
N 7 3 - 1 3 1 9 6

Technical Report TR-196 . August 1972

A TRANSLATOR AND SIMULATOR FOR THE

BURROUGHS D MACHINE

by

John Roberts

CASE FILE
COPY

I

I

I

1

I

I

I

UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

Technical Report TR-196 . August 1972

A TRANSLATOR AND SIMULATOR FOR THE

BURROUGHS D MACHINE

by

John Roberts

This research was supported in part under Grant
NGL-21-002-008 from the National Aeronautics and
Space Administration to the Computer Science
Center of the University of Maryland.

ACKNOWLEDGEMENTS

The author would like to acknowledge the contribution of Dr. Ashok
Agrawala of the University of Maryland for his suggestions on conversational
program responses and his.guidance in developing this software package.

The author would also like to express his gratitude to Dr. Earl Reigel
of the Burroughs Corporation for his permission to reproduce parts of the
D Machine technical manuals and for introducing the author to the D Machine.

CONTENTS

Page

I. ABSTRACT 1

II. D MACHINE . 3

III. TRANSLANG 7

IV. TRANSLANG TRANSLATOR 29

V. D MACHINE SIMULATOR 33

APPENDIX

A. TRANSLANG Syntax A-l - A-3

B. TRANSLANG Key Words B-l - B-5

C. TRANSLANG Interpreter Error Messages C-l - C-2

D. D Machine Timing and Control Word Format D-l - D-26

I. ABSTRACT

Traditionally software for small microprogrammed computers has been

minimal or nonexistent. One solution to this problem is given for the

Burroughs Corporation D Machine. The system, which is implemented on the

University of Maryland UNIVAC 1108 and shown in the flowchart on the next

page, is composed of two programs: a TRANSLANG translator, and a D Machine

simulator.

In an effort to fully understand this system, a full description of

the D Machine and..TRANSLANG are given in this document.

Briefly, however, the D Machine is a small user microprogrammable

computer, designed to be a versatile building block for such diverse functions

as: disk file controllers, I/O controllers, and emulators.

TRANSLANG is an Algol-like language, created by Burroughs, which

allows D Machine users to write microprograms in an English-like format

as opposed to creating binary bit pattern maps.

The TRANSLANG translator parses TRANSLANG programs into D Machine

microinstruction bit patterns which can.be executed on the D Machine simulator.

In addition to simulation and translation, the two programs also offer several

debugging tools, such as: a full set of diagnostic error messages, register

dumps, simulated memory dumps, traces on instructions and groups of instructions,

and finally, breakpoints.

"TRANSLANG"

Source Code

Translator
Control
Parameters

Simulator
Control
Parameters

"TRA2SE "
.Translang
Interpreter on
the UUIVAC 1108

Bit patterns
for D Machine

or
Simulator

"D" Machine
Simulator

on
the UNIVAC 1108

ERROR MESSAGES
Interpreter
Output Listings
of BIT Patterns
in HEX

Punched Cards
ready for input
into "D" Machine

Simulator
Output

Dumps, Traces, Results, and
other debugging tools

D MACHINE SOFTWARE PACKAGE

II. D MACHINE

The D Machine consists of four functional units; the Micro Program

Memory (MPM or Control Store), the- Memory Control Unit (MCU), the

Control Unit (CU), and finally the Logic Unit (LU). These elements are

shown diagrammatically in Figure 1. All specifications are for the D

Machine which is emulated.

The MPM holds microprograms which are to be executed. This

memory is 70 bits wide by 102k words long. The 70 bits are composed of

two areas. The first is 16 bits (M memory) and is used to set literal

amounts in registers or to define whether the next 5^ bits are used,

(in some D Machines, the two areas reside in completely separate mem-

ories). The 5*4- bit area (NAWO Memory) activates all the gates and paths

inside the D Machine except in the case just mentioned.

The MCU generates addresses for both the Main Memory and for the

MPM. It .contains two 12 bit registers for MPM addressing, three 8 bit

registers for Main Memory addressing, one for 8 bit literals (LIT), and

one 8 bit counter (CTR). The two for MPM addressing are called the

Micro Program Count Register (MPCR), the main program counter, and the

Alternate Micro Program Count Register (AMPCR), which is used to hold

return addresses. The three for Main Memory addressing are Base

Register One (BRl), Base Register Two (BR2) and the Memory Address

Register (MAR). Main Memory addressing is accomplished by concatenating

BRl and MAR or BR2 and MAR to form a l6 bit address. For the simulated

Main Memory only 102U words of 32 bits are provided, so only 12 bits of

the concatenated Main Memory Addresses are needed.

The CU receives the bits from the NANO Memory and decodes them

to provide commands to the Logic Unit. Each instruction can have

several conditional parts and thus the CU is responsible for testing

DC
UJ
h-
LU
DC
Q.
DC
UJ

o

1
a

I
o
E

a
<0

I
O>
o
o

o
O)
c
'E
|
oo

OQ

•os
a.
4)

I
o
0>

*5
J2</>
'!S

8

£a

in (N

& <
<0 ^
^ !,r
U <
5 Ma —» k.
•- D $
5* .̂ •=.
o ^ g>
"S 'E ccs ^ ,

on

O
O
•o

re

O

,* W

8 ' - S

ID
O

CC

U

A
R

CM
CC
m

cc
OQ
cc"
u
Q.

cc
o
Q.

o
(0
z

s z
~ £

U
n

8. -̂

S1

cc
2 I<-j
o
u

O "•-

C .?
O O)
O w

E- "o !

i
M

em
o

l I
2 o
o> Co -S
a E
2 1u £
i 2

(0
UJ

CC

O
o
OQ
CC
LLI
H
LU
CC
Q.
CC
LLJ

4

1

C

1

c •§
V -c

•H «3

UJ

c
<o
z

^ .

5 -2

* C

o £ j
B O *

<

<

t

I
•o
5

o
cc

s T;
> S
: -c

- "c Q

>.
r
D
u
E
D
Z

Z

1"CC cO;i
o £

t

in —
O *1 •- c/
(U R

1
1

&
—
M

C
on

tr
ol

s

1

)
3

J

r
T.

<
r
j

^^

S

11
1

5
CJ *-*

5 t
0 Z

o

z |
1 ^J

C
O

N
T

R
O

1.
 P

ro
vi

de

cc
w :

1

'

CO -»

^ «- (M

< <
C

on
tr

ol
s

S1 - £cc ~ a

-, g £• H 13 C "o 3 «

o 5 1 1 |*; — CO nj JD

OJ

= a:
OJ L.' O

1^ =1

—

o
LLJ
_l
III
CO

m

CO

<

<

C

K

C

S
Q
C
c

U
«;
•:

03 1 S (

o o .9 c

i I1 i JJ -J <S

t'

••

cc
UJ

Q

D
yn

am
ic

•a

|.f

o -o
0 C

3.
 C

on
tr

ol

te
st

in
g

a

\
j
3

- D .£ cc: o $ o
3S S'|Jr~ ? <-t < 1
CZ S u
J 3 O- O.
i S S

»

V•o

° '!u i2
S 3

O

s

cc
cc
03

2
5

3

CC

v>

cc

61<i <M

O CO
Q_ ^

| K

\

.8 < 1
S 5 g

0 C CM =
">• '5 CC "•
o S E? !5

1 1 i I
CM' ri

a

I
1

^ CC _^

S

o

c
•• o

a
2
O

1-

<r
a
5

cc _j
c 3 2

DC

P

S
V
OJ

O.

1
6
o

o

«,
I

I!

ha.

j

1
i 1 1 .

/I\
T3
C
(0
E-

o
0

U o £ £ <o c-o cc a) DI

E I—, , ,p .* 1
•— » M-, *

£"^ r
i-^-J * *

S.S:* I £

83S-1 - |
g s 5

a \ ? -a: S ™ . .
c O a: f
o

'If ^>

-5 =
E S S j3 t ; -1

i S n =

*- j=
c o
3 *;
o ^E|,

^ -t^ H

o 5

£ &u. ^

a
A. t
\^J Q 0) OOT30 £

[T 4

=> 1 (5)
CJ
a
H

*] 5 rm

30

c
5

0)

*3
w

L
.U

.
O

p
e

ra
ti
o

n
in

d

E
X

T
F

R
N

A
L

O
p

c
r.

 C
o

n
d

it
io

n

o
U

1-1

8 ° -M -
5 S 5 > 2
-«= i| £
c "2 i o o
S g a S O

!fiiil^ 3 o U 5 2
o
h

8

2. oto E «

&| s
•5 »*5

^ !?!
§ e *->' s ° s
isi.s i

. o S
S? S u c '
77 >-° '
1^ o t U

t »"s = ;

^ < CD 0 C '
U ., 7J 2
^J (U t w

ro
QJ

"S.
1.
o
(0
Z

1 ,

U

2

Sw

L-H
o U

sg
£ 2

x-x C (xj

O c£
« ° »
0 U «

§ 3-2 .
,9-^ c 2u S •=<

w -u-
|<;
2 s >
2 ft
% «•

F? ~

(/i

O

F £" w U

I t S 3 _ ^ H
Si 2 2 S
<^ ~ 0_

i
a: t

« c/3 ^
£«^-
S °^;
O 3

g?
2 >

— —
Q. a.
£ £

CC

a.

j <
— -*

r

1i

iu.
,

ri

CO

ce

CO

a:
CQ

CD

s -

CO

o;

U

CO

H
J

CM

Qi

a.

