

The sector controller's job is to generate a set of compatible Ei's, and then
to monitor flight plan deviations and position separations, The controller obtains
information about aircraft position by means of the Data Acquisition System (DAS),
The communication channel is used to transmit the Ei's to the aircraft, and may be

subject to transmission error and delay,

At the aircraft level, three additional control loops exist:
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1) The Aircraft Control Loop. The speed, heading and rate of climb are

controlled by the pilot/autopilot using commanded inputs of, primarily,
54 (aileronangle), 5 (elevator angle), and T (engine thrust), This loop,

then, controls the velocity vector of the aircraft,

2) The Aircraft Guidance Loop. The value of (Ei - _lf’_i) is fixed by the
pilot through control of the velocity vector, Theadequacy of the guidance

loop is determined by the value of (E; - P,). Position is determined

onboard theaircraft by means of the Aircraft Navigation System (ANSi).

3) The Aircraft Hazard Loop. The value of (Ei - _P_’j) is determined by the

pilot either visually or using electronic hardware. The means for

determining the relative position will be designated the Collision Avoid-
ance System (CASi). By observing the proximity of other aircraft, the
pilot can decide on a modified flight plan to minimize a collision threat,
This is a backup loop under IFR conditions, as the ground ATC system
has primary control in that case. Thus the airborne hazard criteria
are less severe than the ground criteria. (The revision of _F_i by the

pilot may require some communication back to the ATC sector controller.)

Figure 2.3-1 summarizes the general ATC system described above.* The
figure shows the traffic sector control on the left (designated s) interacting with
aircraft i and aircraft j on the right by means of the communication channel, The
various control loopsareindicated. The superscriptiisused todesignate information
obtained byanaircraftusing its own equipment. The superscript sdenotes information
obtained by the Data Acquisition Systermn and used by the traffic sector control.

When no superscript is shown, the true value of the quantity is indicated,

Thus it can be seen that the primary improvement that STOL airborne equipment
will bring will be atightening of the aircraft loops, which maynot necessarily improve
the total ATC system in either capacity or safety, It is only if concomitantly the

outer control loops are improved that a system-wide improvement will resuit,
2.3.2 The ATC System Today

This section will outline the current implementation of the ATC process by
means of regulations, procedures, and active control facilities, Various activity
phases are identified and the operation of the en route and terminal traffic control

facilities are reviewed.

*
Source: Robert W, Simpson, Class Notes for ATC, M.,I.T. Aeronautics and
Astronautics Graduate Course 16.601, Spring, 1971,
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The ATC system that exists today has evolved over the years in response to
technological advancesin the field of flight transportation, In 1930 the first control
tower was established at Cleveland; in 1935 the first ATC center was manned at
Newark by the airlines. It was not until 1936 that the federal government assumed
responsibility for the centers, The Federal Aviation Administration (FAA) was
created and given responsibility for the ATC system by the Federal Aviation Act of
1958.

The Federal Aviation Regulations distinguish between two types of aircraft:
controlled and uncontrolled, or, in FAA terminology, IFRand VFR, For VFR aircraft,
the legal responsibility for avoiding a collision rests with the pilot. For controlled
aircraft, the legal responsibility for avoiding collisions with other controlled aircraft
rests with the ATC controller; for uncontrolled aircraft the responsibility rests
with the pilot.

Current rules prohibit VFR operations if the visibility is less than one mile
in uncontrolled areas, In controlled areas visibility must be greater than 3 miles
below 10,000 feet and greater than 5 miles above 10,000 feet, VFR aircraft must
have 1,000 feet vertical separationand 2,000 feet horizontal separation from clouds,
Below 10,000 feet the maximum allowable indicated airspeed is 250 knots for all
aircraft, All trafficiscontrolled above 18,000 feet in the Golden Triangle (Chicago,
Boston, Washington) and above 24,000 feet elsewhere in the United States and must
have an operating radar beacon transponder and a two-way radio before being

permitted to operate at these altitudes.

Five distinct activity phases can be identified in the ATC system:

1) Gate Activity Control (the Operations Desk): has responsibility for the

pre-flight activities, The pilot files his flight plan, obtains the weather

forecast and other information and gets clearance.

2) Ground Control: hasresponsibility for taxiwaysand all ground vehicles,

It is located at the top of the control tower (the cab),

3) Tower Control: has responsibility for clearing takeoffs and landings,

and for aircraft operations within 5 miles of the airport (essentially to

the outer marker),

4) Approach/Departure Control: has responsibility for traffic below 10,000

feet from 5-50 milesaway from theairport. It is located in the common
IFR room or Terminal Radar Approach Control Facility (TRACON),

5) En Route Control: has responsibility for all IFR. traffic en route. It is
located in the Air Route Traffic Control Center (ARTCC). The current
trend is to enlarge TRACON responsibility and thus not to bother the

centers with near-terminal activity.
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The responsibilityat ar ARTCC is divided into sectors, The primary division
is between high-altitude sectors and low-altitude sectors, Each sector is assigned
to a controller. The sectors are structured so as to have at most two airways and
two frequencies, Each controller can talk to the pilot and vice versa; the pilots
have to change frequencies when they move from sector to sector. The hand-off of
an aircraft from center to center is handled via phone link, Currently there
exist 21 FAA ARTCC's withinthe coterminous United Statesand sixadditional centers

outside.

At the terminal control facility, the responsibilityis usually divided by means

of assigning different controllers to handle arrivals and departures.

Of particular interest for STOL operations (see Section 3.5.3) is thenew "keep
'em high'" procedure being implemented at major hubs to provide a more effective
means for segregating IFR aircraft from VFR aircraft. The reason for the policy
is that the most hazardous mix of controlled and uncontrolled aircraft occurs in
the terminal areas at altitudes up to 4000 feet.

"Under its terms all turbojet arrivals shall enter the
Boston Terminal Airspace via established outer clearance
limitsand shall operate at 10,000 or above until within Boston
Terminal Airspace and on Boston Approach Control fre-
quency, Such aircraft will be reduced from cruise speed to
250 knots 10 miles prior to reaching the outer fix. After
leaving the outer fix, such aircraft will not be descended
below 5,000 feet until they are within the descent area for
the appropriate airport and runway to be used, Once in the
descent area, a normal rate of descent will begin and
terminate at landing, We continue to solicit cooperation in
noise abatement efforts by suggesting that aircraft maintain
not below 3,000 feet for as long as practicable but certainly
not beyond the 10-mile point on final.

Departing aircraft will be climbed to the highest
possible altitude filed as soonas possible after departure."

The ATC system is currently in the process of transition to the so-called
Third Generation System. For the Third Generation System the FAA isimplementing
(1) limited automation to assist the controller, and (2) automated data acquisition
through the Air Traffic Control Radar Beacon System (ATCRBS).

The automation for the ARTCC's isthe National Airspace System (NAS) Stage A
program which provides greater traffic handling capability and improves safety,

At the top 64 terminal facilities (out of 117 that are radar equipped), the
Automated Radar Terminal System (ARTS III) program isbeing implemented. These
terminals handle over 80% of the commercial passenger operations and 70% of the
total instrument operations, Approximately 60% of the general aviation fleet is
based in these areas, The initial operating capability of ARTS III is the digitizing,
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processing, and display of alphanumeric data associated with transponder-equipped
aircraft, The system is modularly expandable; the number and type of functions
implemented at a given terminal depends on the operational requirements at that
facility. NAS and ARTS automation is expected to increase capacity of the control

sectors by 20%,
2,3.3 Evolution of the ATC System

The present sectionisadiscussion of the expected evolution of the ATC system
as derived from the recommendations of the Department of Transportation's Air
Traffic Control Advisory Commi’ctee,2 FAA plans and policy statements, and work

in progress on system improvements,

The Advisory Committee's recommendations were aimed primarily at up-
grading the Third Generation ATC System — the System currently beingimplemented
— to allow it to handle increased traffic levels., The Committee also recognized
that changes of a more radical nature leading to a Fourth Generation System would
probably be necessaryin the post-1990 time period. Most of their recommendations
for upgrading the Third Generation System have been embodied inthe FAA'sresearch
and development plans for the 1970's. Work leading to the definition of Fourth

Generation System concepts is currently in progress.

Table 2,3-1 summarizes the Advisory Committee's recommendations for
improving the Third Generation System, Their suggestions included a number of
methods for increasingairportand terminal-area capacity, the concept of intermittent
positive control (IPC) for improved separation assurance, various automation
schemes, modifications to the present ATC Radar Beacon System (ATCRBS) to
provide for adata link and enhanced data acquisition system capability, and proposals
for improved navigation and landing aids on the ground coupled with the extensive
use of airborne area navigation equipment. Some of the more recent developments
in the plans for terminal-area automation are discussed in the paragraphs below,
The developments are based on the NAS/ARTS hardware and software and will lead
to the eventual use of the data link for transmitting ATC commands,

FAA plans for implementing the recommendations of the ATC Advisory
Committeein the areas of communications and automation are shown in Fig, 2.3—2.3
Data link feasibility tests on the modified ATCRBS and alternative systems should
lead to a system selection in about 1976, followed by prototype development, The
automation plans call for completion of metering and spacing and IPC software
development by 1974, Thisisto befollowed bydevelopment of thedata link interface,
integration with NAS/ARTS, and field implementation during the late 1970's,
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Terminal capacity improvements

—Dual lane runways
— Decreased aircraft longitudinal separation
—Decreased separation between independent IFR
parallel runways
—Curved approaches
Separation

—Intermittent Positive Control

Automation
— Automatic spacing, sequencing, and conflict resolu-
tion using NAS/ARTS
—Use of data link
Data acquisition/Data link
—Phased-array interrogators for Beacon
— Discrete address mode for Beacon
Navigation and landing aids

— Upgraded VOR/DME system and use of area nav1gat10n
—Scanning-beam microwave ILS

Table 2.3-1 Summary of ATC Advisory Committee Recommendations
for Upgrading the Third Generation ATC System (Ref. 2)
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Landing interval and time-to-fly calculations

Scheduling: first-come-first-served basis with slip-forward,
slip-back, and revised-landing-sequence logic

Direct Course Error (DICE) to various control points
Multiple-runway operation capability
Simultaneous-altitude-occupancy warning

Automatic metering-information exchange with en route control
Provision of schedule gaps in arrival sequence for departures
Variable approach-gate location

Runway configuration change

Rescheduling and sequencing of missed-approaches

Real-time wind estimation

Table 2.3-2 Features of ARTS III Computer-Aided Metering and
Spacing (Ref. 4)
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If the planned automation proves successful and the current schedule is
maintained, some of the earlier STOL operations — in the late 1870's — might be
expected to take place within the context of the automated metering and spacing
system, at least in the busier terminal control areas, For this reason, we turn
now toan examination of the automation plansasdiscussed inarecent report prepared

4
for the FAA,

The automation plans discussed in the report are based on work carried out
mostly under the direction of the federal government during the past 25 years.
Extensive real-time simulation of various automation concepts was carried out at
the National Aviation Facilities Experimental Center (NAFEC) in the early 1960's
leading to field trials at Atlanta in 1966 and at New York in 1966 and 1967, Field
testing of the revised system concepts and new software, designed to interface with

the ARTS III computers and displays, is planned for Atlanta in the near future.

Table 2.3-2 lists some of the featuresof the ARTS III computer-aided metering
and spacing plan, The computer calculates the minimum landing intervals required
between arriving aircraft based on aircraft type, expected runway occupancy time,
desired speed onfinal approach, and so forth, As theaircraft approach the terminal
area, the time-to-fly to the runway threshold is calculated and used together with
the landing interval informationto scheduletheaircraftona first-come-first-served
basis, The scheduling is flexible and incorporates slip-forward, slip-back, and
revised-landing-sequence logic should this become necessary during the approach,
The primary method used to control the aircraft time-of-arrival at the approach
gateand various intermediate fixes is geometric = path stretching and shortening,

The computer displays to the controller the direct course error, the error in the

time-of-arrival at a given fix which is calculated to occur should the aircraft turn
and fly directly to the fix, The controller uses this information together with his
own judgment to issue heading commands to the aircraft. When fully developed,

the system should be able to handle simultaneous multiple-runway operations.

The automated system provides a limited collision-avoidance function in the
form of a simultaneous-altitude-occupancy warning which is displayed to the

controller,

One feature of particular importance is the automatic exchange of metering
information with the en route control center which should allow the center to adjust
the flow rate into the terminal area to correspond to existing and projected runway

acceptance rates,

Another valuable innovation is the provision of schedule gaps in the arrival
sequence toallow for departures, Arrivals normally have priority over departures

which causes severe departure delays during peak hours. The automated system
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allows the controller to input a desired arrival/departure ratio and then schedules

gaps in the arrival sequence to allow the ratio to be realized.

Further flexibility is provided to the controller by allowing the approach gate
location to be varied depending on conditions. The approach gate (marking the
beginning of the final-approach path to the runway), which might be 5 to 10 miles
from the runway under IFR conditions, can be moved closer for more efficient VFR

operations,

Other capabilities of the automated system include a provision for runway
configuration changes when deemed necessary by the controller, automatic re-
scheduling and sequencing of missed approaches, and real-time wind estimation to

update the wind data needed for time-to-fly calculations,

Figure 2,3-3 shows the typical geometryasused inthe computer-aided metering
and spacing plan. Passage of standard feeder fix locations (holding points when
holding isnecessary) marks the entryinto the terminal area. Large sequence areas
are provided intheapproach zone leading to the inner fix for coarse time-of-arrival
control (2 minutes), while a smaller area is set aside on the base leg for fine-tuning
(+1 minute), Thenominal path shownis the path that would be flown with theaircraft
on-time and calculated to make its. schedule., TkLis path can easily be lengthened or
shortened as required, The aircraft will normally stay at feeder-fix altitudes for
as long as possible, beginning the descent to final-approach altitude at some point
in the sequence areas, Several standard speed reductions based on aircraft type
are issued by the controller, with the time-of-issuance providing additional control
capability if needed. Once again, the computer assists the controller by providing

suggested descent and speed reduction commands,

In the metering and spacing scheme described, the computer role is limited
to controller assistance through the display of suggested commands and other
information. With the addition of a data link capability, however, the computer
role can be expanded as warranted to include transmission of commands directly
to the aircraft, subject to controller approval,

Inasmuch as plans for upgrading the Third Generation ATC System call for
encouraging the development of airborne area navigation capabilities (see Table
2.3-1), it is reasonable to ask whether or how these capabilities might be used by
an automated ATC system of the future, Area navigation systems having time-of-
arrival control capabilities (4-D RNAV) are being considered for both V/STOL
and CTOL ATC applications, Are such systems compatible with the automated
metering and spacing concepts discussed above? Would such an airborne capability
benefit the currently-planned ATC system automation? The answers are almost

certainly "yes'', but these questions have not as yet been adequately considered,
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Theuseof 2-D, 3-D, or 4-D airbornearea navigation capabilities for terminal
ATC is complicated by two factors, The first is the need (at least for CTOL) for
both equipped and unequipped aircraft to be able t¢ make use of a common ATC
system, System concepts which require the segregation of RNAV CTOL traffic
from non-RNAV CTOL traffic would be difficult to implement and manage because

of the shortage of airspace surrounding busy airports,

The second factor is the need for the ground controller to be able to monitor
the performance of RNAV-equipped aircraft in executing preplanned or commanded
flight paths and to be able to intervene in the case of RNAV malfunction, When a
4-D RNAV-equipped aircraft gets behind schedule, it must make up the time in
some standard fashion, using algorithms which can be monitored both in the air

and on the ground.

The main benefit to the terminal ATC system of utilizing airborne RNAV
capabilities would be a reduciton in controller/pilot communication, i.e., vectoring
and speed change commands and acknowledgements, For this purpose, a 4-D RNAV
system would clearly be superior if the above-mentioned difficulites canbe overcome,
In addition, the tighter control of theaircraft made possible by theuse of anairborne
system (assuming satisfactory navaid signal inputs) might enhance the efficiency of

the terminal control process,

The use of 4-D RNAV systems in terminal ATC, whether for STOL, VTOL or
CTOL, is a subject which should be examined in more detail. Particular attention
should be given to methods for using airborne RNAV systems within the context of

planned ground-based automation,

References for Section 2. 3

1. Logan International Airport Control Tower Bulletin 71-2, 10 May 1971,

2, Department of Transportation, Report of Department of Transportation Air
Traffic Control Advisory Committee, Vols. 1 and 2, 1969,

3. Federal Aviation Administration, R&D Plan to Increase Airport and Airway
System Capacity, AD707186, 1970,

4, Computer Systems Engineering, Inc,, Computer-Aided Metering and Spacing
with ARTS III, FAA-RD-70-82, AD718355, 1970,
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CHAPTER 3
OPERATIONAL PROCEDURES
3.1 INTRODUCTION

This part of the report examines a number of operational aspects of STOL
transportation systems which relate toavionics requirements, The areas of interest
are (1) flight paths for noise abatement, (2) the atmospheric environment, (3) approach
and landing considerations, and (4) the ATC interface. The analysis in each area.
is preliminary and should be carried further prior to the required flight test and

demonstration programs,

The noise impact of STOL operations is examined in Section 3.2 using PNL,
EPNL, and NEF contours., Of thesemeasures, noneis considered a perfect predictor
of community response, but NEF has been correlated with noise complaints for
present airport operations, and the extension to STOL operations seems reasonable,
Single-segment approach and departure flight paths are examined, as well as a
two-segment departure employing a thrust cutback. The possible reductions in

annoyance are described for vehicles with two reference noise levels,

Several important aspectsof theatmospheric environment—turbulence, winds,
and visibility=—are discussed in Section 3.3, Important physical parameters and
relationships are reviewed, and turbulence models are compared. Data from the
National Climatic Center is presented for some particular airfields showing wind
and runway crosswind distributions and ceiling/visibility correlations. These
statisticsareuseful in predicting how often a particular vehicle/avionics combination
would be unable to complete an operation at a given airfield, or how rough the ride

might be,

A brief examination of the final-approach landing aid interface is presented
in Section 3.4, showing the geometry involved in intercepting the localizer and glide
slope. A simple model is used, consisting of a straight line segment followed by a
constant radius turn which terminates on the extended runway centerline, This
type of analysis can help in determining possible approaches to existing fields, or

can help in equipping new fields to accomodate desired approaches,

The interaction of STOL aircraft with the ATC system, discussed in Section
3.5, is of prime importance in establishing a working short-haul system. There

are several aspects of interest here. Runway capacity is shown in a brief analysis
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to be strongly dependent on the separation distance required on landing approach,
The approach airspace will probably be the bottleneck for high capacity STOLports,
rather than the runway itself.

Discussionis included on the problems of operating STOL aircraft at existing
jetports, existing suburban airfields, and separate STOLports, The need for and
desirability of STOL operations at jetportsis discussed, and methods for conducting
such operations onanoninterfering basisare explored. A reviewismade of previous
FAA simulation results and studies pertaining to terminal area, STOLport, and
suburban airport operations, Problem areas which might impact avionicsand ground

system requirements are identified.
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3.2 NOISE

Probably the primary constraint on STOL operations will be the noise impact
on the surrounding neighborhood. Over the past five years or so, as jet aircraft
have proliferated, airport neighborhoods have become increasingly resentful and
today are ready and able to stall or blcck the expansion of air services, This has
been clearly demonstrated in New York by the Chelsea neighborhood's refusal to
allow a STOLport to be built along the Hudson River,1 and in Boston by the failure
of the Massachusetts Port Authority to get approval for the addition of a major

runway at Logan International Airport,

Noise is not the only factor in personal annoyance at aircraft operation, but
it seemsto bethe dominant one. Inarecent studyand public opinion survey conducted
by TRACOR Incorpora‘ced,:2 additional factors were isolated which seemed to play a

part in expressed annoyance, The list of additional factors includes:

a) fear of aircraft crashing in neighborhood
b) susceptibility to noise
c) distance from airport

d) noise adaptability

e) city of residence.

Still other factors probably play their part in people's resentment, such as ground
traffic congestion, pollution, and the feeling that the establishment is making one

further encroachment on their territory.

Nevertheless people are aware that air transportation is a "good''. Of the
questions asked in the TRACOR opinion survey, the query Do you feel that air
transportation is the only practical way of long-distance travel?' brought a yes

response from 80% of the people interviewed, However, the response to questions

such as
a) "Do you think the airport is operated in such a way as to serve the best
interest of the entire city?'";
b) "Can this city be proud of the services its airport provides to both the
community and to its clients?"' and
c) "Do the advantages to the community from having a large airport far

outweigh any disadvantages?"

received favorable responses from somewhat smaller majorities = 63%, 73%, and
66% respectively. This sentiment, coupled with the increasing demand for travel

(see Section 2,2) seems to indicate that if the major annoyance factors in aircraft
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operations can be eliminated ordiminished, additional air service would be embraced
as anenhancement of a community's life style, rather than be viewed as a detracting

element,

That STOL can make vast improvements in the ""good neighbor' rating of an
air terminal is doubted by few people who can view the situation objectively. The
use of new quiet engines, coupled with high maneuverability and steep approach and
departure angles make the STOL noise footprints much smaller than the footprints
of today's conventional jet aircraft; and this advantage should be maintained, although

at areduced level, when the conventional aircraft are also fitted with quiet engines,

Before looking at STOL noise footprints it is useful to discuss one of the
mmajor measures of noise or annoyance, the Noise Exposure Forecast (NEF), It is
also useful to examine some of the noise-abating operational procedures developed
for today's conventional jet aircraft, This serves as a basis for examining STOL
operational procedures in the later pages of this section. The final subsection on
noise discusses the application of optimal control theory to the takeoff trajectory
of a jet STOL vehicle,

3.2.1 Noise Rating (NEF Method)

Work hasbeen going onduring most of this centuryin trying todefine measures
of "noisiness' of a sound source. Researchers have been seeking those measurable
physical aspects of sound that contribute in a major way to perceived noisiness, In
a recent symposium3 Kryter (one of the active researchers in the field) states that
to date there appear to be five significant features identified: (1) spectrum content
and level; (2) spectrum complexity (concentrations of energy in narrow frequency
bands); (3) duration of the total sound; (4) duration of the increase in level prior to
the peak level of non-impulsive sounds; and (5) the maximum level reached by
impulsive sounds. The noise measures that have found application to aircraft
operations over the last decade or so have included items one through three above,
as well as corrections for the number of operations and the background noise level
(or time of day),

Perhaps the most widely accepted noise measure used in recent years in this
country for determining the impact of aircraft operations is the Noise Exposure
Forecast (NEF)4 given by the following expression:

NEF.l = EPNL.l + 10 log [Nday + 16,7 N (3.2-1)

night}i - 88
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where

EPNL Effective Perceived Noise Level (in PNdB)

day & night = number of overflights during the dayand night respectively

subscript denoting particular aircraft type on a particular
flight path

[
]

This indexuses EPNL asa measure of the noise at a point due to a specific aircraft
on a specific flight path, and adds in a correction for the number of flights of this
same aircraft type on the same flight path over an average day. The total NEF at
a point then is the log of the sum of the antilogs of the NEFi's, which represent all
the different flight paths and all the different aircraft types.

NEF;
NEF = 10 log ) 10 (3.2-2)

This calculation would generally use only the major flight paths, and would group

specific aircraft types into classes having similar characteristics.

The measure EPNL which forms the heart of the NEF expression includes
the level, spectral, and duration effects of the noise source. EPNL itself is made
up of a basic Perceived Noise Level (PNL) which is then corrected for pure tones

and for duration. An analytic expression for PNL is given by5

PNL = 33.2log % 6,[ (W, P,/P_)1%/3-6 (3.2-3)
where
Po = reference pressure for Sound Pressure Level (SPL) (0.0002 microbar)
Pi = sound pressure in the ith band or frequency
W = weighting factor (1,0 at 1,000 Hz) which varies with frequencyand level

(o)
[y
H

scale factor: 0.30 for full octave bands,
0.15 for 1/3 octave bands.

