AR |

N73- 131908

Technical Report TR-196

A TRANSLATOR AND SIMULATOR FOR THE

BURROUGHS

John Roberts

IO

by

D MACHINE

August 1972

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

Technical Report TR-196 | August 1972

A TRANSLATOR AND SIMULATOR FOR THE
BURROUGHS D MACHINE

by
John Roberts

. This research was supported in part under Grant
NGL~21-002-008 from the National Aeronautics and
Space Administration to the Computer Science
Center of the University of Maryland.

ACKNOWLEDGEMENTS

- The author would like to acknowledge the contribution of Dr. Ashok
. Agrawala of the University of Maryland for his suggestions on conversational
program responses and his.guidance in developing this software package.

The author would also like to express his gratitude to Dr. Earl Reigel
of the Burroughs Corporation for his permission to reproduce parts of the
D Machine technical manuals and for introducing the author to the D Machine,

I. ABSTRACT
II. D MACHINE

III. TRANSLANG

Iv. TRANSLANG
V. - D MACHINE
APPENDIX

A, TRANSLANG
B. TRANSLANG
c. TRANSLANG

D. D Machine

CONTENTS

TRANSLATOR

SIMULATOR

Syntax
Key Words
Interpreter Error Messages

Timing and Control Word Format

29
33

A-3

B-5

D-26

1. ABSTRACT

Traditionaily software for small microprogrammed computeré has been
minimal or nonéxistent. One solution to this problem is given for the
Burroughs Corporation D Machine, The system, which is implemented on the
University of Marylahd UNIVAC 1108 and shown in the flowchart on the next
page, is composed'Ofttwo programs: a TRANSLANG. translator, and a D Machine

simulator,

In an effort to fully understand this system, a full description of
the D Machine and. TRANSIANG are given in this document.

Eriefly, hbwever, the D Machine is a small user microprogrammable
computer. designed to be a versatile building blqck for such diverse functions

as: disk file controllers,_I/O“controllers, and emulators.

TRANSLANG is an Algol-like language, created by Burroughs, which
allows D Machine users to write microprograms in an English-like format

as opposed to creating binary bit pattern maps.

The TRANSLANG translator pafses TRANSLANG programs into D Machine
microinstruction bit patterns which can be execﬁted on the D Machine simulator.
'In addition to simulation and translatioh, the -two programs also offer several
debuggingvtoqls, sﬁch as; ‘a full set of diagnostic error messages, register
dumps, simulated memofy dumbs, traces on instructions and groups of instructions,

and finally, breakpoints,

"TRANSLANG"

Source Code

Translator | | "TRANS " | 'ERROR MESSAGES
Control : .Translang ————p1 Interpreter
Parameters Interpreter on Output Listings

the UNIVAC 1108 of BIT Patterns
. in HEX

| Punched Cards
ready for input

Bit patterns
for D Machine

or A . I . .
Similator | into "D" Machine
/ Simulator "D" Machine
Control Simulator
Parameters 2 on
the UNIVAC 1108

h

~ Simulator ~ Dumps, Traces, Results, and
Output other debugging tools

"

D MACHINE SOFTWARE PACKAGE

1T, D MACHINE

The D Maéhine consists of four functional units; the Micro Program
Memory (MPM or Control Store), the Memory Control Unit (MCU), the
Control Unit (CU), and finally the Logic Unit (ILU). These elements are
shown diagrammatically in Figure 1. All specifications are for the D

Machine which is emulated,

The MPM holds microprograms which are to be executed, This
memory is 70 bits wide by 1024 words long. The 70 bifs are composed of
two areas. The first is 16 bits (M memory) and is used to set literal
amounts in registers or to define whether the next 5h bits are used.

(In some D Machines, the two areas reside in completely separate mem-
ories). The 54 bit area (NANO'Memory) activates all the gates and paths

iriside the D Machine except in the case just mentioned,

The MCU generates addresses for both the Main Memory and for the
MPM. Tt contains two 12 bit registers for MPM addressing, three 8 bit
registers for Main Memory addressing, one for 8 bit literals (LIT), and
one 8 bit counter (CTR). The two for MPM addressing are called the
Micro Program Count Register (MPCR), the main program counter, and the
Alternate Micro Program Count Register (AMPCR), which is used to hold
return addresses, The three for Main Memory addressing are Base
Register One (BRl), Base Register Two (BR2) and the‘Memory Address
Register (MAR). Main Memory addressing is accomplished by concatenating
BRL and MAR or BR2 and MAR to form a 16 bit address. For the simulated
Main Memory only 1024 words of 32 bits are provided, so only 12 bits of

the concatenated Main Memory Addresses are needed.

The CU receives the bits from the NANO Memory and decodes them
to provide commands to the Logic Unit. Each instruction can have

several conditional parts and thus the CU is responsible for testing

(ouep) Azowapy uonanisuloueN v
(NdIN) Atoway wesboidosniy v
{o/4d ._m M/H — suun ajqejieae piepuess) ssbexyoed Ajowaw om] e

H19/L171 'HVYIN/2HE/LHE ‘HOdWVY/HIdIN siassibay —
| (NOW) Nun jonuo) Alows. v

| :o_«_v:oo\v:mEEoo\rx\m siasibay —
{ND) wun jonuoy v

HIW/G/EV/CV/LY siasibay —
‘ (n1)munoaboyl v

— (*xoadde ‘sayeb 9oz Ajuo Bututeiuod yoea) sabexoed o160) jo sadAy sa1y) e

' 130's)sIsu09 1a3asdiaiu| yoeg

eieq _Em._a_ho&toEo.s_ Em.s_ . ssaIppy |esayduagd/Atowdpy ulepy

apie Avoea apeea
49 3 s§93 | 93 .
1939 1 o 0 @ 4 ¢

n1 nl [] I P

O 8 | z | t : ﬁ 3]

no ! Now

ouen WdN [e—

d3134d43.LNI

IMS
B1A 5301897 jesayduayg
pue $alIoWa Y S 01

wnding e1eq Buissa.ppy jesaydisag
A . . pue
- ssaaidiau| B3O 01 Alowapy g
- SUoIIPUOY (€901
niol
’ 11V/HOdWV/H LD
_ Hin
; - H19/117
HviN/Zya/148 suoiIun4 [e12adg
" U\ 41 S € sso1ppy
| HOLIMS 134¥ve | ‘ /4IdNY HVYW/ZHa/1 Y8 WdW
. . . Buissauppy
apim s11q — . ‘ HvS somaqAIowan 2 —
g yoea - suonipuo)
! L >
‘Suof10as rl_r . meD.< t e Sunias pue Bursa) mmum_s_,q\mua_z .
tun 21607 : UOIIPUOD |01U0T °E uIsSaIPPY WdW L
goidn . (NJW) LINN
T ; TOHINOI AHOW3IW
HREREREH £V (4vs)
— youms jareq YOdNY
* A 0]} junowe ain
| LV _ Uy Aypoads -z
l $/0J1U0D 15U
{6y |0nu0J) |1 a0AL
nlo -
SpUBLIWGC) 3pIAoid °| 1
(N7) LINN yvs
21901 (NJ) LINN TOHLNOD ‘s
- a» o
) 1 adAy
IS eIA LI1/604NY/810 . slonuon
saoinaQ sinduj 2 {(WdWw)
tesaydisad , AHOWaN |_ |
pue
sapowaN S AHOWIW ONVN ” WvH490ud
wouy $s1ppY OHIIN
induj ejeq —
(vS) OueN (at)
suotpuog .
Jeusaix3y :

WVYHOVIQ X0079 H313HdH3LNI

Lha

(1b) ¥IN :9:%2 10}) ¥YOJWVY UJ SIUSIUOD YDOJW Sanes) | UDd ianes
(ov-,¢) by € (9ouanbas uj spoadoid 21052434l ‘YOI Jo Buipeol sqIyuy) | ¥OdWY :09x3
(9€-v¢g) 634 v 4 YOdINY uiniay
suopieunsadg (v) . 1 YDdAY fdwnf
(E€-2€) 10NU0D YN IMmg dueg (g} ({uIm191 10j) YDAWY UT SIUNUOD YDJW Sanes osie) | YDdNY (11RD
(1€-¢£2) tonuod Aued ¥ do 19ppy (7) z YOJdA diys
(92-0¢) bay¥ 8 i YO dW daig
(61~£1) D3y ¥ 0 4DdN Tem
1uoyID3As (1) @ 1oU] IFEES] @
sretaydiiagd 1o R
Azowap ujepy JOoJ SSIIPPY ‘n"1oyp "n°1o0L
s{esaydiiad Jo -
$[04u0D AVvdiN AIOWBN UIRN 10] -t Y [) L m_NﬁEﬁ,
s{oluo) [eiaydiiad,Aowa utnp sfeubig isenbay -
1snfpy *bay tpuod Z 1o 1'0 &q
No0(D “bay u:mE:on "n°T Ul “0*D woiy UDWBIU]
#9010 Hun 91607 yoIMg (LR 100108 471 }
i0) sjonued woJsj
- ~ ‘Hiay *uo)d
YI1IMms [oueg Oy ONI
uonypuoc) ‘I1adQ 4 avdin 4
unowy HJiys -
L dwod TYN¥ILXT pue) _ |
uopresado ‘N1 8 A ’ FA
8 8 8 8 £
WS YYIN AL rug 13 %) 111 dDdNY YO
. [
uopnoaas b J
N1l [
U23im NN
[adeg wouay NonW
woiy — ﬁ
5 Jj0jeredwo)
. : i) YO dNY
o 1i1
N -— YyS p O} anpep] 9dAL
spuRWwoD p .. SS3Ippy oueN :f adA]l
@ ufl™] SUGTIoNIISUJODTN
e
w 2l jays1bay)
w UonIpuc) YYS/ YLD/ YYIN/28d/ T88/4DdNY
o - 130} S[onuU0D %901 Indu]
o} * (e
) 1snfpy =/ (s1q 91)
18¥ 1ST LS AOV -bay uoTITpuOD
ni ‘0°71 V1 Jepy X
. . Wdn
wolj SUOHHPUCD _ no (asted g/an4l g)
S{ONUOD sS8IPPY Wd
3 3 Klowasp
! weiboid
- 0IOTN
(s31q bS) Alowap - oueN

Iv

and setting conditions inside the entire D_Machine; Another function
of the CU is to provide shift amounts to the IU shifter. This is
accomplished by maintaining the 5 bit Shift Amount Register (SAR) to
indicate a shift of from O to 31 bits. | -

The last unit is the Logic Unit, and it is this unit which is
the most obvious to the microprogrammer. The LU architecture consists
of five 32 bit registers, an adder, and a shifter (barrel switch). The
Al, A2, and A3 registers make up the left inputs to the adder from the
IU and the B register is the only right input from the IU. A micro-
instruetion selects, during each adder cycle, a left and right.adder
input from those just mentioned or from other registers outside the LU.
Once selected, the requested adder operation is performed and then that
result is optionally shifted any amount and stored -into any of the four
.registers already mentioned, or into the Memory Input Register (MIR).
Data enters the LU from external sources through the B register and
leaves through the MIR register. An interesting feature associated
with the B register is the B select unit. This logic network allows
the user to select the B register as a source for the adder in many var-
igtions, The select unit breaks the B registef into three parts; most
significant bit, least significant bit, and all bits in between. Each
of these parts can be selected as True, False, Zero or One, Trﬁe indi-
cates the part is unchanged. False indicates the one's compleﬁent of
the part is selected; Zero requests the part to be set to all zeros
(or zero) and One, similarly, dictates the part to be set to all ones
(or one). This will be utilized in TRANSIANG which would allow one to
say BOTT = B, which meéns B is replaced by the absolute value of B

(i.e., the sign bit is set to zero to denote positive).

To understand the D Machine and how it is microprogrammed, it is
necessary to examine the control word formats of the MPM Memory and to
study the timing of events inside the D Machine. A detailed exami-

nation of these two topics is given in Appendix D. It should be noted

here that if one writes programs in TRANSLANG he need not know the
function of each bit in the Control Memory, but he must be familiar
with the timing of events or he will find it impossible to write

‘error free programs.

ITI. TRANSLANG

TRANSIANG is a Algol-like language created to assist in writing’
microprograms for the Burrough's D Machine. Its complete syntax is
given in Appendix A. - Thé vocabulary of TRANSLANG consists of numerous
Key Words (reserved words) which, after proper.ordering as prescribed
in the syntax, can be translated into microinstructions. A complete

1ist of these Key Words is given in Appendix B.

Each TRANSIANG instruction consists of one line (or card) and

- corresponds to the set of D Machine functions which are activated in
parallel during that machine clock (i.e., one control store word).

These functions include register adjustments, I/O, Boolean, logical

and computational operations, control transfers and assignments. To
gid in control transfer each instruction can begin with a label identi-
fier which can be used to uniquely identify that address throughout a

program,

Backus-Naur form (BNF) is used as the metalanguage to define the
syntax of TRANSLANG. The complete syntax is broken up into groups and

presented in the following order: syntax, semantics, and examples.

