AN EXPERIMENTAL AND THEORETICAL INVESTIGATION
OF THE LIQUEFACTION DYNAMICS OF A
PHASE CHANGE MATERIAL IN A
NORMAL GRAVITY ENVIRONMENT

by

R. L. Bain
F. J. Stermole
J. O. Golden

Annual Summary Report No. 2
21 Nov. 1970 - 31 December 1971
Contract NAS 8-30511, Mod 2

for

National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Huntsville, Alabama 35812

CSM-CPR-R272
January 21, 1972
Preface

This work was prepared by Colorado School of Mines, Golden, Colorado, under Contract NAS 8-30511, Mod. 2, "Research in Phase Change Thermal Control Technology" and under Colorado School of Mines Foundation Contracts F-6911 and F-6915. The work was administered under the direction of the Space Sciences Laboratory, George C. Marshall Space Flight Center, with Miss Barbara Richard acting as the contracting officers' technical representative.

The work at Colorado School of Mines was carried out by R. L. Bain under the direction of F. J. Stermole and J. O. Golden, principal investigators.
Abstract

The goal of this study was to experimentally and theoretically investigate the role of gravity-induced free convection upon the liquefaction dynamics of a cylindrical paraffin slab under normal gravity conditions.

The experimental equipment consisted of a test cell, a fluid-loop heating system, and a multipoint recorder. The test chamber was annular in shape with an effective radius of 1.585 cm and a length of 5.08 cm. The heating chamber was a 1.906 cm diameter tube going through the center of the test chamber, and connected to the fluid loop heating system.

By means of the heating chamber step changes in the inside wall temperatures were imposed on the test chamber. Temperature responses were measured by means of sixteen iron-constantan thermocouples mounted in the test chamber; hot wall temperature was also measured. N-octadecane, a high chain normal paraffin with an even number of carbon atoms, was used as the test material. All experimental runs were made with the longitudinal axis of the test cell in the vertical direction to insure that convection was not a function of the angular axis of the cell. Ten melting runs were made (five sets of reproduced data) at various hot-wall temperatures. Also, two pure-conduction solidification runs were made to determine an experimental latent heat of fusion.

The physical system was modeled using the energy equation and the ideal-viscous flow velocity approximation. An Implicit Alternating-Direction (IAD) technique was used to approximate the partial differential equations in the computer solution. The IAD technique was used to eliminate the time step stability requirement inherent in an explicit finite difference solution. However, because of numerical dispersion effects introduced by ignoring the second order partial in the Taylor's series expansion with respect to time, a time restriction was placed on the implicit solution in order to minimize the dispersion error. A latent heat of fusion of approximately 0.75 literature value was used in the theoretical solution. This value was determined by using a one-dimensional pure conduction model to predict the temperature results of the pure conduction solidification runs; the latent heat was varied until a match was obtained between data and theory. This new value was then used in the IAD program to model liquefaction.
Experimental runs were made with the total temperature gradient of the liquid phase varying from a low of 16.5°K to a high of 27.8°K. There was very good agreement between data and theoretical prediction at the low temperature gradient levels. As the gradient became larger the deviation between theory and data became larger; all phase change times were predicted correctly, but final temperatures were not.

The study has shown that with further refinements of the ideal-viscous flow model we should be able to predict temperature responses and phase-change times accurately; but the present model can only be used for theoretical prediction when liquid phase temperature gradients are small.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Literature Survey</td>
<td>3</td>
</tr>
<tr>
<td>Theory</td>
<td>6</td>
</tr>
<tr>
<td>Ideal-Viscous Flow Model</td>
<td>6</td>
</tr>
<tr>
<td>Finite Difference Approximation of the</td>
<td>11</td>
</tr>
<tr>
<td>Energy Equations</td>
<td></td>
</tr>
<tr>
<td>Phase Change Calculations</td>
<td>17</td>
</tr>
<tr>
<td>Numerical Dispersion Effects</td>
<td>18</td>
</tr>
<tr>
<td>Stability Criteria</td>
<td>19</td>
</tr>
<tr>
<td>Equipment and Procedure</td>
<td>20</td>
</tr>
<tr>
<td>Discussion of Results</td>
<td>25</td>
</tr>
<tr>
<td>Conclusions</td>
<td>80</td>
</tr>
<tr>
<td>Recommendations</td>
<td>82</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>83</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>86</td>
</tr>
<tr>
<td>Appendix A - Experimental Data</td>
<td>89</td>
</tr>
<tr>
<td>Appendix B - Computer Program</td>
<td>102</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Model Network Diagram</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>Test Cell - Front View</td>
<td>21</td>
</tr>
<tr>
<td>3.</td>
<td>Test Cell - Top View</td>
<td>22</td>
</tr>
<tr>
<td>4.</td>
<td>Flow System</td>
<td>23</td>
</tr>
<tr>
<td>5.</td>
<td>Comparison of Experimental Data for a Solidification Run to Theoretical Pure Conduction Profiles for Various Values of Latent Heat</td>
<td>28</td>
</tr>
<tr>
<td>6.</td>
<td>Comparison of Experimental Data to Theoretical Model Temperature Profiles for a Hot Wall Temperature of 313.55°K</td>
<td>32</td>
</tr>
<tr>
<td>7.</td>
<td>Effect of Numerical Dispersion Upon Theoretical Temperature Profiles for a Hot Wall Temperature of 313.55°K</td>
<td>37</td>
</tr>
<tr>
<td>8.</td>
<td>Comparison of Experimental Data to Theoretical Model Temperature Profiles for a Hot Wall Temperature of 319.11°K</td>
<td>42</td>
</tr>
<tr>
<td>9.</td>
<td>Effect of Numerical Dispersion Upon Theoretical Temperature Profiles for a Hot Wall Temperature of 319.11°K</td>
<td>49</td>
</tr>
<tr>
<td>10.</td>
<td>Comparison of Experimental Data to Theoretical Model Temperature Profiles for a Hot Wall Temperature of 321.33°K</td>
<td>56</td>
</tr>
<tr>
<td>11.</td>
<td>Comparison of Experimental Data to Theoretical Model Temperature Profiles for a Hot Wall Temperature of 327.44°K</td>
<td>63</td>
</tr>
<tr>
<td>12.</td>
<td>Comparison of Experimental Data to Theoretical Model Temperature Profiles for a Hot Wall Temperature of 330.22°K</td>
<td>71</td>
</tr>
</tbody>
</table>
Introduction

Phase-change thermal control techniques have received increasing attention (references 5, 6, and 7) in the last several years for spacecraft thermal design. Because of inherent advantages of simplicity and reliability a passive solid-liquid phase change material can be used in the walls of spacecraft as packaging around sensitive electronic equipment to absorb or release energy to maintain constant temperature of the electronic equipment. However, this system is limited by the heat rejection or absorption capacity of the material used.

A previous study (1) has determined the property requirements of phase change materials in order that they be good thermal control devices. The material should be non-toxic, chemically-inert and stable, noncorrosive, have small density variations, and have a high latent heat of fusion. The material should also melt in 50- to 150°F range; n-paraffins with an even number of carbon atoms are the most widely used materials for this purpose. In this study, n-octadecane was used as the test material.

An earlier study (2) at the Colorado School of Mines dealt with the problem of gravity-induced free convection in the melting of a finite paraffin slab in a rectangular cell. Problems were encountered in reproducibility of experimental data, due to the presence of air bubbles in the test material. Because of these problems, it was difficult to be certain that the theoretical model was actually modeling the phase-change phenomena. Therefore, the present study has been undertaken to determine whether or not the model, coupling of an ideal-viscous flow model with the energy equations, will actually predict the experimental phase change phenomena. Also, the investigation is studying the phase change problem in another coordinate geometry, a cylindrical geometry. The experiments have been designed as to minimize the effects of air bubbles in the test cell.

All phase-change experiments, such as ground tests made in high gravity fields, must take into account the effect of gravity-induced free convection. Either the experiments must be designed to eliminate convection or the convection must be mathematically modeled. It is important to determine at what gravity level gravity-induced free convection may be neglected. This will enable designers of phase-change thermal control devices for spacecraft to determine whether or not gravity-induced free convection is an important design factor under low gravity conditions such as periods of thrust.
Other effects, such as electrically-induced convection or magnetically-induced convection, may also be important design factors. Since experiments to study these other effects will be made in a high gravity field, the effect of gravity must be determined before effects of these other forces can be studied completely and accurately.
Many articles have appeared in the literature related to solid-liquid phase change problems and to gravity-induced free convection. This literature survey deals with only a small portion of the published material. The first treatment of liquefaction and solidification phenomena is that presented by Carslaw and Jaeger (3) in which they discuss the moving interface surface involved in the phase change problem. However, they developed only approximate mathematical models for semi-infinite bodies; no exact solutions were given for finite bodies.

Two studies have previously been completed at this institution which concern the unidimensional phase-change phenomena of high-chain normal paraffins. Both studies use the one-dimensional interface equation given by Arpaci (4). The first study was completed by P. R. Pujado (5). In his study Pujado presented a theoretical model for the unidimensional melting of a finite paraffin slab. The theoretical model was developed using finite difference methods to approximate the solution of the partial differential equations governing the physical system. The finite difference approximations were solved on an IBM-Model 360 digital computer. The model solved two-phase, unidimensional heat conduction equations with a moving interface and variable thermal properties. Mr. Pujado stated that the theoretical model neglected free convection in the liquid phase portion of the system and concluded that the errors in his results were probably due to the existence of free convection in the test cell. Mr. Pujado compared the results of his study to an investigation conducted earlier by Northrop Corporation (1) and found the results agreed very closely with the earlier work. The second study was performed by Ukanwa, Stermole, and Golden (6). The investigation concerned the solidification of a finite amount of liquid paraffin. A unidimensional model was established for the solidification of the liquid paraffin, based on the numerical solution by computer of the two-phase heat-conduction equations with moving interface and movable boundary conditions. Constant properties were assumed for each phase. The model neglected gravity-induced convection, supercooling, and nucleation effects. A comparison was made between theoretical and experimental temperature profiles. Good agreement was obtained between theory and data, although the numerical results indicate a faster rate of solidification than that observed experimentally.

A study by Shah (7) investigated solid-liquid phase change using microphotographic equipment and temperature response data as analysis tools. A two-dimensional mathematical model was developed for temperature response of the test cell and the average interfacial velocity during the
solidification process. Because no interface equations have been developed an approximate solution was used to calculate the phase change energy change. A presentation of various phase change calculations is given by Dusinberre (8). Comparison of the results obtained from the theoretical model and experimental results for the temperature response yielded reasonably good agreement. The temperature of the interface predicted by the theoretical model was always slightly higher than the experimental data.

Grodzka and Fan (9) listed several areas of study when attempting to solve the problem of free convection in phase change thermal control equipment. They stated that free convection might be induced through the following forces: gravity, surface tension, electricity, or magnetism.

Some of the texts which are good theoretical references for convection are Carslaw and Jaeger (3), Schlichting (10), and Longwell (11). Bird, Stewart, and Lightfoot (12) was used as the reference for free convection between infinite parallel plates. Vallentine (13) was used as the basic ideal-flow reference for the development of the ideal-viscous flow model. The majority of work on free convection effects in liquids and gases has been done for infinite plate systems. Models for this type of system have been developed by Bodoia and Osterle (14), Dropkin and Globe (15), Dropkin and Somerscales (16), Gebhart (17), Koh and Price (18), and Samuels and Churchill (19).

Various papers have also been published which deal with the melting of finite slabs. Chi-Tien and Yin-Chao Yen (20) developed approximate theoretical solutions for temperature distributions and melting rate when the mode of heat transfer was natural convection caused by buoyancy forces. They gave numerical solutions for various ice-water systems. Goodman and Shea (21) used a series solution to solve the problem of unidimensional melting of a finite slab.

Wilkes and Churchill (22) made a study of temperatures in a closed rectangular system to determine the theoretical effects of gravity induced convection. The theoretical model was developed from the basic equations of motion, energy, and continuity; the assumption of a two-dimensional flow pattern precluded the study of turbulent flow. The system of equations was solved by an implicit alternating-direction technique developed by Peaceman and Rachford (23). Instabilities in the numerical solution were noticed above certain Grashoff numbers. Fromm (24) developed another finite difference formulation for flow induced by a moving wall.

Papers have also been published which discussed other causes of free convection besides gravity. Emery (25) has studied magnetically induced convection. Pearson (26) and Nield (27) have studied the effects of interfacial tension on
convection. They concluded that for a gas-liquid interface surface tension was the controlling factor for thin liquid layers. At some critical liquid layer thickness gravity induced convection becomes the controlling factor. This may also be true for a solid-liquid interface, but no study of this phenomena has been reported in the literature.

An earlier study (2) performed at Colorado School of Mines dealt with the problem of gravity-induced free convection in the melting of a finite paraffin slab with cartesian geometry. An ideal-viscous flow model was assumed to model the flow pattern; this flow model was coupled with the energy equations, in finite difference form, to give a theoretical solution. Problems were encountered in reproducibility of experimental data, due to the presence of air bubbles in the test material. Because of these problems, it was difficult to be certain that the theoretical solution was modeling the phase-change phenomena accurately.

A. O. Ukanwa (28) performed a study to determine the effect of gravity-induced free convection upon the solidification of a finite paraffin slab. The mathematical solution coupled an assumed flow pattern, modified by gravity level, and the equations of motion into a finite-difference approximation. Close agreement was obtained between theory and experimental data. A pseudo-heat capacity was used to calculate the change of phase. In personal communication with Dr. Ukanwa, he has indicated that the magnitude of the energy change involved in the phase change was modified in the computer solution to correct for impurities in the test material and to correct for a solid-solid phase transition.

Lanz (29,30) and Von Rosenberg (31) have presented the results of studies which show that a numerical solution of a partial differential equation which includes bulk flow terms will include inherent numerical dispersion effects. These effects are caused by neglecting the second order partial differential in the finite difference approximation for the partial differential of time.
Theory

In this study a cylindrical-coordinate finite-difference model is developed to predict the transient temperature response of a phase change material to a step change in one boundary temperature. The model presents one method of calculating the effect of gravity-induced free convection upon the phase change process.

The test material used in the phase change investigation was n-octadecane. The literature values for the physical properties are taken from an earlier study (2).

Density

Solid phase = \((-0.0008336)T + 1.0918\), gm/cc
Liquid phase = \((-0.0012505)T + 1.1316\), gm/cc

Heat Capacity

Solid phase = 2.164, Watt-sec/gm °K
Liquid phase = \((0.008213)T - 0.14237\), Watt-sec/gm °K

Thermal Conductivity

Solid phase = \((-0.50054 \times 10^{-5})T + .002914\) watt/cm °K
Liquid phase = \((-0.50054 \times 10^{-5})T + .002914\) watt/cm °K

Melting Point = 300.60 °K
Liquefaction enthalpy = 243.893 watt-sec/gm

A diagram of the nodal system and boundary conditions is given in figure 1.

Ideal-Viscous Flow Model

An earlier study (2) has shown that it is impractical to solve the analytical equations of motion governing the liquid phase when the driving force is gravity. Therefore, an ideal-viscous flow model is developed to approximate the flow pattern which exists in the liquid phase. The velocity profile used in the model is an approximate profile obtained by combining an ideal flow system for flow in a cul-de-sac region (13) with a viscous flow solution for flow between infinite parallel plates. A maximum velocity is imposed on the ideal-viscous flow pattern, using either a driving velocity calculated from the buoyancy force term or the maximum velocity calculated from the liquid phase energy equation stability criteria.
Figure 1. Model Network Diagram
The velocity profile for unidimensional flow between infinite vertical plates is developed by Bird, Stewart, and Lightfoot (12). The velocity profile is

\[v_p = \frac{\rho \beta gb^2 \Delta T}{12\mu} (\eta^3 - \eta) \]

where \(\eta = y/b \).