<

CNJ

C£
U

0

1 — ^_r M

U
<z

T

T

J .»:_oj (j
r o c
f M 0

f, t k<

—1 \

DK 0
al *j '
•5 C

•» 2 0
U

(.

: t 1 i

_» 1 s s

u •*?,""-

« £i-
J

i

— 1

T>
±J

U

£
r

3
L

(D OJ

2£
O S

O
O

0) Ou

"
U w

U. Ul

5 c
flJ

o S

-— U)

1 >
ll!...:..::

and setting conditions inside the entire D Machine. Another function

of the CU is to provide shift amounts to the HJ shifter. This is

accomplished by maintaining the 5 bit Shift Amount Register (SAR) to

indicate a shift of from 0 to 31 bits.

The last unit is the Logic Unit, and it is this unit which is

the most obvious to the microprogrammer. The LU architecture consists

of five 32 bit registers, an adder, and a shifter (barrel switch). The

Al, A2, and A3 registers make up the left inputs to the adder from the

LU and the B register is the only right input from the LU. A micro-

instruction selects, during each adder cycle, a left and right adder

input from those just mentioned or from other registers outside the LU.

Once selected, the requested adder operation is performed and then that

result is optionally shifted any amount and stored into any of the four

registers already mentioned, or into the Memory Input Register (MIR).

Data enters the LU from external sources through the B register and

leaves through the MIR register. An interesting feature associated

with the B register is the B select unit. This logic network allows

the user to select the B register as a source for the adder in many var-

iations. The select unit breaks the B register into three parts; most

significant bit, least significant bit, and all bits in between. Each

of these parts can be selected as True, False, Zero or One. True indi-

cates the part is unchanged. False indicates the one's complement of

the part is selected; Zero requests the part to be set to all zeros

(or zero) and One, similarly, dictates the part to be set to all ones

(or one). This will be utilized in TRANSLANG which would allow one to

say BOTT = B, which means B is replaced by the absolute value of B

(i.e., the sign bit is set to zero to denote positive).

To understand the D Machine and how it is microprogrammed, it is

necessary to examine the control word formats of the MEM Memory and to

study the timing of events inside the D Machine. A detailed exami-

nation of these two topics is given in Appendix D. It should be noted

here that if one writes programs in TRANSLANG he need not know the

function of each bit in the Control Memory, but he must be familiar

with the timing of events or he will find it impossible to .write

error free programs.

III. TRANSLANG . . -. .

TRANSLANG is a Algol-like language created to assist in writing

microprograms for the Burrough's D Machine. Its complete syntax is

given in Appendix A. The vocabulary of TRANSLANG consists of numerous

Key Words (reserved words) which, after proper ordering as prescribed

in the syntax, can be translated into microinstructions. A complete

list of these Key Words is given in Appendix B.

Each TRANSLANG instruction consists of one line (or card) and

corresponds to the set of D Machine functions which are activated in

parallel during that machine clock (i.e., one control store word).

These functions include register adjustments, I/O, Boolean, logical

and computational operations, control transfers and assignments. To

aid in control transfer each instruction can begin with a label identi-

fier which can be used to uniquely identify that address throughout a

program.

Backus-Naur form (BNF) is used as the metalanguage to define the

syntax of TRANSLANG. The complete syntax is broken up into groups and

presented in the following order: syntax, semantics, and examples.

In an effort to increase understanding and simplify definitions,

the following convention will be used in conjunction with the BNF defi-

nitions - "{" and "}" will be used to encompass English language des-

criptions which might otherwise take more effort to describe in BNF.

Basic Elements

Syntaa: <Program>

<Body>

<Line>

<Comment>

<Empty>

<Letter>

<Digit>

<Character> :: =

<Label> :: =

<Single Space>::

<Symbo2> :: =

^Assignment Qp> :: =

<End Line> :: = END $

<Body> <End Line>

<Comment> |<Line> |<Body> <Comment> |<Body> <Line>

<N Instruction> $ |<Literal Assignment> $

COMENT [Any string of <Character>s except $}$

[The null string of characters]

A |B |c ID..JE |F |G |H |i | J|K |L |M |H |o |p |Q |R |s IT |u |v |w Ix IY Iz
o|i|2|3|M5|6-|7|8|9
<Letter> |<Digit> |<Single Space> |<Symbol>

<Letter> |<Label><Letter> |<LabelXDigit>

= [One horizontal blank position]

H-l 1-1.1*1(1)1$

Semantics:

A TRANSLANG program consists of a series of instructions followed

by an END instruction. Each instruction is translated into one micro-

instruction and placed into the simulated control store starting at

address 0 and stepping by 1 for each additional instruction (up to 102U). Labels can

be used as symbolics for addresses. 'Whenever a label is encountered it

is inserted into a table for resolution in pass 2 of the translator.

Labels can be up to 6 characters long.

Comments can be made in two fashions. One is by starting the

line with the Key Word comment, which causes no action to be taken on

any lines which follow until a line with a "$" appears. After that

line translation resumes. The second method is to put comments after

. the "$" which must end each instruction. Please note that an instruction

cannot be continued and must appear on one line only.

8

Spaces can appear around Key Words but not inside them.

Embedded blanks will always cause problems. . .

Literal Assignment

Syntax:
«

<Literal Assignment> :: = <Literal> = AMPCR |<Literal> = SAR|

<Literal> = SAR, <Literal> = <Lit>|

<Literal> = <Lit>,<Literal> = SAR|

<Literal> = <Lit>

<Literal> :: = <Integer>|Comp<Interger>|<Label>|

<Integer> :: = <Digit>|<Integer> <Digit>

<Lit> :: = LIT]SLIT

Semantics:

These instructions are l6 bit type II instructions as mentioned

in the timing section of Appendix D. Each is used for inserting con-

stants into one of three registers: AMPCR, SAR or LIT.

Width

AMPCR Alternate Micro Program Count Register 12

SAR Shift Amount Register 5

LIT Literal Register 8

The registers may be individually loaded or both the SAR and

the LIT may be loaded in the same instruction. Usually the latter may

be used in place of separate instructions to individually load LIT and

to load SAR.

An <Integer> should be non negative, in the range of the intended

receiving register(s). COMP <Integer>, if the receiving register is

LIT or AMPCR, takes the ones complement of the <Integer>, then takes the

number of bits indicated above into the receiving register.

If SLIT is the destination register, then the literal value is

entered into the LIT registers in the same form as the SAR. The SAR

register requires an unusual format as shown in the following table.

Zeros are used to fill the 8 bits.

10

SAR "COMP"

0

1
2 .

3
k
5 .
6

7
8

9
10

11 '

12

13
III

15
16 .

17

18

19
20

.21

22

23

2U

25
26

27

28

29
30

'31

OOOX 00

01

10

11

001X 00

01

10

11

010X 00

01

10

. 11

'011X 00

01 .

10

11
100X 00 .

01

10

11
101X 00

01

10

11
110X 00

01

10

11
\

110X 00

01

10

11

OOOX 00

111X 11

10

01

00

110X 11

10

01

00

101X 11

10

01

00

100X 11

10

01

00

011X 11

10

01

00

010X 11

10

01

00

OODC 11

10

01

00

OOOX 11

10

01

X - indicates an unused position.

The successor of a <Literal Assignment> is always a default STEP.

11

Examples:

5 = SAR

COMP 8 - SAR, 13 = SLIT

COMP 0 = LIT

255 = LIT

START = AMPCR

LOOP - 1 = AMPCR

$ SAR set to 001X01

$ SAR is 110X00, LIT is 00011X 01

.$ LIT is 255

$ Same as above

$ Value of address START will go to AMPCR

$ Address LOOP-1 goes to AMPCR

N Instruction

Syntax:

<N Instruction>

Unconditional Part>

<Component List>

<Component>

<Conditional Part>

<Cond Comp List>

= -̂ Unconditional Part> Conditional Part>|

<Label> . Unconditional Part>

Conditional Part>

= <Component List>|<Empty>

= <Component> |<Component List> <Component>

= <Ext op> |<Logic op> |<Successor>

= <If clause> <Cond Comp List> <Else clause>|

<If cluase>|<When Clause> <Cond Comp List>|

<Empty>

= THEN <Component List>

Semantics:

Each N instruction produces a 5^ bit microinstruction (Wano) and is

called a type I instructions. An N instruction may begin with a Label

followed by a "." If this occurs the label is then defined by putting

the label and the address of this instruction in a table, such that all

references to this label can be resolved with this address.

The following restrictions are imposed:

1. At most one <Ext Op> - either conditional or .unconditional

2. At most one <Logic Op> - either conditional or unconditional

12

3. At most either one conditional successor or one unconditional

successor in the <Cond Comp List> and possibly one in the

<Else Clause>.