'In an effort to increase understanding and simplify definitions,
the following convention will be used in conjunction with the BNF defi- -
nitions - "{" and "}" will be used to encompass English language des-

criptions which might otherwise take more effort to describe in BNF.

Basic Elements

<Body> <End Line>

Syntaa: <Program> :: '
<Comment> |<Line>|<Body> <Comment>|<Body> <Line>

<Body> =
<Line> :: = <N Instruction> $ |<lLiteral Assignment> $
<Comment> :: = COMENT {Any string of <Character>s except $}$
<Empty> = {The null string of characters} .
<Letter> = Al|c|pjElrleulz]six]LIv|N]|o]p]qlRIs |TlulvIvix]y Iz
<Digit> = o[r]|2]3]4]5]61718]9
<Character> :: = <Letter>|<Digit>|<Single Space>|<Symbol>
<Label> :: = <Letter> |[<Label><Letter>|<Label><Digit>
<Single Space>:: = {One horizontal blank position}
<Symbol> = [+ -1 =l D 1
<Assignment Op> :: = =
<End Line> :: = END $

Semanties:

A TRANSLANG program consists of a series of instructions followed
by an END instruction. Each instruction is translated into one micro-
instruction and placed into the simulated control store starting at
address. 0 and stepping by 1 for each additional instruction (up to 1024). Labels can
be used as symbolicé for addresses. Whenever a label is encountered it~
is ihserted into a table for resolution in ﬁass 2 of the translator.

Labels can be up to 6 characters long.

Comments can be made in two fashions. One is by starting the
line with the KeyLWOrd comment, which causes no action to be taken on
any lines which follow until a line with a "$" appears. After that
line translation resumes. The second method is to put comments after
.the "$" which must end each instruction. Please note that an instruction

cannot be continued and must appear on one line only.

Spaces can appear around Key Words but not inside them.
Embedded blanks: will always cause problems,

Iiteral Assignment

Syntax:

<Literal Assignment> :: = <Literal> = AMPCR|<Literal> = SAR|

<Literal> = SAR, <Literal> = <Lit>|
<Literal> = <Lit>,<Literal> = SAR]|
<Literal> = <Lit>

<Literal> :: = <Integer>|Comp<Interger>|<Label>|

<Integer> :: = <Digit>|<Integer> <Digit>

<Lit> :: = LIT|SLIT

Semantics:

These instructions are 16 bit type II instructions as mentioned
in the timing section of Appendix D. Each is used for inserting con-~

stants into one of three registers: AMPCR, SAR or LIT.

Width
AMPCR Alternate Micro Program Count Register 12
SAR Shift Amount Register .5

LIT Literal Register

The registers may be individually loaded or both the SAR and
the LIT may be loaded in the same instruction. Usually the latter may
be used in place of separate instructions to individually load LIT and
to load SAR. |

An <Integer> should be non negative, in the range of the intended
receiving register(s). COMP <Integer>, if the receiving register is
LIT or'AMPCR, takes the ones complement of the <Integer>, then takes the

number of bits indicated above into the receiving register.

If SLIT is the destination register, then the literal value is
entered into the LIT registers in the same form as the SAR. The SAR
register requires an unusual format as shown in the following table,
Zeros are used to fill the 8 bits. ‘ |

10

SAR "CONIP"

0 000X 00 000X 00
1 01 111X 11
> 10 10
3 1 ‘ 01
L 00IX 00 00
5 01 110X 11
6 10 10
7 1 o1
8 010X 00 00
9 01 101X 11
10 10 10
11 S11 - o1
12 011X 00 00
13 oL . 100X 11
1k - 10 10
- 15, 11 01
16 - 100X 00 - 00
17 oL - . 011X 11
18 10 10
19 11 01
20 101X 00 00
21 01 010X 11
22 10 10
23 1 o1
2l 110X 00 - 00
25 o 001X 11
26 o 10
27 o1 ol
28 110X 00 00
29 oL 000X 11
30 10 | 10
3 1 ' o1

X - indicates an unused position.

The successor of a <Literal Assignment> is always a default STEP.

11

Examples:

5 = SAR

$ SAR set to 001XOL

COMP 8 = SAR, 13 = SLIT $ SAR is 110X00, LIT is 00011X 01

COMP O = LIT

255 = LIT

START = AMPCR
LOOP - 1 = AMPCR

N Instruction

Syntax:

<N Instruction>

<Unconditional Part>
<Component List>
<Component>
<Conditional Part>

<Cond Comp List>

Semantics:

]

$ LIT is 255

$ Same as above

$ Value of address START will go to AMPCR
$ Address LOOP-1 goes to AMPCR

<Unconditional Part> <Conditional Part>
<Label> , <Unconditional Part>
<Conditional Part> ,

<Component List> |<Empty>
<Component>|<Component List> <Component>
<Ext op>|<Logic op>|<Successor>

<If clause> <Cond Comp List> <Else élause>|
<If cluase>|<When Clause> <Cond Comp List>|
<Empty> i
THEN <Component List>

Each N instruction produces a 5L bit microinstruction (Nano) and is

called a type I instructions.
followed by a "."
the label and the address of this instruction in a table, such that all

An N instruction may begin with a Label

If this occurs the label is then defined by putting

references to this label can be resolved with this address.

The following restrictions are imposed:

1. At most one <Ext Op> - either conditional or unconditional

- 2., At most one <Logic Op> - either conditional or unconditional

12

3. At most either one conditional successor or one unconditional
successor in the <Cond Comp List> and possibly one in the
<Else Clause>,

The <Unconditional part> is always executed. 1In the <Conditional
Part> if the condition resulting from the <If Clause> or <when Clause>
is true the components,K in the <Cond Comp List> are executed; otherwise,
the <Else Clause> is executed.

Examples: (to be explained later)

Unconditional Part Alone:

SET ICl $
- MR2 $

SET 1C2, MWl $

A2 + B R = A3 $

Al + B R = A2, BEX, IMAR $
JUMP $

DRl, O = A2, SKIP $

" Conditional Part Alone:
IF AOV THEN Al+l.= Al ELSE SKIP $
IF NOT ABT THEN SET IC2, SKIP ELSE SAVE
WHEN RDC THEN MR2, BEX, INC $

N Instruction:
WHEN RDC THEN BEX $
SET 1C1l, IF MST THEN LIT-B-1 = A3, BEX $
MR2, SET LC2, IF LST THEN Al+B = A2 $
Al OR B = A2, IF IC2 THEN MRL $

13

Condition
Syntax:

<If Clause> H IF <Condition> .

<Condition> = <Not> <Cond>
<Not> :: = NOT |<Empty> ,
<Cond> :: = LST|MST [AOV |ABT |cov |RMI |RDC [1c1 |nc2 | 1Ra |EXT |1TRG |

- srql1nNt|cc1|ac2]
WHEN <Condition>
ELSE <Successor> |<Empty>

<When Clause> ::
<Else Clause> ::

Semantics:

Fach N instruction can perform a test on the Boolean value of one
<Cond> or its complement (i.e., NOT <Cond>). The Boolean value of the
result is <Condition>. If this value is true, the <Cond Comp List> is
executed and the successor from this 1ist is used to determine the next

M instruction. Otherwise the successor in the <Else Clause> is used,

If the <Else Clause> is absent, an EISE STEP (see <successor>) is
substituted by default. A <When Clause> is equivalent to an <If Clause>
‘with the same <Condition> and an <Else Clause> of ELSE WAIT.

Testing of a condition bit causes-the bit to be reset. These

conditions are:

RMI - Ready MIR bit
- -Follows memory operations, indicates data in MIR and
addresses héve been captured and can be changed, Occurs
one clock after initialization of memory operation.
| Required operation before another memory write can occur

with full confidence of accuracy.

1k

RDC - Read Complete
Follows memory read, indicates data will be available for

entry to B in the next clock.

COV - Counter Overflow
Follows after an INC which caused the CTR to overflow
- (i.e., exceed 255).

'LCl - Local Condltlon 1
Tests and resets local Boolean condltlon bit I1C1 (a one
bit status flag).

IC2 - Local Condition 2

Tests and resets local Boolean condition bit LC2.

The following four logic unit conditions are not bits which are
reset on checking as above, but are dynamic levels and indicate the
resultant output from the adder in the phase 3 of the last instruction
which had a logic unit operation. These conditions are sustained until
execution of another instruction involvingrthe logic unit and may be
tested by that instruction., (See Appendix D for timing). Please note
the conditions may change due to a type II instruction which alters

AMPCR or LIT when either is also specified as an adder input.
AOV - Adder Overflow
Results from an adder operation with carry out of the most

significant end of the adder.

- IST - Least significant
State of the least significant bit of the adder output.

'MBT - Most significant
State of the most significant bit of the adder output.

15

ABT - All Bits True
This condition is true (one) if and only if the adder

output is all ones.

The following conditions are legal syntactically but have no
meaning in the D Machine simulation due to the limited I/0 emulation
and other reasons.* The correct code is generated, however, and
‘would run correctly on a D Machine with a full implementation; Similar

problems will be mentioned in <Ext Op> in the next section,

IRQ
EXT
INT
SRQ
URQ
GC1
GC2

Examples:

IF NOT LC1l THEN Al;l-B = A2 EISE SKIP $

WHEN RDC THEN BEX $ Same as below - puts data in B
IF RDC THEN BEX ELSE WAIT $ Same as above | '
IF LST THEN SET ICl, MRL $

*Such as maintaining compatibility since D Machines come in many sizes
and implementations - not all functions are on each.

16

External Operations

Syntax:

<Ext Op> <Mem Dev op>|<Set op> |

<Mem Dev Op> <Set Op>|<Set Op> <Mem Dev Op>|
<Empty>
M31|M32|Mw1IMw2|DR1|DRQ|DU1|DU2|DW1IDW2IASRIASE
SET <Cond Adjust Bit>|RESET GCl| RESET GC2

INT |2C1 |1c2 |Gel |ae2

<Mem Dev Op>
<Set Op>
<Cond Adjust Op> ::

Semantics:

The external operations are part (or all) of an <N instruction> and
therefore a type I instruction. An <Ext Op> may be specified as either
conditional or unconditional as it appears in at most one of the

<Unconditional Part> or <Conditional Part>.

The memory operations MRl, MR2, MWl, and MW2 are the only external
operations which have been allowed in the D Machine simulation, All
other operations are syntactically correct but have no implementation.

If their meaning is important, please refer to reference 1.

MR1 and MR2 are memory read operations. MWl and MW2 are memory
write operatlons with 1 and 2 referrlng to the address source reglsters.
Memory addresses are generated by concatenatlng the 8 bits of the MAR,
to form the low order blts, and 8 bits from either BR1 (MR1 and MW1) or
BR2 (MR2 and MW2).

The set and reset operations are used to set and reset condition

bits. Again, not all operetions have been implemented due to the same

' reasons cited earlier, but they remain syntactically correct,

17

SET IC€1 and SET LC2 are the only operations which are allowed in
the D Machine simulation. RESET ICl or LC2 is not needed since testing

resets them automatically.

Examples:
SET 1LC1l, MR2 $
MR1, SET LC1l $

MW1 $

Logic Operation

Syntax:
<Logic Op> :: = <Adder Op> <Inhibit Carry> <Shift Op> <Destination List>
<Adder Op> :: = O|1|<Monadic>|<Dyadic> |[<Empty>
<Monadic> = <Not> <X Select>|<NY Select>
<Not> = NOT |<Empty>
<Dyadic> = <X Select> <Any Op> <Y Select>
‘ NOT <X Select> <Normal Op> <Y Select>
<X Select> {<Normal Op>|<Not Y Op>}NOT <Y Select>
<X Select> + <N Y Select> + 1|<X Select> - <N Y Select> -1

Semantics:

The logic operations inciude the selection of adder inputs, the
adder operation, the barrel switch shifting, the destination specifi-
cations for the addér and BSW outputs, and the controls for the literal,
counter, and shift amount register. The monadic operations are those
which have only one explicit input. The selected value or its ones com-
plement may become the adder input depending on the <NOT> function being
NOT or <Empty>. The dyadic operations have both an <X Select> and a
<Y Select>. ' -

18

The default <Logic Op> is unconditional 0+0 = . This does cause

cémpletion of the prior <Logic Op> in progress in phase 3. (See

Appendix D for timing explanations).
Examples:
0 = CTR $
Al AND BOl1ll1l = Al $

A2 + NOT CTIR R = A2, BEX, CTR, CSAR $

Input Selects

Syntax:
<X Select> “:: = 0|A1]|A2|A3|CTR|ZEXT |1IT |2 |<Empty>
. <Y Select> :: = 0|1|B|B <& <C> <I>|CTR|ZEXT |LIT|Z |
AMPCR |BMAR

<NY Select> :: = <Not> <Y Select>
<M> 11 = <Gating>
<> 1 = <Gating>
<> :: = <Gating>

<Gating> :: = O|1|T|F

Semantics:

There are three A registers which may be used for data storage
within a D Machine, Any one of the A registers, or the counter,
external source (not implemented in simulation), literal, or Z (also
not implemented) may be selected as input to the adder is the
<X Select> part of the instruction., The B register is the primary
interface for external inputs from the main memory. It also serves
as input to the adder. The B register can be partitioned when it is

selected as input to the adder. The partitions are as follows:

M - Most significant bit of B (left most)
C - Central bits of B ,
L - Least significant bit of B (right most)

19

When selecting the B register as input to the adder, each of
the three parts may be independently specified as being-either
0, 1, T or F. A zero gating will cause that part to be all zeros,
A one gating will cause that part to be all ones. A T gating will
produce the true value (no change) of the B part. An F gating will
produce the false value (ones complement) of B for that part. There
can be no spaces between gatings, If B is specified by itself, then
BTTT is assumed. However B is selected as an adder input; its con-

tents -are left unchanged.