Theusual method of obtaining the PNL value involvesnot the expressionabove,
but a table look=-up pr‘ocedure8 which requires the Sound Pressure Level (SPL) in

each frequency band.

The first correction, that for duration, is given by the following expression:

PNL, /10

- 1
APNLyyp = PNL_ - 10 log T > 10 at (3.2-4)
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where, by experimentation, researchers have found that the sampling interval At
should be about 1/2 sec, and the reference time T0 should be about 10 sec.6 The
subscript i refers to the successive samples of PNL. Theoretically the summation
would be taken over the interval during which the PNL.i rise from and return to
zero. In practice it should suffice to sum over the interval during which the PNL,
rise from a level 10 dB lessthanthe peak, and returnto this level again, Alternately
one could sum over the interval during which the PNL exceeded some threshold

level (e.g., the background noise level),

The second correction, for pure tones or concentrated energy bands, is made
by (a) smoothing the spiked SPL-vs-frequency curve, (b) measuring the differences
in dB between the peaksin theactual and smoothed curves, (c) picking the maximum
of all the differences, and (d) applying the correction factor based on this maximum
difference. The correction factor can be as much as 6 PNdB, depending on the
magnitudé and frequency of the maximum SPL difference, Detailed procedures for
computing the EPNL of a noise source are given in Ref, 6.

Although thereare other noise measuresinuse, the NEF measureis especially

useful because there are a number of studiesz"lﬁ’8

which use it in evaluating the
effect of aircraft operations onairport neighborhoods. Inadditionthe FAA is currently
using its main component, EPNL, as a basis for regulations concerning aircraft

noise.

The land use compatibility as a function of NEF contours is discussed by
Bishop in Ref, 4. The land use recommendations are derived from case histories
of noise complaints, speech interference criteria, subjective judgment tests of noise,
noise insulation propertiesof typical buildings, etc. Heindicatesthat for the present
day and near future, NEF values should be no higher than 30 for the most sensitive
land use groups, which include houses, schools, hospitals, churches, libraries,
auditoriums, concert halls, outdoor theatres, etc, New construction for these
purposes would not require special acoustic insulation if NEF values remain below
about 30, For NEF valuesup to 35, new construction may require acoustic insulation,

and for NEF values greater than 35 new construction is not recommended,

For the above land use class, especially the residential portion, the probability
of noise complaints is relatively low for NEF values below 30, whereas more
complaints and possible group action may result for NEF values of 30-40. For
NEF valuesnear 40 and beyond one might observe vigorous and repeated complaints
and concerted group action, '

The NEF contours at many existing major airports have been computed in
Ref, 8 for present day and near-future air traffic levels. The results show that for

major hub airports, the NEF 40 contour can extend out 4 miles or more from the
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end of a busy runway, while the NEF 30 contour can extend more than 12 miles in
either direction! Figures 3.2-1 and -2 show representative contours for 1970 and
1975 operations at selected airports, The amount of land encompassed by the NEF

30 contour, within which complaints are likely to originate, is startling,

The major reason that aircraft operations are so disturbing today is that the
engines themselves are very noisy. In addition, the flight path angles are quite
shallow, especially on approach., Representative EPNL measurements of 4-engine
turbofan overflights at approximately 1,000-foot altitudes are 115 EPNdB on takeoff
and 108 EPNdB on landing approachr7 as shown in Figs, 3.2-3 and -4, Also shown

are these same curves for the so-called "new technology'' quiet engines.
3.2.2 Flight Paths for Noise Abatement

Givena vehicle with specified noise characteristics, the ultimate noise impact
on the surrounding community can be affected significantly by the choice of flight
paths, A number of studies have examined the effects of operational procedures
for reducing conventional aircraft noise. These procedures are directed at three
main areas: (1) variations in climb angles and flap angle profiles on takeoff; (2)
power cutbacks on climbout; and (3) two-segment glide slopes on final approach,
Some discussion of these procedures is useful before looking at comparable

procedures for STOL,

Reference 7 discusses a simulation study which defined the NEF contours for
aircraft operations projected to 1975 at three major airports; New York's J.F.
Kennedy, Los Angeles International, and Chicago's O'Hare., Included in this study
werenot only procedures such as mentioned above, but also the effect of retrofitting
aircraft with either acoustically lined nacelles or ''new-technology'' quiet engines.
The operational procedures were examined by themselves and then in combination

with the engine modifications,

Table 3.2-1 summarizes the results of this study in terms of reduction of
land area within the NEF 40 and 30 contours, Figure 3,2-5 shows the flight profiles

used.

The results show thatin general the quiet enginesare the most effective source
of noise reduction (quiet engines plus operational procedures produce up to 60%
reductionin land areainside the NEF 30 contour, compared with up to 25% reduction
for operational procedures alone), This is especially true since in this study all -
aircraft used the operational procedures, but only the four-engine turbofan aircraft
had the engine modifications, The relative percentages of four-engine aircraft
operations at the three airports were Kennedy - 33.1%; O'Hare - 21,6%; and Los
Angeles - 33.1%,
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Effective Percelved Nolse Level In EPNdB

130

\\ \‘
120 \\ \\
LIS TAKEOFF
\ N
N
N
110 \
P ~ - |
\\\
~
100 '\‘ \
~
N 4] \
)
~
~
~
~
9 T
80
70
200 500 1000 2000 5000 10,000 20,000
Distance to Alrcraft In feet
Figure 3.2-3 Effective Perceived Noise Levels—Takeoffs of Large

Four Engine Turbofan Aircraft with Retrofits (Ref, 7)
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a) LAND AREAS WITHIN NEF 30 AND NEF 40 CONTOURS

Land Areas in Sg. Mi. ‘

Condition O'Hare Los Angeles J. F. Kennedy

Chicago International New York

NEF NEF NEF NEF NEF NEF

30+ Lo+ 30+ Lo+ 30+ Lo+
Baseline 103.6 23.7 33.3 14.4 53.3 14,6
Operational Changes
Only 81.6 21.2 25.0 12.9 54.3 13.8
Lined Nacelle '
Retrofit# 48.5 15.1 19.3 10.0 36.6 9.4
"Quiet" Engine
Retrofit# 42.0 13.6 18.9 9.9 30.8 8.4

# TIncludes operational changes for all aircraft, and equipment changes
only for four-engine turbofan aircraft (DC-8, 707 types).

b) PERCENTAGE OF LAND AREAS WITHIN
NEF- 30 AND NEF 40 CONTOURS

Condition O'Hare Los Angeles J. F. Kennedy
Chicago International New York
NEF NEF NEF NEF NEF NEF
30+ o+ 30+ o+ 30+ bo+
Baseline 100 100 100 100 100 100
Operational Changes
Only ‘ 78.5 89.5 75.0 89.5 101.9 g4.5
Lined Nacelle
Retrofit# 47.0 63.5 58.0 69.5 68.7 64.1

"Quiet" Engine
Retrofit# 40.5 57.5 57.0 €8.5 57.8 57.6

* TIncludes operational changes for all aircraft,-and equipment
changes only for four-englne turbofan aircraft (DC-8, 707 types).

Table 3.2-1 Land Area Coverage Within the NEF 30 and NEF 40 Contours at
Three Major Airports (Ref. 7)
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Figure 3.2-5 Aircraft Flight Profile Modifications (Ref. 7)
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Another study, involving simulation and flight test of noise-abating landing
approaches, is discussed in Ref. 9, Here a four-engine turbofan Boeing 367-80
(707/KC-135 prototype) was simulated and flown on (1) single-segment approaches
of varying glide slope angles, (2) two-segment approaches with two intercept altitudes,
and (3) decelerating approaches of one and two segments, The purpose of the study
was twofold: (1) to study the effect of operational procedures on ground noise, and
(2) to examine the cockpit instrumentation required to make the more complicated

flight paths comfortable to fly.

Table 3.2-2 describes thenoiseabatement profiles flown. Noise measurements
were made at three stations situated 1,1, 3,46, and 5,13 nautical miles from the
runway threshold, At each station the noise time histories were recorded for later
data reduction. A number of different annoyance measures were computed from
the basic noise recordings, Figure 3.2-6 shows reductions of up to 18 PNdB in
Perceived Noise Level (PNL) for some of the approach profiles runon the simulator,
Two of these profiles show flight test measurements for comparison,

A third s‘cudylo’11

at some point or area along the flight track. The aircraft considered is again a

optimizes takeoff trajectories for minimum ground noise

four-engine jet, but both turbofan and turbojet engines are included. The specific
technique employed isa power cutback to produce level flight over the noise sensitive
area, The results, an example of which is shown in Fig, 3.2-7, indicate that the
distance to the sensitive area determines the climb profile, If the area is close-in
(say 3 miles or less) the aircraft should climb at its maximum flight path angle
(which requires moderate flap angles) to gain altitude, If the sensitive area is
farther out, as illustrated in the figure, it is better to accelerate first to a higher
velocity, and then climb, The altitude over the sensitive area will be lower than if
the maximum flight pathangle had been flown, but the higher speed permits complete

retraction of the flaps and thus requires lower thrust to maintain level flight,
3.2.3 STOL Noise Impact’

In contrast to the extensive areas contained within the NEF 30 and higher
contours for conventional jet operations, STOL aircraft should be able to operate
with minimum noise impact at many or most of the proposed sites discussed in
Section 2,2 and Appendix A, This section discusses the basic noise footprints of
some representative STOL vehicles, and presents a thrust cutback maneuver for

reducing the noise impact in certain areas,

84



(6 "39Y) jusWId}EBQY 9SION 40§ S31joxd yoeoaddy g-g ' ¢ 91qel
008 } s9'z-" | o0°s- N
00Ss sweaq STI OML S9°Z- 0°S- W
0€z1 - --- weaq STI o18uts s9°z- --- UOT3BISTID3( A
oTtt- 0s2 UOTJTISUBL} POAIND r
0STT - 00v weaq §TI d13urs I
0s21- 0s2 * Jusudos H
0gc1 - 00y sweaq ST oML S9°C- 0°'9- oM] 9
A 079 | " .
.- g g- .- I
--- 0°s- --- a
00S- --- S p- _—— 5
AR --- S v- --- Justdas g
0ec1- ~-- weaq §11 313urs S9°Z- - a18urg Y
13 jusuBas | jusudes yoeoxdde
‘U0T109SI93UT 13 IoMmOT xaddp Uome1EqE
adots-ap118 ‘opnitTaTe aouepInd yo adAy 3 mmﬁwcn a1t3oxd
01 proysaayiz Aemunx | 31dsdxajug Sop 30 odAL

woly 9due3lsI|g

‘218ue adoys-apITyn

85



3000 T

I
td
g oo Profile: H G 7
] 75'60 - -6° o
g . -2.65°__.
2 e -
2 - - ope)
i - \|de‘5‘°°
1000 g _ _,o—— \Re(e -
——
/’, ——
O”
/ "—400n
P~ Sy
e 2501
0-t= -
o]
\ Computed Measured
., © Profile  APNL  APNL

A PNL, PNdB
)
T
’!
/
[}
I
[]
)
i
>4
A Y
‘
i

.20 | 1 1 ! I

Distance from runway threshold, n. mi.

Figure 3.2-6 Noise Reduction with 250- and 400-Foot Intercept Alti-
tudes (Ref. 9)

86



Steep climbout ; 280 ft/sec, 25° flaps

1500 —

Optimum for turbofon; 335 ft/sec, O° fiops
Noise reduction 5dB

Optimum for turbojet ; 355 f1/sec, O° flaps
Noise reduction. 8dB

/ T T T T e e e e

1000 —

o -

/ / Thrust ofter point B, ib

25,500
/ ——— 16,600
/ / —eu— 15,500

Altitude, ft

600 —

Beginning of noise-sensilive area

L 1 1 1 1
18.000 15,000 20,000 25,000 30,000 35,000
Distonce from brake releose, ft

- ——

Note . GTOW = 280,000 1b, T O thrust: 14,000 Ib/engine, turbofan or turbojet

Figure 3.2-7 Noise Optimum Flight Paths for Turbojet and Turbofan
Aircraft (Ref. 10)

87



3.2.3.1 Single-Segment Flight Paths

Figures 3.2-8 through 3.2-12 show the basic PNL footprints for two STOL
vehicles; the first, having a PNL0 = 05 at 500 feet, shall be designated PNL95; the
second, with a PNI_,o = 100 at 500 feet, shall be designated PNL/100. The PNLO'S
are assumed to be measured at takeoff thrust levels, To represent vehicles of
varying capability or loading, climb angles of 15, 12 and 10 deg are shown, each

assuming full takeoff thrust, The approach angles chosen were -7,5 and -9 deg;

the former because there seems to be a general consensus in the literature that
this would be a good slope, and the latter because it is steeper and quieter than
-7.5 deg, while remaining within the pilot-expressed rate-of-descent limit of 1,000
ft/min for a 60-knot approach speed, The thrust level on approach was assumed to
be half of the takeoff thrust level. At an approach speed of 60 knots, the rate of
descent for the two glide slopes is 790 and 950 ft/min respectively,

The noise generation model, as discussed in Appendix B, is spherical, with
no correction for near-ground attenuation or vehicle acceleration, The equation

relating PNL to PNL0 at a distance R or a thrust ratio T/Tm < is given by

a
PNL = 105.76 + 25log(T/T __)-[22.1log(R/200)+ B (R/200-1)-1] (3.2-5)

where

3
B = 0.2(1.089 + 2,157 /T/T )

max

With this model, halving the thrust produces a somewhat greater reduction in PNL
than doubling the distance (within about 1,000 feet of the aircraft),

Figures 3.2-8 and -9 show the footprints for takeoff and approach for the
PNI1.95 vehicle; Figs, 3.2-10and -11 show the same footprints for the PNL 100 vehicle,
For comparison with present day operations, Fig, 3.2-12 shows a representative
takeoff footprint for a present-day turbofan aircraft, (Note the change of scale
betweenthetwo figures!) Thearea enclosed by the 95-PNdB contour of a PNL95-type
STOL on a 10-deg climbout is only about 1.5% of the comparable CTOL contour
area,

Some interesting relationships can be observed from these noise footprints.
First, for either the PNL95 or PNL 100 vehicles the distance along the runway
centerline to a given contour level is about 50% greater with a 10-deg climbout
than with a 15-deg climbout. This same ratio holds for the area enclosed by the
contour., Second, the distance along the runway centerline to the 95-PNdB contour
for the PNL 100 vehicle is about 50% greater than for the PNL.95 vehicle, while the
enclosed area is about 2,4 times as great! Third, if one had to make a choice
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between a PNL100-type vehicle that could climb at ¥ = 15 deg, and a PNL95-type
vehicle that could only climb at ¥ = 10 deg, it appears that for noise reasons the
PNL.95 vehiclemight be more acceptable, as its centerline distance to the 95-PNdB
contour is about the same as for the PNL100 vehicle, but the sideline distance, and
hence the area, is about 37% smaller, Of course the importance of this reduction
depends on the site and the STOLport configuration. In some cases it may be more
im portant to reduce thedistance along the runway centerline than the sidelinedistance.

In this case either vehicle would be acceptable,

These curves allow one to estimate the length of ground track or area along
the runway centerline that would lie within a given PNdB contour. Figure 3,2-13
illustratesthis procedure for the PNL95 vehicle, assuming a 1,000-foot takeoff roll.
For a 15-deg climb at full power and 7.5-deg approach at half power, the 95-PNdB
contour extends almost 5,000 feet along the runway centerline, The curves of Fig.
3.2-14 and Fig. 3.2-15 show the distances from the takeoff or touchdown point as a

function of maximum PNL,.

Figure 3.2-16 shows what happens to the 95-PNdB contour when the PNL95°
vehicle takes off and climbsusing a thrust level lower than the normal takeoff thrust,
Here it was assumed that one half the normal takeoff thrust could produce a flight
path angle about one third as large as the full thrust value.* The results are interesting
in that the area enclosed by the reduced-thrust 95-PNdB contour is less than the
corresponding area for full thrust, but the distance along the runway centerline to

the contour boundary is almost 50% greater,

Of course for this kind of takeoff, safety considerations relative toan engine-out
failure, such as reduced climb gradient and/or altitude transient, may outweigh the
noise considerations, This could take the form of a minimum altitude required

before a thrust cutback could be employed.

Before proceeding to examine other operational procedures that can reduce
or reshape the noise footprints, it is useful to look at the relation between Effective
Perceived Noise Level (EPNL)and PNL, as EPNL is the basis of the Noise Exposure
Forecast (NEF) performance measure discussed earlier, In order to convert the
PNL at a point to an NEF value, one must first obtain the EPNL for a particular

overflight (i,e., correct the maximum PNL for duration and for pure tones).

For this example we will ignore the puretone correction, asit is very dependent
on the particular engine design, and is simply an add-on factor of a few dB anyway.
Alsothenew high-bypass-ratio fan jets may have reduced tonal energydue to reduced
fan tip speeds,

*«
This approximate relationship was obtained from the performance envelope of the
MDC-188 (Ref, 12, p 32, Fig, 10),
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The duration correction can be computed by using Eq, 3.2-4; thus

EPNL = PNL____ + APNL (3.2,-6)

b'e DUR
Table 3.2-3 givesthe duration correction factors for the takeoff and approach cases
discussed above, and Fig, 3,2-17 shows the effect of the correction factor by plotting
EPNL vs PNL,

For the simplifying assumptions used in this analysis (spherical noise model,
no near-ground attenuation factor, no tonal concentrations, etc.) the duration
correction for a listener ona particular contour depends only on PNL,0 and velocity,
not on flight path angle or location on the contour. This means that the EPNL
contours have the same shape as the PNL contours (i,e,, parabolic), From Fig,
3.2-17 it is seen that for the PNL95 vehicle on an 80-knot climbout, the EPNL and
PNL contours are identical at about the 90-PNdB level, as the duration correction
is zero there, For the PNL100 vehicle, the contours are equivalent at about the
95-PNdB level. Figure 3.2-18 shows the EPNL contours for 95, 90, and 85 EPNdB,
which can be compared with the PNL contours of Figs, 3.2-8 through -12,

The NEF value now depends only on the number of flights during the day or
night (see Eq. 3,2-1). For an example relating PNL to NEF, assumea flight frequency
of 100/day. Table 3.2-4 gives the NEF values for several valuesof PNL, Referring
back to Fig. 3.2-14, the 95-PNdB contours would become NEF = 25,6 for takeoff,
and NEF = 24,0 for approach,

Figure 3,2-19 showsthe NEF 30 contours for the PNL95 and PNL.100 vehicles
for a 15-deg, 80-knot climbout and -7,5-deg, 60-knot approach,

3.2.3.2 Two-Segment Flight Paths

Having seen the basic PNL, EPNL, and NEF contours for the single-segment
flight paths, it is useful to look at the improvements made possible by using

two-segment flight paths,

On takeoff the flight path consists of an initial segment at maximum flight
pathangle, followed bya second segment at reduced thrust and lower climb gradient,
The point at which the thrust cutback occurs is determined by the particular PNL

contour that is to be reduced.

What is desired is to find the minimum distance d from the liftoff. point along
the runway centerline at which a given PNL will not be exceeded, For a listener at
any such point, the vehicle will start its climbout at full thrust and maximum flight

path angle, As the vehicle approaches the listener, and the specified maximum
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Duration Correction APNL
PNL PNL395 Vehicle PNL100 Vehicle
105 - 6.9 PNdB - 4.8 PNdB
100 -4.8 -2.8
95 - 3.0 ' - 1.1
90 - 1.1 +0.8
85 +0.8 + 2.4

a) Landing (60 kts, 50% of Takeoff Thrust)

PNL Duration Correétion APNL
PNL95 Vehicle PNL100 Vehicle
105 - 5.1 PNdB - 3.4 PNdB
100 - 3.3 - 1.6
95 - 1.6 0.0
90 + 0.02 +1.4
85 +1.5 + 2.6

b) Takeoff (80 kts, Full Thrust)

Table 3.2-3 Duration Correction for STOL Takeoff and Landing
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PNL95 Vehicle

PNL100 Vehicle

Climb (V=80kts) [Approach (V=60kts) | Climb (V=80kts) |Approach (V=60kts)
Pk EPNL | NEF EPNL | NEF EPNL | NEF EPNL | NEF
105 100,0 | 31.4 97.8 29.8 101.7 33.6 100.0 32.0
100 96.7|28.8 95.4 27.4 98.5 30.8 97.2 29.2
95 93.5125.7 92.1 24.2 95.1 27.2 93.9 25.9
90 90.1|22.2 89.0 20.9 91.4 23.5 90.8 22.8
85 86.5|18.5 85.8 17.8 87.6 19.6 87.4 19.4

(No correction for Pure Tones)
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Figure 3.2-17 EPNL vs PNL for Takeoff and Approach (Duration

Correction Only; No Correction for Pure Tones)
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Distance ( ft )

~ Distance (ft.)

500 -
A
je———  RUNWAY 3—
0 L N CTm==l— |
500 | b g
i

Distance ( 1000 ft )
a) PNL95 Vehicle

500 T. /// '——’,—-_\\
P e S —
0 }\‘k_—_-—‘§\ -///
500 7 | "N e |
! Limits of
r NEF 30 Contour
I _

15 DEG.

Distance ( 1000 ft )
b) PNL100 Vehicle

Figure 3.2-19 NEF 30 Contours for Approach and Takeoff Assuming 100
Operations/Day (Approach: Y= -7.5 Deg, V = 60 Knots;
Takeoff: Y= 15 Deg, V = 80 Knots)
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PNL is reached, a thrust cutback of 50% is performed, and the vehicle continues to
climb at 1/3 the initial flight path angle.'? The PNL, which decreases when the
thrust is reduced, increases again and reaches the specified maximum level as the
vehicle passes over the listener, The PNL then decreases as the vehicle contin}les

its reduced~thrust climb,

Thus to find the distance d at which a given PNL will not be exceeded, one
need only compute the two distances R, and R2 that give the desired PNLmax for
full and half thrust, and then use the appropriate trigonometric relationships to
solve for d, x, and h, The geometry of the problem is illustrated in Fig. 3,2-20.