The <Unconditional part> is always executed. In the Conditional

Part> if the condition resulting from the <If Clause> or <When Clause>

is true the components,in the <Cond Comp List> are executed; otherwise,

the <Else Clause> is executed.

Examples: (to be explained later)

Unconditional Part Alone:

SET LCI $

• ' MR2 $

SET LC2, MW1 $

A2 + B R = A3 $

Al -f B R = A2, BEX, LMAR $

JUMP $

DR1, 0 = A2, SKIP $

Conditional Part Alone:

IF AOV THEN Al+l.= Al ELSE SKIP $

IF NOT ABT THEN SET LC2, SKIP ELSE SAVE

WHEN RDC THEN MR2, BEX, INC $

N Instruction:

WHEN RDC THEN BEX $

SET LCI, IF MST THEN LIT-B-1 = A3, BEX $

MR2, SET LC2, IF.1ST THEN Al-t-B = A2 $

Al OR B = A2, IF LC2 THEN MR1 $

13

Condition

Syntax:

<If Clause> : : = IF <Condition> .

<Condition> : : = <Not> <Cond>

<Not> : : = WOT |<Empty>

<Cond> :: = 1ST |MST (AOV JABT |COV|RMI |RDC |LC1 JLC2 llRQJEXT |lRq|

SRQ|lNT|GCl|GC2|

<When Clause> : : = WHEN <Condition>

<Else Clause> : : = EI£E <Successor> |<Empty>

Semantics:

Each N instruction can perform a test on the Boolean value of one

<Cond> or its complement (i.e., NOT <Cond>). The Boolean value of the

result is <Condition>. If this value is true, the <Cond Comp List> is

executed and the successor from this list is used to determine the next

M instruction. Otherwise the successor in the <Else Clause> is used.

If the <Else Clause> is absent, an EISE STEP (see <successor>) is

substituted by default. A <When Clause> is equivalent to an <If Clause>

'with the same <Condition> and an <Else Clause> of EISE WAIT.

Testing of a condition bit causes the bit to be reset. These

conditions are :

RMI - Ready MIR bit . ,

Follows memory operations, indicates data in MIR and

addresses have been captured and can be changed. Occurs

one clock after initialization of memory operation.

Required operation before another memory write can occur

with full confidence of accuracy.

RDC - Read Complete

Follows memory read, indicates data will be available for

entry to B in the next clock.

COV - Counter Overflow

Follows after an INC which caused the CTR to overflow

(i.e., exceed 255).

LCI - Local Condition 1

Tests and resets local Boolean condition bit LCI (a one

bit status flag).

LC2 - Local Condition 2

Tests and resets local Boolean condition bit LC2.

The following four logic unit conditions are not bits which are

reset on checking as above, but are dynamic levels and indicate the

resultant output from the adder in the phase 3 of the last instruction

which had a logic unit operation. These conditions are sustained until

execution of another instruction involving the logic unit and may be

tested by that instruction. (See Appendix D for timing). Please note

the conditions may change due to a type II instruction which alters

AMPCR or LIT when either is also specified as an adder input.

AOV - Adder Overflow

Results from an adder operation with carry out of the most

significant end of the adder.

LST - Least significant

State of the least significant bit of the adder output.

MST'- Most significant

State of the mpst significant bit of the adder output.

15

ABT - All Bits True

This condition is true (one) if and only if the adder

output is all ones.

The following conditions are legal syntactically but have no

meaning in the D Machine simulation due to the limited I/O emulation

and other reasons.* The correct code is generated, however, and

would run correctly on a D Machine with a full implementation. Similar

problems will be mentioned in <Ext Op> in the next section.

IRQ

EXT

INT

SRQ

URQ

GC1

GC2

Examples:

IF'NOT LCI THEN Al+B = A2 ELSE SKIP $

WHEN RDC THEN BEX $ Same as below - puts data in B

IF RDC THEN BEX ELSE WAIT $ Same as above

IF LST THEN SET LCI, MEL $

*Such as maintaining compatibility since D Machines come in many sizes
and implementations - not all functions are on each.

16

External Operations

Syntax:

<Ext Op> : : = <Mem Dev Op> |<Bet Op> |

<Mem Dev Op> <Set Op> |<Set Op> <Mem Dev Op>

<Empty>

<Mem Dev Op> :: = MRl|MR2 JMW1 JMW2 JDR1 |DR2 |njl|l!U2 |DWl|DW2

<Set Op> :: = SET <Cond Adjust Bit>|RESET GC1 | RESET GC2

<Cond Adjust Op> :: = INT |LCl|LC2 |GCl|GC2

Semantics:

The external operations are part (or all) of an <N instruction> and

therefore a type I instruction. An <Ext Op> may be specified as either

conditional or unconditional as it appears in at most one of the

"Unconditional Part> or Conditional Part>.

The memory operations MR1, MR2, MW1, and MW2 are the only external

operations which have been allowed in the D Machine simulation. All

other operations are syntactically correct but have no implementation.

If their meaning is important, please refer to reference 1.

MR1 and MR2 are memory read operations. MW1 and MW2 are memory

write operations with 1 and 2 referring to the address source registers.

Memory addresses are generated by concatenating the 8 bits of the MAR,

to form the low order bits, and 8 bits from either BR1 (MR1 and MWl) or

BR2 (MR2 and MW2).

The set and reset operations are used to set and reset condition

bits. Again, not all operations have been implemented due to the same

reasons cited earlier, but they remain syntactically correct.

17

SET LCI and SET LC2 are the only operations which are allowed in

the D Machine simulation. RESET LCI or LC2 is not needed since testing

resets them automatically.

Examples:

SET LCI, MR2 $

MR1, SET LCI $

MW1 $

Logic Operation

Syntax:

<Logic Op>

<Adder Op>

<Monadic>

<Not>

<Dyadic>

<Adder Op> <Inhibit Carry> <Shift Op> <Destination List>

011 |<Monadic> |<Dyadic> |<Empty>

<Wot> <X Select>|<NY Select>

NOT |<Empty>

<X Select> <Any Op> <Y Select>

NOT <X Select> <Normal Op> <Y Select>

<X Select> {<Normal Op>|<Not Y Op>}NOT <Y Select>

<X Select> + <N Y Select> + l<X Select> - <N Y Select>

Semantics:

The logic operations include the selection of adder inputs, the

adder operation, the barrel switch shifting, the destination specifi-

cations for the adder and BSW outputs, and the controls for the literal,

counter, and shift amount register. The monadic operations are those

which have only one explicit input. The selected value or its ones com-

plement may become the adder input depending on the <NOT> function being

NOT or <Empty>. The dyadic operations have both an <X Select> and a

<Y Select>.

18

The default <Logic Op> is unconditional 0+0 = . This does cause

completion of the prior <Logic Op> in progress in phase 3. (See

Appendix D for timing explanations).

Examples:

- 0 = CTR $

Al AND B011 = Al $

A2 + NOT CTR R = A2, BEX, CTR, CSAR $

Input Selects

Syntax:

<X Select>

. <Y Select>

Select>

<O

<Gating>

Semantics:

o|AIJA2|AS | CTR|ZEXT|LIT[2|<Empty>
O|I |B|B <M> <c> <L>|CTR]ZEXT|LIT|Z
AMPCR|BMAR
<Not> <Y Select>

<Gating>

<Gating>

<Gating>

O|I|T|F

There are three A registers which may be used for data storage

within a D Machine. Any. one of the A registers, or the counter,

external source (not implemented in simulation), literal, or Z (also

not implemented) may be selected as input to the adder is the

<X Select> part of the instruction. The B register is the primary

interface for external inputs from the main memory. It also serves

as input to the adder. The B register can be partitioned when it is

selected as input to the adder. The partitions are as follows:

M - Most significant bit of B (left most)

C - Central bits of B

L - Least significant bit of B (right most)

19

When selecting the B register as input to the adder, each of

the three parts may be independently specified as being either

0, 1, T or F. A zero gating will cause that part to be all zeros.

A one gating will cause that part to be all ones. A T gating will

produce the true value (no change) of the B part. An F gating will

produce the false value (ones complement) of B for that part. There

can be no spaces between gatings. If B is specified by itself, then

BTTT is assumed. However B is selected as an adder input; its con-

tents -are left unchanged.

Whenever any other register is specified as an adder input, it

will be right justified in the specified 32 bit input.

Examples:

BTFO

Al

AMPCR

BOTT Adder input is absolute value of B

Adder and Shift Operators

Syntax:

<Normal Op> :: = NOR \NRI|WAN|XOR|NIM|JMP JEQV |AND|RIM |OR

<Not Y Op> :: = +|-

<Any Op> :: = OADJAAD|<Normal Op> |<Not Y Op>

<Inhibit Carry>:: = 1C |<Empty>

<Shift Op> :: = R J L J C |<Empty>

Semantics:

Each <Dyadic> contains two operands (X any Y Select> and an

operator. All operators are commutative except for "-", "OAD" and

20

and "AAD." Commutative operands can appear in any order. The recom-

mended standard order is X Op Y which works for all operators. The

following table defines the adder, operations.