Whenever any other register is specified as an adder input, it

will be right justified in the specified 32 bit input,
Examples:

BTFO

Al

AMPCR

BOTT Adder input is absolute value of B

Adder and Shift Operators

Syntax:
<Normal Op> = NOR |NRT |NAN |x0R |N1M |oMP [EQV |AwD |RTM |OR
<Not Y Op> 1ro= +]|-
<Any Op> = OAD |AAD |<Normal Op>|<Not Y Op>
<Inhibit Carry>:: = IC [<Empty> | -
<Shift Op> = R|L|C |<Empty>

Semantics:

Fach <Dyadic> contains two operands (X any Y Sélect> and an

operator. All operators are commutative except for "-", "OAD" and

20

and "AAD." Commutative operands can appear in any order, The recom-
mended standard order is X Op Y which works for all operators. The

following table defines the adder operations.

Commutative Operators Name Equivalence
X NOR Y Nor XY

X NRI Y Not Reverse Imply XY

X AND Y And XY

X NIM Y Not Imply XY

X XOR Y . Exclusive Or XYV EY)
X EQV Y Equivalence XY)v (XY)
X IMP Y ' Imply VY

X NAN Y Nand , XVY

X RIM Y Reverse Imply XVY

X dR Y Or (inclusive) XVY

X + Y » Add X plus Y

. Non Commutative operators

X -7 : Subtract X+Y+1
X OAD Y Or Add X+ XVvy)
X AAD Y - And Add X+ (XY)

The carries from 8 bit bytes can be inhibited by specifying IC.
Since this was found to be used so infrequently, it is not included

in the simulator.

There are four shift operations., One can be selected for each
adder operation. 'The operator specifies shift direction and the SAR
register specifies the number of bits., All shifts are completed in

the same amount of time (within the same cycle - see Appendix D).

21

R - Right end-off shift by amount in SAR, filled with left zeros

L - Left end-off shift by complemented amount in SAR, filled
with right zeros. o

C - Circular right end around 'shift by amount in SAR

<Empty> - No shift

Examples:
0
NOT LIT
Al + B+1 R
A2 OR NOT CTR C Seme as A2 RIM CTR C

Destination Operators

Syntax:

<Destination List> :: = <Asgn> <Dest>|<Destination List> <Asgn>
_ ' <Dest>|<Asgn>
<Asgn> R |=

<Dest> :: = Al |A2|A3|MIR|BR1|BR2 |AMPCR [<Input B>
<Input CTR>|<Input MAR>|<Input SAR>
<Input B> :: = B|BEX |BAD |BCk |BC8 |BMT |BBE |BRA |BBI
<Input Ctr> :: = CTR|LCTR|INC
<Input Mar> IS MARIMARlIMAR2|IMAR
<Input Sar> ' I SAR|CSAR
‘Semantics:

The destination operators explicitly specify registers in which

changes will occur at the end of the logic unit operation,

Restrictions

1. At most one each from <Input B>, <Input Ctr>, <Input Mar>,
and <Input Sar>. '

22

2, If <input Ctr> is ICTR then <Input Mar> may not be MAR,
MAR1, or MAR2.

3. If <Input Mar> is IMAR then <Input Ctr> may not be CTR.

L, After "=" in the destination list, separate operators with

either a comma or blank, but not another "=",

The principal data source is the barrel switch output. It is
"the only source for loading Al, A2, A3, MIR, BR1l and BR2, It pro-
vides one source for loading B, CTR, MAR, SAR and AMPCR. The following
reserved words are also the:register names. The bits used in these

transfers are indicated below:

- Destination Barrel Switch Output
Register Source Bits

Al : _Allv
A2 All
A3 All

B . A
MIR . A1
BRL 2nd least significant byte
BR2 2nd least significant byte
MAR Least significant byte
CTR . Least significant byte (ones complement)
SAR Least significant 5 bits
AMPCR Least significant 12 bits

B, MAR, CTR, SAR and AMPCR registers may have other inputs as

shown below:

B Registers Inputs (BCk and BC8 are not simulated)
B The barrel switch output is placed into B
BEX Data from the memory bus is placed into B

23

BAD The adder output is placed in the B
register (short path to B)

BMI The MIR contents are placed in B inde-
pendent of any concurrent change to the
MIR '

BBE The barrel switch output ORed with the
data from the memory bus is placed into B

BBA ‘The barrel switch output ORed with the
adder output is placed into B

BBI The barrel swtich output ORed with the MIR

contents is placed into B independent of

any concurrent change to the MIR.

MAR inputs »
IMAR The literal register content is placed in
MAR
CTR inputs
LCTR The ones complement of the LIT register
contents is placed in CTR ’
INC Increment CTR by one
SAR input
CSAR Complement prior content of SAR

If AMPCR is changéd by a successor selection of CALL or SAVE these

operations take procedence over any specified by the logic unit,

Examples:

=B
CTR
Al, BEX, MIR, LCTR, CSAR

1}

2l

Successor

Syntex:: -

<Successor> ::

Semantics‘

= WAIT |STEP|SKIP|SAVE |cALL |EXEC |sUMP |RETN

Each <N Instruct10n> speclfles 2 successors explicitly or 1mp11-

citly, indicating the control to be used for the next instruction -

selection., A <Successor> in the <Unconditional Part> results in the 2

successors being identical., Otherwise, one or two successors may appear

in the <Conditional

described below and
WAIT -
STEP -
SKIP -
SAVE -
CALL -
EXEC -
JUMP -~

RETN -

Any successor

Part>, The eight choices for each successor are
in the table which follows after the text.

Repeat the instruction in the MAR

Step to the next instruction in sequence from MPCR
Skip to the second next instruction in sequence
from MPCR .

Step as.in "STEP" but also save MPCR contents in
AMPCR-

Transfer control éo AMPCR+1 address, save current
MPCR in AMPCR

Execute instruction in AMPCR+1, then proceed as
specified in the executed instruction (MPCR is
unchanged)

Transfer control to AMFCR+1

Transfer control to AMPCR+2

not explicitly stated is STEP by default. All

successors except EXEC place the resulting microprogram address in MPCR.

Each <Literal Assignment> instruction has an implicit successor

of STEP.

25

Successor Successor Next Content Next Content
Command M Instruction Address of MPCR will be of AMPCR will be

WAIT MPCR MPCR - (no change)
STEP MPCR+1 . MPCR+1 - |
SKIP MPCR+2 MPCR+2 -
SAVE MPCR+1 MPCR+1 MPCR
CALL AMPCR+1 AMPCR+1 MPCR
EXEC AMPCR+1 MPCR -
JUMP AMPCR+1 : AMPCR+1 ‘ -
RETN AMPCR+2 AMPCR+2 -
Examples:
WAIT
JUMP

Sample Programs
Two progrems in TRANSLANG are given next to aid in the under-

starding and structure of TRANSLANG. Each is fully documented to aid in

its understanding.

26

. loo

11.

~LOOP. IF NOT LST B

' EXAMPLE OF MICROPROGRAM
FOR BINARY MULTIPLY

Assumptions
(1) Sign-magnitude number representation
(2) Multiplier in A3; multiplicand in B

(3) Double length product required with resulting
most significant part, with sign, in B and least
significant part in A3

A3XORB=, IF ICL $

Bypp = A2, IF MST THEN SET Lc; $

Comment: Step 1 resets ICl. Steps 1 and conditional part
of 2 check signs; if different, LC1l is set, .

Bygo = Bs LCTR $

Comment: Steps 2 -and 3 transfer multiplicant (0 sign) to A2
and clear B. ‘

N-2-LIT, 1-SAR §$

Comment: Steps 3 and 4 load the counter with the number
(N = magnitude length) to be used in terminating the multiply
loop and load the shift amount register with 1,

A3 R>A3, SAVE $

Comment: Begins test at least bit of multiplier and sets up
loop.

opp C = B SKIP ELSE STEP §

A2 + BOTTC =B $ -

A3 OR By, R = A3, INC, IF NOT COV THEN JUMP ELSE STEP &

Comment: 6 through 8 - inner loop of multiply (average 2.5
clocks/bit).

'IF NOT LCl THEN B.., = B, SKIP EISE STEP $

OTT

Bypp =B $

Comment: If ICl1 = O, the signs were the same, hence force

" sign bit of result in B to be a O.

END $

o7

EXAMPLE OF MICROPROGRAM
FOR GENERATION COF FIBONACCI SERIES

Assumptions:

Al contains starting address for storing of series

A2 conteins the number representing the length of
the series to be computed

Al = MARL
Comment: Load starting address of series into address register

Byoo = A3s MIR $

Boop = B> MWL $

Comment: Load initial element of series (0) into A3 and MIR and
write it into starting address. Ioad second element of series
(1) into B. '

A2 = CTR, SAVE §

Comment : 'Load counter with length of series; the counter will
be incremented for each generation of an element of the series;

- COV will signify completion. The SAVE sets up the loop.

LOOP. IF RMI THEN Al+l = Al, MARl, INC, STEP ELSE WAIT $
Comment: Set up the next address and increment counter
A3 + B = MIR $
Comment: Generate new element in series and place in MIR
B -» A3, BML, MWl; IF NOT COV THEN JUMP EISE STEP $
Comment: Write new element into next address

Transfer i - 1 element to A3

Transfer i element to B

Test counter overflow for completion (go to‘LOOP,

if not done)

o8

IV. TRANSLANG Translator

The TRANSLANG Translator takes programs written in TRANSLANG and
generates the microcode for D Machine bit patterns which can run on the

D Machine simulator, A full set of error diagnosties is included.

This program is written in RALPH and runs on the UNIVAC 1108,
EXEC 8 control cards will not be giﬁen as they will vary according to the

.way the programs are entered in the system.

USE:

Input

(1) The TRANSLANG programs should be created and inserted
into a file before running the translator. This file
is considered to be on unit number 9 so the user should
include a @ USE statement to equate his file with the

translators input logical unit number 9.

(2) The Translator asks the user three questions. The
answer to these questions (YES or NO) control the amount

of output generated. These gquestions follow:

Question 1 - "NANO AND MPM BIT PATTERN LISTING DESIRED" -

If the user wishes to see the 16 bits of the M Memory and
the 54 bit Nano memory (if present) as generated for each instruction,
reply "YES" otherwise "NO".

Question 2 - "SOURCE INPUT LISTING DESIRED"

) If the user wishes to have each statement of his input pro-
gram listed, reply "YES"; otherwise "NO"., If he replies "NO" and an
errors are. encountered, then all instruction with errors will be listed

along with the diagnostic.

29

Question 3 - "OBJECT OUTRUT LISTING DESIRED"

If the user desires to see the bit patterns generated after
an error free syntax pass, reply "YES"; otherwise "NO". If an error
occurs and the reply was "YES" the error has precedence and the output
listing is suppressed. |

The object listing must display up to 80 bits of information
in 72 columns. (TTY format) To do this, the bits are displayed in

hexadecimal groups of four characters, For example:

FOO3 009 ocko 1000 0800
EO01
FOOL ACO8 00DO 0Cc00 0000

The first 4 characters are the 16 bit M Memory control bits
and the next 14 characters give the 54 bits of the nano memory. The
last two characters are meaningless except for compatibility and D

Machine requirements.

Output

(1) The object binary bit patterns are written out on
logical unit #10 for input into the D Machine simu-
lator. Appropriate EXEC 8 commands should be used
so that the simulator will be .able to reference the
object file from logical unit #10. This output

occurs whether the object code is listed or not.

(2) Error Messages ~ The translator has 28 error messages
which are always printed along with the instruction
in which the error occurred. These error messages are

given in Appendix C.