The PNL contours for the PNL95 and PNL100 vehicles on an initial climb
angle of 15 deg are shown in Figs. 3.2-21 and -22, In Fig, 3.2-21(a), the thrust
cutback point was selected to reduce the 95-PNdB contour for the PNLS5 vehicle,
With the thrust cutback occurring at a downrange distance (from liftoff) of 777 feet
and analtitude of 208 feet, a listener 1,232 feet downrange would receivea maximum
PNL of 95. Compared with a downrange distance of 1,932 feet without a thrust
cutback, a 700-foot (36%) reduction in distance is achieved. However, while the
95-PNdB contour is reduced, the 85-PNdB contour is extended by over 1,000 feet
because the climb angle is reduced after the thrust cutback, If the thrust cutback
istimed toreduce the 85-PNdB contour, as shownin Fig, 3,2-21(b), abouta 1,400-foot
(32%) decrement can be achieved. In this case the cutback occurs at a downrange
distance from liftoff of about 2,000 feet and an altitude of 535 feet, From the figure
it is apparent that the 95-PNdB contour is not affected by this maneuver, Figure
3.2-22 shows that similar results are obtained for the PNL100 vehicle,

The values of x, h, and the minimum distance d are given in Table 3.2-5 as
functions of the maximum allowable PNL. The initial flight path angles are 15, 12,
and 10 deg as in the single-segment case. It is evident that the thrust cutback
results in significant reductions in distance-from-liftoff for a given PNL (about
700 feet for the 95-PNdB contour). Noattempt has been made to optimize the climb
profile, so that further improvements might be possible with other profiles. Also
the assumption that 50% thrust produces a 66% reduction in flight path angle is only
approximate — the actual relationship would have to be determined for a specific

vehicle,

Looking further at the contours, one observes that these maneuvers produce
only moderate changes in PNL, In Fig., 3.2-21(a), even though the 95-PNdB contour
is moved in 700 feet, a listener at point A would only experience a reduction in
PNL from 95 to about 93 PNdB, which might not even be noticeable, A listener at
point B, however, would experience a 5-PNdB reduction from 100 to 95 PNdB. A
listener at point C would be unaffected (i.e., the 90-PNdB contour crosses there
with or without the cutback) while the listener at point D would have his PNL increased
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by a couple of PNdB, In Fig. 3.2-21(b), the listener at A is unaffected, but the
listener at C experiences a 5-PNdB reduction from 90 to 85 PNdB,

From these figures it appears that if there is a small, particularly sensitive
area close in to the STOLport, such as a group of houses, a school, a hospital or a
concert hall, a thrust cutback can provide somereduction in annoyance, The maneuver
of Fig. 3.2-21(b) would produce a barely-perceptible reduction in PNL (3-5- PNdB)
over about a 2,000-foot range from approximately 2,500 feet to 4,500 feet from the
liftoff point, If the thrust cutback is performed earlier (e.g., Fig. 3.2-21(a)) the
range over which a perceptible reduction in PNL occurs is smaller — about 1,000
feetinthis example, As the basic vehicle noise increases the thrust cutback becomes

more meaningful, as larger areas can share in the PNL reduction,

Onlanding approach, noise reduction procedures may be limited dueto piloting
constraints = such as (1) a reluctance to exceed a rate of descent greater than
about 1,000 ft/min close to the ground, and (2) a desire to be aligned with the runway
and onthe final approach slope when breaking out of the cloudsat 200 feetin Category
I weather conditions, Thetimes between breakoutand touchdown for approach slopes
of -7.5 and -9 deg are about 15 and 12,5 sec respectively for an approach speed of
60 knots, This compares with about 20 sec for a CTOL aircraft on a 120-knot,
-3-deg approach, The acceptability of reducing the final approach segment will
depend on the performance and reliability of the avionics systems, and perhaps the
crosswind component and/or turbulence level. An analysis of the type shown in
Section 3.4, extended to include vehicle dynamics, wind effects, and pilot performance,
would be very useful in helping to determine approach profiles. It is apparent from
Fig. 3.2-19, however, that if NEF 30 is the guideline for noise acceptability, then
approach maneuvering will probably not lead to very significant NEF changes for a
PNL95-type vehicle, simply because the NEF 30 contour is quite small,

3.2.3.3 Conclusions and Recommendations

A preliminary look was taken at some representative STOL noise footprints,
and some operational procedures that might reduce or reshape the noise impact,
For a representative vehicle with a basic full-throttle PNL of 95 PNdB at 500 feet,
the 95-PNdB contours for approach and takeoff cover a runway centerline distance
of about 5,000 feet, assuming a 1,000-foot takeoff and landing roll (Fig. 3,2-14),
This means that a STOL could operate from a conventional jet runway and keep the
95-PNdB contour from exceeding the ends of the runway, This is in contrast to the
95-PNdB contours of conventional jet aircraft, which can extend out 5 miles from
the runway (Fig, 3.2-12),
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If the Noise Exposure Forecast is used as the noise measure, the NEF 30
contour for the same vehicle (including both approach and takeoff) spans less than
3,000 feet along the runway centerline. For a 2,000-foot STOL runway, much of
the area under the NEF 30 contour lies on the runway (Fig. 3.2-19).

Operations at a separate STOLport, where there may be noise sensitive areas
close to the runway, may be quieted by a thrust cutback during climbout, For the
representative PNL95 vehicle, cutting the thrust in half at an altitude of 200 feet
produces a moderate (3-5 PNdB) reduction in PNL over a 1,000 foot segment along
the runway centerline (from about 1,100-2,100 feet from liftoff - Fig, 3.2-21). The
thrust cutback can be timed to reduce the noise over any particular area, but if
there arealtitude restrictions on performing the cutback, due to safety considerations,
it maynot be possible to reduce the 95-PNdB contour. Even so, if thenoise sensitive
areas are located 2,000 feet or more from the end of a STOL runway, their PNL
should not exceed 95 PNdB, and a thrust cutback at a more reasonable altitude, say
500 feet, could produce a 3-5 PNdB reduction over that area,

This analysis represents a first step toward the understanding of possible
noise abatement operational procedures, The work should be extended by including
(1) calculation of the EPNdB and NEF contours for the two-segment climbouts; (2)
selection of three-dimensional flight paths, with and without thrust cutbacks; (3)
more detailed examination of performance envelopes and vehicle dynamics to find
the most desirable operating procedures and (4) corroboration of the engine noise

model with data from the new quiet engines under development,
3.2.4 Optimum Noise-Abatement Trajectories

The work of this section models a particular STOL aircraft (a jet powered
augmentor-wing vehicle) indetail and appliesa steepest-descent numerical optimiza-
tion procedure to minimize an annoyance performance index., The approach uses
four state variables withten listeners for the two-dimensional problem considered.*
The program may easily be extended to three dimensions with an increased number
of listeners, The program includes state and control variable inequality constraints
and thus greatly increases the realism of the model. Five control variables are

modulated within given bounds so that the annoyance function is minimized,

The steepest-descent optimization ’(:echnique15 is the simplest of the functional
optimization schemes. Its advantages are that (1) it is easy to program, (2) each

iteration on the computer is relatively quick, and (3) convergence to the minimizing

“The listeners are located at half-mile intervals along the extended runway center-
line in the takeoff direction.
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control profile is rapid to within engineering accuracy. Its disadvantage is that it
will not converge precisely; consequently, there is always some uncertainty about

potential improvment,
3.2,4.1 Performance Index

The functional form of the performance index is

n t+Ati
pr= ) ps; [ g, dt] (3.2-7)
i=1 t

where the subscript i represents a particular listener of a total of n, The integral
J’ s?’i dt is the perceived annoyance, Pi is population density, Si is the sensitivity of
the population to its noise gnvironrnent, and Ati is the interval during which the
noiseis considered annoying, Theabove performance indexisbased onthe hypothesis

that annoyance is perceived througha time integration of the total noise environment,

The form of the annoyance function ié

tat -, TP PNL/K
S g, dt = Klog| — S 10 dt] (3.2-8)
i T,
t t
where
PNLi = Perceived Noise Level (PNdB)
T, = arbitrary reference time (normally To = 10 sec)
K = constant determining duration penalty

PNLi is a function of thrust, T, and distance from aircraft to listener, Yi’

given as

PNL; = 115 +25log(T/T ) -[22.1 log(Y,/200) +B(Y,/200 - 1) + 1]  (3.2-9)

ax

*
In this analysis, the interval was taken as the time interval from the start of the
flight simulation to 5,000-foot altitude,
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where

maximum sea level thrust
max

atmospheric attenuation factor

3
= 0,2(1.069 + 2, 157 “/T7Tmax)

The assumptionsare: (1) that fan noise dominates jet noise, (2) that fan noise
isnot highly directional, and (3) that thereareno tonal concentrations (see Appendix
B). Given that noise field prediction techniques are not well developed, the noise

model presented aboveis felt to bea reasonable representation of the noise sources.
3.2.4.2 Equations of Motion

The state variables are altitude, h, downrange, R, velocity magnitude, V, and
flight path angle, Y. The control variables are angle of attack, a, angle of incidence
(jet engine nozzle deflection), i, primary thrust, Tp, augmentor thrust, Ta* and
flap angle, 6 e

The equations of motion of a point mass representation of the vehicle are:

h = Vsin?Y (3.2-10)
R = VcosY (3.2-11)
v o= qg/(W/8) [CJ cos (@ + i) - CD] - gsiny (3,2-12)
Y - qg/(VW/S) {CJ sin (@ + i) + CL] + [R—‘;l g cosy] (3.2-13)
where

CJ = Tp/qS; CJa = Ta/qS

CI_. = CL (e, CJa, 5F)

Cp = Cp (@, CJa, 65)

q =1/2 sz

*
The augmentor thrust, Ta, does not appear explicitly in the equations of motion,
but is included in the lift and drag coefficients.
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The air density is ¢, the wing loading of the aircraft is W/S,

In effect two different vehicles were modeled in this study. The first had a
thrust of 22,910 pounds and a weight of 40,000 pounds, giving a thrust-to-weight
ratio (T/W) of about 0.57. This model was used to compare the effects of fixed

flap angle versus variable flap angle, The second vehicle used the same weight but
‘ a thrust of 18,600 pounds, hence its T/W was 0.465, Here the flap angle was a
control variable, affecting the lift and drag forces. In both cases, however, the

primary thrust and augmentor thrust were assumed separately controllable,

For the case of constant flap angle (60 deg) the aerodynamic data was fitted
by the following functions:

C

L 2,1 +0.082a+ (0,020 + 2) CJ + ACL(BLC) : (3.2-14)

a

2
C 0.3 - 0.87 CJ + 0,052 (CL 1)

a

D (3.2-15)

The constant ACL(BLC) is zero if boundgry layer control is not included.

When the flap angleisused asa control variable, the 1lift and drag coefficients
are calculated by fitting data points to a polynomial in factored form using a

Lagrangian interpolation method from Ref, 17,

2 3 3
CL@C; . bp) = L) ) Lip@.Cy L 8p)C @, Cy .op) (3.2-16)
i=0 j=0 k=0 a 34
2 3 3
Cp,Cy 80 =) ) ZL.ij(a, Cy 4p)Cp Cy o) (3.2-17)
a i=0 j=0 k= a 2
where
2 3 3
M @-«,) M (C; -C ) m (8 8. )
( ;) 1 m;O Ja Jam n;O F Fn
- (FL (m#j) (n#k)
L.. §.) =
LJk("" CJa, F) ; : L
n @-«,) 0 (C;, -C ) M (8., -6 )
1=0 L 4 m=0 Ja Jam n=0 Fk Fn
(L#i) m#j) I (n#k)

The functions L’ij so defined have the necessary property that
1 if i=4, j=m, k=n
Lijk(cx&, CJ , 8

a n .
m 0 otherwise

This method of obtaining lift and drag coefficients is used instead of a
table-look=-up scheme because it is easier to input new aerodynamic data and it is
easier to obtain partial derivatives from an analytic form,
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3.2.4.3 Optimization Problem

The. problem is to find the control variable histories (Tp, Ta‘ a, i, éF) which
minimize the annoyance function over the time interval te (to, tf) subject to the

equations of motion with specified initial conditions and the control bounds

0<T < (Tp)max’ (3.2-18)
0<T, <(T,) .. (3.2-19)
TR I S (3.2-20)
®min £ @< “max (3.2-21)

Furthermore, any function of terminal values of the states or time tf can be
constrained, For some cases an inflight constraint was placed on the maximum

allowable noise level at any listener as
PNLi (Yi’ T) < 95 PNdB (3.2-22)

This constraint is a mixed function of the state and control variables.

At first, angle of attack was used as a control variable. However, a phugoid
motion developed which was difficult to control. Thisis seen in Fig, 3.2-23A, where
for constant o an unstable oscillation in ¥ developed. Theréafter, pitch angIe,e ,
wasused as thecontrol, where ® = ¥ + ¢, Figure 3.2-23B shows that for a constant
pitch angle command, the oscillation is eliminated. Ccnstant 8 implies that as¥y
increases, ¢ will decrease, By Eq, 3.2-13, ‘).’ is reduced so that the motion of ¥ is

stabilized,

Steepest descent15 is a first-order gradient optimization algorithm that
improves the performance index on each iteration, Linear theory is used to develop
influence or adjoint functions about a nominal path, The impulse response function
is then determined which relates changes in the control along the trajectory to the
change in the cost, Stationarity is reached when no arbitrary change in the control
variables will, to first order, improve the cost, This occurs when the impulse
- response function is near zero. Unfortunately, as the impulse response function
becomes small, it becomes increasingly more difficult to reduce it. In fact, to
drive the impulse response function to zero, it takes an infinite number of steps.

Therefore, convergence slows when near the optimum path in the state space.
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The steepest descent method canalso satisfy terminal constraintson functions
of the state variables, Again, the impulse response function for each constraint is
formed, In a linear space (Hilbert space) approximated by small variations in the
state and control variables from a nominal path, each control variable can be
decomposed into an orthogonal set of components, Each componentallows a constraint
to be met while not affecting the other constraints or the performance index, The
control component orthogonal to the impulse response functions of the constraints
is used to improve the performance index by the steepest descent method. The
impulse response functions and the adjoint variables (which relate changes in the
stateatanytime along the trajectory to changes inthe cost or the terminal constraints)
are useful in themselves for conducting a sensitivity study on the trajectory.

Included in this steepest descent study are inflight inequality constraints on

15,16 onstraint functions which are

the control variables and/or state variables,
only functions of the control (Eqs, 3.2-18 to -20) are included without any important
programming changes. However, for constraint functions which explicitly contain
the state variable and the control variable (i.e., Eqs. 3.2-21 and -22) additional
programming isnecessarybecause onthe constraint boundary the control isa function
of the state variable.* This dependence is explicitly accounted for by modification

of the adjoint differential equations,
Each listener is represented by an augmented state equation

PNLiH{

g = 10 (3.2-23)

so that Eq, 3.2-7 becomes

n
Pl = ZP.LS.L[Klog (gi/To)]t:tf (3.2-24)
i=1

Itisnotnecessary to perform the backward integrationof the adjoint equations
associated with the augmented states;thus, the addition of more listenersisrelatively
simpleand not costly in computer time. The performance index can also be updated

without much difficulty as better noise models become available,

For rapid convergence, each control variable is weighted relative to one another,
and this weighting matrix is included in the program as a function of time. The
choice of the weighting matrix is found heuristically after a study of the initial

convergence rate,

P

Note that since pitch angle is the control variable, the angle of attack is a function
of pitchangleand flight path angle, This mixed function of stateand control variables
adds the same complication as does the condition of Eq. 3,2-22,
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The computer program is written in M. I,T.'s MAC language and is run on an
IBM 360/75, The computer time required for a 100-sec trajectory operating ata
0.5-sec time step is approximately 45 sec/iteration, A typical run requires about

20-30 iterations for acceptable convergence.
3.2.4.4 Results

This analysis examines some general behavior patterns of minimum noise
takeoff trajectories for STOL aircraft. In this context, minimum noise trajectories

are obtained from various initial conditions to a final altitude of 5,000 feet.

The first attempt to minimize noise used a constant flap angle of 60 deg and
a maximum total engine thrust of 22,910 lbs, The initial conditions on the state
variables were h = 400 feet, V = 100 ft/sec, ¥ = 15,4 deg, and R = 2,280 feet. By
modulating the pitch and angle of incidence as shown in Figs, 3.2-24D and E, and
by maintaining the primary and augmentor thrust at their maximum values, Figs,
3.2-24A, B, and C show that the vehicle quickly settles into a state of maximum.
sustainable flight path angle (¥ = 25 deg). As seen in Fig, 3.2-25, the unconstrained
PNL exceeds 100 PNdB in the vicinity of listener 1, While noise sensitive tracks
for conventional jet aircraft range from 4 to 8 miles, this figure shows that no
significant noise (70 PNdB isaboutthedaytimebackground noise level inaresidential
neighborhood) is detected beyond a range of 2 miles,

For compafison, another run was made with the same initial conditions, but
with the maximum PNL constrained to 95 PNdB, The noise profile for this case
(Fig. 3.2-26) shows that the cost of reducing the peak noise at listener 1 is a slight
increase in overall annoyance (i.e., the performance index increases from 601 to
630 dB). The greatest increase in annoyance is suffered by listener 2. Note that
the vehicle again settles to the same steady state as in the unconstrained case (Figs.
3.2-27A, B, and C), However, initially, the primary thrust (Fig, 3.2-27F) must be
decreased from a maximum of 15,870 lbs to about 2,000 lbs in order to maintain
the noise level at 95 PNdB, This indicatesthatit probablyisnot possible to constrain
the PNL much below 95 PNdB. Note that in this case the velocity increases by
decreasing the flight path angle., This is done to induce a rapid rise in altitude
before reaching listener 2. However, the altitude remains fairly constant as the

aircraft passes over listener 1,

Noting that the STOL vehicle would initially climb as fast as possible, initial
conditions were chosen closer to the steady-state value of maximum rate of climb
for this aircraft. In this case the angle of attack is constrained to its lower limit
of -12 deg during the transient phase of the trajectory, As before, the vehicle
settles to the same steady state of maximum sustainable flight path angle (Figs.
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3.2-28A, B, and C). Although the peak noise detected by listener 1 is about the
same as in the case tested earlier (Fig, 3.2-29), the overall annoyance has been
reduced by starting at a higher rate of climb, Another set of initial conditions was
tested (V = 123 ft/sec, ¥ = 23.37 deg, h = 400 feet, R = 2,280 feet). Again, the
trajectory settled to the same steady-state condition of maximum flight path angle.

Both the unconstrained and constrained noise cases were repeated, this time
modulating the flap angle as well as the four control variables used earlier, With

the addition of the flap as a control variable, CL and CD became functions of as

well as of CJ and . Again, maximum flight path angle is achieved in steady stc‘ate
(Figs. 3,2-30A, B, C and -31A, B, C). By starting the transient phase with a flap
angle near 20 deg and by decreasing the flap to 12 deg and maintaining this value
during steady state, the vehicle climbs at a higher velocity and reaches terminal
altitude about 30 sec faster than the constant 60-deg flapcase, In both the constrained
noise and unconstrained noise cases, the angle of attack is constrained to its upper

limit of 15 deg during the transient phase.

Minimum noise trajectories for ground takeoff to 5,000-foot terminal altitude
were also generated for both the constrained noise and unconstrained noise cases,
Again, maximum flight path angle is achieved in steady state. Note that since the
maximum total thrust is less than that used in the above cases (18,600 lbs), the
maximum flight path angle has been reduced from 23 deg to 20 deg (Figs. 3.2-32B

“and -33B).

As the ground takeoff trajectory began to converge, there developed the
unrealistic situation of negative altitude during the transient phase. To avoid this -
and to avoid modeling the airplane dynamics on the runway, the initial velocity was
increased or decreased by some fixed amount dependent on the initial ¥ from the
last iteration, In each case, the initial downrange was adjusted by a linear
extrapolation, This explains the slight difference in initial velocity seen in Figs,
3.2-32C and -33C,

The angle of incidence is constrained to its lower limit of 18.5 deg for the
entire trajectory in each ground takeoff case, Earlier results, where the angle of
incidence could vary between -60 deg to +60 deg, indicated that the angle of incidence
tended to remain around zero,

In the constrained ground takeoff case, noise is constrained to 95 PNdB at
both microphone one (0.5 n.mi, downrange) and microphone two (1 n,mi, downrange),
To compare the effect of microphone position the unconstrained ground takeoff case
was repeated with all microphones shifted 0.5 n.mi, downrange, Steady-state
conditions were the same in both cases, but the time to reach steady state was less

when the first microphone was downrange 1,0 n,mi. instead of 0.5 n.mi,
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Figure 3.2-23 Elimination of Phugoid Oscillation by Using Pitch Angle
Rather Than Angle of Attack as the Control Variable
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PNL Unconstrained (Flap Angle Fixed at 60 Deg)
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For the constrained case the maneuvers are quite severe and unrealistic, In
fact, if a microphone were placed 0,75 n,mi, from the runway (in addition to the
0.5-n,mi, and 1,0-n.mi, locations), the instantaneous noise level constraint of 95
PNdB would be violated. This gives a case for concentrating more microphones at
the beginning of the ground track sothat if thenoise level constraint can be satisfied
it will be satisfied more uniformly along the ground track, and hopefully a smoother

trajectory will be generated,

At the end of each trajectory, a flare maneuver occurs where the velocity
goesto zeroand thealtitude rises sharply. This occursbecause the terminal condition
was chosen to be an altitude of 5,000 feet to save computer time. The program
uses this flare to obtain a slight decrease in the performance index, However, if
the terminal altitude were to be increased, the length of the steady-state climb
would also increase, Therefore, the flare maneuver can be ignored, and the trajectory

assumed to end at the 5,000-foot altitude in the steady state,

In using steepest descent, the question often arises as to how close results
really are to optimum, As seen in Figs, 3,2-34A and B, the impulse response
functions for pitch and angle of incidence are quite small. This means that to a
first-order approximation a 1-deg change in either of these control variables over
a 100 sec trajectory would change the performance index by less than 0,001 PNdB,
Since an instantaneous change of 3 PNdB is required for the human ear to detect

any change at all, this improvement would be insignificant,
3.2,4.5 Conclusions and Recommendations

A steepest descent optimization program was used to determine minimum-
annoyance flight paths on takeoff and climbout for a jet powered STOL vehicle,
The problem was 2-dimensional in that listeners were strung out at 0.5-n,mi,

intervals along the extended runway centerline,

The flight paths obtained indicate that if no listeners have constraints on their
Perceived Noise Level, then the vehicle should use its maximum climb angle and
maximum thrust to maximize the distance to the listeners., If the listeners have
constraints on their maximum PNL however, a largethrust reduction can be employed
toreducenoisenear theclosest listener, followed byan increase to maximum thrust

and maximum flight path angle,

These results hold true (1) for several cases of initial conditions, including ,
ground takeoff, (2) for the augmentor flap either fixed or controllable, and (3) for

two values of thrust-to-weight ratio.
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The results prove interesting and useful, in that an operator knows that he
should employ a maximum climb angle takeoff to provide minimum total annoyance
to listeners distributed along his flight path, For particularly sensitive areas close
in to the runway however the thrust cutbacks used to reduce noise were extreme,
being both uncomfortable and unsafe, What is needed are some additional runs

“with less extreme thrust reductions for a comparison in total annoyance.

As for additional work, it would be useful to expand the group of listeners to
"three dimensions, such that curved flight paths could be examined, Moderate
reductions in PNL (3-5 PNdB or more) at a given point should be possible by the
proper choice of 3-D flight paths, In conjunction with this, the plots should include
the PNL contours for a given run, as this provides more information than just the
PNL at a particular group of listeners. Finally it would be worthwhile from an
operator's viewpoint to find out just what these noise-optimum ﬂight paths cost in
additional fuel or time. It may be that there is no significant difference between

standard and noise optimum flight paths.
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3.3 WIND CONDITIONS AFFECTING LANDING

This section describes wind conditions as they affect the final approach and
landing of an aircraft, There are three types of wind conditions which are treated
here: first, mean wind, which is the velocity of the air relative to the ground at
some reference altitude; second, boundary layer shear, which is the vertical variation
of the horizontal wind velocity; and third, turbulence, which is a random variation
of wind velocities from the; steady-state (mean wind and boundary layer shear)

velocities,

The prediction of mean wind for a given airfield is discussed in Section 3.3.1,
Statistical methods are considered for prediction of percentage occurrence ofadverse
wind conditions, as well as improved prediction of wind velocity provided to the

pilot for each landing.