Since a maximum velocity has been determined the velocity profile should be given as a function of the maximum velocity. The equation for velocity now becomes

\[v_p = v_{\text{max}} \left(\frac{\eta^3 - \eta}{\eta_0^3 - \eta_0} \right) \]

where \(\eta_0 = \pm \frac{1}{\sqrt{3}} \) (from centerline).

The ideal flow velocity profiles are developed by the use of complex variable transformations; the flow pattern under consideration is shown in the following diagram.
The basic assumptions made in the conformal transformation process are that (1) the flow pattern being studied is irrotational flow of a perfect fluid and that (2) the complicated flow pattern can be transformed by use of complex variables into parallel uniform flow.

The flow pattern shown above is assumed to be a complex z-plane flow within straight-wall boundaries. Since we are investigating ideal flow within a simple polygon, a Schwarz-Christoffen transformation (13) may be used to obtain a parallel uniform flow pattern.

If the polygon is in the z-plane and the new plane is the t-plane, then

$$
\frac{dz}{dt} = A'(a-t)^{-\gamma/(\pi-b-t)} - c/(\pi-c-t) - z/\pi
$$

(3)

where A' = a complex constant
a, b, c = real constants in ascending order of magnitude
$\gamma, \epsilon, \zeta = $ external deflection angles of the polygon

for the flow pattern under study

$$
\frac{\gamma}{\pi} = - \frac{\epsilon}{\pi} = - \frac{\zeta}{\pi} = - \frac{1}{2}
$$

The boundary conditions for the transformation are

@ A, $t = -\infty$
@ B, $t = -1$
@ C, $t = +1$
@ D, $t = +\infty$

Therefore,

$$
z = A' \int \frac{dt}{\sqrt{(1-t)(-1-t)}} + B'
$$

(4)

or $z = A' \cosh^{-1}(t) + B'$

(5)

Applying the boundary conditions

@ C, $t = 1$, $z = 0$
$0 = \cosh^{-1}(1) + B'$
$\therefore B' = 0$

@ B, $t = -1$, $z = il$
$il = A' \cosh^{-1}(-1)$
$il = A'i\pi$
$A' = 1/\pi$

Therefore,

$$
z = \frac{1}{\pi} \cosh^{-1}(t)
$$

(6)
According to definition, as given by Vallentine (13), uniform ideal flow should have a source at $-\infty$ and a sink at $+\infty$. However, the above t-plane flow pattern gives a source at $+\infty$ and a sink at $-\infty$. Therefore, $w = -t$, where w is a new complex plane, and

$$w = -\cosh\left(\frac{\pi z}{1}\right)$$

where $z = x + iy$

then

$$w = -\cosh\left(\frac{\pi x}{1} + \frac{i\pi y}{1}\right)$$

or

$$w = -\cosh\left(\frac{\pi x}{1}\right)\cos\left(\frac{\pi y}{1}\right) - i\sinh\left(\frac{\pi x}{1}\right)\sin\left(\frac{\pi y}{1}\right)$$

By definition of complex flow

$$\phi = -\cosh\left(\frac{\pi x}{1}\right)\cos\left(\frac{\pi y}{1}\right)$$

$$\psi = -\sinh\left(\frac{\pi x}{1}\right)\sin\left(\frac{\pi y}{1}\right)$$

The stream function is defined by the following equations

$$u = \psi_y$$

$$v = -\psi_x$$

Substituting into equation (11) and differentiating, we obtain

$$u = -\frac{\pi}{1}\sinh\left(\frac{\pi x}{1}\right)\cos\left(\frac{\pi y}{1}\right)$$

and

$$v = \frac{\pi}{1}\cosh\left(\frac{\pi x}{1}\right)\sin\left(\frac{\pi y}{1}\right)$$

The liquid phase is split into three regions, as shown below.

![Diagram of three regions](image-url)
Region I flow is governed by equations (11), (14), and (15) with appropriate boundary equations. Region II is governed by equation (2) with a given maximum velocity. Region III is governed by another set of ideal flow equations; but assuming symmetrical flow it is not necessary to develop the equations for this region.

The ideal flow regions are coupled to the viscous flow region by assuming the velocities in the viscous flow region are the boundary values for the ideal flow region. All y velocities are zero at this boundary. By use of equation (11) values of the stream function may be calculated at the ideal-viscous flow boundary. Since there can be no flow across a line of constant stream function, velocities in the ideal flow region can be related to boundary velocities at calculated values of the stream function at the boundary. By this method a pseudo-viscous flow pattern can be imposed upon the ideal flow regions.

The actual liquid phase in the test cell does not have a constant depth. The velocities calculated by the ideal-viscous flow model are imposed on the liquid phase at any point by assuming the depth of the liquid at that point to be the depth of the cell in the ideal-viscous flow model.

The flow pattern calculated is only an approximation, but with the small magnitude of allowable velocities calculated by stability criteria the velocities calculated should give fairly accurate flow patterns in the liquid phase.

Finite Difference Formulation of the Energy Equations

The basic energy equations (12) governing the solid and liquid phases are given below.

Solid phase
\[T_t = \alpha_s (T_{zz} + \frac{1}{r} T_r + T_{rr}) \]
(16)

Liquid phase
\[T_t + uT_z + vT_r = \alpha_l (T_{zz} + \frac{1}{r} T_r + T_{rr}) \]
(17)

Boundary conditions
\[@ z = 0, q|_z = 0 \]
\[@ z = L, q|_z = 0 \]
\[@ r = R, T = T_p \]
\[@ r = d, T = T_f \]
\[@ r = R_2, q|_r = 0 \]

Because of the small node size needed in the finite difference solution, an implicit method of solution is
developed. The implicit formulation eliminates the stability criteria with respect to time step. An implicit alternating-direction technique has been developed by Peaceman and Rachford (23) which is inherently stable with respect to time and spatial increments.

The method involves the use of two successive time steps, each of duration Δt. Over the first time step, the derivatives in the R direction are solved implicitly, and the derivatives in the z-direction are solved explicitly. The procedure is reversed for the second time step. Let T^* denote temperatures computed at the end of the first time step, and T^0 denote values at the end of the second time step. The R direction has an j subscript; the z direction has an i subscript. The following definitions are needed:

1. $i = 1, N$; where 1 and N are boundaries, N_i = 1st liquid node in z direction for any given j.
2. $j = 1, M$; where M_j = 1st solid node in R direction for any given i, and 1 and M are boundaries.

The solid phase finite difference approximations of equation (16) are given below.

First Time Step (Implicit in R - explicit in z)

@ an interior node

$$A_1 T^*(i, j-1) + B_1 T^*(i, j) + C_1 T^*(i, j+1) = D_1 \quad (18)$$

where

$$A_1 = \frac{\alpha_s \Delta t}{\Delta r} \left(\frac{1}{\Delta r} + \frac{1}{2r} \right) \quad (19)$$

$$B_1 = 1.0 + \frac{2\alpha_s \Delta t}{(\Delta r)^2} \quad (20)$$

$$C_1 = -\frac{\alpha_s \Delta t}{\Delta r} \left(\frac{1}{\Delta r} + \frac{1}{2r} \right) \quad (21)$$

$$D_1 = T(i, j) + \frac{\alpha_s \Delta t}{(\Delta z)^2} (T(i+1, j) + T(i-1, j) - 2T(i, j)) \quad (22)$$

@ $j = M_j$

$$B_1 T^*(i, j) + C_1 T^*(i, j+1) = D_2 \quad (23)$$

where

$$D_2 = D_1 - A_1 T(i, j-1) \quad (24)$$

@ $j = M-1$

$$A_1 T^*(i, j-1) + B_1 T^*(i, j) = D_3 \quad (25)$$

where
If only one solid node is present for any given i, then
$$T^*(i, M-1) = D_4, \quad j = M-1$$
where
$$D_4 = \frac{(D_3 - A_1 T(i, M-2))/B_1}{(D_1 - A_1)}$$

If only two solid nodes are present for any given i, then
$$T^*(i, j) = \frac{F_1}{G_1}, \quad \text{for } j = M-1$$
$$T^*(i, j) = \frac{D_5/B_1 - C_1 T^*(i, M-1)/B_1}{B_1}, \quad \text{for } j = M-2$$
where
$$D_5 = D_1 - A_1 T(i, j-1), \quad \text{for } j = M-2$$
$$D_6 = D_1 - C_1 T(i, j+1), \quad \text{for } j = M-1$$
$$F_1 = D_5/B_1 - D_6/A_1$$
$$G_1 = C_1/B_1 - B_1/A_1$$

Second Time Step (implicit in z - explicit in r)

@ an interior node
$$A_7 T^0(i-1, j) + B_7 T^0(i, j) + C_7 T^0(i+1, j) = D_8$$
where
$$A_7 = - \frac{\alpha_s \Delta t}{(\Delta z)^2}$$
$$B_7 = 1.0 + \frac{2\alpha_s \Delta t}{(\Delta z)^2}$$
$$C_7 = - \frac{\alpha_s \Delta t}{(\Delta z)^2}$$
$$D_8 = \frac{\alpha_s \Delta t}{(\Delta r)^2} (T^*(i, j+1) + T^*(i, j-1) - 2T^*(i, j)) + \frac{\alpha_s \Delta t}{2r \Delta r} (T^*(i, j+1) - T^*(i, j-1)) + T^*(i, j)$$

$\theta 1 = 2$
$$B_7 T^0(i, j) + C_7 T^0(i+1, j) = D_8$$
where
$$D_8 = D_7 - A_7 T^*(i-1, j)$$
where

\[D_9 = D_7 - C_7 T^*(i+1,j) \] (43)

If only one solid node is present for any given \(i \), then

\[T^o(2,j) = D_{10} , \; i = 2 \] (44)

where

\[D_{10} = (D_7 - A_7 T^*(1,j))/B_7 \] (45)

If only two solid nodes are present for any given \(j \), then

\[T^o(i,j) = \frac{F_7}{G_7} \], for \(i = 3 \) (46)

\[T^o(i,j) = \frac{D_{11}/B_7 - C_7 T^o(3,j)/B_7}{1}, \; i = 2 \] (47)

where

\[D_{11} = D_7 - A_7 T^*(i-1,j), \; \text{for} \; i = 2 \] (48)

\[D_{12} = D_7 - C_7 T^*(i+1,j), \; \text{for} \; i = 3 \] (49)

\[F_7 = \frac{D_{11}/B_7 - D_{12}/A_7}{A_7} \] (50)

\[G_7 = C_7/B_7 - B_7/A_7 \] (51)

In the computer program, all coefficients that have \(r \) in the denominator must be calculated as a function of radial position.

The liquid phase finite difference approximations of equation (17) are given below.

First Time Step (implicit in \(r \) - explicit in \(z \))

@ an interior node

\[A_{13} T^*(i,j-1) + B_{13} T^*(i,j) + C_{13} T^*(i,j+1) = D_{13} \] (52)

where

\[A_{13} = \frac{\Delta t}{\Delta r} \left(- \frac{v(i,j)}{2} - \frac{\alpha_1}{2r} + \frac{\alpha_1}{2r} \right) \] (53)

\[B_{13} = 1.0 + \frac{2\alpha_1 \Delta t}{\left(\Delta r\right)^2} \] (54)

\[C_{13} = \frac{\Delta t}{\Delta r} \left(\frac{v(i,j)}{2} - \frac{\alpha_1}{\Delta r} - \frac{\alpha_1}{2r} \right) \] (55)

\[D_{13} = \frac{\Delta t \alpha_1}{2\Delta z} (T(i-1,j) - T(i+1,j)) + T(i,j) \]
\[+ \frac{\Delta t \alpha_1}{(\Delta z)^2} (T(i+1,j) + T(i-1,j) - 2T(i,j)) \] (56)
@ j = 2
\[B_{13} T^*(i,j) + C_{13} T^*(i,j+1) = D_{14} \] (57)

where
\[D_{14} = D_{13} - A_{13} T(i,1) \] (58)

@ j = M_j - 1
\[A_{13} T^*(i,j-1) + B_{13} T^*(i,j) = D_{15} \] (59)

where
\[D_{15} = D_{13} - A_{13} T(i,M_j) \] (60)

If only one liquid node is present for any given i, then
\[T^*(i,2) = D_{16} , \ j = 2 \] (61)

where
\[D_{16} = (D_{15} - C_{13} T(i,3))/B_{13} \] (62)

If only two liquid nodes are present for any given i, then
\[T^*(i,j) = F_{13}/G_{13} , \ \text{for } j = 3 \] (63)
\[T^*(i,j) = D_{17}/B_{13} - C_{13} T^*(i,3)/B_{13} , \ j = 2 \] (64)

where
\[D_{17} = D_{13} - A_{13} T(i,j-1) , \ \text{for } j = 2 \] (65)
\[D_{18} = D_{13} - C_{13} T(i,j+1) , \ \text{for } j = 3 \] (66)
\[F_{13} = D_{17}/B_{13} - D_{18}/A_{13} \] (67)
\[G_{13} = C_{13}/B_{13} - B_{13}/A_{13} \] (68)

Second Time Step (implicit in z - explicit in r)
@ an interior node
\[A_{19} T^*(i-1,j) + B_{19} T^*(i,j) + C_{19} T^*(i+1,j) = D_{19} \] (69)

where
\[A_{19} = \frac{\Delta t}{\Delta z} \left(- \frac{u(i,j)}{2} - \frac{\alpha_1}{\Delta z} \right) \] (70)
\[B_{19} = 1.0 - \frac{2 \alpha_1 \Delta t}{(\Delta z)^2} \] (71)
\[C_{19} = \frac{\Delta t}{\Delta z} \left(\frac{u(i,j)}{2} - \frac{\alpha_1}{\Delta z} \right) \] (72)
\[
D_{19} = \frac{v(i,j)\Delta t}{2\Delta r} \left(T^*(i,j-1) - T^*(i,j+1) \right) + T^*(i,j)
+ \frac{\alpha \Delta t}{(\Delta r)^2} \left(T^*(i,j+1) + T^*(i,j-1) - 2T^*(i,j) \right)
+ \frac{\alpha \Delta t}{2\Delta r} \left(T^*(i,j+1) - T^*(i,j-1) \right)
\]
(73)

@ i = N-1
\[
B_{19} T_0(i,j) + C_{19} T_0(i+1,j) = D_{20}
\]
(74)

where
\[
D_{20} = D_{19} - A_{19} T_0(i-1,j)
\]
(75)

@ i = N-1
\[
A_{19} T_0(i-1,j) + B_{19} T_0(i,j) = D_{21}
\]
(76)

\[
D_{21} = D_{19} - C_{19} T_0(i+1,j)
\]
(77)

If only one liquid node is present for any given j, then
\[
T_0(i,j) = D_{22}, \quad i = N-1
\]
(78)

\[
D_{22} = \frac{(D_{21} - C_{19} T_0(N,j))}{B_{19}}
\]
(79)

If only two liquid nodes are present for any given j, then
\[
T_0(i,j) = F_{19}/G_{19}, \quad \text{for } i = N-2
\]
\[
T_0(i,j) = D_{23}/B_{19} - C_{19} T_0(N-2,j)/B_{19}, \quad i = N-1
\]
(80) (81)

\[
D_{23} = D_{19} - A_{19} T_0(i-1,j), \quad i = N-2
\]
(82)

\[
D_{24} = D_{19} - C_{19} T_0(i+1,j), \quad i = N-1
\]
(83)

\[
F_{19} = D_{23}/B_{19} - D_{24}/A_{19}
\]
(84)

\[
G_{19} = C_{19}/B_{19} - B_{19}/A_{19}
\]
(85)

Consider the solid phase energy equation. In particular, let equation 18 be applied to each point \(j = 3, 4, \ldots, M-2 \) in the \(i \)th column. Equations (23) and (25) hold for \(j = 2 \) and \(j = M-1 \), respectively. A system of simultaneous equations results, but there are a maximum of three unknowns in each equation. A non-iterative method for the solution of this system of equations, known as the tridiagonal matrix regression technique, is available. These equations are of the form
\[b_2 s_2 + c_2 s_3 = d_2 \]
\[a_3 s_2 + b_3 s_3 + c_3 s_4 = d_3 \]
\[\vdots \]
\[a_{M-2} s_{M-3} + b_{M-2} s_{M-2} + c_{M-2} s_{M-1} = d_{M-2} \]
\[a_{M-1} s_{M-2} + b_{M-1} s_{M-1} = d_{M-1} \]

(86)

where \(s_i \) = unknown temperature at node \(i,j \). The values of \(a_i, b_j, \) and \(c_j \) are determined from equations (19), (20), and (21). The values of \(d_1, d_4, \) and \(d_{M-1} \) are determined from equations (24), (22), and (26) respectively. The matrix of the coefficients of temperature is a trigonal matrix. The solution of equation (86) takes advantage of the tridiagonal properties of the coefficient matrix. The values of \(s_j \) satisfying equation (86) are given by

\[s_{M-1} = g_{M-1} \]
\[s_1 = g_1 - f_1 s_{l+1}, \text{ for } l = M-2, M-3, \ldots, 3, 2 \]

(87)

(88)

where the \(g's \) and \(f's \) are determined by the recursion formulae

\[w_2 = b_2 \]
\[w_1 = b_1 - a_1 f_{l-1}, \text{ for } l = 3, 4, \ldots, M-2, M-1 \]
\[f_1 = c_1/w_1, \text{ for } l = 2, 3, \ldots, M-2, M-1 \]
\[g_2 = d_2/w_2 \]
\[g_1 = (d_1 - a_1 g_{l-1})/w_1, \text{ for } l = 2, 3, \ldots, M-2, M-1 \]

(89)

(90)

(91)

(92)

(93)

This regression technique is used to solve both solid and liquid phase energy equations. During the first time step each row, \(j = 2, \ldots, M-1 \), is solved by the above technique, going explicitly from \(i = 2, \ldots, N-1 \). During the second time step the procedure is reversed, using the appropriate energy equations.