30

A Sample Translator run follows. Only those lines that are under-

lined were entered by the user,

@XQT

PLEASE ENTER TRANSLATOR CONTROL PARAMETERS

NANO AND MPM BINARY BIT PATTERNALISTING DESIRED
NO

SOURCE INPUT LISTING DESIRED

Y8

OBJECT OUTPUT LISTING DESIRED

- |

SOURCE PROGRAM FOLLOWS

LIT = MARL $
1 =1LIT $
MRI $
WHEN RDC THEN LIT + 1 = MARl, BEX, STEP $
MR1, B = A3 $
WHEN RDC THEN BEX $
A3 XORB = , IF IC1 $
BOTT = A2, IF MST THEN SET ICl $
* BOOO = B, ICTR $
1 = SAR, 29 = LIT $
A3'R = A3, SAVE $
IF NOT IST THEN BOTT C = B, SKIP ELSE STEP $
A2 + BOITC = B $
A3 OR BTOO R = A3, INC IF NOT COV THEN JUMP EISE STEP $
IF NOT IC1 THEN BOIT = B, SKIP ELSE STEP $
BLTT = B $
STEP $
END §

31

THE TOTAL NUMBER OF ERRORS = O

OUTRUT READY FOR SIMULATOR INPUT

O 0O 3 o = W = O g

H 2 o R e e
S 00WMm F W D RO

MPM

FOOO
EO01
FOO1
FO02
FOO3
FOOk
FOO05
FO06
FOO7
811E
FOO8
FO09
FOOA
FOOB

FOOC-

FOOD

FOOE -

4000

0009

0009
Aco8
0009
Aco8
2009
L4BC9
0009

0012
5419
0009
8029
2419
0009
0009

0140

0000
0146
ocko
0000
EChC
okLo
0000

E000
okk1
chll
E81C
okko
1ck0
0000

32

oo2c

0000
ocac
1000
OCOO
0000
2000
OBO1

9000
8802
8B02
9000

OBOO

OBOO
0000

NANO
0000

0800
0000
0800
0000
0000
0000
0000

0000
0000
0000
0000
0000 -
0000
0000

V. D MACHINE SIMULATOR

The D Machine simulator takes the microprograms generated by the
TRANSLANG Translator and executes them just like the D Machine des-
cribed throughout this document. In addition to being able to execute
these programs, the simulator is a wvaluable tool for use in debugging
microprograms, A user can choose his output in many different formats

and can trace, bresk and dump the simulated memory of 1024 words.

The simulator is also written in RALPH for execution on the
UNIVAC 1108, Again EXEC 8 control cards are not given.

Use:
Input

(1) The simulator requires the program which is to be
executed reside on logical unit #10, and be of the
same format as that created by the TRANSLANG trans-
lator. After creating such a file in the translator
the user need only insert the proper EXEC 8 control

card to allow the simulator to access this file,

(2) Responses to simulator control questions -
The user has no control of how the simulator will
execute a given microprogram, but he does have many

options on the type of output he wants generated.

Let us examine a sample run to study the options avail-
able. Simulator responses are in quotes and user

replies are underlined.

33

@xqQr

"PLEASE ENTER THE SIMULATION CONTROL PARAMETERS"

Question 1 ~ '"MAXIMUM NUMBER OF CLOCKS (1-99999999) to SIMULATE = "
99

The user requests the maximum number of clock
cycles to simulate. The simulator simulates each
clock and all those events inside a clock cycle.
It takes one clock per instruction to execute pro-

grems if overlapping is included (See Appendix D).

Question 2 - "THE NUMBER OF CLOCKS BETWEEN CUTPUT POINTS = "
99
The user can dictaté how much and how often output
occurs, This question is concerned with the fre-
quency. In this example, the user waﬁts output
only every 99 clocks, which is only at the end of
the program since the example will require only 11

clocks to run,

Question 3 - 'S MEMORY DUMP REQUESTED AT END OR BREAKPOINT"
¥ES |
h The simulator has a 1024 word simulated memory for

storing data. &his is the only étorage medium avail-
able outside of the registers in the D MacHine.

. If one desires to look at results of a program
stored in memory, or intermediate results, respond
YES.

Question 4 - "PRINTED OUTPUT EXPLANATION DESIRED"
vES _
The user who is unfamiliar with output options and
control will want to respond "YES" to have the

following explanation printed out;

3

"PRINTED OUTFUT IS CONTROLLED BY LINE NO. ID

LINE ID = 1 - ADDRESSES AND CLOCK, 2 = Al, A2, A3, 3 = B, MIR
4 = SAR, LIT, AMPCR, CTR, 5 = BRl, BR2, MAR, BMAR,

6 = CONDITIONS" '

W-

This explanation tells the user that from 1 to 6
lines of output can be printed every time output is
desired. Each line of output is controlled by a line
i.d. which identifies that line and the registers and
or addresses associated with it. Conditions are
printed out as IST = 1, IC2 = O, etc. for all the
conditions simulated. BMAR is the last concatenation
of a base register and the MAR to generate a memory
address, Addresses in ILine 1 refer to the two phases
being executed every clock. The addresses are the
Control Store address for each phase, CLOCK is the
current clock number being executed. Output always

occurs at the end of the clock specified.

If the user responds to Question 4 with NO, the above
lines will not appear. In both cases, the next

question is as follows:

Question 5 - "ENTER THE NUMBER OF OUTPUT LINES DESIRED"
A L

This question seeks the total number of lines that
should be printed (regardiess of which ones) at each
output point, Any number from 1 to 6 is acceptable.

Question 6 - "ENTER THE LINE NUMBER ID, S SEPARATED BY COMMAS"

1, 2, 3, &

The user should now enter 4 (always the same number
as answered in Question 5) line number identifications

separated by commas. This uniquely identifies the

35

lines of output desired. In this example, the first

four are selected, but any four could have been speci-
fied. (Remember four is only the example and not the
rule). If 6 were requested in Qpestion 5, then there

would be no need for Qpestion 6 and it would not occur.

Question 7 - "BEGIN CUTRUT AT ADDRESS"
0

Question 8 - "END OUTPUT AT ADDRESS"
9

Question 7 and 8 are used to define the output address
" limits. If the beginning address is the first program
address and the end address is greater than or equal
~to the last instruction address, then output can occur
at any clock according to the other output parameters.
If output was desired only in‘one section of a program

the answers to Questions 7 and 8 could be set to
bracket this block and thus could trace the simulation
only in this block except upon termination which

always causes the printing of all registers.

Question 9 - "TRACE REQUESTED"

N0

In addition to the output options already mentioned;
one may specify a particular address and get outpﬁt
every time that address is executed., In the example,
this was not requested, but if it had the following
message would be printed:

Question 10 - "ENTER TRACE ADDRESS™ (not in example because of NO in 9)

address

The address to trace on would then be entered.

36

Question 11 - "BREAKPOINT REQUESTED"

¥ES

Another’ cutput option available is the breakpoint,
which allows the users to stop the simulation when-
ever an instruction is executed with an address
greater than or equal to this address (which is
entered to answer Question 12 if YES is the snswer
to eleﬁen). When the simulation stops, output is
generated according to line id,s as entered earlier.
A memory dump can then be taken if requested by
answer 3. Finally, you may request a new breakpoint

before the simulation continues.

Question 12 -~ "ENTER BREAKPOINT ADDRESS"

7

This is the breakpoint address requested by question
11,

Question 13 - "SOURCE PROGRAM LISTING DESIRED"

YES

If the user would like to list the program being
simulated, reply YES and the following line will be
printed, followed by the program listing in the same

format as object listings in the Translator.

"THE PROGRAM BEING SIMULATED FOLLOWS"

Program Listing

37

Question 14 - "IS THERE ANY S MEMORY INPUT"

YES

If the user wishes to enter data into the simulated
memory before the execution begins, reply YES;
otherwise, NO. If the answer is YES, the following

message is printed:

"ENTER MEMORY INPUT INFORMATION
MEMORY IS ALL ZERO TO START
ENTER VAIUES IN CONSECUTIVE BLOCKS AS REQUESTED BELOW"

This message instructs the user that the simulated
memory is initially cleared to zero and that input
will be in consecutive blocks. (i.e., Address (i),
i+l, i+2 then address (j), j+1, j+2, j+3, etc. - see

below).

Question 15 - "WILL ANY MEMORY INPUT BE FROM A FILE"

NO

Users can insert data into the simulated memory from
two sources: TTY keybosard 6r from g fiie of data
already created, If a data file has already been
created, answer YES and the following question will

be printed., All input must be from one or the other.

Question 16 - "LOGICAL UNIT NUMBER FOR MEMORY INPUT IS"

12

In this example, a daté file eiists on logical unit
number 12. Any legal unit number is acceptable,

The user should include appropriate EXEC 8 control
cards to equate a file to this logical unit number,
Data should appear in this file just as if it were
going to be keyed in on the TTY in response to the

simulator questions mentioned below,

Question 17 - "STARTING S MEMORY ADDRESS = "
1

_ The user should enter the first S Memory address
where the first data point of this block should be
placed; A

Question 17 - "FINAL S MEMORY ADDRESS FOR THIS BLOCK = "
, .

‘Enter the final simulated memory address where dats
will be entered in consecutive locations. In this
éxample, the block is from S Memory location one to
S Memory location two (i.e., two data values must be
entered). Up to 1024 values'couid be entered in one
clock. Block addresses do not have to be sequential.
For a contrasting example, we could enter data from
locations 9 to 25 then 3 to 5 and finally 50 - 56.
Questions 17 and 18 are repeated as many times as

requested by the answer to Question 20,

If Question 15 was answered with NO, the following
questibn will be repeated for each data point requested
by questions 17 and 18 (i.e., answer 18 - answer 17 + 1

repetitions).

Question 19 - "SET S MEMORY (- i) ="
dats

Respond with a positive integer's 232-1. To enter
negative numbers, users must enter the ones comple-
ment (32 bits) of the positive number. (i.e., -1 is

represenfed by the decimal_integér equal to 232-2);

This question is not present.if'answer 15 is YES.

39

Question 20 - "IS THERE ANY MORE MEMORY INPUT"
NO

If more blocks of data are to be entered, reply YES
and Questions 17, 18, 19 and 20 will be repeated

again, In our example, the reply was NO which ends

S Memory input and also all data input which allows

the simulation to begin. . The following message con-~

firms the NO response:

"END OF DATA INPUT - SIMULATION BEGINS"

With the end of data input the simulation begins.

Output as requested by answers to the simulator

questions is generated in the format as shown in

the sample run which follows.

RUN TIME QUESTIONS

If the user has not requested any dumps, traces, or breakpoints,

the only run time question will occur after all the register dumps have

occurred (i.e., the simulation has exceeded the maximum clocks or the

end microinstruction - 4OOO was executed). This question follows the

end of simulation run message:
"END OF SIMULATION RUN"

Question R-1 - "DO YOU WISH TO RESTART SIMULATOR"
NO

This response would end simulator
YES would cause an entire new run
Question 1. This question always

run regardless of output optioms.

Lo

execution, but a
starting with

ends a simulation

Memory Dumps

If the answer to Question 3 was YES, then a memory dump will
occur at each breakpoint and upon termination of the simulation run.

At this point, the following message is printed:

"MEMORY DUMP REQUESTED
ENTER VALUES AS DONE IN MEMORY INPUT"

Memory is dumped in consecutive blocks by selectively specifying the
beginning and end addresses of these blocks as done in memory input.

These questions follow.

Question R-2 - "STARTING S MEMORY ADDRESS = "

i

Answer with the beginning block address as in

memory input.

Question R-3 - "FINAL S MEMORY ADDRESS = "
j o

Answer with the final block address as in memory

- input.

After these two questions, the following message
is printed followed by the contents of the
requested S Memory words. (6 integer values per

line).

"S MEMORY (1) TO S MEMORY (j) = "

j-i+1l data values with 6 per line

41

Question R-4 - "DO

NO

After the block of data is listed, the following

question is listed.

YOU WISH TO DUMP MORE S MEMORY"

If no more memory is to be dumped, reply NO and

the next question will be either R-5 or R-1 depending
on whether, this ends the simulation or its is merely
a breakpoint.

If YES is the reply then Questions R-2 and R-3 are

repeated.
BREAKPOINTS
Question R-5 - '"NEW BREAKPOINT REQUESTED"
YES

This questions is listed in the case where a break-
point has occurred. (This is indicated by a regis-

ter dump, several line feeds, then this message
"BREAKPOINT"

followed by several more line feeds. At this point,
memory dump questions are listed and data printed if

a memory dump was requested. If no dump was

~requested or after the dump is completed, Question

R-5 occurs).

If a new breakpoint address is desired, answer YES
and the following guestion will be listed, If No,
processing continues from this point on with no more

breakpoints.

L2

Question R-6 = "ENTER BREAKPOINT ADDRESS (O IMPLIES RESTART)"
83

If answer R-5 was YES, one can enter a new break-
p01nt address or Zero, If zero is entered the
simulation will start over from Quest1on 1 with
all previous answers, registers and memory values

cleared, -

General Comments

1. All D Machine registers.are cleared to staft prvupon

restarting a simulation.

2. ©Some conditions will never appear to be cleared or set if
listed every clock during a particular portion of code using
these conditions (RMI and RDC). These conditions work but
due to when they occur and when the output occurs, they
appear listed incorrectly. This is not the case (please refer
to Appendix D) however and no alarm is necessary since the

proper code will be executed,
3. INT condition is listed but not implemented.