Boundary layer shear predictions are considered in Section 3.3.2. The shear
is primarilydependent on mean wind and on turbulence, Unfortunately, thedependence
onturbulence is not easily formulated and the turbulenceitself isnot easily predicted,
Therefore, some attempts have been made to relate the shear to more easily

predictable quantities,

Sections 3.3.3 through 3.3.7 are concerned with turbulence, Turbulence is a
random process, and hence predictions of turbulence velocities can only be made
in a statistical sense. Basic properties of turbulence statistics are discussed in
Section 3.3.3. Certain assumptions and simplifications are considered for validity, .
and are shown to support a Gaussian model. Section 3.3.4 discusses the mechani¢s
of turbulence without ground effect, and presents some classic descriptions of
turbulence as given by von Karman and Dryden, In Section 3.3.5, the effect of the
ground is considered, The proximity of the ground makes the vertical statistics
distinct from the horizontal statistics, Also, due to the mean wind and boundary
layer shear, the downwind statistics become distinct from the crosswind statistics,
With these considerations, the model of the turbulence is further refined, and some

numerical results are presented,

The turbulence has now been described as a function of space and time, and’
must be converted into the single coordinate of elapsed time of the aircraft along
its flight path, The way in which this is done is described in Section 3.3.6.

Special causes of turbulence, whichdonot fit into the framework used throughout
Sections 3.3.3 through 3.3.6, are described in Section 3.3.7, Section 3,3.8 presents
conclusions concerning a turbulence model suitable for analysis of an aircraft's
ability to withstand normal service, with suggestions for further studies to improve
that model.
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3.3.1 Steady Winds

Currently, landing fields provide the pilot with measurements of the speed
and direction of surface winds close to the runway complex, which the pilot utilizes
as predictions of wind conditions for his subsequent landing, Although the current
method is quite satisfactory, theaccuracy of these wind predictions could beimproved
by filtering out the turbulence measurement, thereby measuring only the steady
wind velocity. Figure 3.3-1 shows the power spectral density of wind velocity
measured at a ground location, The distinction between the steady and turbulent
wind velocities is dependent upon frequency: the border between the two is the
local minimum of the spectral density, which occurs at a frequency of 1 to 10 cycles
per hour depending on thermal conditions. The turbulence includes high frequencies
whichtend todistortwind predictions. With knowledge of this power spectral density,
a technique such as Wiener filtering could greatly improve the prediction of wind

speed and direction,

Anaircraft operator isnot only interested in the best estimate of wind conditions
when he reaches his destination, but also in the probability of completing each
scheduled flight, Information is available at many airfields concerning winds
experienced over the past few decades, and these records provide a firm base for
statistical analyses of future wind conditions, Theserecordsare published invarious
forms by U.S, government agencies1 and generally provide such information as

bpercentage occurrences of wind speeds and directions, visibilities and ceilings, and

useful correlations of these occurrences.

Table 3.3-1 presentsa 15-year set of typical ceiling/visibility data for Boston, ‘
Mass., from the USAF Air Weather Service.la
that at Boston, VFR weather conditions (ceiling 1,000 feet, visibility 1 mile) occur
about 89.6% of the time, CAT I conditions (200 feet, 1/2 mile) about 99,0% and CAT
IT (100 feet, 1/4 mile) about 99.6%.

From this information one can see

Another report, from Lambert Field, St. Louis,lc yields information such as
the following: for the summer season, between noon and 5:00 PM local time, there
were no reported occurrences (over a ten year period) of ceilings less than 300
feet; there were no reported occurrences of winds over 15 knots for ceilings under
800 feet; and for ceilings up to 3,000 feet, winds of over 15 knots always came
from the E or ESE and the visibility was greater than 1.5 miles. These latter
conditions occurred only about 6% of the time. When all conditions of ceiling are
included, winds exceeded 15 knots about 0.3% of the time, and generally came from
between E and S. For summertime afternoon landings at this field, therefore, the
operator can depend on visibility of more than 1/2 mile and ceiling over 300 feet

(no conflicting reports over a ten year period). He will have a 99.9% chance of
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having ceiling over 600 feet and visibility over 3 miles, but only a 99.7% chance of
wind under 15 knots,

Data for surface winds at South Weymouth Naval Air Station,2 one of the
possible STOLport locations in the Boston area, has shown that the probabilities of
crosswinds to given runway orientations canbe approximated asnormal distributions,
However, noticeabledeviations can be found from theassumed Gaussian distributions,
and since a firm data base is available, a more detailed investigation of the data is
inorder, Figure 3,3-2 shows thev assumed normal distribution, and the distribution
based on the published data, for the entire 15-year period. The shaded area in the
extremities of the latter distribution represents uncertainty due to the roughness
of the published data, This figure shows that for a STOL aircraft to have a trip
completion ratio of 99.5% or better at thisairport, it would need a crosswind landing

capability of at least 20 mph,

There are some correlations between meteorological conditions which are
general characteristics, not limited to a particular location, For example, very
low visibilities (less than 1/4 mile) are correlated with lower-than-average surface’
winds, even though there are certain conditions of low visibility (such as rain and

snow) when winds can be expected to be high and g‘usty.3
3.3.2 Boundary Layer Shear

Associated with the mean surface wind is a boundary layer behavior near the
ground, resulting inadecrease of horizontal wind velocity asthe ground is approached.
The wind shear (vertical gradient of horizontal velocity) in this layer may affect an
aircraft during final approach, The thickness of the boundary layer, and hence the
shear experienced by the aircraft, depends on the conditions of the flow —— and
especiallythe turbulencein this layer, When thereis little turbulence, the boundary
layer is so thin that only the smallest aircraft will experience any shear (although
shear magnitudes are great)., But when there is turbulence, the boundary layer
thickens, and the layer extends high enough, to affect the aircraft, 4

In order to relate the shear to the turbulence, investigators have attempted
to associate the shear with surface roughness or thermal atmospheric conditions,
Both of these are representative of the amount of turbulence to be expected, and
are more useful parameters than turbulence per se since they are more easily
predicted. The dependence of the shear on surface roughness has been forrnula’ced5
with velocity assumed proportional to a power (p) of the height above ground. The
proportionality constant is chosen to match the velocity to a constant mean wind

above 1,000 feet (or some other reference altitude), A lower power p represents a
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thinner boundary layer. The effect of surface roughness is included utilizing the
"characteristic roughness length' of the terrain, a measure of the important length
scale of the terrain irregularities, Wind velocity profiles have been found to agree
fairly well with this model when p is equal to 0.12 for a roughness length of 0.3 cm
(characteristic of anopen airport), and with p varying up to 0,38 fora 5 m roughness
(characteristic of a city). This model is consistent with the Weather Bureau's use
of an exponent of 0,14 to scale measurements of airfield wind from actual measure-

ment height to the standard measurement height of 30 feet.6

The dependence of the shear on thermal conditions is quite complicated, and
will not bedescribed here, The basic formula'7 is valid only when theair is thermally

unstable (usual on sunny days), though a modification is available for stable air.8
3.3.3 Turbulence and its Statistics

Turbulenceis characterized by its random, and hence generally unpredictable,
nature. It can therefore only be described in terms of expectations — that is, by
its statistics. The form of the statistics used to describe any particular turbulent
situation should be chosen with two guidelines in mind., First, the maximum amount.
of information should beused, Second, the form of the statistics should be convenient
for use. The second stipulation may require that the first be modified slightly,

3.3.3.1 Methods of Statistical Representation

The statistical models used by different investigators do not always follow
these general guidelines, For instance, some investigators haveused the gust factor
or gust coefficient, which is defined as the peak velocity measured ina timeinterval,
divided by the average velocity in that interval. There has not been general agreement
on what that interval should be,6 though 10 minutes appears to be used most often,
However, this measure does not characterize turbulence well enough to evaluate
its probable effect on an aircraft, All of the time histories shown below have the
same gust factor and average velocity, but aircraft behavior would be markedly
different for each one:

A
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p (V) = Probability Density of
Gust Velocities

Gaussian
Approximation

Gust Velocity

Figure 3.3-3 Comparison of the Actual Probability Distribution of

Turbulence Velocities and a Gaussian Distribution
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3.3.3.2 Taylor's Hypothesis

The assumption knownas Taylor's hypothesis greatly simplifies the statistical
description of turbulence. It states that the magnitude and direction of turbulence
velocities remain constant in a reference frame which floats downstream with the
mean wind, The changes in turbulence velocities experienced by an aircraft are
assumed to be due only to the motion of the aircraft through this turbulence field,
This hypothesis is reasonable if the velocity variations seen by the airplane (due to
the time change of the turbulence velocityata given position) are very small compared
with the variations due to its motion through the turbulence field, This hypothesis
has been supported with only minor exceptions, none of which are very restrictive

for the landing approach of a STOL aircraf‘c.5’10’11 The exceptions include aircraft
speed less than 1/3 of the mean wind speed (such as a hovering VTOL), and very

low frequency turbulence,

When Taylor's hypothesis is assumed, the turbulence velocities must be
considered as functions of space rather than time, This requires functional
dependence of the PSD on wavelength, which is the inverse of the spatial frequency
(or wave number), rather than on the period, whichis theinverse of thetime frequency.
Thus, the PSD becomes the Fourier space-transform of the space-autocorrelation
function, Spectra or autocorrelations may therefore be written in either the space
or time domain, and one may be derived from the other when the space-time
relationship is defined. An investigator may make measurements in an aircraft as
time measurements and convert to space measurements, or he may make use of

space measurements to predict the time function an aircraft will experience.

The only regime for which Taylor's hypothesis seems not to hold is for long
wavelengths, especially of vertical velocity, at low altitude, This can become
important over undulating terrain where, due to the flow caused by the mean wind,
the vertical velocity field remains fixed totheterrain, Anaircraft in these conditions
would experience velocity variations, while a ground measurement station would
find none, However, the hypothesis will not result in large errors when comparing
turbulence experienced by aircraft travelling at speeds much higher than the mean
wind speed.

3.3.3.3 Homogeneous Isotropic Turbulence
Turbulence at altitude (excluding what is known as clear air turbulence) is
found to be well predicted by a homogeneous and isotropic Gaussian model. That

is, the statistics of turbulence are not a function of position, and have no preferred

direction, These propertiesarenot surprising, since the turbulent energyoriginates
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far from the point of measurement, and reaches the measurement point through a
long process of atmospheric dynamics, These dynamics strongly filter the energy
input; and the morethat a random processis filtered, the more its statistics approach
Gaussian, Theisotropy results from thenature of the filtering: due to the presence
of many eddies in the atmosphere, each eddy is rotated many times around randbm
axes, and hence any original preferred direction is destroyed, As a result, the
smaller eddies have more influence exerted on them by larger eddies and hence
are filtered more — so the statistics of the shorter wavelengths are more Gaussian

and isotropic than those of the longer wavelengths,

Although the assumption of isotropy includes the condition that the three
components of velocity at a given position are not correlated, it should be noted
that eveninisotropic turbulence thereare some important correlations of the space
derivatives of those components, Derivations based onincompressibility and isotropy
have shown a positive correlation between the variation across the wingspan of
"headwind' turbulence velocity, and a velocity from the side occurringa characteristic
time la‘cer.5 There is also a correlation of spanwise variation of side velocity, and
a headwind velocity occurring later, These correlations affect the way in which an
aircraft responds to turbulence, and may be important if the characteristic time
involved is close to the characteristic time of an aircraft dynamic mode.

3.3.4 Modeling the Power Spectral Density at High Altitude

The behavior of the turbulence varies between different frequency ranges,
The best understood of theseis the inertial subrange, where wavelengths are larger
than those for which viscous damping effects are of importance, but shorter than
those at which turbulent energy originates. In this inertial subrange, there is no
input or dissipation of energy, but nonlinear effects transfer energy from the longer
wavelengths to the shorter wavelengths, Analysis of the dynamics for this subrange
predicts that the power spectral density will vary as the ~5/3 power of the
frequency.12 This -5/3 relation has been well verified by many experimenters,

In the inertial subrange, the power spectral density of longitudinal velocity is
shown analytically to have 3/4 of the magnitude of the lateral or vertical velocities
(see Fig. 3.3-4). This is because of the difference in statistics of expected changes
in velocity alo'ng the direction of that velocity, as compared with changes perpendi-
cular to that velocity. This relationship of the spectral densities is derived using .
the assumptions of isotropy, incompréssibility, and the -5/3 relation of the inertial
subrange.13 Some experimenters have tentatively verified this 3/4 relation, while
others feel that the relation is more nearly one of equality.11 A similar derivation
may be performed for other frequency ranges, and will give the relationship between
the spectra as a function of the local shape of the spectra,
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For wavelengths on the order of a centimeter, shorter than those of the inertial
subrange, viscous effects become important and the turbulent energy is dissipated.
Since these wavelengths are too small (and the corresponding frequencies too large)
for them to affect an aircraft, the viscous subrange is not important to aircraft

operators,

It is at frequencies less than that of the inertial subrange that turbulence
energy originates, from such sources as mean wind flow over terrain features, and
buoyant effects of thermally unstable air, Because of the great variety of meteor-
ological conditions possible, which greatly affect the dynamics of the air in the low
frequency range, the behavior in the energy subrange is not well predictable,

The von Karman power spectral density is found to be very representative of
turbulence at altitude, The spectrum is shown in Fig, 3.3-4, and is specified by an
amplitudeand a characteristic length (or scale). The characteristic length specifies
the '"break frequency' separating the low frequency portion from the inertial subrange,
For wavelengths much shorter than the characteristic length, the spectral density
exhibits the -5/3 behavior expected of theinertial subrange. For wavelengths longer
than the characteristic length, the spectrum is flat,

Because the -5/3 behavior cannot be represented by a polynomial power
spectral density, many investigators have chosen instead to use an approximation
which simplifies the resulting analysis by providing an integer slope of the inertial
subrange, The most often used polynomial PSD is the Dryden spectrum which
approximates theinertial subrange with a slope of -2, The Dryden and von Karman

spectra are presented in Fig, 3.3-4,
3.3.5 Behavior at Low Altitude

The homogeneous and isotropic assumptions for turbulence, which make some
analytic results possible at altitude, break down within a few hundred feet of the
ground, Thus, there is even less information about the turbulence near the ground
thanat altitude, For instance, the analytically derived slope of -5/3 for the inertial
subrange, which has been so well established empirically at altitude, is theoretically
valid only for homogeneous, isotropic turbulence, The nonhomogeneity affécts the
rigorous use of the PSD, but we will not concern ourselves with the modifications

involved,
3.3.5.1 Anisotropy

Asthe ground isapproached, the longer wavelengths (on the order of the height
above the ground and longer) are modified by the ground effect, and isotropy breaks
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down. Therefore, isotropy is generally considered to be a valid assumption for a
wavelength-to-height ratio less than a "critical" ratio. Investigators have found
that this critical ratio is about 1 in stable air, varying to as much as 10 in very

unstable aix’.11'13-15 The high frequencies remain homogeneousand isotropic since
they are still many wavelengths away from the ground, and hence do not feel its

effect.

Because of the ground effect, the turbulence statistics must now be concerhed
. with threedistinct coordinatedirections: vertical, since the ground physicallydamps
the vertical velocities; downwind (along the mean wind), since the flow over the
ground and the shear considerably affect the behavior;and crosswind, The velocities
in these three directions are not even independent, due to the shear of downwind
velocity. Although the crosswind component is uncorrelated with both the vertical
and downwind components, these latter two components are correlated. This
correlation is represented by the friction velocity u*, which is the square root of
the expected product of 'downwind" and 'down" turbulence velocities, and is

predictable from the magnitude of the boundary layer shear,
3.3,5.2 Thermal Effects

The conditions of turbulence near the ground are very dependent upon the
thermal stratification of the air layers near the ground, which may damp out or
excite turbulence, and the boundary layer shear. The relative importance of these
effectsisrepresented by the Richardson number Ri, which relatesthe ratio of buoyant

to mechanical (shear) forces.7 The expression is:

Ri - &4 +3T /3z) (3.3-1)

TRV /3z)2

where g is the gravitational constant, T is temperature, V is horizontal velocity,
and z is height., A (the adiabatic lapse rate) is a correction to the vertical gradient
of temperature due to the fact that a rising parcel of air will expand and cool, due
to lowering pressure, without any heat transfer to the surroundings, An atmosphere
in complete equilibrium will have 3T/3z = -A,

A positive Ri indicates that the bouyant forces are stabilizing, and an air
mass with Ri greater than 0,25 is expected to have no turbulence, This is because
air for this condition gets warmer with height, Therefore, any air that tends to
risewill find itself among air that is warmer, and hence lighter, and so the original
parcel of air will fall again, During conditions of very positive Ri, there may be a
buoyant subrange between the energy and inertial subranges, Inthis buoyant subrange,
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energy is dissipated due to the strong tendency of the atmosphere to damp any
large-scale turbulent motions. The power spectral density may fall off as fast as

the -3 power of the frequency in this subrange,

Conditions of negative Ri indicate buoyant instability, since the air decreases
in temperature with altitude. A rising parcel of air will therefore find itself among
air that is colder and hence heavier, The original parcel will then tend to continue
to rise due to buoyant effects. The conditions of negative Ri will generally occur
when sunlight is heating the ground, which in turn heats the layers of air near the
ground, During conditions of low visibility (or at night), sunlight cannot warm the
ground, resulting in a positive Ri. Turbulence, then, is negatively correlated with
low visibilities and ceilings, though there are exceptional conditions such as

thunderstorms.

The effects characterized by the Richardson number maynot be very important
for small parcelsof air, where conduction of heat to surrounding air may reestablish
the temperature of a parcel with respect to its surroundings, But it will hold for
large parcels where conductionis notimportant, Inaddition, a small parcel displaced
by its height will not experience nearly as much density difference with regard to
its surroundingair, as willa large parcel displaced by itsheight. Thermal turbulence
is therefore expected at low frequencies (long wavelengths) during conditions of
thermal instability (negative Ri). Investigators have found definite convective

14,15,16

(thermal) energy peaks for such conditions, mostly at wavelengths greater

than 100 times the height for very low altitudes.

As shown in Fig, 3.3-1, the power spectral density is greatly modified by the
conditions of thermal stability of the atmosphere. This modification takes place at
lower frequencies than those associated with mechanical turbulence, which derives
its energy from terrain roughness effects and shear in the boundary layer. The
large energy peak possible due to convective effects, however, may not seriously
affect the higher frequency portion of the spectral density (the inertial subrange)
even though it may have many times the total power of the spectral density for
stableair, Thisistrue becausethetransfer of energy from lower to higher frequencies
occurs by the same mechanism as it does in the inertial subrange, where the
steady-state result is a PSD falling off as the -5/3 power of the frequency.. Thus,
the energy that the convective peak can feed into the inertial subrange is small
compared with that fed in by the mechanical turbulence at much lower energy but
at higher frequency. At lower altitudes both of these effects distinctly appear in
the spectral density, and it will be necessary to include a convective turbulence
peak in any low-altitude PSD model inorder to represent thetruenature of turbulence
in unstable air., At altitude, the convective peak may have dissipated enough so
that this is not required,
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3.3.5.3 Similarity Hypotheses

Investigatorsare continually attempting todiscover methods by which low-alti-
tude spectra at different locations and altitudes and under different conditions may
be compared; and by which spectra for new conditions can be predicted. To this
- end, investigators have attempted to determine the important similarity coordinates

in which all spectra would beidentical, Theseattempts havehad very limited success.

For instance, the most commonly considered similarity hypothesis is that of
Monin-Obukhov, which expresses the PSD-vs-frequency function in the similarity
coordinates of "reduced PSD'" and ''reduced frequency'. The reduced PSD is the
PSD divided by the square of the friction velocity u*, which is a measure of the
shear in the boundary layer, The reduced frequency is the height divided by the
wavelength, Although some investigators claim to have reached significant conclu-
sions about the behavior of the spectral densities in the Monin-Obukhov similarity
coordinates, more recent work has shown that this method works well for vertical
but not horizontal veloci'cies.l:g’14’15’17’18’19 ) '

Other similarity coordinates have been proposedl‘l'20 where the turbulence

spectrum is not proportional to (u*)z, but rather to the square of the mean wind,

U2, or even to U1’6.

Not only has the dependence on U2 been found to work better
than that on (u”‘)2 for the inertial subrange, but of course U is easier to measure

than u*, None of the similarity hypotheses, however, are very dependable.
3.3.5.4 Characteristic Length

Turbulenceis generallydescribed byitscharacteristic length, whichis defined
by different investigators in different ways. All of the definitions result in nearly
the same measure, however, The characteristic lengths associated with the von
Karmanand Dryden spectra are shownin Fig, 3,3-4, and represent the break frequency
beyond which is found the inertial subrange. The characteristic length is therefore

the shortest wavelength at which substantial turbulence energy input occurs.,

There are actually nine characteristic lengths of interest in low altitude
turbulence. Each of the three velocity components requires three characteristic
lengths to describe its variation in the three directions, Most investigators have
measured autocorrelations (in order to estimate the characteristic length) from
stationary towers, which measures the autocorrelations of the three velocities only
in the downwind direction. In order to measure autocorrelations in the vertical
direction, a number of sensors on the same tower is sufficient, and this has also
been done.21 Butvery few investigators have established linesof instrumentsacross
the wind, or have flownaircraft at lowaltitudeacross the wind, to measure crosswind
autocorrelations,
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The available data on the vertical and crosswind statistics indicate that thé
scales of turbulence inthe threedirections areindeed different, but that thedifference
isnot nearlyas large as the differencein the scales of the three velocity components
along any one direction. For instance, measurements at a height of 2 meters,10
where thedifferences can be expected to be more pronounced thanat greater heights,
have shown that the eddies of turbulence seem to be stretched in the downwind
direction, so that the crosswind scale of any particular velocity component will
always be shorter than the downwind scale, This effect is more pronounced in
stable conditions, when thedownwind scale may beasmuchas six times the crosswind
scale, than in unstable air, when the downwind scale is only about 50% greater than

the crosswind scale.