This solution of the energy equations, coupled with the phase change calculations, gives a theoretical solution of the liquefaction of the test material under the influence of gravity-induced free convection.

Phase Change Calculations

A summary of various phase change calculation techniques is given by Dusinberre (8). A variation of the method of "excess degrees" was used as a calculation procedure in this study. Since the n-octadecane used in the study was practical grade, and not the pure material, the assumption was made that
the phase-change material changed over a 1.76°K degree temperature range. The phase-change temperature range was made symmetrically around the literature value for phase change temperature. For n-octadecane the heat capacity is the same above and below the phase-change temperature; in this case when the latent heat is divided by the heat capacity we get a term with the dimensions of temperature, called "excess degrees." It is the temperature rise which would occur if the amount of heat, equal to the latent heat, were added and no phase change took place. The procedure for calculating the phase change is given below. After each iteration a test is run on solid phase temperatures.

Given:

\[T_{s}(i,j) \cdot R \cdot T_{f} \]
\[T_{s}(i,j) < T_{f}, \text{ the node is still solid} \]
\[T_{s}(i,j) \geq T_{f}, \text{ the node is changing phase} \]

If equation (96) is applicable for the node being investigated, then the following procedure is followed.

Given:

\[T_{e}(i,j) \cdot R \cdot \Delta H_{f}/C_{p} \]
\[T_{e}(i,j) < \Delta H_{f}/C_{p}, \text{ the node has not changed phase} \]
\[T_{e}(i,j) \geq \Delta H_{f}/C_{p} \]

the node has changed phase and the liquid phase temperature is given by

\[T_{l}(i,j) = T_{f0} + 1.76 + (T_{e}(i,j) \cdot C_{p} - \Delta H_{f})/C_{p} \]

Numerical Dispersion Effects

Von Rosenberg (31) and Lantz (30) state that finite difference solutions of partial differential equations which have bulk flow velocity terms include numerical dispersion effects caused by ignoring the second order partial differential with respect to time in the Taylor's series expansion used to derive the finite difference approximation for the partial of the variable with respect to time. Both explicit and implicit solutions exhibit these numerical dispersion effects.

When the second partial with respect to time is left in the Taylor's series expansion and a partial differential equation is derived from the finite difference equation, equation (17) becomes
The procedure for calculating the numerical dispersion terms is:

1. Rearrange equation (17) and solve for T_t
2. Substitute T_t, from step 1, into equation (102) for term ΔT
3. Rearrange the resulting equation.

When this is done, equation (102) becomes:

$$T_t + \frac{\Delta t}{2} T_{tt} + uT_z + vT_r = \frac{\alpha_1}{r} T_r + \alpha_1 T_{rr} + \alpha_1 T_{zz}$$ \hspace{1cm} (102)

To minimize the effect of numerical dispersion the magnitude of the time step in the finite difference solution must be reduced until numerical dispersion coefficients, all coefficients which include Δt in the above equation, are negligible, and a convergent solution is obtained when the time step is varied.

Stability Criteria

Although the implicit solution developed in this study has eliminated the time step stability criteria, stability criteria still exist which limit the magnitudes of allowable velocities (30) in the program. The stability criteria for velocities from the finite difference formulation of equation (17) are given below:

$$|u| \leq 2\alpha_1/\Delta z$$ \hspace{1cm} (104)

$$v \leq \frac{\alpha_1(r/\Delta r-1)}{r} \text{, for } v < 0$$ \hspace{1cm} (105)

$$v \leq \frac{\alpha_1(r/\Delta r+1)}{r} \text{, for } v > 0$$ \hspace{1cm} (106)
Equipment and Procedure

In this section a short discussion of the equipment and procedure used in the experimental investigation portion of this study is given. The test cell, figures 2 and 3, consisted of an annular test chamber, a tubular heating chamber, and an expansion chamber. The heating chamber was aluminum pipe with an outside diameter of 1.906 cm. The outside diameter of the test chamber was 5.08 cm; the height of test chamber was 5.08 cm. The test chamber was drilled in a 10.16 cm by 10.16 cm by 7.62 cm block of plexiglas. The expansion chamber, 7.62 cm by 7.62 cm by 2.54 cm, was machined from a 10.16 cm by 10.16 cm by 3.76 cm block. Sixteen iron-constantan thermocouples, made from 24-gauge wire, were placed in the test chamber at various positions. These positions are given below. The z-position is the distance from the bottom of the test chamber; the r-position is the distance from the inside wall.

<table>
<thead>
<tr>
<th>Thermocouple No.</th>
<th>z-position (cm)</th>
<th>r-position (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.016</td>
<td>1.270</td>
</tr>
<tr>
<td>2</td>
<td>1.016</td>
<td>0.9525</td>
</tr>
<tr>
<td>3</td>
<td>1.016</td>
<td>0.635</td>
</tr>
<tr>
<td>4</td>
<td>1.016</td>
<td>0.3175</td>
</tr>
<tr>
<td>5</td>
<td>2.032</td>
<td>1.27</td>
</tr>
<tr>
<td>6</td>
<td>2.032</td>
<td>0.9525</td>
</tr>
<tr>
<td>7</td>
<td>2.032</td>
<td>0.635</td>
</tr>
<tr>
<td>8</td>
<td>2.032</td>
<td>0.3175</td>
</tr>
<tr>
<td>9</td>
<td>3.048</td>
<td>1.27</td>
</tr>
<tr>
<td>10</td>
<td>3.048</td>
<td>0.9525</td>
</tr>
<tr>
<td>11</td>
<td>3.048</td>
<td>0.635</td>
</tr>
<tr>
<td>12</td>
<td>3.048</td>
<td>0.3175</td>
</tr>
<tr>
<td>13</td>
<td>4.064</td>
<td>1.27</td>
</tr>
<tr>
<td>14</td>
<td>4.064</td>
<td>0.9525</td>
</tr>
<tr>
<td>15</td>
<td>4.064</td>
<td>0.635</td>
</tr>
<tr>
<td>16</td>
<td>4.064</td>
<td>0.3175</td>
</tr>
</tbody>
</table>

Thermocouples were also used to measure the heating tank temperature and the heating chamber wall temperature. The expansion chamber and test chamber were connected using 4-0.3175 cm diameter bolts. A cork gasket was placed in the test chamber to ensure that no leaks developed. Epoxy was used to seal all other openings, such as the thermocouple ports and the heating chamber port.

The heating system consisted of the following equipment: a constant temperature bath, a constant temperature controller, a centrifugal pump, a flow-meter, and lines and valves. A diagram of the heating system is given in figure 4. The flow lines consisted of 1.27-cm inside-diameter copper tubing; the valves were 1.27 cm Prier globe valves. The flow-
Figure 2. Test Cell - Front View

Note: All dimensions in cm
Figure 3. Test Cell - Top View

1.906 cm dia aluminum tube

5.08 cm dia

Thermocouple ports - .3175 cm dia

4-0.3175 cm dia bolts
Figure 4. Flow System
meter was a Fisher and Porter Co. precision bore flowrator tube No. FP-1/2-27-6-10/83 with a 100% rated capacity of 2.3467 liters/min for a liquid with a specific gravity of 1.0.

The constant temperature bath was a 5-liter Pyrex tank. The constant temperature bath was a Hanke Company, Model E51, Constant Temperature Circulator. The circulator is designed for thermosetting open baths in the temperature range 243 to 423°K with a control accuracy of ±0.02°K. The circulator has a continuously variable heater output selections between 0 and 1000 watts. The circulating pump used to circulate the heating fluid to the test cell was a Chemical Rubber Company "No Seal" centrifugal pump, Model AB1P005N. The pump operated on 115-volt, 60 cycle/min, alternating current. The pump's rated capacity was 2.65 liters/min at a head of 30.5 cm to 1.58 liters/min at 274.5 cm under normal atmospheric conditions.

Temperatures were recorded using a Bristol Dynamaster Multipoint convertible recorder, Model 570, operating on 120 volt, 60 cycle/min, alternating current. The print speed was 2 seconds per thermocouple. The accuracy of the recorder was ±0.417 °K.

Experimental runs were made using the following procedure:

1. For a melting run the tank temperature was set approximately 1°K higher than the desired hot wall temperature. The pump was turned on and heating fluid, water, was allowed to flow through the bypass lines; this brought most of the water in the flow system to tank temperature. When the constant temperature bath reached a constant temperature, and the test cell thermocouples recorded temperatures that were within 0.278°K the experimental run was started. For a solidification run the test material was heated 5.6°K above the melt point. The constant temperature bath was filled with ice, and the flow cooled to 273.16°K. When the test material cooled to 2.78°K above the melt point the experimental run was started.

2. At the start of the experimental run the test cell was first leveled; then the run was started by switching from bypass flow to heating chamber flow. The starting point was marked on the chart paper of the temperature recorder.

3. The duration of the solidification runs was approximately forty minutes; the duration of the liquefaction runs varied from 50 minutes to 120 minutes.
Discussion of Results

In this section the results of two experimental solidification runs and ten experimental liquefaction runs are compared to theoretical temperature profiles obtained using the numerical computer solution. The experimental solidification runs were made to determine a latent heat of fusion under pure conduction conditions. All liquefaction experimental runs show the effect of gravity-induced free convection. Good agreement was obtained between theory and data for the liquefaction runs; agreement was best when the liquid-phase temperature gradient was small.

Figure 5 shows typical results from the combined experimental and theoretical determination of a latent heat of fusion to be used in the liquefaction study. During personal communication with A. O. Ukanwa and S. P. White (32) it was determined that the use of literature values of latent heat in the numerical solution of solid-liquid phase change problems being studied was not modeling the physical situation being observed experimentally. In all three investigations, two liquefaction studies and one solidification study, the test materials were all high chain normal paraffins of practical chemical grade. There are three possible justifications for varying the literature value of latent heat: (1) Since only practical chemical grade test material was used in the study, the physical properties may be different from literature values. (2) Impurities may exist in the test material, due to chemical reaction with the aluminum walls, leaching of solvents from the plexiglas walls, or other forms of contamination. (3) In an earlier study (2) and in the present study, a large number of air bubbles have been observed in the test material during the experimental runs. These air bubbles have an effect on the physical properties of a given volume of the test material.

In the computer solution the temperature response is insensitive to thermal diffusivity, making the latent heat of fusion the governing factor. The results of the comparison of theory and data shown in figure 5 indicate that a latent heat of 75 percent of literature value gives the best theoretical approximation of experimental data. Ukanwa (28) overcame the problem by using a pseudo-heat capacity to model the phase change; he stated that the method, as used in the computer solution, also changed the magnitude of the latent heat. However, this method of phase change calculation is not applicable to a liquefaction study. White, using n-octadecane as a test material, has also obtained good agreement between theory and data using a latent heat of 75 percent of literature value. The only deviations that appear between theory and data, figures 5-a, 5-b, and 5-c, occur at the phase change temperature; this indicates that a larger temperature range for phase change may be applicable. Until
the phase change takes place there is little apparent difference in the theoretical profiles for the different latent heats, see figure 5-d. Only one thermocouple is presented for each radial position; since all thermocouples for both experimental runs were within 0.7°K at any radial position the solidification was unidimensional, and only one thermocouple was needed in the presentation. The experimental data, runs C-19-2 and C-23-2, are given in Appendix A. As in the equipment and procedure section the z-position of a thermocouple is the distance from the bottom of the test cell and the r-position is the distance from the inside wall.

Figure 6 presents a comparison of experimental temperature data and theoretical temperature predictions for a liquefaction run with a hot wall temperature of 313.55°K. The agreement between experimental and theoretical results is very good for all sixteen thermocouples. Good reproducibility of experimental data is shown by the two experimental runs presented. The effect of convection is very important. For example, figures 6-a, 6-b, 6-c, and 6-d are all at R = 0.3175 cm and various z-positions. If the mode of heat transfer were pure conduction then all four thermocouples would show that the interface was flat. But thermocouple 16 shows that the node at z = 4.064 cm melts at 1980 seconds; thermocouple 12 shows that the node at z = 3.048 cm melts at 3000 seconds; thermocouple 8 shows that the node at z = 2.032 cm melts at 4800 seconds; and thermocouple 4 shows that the node at z = 1.016 cm melts at 5400 seconds. The melt pattern is definitely affected by convection. The thermocouples at other R-positions show the same effect, but with a time lag caused by their larger distances from the hot wall. At any given z-position the final liquid phase temperatures for all R-positions are approximately the same, see figures 6-d, 6-h, 6-l, and 6-p.

Figure 7 shows the effect of numerical dispersion upon the theoretical temperature profiles for a hot wall temperature of 313.55°K. For the duration of the runs, the largest effect is at z = 4.064 cm, figures 7-d, 7-h, 7-l, 7-p. The results show that the solution obtained is not yet in the convergent region. Due to computer limitations it was not possible to obtain a convergent time step. With a larger and faster computer solution it should be possible to reduce the time step far enough to eliminate the effect of numerical dispersion. At z = 2.032 cm and z = 3.048 cm, for example see figures 7-b and 7-c, there is very little effect due to numerical dispersion, due to the fact that these z-positions are in the parallel flow region and not influenced by the velocity to a large extent. At z = 1.016 cm the solution is not affected by numerical dispersion, due to the fact that temperature gradients in this region of the test cell are small. In all liquefaction computer runs the time step used was the smallest one that would allow modeling of an entire experimental run; core limitations were placed on the computer solutions that made it necessary to complete each run within a seven hour time limit.
Figure 8 presents a comparison of theoretical temperature profiles and experimental temperature profiles for a hot wall temperature of 319.11°K. There is good agreement between theory and data for all thermocouples; but larger deviations occur in the final liquid phase temperatures than occurred at a hot wall temperature of 313.55°K. The largest deviations in final liquid phase temperatures are 2.25°K, see figures 8-d, 8-h, 8-o, and 8-p; all phase change times are predicted within 180 seconds. The $R = 0.3175$ cm, $z = 2.032$ cm and $z = 3.048$ cm thermocouples, see figures 8-b and 8-c, show deviation between theory and data immediately after the phase change takes place; the theoretical curves show a more rapid temperature rise than the experimental data indicates should occur. This deviation is accounted for by the fact that the theoretical model assumes parallel flow in this portion of the liquid phase while experimentally the flow is not parallel in this region, because the interface is not parallel to the hot wall.