4, 1If syntactically correct, code is passed to the simulator
with unimplemented code points, error messages will result.

(Refer to TRANSLANG semantics for unimplemented code points).

43

Sample Program Run of the D Machine Simulator

The program being simulated is a simple program which reads in
memory locations 1 and 2 and adds them together with results stored in
A2, '

PLEASE ENTER THE SIMULATION CONTROL PARAMETERS

MAXIMUM NUMBER OF CLOCKS (1-99999999) TO SIMUIATE =
99

THE NUMBER OF CLOCKS BETWEEN OUTPUT POINTS. =
99 '

S MEMORY DUMP REQUESTED AT END OR BREAKPOINT
YES

PRINTED OUTPUT CONTROL EXPLANATION DESIRED
“YES

PRINTED OUTPUT IS CONTROLLED BY LINE NO, ID

LINE ID = 1-ADDRESSES AND CLOCK, 2=A1,A2,A3, 3=B,MIR
- 4=SAR,LIT,AMPCR,CTR, 5=BR1,BR2,MAR,EMAR, 6=CONDITIONS

ENTER THE' NUMBER OF OUTPUT LINES DESIRED
L 4 . : ,
ENTER THE LINE NUMBER ID,S SEPARATED BY COMMAS
1,2,3,k4
BEGIN OUTRUT AT ADDRESS =
0 .
END OUTPUT AT ADDRESS =
9 .
TRACE REQUESTED
NO ,
BREAKPOINT REQUESTED
YES
ENTER BREAKPOINT ADDRESS
7 ~ .
SOURCE PROGRAM LISTING DESIRED -
YES - '

THE PROGRAM BEING SIMULATED FOLLOWS

FOOO 0009 0140 002C 0000-
E0O1 ‘

FOO1 0009 0000 0000 0800
FOO2 ACO8 0146 0C2C 0000
FOO3 0009 0ockO 1000 0800
FOO4 ACO8 0000 0CO0 0000
FOO5 0009 ECLHO 2000 0000
7 FOO6 0009 0000 0000 0000

ANV FWMNPDHO

IS THERE ANY S MEMORY INPUT
YES

Lk

ENTER MEMORY INPUT INFORMATION
MEMORY IS.ALL ZERO TO START

ENTER VALUES IN' CONSECUTIVE BLOCKS AS REQUESTED BELOW

WILL ANY MEMORY INPUT BE FROM A FILE
NO)
STARTING S MEMORY ADDRESS =

1
FINAL S MEMORY ADDRESS FOR THIS BLOCK =
2 .
SET S MEMORY (1) =
‘12
SET S MEMORY (2) =
3
IS THERE ANY MORE MEMORY INPUT
NO

END OF DATA INPUT - SIMULATION BEGINS

P(1) ADDR = 7 P(3) ADDR = 6 CLOCK =

Al = 0 A2 = 15 A3 =

B = 3 MIR = 0

SAR = O LIT = 1 AMPCR = 0 CTR =
BREAKPOINT

MEMORY DUMP REQUESTED
ENTER VAIUES AS DONE IN MEMORY INFUT

STARTING S MEMORY ADDRESS =
1

FINAL S MEMORY ADDRESS FOR THIS BLOCK
2 .

S MEMORY (1) TO S MEMORY (2)

12 ' 3 |
DO YOU WISH TO DUMP MORE S MEMORY
NO
NEW BREAKPOINT REQUESTED
NO

L5

10

12

END OF SIMULATION - REGISTERS CONTAIN

P(1) ADDR. = 7 P(3) ADDR. = 7 CLOCK =
Al = 0 A2 = 15 A3 =

MIR = 0 SAR = O LIT = 1 CTR =
BRL = O BR2 = 0 MAR = 2 BMAR = 2
1LC1=0 IC 0

LC2=0 LST=1 ABT=0 ABV=0 COV=0 PMI=1 RDC=0 INT=0

MEMORY DUMP REQUESTED
ENTER VAIUES AS DONE IN MEMORY INPUT

STARTING S MEMORY ADDRESS =

1

FINAL S MEMORY ADDRESS FOR THIS BLOCK =
2

S MEMORY (1) TO S MEMORY (2) =

12 3
DO YOU WISH TO DUMP MORE S MEMORY
0?
NO

END OF SIMULATOR RUN -
DO YOU WISH TO RESTART SIMULATOR
NO

L6

12

0

APPENDIX A

TRANSLANG SYNTAX

(Pfogram)’:i'= (Body) (End Line)

(Label) :: = (Letter) | (Label) (ILetter) | (Label) (Digit)
(tetter) :: = als|c|p|E|rlelulTlslx|Linlnlolplalrls Itk vhilx v |z
(Digity :: = of1]2[3[u]5[6]7189

(Empty) :: = {The null string of characters}

(Body) :: = (Comment) | (Line) | (Body) (Line) | (Body) (Comment)

(Comment) :: = COMENT {Any sequence of (Characters) except "$"} $

(Line) :: = (N Instruction) $ |'(Literai Assignment) $
(Character) :: = (letter) | (Digit) | (Single Space) | (Symbol)
'(Single Space) :: = {One horizontal blank position]}

(Symbol) :: =, [+|-|/]=|. |*{(])]$

{Assignment Op) :: = =

(Literal Assignment) :: = (Literal) = AMPCR | (Literal) = SAR |
(Literal) = SAR, (Literal) = (LIT) |
(Literal) = (LIT), (Literal) = SAR |
(Literal) = (LIT)

(Literal) :: = (Integer) | COMP (Integer) | (Label) | (Label) -1

(Integer) ::

(Digit) | (Integer) (Digit)
(Lit) :: = LIT | SLIT

(N Instruction) :: = (Unconditional Part) (Conditional Part) |
(Label) . (Unconditional Part) (Conditional Part)

(Unconditional Part) :: = (Component List) | (Empty)

(Component List) :: = (Component) | (Component List) (Component)

(Component) :: = (Ext Op) | (logic O?) | (Successor)

(Ext Op) :: = (Mem Dev Op)vl (Set 0p) | (Mem Dev Op) (Set Op) |
(Set Op) (Mem Dev Op) | (Empty)
(Mem Dev Op) :: = MRL|MR2 |Mw1 |Mi2 |DRL |DR2 |DW1 |DW2 |DU IDU2 |ASR |AsE
(Set Op) :: = SET (Cond Adjust Bit) | RESET GC1 | RESET GC2
(Cond Adjust Bit) :: = INT|Lcl|Lc2|ecl|ace _
(Logic Op) :: = (Adder Op) (Inhibit Carry) (Shift Op) (Destination‘tist)
(Adder Op) :: = O|1|(Monadic) | (Dyadié) | (Fmpty) |
(Monadic) :: = (Not) (X Selecﬁ) | (W Y Select)
(Not) :: = NFT | (Empty) |
(X Select) - olAilAz|A3ICTRIZEXTILITIZI<Empty)
(N Y Select) :: = (Not) (Y Select) | |
(Y select) :: = O[1[B[B (M) (C) (L) | CTR | zEXT | 1IT | 2 | AMPCR | BMAR
(M) :: = (Cating) |
(C) :: = (Gating)
(L) :: = {(Gating)
(Gating) :: = O|T|F|1
(Dyadic) :: = (X Select) (Any Op) (Y Select) |
NAT (X Select) (Normal Op) (Y Select) |
(X Select) {(Normal Op) | (Not Y Op) } NAT (Y Select) |
(X Select) + (N Y Select) +1 | (X Select) - (N Y Select) -1
(Normal 0p) :: = N¢R|NRIINAleéRINIMIIMPIEQVIAND|R1M|¢R |
(Not Y Op) :: = + | - Ny
(Any Op) :: = BAD|AAD|(Normal Op) | (Not Y Op)
(Inhibit Carry) :: = IC | (Empty)

(Shift Op) :: =R | L | ¢ | (Empty)

(Deétination_List) :: = (Asgn) (Dest) L
| (Destination List) (Asgn) (Dest) | (Asgn)

A-2

(Asgn) :: = ’|= -
(Dest) :: = Al|a2|A3 |MIR|BR1 |BR2 [AMPCR |[(Input BY|(Input Ctr)|(Input Mar)|(Input Sar)|
(Input B) :: = B|BEX |BAD|BCL|BCS |BMI |BBE |BBA |BBI |

(Input Ctr) :: = CTR|LCTR|INC

(Input Mar) ::

MAR [MARL |MAR2 | IMAR

(Input Sar) :: = SAR]CSAR

(Successor) :: = WAIT|STEP|SKIP|SAVE |CALL |EXEC [qUMP |RETN | (Empty)

(Conditional Part) :: = (If Clause) {(Cond Comp List) (Else Clauée)l
(If Clause) | (When Clause) (Cond Comp List)|
(Empty) |

(If Clause) :: = IF (Condition)

(Condition) :: = (Not) (Cond)

(Cond) :: = IST|MST|AV|ABT |cgv |Ruz |RDC |EXT |SRa lurq a1 leca | 1ra T |1e1 o2
(Cond Comp List) :: = THEN (Component List).

(Else Clause) :: = ELSE {A non-Empty (Successor)}l(Empty)

(When Clause) :: = WHEN (Condition)

(End Line) :: = END

APPENDIX B

APPENDIX B
TRANSIANG KEY WORDS
KEY WORDS

The following'words are reservéd in TRANSIANG and may not be used as
labels. No imbedded blanks are allowed.

Al Al Register X Select or destination operator.

A2 - A2 Register X Select or destination operator.

A3 A3 Register X Select or destination operator.
- AAD' ' And Add logic operator: X AAD Y « -X+(XY)

ABT All Bits True or Adder Bit Transmit dyhamic

condition from phase 3 of prlor M-1nstruct10n
-doing Adder Op.

AMPCR Alternate Microprogram Count Register Y Select
: or destination operator from barrel switch

12 IS bits.,
AND And logical operator: X AND Ye XY
AOV Adder overflow, dynamic condition of previous

M-instruction using adder, true if addltlon
results in overflow.

B . B Register Y Select same as BTTT, or

To B from barrel switch, destination operator.

BAD To B from adder, destination operator.

BBA To B from adder OR barrel switéh, destination
operator, o .

BBE To B from external bus OR barrel. sw1tch
destination operator.

BBI To B from prior MIR contents OR barrel switch,

destination operator.

BCh* - To B from adder "not 4 bit carry" replicated and
o shifted, destination operator.

BC8* ‘To B from adder "not 8 bit carry"” replicated and
shifted, destination operator.

BEX To B from external bus, destination operator,

BMI To B from prior MIR contents, destination 0perator.

BR1 To Base Register 1 from barrel switch 2nd IS
Byte, destination operator.

BR2 To Base Register 2 from barrel swifch 2nd IS
Byte, destination operator.

C Circular shift right.the entire adder output.
Operation takes place in barrel switch,

CALL Call a procedure: Use AMPCR + 1 as address

and new MPCR; old MPCR to AMPCR. Successor.

COMENT Allows for the inclusion of documentation on
a listing.

COMP Complement as appropriate for destination of
literal assignment,

cov Counter overflow condition bit, reset dominant,

CSAR Complement SAR, destination operator.

CTR To counter from ones complement of barrel switch
IS Byte, destination operator., X or Y Select:

~ into MS Byte. . :

DL1* Device Lock using BR1/MAR for device ident.

DL2* Device Lock using BR2/MAR for device ident.

DR1* Device Read using BR1/MAR for device ident.

DR2* Device Read using BR2/MAR for device ident.

DUl* Device Unlock using BR1/MAR for device ident.

DU2* Device Unlock using BR2/MAR for device ident.

DW1* Device Write using BRL/MAR for device ident.

Dw2* Device Write using BR2/MAR for device ident.

ELSE Sequential operafor prefix to false successor.

END Bracket word to end a program.

éQV Equivalence logical opérator: X EQV Ye »>XY VXY

EXEC Executes out of.sequence: Use AMPCR + 1 as
address. Successor,

EXT* External condition bit externally set reset
by test. : .

F False gating of B as part of Y Select.

GC1* Global condition bit 1: may be set by SET GC1l

if presently reset in all Interpreters, Tested
without resetting., .
Used as RESET GC1l, resets GCl

B-2

GC2*

IC*
IF

™P
NG

INT

IRQ*

JUMP

IC1
Ic2

ICTR

LIT

IST

MAR2

Global condition bit 2: may be set by SET GCl
if presently reset in all Interpreters. Tested
without resetting. '
Used as RESET CG2, resets GC2..

Inhibit carry between bytes.
Starts the conditional part of an instruction.
Imply logical operator: X IMP YeX V Y

Increment counter destination operator; set COV
when overflowing from all ones to all zeros,

Used as SET INT, interrupts all Interpreters.
Interrupt Interpreters condition bit: set by
any Interpreter, own is reset by testing.