Commutative Operators Name Equivalence

X NOR Y Nor X Y

X NRI Y Not Reverse Imply X Y

X AND Y And X Y

X NIM Y Not Imply X Y

X XOR Y Exclusive Or (X Y) V (X Y)

X EQV Y Equivalence (X Y) V (X Y)

X IMP Y Imply X V Y

X NAN Y Nand . X V Y

X RIM Y Reverse Imply X V Y

X 0NR Y Or (inclusive) X V Y

X + Y Add X plus Y

Won Commutative operators

X - Y Subtract X + Y + 1

X OAD Y Or Add X + (X V Y)

X AAD Y And Add X + (X Y)

The carries from 8 bit bytes can be inhibited by specifying 1C.

Since this was found to be used so infrequently, it is not included

in the simulator.

There are four shift operations. One can be selected for each

adder operation. The operator specifies shift direction and the SAR

register specifies the number of bits. All shifts are completed in

the same amount of time (within the same cycle - see Appendix D).

21

R - Right end-off shift by amount in SAR, filled with left zeros

L - Left end-off shift by complemented amount in SAR, filled

with right zeros.

C - Circular right end around shift by amount in SAR

<Empty> - No shift

Examples:

0

NOT LIT

Al + B + 1 R

A2 OR'NOT CTR C Same as A2 RIM CTR C

Destination Operators

Syntax:

destination List>

<Asgn>

<Dest>

<Input E>

<Input Ctr>

<Input Mar>

<Input Sar>

<Asgn> <Dest> |<Destination List> <Asgn>

<Dest> |<Asgn>

AI |A2 1 AS |MIR |BRI IBRS [AMPCR |<input B> |
<Input CTR>|<Input MAR>|<Input SAR>

B (BEX (BAD |BĈ |Bc8 |BMI |BBE |BBA |BBI
CTR|LCTR|INC
MAR (MARI |MAR2 | LMAR

SAR ICSAR

Semantics:

The destination operators explicitly specify registers in which

changes will occur at the end of the logic unit operation.

Restrictions

1. At most one each from <Input B>, <Input Ctr>, <Input Mar>,

and <Input Sar>.

22

2. If <Input Ctr> is LCTR then <Input Mar> may not be MAR,

MAKL, or MAR2.

3. If <lnput Mar> is LMAR then <Input Ctr> may not be CTR.

k. After ".=" in the destination list, separate operators with

either a comma or blank, but not another "=".

The principal data source is the barrel switch output. It is

the only source for loading Al, A2, A3, MIR, BR1 and BR2. It pro-

vides one source for loading B, CTR, MAR, SAR and AMPCR. The following

reserved words are also the'register names. The bits used in these

transfers are indicated below:

Destination Barrel Switch Output
Register Source Bits

Al All

A2 All

A3 All

B - All

MIR . All

BR1 2nd least significant byte

BR2 2nd least significant byte

MAR Least significant byte

CTR Least significant byte (ones complement)

SAR Least significant 5 bits

AMPCR Least significant 12 bits

B, MAR, CTR, SAR and AMPCR registers may have other inputs as

shown below:

B Registers Inputs (BĈ - and BC8 are not simulated)

B The barrel switch output is placed into B

BEX Data from the memory bus is placed into B

23

BAD

EMI

BBE

BBA

BBI

MAR inputs

LMAR

CTR inputs

LCTR

INC

SAR input

CSAR

The adder output is placed in the B

register (short path to B)

The MIR contents are placed in B inde-

pendent of any concurrent change to the

MIR

The barrel switch output ORed with the

data from the memory bus is placed into B

The barrel switch output ORed with the

adder output is placed into B

The barrel swtich output ORed with the MIR

contents is placed into B independent of

any concurrent change to the MIR.

The literal register content is placed in

MAR

The ones complement of the LIT register

contents is placed in CTR

Increment CTR by one

Complement prior content of SAR

If AMPCR is changed by a successor selection of CALL or SAVE these

operations take precedence over any specified by the logic unit.

Examples:

= B

= CTR

= Al, BEX, MIR, LCTR, CSAR

Successor

Syntax: •

<Successor> :: = WAIT(STEP|SKIP JSAVE |cALL JEXEC|JUMP|KETN

Semantics:

Each <N Instruction> specifies 2 successors explicitly or impli-

citly, indicating the control to be used for the next instruction

selection. A <Successor> in the Unconditional Part> results in the 2

successors being identical. Otherwise, one or two successors may appear

in the Conditional Part>. The eight choices for each successor are

described below and in the table which follows after the text.

WAIT - Repeat the instruction in the MAR

STEP - Step to the next instruction in sequence from MPCR

SKIP - Skip to the second next instruction in sequence

• from MPCR

SAVE - Step as in "STEP" but also save MPCR contents in

. • .- AMPCR- • . •

CALL - Transfer control to AMPCR+1 address., save current

MPCR in AMPCR

EXEC - Execute instruction in AMPCR+1, then proceed as

specified in the executed instruction (MPCR is

unchanged)

JUMP - Transfer control to AMPCR+1

RETN - Transfer control to AMPCR+2

Any successor not explicitly stated is STEP by default. All

successors except EXEC place the resulting microprogram address in MPCR.

Each <Literal Assignment^ instruction has an implicit successor

of STEP.

Successor Successor
Command M Instruction Address

WAIT MPCR

STEP MPCR+1

SKIP MPCR+2

SAVE MPCR+1

CALL AMPCR+1

EXEC AMPCR+1

JUMP AMPCR+1

RETN AMPCR+2

Next Content
of MPCR will be

MPCR

MPCR+1

MPCR+2

MPCR+1

AMPCR+1

MPCR

AMPCR+1

AMPCR+2

Next Content
of AMPCR will be

- (no change)

MPCR

MPCR

Examples:

WAIT

JUMP

Sample Programs

Two programs in TRANSLANG are given next to aid in the under-

stan'ding and structure of TRANSLANG. Each is fully documented to aid in

its understanding.

26

EXAMPLE OF MICROPROGRAM

FOR BINARY MULTIPLY

Assumptions

(1) Sign -magnitude number representation

(2) Multiplier in A3; multiplicand in B

(3) Double length product required with resulting
most significant part, with sign, in B and least
significant part in A3

1. A3 XOR B = , IF LCI $

2, B = A2, IF MST THEN SET LCI $

Comment: Step 1 resets LCI. Steps 1 and conditional part
of 2 check signs; if different, LCI is set.

3. BQOO = B, LCTR $

Comment: Steps 2 and 3 transfer multiplicant (0 sign) to A2
and clear B.

1*. N-2-»LIT , 1->SAR $ '

Comment : Steps 3 and k load the counter with the number
(N = magnitude length) to be used in terminating the multiply
loop and load the shift amount register with 1.

5. A3 R-»A3, SAVE $

Comment: Begins test at least bit of multiplier and sets up
loop.

6. LOOP. IF NOT LST BOTT C = B SKIP ELSE STEP $.

7. A2 + BQTTC = B $

8. A3 OR B QR = A3, INC, IF NOT COV THEN JUMP ELSE STEP $

Comment: 6 through 8 - inner loop of multiply (average 2.5
clocks /bit).

9. IF NOT LCI THEN BOTT = B, SKIP ELSE STEP $

10. B = B $

Comment: If LCI = 0, the signs were the same, hence force
sign bit of result in B to be a 0.

11. END $

27

EXAMPLE OF MICROPROGRAM

FOR GENERATION OF FIBONACCI SERIES

Assumptions:

Al contains starting address for storing of series

A2 contains the number representing the length of
the series to be computed

1. Al = MAR1 $

Comment: Load starting address of series into address register

2. BQOO = A3, MIR $

3. B = B, MW1 $

Comment: Load initial element of series (0) into A3 and MIR and
write it into starting address. Load second element of series
(1) into B.

U. A2 = CTR, SAVE $

Comment: Load counter with length of series; the counter will
be incremented for each generation of an element of the series;
COV will signify completion. The SAVE sets up the loop.

5. LOOP. IF RMI THEN Al+1 = Al, MAR1, INC, STEP ELSE WAIT $

Comment : Set up the next address and increment counter

6. A3 + B = MIR $

Comment: Generate new element in series and place in MIR

7. B -> A3, BML, MW1; IF NOT COV THEN JUMP ELSE STEP $

Comment: Write new element into next address

Transfer i - 1 element to A3

Transfer i element to B

Test counter overflow for completion (go to LOOP,

if not done)

8. END $

28

IV. TRANS LANG Translator

The TRANSLANG Translator takes programs written in TRANSLANG and

generates the microcode for D Machine bit patterns which can run on the

D Machine simulator. A full set of error diagnostics is included.

This program is written in RALPH and runs on the UNTVAC 1108.

EXEC 8 control cards will not be given as they will vary according to the

way the programs are entered in the system.