Figure 9 shows a comparison of three theoretical runs made for a hot plate temperature of 319.11°K. As in figure 7 the results show that the solution is not in the convergent region, and that numerical dispersion is still an important factor in the solution for the time steps used. The effect is of the same magnitude as that observed for figure 7.

Figures 10, 11, and 12 present theoretical temperature profiles compared to experimental temperature profiles. As in earlier runs, the experimental reproducibility of data is very good. The same trends are present as in figure 8; all phase change times are predicted very closely; deviations are present in the rate of liquid phase temperature rise for $z = 2.032$ cm and $z = 3.048$ cm for $R = 0.3175$ cm. Again the model does predict accurately the final liquid phase temperatures at $z = 4.064$ cm. For a hot wall temperature of 321.33°K, figure 10, the largest deviation in final liquid phase temperature is 2.8°K; for a hot wall temperature of 327.44°K, figure 11, the largest deviation in final liquid phase temperature is 4.4°K; for a hot wall temperature of 330.22°K, figure 12, the largest deviation in final liquid phase temperature is 5.6°K.

From the results presented in this section, it can be concluded that gravity-induced free convection is an important design factor in the use of passive solid-liquid phase-change thermal control devices. In all ground tests gravity-induced convection will affect results to some extent, even in cases where the experiments are designed to minimize the effects of gravity-induced convection. In cases where the hot wall is not horizontal one end of the test material, that at the highest elevation, will melt faster than predicted by pure conduction. With the present progress made in prediction of gravity-induced convection it is not possible to say at what gravity level convection effects may be neglected.
Figure 5. Comparison of Experimental Data for a Solidification Run to Theoretical Pure Conduction Profiles for Various Values of Latent Heat

(a) at $R = 0.3175$ cm
(b) at $R = 0.635$ cm
(c) at $R = 0.9525$ cm
(d) at $R = 1.27$ cm

Legend:

$\Delta H_{\text{used}} = K \Delta H_{\text{literature}}$

- $\text{---} \ - K = 1.0$
- $\text{---} \ - K = 0.75$
- $\text{---} \ - K = 0.50$
- $\odot \ - \text{Experimental Data}$
Figure 5
Figure 5 (cont)
Figure 6. Comparison of Experimental Data to Theoretical Model Temperature Profiles for a Hot Wall Temperature of 313.55°K

(a) \(r = 0.3175 \text{ cm}, \ z = 1.016 \text{ cm} \)
(b) \(r = 0.3175 \text{ cm}, \ z = 2.032 \text{ cm} \)
(c) \(r = 0.3175 \text{ cm}, \ z = 3.048 \text{ cm} \)
(d) \(r = 0.3175 \text{ cm}, \ z = 4.064 \text{ cm} \)
(e) \(r = 0.635 \text{ cm}, \ z = 1.016 \text{ cm} \)
(f) \(r = 0.635 \text{ cm}, \ z = 2.032 \text{ cm} \)
(g) \(r = 0.635 \text{ cm}, \ z = 3.048 \text{ cm} \)
(h) \(r = 0.635 \text{ cm}, \ z = 4.04 \text{ cm} \)
(i) \(r = 0.9525 \text{ cm}, \ z = 1.016 \text{ cm} \)
(j) \(r = 0.9525 \text{ cm}, \ z = 2.032 \text{ cm} \)
(k) \(r = 0.9525 \text{ cm}, \ z = 3.048 \text{ cm} \)
(l) \(r = 0.9525 \text{ cm}, \ z = 4.064 \text{ cm} \)
(m) \(r = 1.270 \text{ cm}, \ z = 1.016 \text{ cm} \)
(n) \(r = 1.270 \text{ cm}, \ z = 2.032 \text{ cm} \)
(o) \(r = 1.270 \text{ cm}, \ z = 3.048 \text{ cm} \)
(p) \(r = 1.270 \text{ cm}, \ z = 4.064 \text{ cm} \)

Legend:
\[\odot = \text{C-13-2} \]
\[\square = \text{C-14-2} \]
\[\ldots = \text{Theoretical Model} \]
Figure 6 (cont)

\begin{subfigure}{\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
 title={\textit{e}},
 xlabel={TIME (SEC)},
 ylabel={TEMP ($^\circ$K)},
 xmin=0, xmax=7200,
 ymin=2400, ymax=4800,
 xtick={0,2400,4800,7200},
 ytick={2400,3000,3600},
 legend style={at={(0.5,0.95)},anchor=north},
]
\addplot coordinates {
(0,2500)
(2400,2700)
(4800,2900)
(7200,3100)
};
\addplot coordinates {
(0,3000)
(2400,3200)
(4800,3400)
(7200,3600)
};
\end{axis}
\end{tikzpicture}
\end{subfigure}

\begin{subfigure}{\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
 title={\textit{f}},
 xlabel={TIME (SEC)},
 ylabel={TEMP ($^\circ$K)},
 xmin=0, xmax=7200,
 ymin=2400, ymax=4800,
 xtick={0,2400,4800,7200},
 ytick={2400,3000,3600},
 legend style={at={(0.5,0.95)},anchor=north},
]
\addplot coordinates {
(0,2500)
(2400,2700)
(4800,2900)
(7200,3100)
};
\addplot coordinates {
(0,3000)
(2400,3200)
(4800,3400)
(7200,3600)
};
\addplot coordinates {
(0,3300)
(2400,3500)
(4800,3700)
(7200,3900)
};
\end{axis}
\end{tikzpicture}
\end{subfigure}

\begin{subfigure}{\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
 title={\textit{g}},
 xlabel={TIME (SEC)},
 ylabel={TEMP ($^\circ$K)},
 xmin=0, xmax=7200,
 ymin=2400, ymax=4800,
 xtick={0,2400,4800,7200},
 ytick={2400,3000,3600},
 legend style={at={(0.5,0.95)},anchor=north},
]
\addplot coordinates {
(0,2500)
(2400,2700)
(4800,2900)
(7200,3100)
};
\addplot coordinates {
(0,3000)
(2400,3200)
(4800,3400)
(7200,3600)
};
\addplot coordinates {
(0,3200)
(2400,3400)
(4800,3600)
(7200,3800)
};
\end{axis}
\end{tikzpicture}
\end{subfigure}

\begin{subfigure}{\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
 title={\textit{h}},
 xlabel={TIME (SEC)},
 ylabel={TEMP ($^\circ$K)},
 xmin=0, xmax=7200,
 ymin=2400, ymax=4800,
 xtick={0,2400,4800,7200},
 ytick={2400,3000,3600},
 legend style={at={(0.5,0.95)},anchor=north},
]
\addplot coordinates {
(0,2500)
(2400,2700)
(4800,2900)
(7200,3100)
};
\addplot coordinates {
(0,3000)
(2400,3200)
(4800,3400)
(7200,3600)
};
\addplot coordinates {
(0,3100)
(2400,3300)
(4800,3500)
(7200,3700)
};
\end{axis}
\end{tikzpicture}
\end{subfigure}
Figure 6 (cont)
Figure 6 (cont)

(m)

(n)

(o)

(p)
Figure 7. Effect of Numerical Dispersion Upon Theoretical Temperature Profiles for a Hot Wall Temperature of 313.55 °K

(a) $r = 0.3175 \text{ cm}$, $z = 1.016 \text{ cm}$
(b) $r = 0.3175 \text{ cm}$, $z = 2.032 \text{ cm}$
(c) $r = 0.3175 \text{ cm}$, $z = 3.048 \text{ cm}$
(d) $r = 0.3175 \text{ cm}$, $z = 4.064 \text{ cm}$
(e) $r = 0.635 \text{ cm}$, $z = 1.016 \text{ cm}$
(f) $r = 0.635 \text{ cm}$, $z = 2.032 \text{ cm}$
(g) $r = 0.635 \text{ cm}$, $z = 3.048 \text{ cm}$
(h) $r = 0.635 \text{ cm}$, $z = 4.064 \text{ cm}$
(i) $r = 0.9525 \text{ cm}$, $z = 1.016 \text{ cm}$
(j) $r = 0.9525 \text{ cm}$, $z = 2.032 \text{ cm}$
(k) $r = 0.9525 \text{ cm}$, $z = 3.048 \text{ cm}$
(l) $r = 0.9525 \text{ cm}$, $z = 4.064 \text{ cm}$
(m) $r = 1.270 \text{ cm}$, $z = 1.016 \text{ cm}$
(n) $r = 1.270 \text{ cm}$, $z = 2.032 \text{ cm}$
(o) $r = 1.270 \text{ cm}$, $z = 3.048 \text{ cm}$
(p) $r = 1.270 \text{ cm}$, $z = 4.064 \text{ cm}$

Legend:

--- = 1.0 sec for time increment
----- = 1.5 sec for time increment
--------- = 3.0 sec for time increment
Figure 7

(a)

(b)

(c)

(d)
Figure 7 (cont)

(i)

(j)

(k)

(l)
Figure 7 (cont)

(m)

(n)

(o)

(p)
Figure 8. Comparison of Experimental Data to Theoretical Model Temperature Profiles for a Hot Wall Temperature of 319.11 °K

(a) \(r = 0.3175 \text{ cm}, \ z = 1.016 \text{ cm} \)
(b) \(r = 0.3175 \text{ cm}, \ z = 2.032 \text{ cm} \)
(c) \(r = 0.3175 \text{ cm}, \ z = 3.048 \text{ cm} \)
(d) \(r = 0.3175 \text{ cm}, \ z = 4.064 \text{ cm} \)
(e) \(r = 0.635 \text{ cm}, \ z = 1.016 \text{ cm} \)
(f) \(r = 0.635 \text{ cm}, \ z = 2.032 \text{ cm} \)
(g) \(r = 0.635 \text{ cm}, \ z = 3.048 \text{ cm} \)
(h) \(r = 0.635 \text{ cm}, \ z = 4.064 \text{ cm} \)
(i) \(r = 0.9525 \text{ cm}, \ z = 1.016 \text{ cm} \)
(j) \(r = 0.9525 \text{ cm}, \ z = 2.032 \text{ cm} \)
(k) \(r = 0.9525 \text{ cm}, \ z = 3.048 \text{ cm} \)
(l) \(r = 0.9525 \text{ cm}, \ z = 4.064 \text{ cm} \)
(m) \(r = 1.270 \text{ cm}, \ z = 1.016 \text{ cm} \)
(n) \(r = 1.270 \text{ cm}, \ z = 2.032 \text{ cm} \)
(o) \(r = 1.270 \text{ cm}, \ z = 3.032 \text{ cm} \)
(p) \(r = 1.270 \text{ cm}, \ z = 4.064 \text{ cm} \)

Legend:

- \(\bigcirc \) = C-21-2
- \(\square \) = C-22-2
- \(-- \) = Theoretical Model
Figure 8 (cont)

(m)

(n)

(o)
Figure 8 (cont)
Figure 9. Effect of Numerical Dispersion Upon Theoretical Temperature Profiles for a Hot Wall Temperature of 319.11 °K

(a) $r = 0.3175 \text{ cm}, z = 1.016 \text{ cm}$
(b) $r = 0.3175 \text{ cm}, z = 2.032 \text{ cm}$
(c) $r = 0.3175 \text{ cm}, z = 3.048 \text{ cm}$
(d) $r = 0.3175 \text{ cm}, z = 4.064 \text{ cm}$
(e) $r = 0.635 \text{ cm}, z = 1.016 \text{ cm}$
(f) $r = 0.635 \text{ cm}, z = 2.032 \text{ cm}$
(g) $r = 0.635 \text{ cm}, z = 3.048 \text{ cm}$
(h) $r = 0.635 \text{ cm}, z = 4.064 \text{ cm}$
(i) $r = 0.9525 \text{ cm}, z = 1.016 \text{ cm}$
(j) $r = 0.9525 \text{ cm}, z = 2.032 \text{ cm}$
(k) $r = 0.9525 \text{ cm}, z = 3.048 \text{ cm}$
(l) $r = 0.9525 \text{ cm}, z = 4.064 \text{ cm}$
(m) $r = 1.270 \text{ cm}, z = 1.016 \text{ cm}$
(n) $r = 1.270 \text{ cm}, z = 2.032 \text{ cm}$
(o) $r = 1.270 \text{ cm}, z = 3.048 \text{ cm}$
(p) $r = 1.270 \text{ cm}, z = 4.064 \text{ cm}$

Legend:

——— = 1.5 sec for time increment
----- = 3.0 sec for time increment
---- = 6.0 sec for time increment
Figure 9
Figure 9 (cont)

(g)

(h)

(i)
Figure 9 (cont)
Figure 10. Comparison of Experimental Data to Theoretical Model Temperature Profiles for a Hot Wall Temperature of 321.33 °K

(a) \(r = 0.3175 \text{ cm}, \ z = 1.016 \text{ cm} \)
(b) \(r = 0.3175 \text{ cm}, \ z = 2.032 \text{ cm} \)
(c) \(r = 0.3175 \text{ cm}, \ z = 3.048 \text{ cm} \)
(d) \(r = 0.3175 \text{ cm}, \ z = 4.064 \text{ cm} \)
(e) \(r = 0.635 \text{ cm}, \ z = 1.016 \text{ cm} \)
(f) \(r = 0.635 \text{ cm}, \ z = 2.032 \text{ cm} \)
(g) \(r = 0.635 \text{ cm}, \ z = 3.048 \text{ cm} \)
(h) \(r = 0.635 \text{ cm}, \ z = 4.064 \text{ cm} \)
(i) \(r = 0.9525 \text{ cm}, \ z = 1.016 \text{ cm} \)
(j) \(r = 0.9525 \text{ cm}, \ z = 2.032 \text{ cm} \)
(k) \(r = 0.9525 \text{ cm}, \ z = 3.048 \text{ cm} \)
(l) \(r = 0.9525 \text{ cm}, \ z = 4.064 \text{ cm} \)
(m) \(r = 1.270 \text{ cm}, \ z = 1.016 \text{ cm} \)
(n) \(r = 1.270 \text{ cm}, \ z = 2.032 \text{ cm} \)
(o) \(r = 1.270 \text{ cm}, \ z = 3.048 \text{ cm} \)
(p) \(r = 1.270 \text{ cm}, \ z = 4.064 \text{ cm} \)

Legend:

- \(\bigcirc \) = C-11-2
- \(\square \) = C-12-2
- \(____ \) = Theoretical Model
Figure 10

(a)

(b)

(c)

TEMP (°K) vs TIME (SEC)

TEMP (°K) vs TIME (SEC)

TEMP (°K) vs TIME (SEC)
Figure 10 (cont)

(d)

TIME (SEC)

TEMP (°K)

(e)

TIME (SEC)

TEMP (°K)

(f)

TIME (SEC)

TEMP (°K)
Figure 10 (cont)

(g)

(h)

(i)
Figure 10 (cont)

(j)

(k)
Figure 10 (cont)
Figure 10 (cont)

Figure 10 (cont)

Graphs (o) and (p):

- **Axes:**
 - Y-axis: TEMP (°C)
 - X-axis: TIME (SEC)

Graph (o):
- Data points and line indicating temperature changes over time.