Interrupt from locked but unselected device
(can be status or data interrupt).

Jump to address in AMPCR + 1 and put that

"address in MPCR. Successor.

Left shift end off the entire adder output, right
fill with zeros. Operation takes place in barrel
switch,

Local condition bit 1: may be set, or tested
which resets. '

Local condition bit 2: may be set, or tested
which resets,

Ones complement of the literal register con-
tents will be placed in the counter and COV
reset, Destination operator.

Literal register: may be loaded by a literal
aSS1gnment May be source for X select or
Y select IS byte, the MAR, and/or CTR.

Literal register contents will be placed in
MAR. Destination operator.

‘Least significant bit of adder output,

dynamic condition from phase 3 of previous
M-instruction doing adder op.

Memory address register destination operator:
from barrel switech IS Byte.

Memory address 1 destlnatlon operator same
as BRl, MAR ;

-Memory address 2 destination operator ‘same

as BR2, MAR

B-3

MTR Memory Information Register destination
operator from barrel switch.

MR1 Read from memory address BRl/MAR mem dev op.
MR2 Read from memory address BR2/MAR mem dev op. -
MST Most significant bit of adder output, dynamic

condition from phase 3 of previous M-instruction
doing adder op.

MWL Write the content of MIR to memory address
BR1/MAR mem dev op.
Mw2 Write the content of MIR to memory address
BR2/MAR mem dev op.
NAN Not And logical operator: X NAN Ye X VY
NIM Not Imply logical operator: X NIM Ye XY
NOR Nor logical operator: X NOR Ye -XY
NOT Complement monadic or condition operator
NOT Xe =X
Complement Y select for commutative operators.
NRI Not Reverse Imply logical operator:
X NRI Y« =»XVvY
OAD Or Add logical operator: X OAD Ye-X + (XVY)
OR Or logical operator: X OR Ye-XVY
R Right shift end off the entire adder output,

left fill with zeros. Operation takes place
in barrel switch. '

RDC Read complete bit: set when external data is
: ready for input to B, reset by testing.

RESET Reset the condition bit specified.

RETN Return: use AMPCR + 2 as address and as new
content for MPCR. Successor.

RIM Reverse Impiy logical operator: X RIM Ye >XVY

RMI Ready MIR bit: set externally when data has

been received from MIR. Reset by testing.

~

SAR Shift Amount Register destination operator
: from IS bits of barrel switch or from literal

assignment.

SAVE Save the MPCR in AMPCR: use MPCR + 1 as M-
address and as next MPCR. Successor.

SET . Set the conditional bit specified: either
LC1 or IC2.

SKIP Skip the next instruction; use MPCR + 2 as
M-address and as next MPCR. Successor,

SLIT Literal assignment in SAR converted form.

SRQ* Solicited request bit., Set externally, reset
by testing.

STEP Step to next instruction: wuse MPCR +1 as
M-address and as next MPCR. Successor.

T True gating for B register.

THEN Starts the true alternative of conditional
instruction.

URQ* Unsolicited request bit. Set externally,

reset by testing.

WAIT Wait for condition M-address is MPCR; MPCR
~ and AMPCR unchanged. Successor.

WHEN Starts a conditional instruction, has an
implicit ELSE WAIT.

XOR Exclusive Or logical operator:
X XOR Ye-XYVXY

zZ* CTR in MS Byte, (ZEXT in middle bytes of
~ machine larger than 2 bytes), LIT in LS Byte
as X select and/or Y select.

ZEXT* Middle bytes of machine larger than 2 bytes
as X select and/or Y select.

* Denotes Key Word whose implementation (D Machine action) has not
been included in the simulator. They are included in the syntax
to allow completeness, '

B-5

APPENDIX C

TRANSLANG Translator Error Messages

ERROR - ILLEGAL SET OR RESET MODIFIER
ERROR - NOT FOLLOWED BY TLLEGAL.KEY WORD
ERROR - UNRECOGNIZABLE FORMAT

ERROR -- UNRECOGNIZABLE TYPE 2 FORMAT

ERROR - NO END DELIMITER

ERROR - NO SUCCESSOR FOUND AFTER EISE
ERROR - NO CONDITION FOLLOWING IF

ERROR - CONDITION NOT FOLLOWED BY THEN
ERROR - THEN FOLLOWED BY ILLEGAL OPERATION
ERROR - ILLEGAL FORMAT FOR LOGICAL OP
ERROR - ILLEGAL OR MISSING Y SELECT

ERROR - ILLEGAL ADDER OPERATION

ERROR - ILLEGAL NOT ADDER OP COMBINATION
ERROR - ADDER OPERATION EQUAL SIGN MISSING
ERROR - LCTR AND MAR CANNOT OCCUR TOGETHER
ERROR - IMAR AND CTR CANNOT OCCUR TOGETHER
ERROR - IMPROFER DELIMITER

ERROR - MISSING EQUAL SIGN IN TYPE 2 INSTRUCTION
ERROR - ILLEGAL KEY WORD AFTER SAR

ERROR - MISSING KEY WORD SAR AFTER LIT,
ERROR - UNABLE TO RESOLVE LABEL "label"
ERROR - ILLEGAL TYPE 2 INSTRUCTION

ERROR -~ SAR LABEL VAIUE GREATER THAN 31

Cc-1

LIT LABEL VALUE GREATER THAN 255

ERROR -

ERROR - AMPCR LABEL VALUE BIGGER THAN L095
ERROR ~ ILLEGAL LITERAL ASSIGNMENT

ERROR - NUMBER GREATER THAN L0%%

ERROR - IMPROPER IABEL - MORE THAN 6 CHARACTERS

c-2

APPENDIX D

D MACHINE (INTERPRETER) INSTRUCTION PHASING AND CONTROLS

Time phasing of instructions is described in this appendix,
both in terms of the partial order of occurrence of the various
events and in terms of a sequence of instructions. Controls available
in the Interpreter that can be generated by TRANSLANG are reflected
in the contents of the wofds of either the M-memory or the decoder
(N-memory). Figure D-1 illustrates the aata and control flow among
the registers of an Interpreter. The meaning of the content of micrd-'"
program words and nanomemory words is detailed. This appendix con-

cludes with a descriptibn.of memory operations,
INSTRUCTION PHASING .

The execution of a microinstruction requires one or more
sequential time periods, called phase 1, phase 2, and phase 3. The
constant interval of time from the end of one clock pulse to the end

of the next is the measure of a phase.

CLOCK CLOCK}‘_ CLOCK
"{PULSE - ’ |PULSH PUISE
. TIME REQUIRED FOR EXE- | [
.. _—_____P
CUTING ONE PHASE OF A
| MICROINSTRUCTION (ONE INCREASING TIME

CLOCK DURATION OR PERIOD)

Some microinstructions only have a phase 1, some have both phase 1 and
phase 3, and some have phase 1, phase 2, and phase 3. Phases of suc-
cessive microinstructions usually overlap; so that phase 1 of a current

microinstruction is being executed while phase 2 or 3 of a prior micro-

instruction is also being executed," This overlapping of microinstruction

MOL TOJ3U0)) pue 'ye(] Jajsadaaju] °1-Q 2an3d14g

{Burdooy o4}
HIGNY Ul SIUU00 YO $aAeS | HIdW JAVS
mubey v [34
HNg_ +€ 1B 1ed) & smnbay Zv tAl HOdW jo Buipeot suquyuy | YIdWvY 93x3
N 2607 jo Yipm aiAg = 1 msibay LY v T HOdWV N13d
1q wedtjuiis ey 2L = 987 21 1033180y JUNOWY HIYS Hvs [§ HOdWY dNNT
857 puooes « 8571 ¢ swno) 412 {unas 10}) YISWY
1Ag wenpulis 10y -« BSW Insi6ey s31ppy Atowapy YW Ul QUG YIJW $eARS O8Iy | HIWY 1MWV
AR wWepulis 1899 a 8S1 suoneAsIqqy T 12u1bay aseg 248 4 HIdW dINS
{ 48160y aseg 1489 | 9dA} ‘porpiceds SSIMIR(I0 §30) .
HO00IU) BUIYILIMS 20 UM 136[9S L0 1A 51 53448 3180y 1UN0) webosdODIN LVIY HIINY -un pug | edAL 10} pepiaosg | HIdW 4318
1e0ydued 20 AJOWSKY UIRKY it UONEIIUNWWOY asibay N0 wesBoxdoony HIIN [} AN 1IVM
. oul TS
$31ON SIWVN B31SiD3N ¥05S30INSe
g 18334014 10 Asoway) uley 0) NNeQ 1461 pue 133} $moj} (0UCD
wolloq pue doy :smo|4 B12Q
0180 |esayding 10 AJOWSWN UIRW O) SSAIPPY
ssboy | BPMME 1 ﬂ 8 rus
8 8 N
:puaba H12 HVIN Z+ 1+ 0
[3-1:] HONI
F .
uvs suq g1 ey apm . ,
unowy Hug suun 1607 03 Induy wauadwoy a5tz *
|eusaIx3 1X32
_ 193488 4%
BICER] 8ainog HIJWY
1S7 LSW AJV 18V 951
SUONIPUCD DIWeUAQ A Juswisidwos v a]
[43
Z s31Ag J01U3) 5w j HOdWN
asizi ®
0 - - P01 nduf € Jasiboy
"y weud L) suoneuniag sjonuo)
T
! 4'1L°t°0] B £V 1015180y suonessdQ ._:Dr qQvdw
R | puewwos nb6oy og 8
v L30ag 117
1e13Yy01Iag 10 AICWAN
B g 1_ v ule 01 puewwo)
suonesadQ
L jewaix3 cqg
SIA
$121950501u) ||R Ul I N] 195
£1312)d5310)
590188 jrsoydisdg 40 A1101)d 13m0 01 1(QIYU 1SanboY
Atowapy urew woy) rieg ' s4310:05010) Absond 1sanbay
SUBIY WO AL ZID 10 1ID 19§ 9918
229|109
LNI €X3 ZX3 1X3 00YH IVS (W) -
130108 I0WRJ UIOI) SUOIIIPUOD 135 . AOD
05°L1 515018 (3 oL-1l Asowary 3320PY
wisboig
(WN) Aowoy ouey r[oW
S0IPPY

D-2

phases allows starting the execution of a new microinstruction each

time a new "clock duration" period starts.

A microinstruction may contain either a constant (type II micro-
instruction) or the address of a nanoinstruction (type I micro-
instruction). For a type II microinstruction, phase 1 provideS-suffi-A
cient time to execute the instruction (complete the STEP successor and
literal assignment), and no additional phases are required, Tor a
type I microinstruction, the events teking place in each of the three

phases are identified below,

Phase 1: :Condition test, (conditional) external
operation execution, (conditional) logic
operation initiatién after completion of
pfior,logic operation, and successor micro-

program address control,

Phase 2: Holding phase for logic operation phase 3
- controls. ' '
Phase 3: Completion phase for perforﬁing logic unit

.operations and changing destination regis-

ters specified in the logic operation.

If a type I microinstruction does not require the initiation of
a logic operation (the condition fails and the logic operation was
conditional), the execution is completed in phase 1. Otherwise,
phase 3 is initiated at the end of the clock duration period by
loading the command regisfer concurrently with changing the desti-
nation registers for the phase 3 also in process from a prior type I
microinstruction. Registers change state during the time a clock

pulse is actually present (at the end of a clock duration period).

Phase 3 completes the execution of a logic unit operation. The

commands for phase 3 in the command register have two parts: logic

specification and destination specification. The logic specification
commands apply continuously and are taken directly from the command
register, The destination specification commands are always executed
at the same clock pulse time as the phase 1 initiating a new logic

operation.

Phase 2 is a holding phase, the existence of which depends only
on subsequent microinstructions. A one-clock duration period hold is
created by each subsequent type II microinstruction, or by each type I
microinstruction for which the conditional logic unit operation is not
to be executed. A phase 2 is created from the original phase 3, which
is extended into the next élock duration period as the new phase 3.
During phase 2 the original phase 3 logic specification commands con-
tinue to apply. Thus, the current contents of the selected adder
source registers are used to develop adder outpuﬁs. The dynamic con-
ditions AOV, ABT, MST, and LST from these adder outputs are available

to be tested in a concurrent phase 1.