Measurements of the downwind scales of the three components of turbulence
have been made by many investigators, and they have agreed on the major
characteristics.zz-26 Basically, the downwind scale of the vertical turbulence is
approximately equal to thealtitude for altitudesunder 1,000 feet. For the horizontal
components, the downwind scale does not go to zero at the ground (or if it does, it
does so in a layer very close to the ground), but varies from about 500 feet at the
ground to 1,000 feet at the 1,000-foot altitude, Becauseof themeager data available
on crosswind and vertical scales of the three velocity components, these scales

will be assumed equal to the downwind scales,

One investigator has stressed thedependence of the scales onthe characteristic
surface roughness length below about 300 feet, and on thermal stability above that
alti’cude.z'7 Thisdependence is expected due to the mechanical and thermal turbulence
which depend in part on these factors, but the behavior is not known well enough to
make good predictions of the scale variations,

These characteristic length scales do not provide full information about the
autocorrelations, and provide no information about the cross-correlations relating
twodifferent velocity components, Theydo prove veryuseful, however, in formulating
a model of turbulence when other information, such as the general shape of the
power spectral density, is available. The turbulence scales given above will be
assumed for neutral or slightly unstable conditions., For very stable conditions,
buoyant effects would reduce the scales to as little as the characteristic roughness
length, For very unstable conditions, the presence of the convective energy peak
would greatly increase the scale,

3.3.5.5 Magnitudes of Turbulence Velocities

The magnitudes of the turbulent velocities, and hence the amplitudes of the
power spectral densities, are represented by the rmsvalues O O and cw (downwind,
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crosswind, and vertical respectively). These are related to the spectral densities

in that the mean-squared values (oﬁ, 03

, and G\ZV) are proportional to the areas under
the spectral density curves, The constant of proportionality depends on the units
used, and on the form of the transforms between the frequency and space domains,

Experimental evidence has shown that the rms component of downwind velocity

o, is generally equal to 0.2 U, where U is the mean wind,25

This is for slightly
unstable conditions: it mayincreasedueto the convective peak at very low frequency
in unstable conditions, '

The relation between the various components has been measured by many

investigators with varying results.5’15’28

Taking an average of the available data,
the ratio of 0,10, 0, is about 1,0:0,7:0,5, These are the values near the ground,
and o, and O will increase with altitude so that all components are equal at about
500 feet, It should be noted that although O halves as the altitude decreases from
500 feet to ground level, the characteristic length drops to zero. This results in
much larger magnitudes of high-frequency vertical turbulence near the ground than

at altitude,

There is also an important correlation between the "downwind" and "down'
velocity components, which, as described previously, is represented by u¥*,
Experimental evidence has shown that the ratio of Ouzcw:u* is about 1,0:0,5:0.35,
so that the correlation coefficient (u"‘)z/cruoW between the down and downwind

velocities is about 0.25_5’15

The values of O Tys Oy and u* given above may be used, along with the
length scales given in the previous section, to scale the von Karman spectrum to
the conditions at low altitude, The Dryden spectrum may of course be used if
computational simplicity is desired., However, these spectra will not be adequate
models since, during conditions of strong thermal instability, a convective peak
appearsonthe spectrum, Addition of this peak tothe von Karmanor Dryden spectrum
forms a more suitable model. The peak should be added at a wavelength about 10
times the characteristic length of the unmodified spectrum, and should have a peak
up to 10 times the value of the flat portion of the spectrum, A similar peak may be
added if low-frequency vertical turbulence (due to mean wind flow over undulating
terrain) is experienced by the aircraft near the landing field, The low frequency
peak may not be very important for structural fatigue or passenger comfort, but it

may have an important effect on following a planned flight path,

If there is interest in the variation of the strength of the turbulence due to
unpredictable factors (or factors whicharenot taken intoaccount here), this variation
may be modeled by assuming the rms value of the downwind component, o to be a
random variable, different for each landing approach. It has been suggested that a
Rayleigh probability density function be used for this purpose.22
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3.3.6 Nonstationarity of Turbulence Experienced by Aircraft

The statistics of turbulence have beendiscussed inthe framework of the power
spectral density, because this representationis the most convenient for a stationary
Gaussian random process., The spectral density has been used by investigators
much more than the autocorrelation, which is the equivalent information in the time
or space domain, The stationarity of the turbulence that has allowed use of the
spectral density has depended on the measurement of the turbulence at a specific
altitude, or at least within a small region. This has proven extremely useful in the

characterization of the turbulence,

The aircraft, however, does not experience stationary turbulence statistics.
The aircraft is continually losing altitude during the final approach, and therefore
the characteristics of the turbulence (especially of the vertical velocity) are
continually changing, Inaddition, it may be passing through various turbulent regimes
that occur around the airfield, possibly due to changes in surface roughness, For
the consideration of the effect of turbulence on the aircraft, then, the statistics can
be reformulated from the space domain into the time domain of the moving aircraft,
The power spectral densities are transformed into autocorrelations to be used in

the nonstationary analysis.,

The conversion of frequency statistics into a form suitable for analysis can
be done for stationary statistics by designing a linear filter with white noise input
such that its output has the spectral density required, For a linear filter with
transfer function F(s), the power spectral density of the output will be F(s)F(-s),
The state-space formulation of the linear filter is the form most suitable for the
ensuing analysis, In the case of turbulence, assuming Taylor's hypothesis to hold,
the spectral densities in the three orthogonal directions will be differaent, and
consideration will have to be taken of the aircraft's flight path which will travel
along each of the threeaxesat different rates = and possibly even at time-changing
ratesif theaircraft is maneuvering, The filter which produces the turbulence from

white noise will, therefore, have to be a time-varying system,
3.3.7 Other Causes of Turbulence

Thereare various types of turbulence whichdonot follow the behavior described
above, At high altitudes, these unusual occurrences are knownas clear air turbulence,
or CAT., Terrain features, large buildings, or even a row of trees may leave a
shadow area downwind, in which the free wind velocity may be substantially reduced.
The shadow area and free stream will be separated by a shear layer, in which

 strong turbulence is expected due to the unstable nature of the 1a1yer'.4’8’29’30 A
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large barrier therefore causes a double danger =— strong shear and increased
turbulence. These effects may be felt at downwind distances many times the size

of the obstacle.

Generally, when thereisanupwind change of characteristic surface roughness,
there is an internal boundary layer (elevated shear layer) separating the air below
(which is affected by the local roughness) from the air above (which is affected by
the roughness found upstream). When the distance from the roughness change is
large compared with the roughness lengths, the altitude of this internal boundary

31,32

layer is about 1/10 of that distance, This internal boundary layer exhibits

both shear and turbulence, as does that produced by a large obstacle.

The aircraft may also experience wake turbulence from other aircraft (or,
under certain conditions, it may even fly into its own wake turbulence which it left
behind sometimeago!). This considerationisimportant when operating into airfields
where conventional or jumbo jets operate, Even though current ATC practices tend
to keep small aircraft away from very strong trailing vortices of other aircraft,

moderate strength vortices may be experienced occasionally.

Another cause of turbulence is squalls, which are associated with thunder-

storms, They may cause very large gust velocities with no warning.4
3.3.8 Conclusions

Although knowledge of turbulence near airfields is not very extensive, it is
sufficient for establishing a reasonable model. This model should include all of
the considerations mentioned throughout this section; including steady winds and
wind shears, Gaussian turbulence, and internal boundary layersand their associated
turbulence, Theinclusion of the convective peak in the low-altitude turbulence model
is very important for analysis of the aircrafi's deviation from its planned flight
path, It should be realized that this model, being Gaussian, does not consider the
encounter of turbulence velocity magnitudes much larger than those usually expected:

extreme velocities will occur more often than predicted by this model.

The von Karman or Dryden spectral density will be suitable for analysis of
aircraft fatigue life and passenger comfort if it is augmented with the convective
peak at low frequency. This convective peak should be placed with its maximum at
a wavelength about 10 times the characteristic length of the spectrum, and should
have an amplitude up to 10 times the low-frequency amplitude of the unaugmented
spectrum, depending on the thermal instability of the atmosphere. The actual
operating conditions of the aircraft should be considered in analyses of fatigue life

and passenger comfort, since only a small portion of the aircraft flight regime will
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be at low altitudes in strong turbulence., Thus, the fatigue damage will be
correspondingly lessened, Also, the design goal for passenger comfort may allow

for occasional exceedance of the preferred limits on accelerations,

More extensive information about turbulence would assist in improving the
above turbulence model. Two typesof studies would be helpful here: first, statistical
studies of turbulence measurements near airfields; and second, further theoretical
work and measurements designed toassist in theunderstanding of the basic physics
of turbulence, The first approach is similar to that taken in Section 3,3.1 regarding
steady winds, in which great masses of data were available and predictions of
percentage occurrence of various conditions could be performed with little or no
understanding of the physical processes involved, There, we were able to compute
probabilities of exceedance of runway crosswind velocities based on over 100,000
observations taken hourly for fifteen years, This great mass of data included such
information as ceiling and visibility in addition to wind information, which allowed
investigations of important correlations of these parameters purely on statistical
bases., There is probably a limit at which further data is not nearly as helpful as
further theoretical studies — another 100,000 observations would hardly improve
the information on winds, visibilities, and ceilings = but this limit is far from

being reached in the field of turbulence at low altitudes,

Many parameters which are not of importance to aircraft response are of
great importance in the understanding of the physical processes involved in turbu-
lence, Therefore, careful planning isnecessaryif measurements taken for statistical
studies areto beuseful also for theoretical studies, For instance, the meteorological
tower at Cape Kennedy measures only horizontal velocities since vertical velocities
are not important in affecting a missile on a launch pad — but the lack of vertical
velocity information has seriously hampered the use of thedata intheoretical studies,.
Measurementstaken for theoretical studies of low=-altitude turbulence should ideally

be done by a three-dimensional network of velocity and temperature sensors,
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3.4 APPROACH AND LANDING CONSIDERATIONS

This section describesa simple method of examining the approach and landing
constraints on an aircraft approaching an MLS-equipped runway. We define the
approach and landing phase of the mission to be that portion of the flight near the
STOL strip where noise and obstacles become important considerations, Typical
figures are roughly 5 miles from the strip and less than 2,000 feet above ground
level. The ATC system, although of major importance in the terminal area, is of
secondary importance during the landing phase, Airspace utilization, sequencing,
etc., near the STOL strip can be taken into account under the heading of trajectory
constraints, Constraintsthatareimposed on the operationof a STOL aircraft during

the landing phase are:

. Obstacle and terrain clearance
Allowable noise and pollution exposure
Pilot workload '
Aircraft performance envelope

Aircraft handling qualities

0 O 0 T P

Aircraft ride qualities
Wind conditions

1, Gusts

2, Shear

3. Crosswind

4. Headwind

h, Visibility

1. Ceiling

T

2, Range

3.4.1 Methodology

The proposed method of analysis is to specify the base and final approach
legs of the terminal flight path by a small number of key parameters——the length
of the final approachand theintercept angle of the base leg., The constraintsimposed
by guidance and navigation systems, aircraft performance, etc., can be plotted in
the parameter space, yielding regions of allowable approaches, These plots may
be used in two ways: (a) approach paths to any STOL strip can be designed to fall
within the contours of allowable approaches as determined by the aircraft/avionics
performance; or (b) the vehicle performance requirements can be determined for

any given approach path,
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The approach and landing phase is modeled as follows: a straight-line base
leg followed by a constant-radius turn with rollout on final approach, The flight
path angle will be assumed constant, The linear dimensions can be conveniently
normalized with respect to the turn radius of the aircraft R (which must be greater

than some value R ). Thus the approach is defined by the intercept angle i and

min
the normalized approach distance d/R.

3.4.2 Preliminary Results

Wenow present some preliminaryand partial results toindicate how thei-d/R
parameter plane can be utilized, Consideration will be limited to the coverage
given by the terminal landing aid, and the response of the guidance system (manual
or automatic) to lateral errors at rollout on final, The turn onto final is assumed

to start when the localizer beam is intercepted,

Landing Aid Coverage — The geometry of the localizer coverage is shown in

Fig., 3.4-1: 8 is the total beamwidth of the localizer (the localizer is assumed to
be at a distance A beyond the touchdown point), y is the lateral displacement at the
point where the beam is intercepted, and z is the longitudinal distance between the
points of centerline acquisition and beam interception, The diagram derives the

bound of (d+A)/R to accomplish the approach for a given i

4 , 1-cosi _ sin i (3.4-1)
R tan &
2
It can be shown that if
4, _1 (3.4-2)
4

then the entire circle lies inside the localizer coverage and an intercept of any
angle canbe made, Thisincludes interceptsof greater than 360 deg which correspond

to spiral approaches,

The geometry for elevation coverage is shown in Fig, 3.4-2, where £ is the
elevation angle, Assuming a constant flight path angle, ¥, the expression for the

elevation angle is

Hia

tan 8 = tanvy (3.4-3)

\
«/(E)2 + 2(2) sini +2(1 - cos i)
R R
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Response to Guidance Errors — As a first (and admittedly optimistic)

assessment of the constraints imposed by guidance errors we pose the following
problem: given that the aircraft has rolled out from the turn onto final with the
correct heading but a lateral displacement, what constraints are imposed by the
requirement to return to the centerline with zero track error before reaching the

landing aid ?

Figure 3,4-3 shows that, neglecting the aircraft roll dynamics (an optimistic
assumption), the following constraint must be satisfied if an initial error Yo is to
be nulled out using two turns of radius R in distance d.

/4%0 - (ZB)Z if

R

W | 0%

(3.4-4)

wla
I\
[\V]
=
4
7o
v
[\

Because the assumptions were generous, we shall use the maximum lower bound,

i,e,, d/R > 2, to describe recovery from initial lateral errors,

This constraint is similar to the minimum-time=-on-final required from the
piloting viewpoint. To estimate this, assume that pilots require rollout to occur no
later than the decision height, The decision heights for Category I and II conditions
are 200 feet and 100 feet, respectively. For a glide slope of -7,5 deg this means
that d should be greater than 1,500 feet and 750 feet for the two conditions, Thus
we get the following bounds for d/R

R (ft) 3 caT 1) 4 caTm
R R
500 >3 > 1,5
750 > 2 > 1.0
1000 > 1.5 > 0,75

This constraint is on the order of the guidance error constraint,

Summary — The landing aid coverage requirements and recovery-from
-lateral-error constraint are shown on the plots of Fig, 3.4-4. Two sets of curves
are presented: the azimuth coverage curves (Fig, 3.4-4A) plot i vs (d+A)/R, taking
intoaccount the placement of the localizer transmitter at the far end of the runway,
while the elevation angle coverage curves (Fig, 3,4-4B) plot i vs d/R since the

elevation transmitter is located near the touchdown point.

171



0" Initial Offset
= Recovery Distance Using Two Constant-Radius Turns

y

D N
(%)2 R - (R -22)2
D

. Y 2 d,5[gq0_ Jo,2
\4RY, -, i R‘\/“R })
D
R

If Yo > 2R, use two 90° turns

then,i= 2 becomes a lower bound

"

Figure 3.4-3 Recovery from Lateral Offset

172

A\\



8=20

i = Intercept Angle

d = Distance from Touchdown
R = Aircraft Turn Radius

8 = Localizer Beam Coverage
Y =-17.50Deq.

i (deg)

0 ) 2 6 8 10 12 1“6
+ A
R

Normalized Intercept Distance ¢ d )

{A) Localizer Beam Coverage Constraints

i = Intercept Angle
B= Elevasion Angle

T 0t Ye-15
g 71
- 604
30 1
L R T S § 10 12 14 16

Normalized Intercept Distance (d/R)
{ B) Elevation Angle Constraint
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Approach Flight Paths
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It is seen that a wide range of approaches can be made with relatively modest
elevation and localizer coverage. For example, assume ¥ = -7.5 deg, A = 2,000
feet, and R = 550 feet (60-knot approach speed with a 30-deg bank angle), For a
final approach distance (d+A)/R = 6.4, and d of 1,500 feet (CAT I conditions), Fig,
3.4-4A shows that for a localizer coverage of only 20 deg, the intercept angle can
be as high as 117 deg. If the localizer coverage is broadened to 40 deg, spiral
approaches are possible, and the elevation coverage becomes the limiting factor,
Looking at Fig, 3.4-4B with d/R = 2,75, we see that a 10-deg elevation coverage
would be more than adequate for thé 117-deg intercept corresponding to ¥ = 20 deg,
while B = 15 deg would allow i to exceed 180 deg.

Looking at these plots from another viewpoint, if a 90-deg intercept angle is
desired with a final approach distance d of 750 feet (CAT II conditions), and if the
minimum turn radiusis 870 feet (V = 60 knots, ¢ = 20 deg) thentherequired localizer
coverage is about 30 deg and the required elevation angle coverage is less than 10
deg.

3.4.3 Conclusions

The curves of Fig, 3.4-4 reflect the general trends for the simplifying
assumptionsused, Morerealistic conditions should be incorporated intothe analysis,
such as headwinds (which tend to decrease the requirements for d), crosswinds
(which increase therecovery distance), a better estimata of minimum-time=-on-final
from a piloting viewpoint, etc. A more accurate model of aircraft dynamics and
trajectory dispersions will lead to an improved estimate of the d/R necessary to
null guidance and navigation errors after the turn onto final., The time delays
associated withaircraft roll and heading rate response, pilot perceptionand reaction
delays, receiver filter time constants, and ILS beam edge irregularities are very
important factors that should beincluded, asa total delay of even 1 second produces
large displacement errors, However, even with the crude assumptions made in
this preliminary analysis, the curves provide insight into the important aspects of
the approach geometry,
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3.5 ATC SYSTEM INTERFACE

STOL operations within the context of the existing and evolving ATC system
are the subject of this section, Operational proceduresand problems are discussed,
with emphasis on problem areas which might impact avionics and ground-system

requirements,

Section 3.5.1 discusses runway capacity for STOL operations., STOL arrival
capacity is found to be limited by separation requirements in the approach airspace.
Analytical and queueing models are used to estimate arrival and departure capacity

as a function of various separation standards and service times,

Section 3.5.2 is devoted to STOL operations at metropolitan jetports. The
need for and desirability of such operationsis discussed and methods for conducting

such operations on a noninterfering basis are explored,

The final section, Section 3,5.3, examines terminal area airspace, STOLport,
and suburban airport operations, Previous FAA simulation results and studies are

reviewed and particular problem areas are identified,
3.5.1 Runway Capacity

The STOL demand levelsdiscussed in Chapter 2 indicate that runway capacity
may be a problem in certain of the larger demand centers, To determine if this is
the case it is necessary to know the capacity of a runway or set of runways used
for STOL, operations, It is also necessary to know how capacity is affected by
separation standards, regulations, and operational procedures, since these are in

some cases subject to change,

Many excellent papers and reports have been written about airport and air
traffic control system capacity,l_4 but the subjectisfar from being well understood.
Terminal area processesare exceedingly complex, and detailed analyses must deal
with multiple, dependent, non-stationary, random variables or resort to simulation.
In addition, it is often difficult to obtain measured data for comparison with theory.
The present section will present the application of some simple analyses to STOL
operations, draw some preliminary conclusions, and indicate where a more thorough

analysis is needed and how it might proceed.

Oneis faced at the outset with the problem of defining whatis meant by capacity.
The maximum number of operations per hour which can be handled at an airport
obviously varies with conditions; furthermore, as the airport operations rate
approaches maximum, thearriving and departing aircraft are obliged to wait longer

and longer periods of time on the average for the use of the facility, These facts
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have led to the definition of a measure known as Practical Hourly Capacity
(PHOCAP).

Practical Hourly Capacity is defined as the maximum number of operations
per hour which can be handled (steady state) at an airport under a prescribed set
of conditions at a prescribed level of mean delay. It is difficult (though apparently
possibles) to measure this quantity directly at an airport since conditions change
rapidly, peak traffic periods are often of short duration, and certain components of
aircraft delay (such as the delay to arrivals caused by path stretching) are not
readily observable, Nevertheless, this quantity and methods by which it may be
calculated are of considerable interest when the peak-hour behavior of the system

is in question,

A measure which is often of more use to the airport planner is the Practical
Annual Capacity (PANCAP).2 Practical Annual Capacity is defined as the number
of operations per year which can be handled at a given level of annual delay, given

certain demand characteristics and runway usage assumptions,

In some applications, the time~dependent behavior of the system is of greater
interest than the equilibrium behavior. Reference 3 discusses some analytical

methods for dealing with this problem and explores periodic behavior in particular,

Before discussing the capacity of a STOL runway from the queueing point of
view, we shall consider some simple deterministic and probabilistic models of the
arrival process, These models serve to relate the seusitivity of the mean landing
interval under capacity conditions to such factors as approach speed, traffic mix
and ATC system performance,

3.5.1.1 Minimum Landing Intervals

There are in general two basic ATC safety requirements which impact on the
minimum landing interval. The first is the requirement that the runway be clear
of the precedingarrival (ordeparture) before the landing aircraft crossesthe runway
threshold and is committed to land.* The second isthe requirement that IFR aircraft
be separated by some minimum distance S, which is currently 3 n,mi, if radar
separation procedures are in use and the aircraft are within 40 n,mi, of the radar

. . %%
installation,

P

The preceding aircraft need not have actually exited from the runway in all cases,
See paragraph 560, Terminal Air Traffic Control,b
%

*
Paragraph 1300, Terminal Air Traffic Control.5

176



For STOL aircraft using current IFR procedures, only the second requirement
would affect the minimum landing interval, because runway occupancy times are
short (on the order of 15 sec if adequate exits are provided), and approach speeds
are slow, The minimum landing interval with a 3-n,mi, separation requirement
and a 60-knot approach speed is 3 min, Reduced separation requirements may of
course be adopted for STOL operations, but unless the time separation in the air
approaches the runway occupancy time (which seems unlikely from the safety point
of view), the general conclusionremains the same: the bottleneck is not the runway

but instead, the approach airspace.

We shall not discuss separation requirements at the present time other than
to point out the desirability and feasibility of reduced longitudinal spacing, The
3-min landing interval mentioned above results in a maximum of only 20 landings
per hour, Other factors (traffic mix, queueing considerations, headwinds, etc,) would
reduce this still further, From the reaction-time point of view, separation could
certainly bereduced. A 1,5-n.mi, separation with a 60-knot approach speed results
ina 90-sec time separation, more than adequate for controller/pilot communication

and reaction,

It is interesting to examine the effect of the approach airspace bottleneck on
the landing interval when the runway is used for aircraft of differing speeds, The
situationisdepicted in Fig, 3.5-1 and itisapparent that the minimum time separation
T in at the runway threshold betweena pair ofaircraft having constant final-approach

mi
speeds V1 and V2 is given by

S
72 Vl < V2
Tm'm N L (L-S) (3.5-1)
—_ - V1 > V2
V2 Vl

where L is the length of the final common path, When the first aircraft is slower
than or equal in speed to the second aircraft, the second aircraft must be delayed
before entering the gate such that the minimum separation occurs just as the first
aircraft crosses the runway threshold, When the first aircraft is faster than the
second aircraft, then the minimum separation occursasthe second aircraftis passing
through the gate.