Graph (p):
- Data points and line indicating temperature changes over time.
Figure 11. Comparison of Experimental Data to Theoretical Model Temperature Profiles for a Hot Wall Temperature of 327.44 °K

(a) $r = 0.3175 \text{ cm, } z = 1.016 \text{ cm}$
(b) $r = 0.3175 \text{ cm, } z = 2.032 \text{ cm}$
(c) $r = 0.3175 \text{ cm, } z = 3.048 \text{ cm}$
(d) $r = 0.3175 \text{ cm, } z = 4.064 \text{ cm}$
(e) $r = 0.6350 \text{ cm, } z = 1.016 \text{ cm}$
(f) $r = 0.6350 \text{ cm, } z = 2.032 \text{ cm}$
(g) $r = 0.6350 \text{ cm, } z = 3.048 \text{ cm}$
(h) $r = 0.6350 \text{ cm, } z = 4.064 \text{ cm}$
(i) $r = 0.9525 \text{ cm, } z = 1.016 \text{ cm}$
(j) $r = 0.9525 \text{ cm, } z = 3.048 \text{ cm}$
(k) $r = 0.9525 \text{ cm, } z = 3.048 \text{ cm}$
(l) $r = 0.9525 \text{ cm, } z = 4.064 \text{ cm}$
(m) $r = 1.270 \text{ cm, } z = 1.016 \text{ cm}$
(n) $r = 1.270 \text{ cm, } z = 2.032 \text{ cm}$
(o) $r = 1.270 \text{ cm, } z = 3.048 \text{ cm}$
(p) $r = 1.270 \text{ cm, } z = 4.064 \text{ cm}$

Legend:

⊙ = C-11-2
□ = C-12-2
— = Theoretical Model
Figure 11

(a)

(b)

(c)
Figure 11 (cont)

(d) Temperature (°K) over time (sec)

(e) Temperature (°K) over time (sec)
Figure 11 (cont)

(f)

(g)

TEMP (°K)

TIME (SEC)

TEMP (°K)

TIME (SEC)
Figure 11 (cont)

(h)

(i)
Figure 11 (cont)

(j)

TEMP (°K)

TIME (SEC)

(k)

TEMP (°K)

TIME (SEC)
Figure 11 (cont)
Figure 11 (cont)

Temperature vs. Time Graph

TEMP (°K)

TIME (SEC)

315

305

1200 2400 3600

3600

(p)

TEMP (°K)

TIME (SEC)

315

305

0 1200 2400 3600

3600
Figure 12. Comparison of Experimental Data to Theoretical Model Temperature Profiles for a Hot Wall Temperature of 330.22 °K

(a) \(r = 0.3175 \) cm, \(z = 1.016 \) cm
(b) \(r = 0.3175 \) cm, \(z = 2.032 \) cm
(c) \(r = 0.3175 \) cm, \(z = 3.048 \) cm
(d) \(r = 0.3175 \) cm, \(z = 4.064 \) cm
(e) \(r = 0.635 \) cm, \(z = 1.016 \) cm
(f) \(r = 0.635 \) cm, \(z = 2.032 \) cm
(g) \(r = 0.635 \) cm, \(z = 3.048 \) cm
(h) \(r = 0.635 \) cm, \(z = 4.064 \) cm
(i) \(r = 0.9525 \) cm, \(z = 1.016 \) cm
(j) \(r = 0.9525 \) cm, \(z = 2.032 \) cm
(k) \(r = 0.9525 \) cm, \(z = 3.048 \) cm
(l) \(r = 0.9525 \) cm, \(z = 4.064 \) cm
(m) \(r = 1.270 \) cm, \(z = 1.016 \) cm
(n) \(r = 1.270 \) cm, \(z = 2.032 \) cm
(o) \(r = 1.270 \) cm, \(z = 3.048 \) cm
(p) \(r = 1.270 \) cm, \(z = 4.064 \) cm

Legend:

\[\circ \] = C-17-2
\[\square \] = C-18-2
--- = Theoretical Model
Figure 12

(a)

TIME (SEC)

TEMP (°K)

(b)

TIME (SEC)

TEMP (°K)

0 1200 2400

0 1200 2400
Figure 12 (cont)

(c)

TEMP (°K) vs. TIME (SEC)

(d)

TEMP (°K) vs. TIME (SEC)
Figure 12 (cont)
Figure 12 (cont)
Figure 12 (cont)

(i) TEMP (°K) vs. TIME (SEC)

(j) TEMP (°K) vs. TIME (SEC)
Figure 12 (cont)

![Graph (k)](image1)

![Graph (l)](image2)
Figure 12 (cont)
Conclusions

The following conclusions have been made from this study:

1. The determination of physical properties, especially the latent heat of fusion, is very critical for the proper modeling of the phase-change phenomena. When working with materials with a very low thermal diffusivity the latent heat of fusion becomes the governing physical property in the theoretical modeling of the system. The latent heat may be affected by purity of material, either chemical purity as manufactured or impurities introduced by chemical reactions with the test cell, and by air bubbles in the material. When using high chain normal paraffins air bubbles are the major factor to be considered in the determination of an effective latent heat of fusion.

2. Numerical dispersion is an important factor in the modeling of the solid-liquid phase-change phenomena when free convection is present. In this study we were not able to reduce the time step in the numerical solution to a small enough value to reach a convergent solution where numerical dispersion could be considered negligible.

3. Other sources of numerical error are the constant maximum velocity and the limitation placed on velocity by the stability criteria in the liquid phase energy equation.

4. An earlier study (2) has shown that it is not possible to determine a gravity level until an experimental investigation has been made to determine a critical Rayleigh number for the particular experimental system under study. However, the conclusion can be made that gravity-induced free convection is an important factor in the design of passive phase-change thermal control devices, especially when ground tests are to be made on a phase-change device. In a high gravity field gravity-induced free convection will cause the phase-change material to melt faster than predicted by a pure conduction model in certain portions of the cell. This will cause hot spots in the equipment whose temperature is being controlled, if allowance is not made for the increased melting rate in the design of the phase-change device.
5. The numerical study assumed that the velocity profiles were symmetric, in magnitude but not sign, in the development of the ideal-viscous flow model. However, the experiment was made using a cylindrical geometry test cell. Nodes further away from the tubular heating wall contain more mass than nodes close to the heating wall. Therefore, the flow model should be modified to account for the fact that velocities near the hot wall should be larger in magnitude than nodes further from the hot wall.

6. The experimental data is reproducible, which means that air bubbles in the test material did not cause hot or cold spots in the material. The only effect of air bubbles was on the latent heat of fusion. By making the heating wall vertical air bubbles rose to the top of the cell and did not affect heat transfer rates from the hot wall to the test material.

7. The study has shown that the method of solution, an ideal-viscous flow model coupled with the energy equation, will model the phase change process when liquid phase temperature gradients are small. When the liquid phase temperature gradients become larger deviations appear between final liquid phase temperatures predicted theoretically and measured experimentally. Therefore, the theoretical solution should be considered an initial solution to the problem of gravity-induced free-convection effects in the solid-liquid phase-change phenomena. Further work is needed if a complete solution to the problem is to be made.
Recommendations

The following recommendations are made as a result of this study:

1. The computer solution used in this study should be modified to account for the fact that velocity levels should become smaller in magnitude further away from the hot wall. The modified computer solution should then be compared to the experimental results of this study to see if the theoretical prediction is better than that using the present computer solution.

2. An experimental study using tracer materials in the phase change system should be made to determine the actual shape of convection induced velocity profiles in liquefaction and solidification phenomena. The measurement equipment should be photographic or microphotographic equipment.

3. Because of the problems encountered in the theoretical modeling of the convection phenomena, a material investigation study should be made to determine whether or not low density inert polymers, which exhibit solid-solid phase changes with high heats of transition, would make feasible phase-change materials. This type of material could be modeled using only a pure conduction model.

4. A study should be undertaken to determine effective thermal diffusivities that would model the phase change phenomena without solving for velocity profiles.

5. A theoretical investigation should be made to determine the proper finite difference form of the equation of state for gravity to be introduced into the equations of motion. By this means the actual equations governing the liquid phase could be solved.
Nomenclature

Definition:
Given that \(s = f(z, R, t) \), then the following definitions are true:

\[
\begin{align*}
 s_t &= \frac{\partial s}{\partial t}, \\
 s_z &= \frac{\partial s}{\partial z}, \\
 s_r &= \frac{\partial s}{\partial r}, \\
 s_{tt} &= \frac{\partial^2 s}{\partial t^2}, \\
 s_{zz} &= \frac{\partial^2 s}{\partial z^2} \\
 s_{rr} &= \frac{\partial^2 s}{\partial r^2}, \\
 s_{rz} &= \frac{\partial^2 s}{\partial r \partial z}
\end{align*}
\]

Parallel Flow Model:
- \(b \) = one-half of distance between parallel walls, cm
- \(g \) = acceleration of gravity, cm/sec
- \(\Delta T \) = temperature gradient between parallel walls, °K
- \(y \) = distance from centerline, cm
- \(\eta = y/b \)
- \(\beta \) = coefficient of thermal expansion, °K⁻¹
- \(\rho \) = density, grams/cubic cm
- \(\mu \) = viscosity, gm cm⁻¹sec⁻¹

Ideal Flow Model:
- \(a, b, c \) = real constants in ascending order of magnitude
- \(A', B' \) = complex constants
- \(t, w, z \) = complex planes
- \(u \) = x-direction velocity, cm/sec
- \(v \) = y-direction velocity, cm/sec
- \(x \) = spatial dimension in complex z plane, cm
- \(y \) = spatial dimension in complex z plane, cm

Finite Difference Models:
- \(A, B, C, D, F, G \) = coefficients of IAD equations
- \(C_p \) = heat capacity, watts sec gm⁻¹ °K⁻¹
- \(\Delta H \) = latent heat of fusion, watts sec gm⁻¹
- \(q' \) = heat flux, watts/cm²
- \(r \) = radial spatial dimension, cm
- \(T \) = temperature, °K
- \(t \) = time, sec
- \(u \) = velocity in z-direction, cm/sec
- \(v \) = velocity in r-direction, cm/sec
Subscripts:

e, f, l, o, p, s = excess, fusion, liquid, cold wall, hot wall, solid, respectively

Superscripts

*, o = at end of 1st time step, at end of second time step, respectively

Tridiagonal Matrix:

a, b, c, d = coefficients of tridiagonal matrix

f, g, w = regression coefficients

Computer:

AK2 = liquid phase thermal conductivity, Btu (ft sec °F)⁻¹
AKP = wall thermal conductivity, Btu (ft sec °F)⁻¹
AKS = solid phase thermal conductivity, Btu (ft sec °F)⁻¹
AL = liquid phase thermal diffusivity, ft² sec⁻¹
AS = solid phase thermal diffusivity, ft² sec⁻¹
CPL = liquid phase heat capacity, Btu (lb °F)⁻¹
CPP = wall heat capacity, Btu (lb °F)⁻¹
CPS = solid phase heat capacity, Btu (lb °F)⁻¹
DR = spatial increment, r-direction, ft
DT = time increment, sec
DZ = spatial increment, z-direction, ft
HA = heat transfer coefficient, wall-atmosphere, Btu (ft² sec °F)⁻¹
HF = latent heat of fusion, Btu/lb
M1 = number of nodes in r-direction
M2 = M1 - 1
M3 = M1 - 2
MR1, MR2, MR3, MR4 = r-positions for nodes to be printed
MX1, MX2, MX3, MX4 = z-positions for nodes to be printed
N1 = number of nodes in z-direction
N2 = N1 - 1
N3 = N2 - 1

RMIN = radius of heating tube, inches
RØL = liquid phase density, lb(ft³)⁻¹
RØP = wall density, lb(ft³)⁻¹
RØS = solid phase density, lb(ft³)⁻¹
T = temperature at old time step, °F
TA = atmospheric temperature, °F
TI = initial temperature, °F
TN = temperature at new time step, °F
U = flow model velocity for z-direction, ft sec\(^{-1}\)
UR = liquid phase velocity for r-direction, ft sec\(^{-1}\)
UZ = liquid phase velocity for z-direction, ft sec\(^{-1}\)
V = flow model velocity for r-direction, ft sec\(^{-1}\)
VMAX = allowable maximum velocity, ft sec\(^{-1}\)
Literature Cited

APPENDIX A - Experimental Data

Data from two solidification runs and two liquefaction runs are presented in this section. For experimental data of the other eight experimental runs contact Dr. J. O. Golden, C.P.R.E. Department, Colorado School of Mines, Golden, Colo.
RUN NUMBER C-13-2