The phased execution of a sequence of microinstructions is sug-
gested in Figure D-2, with each microinstruction being symbolically
represented by a capital letter. Subscripts indicate phase, The sub-

script 3,2 indicates a phase 2 that was formerly an "original" phase 3,

Microinstruction A ‘B~ C D E F

Type I I I I II I

DO TUOP " True True False True . True

Phase 1 i Al\\\\\“Bl Cl Dl\\\\‘ El Fl\\\\\‘ ,

Phase 2 Z — B D. ~——#D, OAF
3 or 3, 3 A B3 3 3,5 3 3

Clock 0 1 2 3 L 5 6

Increasing Time — _»

Figure D-2, Exemple of Phased Execution of Microinstructions

D-4

weaderg uols103(] pue Mol awl], uorjonaisuy ‘g-(aandig

L. I {]
[Y " v |
aupy ¥2012 auQ
[P ol
L asind 3o01D S
LTT J0/puwe YysS ‘HOdIWV
0} (8)1BINY] Rd01D
11 2d£&y
810J3U00 QYW ‘=
ddLS
. BYOJIUOD QYW := L
J088320ng as(ed 287¥] = UOPIPUO)
8102ju0d VAW =
1085320ng ana [, and) = uopjpuo ﬁ
. L] y WA W wody 8891ppe
d <:.m ajequl ?:ﬁ:vnwuﬁ. 20 ToRipU0D 383L [e] ALM—.”M“M”« nﬂhﬂﬁu adfy | Dononuem WdN g«u.o.w.u.&
O. . ! 10 anJdj} = uonjpuo)) - i ¥ -0J21m peay andmon wdLmd
Ja3818a1 pueRwwod 0) 18uonjIpuodun s3.dp 21807 ﬂ
sjoqjuod ¢ asgyd peoy 10 304} = uonIpUC) [1 ASVHA
’ Ri o1 6 8| L $ S 4 4 1 jUdAg Jo
i B e e i |
. 11 6 | L 4 1 aduanbag
|
(¢ aseyd L(uo) !)
gsuojiBuIsap aduey | 8
. * | (Z ASVHd NI OTHH HO) € ASVHd
: |
I |
| 1 pajnoaxa
. uotjeuyysap ydaaxa sy do 18b1
ndyno. !
arqerieae mdino ydjjme [adaeg arqeyjeav jndino Jappy ”uﬂuaw-wivuﬁ .Mo spmswwmoo arfopr Y} Yoym 105
¢ aseyd [re oq uonINIeUY

1 ad£], snotaaag

D-5

The phase 3 or 3,2 in prbgress is determined by the logic unit
operation (LUOP). As indicated in Figure D-2, the old phase 3 is
completed and the next clock initiates the new phase 3 (microinstruc-
tions A, B, D and F) if the IUOP is trie for type I microinstructions.
The old phase 3 is extended (it turned out to be a phase 2) if LUOP
is false (microinstruction C creates a phase 2 for B), or if it is
type II (microinstruction E), creating a phase 2 for D. This latter
case shows how a change by a type II microinstruction can affect the
result of a prior type I microinstruction. The destinations for D do
not get their new values until the end of phase 1 for I at clock 6,
and thué‘are enabled to use register values that come into existence

after clock 5 has expired.

Figure D-3 illustrates instruction phasing and overlap by a time
flow and decision diagram. Time flow is from left to right, repre-
senting one full clock duration period. The bottom section shows
phase 1, the activity of the current microinstruction. Multiple
lines from a box indicate alternafives (not necessarily mutually
exclusive). The top section shows the phase 3 commands of a prior
microinstruction that are in progress. The phase 3 may turn out to
have actually been a hold in phase 2 if thelcommand register does not

change. (LUOP was false).

The following .events occur in phasé 1 in order of ascending num-
bers. The sequence is logical and is not strictly uniform in time

increment.
1. Develop microprogram address MPAD, using MPAD CTLSAregistér
content to select either MPCR or AMPCR content, and
2. Select the proper increment amount (+0, +1 or +2).

3. Read out the addressed microprogram word.

Lk, Decode the word to determiﬁe if microinstruction is type II

or type I.
If the microinstruction is type II:

5a. Use low order part of word as literal(s).
1la. STEP successor to MPAD CTLIS register.

11b. Clock literal(s) to specified register(s): SAR and/or LIT;
. AMPCR. (Note that all register changes occur in step 11). '

If the microinstruction is type I:

5b. Use low order part of word as address to nanomemory.
6. Read nanomemory,
7. Decode result.
8. N [l—ﬁ] Select condition to test
9. ‘N.[SJ True/complement conditioﬁ bit value = :SC
10a. N [6] Do logic unit operations = : IUOP
10b. N [7] Do external operations = : EXTOP
1le. If EXTOP is true then:
N [8 - 10] enable condition adjust if not 0 0 O, and
N [51L - 55] enable memory device operation if not 0 0 O O,
11d4. If LUOP is true then:
complete destination part of phase'3 of prior logic unit
operations (bits 34-50) and '
N [17 - 50] decode and load command register.
lle. Successor to MPAD CTIS register:
N [11 - 13] if SC is .true; or

N [14 - 16] if SC is false

11f, Reset tested condition if appropriate.

D-7

The event sequence in phase 2 or 3 starts as follows, where numbers

n correspond to the sequence for phase 1.

la.
1b,
3a.

3b.

9.

N [17 - 19] Select X input to addef

N [20 - 26] Select Y input to adder

N [27] Inhibit carry

N [28 - 31] Select and do adder operation

At this point the dynamic conditions from the adder
are available for test in the subsequent instruction

now in phase 1 (in its step 8).

N [32 - 33] Select shift direction and do shift. .

At the end of phase 3 the following events occur:

llg.

11h.

When LUOP is true (step 10a of same phase 1), any or
all of the following independent register changing -
destination events may occur while the clock pulse

is present,
N [34 - 36] A registers

N [37 - 4O] B register

N (1] MIR

N (k2] AMPCR

N [43] BR1

N (4] BR2

NI - o) } not totally independent, since
N [46 - 487 CTR they share N [L6]

N [L9 - 50] SAR

When LUOP is false, this was a phase 2,

- TIMING

1-. All Type 1 unconditional instructions
Al + B ->-A1 _

b. AZ +B -» A2

c. A3 + B — A3

d. A1 C —» Al;

EXAMPLES

A Clock R

<

aPCR

b+CR

d<+CR

2. Aﬂ type I instructions
Both AOV and ABT test true

a. Al +B -+ Al
b. If AOV then A2 + B~ A2
If ABT then A3 + B —# A3

d. Al C—+Al;

»CR

3-

AOV Test b+CR

3

A2

1

ABT Test c¢#CR

d+CR

3. All Type I instructions
AQV tests false; ABT tests true

a. Al +B -+ Al
b. If AOV then A2 + B— A2
c. If ABT then A3 + B—#A3

d. Al C— Al;

=CR

3 3

Remgins a
Al

AQV Test

14* X

1

ABT Test c<CR

d-+CR

4. Type I and Type II instructions
Resulting Al ccntains least four
bits left justified ’

a. 2—»SAR; 3—LIT

b. Al and LIT C— Al

c. 4— SAR; 15— LIT

d. Al C—»Al;

24
34

S
b1

D-9

b+CR

y”

CR Remgins b

15-¢L
2.

4+¢S

d-+CR

MICROPROGRAM WORD CONTENT

M-word Bits ' Instruction Literal

12 3'h'5 6789 10 11 12 13 14 15 16 - Type Assignment

0 g SAR |¢ 6 ¢ ¢ &8 ¢ ¢ & II k=:8AR

10 SAR LIT II k=:SAR; j=:LIT #
1100x AMPCR II i=:AMPCR '
1110[¢4¢ 4 LIT IT J=:LIT #
1111]% N-ADDRESS I

Heavy bars indicate possible contraction points for narrower memories,

_in which case the bits are moved to the left,

indicates -unused, O supplied by TRANSLANG translator.

¥ indicates a field that is right justified if the hardware configu-=
ration does not require the entire addressing range, left fill with
zeros., '

wherever LIT appears may be replaced by SLIT meaning convert the
constant as if it were being loaded into SAR, and left fill with
zZeros.

N-WORD CONTENT

The assignment of bits and their menaing in the N-decoder or N-memory
is summarized in Table D-1, and is described in detail below. Bit
positions in the memory are indicated by integers in boxes. FEach box
surrounds a field of related bits., The defined alternatives are des-
cribed, and mnemonics given for each, The mnemonics that directly cor-

respond to TRANSLANG reserved words are identical,

Other mnemonics are provided for descriptive references.

D-10

LEGEND:

ADD (twos complement)
SUBTRACT (twos complement)
OR (logical inclusive)

NOT N (ones complement)
Don't care, O or 1

Assign into

Most significant

Ieast significant

D-11

Table D-1.

Nanomemory Decoding

TIMING AND N-MEMORY .
GENERAL ACTION BITS SPECIFIC ACTION
DURING PHASE 1
14 Condition selection
. 5 Condition test (true/complement)
Condit | Control
ftiona ntre 6 Conditionally update command register from bits 17-50 of nanomemory
7 Conditionally initiate actions shown below under ‘‘at end of Phase | ’
AT END OF PHASE 1
(a) Successor Determination 1116 Microprogram address (MPAD) controls
(b) External Operations 810 Condition adjust (local; global; interrupt Interpreters)
- 51-64 Request signals for main memory or peripheral device operations
PHASE 2
Optional Holding Phase Dynamic conditions available for test in Phase |
PHASE 3
17-19 Adder input X select
20-26 Adder input Y select
27 inhibit carries
Adder Operation Commands' 28-31 Adder or logic operation
Dynamic conditions available for test in concurrent phase 1
32.33 Shift (right, left, circular) by amount in SAR
AT END OF PHASE 3
(| 3436 Input to A registers (A1, A2, A3) from BSW
37-40 B register input source selection
41 MIR input from BSW
42 AMPCR input from BSW
Destination Specification 43 BR1 input from BSW
A BR2 u:\put from BSW Input clock commands
45-46 MAR input from BSW or LIT
46-48 CTR input from LIT, BSW, or increment CTR
L 49-50 SAR input from BSW, or complement SAR

D-12

Phase 1 Controls

Controls N [1 - 7] are used directly from the N-memory and are effective
before the end of the first clock (phase 1).

. How Hcﬁ

{1 2 3 L] . coNDITION SELECTION - Set@ Reset@ Dominant
0O 0 0 0 Not implemented . -CAT CAJ -8
0.0 0 1 Not implemented . CAJ. CAJ S
0 0 1 0 IC1 TLocal condition 1 CAJ Test S.
0 0 1 1 102 ILocal condition 2 CAT Test S
O 1 0 O MST Adder most significant bit* - - -
0 1 0 1 IST Adder least significant bit* - -
0 1 1 O ABT Adder bit transmit - - -
0O 1 1 1 AQV Adder overflow . . B - - : -
1 0 0 0 COV . Counter overflow . Overflow Test R
l' 0O 0 1 RMI Memory accepfs MIR info - Memory Test | S
1 01 0 BRI Read cbmpleté ‘ . Memory Test S
1 0 1 1 Not implemented ~ -
1100 Not implemented
1 1 0 1 Not implemented
1 110 Not implemented
1 1 1 1 Not implemented

*MST, and IST in the'hardware_éfe true if the value is O. The Microtrans-
lator cbmplemehts the programmer-sPecified test for these so the test is

as if the true value were 1, consistent with the other conditions;'
@CAJ is condition adjust N [8 - 10]

EXT is external source

Test is by inclusion of the selected condition in a type I microinstruction
Dominant if both set and test:

S is set to 1

R is reset to O

D-13

COMPLEMENT/TRUE CONDITION TEST

0 NOT Complement value of selected condition =: SC
1 Value of selected condition =: SC

' §l LOGIC UNIT CONDCTCOWAT,

If LUOP resulting from this control is O, do not change command registerf
otherwise at end of this.clock, complete the phase 3 for the prior
instruction in the command register and replace its content from controls

¥ [17 - 50].

0 Unconditionally TRUE=: LUOP
1 Conditionally SC=: LUOP

L7 I EXTERNAL OPERATIONS CONDITIONAL

If EXTOP resultlng from this control is 0, do nothlng, otherw1se 1n this
clock initiate any specified memory/dev1ce operatlon N[51 - 54] and

adjust any spec1f1ed condition N[8 - 10].

0 Unconditionally TRUE=: EXTOP
1 Conditionally =: EXTOP

CONDITION ADJUST

The indicated action takes place at the end of phase 1 if EXTOP has been
determined to be true in thls phase 1 ' Bits are set to true or 1; reset
to false or O. o

No action
SET 1C2 Set local condition 2

Not implemented

H ~H H P O O O O
H H O O H K O O
H O K O FH O +H O

SET LC1 Set local condition 1

D-1h4

MPAD Controls

‘The MPAD (microprogram address) is determined by the velue in the MPAD
controls register at the start of phase 1. Depending on the value of
sc. determlned during phase 1, either one of the following two sets of
controls is loaded into the MPAD controls reglster at the end of phase
1. Concurrently, changes to the MPCR and AMPCR occur as 1nd1cated by
‘the original content (at the start of'phesé 1) of the MPAD controls

¥re‘gi—.‘ste»r‘(ahd for the AMPCR,'possibly a type II or barrel switch output).
MPCRo.is the value in the MPCR before the end of phase 1. For type II B
instructions, MPAD becomes 1 + MPCR and MPCR becomes MPADO——"STEP".