USE:

Input

(1) The TRANSLANG programs should be created and inserted

into a file before running the translator. This file

is considered to be on unit number 9 s° the user should

include a @ USE statement to equate his file with the

translators input logical unit number 9-

(2) The Translator asks the user three questions. The

answer to these questions (YES or NO) control the amount

of output generated. These questions follow:

Question 1 - "NANO AND MEM BIT PATTERN LISTING DESIRED" '

If the user wishes to see the l6 bits of the M Memory and

the 5!* bit Nano memory (if present) as generated for each instruction,

reply "YES" otherwise "NO".

Question 2 - "SOURCE INPUT LISTING DESIRED"

If the user wishes to have each statement of his input pro-

gram listed, reply "YES"; otherwise "NO". If he replies "NO" and an

errors are encountered, then all instruction with errors will be listed

along with the diagnostic.

29

Question 3 - "OBJECT OUTHJT LISTING DESIRED"

If the user desires to see the bit patterns generated after

an error free syntax pass, reply "YES"; otherwise "NO". If an error

occurs and the reply was "YES" the error has precedence and the output

listing is suppressed.

The object listing must display up to 80 bits of information

in 72 columns. (TTY format) To do this, the bits are displayed in

hexadecimal groups of four characters. For example:

F003 009 OCUO 1000 0800

E001

F00l4 AC08 OODO OCOO 0000

The first U characters are the l6 bit M Memory control bits

and the next 14 characters give the ^h bits of the nano memory. The

last two characters are meaningless except for compatibility and D

Machine requirements.

Output

(1) The object binary bit patterns are written out on

logical unit #10 for input into the D Machine simu-

lator. Appropriate EXEC 8 commands should be used

so that the simulator will be .able to reference the

object file from logical unit #10. This output

occurs whether the object code is listed or not.

(2) Error Messages - The translator has 28 error messages

which are always printed along with the instruction

in which the error occurred. These error messages are

given in Appendix C.

30

A Sample Translator run follows. Only those lines that are under-

lined were entered by the user.

PLEASE ENTER TRANSLATOR CONTROL PARAMETERS

NAWO AND MPM BINARY BIT PATTERN LISTING DESIRED

NO

SOURCE INPUT LISTING DESIRED

YES

OBJECT OUTPUT LISTING DESIRED

YES

SOURCE PROGRAM FOLLOWS

LIT = MAR1 $

1 = LIT $

MRI $

WHEN RDC THEN LIT + 1 = MARL, BEX, STEP $

MRI, B = A3 $

WHEN RDC THEN BEX $

A3 XOR B = , IF LCI $

BOTT = A2, IF MST THEN SET LCI $

' BOOO = B, LCTR $

1 = SAR, 29 = LIT $

A3'R = A3-, SAVE $

IF NOT LST THEN BOTT C = B, SKIP ELSE STEP $

A2 + BOTT C = B $

A3 OR BTOO R = A3, INC IF NOT COV THEN JUMP ELSE STEP $

IF NOT LCI THEN BOTT = B, SKIP ELSE STEP $

B1TT = B $

STEP $

END $

31

THE TOTAL NUMBER OF ERRORS = 0

OUTHJT READY FOR SIMULATOR INHJT-

ADD

0

1

2

3

h
5
6

7
8

9
10

11
12

13
lU

15
16

17

MPM

FOOO

E001

F001

F002

F003

FOOU

F005

F006

F007

811E

F008

F009

FOOA

FOOB

FOOC

FOOD

FOOE

1*000

0009

0009

AC08

0009

AC08

2009

!*BC9

0009

0012

5̂ 19
0009
8029
2U19
0009
0009

oiUo

• oooo
oiU6
ocUo
0000

ECUC

ohko
0000

EOOO

(Ml
CUUl

E81C

oÛ o
icho
0000

002C

0000

OC2C

1000

ocoo
0000

2000

OB01

9000
8B02

8B02

9000

OBOO

OBOO

0000

WANO

0000

0800

0000

0800

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

32

V. D MACHINE SIMULATOR

The D Machine simulator takes the microprograms generated by the

TRANSLANG Translator and executes them just like the D Machine des-

cribed throughout this document. In addition to being able to execute

these programs, the simulator is a valuable tool for use in debugging

microprograms. A user can choose his output in many different formats

and can trace, break and dump the simulated memory of 102̂ words.

The simulator is also written in RALPH for execution on the

UNIVAC 1108. Again EXEC 8 control cards are not given.

Use:

The simulator requires the program which is to be

executed reside on logical unit #10, and be of the

same format as that created by the TRANSLANG trans-

lator. After creating such a file in the translator

the user need only insert the proper EXEC 8 control

card to allow the simulator to access this file.

(2) Responses to simulator control questions -

The user has no control of how the simulator will

execute a given microprogram, but he does have many

options on the type of output he wants generated.

Let us examine a sample run to study the options avail-

able. Simulator responses are in quotes and user

replies are underlined.

33

<§XQT

"PLEASE ENTER THE SIMULATION CONTROL PARAMETERS"

Question 1 - "MAXIMUM NUMBER OF CLOCKS (1-99999999) to SIMULATE = "

99

The user requests the maximum number of clock

cycles to simulate. The simulator simulates each

clock and all those events inside a clock cycle.

It takes one clock per instruction to execute pro-

grams if overlapping is included (See Appendix D).

Question 2 - "THE NUMBER OF CLOCKS BETWEEN OUTPUT POINTS = "

99
The user can dictate how much and how often output

occurs. This question is concerned with the fre-

quency. In this example, the user wants output

only every 99 clocks, which is only at the end of

the program since the example will require only 11

clocks to run.

Question 3 - "S MEMORY DUMP REQUESTED AT END OR BREAKPOINT"

YES

The simulator has a 102U word simulated memory for
i

storing data. This is the only storage medium avail-

able outside of the registers in the D Machine.

If one desires to look at results of a program

stored in memory, or intermediate results, respond

YES.

Question h - "PRINTED OUTPUT EXPLANATION DESIRED"

YES

The user who is unfamiliar with output options and

control will want to respond "YES" to have the

following explanation printed out:

"PRINTED OUTHJT IS CONTROLLED BY LINE NO. ID

LINE ID = 1 - ADDRESSES AND CLOCK, 2 = Al, A2, A3, 3 = B, MIR

U = SAR, LIT, AMPCR, CTR, 5 = BR1, BR2, MAR, BMA.R,

6 = CONDITIONS"

This explanation tells the user that from 1 to 6

lines of output can be printed every time output is

desired. Each line of output is controlled by a line

i.d. which identifies that line and the registers and

or addresses associated with it. Conditions are

printed out as LST = 1, LC2 = 0, etc. for all the

conditions simulated. BMAR is the last concatenation

of a base register and the MAR to generate a memory

address. Addresses in Line 1 refer to the two phases

being executed every clock. The addresses are the

Control Store address for each phase. CLOCK is the

current clock number being executed. Output always

occurs at the end of the clock specified.

If the user responds to Question h with NO, the above

lines will not appear. In both cases, the next

question is as follows:

Question 5 - "ENTER THE NUMBER OF OUTHJT LINES DESIRED"

This question seeks the total number of lines that

should be printed (regardless of which ones) at each

output point. Any number from 1 to 6 is acceptable.

Question 6 - "ENTER THE LINE NUMBER ID, S SEPARATED BY COMMAS"

1, 2, 3, U

The user should now enter h (always the same number

as answered in Question 5) line number identifications

separated by commas. This uniquely identifies the

35

lines of output desired. In this example, the first

four are selected, but any four could have been speci-

fied. (Remember four is only the example and not the

rule). If 6 were requested in Question 5, then there

would be no need for Question 6 and it would not occur.

Question 7 - "BEGIN OJTHJT AT ADDRESS"

0

Question 8 - "END OUTHJT AT ADDRESS"

9

Question 7 and 8 are used to define the output address

limits. If the beginning address is the first program

address and the end address is greater than or equal

to the last instruction address, then output can occur

at any clock according to the other output parameters.

If output was desired only in one section of a program

the answers to Questions 7 and 8 could be set to

bracket this block and thus could trace the simulation

only in this block except upon termination which

always causes the printing of all registers.

Question 9 - "TRACE REQUESTED" . .

WO

In addition to the output options already mentioned,

one may specify a particular address and get output

every time that address is executed. In the example,

this was not requested, but if it had the following

message would be printed:

Question 10 - "ENTER TRACE ADDRESS" (not in example because of NO in 9)
address

The address to trace on would then be entered.

36

Question 11 - "BREAKPOINT REQUESTED"

YES

Another" output option available is the breakpoint,

which allows the users to stop the simulation when-

ever an instruction is executed with an address

greater than or equal to this address (which is

entered to answer Question 12 if YES is the answer

to eleven). When the simulation stops, output is

generated according to line id,s as entered earlier.

A memory dump can then be taken if requested by

answer 3. Finally, you may request a new breakpoint

before the simulation continues.

Question 12 - "ENTER BREAKPOINT ADDRESS"

7

This is the breakpoint address requested by question

11.

Question 13 - "SOURCE PROGRAM LISTING DESIRED"

YES

If the user would like to list the program being

simulated, reply YES and the following line will be

printed, followed by the program listing in the same

format as object listings in the Translator.