Room Temperature - 298.67 °K
Bath Temperature - 310.75 °K

<table>
<thead>
<tr>
<th>T.C.#1</th>
<th>T.C.#2</th>
<th>T.C.#3</th>
<th>T.C.#4</th>
<th>T.C.#5</th>
<th>T.C.#6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>TEMP °K</td>
<td>TIME</td>
<td>TEMP °K</td>
<td>TIME</td>
<td>TEMP °K</td>
</tr>
<tr>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
</tr>
<tr>
<td>0</td>
<td>298.11</td>
<td>0</td>
<td>298.11</td>
<td>0</td>
<td>298.11</td>
</tr>
<tr>
<td>750</td>
<td>298.67</td>
<td>570</td>
<td>298.67</td>
<td>570</td>
<td>298.67</td>
</tr>
<tr>
<td>1212</td>
<td>298.44</td>
<td>1170</td>
<td>299.22</td>
<td>1170</td>
<td>299.22</td>
</tr>
<tr>
<td>1764</td>
<td>299.22</td>
<td>1767</td>
<td>299.5</td>
<td>1770</td>
<td>299.5</td>
</tr>
<tr>
<td>2412</td>
<td>299.5</td>
<td>2415</td>
<td>299.64</td>
<td>2415</td>
<td>299.64</td>
</tr>
<tr>
<td>3012</td>
<td>299.64</td>
<td>3012</td>
<td>299.78</td>
<td>2964</td>
<td>299.78</td>
</tr>
<tr>
<td>3561</td>
<td>299.78</td>
<td>3702</td>
<td>299.92</td>
<td>3612</td>
<td>300.06</td>
</tr>
<tr>
<td>4296</td>
<td>299.92</td>
<td>4209</td>
<td>300.06</td>
<td>4212</td>
<td>300.19</td>
</tr>
<tr>
<td>4806</td>
<td>300.06</td>
<td>4848</td>
<td>300.19</td>
<td>4809</td>
<td>300.19</td>
</tr>
<tr>
<td>5403</td>
<td>300.19</td>
<td>5406</td>
<td>300.19</td>
<td>5451</td>
<td>300.33</td>
</tr>
<tr>
<td>6090</td>
<td>300.33</td>
<td>6003</td>
<td>300.33</td>
<td>6099</td>
<td>300.3</td>
</tr>
<tr>
<td>6600</td>
<td>300.33</td>
<td>6648</td>
<td>300.33</td>
<td>6636</td>
<td>300.6</td>
</tr>
<tr>
<td>7200</td>
<td>300.47</td>
<td>7200</td>
<td>300.6</td>
<td>7203</td>
<td>300.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7296</td>
<td>302.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7254</td>
<td>301.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T.C.#7</td>
<td>T.C.#8</td>
<td>T.C.#9</td>
<td>T.C.#10</td>
<td>T.C.#11</td>
<td>T.C.#12</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>TIME</td>
<td>TEMP</td>
<td>TIME</td>
<td>TEMP</td>
<td>TIME</td>
<td>TEMP</td>
</tr>
<tr>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
</tr>
<tr>
<td>0</td>
<td>298.11</td>
<td>0</td>
<td>298.11</td>
<td>0</td>
<td>298.11</td>
</tr>
<tr>
<td>579</td>
<td>298.94</td>
<td>306</td>
<td>299.22</td>
<td>630</td>
<td>298.67</td>
</tr>
<tr>
<td>1128</td>
<td>299.22</td>
<td>720</td>
<td>299.22</td>
<td>1230</td>
<td>299.22</td>
</tr>
<tr>
<td>1818</td>
<td>299.5</td>
<td>1227</td>
<td>300.33</td>
<td>1827</td>
<td>299.5</td>
</tr>
<tr>
<td>2421</td>
<td>299.78</td>
<td>1824</td>
<td>300.6</td>
<td>2427</td>
<td>299.64</td>
</tr>
<tr>
<td>3021</td>
<td>300.06</td>
<td>2424</td>
<td>300.6</td>
<td>3624</td>
<td>299.78</td>
</tr>
<tr>
<td>3621</td>
<td>300.19</td>
<td>3021</td>
<td>300.75</td>
<td>4221</td>
<td>300.19</td>
</tr>
<tr>
<td>4266</td>
<td>300.33</td>
<td>3606</td>
<td>300.89</td>
<td>4818</td>
<td>300.33</td>
</tr>
<tr>
<td>4818</td>
<td>300.6</td>
<td>4221</td>
<td>301.17</td>
<td>5418</td>
<td>300.75</td>
</tr>
<tr>
<td>5508</td>
<td>300.89</td>
<td>4770</td>
<td>301.44</td>
<td>5736</td>
<td>301.44</td>
</tr>
<tr>
<td>6015</td>
<td>301.44</td>
<td>5325</td>
<td>302.0</td>
<td>6063</td>
<td>303.67</td>
</tr>
<tr>
<td>6612</td>
<td>302.56</td>
<td>5784</td>
<td>302.56</td>
<td>6570</td>
<td>304.78</td>
</tr>
<tr>
<td>7122</td>
<td>303.67</td>
<td>6336</td>
<td>302.82</td>
<td>7122</td>
<td>305.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6660</td>
<td>303.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7167</td>
<td>303.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T.C.#13</td>
<td></td>
<td>T.C.#14</td>
<td></td>
<td>T.C.#15</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>TIME</td>
<td>TEMP</td>
<td>TIME</td>
<td>TEMP</td>
<td>TIME</td>
<td>TEMP</td>
</tr>
<tr>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
</tr>
<tr>
<td>0</td>
<td>298.11</td>
<td>0</td>
<td>298.11</td>
<td>0</td>
<td>298.11</td>
</tr>
<tr>
<td>639</td>
<td>298.94</td>
<td>546</td>
<td>298.67</td>
<td>591</td>
<td>299.22</td>
</tr>
<tr>
<td>1005</td>
<td>299.22</td>
<td>1188</td>
<td>299.5</td>
<td>1242</td>
<td>299.78</td>
</tr>
<tr>
<td>1968</td>
<td>299.78</td>
<td>1968</td>
<td>299.78</td>
<td>1974</td>
<td>300.33</td>
</tr>
<tr>
<td>2430</td>
<td>300.05</td>
<td>2436</td>
<td>300.05</td>
<td>2436</td>
<td>300.89</td>
</tr>
<tr>
<td>3030</td>
<td>300.33</td>
<td>2895</td>
<td>300.33</td>
<td>3084</td>
<td>300.89</td>
</tr>
<tr>
<td>3675</td>
<td>300.89</td>
<td>3630</td>
<td>300.89</td>
<td>3312</td>
<td>303.11</td>
</tr>
<tr>
<td>3930</td>
<td>301.44</td>
<td>3912</td>
<td>302.0</td>
<td>3636</td>
<td>304.22</td>
</tr>
<tr>
<td>4320</td>
<td>303.67</td>
<td>4185</td>
<td>303.67</td>
<td>4230</td>
<td>305.89</td>
</tr>
<tr>
<td>4692</td>
<td>304.78</td>
<td>4866</td>
<td>305.89</td>
<td>4830</td>
<td>306.72</td>
</tr>
<tr>
<td>5292</td>
<td>305.33</td>
<td>5565</td>
<td>306.44</td>
<td>5616</td>
<td>307.0</td>
</tr>
<tr>
<td>6072</td>
<td>305.89</td>
<td>6027</td>
<td>306.72</td>
<td>6120</td>
<td>307.28</td>
</tr>
<tr>
<td>7212</td>
<td>306.44</td>
<td>6990</td>
<td>307.0</td>
<td>6720</td>
<td>307.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7320</td>
<td>307.56</td>
</tr>
</tbody>
</table>
RUN NUMBER C-14-2
Bath Temperature - 310.61 °K

<table>
<thead>
<tr>
<th>T.C.#1</th>
<th>T.C.#2</th>
<th>T.C.#3</th>
<th>T.C.#4</th>
<th>T.C.#5</th>
<th>T.C.#6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>TEMP</td>
<td>TIME</td>
<td>TEMP</td>
<td>TIME</td>
<td>TEMP</td>
</tr>
<tr>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
</tr>
<tr>
<td>0</td>
<td>298.67</td>
<td>0</td>
<td>298.53</td>
<td>0</td>
<td>298.53</td>
</tr>
<tr>
<td>606</td>
<td>298.94</td>
<td>606</td>
<td>298.81</td>
<td>612</td>
<td>298.81</td>
</tr>
<tr>
<td>1206</td>
<td>299.22</td>
<td>1212</td>
<td>299.36</td>
<td>1212</td>
<td>299.36</td>
</tr>
<tr>
<td>1803</td>
<td>299.5</td>
<td>1809</td>
<td>299.36</td>
<td>1257</td>
<td>300.33</td>
</tr>
<tr>
<td>2448</td>
<td>299.78</td>
<td>2409</td>
<td>299.78</td>
<td>1854</td>
<td>300.47</td>
</tr>
<tr>
<td>3045</td>
<td>299.92</td>
<td>3009</td>
<td>299.92</td>
<td>2409</td>
<td>300.61</td>
</tr>
<tr>
<td>3600</td>
<td>300.06</td>
<td>3603</td>
<td>300.06</td>
<td>3006</td>
<td>300.61</td>
</tr>
<tr>
<td>4242</td>
<td>300.19</td>
<td>4203</td>
<td>300.19</td>
<td>3609</td>
<td>300.75</td>
</tr>
<tr>
<td>5442</td>
<td>300.33</td>
<td>5403</td>
<td>300.47</td>
<td>4206</td>
<td>300.89</td>
</tr>
<tr>
<td>6039</td>
<td>300.47</td>
<td>6000</td>
<td>300.61</td>
<td>4803</td>
<td>300.89</td>
</tr>
<tr>
<td>6639</td>
<td>300.61</td>
<td>6642</td>
<td>300.61</td>
<td>5406</td>
<td>300.47</td>
</tr>
<tr>
<td>7239</td>
<td>300.61</td>
<td>7241</td>
<td>300.61</td>
<td>6000</td>
<td>301.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7242</td>
<td>300.89</td>
<td>6645</td>
<td>302.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7200</td>
<td>301.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7242</td>
<td>302.28</td>
</tr>
<tr>
<td>T.C.#7</td>
<td>T.C.#8</td>
<td>T.C.#9</td>
<td>T.C.#10</td>
<td>T.C.#11</td>
<td>T.C.#12</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>TIME</td>
<td>TEMPERATURE</td>
<td>TIME</td>
<td>TEMPERATURE</td>
<td>TIME</td>
<td>TEMPERATURE</td>
</tr>
<tr>
<td>SECONDS</td>
<td>°K</td>
<td>SECONDS</td>
<td>°K</td>
<td>SECONDS</td>
<td>°K</td>
</tr>
<tr>
<td>0</td>
<td>298.53</td>
<td>0</td>
<td>298.67</td>
<td>0</td>
<td>298.67</td>
</tr>
<tr>
<td>618</td>
<td>298.94</td>
<td>294</td>
<td>299.22</td>
<td>648</td>
<td>299.08</td>
</tr>
<tr>
<td>1218</td>
<td>299.22</td>
<td>618</td>
<td>299.65</td>
<td>1176</td>
<td>299.22</td>
</tr>
<tr>
<td>1815</td>
<td>299.5</td>
<td>1218</td>
<td>300.19</td>
<td>1818</td>
<td>299.65</td>
</tr>
<tr>
<td>2415</td>
<td>299.78</td>
<td>1815</td>
<td>300.47</td>
<td>2418</td>
<td>299.78</td>
</tr>
<tr>
<td>3015</td>
<td>299.92</td>
<td>2415</td>
<td>300.61</td>
<td>3015</td>
<td>299.92</td>
</tr>
<tr>
<td>3615</td>
<td>299.92</td>
<td>3015</td>
<td>300.61</td>
<td>3615</td>
<td>300.19</td>
</tr>
<tr>
<td>4212</td>
<td>300.47</td>
<td>3612</td>
<td>300.89</td>
<td>4215</td>
<td>300.47</td>
</tr>
<tr>
<td>4854</td>
<td>300.61</td>
<td>4305</td>
<td>301.44</td>
<td>4812</td>
<td>300.61</td>
</tr>
<tr>
<td>5406</td>
<td>300.75</td>
<td>4902</td>
<td>302.0</td>
<td>5184</td>
<td>300.89</td>
</tr>
<tr>
<td>6006</td>
<td>301.25</td>
<td>5454</td>
<td>302.5</td>
<td>5544</td>
<td>301.44</td>
</tr>
<tr>
<td>6648</td>
<td>302.5</td>
<td>6282</td>
<td>303.1</td>
<td>5982</td>
<td>304.22</td>
</tr>
<tr>
<td>7158</td>
<td>303.67</td>
<td>6930</td>
<td>303.67</td>
<td>6930</td>
<td>305.33</td>
</tr>
<tr>
<td>7248</td>
<td>304.22</td>
<td>7344</td>
<td>305.61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

46
<table>
<thead>
<tr>
<th>T.C.#1 TIME</th>
<th>T.C.#1 TEMP</th>
<th>T.C.#2 TIME</th>
<th>T.C.#2 TEMP</th>
<th>T.C.#3 TIME</th>
<th>T.C.#3 TEMP</th>
<th>T.C.#4 TIME</th>
<th>T.C.#4 TEMP</th>
<th>T.C.#5 TIME</th>
<th>T.C.#5 TEMP</th>
<th>T.C.#6 TIME</th>
<th>T.C.#6 TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
</tr>
<tr>
<td>0</td>
<td>303.11</td>
<td>0</td>
<td>303.11</td>
<td>0</td>
<td>303.39</td>
<td>0</td>
<td>303.11</td>
<td>0</td>
<td>303.25</td>
<td>0</td>
<td>303.25</td>
</tr>
<tr>
<td>204</td>
<td>302.55</td>
<td>342</td>
<td>302.0</td>
<td>300</td>
<td>302.0</td>
<td>120</td>
<td>302.0</td>
<td>258</td>
<td>302.55</td>
<td>210</td>
<td>302.55</td>
</tr>
<tr>
<td>387</td>
<td>302.0</td>
<td>618</td>
<td>301.44</td>
<td>480</td>
<td>301.44</td>
<td>300</td>
<td>299.22</td>
<td>534</td>
<td>302.0</td>
<td>492</td>
<td>302.0</td>
</tr>
<tr>
<td>753</td>
<td>301.44</td>
<td>942</td>
<td>301.17</td>
<td>666</td>
<td>300.89</td>
<td>486</td>
<td>296.44</td>
<td>762</td>
<td>301.44</td>
<td>765</td>
<td>301.44</td>
</tr>
<tr>
<td>936</td>
<td>301.17</td>
<td>1266</td>
<td>300.89</td>
<td>852</td>
<td>300.33</td>
<td>624</td>
<td>294.78</td>
<td>948</td>
<td>301.17</td>
<td>948</td>
<td>301.17</td>
</tr>
<tr>
<td>1215</td>
<td>301.17</td>
<td>1542</td>
<td>300.33</td>
<td>990</td>
<td>299.78</td>
<td>852</td>
<td>293.11</td>
<td>1272</td>
<td>301.04</td>
<td>1224</td>
<td>301.04</td>
</tr>
<tr>
<td>1491</td>
<td>301.04</td>
<td>1860</td>
<td>299.5</td>
<td>1266</td>
<td>298.67</td>
<td>1176</td>
<td>291.44</td>
<td>1590</td>
<td>301.04</td>
<td>1458</td>
<td>300.89</td>
</tr>
<tr>
<td>1860</td>
<td>300.89</td>
<td>2142</td>
<td>298.67</td>
<td>1542</td>
<td>297.56</td>
<td>1452</td>
<td>290.33</td>
<td>1824</td>
<td>301.04</td>
<td>1689</td>
<td>300.33</td>
</tr>
<tr>
<td>2136</td>
<td>300.75</td>
<td>2232</td>
<td>198.39</td>
<td>1866</td>
<td>296.44</td>
<td>1632</td>
<td>289.78</td>
<td>2190</td>
<td>300.89</td>
<td>1824</td>
<td>299.92</td>
</tr>
<tr>
<td>2046</td>
<td>295.89</td>
<td>1866</td>
<td>289.22</td>
<td>2097</td>
<td>288.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2232</td>
<td>295.61</td>
<td></td>
</tr>
<tr>
<td>T.C.#7</td>
<td>TIME</td>
<td>TEMP</td>
<td>T.C.#8</td>
<td>TIME</td>
<td>TEMP</td>
<td>T.C.#9</td>
<td>TIME</td>
<td>TEMP</td>
<td>T.C.#10</td>
<td>TIME</td>
<td>TEMP</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>SEC</td>
<td>°K</td>
<td></td>
<td>SEC</td>
<td>°K</td>
<td></td>
<td>SEC</td>
<td>°K</td>
<td></td>
<td>SEC</td>
<td>°K</td>
</tr>
<tr>
<td>0</td>
<td>303.25</td>
<td>0</td>
<td>303.39</td>
<td>0</td>
<td>303.39</td>
<td>0</td>
<td>303.39</td>
<td>0</td>
<td>303.39</td>
<td>0</td>
<td>303.39</td>
</tr>
<tr>
<td>273</td>
<td>302.55</td>
<td>216</td>
<td>300.89</td>
<td>306</td>
<td>302.55</td>
<td>315</td>
<td>302.55</td>
<td>270</td>
<td>302.55</td>
<td>177</td>
<td>301.44</td>
</tr>
<tr>
<td>396</td>
<td>302.0</td>
<td>354</td>
<td>299.5</td>
<td>588</td>
<td>302.0</td>
<td>591</td>
<td>302.0</td>
<td>450</td>
<td>301.44</td>
<td>594</td>
<td>295.89</td>
</tr>
<tr>
<td>582</td>
<td>301.44</td>
<td>582</td>
<td>295.89</td>
<td>912</td>
<td>301.44</td>
<td>864</td>
<td>301.44</td>
<td>588</td>
<td>300.89</td>
<td>594</td>
<td>295.89</td>
</tr>
<tr>
<td>720</td>
<td>300.89</td>
<td>858</td>
<td>293.67</td>
<td>1230</td>
<td>301.17</td>
<td>1236</td>
<td>301.17</td>
<td>864</td>
<td>299.78</td>
<td>870</td>
<td>293.67</td>
</tr>
<tr>
<td>903</td>
<td>300.33</td>
<td>954</td>
<td>293.11</td>
<td>1554</td>
<td>301.17</td>
<td>1464</td>
<td>400.89</td>
<td>1005</td>
<td>299.22</td>
<td>1191</td>
<td>292.89</td>
</tr>
<tr>
<td>1134</td>
<td>199.22</td>
<td>1182</td>
<td>292.0</td>
<td>1830</td>
<td>301.04</td>
<td>1785</td>
<td>300.33</td>
<td>1236</td>
<td>298.11</td>
<td>1467</td>
<td>290.89</td>
</tr>
<tr>
<td>1734</td>
<td>297.0</td>
<td>1458</td>
<td>290.89</td>
<td>2154</td>
<td>300.89</td>
<td>1971</td>
<td>299.78</td>
<td>1512</td>
<td>297.0</td>
<td>1698</td>
<td>290.33</td>
</tr>
<tr>
<td>1872</td>
<td>296.44</td>
<td>1737</td>
<td>290.33</td>
<td>2202</td>
<td>299.22</td>
<td>1836</td>
<td>295.89</td>
<td>1884</td>
<td>289.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>295.89</td>
<td>1920</td>
<td>289.78</td>
<td>2202</td>
<td>294.78</td>
<td>2070</td>
<td>289.22</td>
<td>2250</td>
<td>288.89</td>
<td>2244</td>
<td>295.61</td>
</tr>
<tr>
<td>TIME SEC</td>
<td>TEMP °K</td>
<td>TIME SEC</td>
<td>TEMP °K</td>
<td>TIME SEC</td>
<td>TEMP °K</td>
<td>TIME SEC</td>
<td>TEMP °K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>303.39</td>
<td></td>
<td>302.55</td>
<td></td>
<td>302.55</td>
<td></td>
<td>302.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>408</td>
<td>302.55</td>
<td>414</td>
<td>302.55</td>
<td>348</td>
<td>302.55</td>
<td>144</td>
<td>302.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639</td>
<td>302.0</td>
<td>645</td>
<td>302.0</td>
<td>504</td>
<td>302.0</td>
<td>276</td>
<td>300.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>870</td>
<td>301.44</td>
<td>960</td>
<td>301.44</td>
<td>750</td>
<td>300.89</td>
<td>324</td>
<td>299.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1242</td>
<td>301.17</td>
<td>1245</td>
<td>301.17</td>
<td>876</td>
<td>300.33</td>
<td>462</td>
<td>298.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1515</td>
<td>301.04</td>
<td>1515</td>
<td>300.89</td>
<td>1014</td>
<td>299.78</td>
<td>648</td>
<td>295.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1836</td>
<td>301.04</td>
<td>1794</td>
<td>300.33</td>
<td>1152</td>
<td>299.22</td>
<td>780</td>
<td>294.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2115</td>
<td>300.89</td>
<td>1932</td>
<td>299.78</td>
<td>1428</td>
<td>298.11</td>
<td>966</td>
<td>293.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2250</td>
<td>300.75</td>
<td>2112</td>
<td>299.22</td>
<td>1704</td>
<td>297.0</td>
<td>1290</td>
<td>292.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2208</td>
<td>298.94</td>
<td>1842</td>
<td>296.44</td>
<td>1704</td>
<td>290.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2118</td>
<td>294.78</td>
<td>1890</td>
<td>289.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2208</td>
<td>294.78</td>
<td>2076</td>
<td>289.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2256</td>
<td>288.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RUN NUMBER C-23-2
Bath Temperature - 273.67 °K