: Regisfers Changed

T 12 13] © . U“h _ . at end of Phase 1 [TF 15 18]
— . . \
L R . Vasl A E
TRUE MPAD MPM -~ MPCR AMPCR FALSE
SUCCESSOR controls address recelves receives SUCCESSOR
Used if SC=1 register will be value value Used if SC=0.
0 0°0 WAIT . MPCR MPAD 0 0 0
0 0 1 STEP - 1+MPCR . MPAD 0 0 1
0 10 SAVE ~ 1+MPCR MPAD MPCR ¥ 0 10
011 SKIP 2+MPCR MPAD 0 1 1
1 00 JUMP 1+AMPCR MPAD 1 0 0
1 01 . EXEC 1+AMPCR L 1 0 1
11 0. .CALL 1+AMPCR MPAD MPCR_* 110
11 & .. RETN 2+AMPCR . MPAD 111

*CALL and SAVE override any change to the AMPCR from either a type II
instructlon or the BSW. The type IT overrides the BSW.

D-15

Jducyd ou,

avdw

. 7+ WMWYV NL1AY
“HOdW avdw 1+ YWV 9TVD
. . 1+ WOIWV. D3X3
. avdw 1+ ¥UXWV dWOf
. avdw T+ ¥OAW IS ; 1INN 91901
YW avdW 1+ ¥IXW IAVS HONI pub 1D373S oL
HOdWY ‘¥OdW
. avdw T+ ¥OIN d3lS 10} ST0H1NOD
. avdi dIdW LIVA
anjEA ADIWV NIEA UIIW (AVAW) 10ss300ng *
2/1/0 4INI
aN XN SSUPPY WAW 530 I AFEERED
$IIND Qvdw
NO112373S
H0S5309NS
/1
HIdWY YOdW
138 ﬁ
"GNG) N
4/ G aibo] o
Wwoiy4 \I\(l)
*2ang 0/
3S7V4| sossadong _ F
"GNGD JINVNAG anyl 9N100030 .
puo NI mn -4
Y31Si934 "ANOD
{19ppy) N
puo
10U48IX] WOy zaz..xoasi
no mﬁ«:uz AHONIW 1'uvs o
YIANIVYWIY ONVN $S34ppYy i
304N0S
1NN . WYHO0Hd
21901 0HIIW

ONIONINDIS NOILINYLSNI WWHOOHJOHIIW

$S24ppY

D-16

Phase 3 Controls

Controls N[17 - 50] are partially decoded and stored in the
command register at the end of phase 1 if LUOP is true. Beginning
with the next clock (regardless of whether the microinstruction is
type I or type II) the controls N[17 - 33] become active causing
selection of inputs to the adder, the appropriate adder operation,
and kind of shift. These controls continue in effect over one or more
clocks until next a type I instruction (at the end of its phase 1)
changes ‘the command register. Concurrent with this change, the con-
trols previously in the command register, N[34 - 507 are used to

specify the desired set of destination registers to receive new values.

It is thus possible that subsequent type II instructions will
cause changes to the result of the logic unit operation'specified in
the command register. These changes may occur if either the literal
register or AMPCR is an input to the adder. These changes may affect
the values of the adder dynamic conditions MST, IST, ABT, or AOV.
Also if a shift is specified, a change to the SAR will change the

amount of the shift and thus change the barrel switch.output.

(17 18 19] ADDER INPUT X SELECT

0O 0 O zZeros

0O o 1 LIT = Literal register to LS byte*
0O 1 O Not implemented

o 1 1 CTR ~ Counter to MS byte*

1 0 O Not implemenﬁed

1 0 1 Al Al register

1 1 O A2 A2 register

1 1 1 A3 A3 register

* Zeros elsewhere

D-17

[20 21 22 23 o2&k 25 26 |

o O

o0 1
1 O
1 1
comp 1 0 0
comp 0O O ©
0O o0 o 0 1
0o o0 0 1 o
6 1 o 1 1
6 1. 1 o0 1
0O 0 1 1 o
0O 1 1 1 1%

O O O O O O

- =~ O O
H O + O

comp

comp

H M H O O

ADDER

BO -~
BT --
BF --
Bl --
B-0-
B-T-
B--0
B--T
B--F
B--1
B-F-
B-1-
LIT

CTR

AMPCR
BMAR

INPUT Y SELECT

in M3 bit

MS bit in MS bit
MS bit in MS bit
in MS bit

in center bits
in center bits
in IS bit

IS bit in IS bit
LS bit in IS bit
in IS bit

“ A P Ww O W O +H W o

Literal register ﬁo LS byte*
Not implemented

Counter to MS byte*

Not implemented

AMPCR in least 12 bits*

Tast concatenation of MAR and base
register

*Zeros elsewhere

$Center selection of
complement operator
gating (means 0 for
operators exist for

Miecrotranslator.

B gating as F or 1 is achieved by using: the Y

(see AppendiX~E).and comp for MS bit and LS bit

1, B for B, and vice versa)., No complement

OAD and AAD.

D-18

.These corrections are done by the

INHIBIT CARRIES

0 Allow carries -

1 Not implemented

[28 29 30 31| ADDER OR LOGIC OPERATION (See Appendix E) -

Function Bitwise Logic Complement*

O 0 0 O X+ Y - 12
O 0 0 1 XNORY XY X x Y

0O 0 1 0 XNIY Xy - - X<Y

00 0 1 1 X+Y+1 . ~ S 15 .
0 1 0 O XNANY XVY ' X #Y 8
O 1 0 1 XOADY X + (XvY) . | none
o 1 1 0 XXORY (X THIVX Y) X £y 9
0O 1 1 1 XNIMY XY X>Y 11
1 0 0 0 XIMPY Xvy X =Y Lo
1 0 0 1 XxBQY (XYWVET) x=% 6
1 0 1 O XAADY X+ (X Y) none
1 0 1 .1 XAWY X Y X AY 7
1 1 0 0 XY-1 X+%Y A e
1 1 0 1 XBRMY .XVY X=zY 14
1 1 1 0 XORY X VY Xvy 13
1 1 1 1 X-Y X+7 + 1. 3

*The complement is the decimal equivalent of the operation for which

the Y select is ones complemented.

D-19

32 33 SHIFT TYPE SELECTION

The barrel switch (BSW) output is the result of the adder output shifted
as indicated by the shift type selection, The shift uses the current
content of the shift amount register (SAR) at ther start of the last
clock of phase 3,

O o Noushift 1H
o 1 R Shift right end off, zero fill to left IH
1 o0 Shift left end off, zero fill to right* RH
11 c Shift right circular, all bits IH v RH

*Actually a right circular shift of the word-length complement of the
SAR content with zero fill to the right. '

Assume that the shift is to be developed by selection from an ordered
set of signals twice the width of the logic unit, with initial value
all zeros, Let the two halves of this set be LH and RH, with ILH the
more significant. The unshifted adder output is aligned to LH. A
right shift is performed. The amount of the right shift is that speci-
fied in the SAR for R, L, or C; otherwise O, The resulting shifter
adder output is in general now at some intermediate position of the
signal set. The last column indicates the single width selection from

this signal set used to determine the barrel switch output.

D-20

Phase 3 Input Clocks

Results as specified in the command register from bits N[3l+ - 50] are

clocked into selected registers at the end of phase 3. This occurs at .

the end of phase-1 of the first successor instruction for which LUOP

is set to 1 (true).

(34 35 3%]| A REGISTERS INFUT FROM BARREL SWITCH

- - A
- 0 -
- 1 - a2
- - A3

[37 38 39 Lo}
O 0 0 o°
0 o o0 1
1 0 0 O
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 ©
1 1 0 1
1 1 1 o
1 1 1 1

Al >ur_1cha.n;g-ec.1
BSW to Al -
A2 ﬁnchanged
BSW to A2
A3 unchanged
BSW to A3

B REGISTER INPUT SOURCE SELECTION

B unchanged
Not implemented
BAD Adder (unshifted)
Not implemented
BBA BSW v Adder
B BSW
BEX External input
BMI | Memory Information Register (MIR) *
BBE BSW v External input
BBI BSW v MIR

MEMORY INFORMATION REGISTER INPUT

0 MIR unchanged
1 MIR BSW to MIR

D-21

[TZ] AMPCR INRUT

0 _ No change from BSW V .
1 AMPCR BSW least bits to AMPCR*

*A conflict in loading AMPCR can occur that will prevent this loading
from the BSW. Assume that the phase 3 in progress indicates load ‘
AMFCR from BSW. Also assume that the MPAD controls at the same time
indicate SAVE or CALL (as a result of the phase 1 prior to the one in
progress). Then if the current phasé 1 indicates that a new phase 3
should be initiated, the cénflict in AMPCR loading is resolved in favor
of the old MPCR.

3] Bm INPUT

0 No change
1 BR1 BSW next least byte to BR1

[BL] BR2 INPUT

0 No change
1 BR2 BSW next least byte to BR2

MAR TNEUT

- : No change
1 0 IMAR LIT to MAR .
1l MAR BSW least byte to MAR

L] C
(463 (MAR & COUNTER INRUT SELECT)

0 ' LIT
1 ' BSW least byte

D-22

[T6 7 L7 L8] COUNTER INFUT

- 0 0 No change

0 0 1 LCTR LIT to CTR (ones complément)

1 0 1 CTR BSW least byte to CTR (ones complement)
- 1 0 INC Increment CTR (mod 256)

At the end of phase 3, LCTR and CTR reset the COV condition bit, and
INC sets the COV upon incrementing from HEX FF to HEX OO0 unless the
concurrent phase 1 tests COV,

9 50 SAR INPUT

No change
CSAR Complement SAR (See table in syntax for complements)
SAR BSW least bits*

*The number of bits used is the integer not less than log2 (logic unit
width in bits). ' |

If the phase 3 in progféss Speéifiés eventual loading of the SAR from
the BSW while a type II instruction attempts to load the SAR, the result
to the SAR is the result of the type II.

D-23

[51 52 53 ©5h] MEMORY AND DEVICE OPERATIONS

The indicated action is initiated if EXTOP has been determined to be

1 prior to the end of this phase 1.

"No change
MR1 Memory read using MAR1 as address
MR2 Memory read using MAR2 as address

MWl ‘Memory write from MIR using MARl as address
- MW2 Memory write from MIR using MAR2 as address -
Not implemented -
Not implemented
Not implemented
Not implemented
Not implemented
Not implemented
Not implemented

H B P H H R HHFHOOO® O©OOTO OO O
H HHHMOOOOHHUEHMEHKEHEKOOODO
H H O O H H O O »4 H O O KB H O O
H O R O H O H O H O KH O KF O K O

Not implemented

Interpreter based systems with a switching interlock use the following
- condition bits for synchronization of activity requests with memory

and devices (see the subsequent discussion):

RMI Memory accepts MIR information
RDC Read Complete, or Request of Device Complete
(only for devices read from or written to by

' Interpreter request).

In order to safely use these conditions they must be reset by testing
- before they may be depended upon. '

-D-2h

Memory Operations

The memory operations include read (MR) and write (MW). Each memory
operation uses as a memory address some part of the value in MARI and
MAR2 (BR1 or BR2 concateriated with MAR). A portion of the address
specifies a memory module, with the rest indicating locations within
the module,

Memory Use Sequence

The sequence of operations necessary to access S-memory is simple in
single interpreter systems where no conflict in access can exist. 1In
such cases once the address setup is complete (as in the MIR for
write), the memory read (or write) can be initiated, After a suitable
time the data from memory can be accessed via BEX or BBE. In the pre-
sence of qonflict potential, the following control sequence should be

used.

1. The S-memory address should be in the selected base register
and MAR.

2. Memory read

2.1 A test of RDC should be included in some prior
instruction. By convention this should be the previous
memory read (or device read or write by request). A
test of RMI should be included if address register

changes are required before the RDC is returned.

2.2 The memory read can occur in the instruction after the

address is (unconditionally) loaded into MAR1 or MARZ.

2.3_ A BRMI is returned when the memory has accepted the
address and the memory is connected to the requesting

Interpreter,

D-25

3.

2.4 A group of intervening instructions can be issued.

2.5

Once RMI is set and tested, these instructions may
change the address registers or even include device

read or write operation on. demend.

A RDC (read complete) signal is returned when data

will become available-for entry into the Interpreter

following clock,

Memory Write

" 3.1

3.2

3.3

3.4

The data to be written should be in MIR.

The address should be in the selected base register
and MAR. '

The memory write can occur in the instruction after

both the address and data have the desired values.

Return of RMI indicates that the memory is connected

and therefore the address and data have been accepted

and thus the address registers and MIR may be subse-

~quently changed.

D-26

1.

‘Bibliography

Bingham, Davis, Faber, Fisher, McGonagle, Reigel, Zucker,
"Microprogramming Manual for Interpreter Based System,"

Burroughs Corporation Technical Report TR 70-8, November 1970.

"D Machine Users Manual," Burroughs Corporation Technical
Report, April 1971,

Notes from a short course in "Microprogramming', Continuing
Engineering Studies Course 7107, University of Pennsylvania,
June 1971,