"THE PROGRAM BEING SIMULATED FOLLOWS"

Program Listing

37

Question Ik - "IS THERE AM S MEMORY INPUT"

YES

If the user wishes to enter data into the simulated

memory before the execution begins, reply YES;

otherwise, NO. If the answer is YES, the following

message is printed:

"ENTER MEMORY INPUT INFORMATION

MEMORY IS ALL ZERO TO START

ENTER VALUES IN CONSECUTIVE BLOCKS AS REQUESTED BELOW"

This message' instructs the user that the simulated

memory is initially cleared to zero and that input

will be in consecutive blocks, (i.e., Address (i),

i+1, i+2 then address (j), j+1, j+2, j+3, etc. - see

below).

Question 15 - "WILL ANY MEMORY INPUT BE FROM A FILE"

NO

Users can insert data into the simulated memory from

two sources: TTY keyboard or from a file of data

already created. If a data file has already been

created, answer YES and the following question will

be printed. All input must be from one or the other.

Question l6 - "LOGICAL UNIT NUMBER FOR MEMORY INPUT IS"

12

In this example, a data file exists on logical unit

number 12. Any legal unit number is acceptable.

The user should include appropriate EXEC 8 control

cards to equate a file to this logical unit number.

Data should appear in this file just as if it were

going to be keyed in on the TTY in response to the

simulator questions mentioned below.

38

Question 1? - "STARTING S MEMORY ADDRESS = "

1

The user should enter the first S Memory address

where the.first data point of this block should be

placed.

Question 17 - "FINAL S MEMORY ADDRESS FOR THIS BLOCK = "

2

Enter the final simulated memory address where data

will be entered in consecutive locations. In this

example, the block is from S Memory location one to

S Memory location two (i.e., two data values must be

entered). Up to 102U values could be entered in one

clock. Block addresses do not have to be sequential.

For a contrasting example, we could enter data from

locations 9 to 25 then 3 to 5 and finally 50-56.

Questions 17 and 18 are repeated as many times as

requested by the answer to Question 20.

If Question 15 was answered with NO, the following

question will be repeated for each data point requested

by questions 17 and 18 (i.e., answer 18 - answer 17+1

repetitions).

Question 19 - "SET S MEMORY (i).= "

data

•53Respond with a positive integer ^ 2 -1. To enter

negative numbers, users must enter the ones comple-

. ment (32 bits) of the positive number, (i.e., -1 is
Q2

represented by the decimal integer equal to 2 -2).

This question is not present if answer 15 is YES.

39

Question 20 - "IS THERE ANY MORE MEMORY INPUT"

NO

If more blocks of data are to be entered, reply YES

and Questions 17, l8,.19 and 20 will be repeated

again. In our example, the reply was NO which ends

S Memory input and also all data input which allows

the simulation to begin. . The following message con-

firms the NO response:

"END OF DATA INHJT - SIMULATION BEGINS"

With the end of data input the simulation begins.

Output as requested by answers to the simulator

questions is generated in the format as shown in

the sample run which follows.

RUN TIME QUESTIONS

If the user has not requested any dumps, traces, or breakpoints,

the only run time question will occur after all the register dumps have

occurred (i.e., the simulation has exceeded the maximum clocks or the

end microinstruction - UOOO was executed). This question follows the

end of simulation run message:

"END OF SIMULATION RUN"

Question R-l - "DO YOU WISH TO RESTART SIMULATOR"

NO

This response would end simulator execution, but a

YES would cause an entire new run starting with

Question 1. This question always ends a simulation

run regardless of output options.

Memory Dumps

If the answer to Question 3 was YES, then a memory dump will

occur at each breakpoint and upon termination of the simulation run.

At this point, the following message' is printed:

"MEMORY DUMP REQUESTED

• ENTER VALUES AS DONE IN MEMORY INHJT"

Memory is dumped in consecutive blocks by selectively specifying the

beginning and end addresses of these blocks as done in memory input.

These questions follow.

Question R-2 - "STARTING S MEMORY ADDRESS = "

Answer with the beginning block address as in

memory input.

Question R-3 - "FINAL S MEMORY ADDRESS = "

1

Answer with the final block address as in memory

input'.

After these two questions, the following message

is printed followed by the contents of the

requested S Memory words. (6 integer values per

line).

"S MEMORY (i) TO S MEMORY (j) = "

j-i+1 data values with 6 per line

After the block of data is listed, the following

question is listed.

Question R-U - "DO YOU WISH TO DUMP MORE S MEMORY"

NO

If no more memory is to be dumped, reply NO and

the next question will be either R-5 or R-l depending

on whether, this ends the simulation or its is merely

a breakpoint.

If YES is the reply then Questions R-2 and R-3 are

repeated.

BREAKPOINTS

Question R-5 - "NEW BREAKPOINT REQUESTED"

YES

This questions is listed in the case where a break-

point has occurred. (This is indicated by a regis-

ter dump, several line feeds, then this message

"BREAKPOINT"

followed by several more line feeds. At this point,

memory dump questions are listed and data printed if

a memory dump was requested. If no dump was

requested or after the dump is completed, Question

R-5 occurs).

If a new breakpoint address is desired, answer YES

and the following question will be listed. If NO,

processing continues from this point on with no more

breakpoints.

Question R-6 =' "ENTER BREAKPOINT ADDRESS (0 IMPLIES RESTART)"

If answer R-5 was YES, one can enter a new break-

point address or .zero. If zero is entered the

simulation will start over from Question 1 with

all previous answers, registers and memory values

cleared. • • - . - -

General Comments

1. All D Machine registers are cleared to start or upon

restarting a simulation.

2. Some conditions will never appear to be cleared or set if

listed every clock during a particular portion of code using

these conditions (RMI and RDC). These conditions work but

due to when they occur and when the output occurs, they

appear listed incorrectly. This is not the case (please refer

to Appendix D) however and no alarm is necessary since the

proper code will be executed.

3. INT condition is listed but not implemented.

^. If syntactically correct, code is passed to the simulator

with unimplemented code points, error messages will result.

(Refer to TRANSLANG semantics for unimplemented code points).

1*3

Sample Program Run of the D Machine Simulator

The program being simulated is a simple program which reads in

memory locations 1 and 2 and adds them together with results stored in

A2.

PLEASE ENTER THE SIMULATION CONTROL PARAMETERS

MAXIMUM NUMBER OF CLOCKS (1-99999999) TO SIMULATE =
99
THE NUMBER OF CLOCKS BETWEEN OUTPUT POINTS =
99

S MEMORY DUMP REQUESTED AT END OR BREAKPOINT
YES
PRINTED OUTPUT CONTROL EXPLANATION DESIRED

'YES
PRINTED OUTPUT IS CONTROLLED BY LINE NO. ID
LINE ID = 1-ADDRESSES AND CLOCK, 2=A1,A2,A3, 3=B,MIR
1*=SAR,LIT,AMPCR,CTR, 5=BR1,BR2,MAR,EMAR, 6=CONDITIONS

ENTER" THE'NUMBER OF OUTPUT LINES DESIRED

ENTER THE LINE NUMBER ID,S SEPARATED BY COMMAS

BEGIN OUTPUT AT ADDRESS =
0 •
END OUTPUT AT ADDRESS =
9
TRACE REQUESTED
NO
BREAKPOINT REQUESTED
YES
ENTER BREAKPOINT ADDRESS . .

7 • .
SOURCE PROGRAM LISTING DESIRED

YES '

THE PROGRAM BEING SIMULATED FOLLOWS

0 FOOO 0009 OllK) 002C 0000
1 E001
2 F001 0009 0000 0000 0800
3 F002 AC08 01U6 OC2C 0000
U F003 0009 OChO 1000 0800
5 FOOU AC08 0000 OCOO 0000
6 F005 0009 EC**0 2000 0000
7 F006 0009 0000 0000 0000
8 UOOO

IS THERE ANY S MEMORY INPUT
YES

ENTER MEMORY INPUT INFORMATION
MEMORY IS.ALL ZERO TO START
ENTER VALUES IN' CONSECUTIVE BLOCKS AS REQUESTED BELOW
WILL ANY MEMORY INPUT BE FROM A FILE
NO
STARTING S MEMORY ADDRESS =
1
FINAL S MEMORY ADDRESS FOR THIS BLOCK =
2
SET S MEMORY (l) =
12
SET S MEMORY (2) =
3
IS THERE ANY MORE MEMORY INPUT
NO