<table>
<thead>
<tr>
<th>T.C.#1</th>
<th></th>
<th></th>
<th>T.C.#2</th>
<th></th>
<th></th>
<th>T.C.#3</th>
<th></th>
<th></th>
<th>T.C.#4</th>
<th></th>
<th></th>
<th>T.C.#5</th>
<th></th>
<th></th>
<th>T.C.#6</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>SEC</td>
<td>0K</td>
</tr>
<tr>
<td>TEMP</td>
<td>303.11</td>
<td>303.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>270</td>
<td>302.0</td>
<td>0</td>
<td>273</td>
<td>302.0</td>
<td>0</td>
<td>132</td>
<td>302.55</td>
<td>0</td>
<td>138</td>
<td>300.89</td>
<td>0</td>
<td>372</td>
<td>302.0</td>
<td>0</td>
<td>189</td>
<td>302.09</td>
</tr>
<tr>
<td>552</td>
<td>301.44</td>
<td>462</td>
<td>301.44</td>
<td>408</td>
<td>301.44</td>
<td>228</td>
<td>299.78</td>
<td>648</td>
<td>301.44</td>
<td>372</td>
<td>302.0</td>
<td>189</td>
<td>302.09</td>
<td>603</td>
<td>301.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>732</td>
<td>301.17</td>
<td>732</td>
<td>301.17</td>
<td>600</td>
<td>300.89</td>
<td>324</td>
<td>298.11</td>
<td>924</td>
<td>301.17</td>
<td>603</td>
<td>301.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>966</td>
<td>301.33</td>
<td>1008</td>
<td>301.03</td>
<td>828</td>
<td>300.33</td>
<td>372</td>
<td>297.56</td>
<td>1248</td>
<td>301.03</td>
<td>927</td>
<td>301.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1272</td>
<td>300.89</td>
<td>1194</td>
<td>300.89</td>
<td>1056</td>
<td>299.22</td>
<td>552</td>
<td>294.78</td>
<td>1524</td>
<td>300.89</td>
<td>1200</td>
<td>300.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1518</td>
<td>300.89</td>
<td>1422</td>
<td>300.33</td>
<td>1194</td>
<td>298.67</td>
<td>738</td>
<td>293.11</td>
<td>1800</td>
<td>300.89</td>
<td>1572</td>
<td>300.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1836</td>
<td>300.75</td>
<td>1590</td>
<td>299.78</td>
<td>1470</td>
<td>297.56</td>
<td>1014</td>
<td>291.44</td>
<td>2124</td>
<td>300.61</td>
<td>1800</td>
<td>299.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2154</td>
<td>300.61</td>
<td>1791</td>
<td>299.22</td>
<td>1894</td>
<td>296.44</td>
<td>1290</td>
<td>290.33</td>
<td>2352</td>
<td>300.33</td>
<td>2029</td>
<td>299.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2340</td>
<td>300.33</td>
<td>2022</td>
<td>298.67</td>
<td>1980</td>
<td>295.89</td>
<td>1614</td>
<td>289.22</td>
<td>2262</td>
<td>298.67</td>
<td>2352</td>
<td>287.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2346</td>
<td>297.56</td>
<td>2208</td>
<td>295.33</td>
<td>2118</td>
<td>288.11</td>
<td></td>
</tr>
<tr>
<td>T.C.#7</td>
<td>T.C.#8</td>
<td>T.C.#9</td>
<td>T.C.#10</td>
<td>T.C.#11</td>
<td>T.C.#12</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>TEMP</td>
<td>TIME</td>
<td>TEMP</td>
<td>TIME</td>
<td>TEMP</td>
<td></td>
</tr>
<tr>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
<td>SEC</td>
<td>°K</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>303.11</td>
<td>0</td>
<td>303.11</td>
<td>0</td>
<td>303.11</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>302.55</td>
<td>147</td>
<td>302.0</td>
<td>240</td>
<td>302.55</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>302.0</td>
<td>240</td>
<td>300.05</td>
<td>426</td>
<td>302.0</td>
<td></td>
</tr>
<tr>
<td>465</td>
<td>301.44</td>
<td>330</td>
<td>298.67</td>
<td>795</td>
<td>301.44</td>
<td></td>
</tr>
<tr>
<td>606</td>
<td>300.89</td>
<td>468</td>
<td>296.44</td>
<td>978</td>
<td>301.17</td>
<td></td>
</tr>
<tr>
<td>837</td>
<td>300.33</td>
<td>699</td>
<td>294.22</td>
<td>1254</td>
<td>301.17</td>
<td></td>
</tr>
<tr>
<td>1065</td>
<td>299.22</td>
<td>930</td>
<td>292.55</td>
<td>1578</td>
<td>300.89</td>
<td></td>
</tr>
<tr>
<td>1482</td>
<td>297.56</td>
<td>1347</td>
<td>290.88</td>
<td>1899</td>
<td>300.61</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>296.44</td>
<td>1668</td>
<td>189.78</td>
<td>2310</td>
<td>300.33</td>
<td></td>
</tr>
<tr>
<td>2217</td>
<td>295.33</td>
<td>1896</td>
<td>189.22</td>
<td>2310</td>
<td>300.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2220</td>
<td>288.67</td>
<td>2268</td>
<td>298.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2268</td>
<td>294.22</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>TEMP</td>
<td>SEC</td>
<td>O.K.</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>342</td>
<td>302.55</td>
<td>210</td>
<td>300.89</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>302.0</td>
<td>345</td>
<td>298.94</td>
<td></td>
</tr>
<tr>
<td>894</td>
<td>301.44</td>
<td>624</td>
<td>295.61</td>
<td></td>
</tr>
<tr>
<td>1218</td>
<td>301.17</td>
<td>624</td>
<td>295.61</td>
<td></td>
</tr>
<tr>
<td>1542</td>
<td>300.61</td>
<td>942</td>
<td>293.11</td>
<td></td>
</tr>
<tr>
<td>1815</td>
<td>300.89</td>
<td>942</td>
<td>293.11</td>
<td></td>
</tr>
<tr>
<td>2136</td>
<td>300.61</td>
<td>942</td>
<td>293.11</td>
<td></td>
</tr>
<tr>
<td>2322</td>
<td>300.33</td>
<td>942</td>
<td>293.11</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B

Fortran IV Computer Program
This program was written to solve a two-dimensional cylindrical-coordinate liquefaction problem of n-octadecane under the influence of gravity-induced free convection. The program was run on a DEC, Model PDP-10 computer. The program was written in general terms, except for the heat capacity term in the phase change calculation. To use the program the following length to effective radius must be observed

\[N_1 > 2M_1 + 1 \]

See the nomenclature for definition of terms and units to be used in the program.

Input File:
1. For execution 4 = Input file or device
2. First card - N1,N2,N3,M1,M2,M3,MR1,MR2,MR3,MR4, with a (10I) format
3. Second card - RMIN, with a (F) format
4. Third card - MX1,MX2,MX3,MX4, with a (4I) format
5. Fourth card - DZ,DR,DT,TP,TA,TF,TI,HA,HF, with a (9F) format. TA and HA are dummy input variables, to be used if calculation of heat loss through walls is incorporated into the program
6. Fifth card - CPS,CPL,CPP,AKS,AKL,AKP,R0S,R0L,R0P with a (9E) format. CPP,AKP,R0P are dummy input variables, to be used if a heat balance of the cell walls is incorporated into the program
7. Sixth card - VMAX, with an (E) format

Flag File:
1. For execution 6 = Flag File
2. Output - 'Input File'
3. Input - FLAG, with an (F) format
 a. if FLAG < 10.0, stop execution
 b. if FLAG >= 10.0, continue execution

Output File:
1. For execution 5 = output file, 6 = output file
2. Time, t, in seconds at 120 second intervals
3. Temperatures at input nodes at 120 second intervals
4. Interface nodes at 120 second intervals
Sample Input File:

81, 80, 79, 26, 25, 24, 7, 11, 16, 21
0.375
17, 33, 49, 65
0.0020833, 0.0020833, 1.5, 99.75, 75.0, 80.0, 77.5, 0.0, 78.675
0.517E+00, 0.522E+00, 0.1E-12, 0.243E-04, 0.2402E-04, 0.1E-12
0.5349E+02, 0.482E+02, 0.1E-12
0.75E-03
CYLINDRICAL COORDINATE IAD PROGRAM

DIMENSION U(91,3), V(91,3), W(91,3), UP(91,3)
DIMENSION T(91,3), TP(91,3), TR(91,3)
DIMENSION A(31), AL(31), AR(31)
DIMENSION C(31), CX(31), D(31), DX(31), Y(31)
DIMENSION DJ(31), O(1), YZ(1), JR(5), JX(5)
COMMON /S1/ A, C, D, R, Y
COMMON /S2/ OZ, DJ, DT
COMMON /S3/ AS, AL, DJ, DX, YZ
COMMON /ALPHA/ U, V
COMMON /BETA/ UE, UR
COMMON /GAMMA/ NA, N2, N3, NA2, N22, N32

INPUT PARAMETERS AND CONSTANTS

READ (4,9) E1, E2, E3, E4, E5, E6, E7, E8, E9
FORMAT (10X)
READ (4,9) RMIN
FORMAT (F)
WRITE (6,6) E1, E2, E3, E4, E5, E6, E7, E8, E9
WRITE (6,6) E1, E2, E3, E4, E5, E6, E7, E8, E9
FORMAT (6)
READ (4,11) C, D, DT, TP, TA, TF, TI, HA, HF
WRITE (6,111) C, D, DT, TP, TA, TF, TI, HA, HF
FORMAT (6)

INPUT PHYSICAL PROPERTIES

READ (4,12) CP, CPL, CPT, AKS, AKL, APK, RPS, CPL, RCP
WRITE (6,112) CP, CPL, CPT, AKS, AKL, APK, RPS, CPL, RCP
FORMAT (9E)

READ (4,13) VMAX
FORMAT (E)

CALL VIVW(VMAX)
ATI=119.95
DO 16 I=1,11
16 T(I,1)=TF
T(I,1)=0.02
IMP=1
AS=2.893E+6
AL=0.5936E+6
A1=R1INI/60/12.
VT=FLOAT(M1)*AL/A1/CF
WRITE (5,850) VT
850 FORMAT (' MAXIMUM ALLOWABLE VELOCITY ',E,F,IT/SEC ')
G=VMAX/S,=122
WRITE (5,851) G
851 FORMAT (' APPROXIMATE GRAVITY LEVEL ',E,F)
20 TI=TI+FT
DO 21 I=2,4
21 T(I,1)=T(I,M2)
DO 121 J=2,N1
T(I,J)=T(2,J)
121 T(1,J)=T(1,J)
CALL SET (R100,ML,HR)
CALL VEL (K0)
IF (IMP.EQ.2) GO TO 30
DO 22 IL=2,N2
CALL TSB (IL,NO,AS,TN,T,RMIN)
CALL TLG (IL,NO,AL,T,RMIN)
22 CONTINUE
IMP=2
GO TO 40
30 DO 32 JL=2,N2
CALL TSZ (JL,ML,TG,T,RTMIN)
CALL TLG (JL,ML,TG,T,RTMIN)
32 CONTINUE
IMP=1
C PHASE CHANGE CALCULATIONS
40 GO TO 70
DO 70 J=2,N2
DO 7 I=2,4
IF (TM(I,J),LT,TF) GO TO 7M
IF ((R(I,J)>C.S17),GT,HR(J)) GO TO 70
AHF=HR(J)
SUM=IN(I,J)-T(1,J)
SUM=SUM+AHF(I,J)
SA=SUM*F,5172
IF (SA-AHF) 61,61
61 R(I,J)=SUM
TM(I,J)=TF+SA/AHF*3,F
GO TO 72
62 R(I,J)=4*(J)/2,5172+1,
TM(I,J)=3,F+TF*(SA-AHF)/2,5172
70 CONTINUE
DO 92 I=2,4
DO 92 J=2,4
92 T(I,J)=TI(I,J)
C PRINT RESULTS
IF (TI,L,T,ATI) GO TO 20
ATI=ATI+12,10
RTI=TI/CF,F
WRITE (5,194) RTI
194 FORMAT (' TIME = ',F,F,IT,MIN ')
DO 95 I=1,4
DO 95 JJ=1,4
 JJ=J(JJ)
 WRITE (6,94) J,K,T(K,J-1),T(K,J),T(K,J+1)
 FORMAT (E15,3F12.3)
 CONTINUE
 WRITE (6,96)
 FORMAT (1513)
 WRITE (6,97)
 FORMAT (F)
 IF (FLAG,GE,13,3) GO TO 28
 STOP
 END