177



Assuming a mix of slow and fast aircraft (VS and VF respectively) then one

finds four cases

r S _ ~
Vs Vi = Vy = Vg
S i )
Va Vi = Vg = Vg

Tmin - S (3.5-2)

Ve Vi = Vg Vo = Vg
L (L-S) _ -

G = Vi® Ve Vp 7 Vg

If one now assumes that slow and fast aircraft arrive in random order with
probabilities Pg and Pp respectively, then the average separation is just
r ‘ 2 2 rL (L-28)
= + + —_—_— -
E[ T pin J Pg 8/Vg * pp S/ Vg + pgPp |- ] (3.5-3)

VS VF

where Pg + Pp = 1

The effect on maximum arrival rate of a STOL/CTOL mix for various values
of L is shown in Fig. 3,5-2. A separation requirement of 3 n.mi, was assumed,
along withapproach speeds of 60and 140 knotsrespectively, Evena small percentage
of STOL traffic in the arrival stream is seen to greatly reduce the arrival rate.
This is caused mainly by the low STOL-=-only arrival rate, but it is seen that a
further degradation occurs as the length of the final common path is increased,
This is an example of the so-called "funnel effect" which was first investigated

systematically by Blum stein.'7

Let usnow turn to the effect of ATC system performance on minimum landing
intervals.8 Figure 3,5-3 shows a situation in which aircraft fly the same final-
approach speed V. The task of the ATC system in this example is to deliver the
aircraft to the approach gate as closely spaced as possible without violating the
minimum separation requirement very often, say less than 0,1% of the time. In
order to accomplish this task when the ATC system is unable to deliver aircraft to
the gate at precisely the times required, it is necessary to increase the mean
separation above the minimum as shown in the figure, To keep the illustration
simple, assume that the probability density function of the time separation t of the

two aircraft when the second reaches the gate is given by

L D20
pt) = —L o (3.5-4)
2n o
where t is themean time separationand o is the standard deviation. The probability

of a spacing violation is given by the following integral which must be set equal to
0.001:
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AT L
. S S e dt = 0.001 (3.5-5)
Jer o

-

From the standard tables for the values of the integral, one finds
(t-S/V)/o = 3.09 (3.5-6)
Therefore, the mean separation is given by
t = 3.090 +S/V (3.5-17)

The maximum arrival rate implied by this mean separation for STOL approach
speeds (V=60 knots) is shown in Fig. 3,5-4 as a function of ATC system delivery
accuracy o and the separation requirement S,

It should be noted in passing that ATC delivery accuracy would be a function
of STOL navigation capabilities if 4-D RNAV equipment and approach procedures
were developed and in use,

The above analysis has assumed that a traffic controller or an automated
ATC system would increase the mean separation to account for errors in delivery
of theaircraft to theapproach gate. A more completeanalysis would have to account
for these errors in greater detail and consider in addition the effect of winds and
variations in final-approach speed on the probability of separation violation. Some

work along these lines has already been done,

We turn now to a discussion of queueing theory as applied to runway capacity
determinations,

3.5.1.2 Queueing Considerations

A runway can be regarded as a service facility, It can be used by only one
aircraft at a time (arrival or departure), and other aircraft seeking to use it must
be delayed until it is free. When the runway occupancy time for arrivals is very
small, then separation requirements in the approach airspace limit the minimum
landing intervals, as we have observed. In this case, arriving aircraft must queue
for use of the approach airspace as well as the runway, and the approach airspace
can also be regarded as a service facility, Queueing theory can be used to derive
information about the number of aircraft in the queue and the delays which they
experience,
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In the usual queueing situation, assumptions are made concerning the statistics
of the input process and the service process and then the queue statistics are
calculated, L.et us assume for the sake of mathematical convenience that arrivals
into the terminal area are Poisson distributed; that is, that the probability thatn

aircrdft arrive in a time interval of length t is given by
pat) = e M) /n1 (3.5-8)

where disthemeanarrival rate (assumed constant), The probability density function
p; of the interarrival intervals 7 for sucha process can be shown to be the exponential

distribution

)\e_)‘T T
p.(t) = (3.5-9)
0 T < 0

v
o

Let us now characterize the airspace in the vicinity of the approach gate as a
service facility, After an aircraft passes through the gate, a period of time A
must elapse before the next aircraft can enter. Arriving aircraft pass through the
gateas soonas it becomes free in a first-come, first-served manner, If no aircraft
is readyto enter when the gatebecomes free, then the facility is said to be '"'unoccupied"
until the next arrival. In order to define the statistics of the service process
completely, it isnecessary to specify the probability density function for the service
times A,

If the service times are statistically independent, then it can be shown that
the mean value of the arrival delay W is the following function of the first two

moments of the service-time distribution:

2
E[W] = —AELAT] (3.5-10)
21 - AE[A])

This equation, which can be written in many forms, is known as the Pollaczek-
Khintchine formula,

Let us suppose that the aircraft approach with constant velocity V and that a
minimum separation S isrequired. The service timein this case is just the constant
value S/V, The mean arrival delay as calculated using the Pollaczek-Khintchine
formula is shown in Fig, 3.5-5 for an approach speed of 60 knots and various

separation requirements. As can be seen, the arrival delay is a rapidly increasing

182



function of thearrival rate. Furthermore, the hourly capacity at a reasonable level
of meandelay (2 min, for example) is much lessthan the rate which might be inferred
by taking the reciprocal of the minimum interarrival time,

The Pollaczek-Khintchine formula is one of the basic resultsused to determine

2,5 A semi-empirical procedure is used. The

the arrival capacity of an airport.
interarrival intervals (identified with the service times) for aircraft pairsof various
typesare measured under both visual and instrument weather conditions. The formula
is then used to find the arrival rate corresponding to a given level of delay (4 min
for air carrier airports) for a given weather situation and mixture of traffic. The
resulting arrival rates (one for visual and one for instrument weather conditions)
arereferred toas thevisual or instrument Practical Hourly Capacities for arrivals
at that airport. Measurements of actual delay to arrivals (time spent in holding
patterns) verify that this procedure gives reasonably accurate results, even though

certain of the assumptions might be difficult to justify on a theoretical basis.5

When a runwayisused for both arrivals and departures, the situation becomes
considerably more complicated, Departureaircraft form a second queue for runway
usage, and the characteristics of this queue must be examined. Present ATC
procedures give landing aircraft priority over departures, a practice which can
lead to long departure queues and delays., Long departure queues could not be
accommodated at a small STOLport, thus investigation of the arrival/departure

process becomes particularly pertinent.

Present runway arrival/departure capacity analyses proceed in a similar
fashion to that indicated above for arrival capacity.5 Inputs to the departure process
are assumed to be Poisson distributed. The interarrival intervals at the runway
threshold are assumed to be made up of a minimum interval B (representing the
time during which the landing aircraft is committed to land or is actually occupying
the runway) and an exponentially-distributed gap interval G. Arrivals are assumed
to have priority over departures, which means that the departures must be held

during B, but can be released if the interval G is large enough,

The equilibrium departure delay WD can be explicitly calculated for these
circumstances, although the formula is complex and will not be repeated here (see

Ref, 5). Functionally, it can be represented as

Wp = Wpl,,Ap, B, F, T) (3.5-11)

where the symbols have the following meanings:
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XA - arrival rate;
A, - departure rate;

B - themean runway occupancy time plus a small additional interval during

which the aircraft is committed to land;

F - meantimerequired for thereleaseof a departurein front of anoncoming
arrival;
T - mean time required between departures,

The departure capacity of the runway used for mixed operations is found using
a procedure similar to thatdescribed above for arrival capacity. Theonlydifferences
are that there are now three variables to be measured (B, F, and T), and that it is
necessary to specify the arrival/departure ratio (the ratio of the arrival rate to
the departure rate) which would normally be unity, It usually turns out that the
departure capacity of the runway is somewhat less than the arrival capacity
referenced to the same level of delay. Thismight be expected in view of the priority

given to arrivals,

To calculate the Practical Hourly Capacity of the runway used for mixed
operations, it is necessary to know both the arrival capacity and the departure
capacity, If thearrival/departure ratio is unity, then the Practical Hourly Capacity
is defined to be twice that of the lower capacity of the two streams of traffic, In
the normal case when the departure capacity is less than the arrival capacity, the

runway is said to be "departure-limited."

Once again, the departure delay calculated using theabove procedure has been

found to correspond well to measured data,

It is interesting to consider an example of departure delay calculated using
the formula of Ref, 5, Letusmake the following assumptions: thearrival/departure
ratio is unity, the interval B is essentially the runway occupancy time for STOL
(takentobe 15 sec), theinterval F is given by D/V where D isthedistance separation
required before a departure may be released in the face of an oncoming arrival, V
is the approach speed (taken to be 60 knots), and the interval T is 60 sec as per

current regulation, In summary:

=X
)‘A D
B =15 sec
F = D/(60 knots)
T =60 sec
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Figure 3.5-6 shows the resulting departure delay as a function of operations
rate for various valuesof D, Therequired arrival/departure separation is currently
2 n.mi,; using that value of D one finds that approximately 32 operations per hour
(steady state) will result in a mean departure delay of 2 min, Referring to Fig.
3.5-5, one finds that the mean arrival delay at an operations rate of 16 arrivals
per hour (half of the operations rate) for the current arrival separation standard of
3 n,mi, is greatlyin excess of 2 min, On this basis it would appear that for current
separation standards, landing priority rules, and STOIL.-like approach speeds and
runway occupancy times, the runway capacity is arrival-limited and would be

-

approximately 23 operations per hour for a mean arrival delay of 2 min,

In the normal airport situation, runway capacity is departure-limited as
mentioned above, In the STOL situation, the opposite result comes about because
the low STOL. approach speed combined with short STOL runway occupancy time
provide ample opportunities for the release of departures, This would notnecessarily
be the case should other combinations of separation standards S and D be adopted.
For example, if S is reduced to 1,5 n.mi, and D to 1 n.mi,, a situation results in
which the runway capacity is departure-limited (though not excessively so) with an

operations rate of 52 operations per hour at the 2-min departure-delay level.

Figures 3.5-5 and 3,5-6 can beused to explore thedependence of STOL runway
capacity on values of the separation standards S and D for the given values of B

and T. For other cases, the actual formulas for computing delay must be used,
3.5.1.3 Conclusions and Future Work

Inorder tominimize the cost and disruptive impact of STOL, operations within
the ATC system, it is desirable to limit specialized procedures and regulations fo
only those deemed most essential to the success of the venture, From the runway
capacity point of view, it would appear that special reduced separation regulations
are essential for STOL. The Practical Hourly Capacity under present standards
for mixed operations on the STOL runway at a mean arrival delay of 2 min is only
23 operations per hour (half arrivals and half departures), If the required
arrival/arrival separationis reduced from 3 n.mi,to 1.5 n.mi, and thearrival/depar-
ture separation from 2 n.mi, to 1 n,mi., then the Practical Hourly Capacity becomes

52 operations per hour,

In addition to being strongly affected by separation standards, the maximum
arrival rate at the runway depends on such factors as the mix of traffic, the length
of the final common path, and the ability of the ATC system to deliver aircraft to
the approach gateaccurately. A simple calculation showsthat evena small percentage
of STOL traffic in a CTOL, traffic stream dramatically reduces the arrival rate
(Fig, 3.5-2).
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Theabovediscussion has focused on peak-hour delaysasa meansof specifying
the level of service provided as a function of operations rate, A 2-min mean delay
level has arbitrarily been selected as a capacity reference., One of the important
areas for future work is to determine an acceptable level of delay for STOL. STOL
transportation systems are shown to be economically feasible or infeasible on the
basis of trip times and costs, both of which increase with increased terminal area
delays, Future economic studies should include the effects of congestionand terminal

area delays in the analysis.

The time-varying behavior of the delay process for STOL should be examined
along the lines suggested in Ref. 3.

The equilibrium delay formulas cited in this section are of limited usefulness
in certain respects and an effort should be made to improve them. The formulas
depend on a number of simplifying assumptions which might be questioned. Such
assumptions include the identification of interarrival times with arrival service
times, the assumption that service times are constant, that they are independent,
and so forth, The justification for the assumptions is that the formulas work.
Measured delays are in reasonable agreement with those predicted, The difficulty
arises when one wishes to apply these semi-empirical formulas to a new situation
(STOL operations) where measured data is not yet available. Some work is needed
to determine how well the formulas work in this new situation., Simulation data

would be most useful here,

In addition to reducing separation standards, it may be desirable to alter the
arrival-priority rule for the use of the runway. Equilibrium formulas for the
departure delay for other priority rules should be derived where necessary and
examined for the case of STOL operations, The practicality of using alternative
priority rules should also be examined, STOLport simulation results1 1 have indicated
substantial reductioninoverall delay through useof a priority rule which alternates

arrivals and departures when there are aircraft in both queues,

The application of capacity analysis to the case of STOL/CTOL operations on
separate runways at major jetports is an area of importance for future work, Some
general considerationsrelating to STOL operations at jetports are given in the next

section,

Finally, theneed for empirical dataon STOL runway service times and delays
should be emphasized, Real-time ATC simulations canbeused here, as can flight-test
data on runway occupancy times for arrivals and departures, pilot reaction times,
and the like,
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3.5.2 STOL Operations at Metropolitan Jetports

Although there are many reasons why one would want to implement an
independent STOL transportation system operating ina congestion-free fashion from
centrally~located STOLports, the need for or desirability of STOL operations at
metropolitan jetports is less clear. In fact, the CAB in its Northeast Corridor
VTOL Investigation (see Section 2.2) ruled out such operations for the purposes of
their study, This was done presumably to ensure that the intercity V/STOL system

would help alleviate congestion at major jetports and not contribute to it.

Nevertheless, it maynot be practical to completely rule out the use of jetports
by an intercity STOL service, STOLports will be expensive, so it makes sense to
use existing facilities wherever possible, Furthermore, the economics of air
transportation may dictate that STOL flights connect with existing CTOL flights
(both long-haul and short-haul) to satisfy theneeds of the travelling public, Finally,
there may be no other choice. It may not be possible to find a suitable site for a
STOLport because of competing land use or because of the general community
reaction against any airport development,

Furthermore, it may actually be desirable from an airport-capacity point of
view to have STOL operations at the jetport. The STOL vehicles may be able to
utilize runway facilities not usable by conventional aircraft due to noise-abatement
restrictions, runway-length limitations, or obstacle-clearance problems., The key
issueis whether safe, reliable STOL operations can be conducted without interfering
with CTOL operations,

This section will examine various methods for conducting STOL operations
at metropolitan jetports to see whether such operations can be implemented on a
noninterfering basis, Avionics and ground-system requirements are discussed

briefly, and some suggestions are made regarding the analysis of system capacity
and safety.

Let us first examine the various types of STOL services which might exist at
metropolitan jetports., Two possibilities must be considered: STOL operations
between a STOLport and a jetport and STOL operations between two jetports,

3.5.2,1 STOLport/Jetport Services

Referring to Fig, 3.5-7 we see that there are basically three types of
STOLport/Jetport services: intercity, feeder, and third level operations.
Consideringintercity STOL service first, STOL aircraft would operate between jetport
J1 located in city No. 1 and STOLport S2 located in city No, 2. This service would

provide fast, convenient transportation between the two cities by locating the STOLport
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closer to the demand center and by avoiding the air traffic congestion and the
consequent delays encountered at J2. STOL service would also relieve some of the
congestion at J2 by siphoning off part of the short-haul traffic between 1 and 2,
STOL characteristics would be required at one end of the line but might not be
needed at J1, A feeder service would be required from the STOLport to J2 to
connect the STOL network with the CTOL network, or simply to provide a downtown/
crosstown air service, This feeder service could be either STOL or VTOL, Third

level STOL serviceas depicted isalreadyin existence utilizing Twin Otter aircraft,
3.5.2.2 Jetport/Jetport Services

Two types of service can be identified for Jetport/Jetport operations as
illustrated in Fig, 3.5-8, The first isanair shuttle service between two neighboring
jetports, To make this operation feasible, direct routing between the two facilities
would be provided. Conventional aircraft would not be used because of the short

stage lengths involved,

The second type of operation is the supplementary intercity STOL service
between two more-distant jetports, one or both of which is operating near peak
capacity. Anyincreaseincapacity would require the construction of another jetport,
morerunways, or theuseof larger aircraft. None of these solutions may be feasible
for the area in question. An alternative solution would be to use STOL, aircraft
operating in parallel with the conventional aircraft, The airport may have adequate
ground space to permit simultaneous operations, but because of noise-abatement
restrictions, runway-length limitations, or obstacle-clearance problems, the avail?
able facilities cannot be used by conventional aircraft, Thus a STOL aircraft with
a smallernoise footprint, short landing distance, and steep approach capability may
be able to utilize these existing facilities, The airport may have actual or planned
STOL runways (Fig. 3.5-9 shows existing and planned STOL runways at Boston's
Logan International). To achieve the maximum benefit in this situation, the STOL
vehicles should have a large passenger-carrying ability, and the STOL runways
should be located so as to minimize STOL/CTOL conflicts.

3.5.2.3 STOL Operational Procedures at Jetports

Now that wehaveidentified some of thereasons for STOL operations at jetports,
let us look at some possible operational procedures. Three broad categories of
STOL/CTOprrocedures will be discussed. These are STOL/CTOL operations on
the same runway, onintersecting runways, and on parallel runways. The possibilities

for noninterfering or capacity-enhancing operations will be explored.
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Case

Case

1: STOL/CTOL Operations on the Same Runway

Thereare several possibilities here. For example, STOL aircraft might
land along with CTOL aircraft at CTOL speeds, This is sometimes done in
the case of Twin Otter operations at jetports today. STOL characteristics
would not be necessary at the jetport, but might be needed at the other end of
the line, In this case the addition of STOL operations would not impose any
unusual burden on the ATC system, but it would certainly not do anything to

alleviate congestion,

Therearealso various ways of conducting single-runway landing opera-
tions in which the STOL vehicles would use a STOL landing configuration,
STOL and CTOL arrivals might share a common final-approach path (with
increased separation to allow for the disparity in approach speeds); the
transition to STOL speeds could be delayed as long as possible; or the STOL
vehicles could be sequenced into the CTOL arrival pattern near the runway
threshold, Such procedures would probably haveadeleterious effect on runway
capacity as indicated in Section 3,5.1, and would be less desirable for that
reason, Delayed transitions and close-in maneuvering would also add to pilot

and controller workload,

Thus, it does not appear that conducting STOL and CTOL operations on
the same runway is advantageous from an airport capacity point of view; in
fact, it may be markedly disadvantageous given present separation require-

ments,

2: STOL/CTOL Operations on Parallel Runways

The separation between the parallel runways determines whether simul-
taneous (completely independent) landing operations are permitted under VFR
orIFR conditions,* Under VFR conditionsthe FAA will permit such operations
if the separation between runways is at least 700 feet. Under IFR conditions
and with radar surveillance, simultaneous ILS approaches to parallel runways
are permitted if the runways are at least 5,000 feet apart, The Air Traffic
Control Advisory Committee has suggested that the runway separation require-
ment might safely be reduced to 2,500 feet in the course of upgrading the
Third Generation System. The microwave landing system (MLS) currently

under development would be a key factor in such a decision,

Because STOL runways have relatively modest land requirements, it
might be possible to locate several STOL strips around the perimeter of the

airport which would provide the required separation from any CTOL runway

*
Paragraphs 523, 1362, and 1363, Terminal Air Traffic Control.
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Figure 3.5-11 Runway Chart for Simultaneous Landings on Intersecting
Runways at Logan International Airport (Not to Scale)
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Case

in use. One example of STOL runway placement to allow simultaneous ILS
approaches is illustrated in Fig, 3.5-10 for Logan Airport (runway 9/27 does
not currently havean ILS), Unfortunately, the remote runway locations shown
in Fig, 3.5-10 would lead to increased taxiing time for the STOL vehicles and
might cause runway/taxiway conflicts, These ground delays might be accep-
table if the STOL vehicles could avoid the large inflight delays (*30 min)

sometimes encountered by CTOL operations at the busiest airports.

3: STOL/CTOL Operations on Intersecting Runways

Simultaneouslandings under VFR conditions are permitted on intersecting
runways provided that the smaller or lesser performance aircraft using the
secondary runway are capable of stopping before reaching the in‘cersection,’°<
Using Boston's Logan International as an example, simultaneous landings are
authorized for runway combinations 22L./27 and 15R/9 (see Fig. 3.5-11), The
use of intersecting-runway 9/27 is restricted to aircraft of 12,500 pounds or
less maximum landing weight, and DC-3 type aircraft, No restrictions apply

to aircraft landing on the other runway,

Simultaneous operations of the type described are not currently permitted
under IFR conditions, Missed approaches are potentially dangerous in this
case and it may be that visual monitoring of the situation from the tower is
essential to ensure safety, Simultaneous missed approaches might require
sudden evasion maneuvers, Such operations are also prohibited when braking

action on the runways is less than good,

Although simultaneous operations on intersecting runways are not per-
mitted under IFR conditions, time-synchronized operations are.:“* In this case,
the controller must synchronize operations such that the first arrival has
either left the runway, stopped short of the intersection, or passed through
the intersection before the arrival on the intersecting runway has crossed
the landing threshold. The synchronization thus eliminates the possibility of

a conflict at the intersection.

This type of approach procedure is of limited usefulness at the present

time for the following reasons:

1. It is difficult for the controller to implement such synchronization
procedures efficiently without additional aids., The computer-aided
metering and spacing system based on ARTS III hardware (see Section

2.3) should be able to provide this assistance in the future,

&
Paragraph 561b, Terminal Air Traffic Control.6

Rk
Paragraph 516a, Terminal Air Traffic Control.6
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2. The pilots of conventional aircraft are reluctant to land on crosswind
runways under IFR conditions, particularly since these runways tend to
be shorter and non-instrumented, STOL vehicles would be better suited

for this type of operation,

3. The 3-n.mi, radar separation currently required between arrivals on
separate runways acts to limit the possible airport capacity increase
such operations might provide. In most instances, in-trail separation
would have to be increased in both arrival streams in order to provide
the required inter-stream separation. If both runways were ILS- or
ML:S-equipped and radar monitoring were available, then perhaps the
3-n.mi, separation rule could be waived for synchronized approaches
tointersecting runways as it is for simulianeous approaches to parallel

runways.

This latter type of operation (with the inter-runway 3-n,mi, separation
rule waived) is particularly attractive for the STOL/CTOL case, Given
sufficient crosswind capability, the STOL vehicle could land on intersecting
runways or taxiways that could not otherwise be used; the operations could
be conducted VFR or IFR in a substantially noninterfering fashion; finally,
since the operationis synchronized, the STOL vehicle might beable to expedite
the taxiing process by leaving the runway either before or after the intersection
depending on the location of the terminal building,

To summarize the above cases, noninterfering, capacity-enhancing STOL/
CTOL operations at jetports should be possible if the STOL and CTOL vehicles use
separate runways, Under IFR conditions, the two possibilities for noninterfering
landing operations would appear to be (1) simultaneous ILS (or MLS) approaches to
parallel runways, and (2) synchronized operations on intersecting runways, In the
first instance, parallel STOL runways having sufficient separation from the CTOL,
runways would be needed. In the second instance, additional aids to the controller
(such as the ARTS III metering and spacing system) would benecessary to increase
efficiency and reduce controller workload, and the 3-n.,mi, separation rule would
haveto beamended, Inexamining thetradeoffs between these two typesof operations,
particular attention must be paid totaxiing delays caused by remote runway locations

and taxiway/runway interference,

Confirmation of the above conclusions in Cases 1 and 2 is provided by the
results of an FAA study of VTOL and STOL operations in the terminal area which
used the simulation facility of the National Aviation Facilities Experimental Center
(NAFEC).12 Several approach conditions and separation criteria were investigated
using the Los Angeles terminal area as a simulation test bed, It was found that the
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V/STOL vehicles could be accomodated using current operating procedures, but
that ""computer assistance in scheduling aircraft into the terminal area and estab-
lishing proper spacing of the V/STOL aircraft on final approach would have resulted

in a more efficient operation.,"

Only Cases 1 and 2 of the above classification were studied in the NAFEC
simulation inasmuch as synchronization aids are still in the development stage and
werenot available, Theresults wereas might be expected, With respect to V/STOL
and CTOL landings on the same runway it was found that "when V/STOL aircraft
operated at speeds comparable to those of conventional aircraft..., smooth and
efficient traffic flows resulted." However, "'when V/STOL aircraft operated at
final-approach speeds common to type, and were mixed with conventional aircraft
in the same final-approach airspace, delay was encountered by conventional aircraft
and an inefficient use of airspace resulted,’ When the V/STOL and CTOL aircraft
operated on separate and independent parallel runways, an orderly flow of traffic

resulted orice again,
3.5.2.4 Implementation Requirements

Let us now examine some possible system requirements for implementing
these procedures, Two principal objectives should be pursued: (1) independent
parallel-runway operations, especially with reduced runway separation, and (2)
synchronized operations on intersecting runways., Although these are not strictly
STOL./CTOL procedures, the high maneuverability of the STOL vehicle should be

taken into account in setting safety standards,

With respect to the first objective, it would appear that there is a need for a
more accurate and versatile instrument landing system to reduce the dispersion of
aircraft on final approach. It is anticipated that the microwave landing system now
under development would serve this purpose, Inaddition, theaircraft must be equipped
with a control system which will enable it to acquire the runway centerline or fly

curved approaches accurately and safely.