END OF DATA INPUT - SIMULATION BEGINS

p(l
Al
B .=
SAR

) ADDR =
=

= 0

7
0
3
LIT =

P(3)
A2
MIR
1

ADDR
=
=

6
15
0

AMPCR =

CLOCK =
A3 =

0

10

CTR =

12

0

BREAKPOINT

MEMORY DUMP REQUESTED
ENTER VALUES AS DONE IN MEMORY INPUT

STARTING S MEMORY ADDRESS =

FINAL S MEMORY ADDRESS FOR THIS BLOCK =

S MEMORY (1) TO S MEMORY (2) =

12 3
DO YOU WISH TO DUMP MORE S MEMORY

NO .
NEW BREAKPOINT REQUESTED
NO

END OF SIMULATION - REGISTERS CONTAIN

P(l) ADDR. = 7 P(3) ADDR. = 7 CLOCK = 11
Al = 0 A2 = 15 A3 = 12 B = 3
MIR = 0 SAR = 0 LIT = 1 CTR = 0 AMPCR = 0
BR1 =0 BR2 = 0 MAR = 2 BMAR = 2
LC1=0 LC2=0 LST=1 ABT=0 ABV=0 COV=0 PMI=1 RDC=0 INT=0

MEMORY DUMP REQUESTED
ENTER VALUES AS DONE IN MEMORY INPUT

STARTING S MEMORY ADDRESS =
1

FINAL S MEMORY ADDRESS FOR THIS BLOCK
2

S MEMORY (1) TO S MEMORY (2)' =

12 3
DO YOU WISH TO DUMP MORE S MEMORY
0?
NO
END OF SIMULATOR RUN '
DO YOU WISH TO RESTART SIMULATOR
NO

APPENDIX A

TRAIELAWG SYTWAX

(Program) :: = (Body) (End Line)

(Label) :: = (Letter) | (Label) (Letter) | (Label) (Digit)

(Letter) :: = A |B |C |D |E |F |G |H ' | I | j |K |L |M |N |O |P . |Q |R!S l ib Iv lw lx IYIz

(Digit) :: = 0|1|2|3|M5|6|7|8|9

(Empty) :: = [The null string of characters}

(Body) :: = (Comment) | (Line) | (Body) (Line) | (Body) (Comment)

(Comment) :: = COMENT [Any sequence of (Characters) except "$"} $

(Line) :: = (W Instruction) $ | (Literal Assignment) $

(Character) :: = (Letter) | (Digit) | (Single Space) | (Symbol)

(Single Space) :: = [One horizontal blank position]

(Symbol) :: = , |+ |- |/ |= |. |* |(j) |$

(Assignment Op) :: = =

(Literal Assignment) :: = (Literal) = AMPCR | (Literal) = SAR |

(Literal) = SAR, (Literal) = (LIT) j

(Literal) = (LIT), (Literal) = SAR |

(Literal) = (LIT)

(Literal) :: = (Integer) | C(ZkP (Integer) | (Label) | (Label) -1

(Integer) :: = (Digit) | (Integer)-(Digit)

(Lit) :: = LIT | SLIT ' '

(N Instruction) :: = (Unconditional Part) (Conditional Part) |

(Label) . (Unconditional Part) (Conditional Part)

(Unconditional Part) :: = (Component List) | (Empty)

(Component List) :: = (Component) | (Component List) (Component)

A-l

(Component) :: = (Ext Op> | (Logic Op> | (Successor)

(Ext Op) :: = (Mem Dev Op) | (Set Qp> | (Mem Dev Op) (Set Op) |

(Set Op) (Mem Dev Op) | (Empty)

(Mem Dev Op) :: = MR1 |MR2 |MW1 |MW2 |DRl|DR2 |uwi|llW2 |DU1 |DTJ2 lASRJ

(Set Op) :: = SET (Cond Adjust Bit) | RESET GC1 | RESET GC2

(Cond Adjust Bit) :: = INT|LC1|LC2|GCl|GC2

(Logic Op) :: = (Adder Op) (Inhibit Carry) (Shift Op) (Destination List)

(Adder Op) :: = 0|l((Monadic) | (Dyadic) | (Empty)

(Monadic) :: = -(Not) (X Select) | (N Y Select)

(Not) :: = N0T | (Empty)

(X Select) :: = o|Al JA2 |A3 |CTR|ZEXT JLIT|z [(Empty)

(N Y Select) :: = (Not) (Y Select)

(Y Select) :: = O|I|B|B <M> <C> <L> | CTR | ZEXT | LIT | Z | AMPCR | BMAR

(M) :: = (Gating)

(C> :: = (Gating)

(L) :: = (Gating)

(Gating) :: = O|T|F|I

(Dyadic) :: = (X Select) (Any Op) (Y Select) |

N0T (X Select) (Normal Op) (Y Select) |

(X Select) {(Normal Op) | (Not Y Op) } N|#T (Y Select) |

(X Select) + (N Y Select) +1 | (X Select) - (N Y Select) -1

(Normal Op) :: = N^RJNRI |NAN|x<#R|NIM|lMp|EQ;V |AND|RIM|0R

(Not Y Op) :: = + | -

(Any Op) :: = 0AD|AAD|(Normal Op) | (Not Y Op)

(Inhibit Carry) :: = 1C | (Empty)

(Shift Op) :: = R | L | C | (Empty) :

(Destination List) :: = (Asgn) (Dest) |

(Destination List) (Asgn) (Dest) | (Asgn)

A-2

<Asgn> : : = , | =

(Best) :: = Al|A2 | A3 | MIR |fiRl JBR2 |AMPCR|(Input B)|<Input Ctr)|<Input Mar>|<Input Sar>|

(Inputs) :: = B(BEX|BAD|BCUJBC8JBMI |BBE |BBA|BBI

(Input Ctr> :: = CTR|LCTR|lNC

(Input Mar> :: = MAR|MAR1|MAR2JIMAR

(Input Sar> :: = SARJCSAR

(Successor) :: = WAIT|STEP|SKIP|SAVE|CALL|EXEC|JUMP|RETN|(Empty)

(Conditional Part) :: = (If Clause) (Cond Comp List) (Else Clause)]

(If Clause) | (When Clause) (Cond Comp List))

(Empty)

(If Clause) :: = IF (Condition)

(Condition) :: = (Not) (Cond)

(Cond) :: = LSTJMSTJA0VJABT|c0v|RMI|RDCJEXT|SRQ|URQI&C1|GC2llRQllurlLCl\UC2

(Cond Comp List) :: = THEN (Component List)

(Else Clause) :: = ELSE [A non-Empty (Successor)}((Empty)

(When Clause) :: = WHEN (Condition)

(End Line) :: = END

A-3

APPENDIX B

APPENDIX B

TRANS LANG KEY WORDS

KEY WORDS • - '

The following words are reserved in TRANSLANG and may not be used as

labels. No imbedded blanks are allowed.

Al Al Register X Select or destination operator.

A2 A2 Register X Select or destination operator.

A3 A3 Register X Select or destination operator.

• AAD; ' And Add logic operator: X AAD Y <- -»X+(XY)

ABT All Bits True or Adder Bit Transmit dynamic
condition from phase 3 of prior M-instruction
-doing Adder Op.

AMPCR Alternate Microprogram Count Register Y Select
or destination operator from barrel switch
12 IB bits.

AND And logical operator: X AND Y*- -»XY

AOV Adder overflow, dynamic condition of previous
M-instruction using adder, true if addition
results in overflow.

B . B Register Y Select same as BTTT; or
To B from barrel switch, destination operator.

BAD To B from adder, destination operator.

BBA To B from adder OR barrel switch, destination
' operator.

BBE To B from external bus OR barrel switch,
destination operator.

BBI To B from prior MIR contents OR barrel switch, .
destination operator.

ECU* To B from adder "not k bit carry" replicated and
shifted, destination operator.

BC8* To B from adder "not 8 bit carry" replicated and
shifted, destination operator.

BEX To B from external bus, destination operator.

B-l

BMI To B from prior MIR contents, destination operator.

BRT To Base Register 1 from barrel switch 2nd LS
Byte, destination operator.

BR2 To Base Register 2 from barrel switch 2nd IS
Byte, destination operator.

C Circular shift right-the entire adder output.
Operation takes place in barrel switch.

CALL Call a procedure: Use AMPCR + 1 as address
and new MPCR; old MPCR to AMPCR. Successor.

COMENT Allows for the inclusion of documentation on
a listing.

COMP Complement as appropriate for destination of
literal assignment.

COV Counter overflow condition bit, reset dominant.

CSAR Complement SAR, destination operator.

CTR To counter from ones complement of barrel switch
LS Byte, destination operator. X or Y Select:
into MS Byte.

DL1* Device Lock using BR1/MAR for device ident.

DL2* Device Lock using BR2/MAR for device ident.

DR1* Device Read using BR1/MAR for device ident.

DR2* Device Read using BR2/MAR for device ident.

DU1* Device Unlock using BR1/MAR for device ident.

DU2* Device Unlock using BR2/MAR for device ident.

DW1* Device Write using BR1/MAR for device ident.

DW2* Device Write using BR2/MAR for device ident.

ELSE Sequential operator prefix to false successor.

END Bracket word to end a program.

EQV Equivalence logical operator: X EQV Y<- -»XYVXY

EXEC Executes out of. sequence:' Use AMPCR + 1 as
address. Successor.

EXT* External condition bit externally set, reset
by test.

F False gating of B as part of Y Select.

GC1* Global condition bit 1: may be set by SET GC1
if presently reset in all Interpreters. Tested
without resetting. .
Used as RESET GC1, resets GC1.