SUBROUTINE VEL(N)
DIMENSION U(61,3),V(61,32),Z(61,32),UR(61,32),NO(81)
COMMON /ALPHA/ U,V
COMMON /BETA/ U2,UR
COMMON /GAMMA/ M1,M2,M3
DO 13 J=2,M2
 L=NO(N)-1
 DO 13 I=2,L
 IF (L,LT,3) GO TO 12
 II=I-1
 JJ=NO(J)-1
 IF (JJ,LT,1) JJ=1(1)
 S1=FLOAT(II)/FLOAT(JJ)
 IF (S1,GE,1.999) GO TO 12
 CO=3 J=2,M2
 JK=J-1
 S2=FLOAT(JK)/FLOAT(W)
 IF (S2,LT,S1) GO TO 12
 UZ(K,1)=U(K,J)
 UR(K,1)=V(K,J)
 GO TO 13
 CONTINUE
 GO TO 13
12 JZ(K,1)=9.1E-12
 UR(K,1)=9.1E-12
13 CONTINUE
 RETURN
END

SUBROUTINE VIVV(VMAX)
DIMENSION U(61,3),V(61,32),Z(61,32),SF(38),VS(36),VB(30),V0(38)
COMMON /ALPHA/ U,V
COMMON /GAMMA/ M1,M2,M3
R1=FLOAT (M2)
YV=-1.3
B=1.7
A=-1.2/SRT(3.9)
DO 13 I=2,M2
 YV=YV+2.7/PI
 C=YV/3
 RA=(C+3.3-C)/(A+3.3-A)
 VV(I)=VMAX*RA
13 PI=3.14159262
 YV=Y+1.6/PI
 DO 15 I=2,M2
 Y=Y+1.6/PI
15 CONTINUE
 RETURN
END
\[
X = 1,3
\]
\[
SF(I) = \sin(\pi x) \times \sin(\pi y)
\]
\[
UB(I) = \sin(\pi x) \times \cos(\pi y) \times \pi
\]
\[
V6(I) = \cos(\pi x) \times \sin(\pi y) \times \pi
\]
\[
X = 1,2
\]
\[
Y = 0,2
\]
DO 15 J = 2, M2
X = X + 1, Y = Y1
15
\[
V6(N1 + J - 1) = \pi \times \cos(\pi x) \times \sin(\pi y)
\]
\[
Y = C \times \frac{Y}{Y1}
\]
\[
J1 = (-1 + 1) / 2
\]
DO 18 J = J1, N2, 1
Y = Y + 1, Y / Y1
X = X1
DO 36 J = 2, M2
X = X + 1, Y = Y1
SFT = \sin(\pi x) \times \sin(\pi y)
U1 = \pi \times \sin(\pi x) \times \cos(\pi y)
L1 = Y2 / 2
DO 31 I = 1, L1
KX = K1 - 1
IF (SFT, GE, SF(VK)) GO TO 30
GO TO 31
CONTINUE
KX = J1
31
UNAX = UB(KK)
UB0 = VV(KK)
Ut(W, Y) = UNAX \times VV(KK)
Vv(v, Y) = \pi \times \cos(\pi x) \times \sin(\pi y)
Vv(N, Y) = (1, -ABS(\pi / VX(KK))) \times \UB0
IF (\text{ABS}(VV) \times \UB0(KK), GE, 1, M2) V(N, Y) = Z, Z21 \times UBO
CONTINUE
DO 41 I = 2, M1
DO 41 J = 2, M2
V(N, Y) = 0(N, M1 - 1, M2)
V(N, Y) = Vv(N, Y) \times 1 - F
CONTINUE
NR1 = R1 - 1
NR2 = R1 - 1
NR3 = R2 - 1
DO 50 I = M2, M2
DO 50 J = NR1, NR3
Vv(N, Y) = N1 - 12
V(N, Y) = Vv(N, Y)
IF (N, M1, J1) V(N, Y) = N1J1 - 12
CONTINUE
DO 60 I = 2, M2
DO 60 J = NR1, NR3
NR3 = NR3 - 1
L(N1 - NR1, M1) = L(N - NR3, M1)
Vv(N1, M1) = Vv(N - NR3, M1)
CONTINUE
RETURN
END
SUBROUTINE SET (N,NJ,HL,HJ)
DIMENSION SIG(81,3),NL(3),HR(3)
COMMON /CARMA/ M1,M2,N3,M1,M2,M3
DO 12 I = 2, M2
DO 12 J = 2, M2
IF (R(I,J) GE, 517, GE, HR(J)) GO TO 3
N0(J) = J
GO TO 10
CONTINUE
N0(J) = M
CONTINUE
DO 22 J = 2, M
ML(J) = 2
DO 18 I = 2, M
IF (R(I, J) * 5.17, LT, FR(J)) GO TO 10
ML(J) = 1
GO TO 22
CONTINUE
ML(J) = 1
CONTINUE
RETURN
END

SUBROUTINE TSR (N, NO, AS, T, T, RML)
DIMENSION T(N, 32), T(A1, 32), NO(A1), A3(32), C3(32)
DIMENSION E(32), W(32), Y(32)
COMMON /S1/ A, N, M, Y
COMMON /S2/ D, DT
COMMON /GAUSS/ R1, N2, N3, M1, M2, M3
IF (C(1, I, M) .GE. 2) GO TO 10
IF (C(1, I, M) .GE. 2) GO TO 2
IF (C(1, I, M) .GE. 2) GO TO 25
K = 1
DO 10 J = K, M
RAD = FLOAT(J - 1) * A3 + RML / 12
A(K) = A3 * DT / OR + 5 * AS * DT / RAC / OR
B = 1, + 2, * AS * DT / OR / OR
C(K) = A3 * DT / OR + 5 * AS * DT / RAD / OR
D(K) = T(I, J) + AS * DT / OR2 * (T(I - 1, K) + T(I + 1, K) - 2 * T(I, K))
D(K) = D(K) + T(K) * T(I, K)
DO 10 J = K, M
RAD = FLOAT(J - 1) * A3 + RML / 12
A(J) = A3 * DT / OR + 5 * AS * DT / RAC / OR
C(J) = A3 * DT / OR + 5 * AS * DT / RAD / OR
D(J) = T(I, J) + AS * DT / OR2 * (T(I + 1, J) + T(I - 1, J) - 2 * T(I, J))
D(J) = D(J) + C(J) * T(I, J)
M(K) = 0
Y(K) = G(K) / A(K)
DO 12 J = K, M
BB = T(J - 1) / A(J) + 5
W(J) = 3 * A(J) * BB
Y(J) = (T(J) - A(J) * Y(J - 1)) / (J)
T(J, 2) = Y(J)
DO 12 J = 3, M, 1
L = J
BB = C(J) / A(J)
T(J, L) = Y(L) - BB * T(J, L - 1)
GO TO 12
RAD = FLOAT(HI) * A3 + RML / 12
AA = A3 * DT / OR + 5 * AS * DT / RAC / OR
BB = 1, + 2, * AS * DT / OR / OR
CC = AA * AS * DT / RAC / OR

10

12

15

23
SUBROUTINE TL^ (! , !X, !X, !X, !RMIN)
DIMENSION T (81, 32), T (61, 35), NC (31), A (30), C (32), UZ (81, 30)
COMMON /S1/ A, C, D, Y
COMMON /S2/ D2, DZ, DZDT
COMMON /SETA/ H2, D2
COMMON /GAMMA/ !, !, !, !, !, !
COMMON /VI/ !, !, !, !, !, !
DE = 0.1
DO 12 J = 1, 2, 3
A(2) = -A(1, 2) + T(1, 2)/2, DR = AL = DT/DR + 5*AL = DT/RAD/DR
B = 1, 2 + 2, 3*AL = DT/RAD/DR
C(2) = 2, 5*AL = DT/RAD/DR + 3, 5*AL = DT/RAD/DR
D(2) = (2, 2) + AL = DT*(T(1, 2) - T(1, 2))/2 + T(1, 2)
D(2) = (2, 2) + AL = DT*(T(1, 2) - T(1, 2))/2 + T(1, 2)
E(1) = ((1, J) + 2*AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
E(1) = ((1, J) + 2*AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
DO 13 J = 1, 2, 3, 4, 5
A(J) = -A(J, 2) + T(1, 2)/2, DR = AL = DT/DR + 5*AL = DT/RAD/DR
B = 1, 2 + 2, 3*AL = DT/RAD/DR
C(J) = 2, 5*AL = DT/RAD/DR + 3, 5*AL = DT/RAD/DR
D(J) = (J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
DO 13 J = 1, 2, 3, 4, 5
A(J) = -A(J, 2) + T(1, 2)/2, DR = AL = DT/DR + 5*AL = DT/RAD/DR
B = 1, 2 + 2, 3*AL = DT/RAD/DR
C(J) = 2, 5*AL = DT/RAD/DR + 3, 5*AL = DT/RAD/DR
D(J) = (J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
DO 13 J = 1, 2, 3, 4, 5
A(J) = -A(J, 2) + T(1, 2)/2, DR = AL = DT/DR + 5*AL = DT/RAD/DR
B = 1, 2 + 2, 3*AL = DT/RAD/DR
C(J) = 2, 5*AL = DT/RAD/DR + 3, 5*AL = DT/RAD/DR
D(J) = (J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
DO 13 J = 1, 2, 3, 4, 5
A(J) = -A(J, 2) + T(1, 2)/2, DR = AL = DT/DR + 5*AL = DT/RAD/DR
B = 1, 2 + 2, 3*AL = DT/RAD/DR
C(J) = 2, 5*AL = DT/RAD/DR + 3, 5*AL = DT/RAD/DR
D(J) = (J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
DO 13 J = 1, 2, 3, 4, 5
A(J) = -A(J, 2) + T(1, 2)/2, DR = AL = DT/DR + 5*AL = DT/RAD/DR
B = 1, 2 + 2, 3*AL = DT/RAD/DR
C(J) = 2, 5*AL = DT/RAD/DR + 3, 5*AL = DT/RAD/DR
D(J) = (J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
DO 13 J = 1, 2, 3, 4, 5
A(J) = -A(J, 2) + T(1, 2)/2, DR = AL = DT/DR + 5*AL = DT/RAD/DR
B = 1, 2 + 2, 3*AL = DT/RAD/DR
C(J) = 2, 5*AL = DT/RAD/DR + 3, 5*AL = DT/RAD/DR
D(J) = (J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
DO 13 J = 1, 2, 3, 4, 5
A(J) = -A(J, 2) + T(1, 2)/2, DR = AL = DT/DR + 5*AL = DT/RAD/DR
B = 1, 2 + 2, 3*AL = DT/RAD/DR
C(J) = 2, 5*AL = DT/RAD/DR + 3, 5*AL = DT/RAD/DR
D(J) = (J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
DO 13 J = 1, 2, 3, 4, 5
A(J) = -A(J, 2) + T(1, 2)/2, DR = AL = DT/DR + 5*AL = DT/RAD/DR
B = 1, 2 + 2, 3*AL = DT/RAD/DR
C(J) = 2, 5*AL = DT/RAD/DR + 3, 5*AL = DT/RAD/DR
D(J) = (J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
E(J) = ((J, J) + AL = DT*(T(1, J) - T(1, J))/2 + T(1, J))/2 + T(1, J)
YZ(X) = (DJ(K) = AH*YZ(X-1))*/IZ(X)
T\((L, J) = YZ(L) \)
DO 12 K=LL,1,-1
KJ=K
X=CC/HF(KJ)
12
TN(KJ, J) = YZ(KJ) - X*T\((KJ+1, J) \)
GO TO 13
22
TN(2, J) = (D1*T(2, J+1) + T(2, J) - 2*Z(2, J)) - AAT(1, J) + T(2, J)
2(T(2, J+1) - T(2, J-1) - COT(3, J))/BB
GO TO 13
25
E1*DI*(T(2, J+1) + T(2, J-1) - 2*Z(2, J)) + T(2, J) - AAT(1, J)
E2=DI*(T(2, J+1) - T(2, J-1))
E2=DI*2*D1*(T(3, J+1) - T(3, J-1))
F=E1*BB-E2/AA
G=CC/BB-E2/AA
TN(3, J) = F/G
TN(2, J) = E1*BB-COT(3, J)/BB
RETURN
END
SUBROUTINE TLZ (J,ML, TN, T,RMIN)
DIMENSION KL(33),TN(1,32),T(31,32),DJ(33),YZ(33)
COMMON /22/ Z2,D2,DT
COMMON /33/ AS,AL,DJ,Y2,YZ
COMMON /ETA2/ U2,UR
COMMON /GAMMA/ V11,V2,V3
COMMON /L2/ A1, A2, A3
L=LL(J)
R0=FLCAT(J-1)*DR+RY/IN/12.0
IF (L.GE.L1) GO TO 12
IF (L.GT.0) GO TO 23
IF (L.EQ.0) GO TO 128
AA(L) = Y2*UR(L,J) - DT/DZ - AL*DT/DZ/DZ
CC(L) = SVEZ(L,J) + DT/DZ - AL*DT/DZ/DZ
DJ(L) = SVEU(L,J) + DT/DZ - AL*DT/DZ/DZ
CC(J) = SVEZ(J) + DT/DZ - AL*DT/DZ/DZ
DJ(J) = SVEU(J) + DT/DZ - AL*DT/DZ/DZ
IF (L.EQ.0) GO TO 128
CALL TLZ(J)
IF (L.EQ.0) GO TO 128
12
RETURN
13
DO 3 J=LL,-3
AA(J) = 1*UR(J) + DT/2.0 + DZ*AL*DT/DZ/DZ
CC(J) = 1*UR(J) + DT/2.0 + DZ*AL*DT/DZ/DZ
DJ(J) = 1*UR(J) + DT/DZ - AL*DT/DZ/DZ
DJ(J) = 1*UR(J) + DT/DZ - AL*DT/DZ/DZ
IF (L.GT.0) GO TO 128
GO TO 3
3
CONTINUE
I=I+1
AA(I) = 12*UR(I) + DT/2.0 + DZ*AL*DT/DZ/DZ
CC(I) = 12*UR(I) + DT/2.0 + DZ*AL*DT/DZ/DZ
DJ(I) = 12*UR(I) + DT/DZ - AL*DT/DZ/DZ
DJ(I) = 12*UR(I) + DT/DZ - AL*DT/DZ/DZ
IF (L.GE.0) GO TO 128
GO TO 2
2
DZ=DFCC(I) + T(I+1,J) + T(I,J)
YZ(L) = DB
Y2(L) = DJ(L) + DZ(L)
DO 1 J=LL,-2
X=CC(K) + D2(K-1)
YZ(K) = X - AA(K)*X
YZ(K) = (DJ(K) - AA(K)*YZ(K-1) + DZ(K)
TN(J2,J) = YZ(J2)
CC 12, KJ=3, L=1
X=CC(KJ)*2(KJ)

12
TN(KJ,J)=YZ(KJ)-#TN(KJ+1,J)
GO TO 130

20
A=UZ(L,J)*OT/2/Z=AL*DT/DZ/DZ
C=UZ(L,J)*OT/2/Z=AL*DT/DZ/DZ

1 L,J-1-2,OT(L,J)/DR*+AL*DT(T(L,J+1)-T(L,J-1))/2/RAD/
2 DR-K*OT(L-1,J)-C*OT(L+1,J)-T(L,J)

TN(L,J)=N/5B
GO TO 130

25
A=UZ(L+1,J)*OT/2/Z=AL*DT/DZ/DZ
C=UZ(L,J)*OT/2/Z=AL*DT/DZ/DZ

1 L,J-1-2,OT(L,J)/DR*+AL*DT(T(L,J+1)+T(L,J-1))/2/RAD/
2 -T(L,J-1)+2,OT(L,J)/DR*+AL*DT(T(L,J+1)+T(L,J-1))/2/RAD/
DZ=0.5*DR(L+1,J)*DT/DR*(T(L+1,J-1)-T(L+1,J+1)+AL*DT(T(L+1,J+1)-T(L+1,J-1))/2/RAD/
F=01/88=C/A

C=CB=36/A
TN(L+1,J)=F/5

TN(L,J)=D1/88=CTN(L+1,J)/BD
100 RETURN
END