With respect to the second objective, specialized displays may be required to
assist controllers in maintaining the phasing between CTOL and STOL operations,
Special software modifications to ARTS III metering and spacing controi algorithms
may be appropriate when one of the runways is dedicated to STOL operations, For
example, thelargedifference between final-approach speed and cruise speed available
with a STOL vehicle should make the timing of the transition to STOL configuration
an effective synchronization tool. In general, one would expect that feeder fixes
for STOL arrivals could be located closer to the runway than for CTOL arrivals

and that airspace could be conserved by making sequencing areas smaller,
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Synchronization of operations might be useful for the reduced-separation
parallel-runway caseas well, in order to avoid arrival/departure (or wake turbulence)
interference, As an example, assume that the conventional aircraft lands first and
that the STOL vehicle lands 40 sec later on the STOL strip shown in Fig. 3.5-12,
As soon as the STOL vehicle has safely touched down, the CTOL arrival will have
completed its rollout and will be exiting the runway, at which point a departure can
be released on the CTOL runway, and so forth,

The simultaneous or synchronized operations proposed here would require
continuous monitoring of the aircraft all the way to touchdown, Any violation of the
assigned airspace would necessitate the execution of a missed approach on the part
of the STOL aircraft, regardless of which aircraft wasresponsible for the violation,
The STOL vehicle, being more maneuverable, must accept the burden of missed
approaches, blunders, and other emergencies encountered in this operation. To
achieve the accuracy and speed required in monitoring this operation, a special
short-range surveillance radar with fast sweep may be required. This might be
coupled with automatic collision avoidance commands generated by advanced ARTS III

or IPC systems to provide the fast reaction time required in this situation,

It should be emphasized that the IFR multiple-runway procedures and equip-
ments suggested here should not be construed as necessary conditions for the
introduction of STOL at metropolitan jetports, Low-density STOL operations can
and do use single-runway procedures with minimal impact upon airport operations.
Similarly, a VFR-only type of STOL service should be easy to implement in most
cases, -

3.5.2.5 Recommendations for Further Study

If STOL aircraft are to operate from congested airports, they must operate
compatibly with conventional aircraft, The key issue in such mixed operations is
capacity versus safety, If capacity is to be increased with the introduction of STOL,
then the consequent increase in congestion must be offset by an increase in safety.
This applies not only to landing aircraft but to departures and to aircraft in the
terminal and en route phases of flight as well, Simultaneous or synchronized
operations should be possible, but a detailed analysis is needed to define the
requirements for these types of mixed operations. A safety analysis is needed to
determine separation criteria for CTOL and STOL aircraft, If STOL/CTOL runway
separationis to be reduced fhen one must examine possible improvements in ground
surveillance, monitoring, and navigation systems, as well asimprovements inaircraft
instrumentation. Some improvements will be needed in the ATC system and
compatible abort procedures must be defined in order to cope with system failures
and blunders on the part of man and machine,
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The first step in suchan analysisis todefine an efficient system which, assuming
everything works properly, will meet the system objectives with a high degree of
reliability, The efficiency of the system can be predicted from a system error
analysis (assuming Gaussian error distributions, for exarnple).13 One could
distinguish between operationsunder instrument or visual conditions, but for service

reliability the system should be designed for CAT II capability.

Although a system error analysis can be used to predict system efficiency,
determining system safety is another matter, System safety is strongly influenced
by the "tails" of the error distributions and cannot be predicted from a Gaussian
error analysis.13 The tailsare shaped by the failures, blunders, and unlikely events
which canaffectthe system, If the failuresand blunders canbedetected and corrected,
they need not pose a problem, It is the undetected (and hence uncorrected) system
failures, both ground and airborne, man and machine, which ultimately determine
the safety of any operation. For this reason the system should be designed to detect
and cope with as many malfunctions as possible, A surveillance and monitoring
system operating independently from the primary guidance, navigation, and control
systems must be provided to detect blunders with adequate lead time to cope with
potentially dangerous situations. Moreover, the procedures to deal with these
situations must themselves be safe and effective and executed in timely fashion. A
safety analysis should identify the most likely modes of failure and define equipment,
rules, and procedures to deal with them, In general a precise calculation of system
safety is not possible; consequently, the analysis should be based not only on
mathematical reasoning but on sound engineering judgement as well, Furthermore,
a general concensus among the operators, the regulatory agencies, and the system

designers must be reached before this type of service can be implemented,
3.5.3 STOLport and Suburban Airport Operations

In this final section, the geographic region of interest is expanded beyond the
immediate environs of the jetport to encompass theapproach and departure airspace
as well as possible non-jetport STOL terminals in the metropolitan area, An
examination of the proposed STOL terminal sites in Section 2.2 or Appendix Areveals
that the use of both downtown STOLport facilities and suburban general-aviation

airfields is contemplated,

Operational procedures for handling V/STOL aircraft ina congested terminal
area environment (Los Angeles) were investigated in the NAFEC simulation study
mentioned in the previous section.12 The results of this simulation study and of a
later FAA staff study on operations at downtown STOLpor‘ts14 are discussed briefly
in this section, A second FAA simulation study of STOL operations in the New
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York City area is currently in progress and should add much useful data on STOL

procedures,

It should be emphasized that the extent to which STOL operationsin the terminal
region are problematic depends on the traffic levels contemplated. When large
numbers of STOL operations must be accomodated (or when STOL operations are
conducted at heavily-used general-aviationairportsor jetports), efficient, noninter-

fering operating procedures become a major consideration,

Several problematic areas were identified in the NAFEC simulation. With

respect to the approach airspace, the most pertinent test results were these:

1. Establishing proper separationbetween the V/STOL: aircraft prior totransition
proved to be a high-workload task, V/STOL aircraft which decelerate to 60
knots or even less before landing must be spaced farther apart prior to
transitionthan CTOL aircraft for a given final-approach separation. A 15-mile
pre-transition spacing was used in the simulation. The task is made more
complicated if a range of final-approach speeds or deceleration capabilities
areinvolved, This problem must be solved if closer final-approach separation
is to be achieved. To quote one of the conclusions of the study: 'The use of
the reduced separation standard (2 n.mi.) between V/STOL aircraft on the
final-approach course proved of limited advantage because of the difficulty in

establishing the desired longitudinal separation at the point of conversion,"

2. Because of the workload involved in providing separation for the V/STOL
aircraft, an additional controller was required to handle arrivals to the City
Center Metroport (the V/STOL facility). '

3. Separate arrival routes for V/STOL aircraft were found desirable when the
V/STOL and CTOL aircraft landed on independent runways, but were of no
value when they landed on the same runway, Because of airspace limitations,
it was not possible to provide separate routings for V/STOL arrivals from
the NW,

With respect to departures, the high V/STOL climb rate gave controllers greater
flexibility and allowed them to expedite the flow of traffic,

In 1969, an FAA staff study was prepared entitled: ''"The Feasibility of
Establishing Downtown STOLports in New York City, Los Angeles, and Chicag‘o".14
The study concluded that downtown STOL.ports would be feasible from an air traffic
control point of view in each of the three cities, but suggested that a network of
suburban STOLports might better serve the transportation needs of the l.os Angeles
area, Since the study did not involve simulation of traffic control procedures, the

feasibility conclusion should be regarded as preliminary,
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Route structures were suggested that would allow independent STOL: operations
at a Manhattan STOLport, although the routes suggested have not been integrated
with the "metroplex" plan. Such integrated routes will almost certainly involve
crossing over and under CTOL traffic using the neighboring airports., The study
indicated that further analysis of the adequacy of radio and radar coverage at lower
altitudes along the Hudson River would be necessary, Three additional radar
controllers would be needed at the New York TRACON, and a crew of seven would
staff a mobile tower at the STOLport.

In the Los Angeles area, one of the suggested terminals for STOL operations
is Hawthorne Municipal Airport (HHR) located two miles SE of Los Angeles
International Airport (LAX). Runway 25 at HHR is proposed asa STOL ILS runway,
Simultaneous ILS approaches are conducted on runways 24 and 25L at LLAX; since
the runway thresholds of runway 25L at LAX and 25 at HHR are offset by
approximately three miles, it might be feasible to conduct triple simultaneous ILS
approachesto this set of runways, The study indicated thatthreeadditional controllers
atthe Los AngelesTRACON aswell asaradar consoleand communications equipment

would be needed to implement this type of operation,

With respect to the Chicago area, the study concluded that Meigs Field would
bea feasible STOL terminal froman ATC point of view, provided that aninstrument

approach procedure (hopefully an MLS) is made available,

Both the NAFEC simulation results and the FAA staff study discussed above
indicate that for a STOL system to be viable and relieve congestion, STOL and
CTOL operations in the terminal area must be relatively noninterfering, The new
"keep 'em high' policy being implemented at major hubs (see Section 2,3) may be
helpful in this regard, at least under IFR conditions., By keeping below the CTOL
traffic, STOL aircraft would be able to operate out of small airports in the vicinity
of a large jetport (such as Norwood, Hanscom Field, South Weymouth, and Beverly

in the Logan International Terminal Area at Boston).

Under VFR conditions, compatibility with general aviation will have to be a
major consideration, STOL aircraft will have to share urban airspace and airfields
with the general-aviation fleet, Although general aviation would probably bedirected
around restricted areas and flight paths by means of intermittent positive control,
airborne collision avoidance hardware may be desirable to ensure the safety of
commerical STOL operations, The form of the collision avoidance system is as
yetundetermined. A promising development that may combine the collision avoidance
and navigation functions is the Traffic Situation Display (TSD) currently under
developmentat M,I,T,bya consortium of three laboratories: the Electronic Systems
Laboratory, the Flight Transportation Laboratory,and the Man-Vehicle Laboratory.
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By displaying in the cockpit a portion of the information that is provided to the
ground controller by ARTS, the TSD will enable the pilot to monitor his proximity

to neighboring traffic more effectively.

In conclusion, the cited studies indicate that STOL operations at separate
STOLports and suburban airports within major terminal areas can be accomodated
using existing procedures for the most part, One or more satellite positions at the
TRACON may be necessary as well as tower controllers for special STOLport
facilities, Avionics and ground-system improvements should concentrate on the

following problem areas:
. Assistance to the controller in establishing pre-transition separation,

2, Methods for standardizing STOL deceleration profiles during transition.

3. Methods for reducing the airspace required for controlling STOL/STOL

separation on final approach,

4, Ways toimprove the adequacy of navigation aid and radar coverage at certain

problematic STOLport sites,
5. Methods for enhancing the safety of STOL operations at suburban airports.
6. Collision avoidance assistance for STOL pilots operating amidst general-avia-

tion traffic in the terminal area,

It is recommended that limited-scale demonstration projects be undertaken
using actual STOL vehicles to assist in identifying operational problems and in

establishing detailed operating procedures.
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APPENDIX A

STOLPORT SITE SELECTION

A,1 INTRODUCTION

A need exists for an alternative or supplementary short-haul transportation
system in the Northeast Corridor. This consensus has been the net conclusion of a
vast number of studies concerned with the transportation problem in the complex
of cities along the U.S. Atlantic seaboard between Maine and Virginia, The most
awesome study, at least in terms of dollars (about $12 million), was the Northeast
Corridor Transportation Project, which was completed in 1970, It focused on the
expected transportation needs of the BOSWASH megalopolisafter 1975, and identified
various systems, or combinations of systems, which would satisfy those needs (see
Exhibit 1),

The study indicated that STOL aircraft were available without need for much
technical innovation. Indeed, both Eastern Airlines (inthe fall of 1968) and American
Airlines (in the spring of 1969) undertook STOL demonstration/evaluation ﬂights'
with the McDonnell-Douglas 188 (Breguet 941), an aircraft assumed to have the
characteristics and payload potential of an airline transport., Both programs

concluded that STOL was feasible, and would accomplish the objectives of:

1., reducing congestion and excessive burdens on air traffic and airport
systems;

2. utilizing unused airspace and airport areas;

3. providing better service to the traveling public at reduced cost to the
airlines.1

Proponents of an improved highway network could argue that better interstate
routes would also accomplish the above objectives, Indeed, the reason most often
advanced for the slow growth of air taxis and commuter airlines has been the
excellence of highways to serve the traveling public and the consequent growth of

the car rental business, However, there is no denying the need for some relief of
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air congestion and some method of shortening access time to the terminal, if air is
the preferred mode of travel. For Northeast Corridor traffic it has been estimated
that from 50% to 70% of total travel time is spent accessing and egressing from the

system, The STOL system has the potential of reducing this access time.

The complete STOL system can be defined as consisting of the STOL vehicle
and the onboard avionics, properly located STOLports, an air traffic control system
to expeditiously and safely handle the vehicles and any interfaces they would have
with CTOL, any required new ground transportation links, and finally, a set of
regulations and procedures that would allow STOL to operate in the megalopolitan

environment without massive community protest,

Of the elements comprising the system, STOLports appear to require the
largest initial economic commitment, if built new and located near the city center.

Ideally they should meet a wide variety of local travel patterns:

1, Primaryaccess to large commercial centers from other centers within

a radius of 500 miles.

2. Primary connecting traffic at major hubs for transcontinental and

international flights from communities within a radius of 500 miles,

3. Second-level interconnecting and suburban traffic to and from commu-

nities within 500 miles,

4, Traffic between small-city pairs and to hubs and larger cities.2

However, there is a problem, which has been felicitously described by the
CAB:

""Civil authorities are reluctant to commit high-priced land
areas and expensive construction costs for a transportation
system that does not exist and for which the outcome is in
doubt. Airlines will not order aircraft for which suitable
areasand facilities for operation are not available, Without
firm orders, aircraft and engine manufacturers are hesitant
to allocate money and time to large-scale development of
vehicles for which there may not be a market,

Thus, it appears that development of STOL and VTOL ports,
and the entire new concept of air transportationare dependent
on political and economic considerations rather than tech-
nology,"3

The major political consideration is STOLport location, The field of operations
management hasdeveloped manytechniquesto select an optimum site, given sources,
destinations, and expected demand; yet one of the variables that can make all the

other ones irrelevant is ""community acceptance,"
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PRECEDING PAGESBLANK NOT FILMED
A2 EVOLUTION OF SITE SELECTION

The STOL concept is not new; it is new only in the sense that it is now being
viewed as a whole transportation system, As a matter of fact, all aircraft built
before World War II can technically qualify as STOL aircraft, A DC-3 can take off
with a moderate load on less than 1,000 feet of runway.4 In the late 1940's STOL
aircraft were viewed quite favorably by the populace over which they flew, as were
the first STOLports.

"...ten strips were actually installed in the metropolitan
Bostonareaand used experimentally for a year withanumber
of light aircraft that were progressively quieted until no
further neighborhood objections were raised, No undue
aircraft weight, cost or performance penalties were encoun-
tered. The results were so eminently successful that the
Massachusetts legislature passed a special bill making the
public park properties that had been used for the tests
permanently available for continuation of such air services,
assuming, of course, that aircraft manufacturers would soon
supply STOL aircraft with quieted propulsionalong the lines
the test program had alreadydemonstrated to be feasible,"?

Presumably the General Court of Massachusettsdid not envision the STOLport
described by de Havilland in 1969:

""'Separation standards appropriate to STOL aircraft would
permit typical hourly capacities for a single runway of 50
operations per hour or 150,000 operations per year., Using
a 48-seataircraft (DHC-7) withan 0.6 load factor, 4.3 xénillion
people would pass through the STOL port in a year,"

Somewhat more appropriate STOLstrips have been developed since the late
1940's, but they have one thing in common with the public parks of Massachusetts:
they haveonly beenused for demonstrations, These strips have been built at various
Northeast Corridor airports (LaGuardia, Washington National, Logan International),
and were used by Eastern Airlines in their STOL demonstration program in 1969,
These stripshave beenlocated onairportareas where, (1) land wasnot being utilized,
and (2) they would cause a minimal amount of interference with CTOL traffic. No

particular attention was paid to passenger convenience,

At the same time the STOLstrips were being installed, various studies of
STOL and V/STOL systems were under way, The studies considered below are by
no means all-inclusive, but they do present the type of criteria that have governed

STOLport location, They are, chronologically:

1, M,IL.T, Flight Transportation Laboratory Systems Study (MIT/FTL Report
TR 65-1, 1965);
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2. McDonnell V/STOL Study (FAA-ADS-74, Volumes I-III, 1966);
3. De Haviliand STOL Study (CAB Exhibits deH=-13 to deH-18, 1969);
4, MITRE V/STOL Study (MTR-1653, 1971);

5. M.I.T. Thesis (Swan, 1971),

The MIT/FTL study addressed itself tothe 1980 time period, and, specifically,

to the Northeast Corridor. The terminal location rationale is presented as follows:

"For the initial study fifty terminal sites were chosen. An
attempt was made to locate these sites at existing airports
very near the downtown portion of the smaller cities and at
airports plusactual downtown locationsat the larger metro-
politanareas, This wasdone sothat existingairport facilities
could beutilized; connecting links could be made with flights
outside the corridor; noise in heavily populated areas could
be kept to a minimum; and the terminal costs could be kept
as low as possible,

"The Department of Commerce suggested 26 metropolitan
areas to be served, Thesewere takenand other cities added
on the basis of population size and density.,"

The study recognized that downtown (Central Business District - CBD)

locations might generate special problems and expanded:

"As the siting problems will depend on local political fac-
tors, it is impossible to select appropriate downtown sites
at the present time, ' In general, it will not be possible, nor
desirable to select the highest value land in the city center,
Instead, waterfront sites, railroad yards, elevated structures
over freeways and cloverleafs, etc., will probably be used,
and such sites seem to bereadilyavailableinall these cities.
The cost of land acquisition of such sites is still quite high,
and seems quite variable from city tocity, Noise considera-
tions, obstacle-free approach paths, over-water approach
paths, zoning regulations, connection to other transportation
facilities, etc,, will all be factors in determining exact
locations for V/STOL terminals,'8

The McDonnell study addressed itself to roughly the same time period, and
considered the entire United States, The study assumes that downtown (CBD)
locations must be made available at all major cities for V/STOLports, Theargument
is made that V/STOLports near the CBD are (almost) mandatory for the city to

survive as a viable social and economic unit,

"Siting must certainly be adjacent to the central business
district to realize full traffic potential and for the central
business district to benefit, yet land costs are high, it is
difficult toassemble land parcelsinto large packages without
urban renewal assistance, and of course, noise levels become
problematic the closer such terminal isto the core, However,
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in many large cities there is frequently a sector in which
land value gradients drop sharply a short distance from the
core, Thisis frequently the beginning of the "grey belt"
and in many cities is adjacent to a waterfront. The opportunity
of combining a STOL/VTOL terminal with urban waterfront
renewal should not be overlooked...

Aside from urban waterfront renewal, other grey areas
adjacent to the central business district core or frame
similarly represent unutilized potentials, The value of
considering a STOL/VTOL port for such locations is that
the terminal's productivity would beincreased; the underuti-
lized resource of air traveler time and the underutilized
resource represented by grey area land would both be put
to work...

A central STOL/VTOL port could bring anewdynamic image
to the central city and become a key element in a coherent
and rational transportation system, Operated as a system
with the present airport used for long-haul flights, the
STOL/VTOL port could become a transportation terminal
or the center for communications-based industry, in contact
with all parts of the central business district by minibus
and closed channel TV, The STOL/VTOL terminal could
thus become a form-creating force...

In the long-run the central city's role will probably increase
inimportance asa result of market forces, as the U.S, moves
further into a service-oriented, post-industrial economy.
Transporting goods involves shipping costs plus pipeline
inventory costs, but moving people involves the value of time
lost in transport.

It seems probable that in the transition of our urban regions
to some new, more complex structure, the central cities
might add a note of assurance to its future role by taking
advantage of thisnew STOL/VTOL technology. Aninvestment
decision of this type would perhaps add confidence that a
structural form was beginning to emerge, with the central
city reasserting its unique values.'

The de Havilland study of terminal locations assumes that:

""The object of a STOL transportation system is to provide
frequent service from terminals conveniently located with
respect to the traffic generating areas. Therefore, the
distribution of local origins and destinations of travelers
indicates the preferred locations for STOLpor“cs.”10

As to the special problems of the CBD, the de Havilland study observes:

"Generally speaking, the central business district is the
highest traffic generating area, and thus a STOLport should
be located as close as possible to it, From the preliminary
information responses, it would appear that appropriate sites
arereadily available, evenin the built-up areas of the larger
cities, Most of the sites presented in this Exhibit are over
railway depots or on bodies of water.
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To provide easyaccess to more of the major traffic genera-
ting areas in larger cities, more than one STOLport site is
required, In many cases, existing airports may be used.
Caremust be exercised however, lest in the tempting desire
to minimize the initial costs and problems of setting up the
system, a site is chosen that is less accessible and hence
less attractive to the passenger. In Exhibit deH-1, pages
63 and subsequent, it is shown that STOLport costs are a
small fraction of the total system costs, and hence it is a
good investment to provide sites that are most attractive to
the traveller,

This same logic isthe reason that downtown STOLports have
been proposed for Washington and Boston, even though the
major airportsare not too far distant, The traffic available
in the downtown area more than justifies a convenient site,
Congglsition atthese conventional airportsisalsoa considera-
tion,

The results of the de Havilland study on terminal location are presented in

Exhibit 2, These sites are proposed for the time period of 1978,

The more recent MITRE study recognizes that:

"The attractiveness of short or vertical takeoff comes
primarily from the increased probability of being able to
find a suitable site with good access. The key factor is the
flexibility of relatively small, community-acceptable STOL-
ports or VTOLports,"12

The study proceeds to estimate demand and then develops site locations.

The results are presented in Exhibit 3,

"The STOLport sitesused are the result of consultation with
the FAA for general locationand have been given whatappear
to bereasonable map locations for the purpose of estimating
access timeand cost. The sites were not evaluated in detail
and should not be construed as specific recommendations
for airé)ort locations but only as representative possibili-
ties,''1

Only after the site selection, for the purposes of the study, has taken place,
does the caveat appear:

"Thelocation of terminalsis partlyalocal political decision,
Air terminals have encountered increasing community resis=
tance due to environmental pollution, Terminals located
close to densely populated areasare likely tomeet the most
community resistance, The more terminals proposed, the
higher the probability that one or more will meet insur-
mountable community resistance. Thus, strategies for
reducing access time must consider the possibility of commu-
nity resistance.,"
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"Lowering access times by relocating terminals closer to
population centersor by increasing the number of terminals
is the most effective means of increasing demand. However,
the serious problem of community acceptance must be kept
in mind in any decision affecting terminal location,"

The yet more recent ML T, Thesis16 is noteworthy, as it is the first study
that does not postulate a downtown Manhattan STOLport, nor one in the CBD of
Boston, One can conclude that greater awareness of community acceptance problems,
combined with staunch opposition in New York to an actual STOLport, has had an
effect, The sites are listed in Exhibit 4,

Additional criteria that must be considered when a STOLport site approaches

reality are:

1. Both VFR and IFR traffic procedures,

2. Relationship to other airports and airspace utilization, current and
proposed,
3. Aircraft operational performance,.

4, Compatibility of the STOLport with surrounding land uses, particularly

with respect to noise,

5., Effect of existing and proposed obstacles on aircraft operations,

6. Operational usability of the site related to climatological conditions
including crosswinds, temperatures, precipitation, ceiling, and visi-
bility.17

The above criteria relate to problems in airspace utilization, i.e., air traffic

control (ATC) problems, These can be summarized as follows:

(a) "A potentially dramatic increasein the number and density of terminals
in a metropolitan area,

(b) Substantially more complex airspace in high density terminal areas.

(c) Materially higher load, especially in terms of numbers of takeoffs and
landings within high density metropolitan areas.

(d) Substantially increased number of routes especially within high density
metropolitan terminal areas,

(e) Materially increased numbers of general aviation aircraft and a mixing
of commercial aircraft with general aviation in traditionally general
aviation airspace,.

(f) The requirement for V/STOL operation under adverse weather conditions,

(g) The requirement for noise control in densely populated areas.”18
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From the STOL flight demonstrations of Eastern and American Airlines, the
conclusion was drawn that largely unused airspace could be utilized when the STOL
aircraft were equipped with special navigation systems, However, it is by no means

clear what effect STOL fleets would have upon the current or future ATC systems.
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A.3 OBSERVATIONS AND CONCLUSIONS

"No area of new technology has beenaccompanied by so much
promise and so little fulfillment as V/STOL civil aviation,
Witnesses, government and industry alike, have paraded
before Congressional committees for a decade promising
that many of the nation's short-haul transportation problems
are near being solved, or are solvable, by this V/STOL
aviation, But as we enter the 1970's we find distressingly
little fulfillment of these promises. What are the reasons
for the difficulties and delay?"

So writes Raymond Bisplinghoff, Deputy Director of the National Science
Foundation in a guest editorial in the December, 1970, issue of Astronautics and

Aeronautics, His conclusions are that:

"Like so many similar experiences in the past decade, we
have discovered again that the existence of a new technology
is not both a necessary and sufficient condition for putting
it to work. But it can be argued in this case that there is
alsoa genuine social need. Afterall, the rapid deterioration
of short-haul transportation in urban areas of the East can
be perceived by anyone who uses it, Even the coincidence
of a new technology and an accompanying social need,
however, hasnot proved enough, Difficulties and delay seem
to be due to planning and execution—the skills normally
attributed to the entrepreneurs rather than to the scientist
and engineer,"

Thereare other answers, From the private sector a spokesmanat a presentation
to NASA/DOT/USAF in December, 1970, described the industry's point of view:

"There presently is a very real need for a short-haul air
transportation system, but because of several factors, there
is no market, and it is markets which the private sector
traditionally has responded to, Air vehicles like the 747
were developed by the aerospace industry to operate within
an existing system of ATC, airports, ground access, and so
on....There is no short-haul STOL system. There are no
STOL.ports. Thereare no regulations specifically for STOL
operation, Thereare no noise standards for STOL aircraft,
There is no ATC system to handle the vehicle's different
characteristics. There is no coordinated plan for ground
transportation linksto interface withvery high volume traffic
into runways near centers of demand, Thereis noone Federal
agency with responsibility. In other words, we must come
to grips with complex issues of intermodality, land acquisi-
tion, rule-making, community acceptance—things which the
private sector has never integrated successfully. In short,
this new system would make Federal involvement necessary."

Almost all answers to the question of why there is not a STOL system now
suggest that a systematicapproach to the problemisnecessary, Suggested solutions

include the establishment of a quasi-public corporation, putting all of the federal
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STOL activities (NASA, DOT, CAB, USAF) under one roof, and/or proclaiming the

new short-haul air-system to be a national goal, somewhat akin to Apollo,

Yet thereareindications that the establishment of a STOL system in the United
States will not be easy, even if the above solutions are adopted, First, there exists
general doubt that systems analysisisanappropriate tool to beused ontransportation

problems:

"System analysis, which attempts to plan based on determi-
nistic behavior models, violates the credibility of the non-
defense customer. The goals and needs of social systems
are complex, conflicting, and indefinable., They are, after
all, collections of emotionsand wedo not know how to quantify
or compare emotions, And we do not understand the mech-
anism of individual or crowd behavior—as economic fore-
casters will reluctantly testify, In sum, we don't understand
the ""black boxes' whichthe system engineer soblithely thinks
he can either describe or program for definition by someone
else...

To model just the demand of transportation in California,
for instance, one must collect the significant economic data
of not only the state but also of most of thenationand develop
as well some coefficients to reflect international trade, In
practiceoneis forced to rough approximations which trans-
form determinism to generalization, And with Bhat goes the
credibility of the study to the social planner,'!

Then there is opposition to technology and transportation as a child of
technology. Some arguments are reasoned, some not, Senator William Proxmire
(D-Wis,) hasalreadyannounced his intention to oppose STOL development, "Congress
must not again become involved with some vague, open-ended, potentially very costly
joint undertaking with the aircraft industry."

From the social scientist camp come demands that a transportation system

provide amenity., To wit, Lewis Mumford writing in the New York Times (March
15, 1971):

"What is the function of transportation? What place does
locomotion occupy in the whole spectrum of human needs?
Perhaps the first step in developing anadequate transporta-
tion policywould be to clear our minds of technocratic cant,
Those who believe that transportation is the chief end of
life should be put in orbit at a safe lunar distance from the
earth, The prime purpose of passenger transportation is
not to increase the amount of physical movement but to
increase the possibilities for human association, cooperation,
personal intercourse, and choice, A balanced transportation
system, accordingly, calls for a balance of resources and
facilities and opportunities in every other part of the economy,
Neither speed nor mass demand offers a criterion of social
efficiency, Hence such limited technocratic proposals as
that for high-speed trains betweenalready overcrowded and
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overextended urban centers would only add to the present
lack of functional balanceand purposeful organization viewed
in terms of human need...",

This is hardly a plea for STOL service between city centers,

Philosophical differencesaside, most system studies of STOL can be disputed
on the question of validity of the demand model, which forms the basis for most
studies, The demand models attempt to quantify the emotions of people expected to
use the system, and assign numerical values to the value of time, Yet it can be

argued that the value of time changes, depending upon the circumstances,

The total trip time is usually defined as having the elements of actual flight
time, access and egress time, processing time, and time to wait for next service
(if it is a regularly scheduled service). Some of these constituents of trip time
could be considered as '"wasted" time, time that cannot be productively used, and
so should be assigned a higher cost than others, Thus, processing time could be
considered ''wasted', while flight time can be used for other purposes, such as
reading, working, etc, Similarly, if access is by means of private automobile, then
itis more "wasted' thanif accessis by meansof a taxi or some public transportation,
Finally, it can be argued that it is not actual trip time that will determine demand
for service, but perceived trip time (or any of its constituents)., If these times

differ appreciably, triptime asassigned byademand model may betotallyirrelevant,

Whatare the likelydevelopments for a STOL system in the Northeast Corridor?

The FAA takes an evolutionary view:

"Creation of an optimum, operational STOL system will not
be done inone step, It must be recognized that development
will be evolutionary., The interaction among acceptable
vehicles, navigational systems, air traffic control proce-
dures and hardware, heliports, STOLports, community
acceptance, and other factors requires a step-by-step ap-
proach, STOL service may, of necessity, be initiated at an
existing general aviation airport, However, the optimum
system may require a separate STOLport closer to the city
center, Planning for the STOL system should proceed with
the goal of evolving to the optimum by reserving necessary
airspace and ground areas, This is particularly critical
for metropolitan STOLport sites."

Inthe private sector, Boeing Aircraft Co, and a consortium of Italianaerospace
firms are beginning development of a C/STOL aircraft: that is to say, they are
hedging their bets. This planned airplane for 100-150 passengers will have STOL
capability, but, if the rest of the STOL system isn'tavailable, Boeing will presumably

sell the plane as an advanced airbus.
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In Canada, the Canadian government has embarked upon a course to make
STOL the most vital part of the Canadian aerospace field. An experimental service
will begin in May 1973, between Ottawa and Montreal, using modified (for more
comfort, naturally) Twin Otters, Whatmakes this particular demonstration impres-
sive is that construction of STOLports in downtown Ottawa and Montreal has also
been authorized, and accepted (at least as of now) by the public,

In the United States, STOLport construction is likely to be far slower. As
noted, the FAA expects the system to start at general-aviation terminals. Addi-
tionally, STOL strips are likely to be installed at various CTOLports, such as the
ones at Liogan and Washington National. Massport spokesmen quoted in the Boston
Globe (July 4, 1971) are enthusiastic: '"We're big boosters of the STOL.... We
think Logan would make a perfect STOLport because it is the only airport in the

country that's so close to the downtown area of a major city,"

This demonstrates ina small way the difficulty with the evolutionary approach,
Will STOL be given a fair trial by the traveling public if they fly out of suburban
fields or the already crowded CTOLports? To continue with the Boston example,
has Massport thought about the likely effect of an additional 4 million passengers
upon ground access to Logan? For:

"...congestion of the (business district) core has been

greatly increased by the high percentage of vehicle trips
which are simply passing through, .,

A prime example of this is that the access routes to Logan
International Airport,a major traffic generator, force most
air travelers to pass through downtown Boston on their way
to and from the airport,"

The largest problem has been with New York City, where many sites have
been proposed, yet none implemented except the trial strip at LaGuardia, It is
hard to imagine that a STOL system will be developed without a STOLport in
Manhattan, Indeed, if there is substance to the argument that perceived travel time
is important, is a business traveler likely to journey to Secaucus when LaGuardia
appears so much closer?

Of course evolution implies a long time period., One can speculate that if
nothing is done toimprove the amenities of city living, even the business comingent
will gradually leave the CBD, as was argued by McDonnell in its V/STOL study.
Thus, as business continues to relocate from Manhattan to White Plains, Armonk
and other suburbs of New York City, one can decide that, if this trend continues,
there will be no need for a STOLport in Manhattan, Of course, this is somewhat
akin to solving the ground transportation problem by totally strangling the flow of
traffic to a city,
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As to the question, Has STOLport site selection been a contributory problem
to STOL system implementation? the answer appears to be: No. STOLport site
selection, as practiced in the system studies to date, hasremained a paper exercise:
only when more specific sites are suggested and attempts are made to implement

these suggestions will a more definitive answer be given,

In spite of numerous technical studies, many questions remain concerning
STOL transportation systems. Interface of STOL with CTOL at CTOLports appears
to be an important problem, along with optimum airspace allocation, airborne
avionics, and ground equipment requirements, In the area of STOLport siting, it is
recommended that particular attention be paid to theissue of community acceptance

in addition to operational usability of the site,
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EXHIBIT 1

ALTERNATIVE TRANSPORTATION SYSTEMS

The Northeast Corridor Transportation Project's cost-
benefit analysis of transportation needs along the Atlantic coast
between Maine and Virginia showed they could bemet in the period
1975-80 by any of nine alternative combinations of systems. The
chart below compares the kinds of equipment, the cost and the
degree of technological innovation required to assemble each of
the nine systems, STOL refers to shorttakeoffand landing aircraft,
VTOL refers to vertical takeoff and landing aircraft, and TACV

refers to tracked air cushion vehicles,

Degree of
* Technological Capital
System Modes Innovation Cost
1 Metroliner None 70 million
TurboTrain
11 Metroliner None 2.64 billion
TurboTrain
STOL
I Rail-150 mph Some 1.6 billion
STOL
v Rail-200 mph Some 2,6 billion
A% TACV-300 mph Much 3.5 billion
VI VTOL Some 1.1 billion
STOL
VII VTOL Some 2.5 billion
Rail-150 mph
STOL
VIII VTOL ' Some 3.6 billion
Rail-200 mph
IX VTOL Much 4.5 billion
STOL.
TACV-300 mph

%
Auto, bus and conventional aircraft are included in all nine
systems.,

Source: CPR National Journal, Vol, 2, No. 19, 9 May 1970, p.
995,
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EXHIBIT 2

DE HAVILLAND STOLPORT SITES

City

STOLport

Description

L.ocation

New York

ME
MW
GI
PAS

QU
WES

Manhattan East

Manhattan West

Governors Island
Passaic, N,J.

Queens, Long Island, N,Y.
Westchester County, N,Y,

East River
Hudson River

10 miles NW
of Central Manhattan

Queens - Nassau area

18 miles NE
of Central Manhattan

Philadelphia

CBD

WEST
Nw

Central Business District

West Philadelphia
North Philadelphia

5 miles NE
of Phila, International

12 miles NW of CBD
17 miles N of CBD

Boston

CBD

WEY
HANS
BEV

Central Business District

South Weymouth
Hanscom Field
Beverly

2 miles W of
Logan Airport

15 miles S of CBD
16 miles NW of CBD
18 miles N of CBD

Washington

UNION
POT
BETH
ALEX

Union Station
Potomac River Site
Bethesda Area
Alexandria Area

CBD
4 miles W of UNION
7 miles NW of UNION
9 miles SW of UNION

Baltimore

BAL

Central Business District

10 miles N of
Friendship Airport

Hartford

HRT

Brainard Airfield

2 miles SE of CBD

Providence

PROV

Central Business District

8 miles N of
T.F. Green Airport

Trenton

TTN

Mercer County Airport

5 miles NW of CBD

Wilmington

WIL

Central Business District

6 miles NE of New Castle
County Airport
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EXHIBIT 3

MITRE STOLPORT SITES

City STOLport Description Loocation
Washington DCA National Airport 4 miles SW of CBD
WLDW Wildwood, Maryland
SPRF Springfield, Virginia
LUR Laurel, Maryland
Baltimore BAL Friendship Airport 10 miles S of CBD
TOWS Towson, Maryland
Ambler AMBL Ambler, Pennsylvania
Levittown LVTW Levittown, Pennsylvania
Chester CHST Chester, Pennsylvania
Albion ALBN Albion, New Jersey
Trenton TTN Trenton, New Jersey CBD
Woodbridge WDBG Woodbridge, New Jersey
Philadelphia PHL Philadelphia International 5 miles SW of CBD
Airport
PNE North Philadelphia 17 miles N of CBD
New York LGA LaGuardia Airport 8 miles E of CBD
PTRS Patterson, New Jersey
SCC Secaucus, New Jersey
MANW Manhattan West Side Hudson River
YONK Yonkers, New York
MTCH Mitchell, New York Long Island
ISLP Islip, New York Long Island
Providence GRN Green, Rhode Island 8 miles S of CBD
Milford MLFD Milford, Connecticut
Hartford BRAN Brainard, Connecticut 2 miles SE of CBD
Agawam BLAG Bowles - Agawam, Mass,
Boston BOS Logan Airport 2 miles E of CBD
BVRU Beverly, Mass, 18 miles N of CBD
BED Hanscom Field 16 miles NW of CBD
OWD Norwood, Mass, 16 miles SW of CBD
HPKN Hopkinton, Mass, 20 miles W of CBD
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EXHIBIT 4

M.I.T, STOLPORT SITES

City STOLport Description Location
Washington WAS Dulles International 25 miles NW of CBD
Airport
UNION Over Union Station CBD
Baltimore SBL Over Port Caving- CBD
ton Yard
Wilmington SWL New Castle Airport 6 miles SW of CBD
Trenton TTN Mercer County Airport 5 miles NW of CBD
Philadelphia SPC Over 30th Street Station CBD
SPW Across Schuylkill R,, 8 miles NW of CBD
near Conshohocken
New York SEC Secaucus, New Jersey
LGF Flushing Airport Near LaGuardia
Airport
WES Westchester, Rt, 287 18 miles N of CBD
in White Plains
New Haven SNH New Haven Airport
Hartford HRT Brainard Airfield 2 miles SE of CBD
Providence GRN Green Airport 8 miles S of CBD
Boston BOS Logan Airport 2 miles E of CBD
HAN Hanscom Field 16 miles NW of CBD

224




APPENDIX B

AIRCRAFT NOISE GENERATION

B.1 NOISE SOURCES

The major turbofan noise sources are illustrated below

JET MIX (Fan Discharge )
Inlet Fan <( —— JET MIX {(Hot Gas)

Jet noise results from the mixing of exhaust gases from the nozzle, It is
relatively broadband and highly directive with the angle of maximum radiation at
45 deg to the jet axis, The intensity of the sound is proportional to the eighth
power of the jet exhaust velocity., The SAE method1 is the commonly accepted
technique for calculating jet engine exhaust noise. It predicts the sound pressure

level at a reference point along the line of maximum radiation,

Fannoiseis broadband with discrete tones which have periodic time histories

associated with the rotary components of the engine,

nt {Discrete Tones)
o

FREQUENCY T

At the present time, there are no completely satisfactory methods for predicting
compressor/fan noise, For the turbojet engine the broadband noise dominates, but
for current fans both broadband and tone noise are important, For future fan jet
engines the tones may dominate, depending on such factors as bypass ratios and

blade tip speeds.

As the bypass ratio and blade tip speeds of current and future fan engines

increase, the fannoise becomes the dominant source. This is because more energy
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is extracted out of the engine core flow in the turbine to drive the fan, resulting in
a lower average exhaust velocity and drastically reduced jet noise, One of the
major objectives of NASA'squiet engine program is the reduction of fannoise through
nacelleacoustic treatment and engine desig‘n.2 Although this may successfully reduce
the pure tone components, it is felt that this reduction would probably be offset by
efforts to increase engine performance through higher bypass and increased blade
tip speeds (transonic or even supersonic tip velocities) which result in greater noise

power levels generated by the fan, .

Fan noise is not as highly directional as jet noise. Most investigators are
reluctant to give the directivity characteristics because they are usually a function
of the fan's operating conditions, However, the data that is available indicates that
the angle of maximum radiation is very close to 90 deg with respect to the engine

. 2,3
axils,
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B.2 EFFECT OF THRUST

The effect of thrust onnoise reductionisillustrated below fora typical turbofan
engine, Greater noise reductions are realized with the jet-mix source because of

the noise dependence on the eighth power of jet velocity,

Approach Power Takeoff Power
A total
[~
fan /'
PNL T
=1 Jet %
Zi

A 8 12 18
THRUST (1000 Ib)

Typical noise spectra for a JT3D engine during takeoff and landing indicate that the
fan noise dominates, High-frequency sounds and pure tones are regarded as more

annoying than the broadband jet mix,

JET | fAN JET ! AN
| } -— | —e
|
1no | |
SPL l
(ab) 00 /\:VJ;\\
90 T o
b 2500
| Hz
|
L4 } } T | $
102 103 104 Fz) 02 103 0
APPROACH TAKE OFF
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B.3 A SIMPLE NOISE MODEL
A complete noise model must account for all the noise sources of a particular

engine configuration, Consider for instance, the augmentor-wing configuration

described in Ref, 4 and shown below,

—— ,’/:/// ()

e Ty x\

4 el

4] Tp (2) \ To (1)

A control is provided to utilize the fan discharge air for both augmentor thrust and

horizontal thrust, The modeling is very complex in that it involves combining noise
contributions from all the sources, each with its own directivity characteristics,
Additionally, if the primary jet nozzleis rotatable then the directivity of the primary
jet-mix source changes with time. This requires a complete description of each
source in terms of intensity, frequency, directivity, and distance, as well as a
methodology for combining each noise contribution, It is felt, however, that for the
purposes of this study such refinement is unnecessary, particularly in view of the
fact thatnoise field predictiontechniquesarenot well developed and the final aircraft
configuration has not been selected, A simple model is desired which provides a

fair representation of the noise sources and preserves the essential tradeoffs,

A model is developed which expresses PNL as a function of distance to the

listener, thrust, and attenuation constants, The following assumptions will be made,
Assumption 1: Fan Noise

Since the fan provides flap air thrust, assume that the augmentor jet mix
noise is of the same order of magnitude as the fan discharge jet noise; then the fan

is the dominant noise source.

There are no accurate methods for the prediction of the acoustics of fans,
Therefore, Ref. 5 suggests an average of three tentative prediction methods used

in the field, given as:
*
SPI_.O = 10log W + 40 log VT - 34 (B-1)

where
SPL, = 200 foot sideline maximum sound pressure level (includes both

discrete tones and white noise)
®

W

Vr

weight flow rate through the fan

tip speed of single stage compressor blade
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Instead of employing the usual method of calculating PNdB from SPL (which involves
extensive table look ups), Ref, 5 develops an approximate relationship (+0,5 PNdB)
which results in Eq, B-2, with \K/ and VT maximum thrust values,

®
PNL, = 7.5log W + 47.5logVy - 36.5 (B-2)

where

PNL,0 = PNdB at 200-foot sideline distance

Other fannoise prediction methodsare givenin Ref, 6, All predict the sound pressure

level at a reference distance along the line of maximum radiation.
Assumption 2: Thrust Variations

Reference 5 expressesthe reductionin fannoise due to partial power operation

as

APNL = 25log (T/T,__ ) (B-3)

where

Tmax = maximum sea level static thrust of the engine,

For a turbojet compressor (i.e., bypass = 0)

APNL = 16.5 log (T/T_ (B-4)

ax)
Totest thisrelationship, PNL vs T/Tmax was plotted for a typical engine in service
today (see Fig, B-1), Sinceitisa low-bypass-ratio fan, we would expect a coefficient
value near 16,5, The results shown in Figs, B-2 and B-3 indicate a logarithmic
relationship fora low-bypass engine as anticipated. The thrust reduction law given

in Ref. 5 appears reasonable for high-bypass engines,
Assumption 3: Atmospheric Attenuation Law

Computing PNL from SPL according to the standard method of Ref, 7 involves
extensive table-look-ups. An expression has been developed in Ref, 5 which allows
economic computer computation. The result relates the attenuated PNL to sideline
distance H,
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Figure B-1 Perceived Noiseas a Function of Thrust and Altitude for

a Typical Turbofan Currently in Service (Ref, 11)
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JET EXHAUST AXI1S r——--’_|
‘ ||
Ho
pNLoQ Hzr sin &
r
PNL(r)\
BH
APNL = PNL_ - PNL(r) = a log (H/H ) + —2 (H/H_- 1) + 1 (B-5)
(o] (o] smI,’ (o)

where

= 200 feet

H

BO = attenuation constant = 1,069 x 10~ 7
f

o

g

3 ()

+ 8.6148 x 10~
3
=1 v T/T, .. - f = 2500 Hz

= 22,1056
= 00 deg

Figure B-1 was again used to check the validity of the relationship, The results
are good to £ 1 dB,

Assumption 4: Spherical Radiation Law

Information describing the directivity of fan noise is not readily available, A
conservative approximation is made by using a spherical radiation model that is
based upon a reference noise level at 90 deg to the engine axis, Because fan noise

isnot highly directional, thisisa good approximationat moderate aircraft altitudes,
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The equations are:

PNL = PNL_ + 25 log(T/Tmax) - {alog(r/200) + 200B(r/200 - 1) +1} (B-6)
PNL_ = 7.5 log\;V + 47.5 log Vo, '- 36.5 + 10 log Ne + g(&;_() (B-7)
where
T = thrust generated by engine = Tprimary + Teon

10 log Ne = correction for Ne (number of engines)

g(AJ_c) = correction for jet noise

For present noise modgling, rather than specifying W and VT for a turbofan engine
to determine PNLO, we can assume a PNI_,O value for an advanced turbofan design.
The goal of STOL engine noise output is 95 PNdB or less at 500 feet, thus the value
of PNI_.0 at 200 feet should be about 105,76, The result is:

PNL = 105,76 + 25 log (T/T ) - {nlog(r/200) + 200 B(r/200-1)+1} (B-8)

max
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B.4 STOL PROPULSION

Everyone seems to agree that the essence of a STOL system is quiet operation,
and thismeansquiet engines, The first STOL vehicles to come intoactive commercial
service will probably be 4-engine turboprop craft in the 50-70 passenger category.
It appears that by keeping propeller tip velocities low (in the 600-700 ft/sec range)

such vehicles may be able to achieve noise levels of about 95 PNdB at 500 fee’c.g’9

Looking ahead to jet STOL craft it appears that new turbofan engine designs
utilizing such featuresas high bypassratiosand variable-pitch fan blades may allow
80-150 passenger vehicles to achieve the required noise levels., These engines
will merge some of the characteristics of propellers and present turbofans, such
that they have been dubbed ''prop-fans' byat least one source. !0 They will achieve
high bypass ratios (e.g., 20:1) by increasing fan diameter, and fan tip speeds will
be kept to about 700 ft/sec (as compared to about 1,200 ft/sec in present turbofan
engines)., Their noise level can be kept low because of reductions in the two main
sources of noise in present jet engines: (1) turbulent mixing of the high-velocity
hot-gas exhaust from the combustion chamber; and (2) whine from the high speed
fan blades, These sources are reduced because more energy is taken from the
combustion-exhaust stream to drive the fan, thereby reducing the exhaust velocity,
and the fan actually turns at a lower rpm, thus reducing the energy as well as the

frequency of the tonal components,
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