B-2

GC2* Global condition bit 2: may be set by SET GC1
if presently reset in all Interpreters. Tested
without resetting.
Used as RESET CG2, resets GC2.

1C* Inhibit carry between bytes.

IF Starts the conditional part of an instruction.

IMP Imply logical operator: X IMP Y*-̂ V Y

INC Increment counter destination operator; set COV
when overflowing from all ones to all zeros.

INT Used as SET INT, interrupts all Interpreters.
Interrupt Interpreters condition bit: set by
any Interpreter, own is reset by testing.

IRQ* Interrupt from locked but unselected device
(can be status or data interrupt).

JUMP Jump to address in AMPCR + 1 and put that
address in MPCR. Successor.

L Left shift end off the entire adder output, right
fill with zeros . Operation takes place in barrel
switch.

LCI Local .. condition bit 1: may be set, or tested
which resets.

LC2 Local condition bit 2: may be set, or tested
which resets.

LCTR Ones complement of the literal register con-
tents will be placed in the counter and COV
reset. Destination operator.

LIT Literal register: may be loaded by a literal
assignment. May be source for X select or
Y select LS byte, the 'MAR, and/or CTR.

LMAR Literal register contents will be placed in
MAR. Destination operator.

LST Least significant bit of adder output,
dynamic condition from phase 3 of previous
M-instruction doing adder op.

MAR Memory address register destination operator:
from barrel switch LS Byte.

MAR1 Memory address 1 destination operator: same
as BR1, MAR :

MAR2 Memory address 2 destination operator: same
as BR2, MAR

B-3

MIR Memory Information Register destination
operator from barrel switch.

MR1 Read from memory address BR1/MAR mem dev op.

MR2 Read from memory address BR2/MAE mem dev op.

MST Most significant bit of adder output, dynamic
condition from phase 3 of previous M-instruction
doing adder op.

MW1 Write the content of MIR to memory address
BR1/MAR mem dev op.

MW2 Write the content of MIR to memory address
BR2/MAR mem dev op.

WAN Not And logical operator: X NAN Y^ -»X~ V Y

NIM Not Imply logical operator: X NIM Y<- -»XY

NOR Nor logical operator: X NOR Y«- -»XY

NOT Complement monadic or condition operator
NOT X<- -»X
Complement Y select for commutative operators.

NRI Not Reverse_ Imply logical operator:
X NRI Y<- -»XVY

OAD Or Add logical operator: X CAD Y<--»X + (XVY)

OR Or logical operator: X OR Ye--»XVY

R Right shift end off the entire adder output,
left fill with zeros. Operation takes place
in barrel switch.

RDC Read complete bit: set when external data is
ready for input to B, reset by testing.

RESET Reset the condition bit specified.

RETN Return: use AMPCR + 2 as address and as new
content for MPCR. Successor.

RIM Reverse Imply logical operator: X RIM Y<--»XvY

RMI Ready MIR bit: set externally when data has
been received from MIR. Reset by testing.

SAR Shift Amount Register destination operator
from LS bits of barrel switch or from literal
assignment.

SAVE Save the MPCR in AMPCR: use MPCR + 1 as M-
address and as next MPCR. Successor.

SET Set the conditional bit specified: either
LCI or LC2.

SKIP Skip the next instruction; use MPCR + 2 as
M-address and as next MPCR. Successor.

SLIT Literal assignment in SAR converted form.

SRQ* Solicited request bit. Set externally, reset
by testing.

STEP Step to next instruction: use MPCR +1 as
M-address and as next MPCR. Successor.

T True gating for B register.

THEN Starts the true alternative of conditional
instruction.

URQ* Unsolicited request bit. Set externally,
reset by testing.

WAIT Wait for condition M-address is MPCR; MPCR
and AMPCR unchanged. Successor.

WHEN Starts a conditional instruction, has an
implicit ELSE WAIT.

XOR Exclusive Or_ logical operator:
X XOR Y<--*XY VXY

Z* CTR in MS Byte, (ZEXT in middle bytes of
machine larger than 2 bytes), LIT in LS Byte
as X select and/or Y select.

ZEXT* Middle bytes of machine larger than 2 bytes
as X select and/or Y select.

* Denotes Key Word whose implementation (D Machine action) has not
been included in the simulator. They are included in the syntax
to allow completeness.

B-5

APPENDIX C

TRANSLANG Translator Error Messages

ERROR - ILLEGAL SET OR RESET MODIFIER

ERROR - NOT FOLLOWED BY ILLEGAL.KEY WORD

ERROR - UNRECOGNIZABLE'FORMAT

ERROR -•UNRECOGNIZABLE TYPE 2 FORMAT

ERROR - WO END DELIMITER

ERROR - NO SUCCESSOR FOUND AFTER ELSE

ERROR - NO CONDITION FOLLOWING IF

ERROR - CONDITION NOT FOLLOWED BY THEN

ERROR - THEN FOLLOWED BY ILLEGAL OPERATION

ERROR - ILLEGAL FORMAT FOR LOGICAL OP

ERROR - ILLEGAL OR MISSING Y SELECT

ERROR - ILLEGAL ADDER OPERATION

ERROR - ILLEGAL NOT ADDER OP COMBINATION

ERROR - ADDER OPERATION EQUAL SIGN MISSING

ERROR - LCTR AND MAR CANNOT OCCUR TOGETHER

ERROR - LMAR AND CTR CANNOT OCCUR TOGETHER

ERROR - IMPROPER DELIMITER

ERROR - MISSING EQUAL SIGN IN TYPE 2 INSTRUCTION

ERROR - ILLEGAL KEY WORD AFTER SAR

ERROR - MISSING KEY WORD SAR AFTER LIT,

ERROR - UNABLE TO RESOLVE LABEL "label"

ERROR - ILLEGAL TYPE 2 INSTRUCTION

ERROR - SAR LABEL VALUE GREATER THAN 31

C-l

ERROR - LIT LABEL VALUE GREATER THAN 255

ERROR - AMPCR LABEL VALUE BIGGER THAN U095

ERROR - ILLEGAL LITERAL ASSIGNMENT

ERROR - NUMBER GREATER THAN ̂ 096

ERROR - IMPROPER LABEL - MORE THAN 6 CHARACTERS

C-2

APPENDIX D

APPENDIX D .

D MACHINE (INTERPRETER) INSTRUCTION PHASING AND CONTROLS

Time phasing of instructions is described in this appendix,

both in terms of the partial order of occurrence of the various

events and in terms of a sequence of instructions. Controls available

in the Interpreter that can be generated by TRANSLANG are reflected

in the contents of the words of either the M-memory or the decoder

(N-memory). Figure D-l illustrates the data and control flow among

the registers of an Interpreter. The meaning of the content of micro-

program words and nanomemory words is detailed. This appendix con-

cludes with a description of memory operations.

INSTRUCTION .PHASING . ,

The execution of a microinstruction requires one or more

sequential time periods, called phase 1, phase 2, and phase 3. The

constant interval of time from the end of one clock pulse to the end

of the next is the measure of a phase.

_J CLOCK
n PULSE

^_ ICLOCK

TIME REQUIRED FOR EXE-
CUTING ONE PHASE OF A
MICROINSTRUCTION (ONE

fe-

«-

(fte-

INCREASING TIME

d CLOCK
PULSE

CLOCK DURATION OR PERIOD)

Some microinstructions only have a phase 1, some have both phase 1 and

phase 3, and some have phase 1, phase 2, and phase 3. Phases of suc-

cessive microinstructions usually overlap, so that phase 1 of a current

microinstruction is being executed while phase 2 or 3 of a prior micro-

instruction is also being executed.' This overlapping of microinstruction

D-l

!

i
s3

1

f
z

E

O
Ci

lln

S

a

I

|

A

8

—

V
to
if)
0

5

>
.1 0

° :
1 3

e
?<

£
<n
X
UJ
(N

X
Ul

|

S

"

E

o
o
-
o

^

- 2
c

5

S

!,
2 '.
E
o

S
et

 G
C

I
or

 G
C

2
 in

h
ib

it
p
ri
o
ri
ty

 I
n
te

rp
re

te
rs

S|
S K
Oi c

— N.

s"" •

*|

•g
0

f

|

Q

•»

i
fc
S

1
s.
i 1
9 i

: 1
5

Is 1

II «c = ^

1

xiLr-
-̂~

X

•8

S

*• •

.

3

*—

C.

"1
>•

h-

S
1

_
" ̂

-j

ri ?• h> u
c•t'

1
^

1-

L

ij
;i
1 O

-«•

S

0 •

v.
<

L
C

om
m

an
d

to

M
ai

n

«^

S
>

*

— »

1
E
5

Ps
!i

.s1

*,

t-
_j

u.

SH

J!-
o

9

S .
°S

^

»

- ' ^

t
O

p
e
ra

ti
o
n

c
-̂

B

fl-
<
a.
*<

P
ha

si

III

*~

C
om

m
an

ds

s x
IS
* ?

n

II
S ffSo:

!2
L

S
b

1

(!)

*

N

C
en

te
r

B
yt

e
s

CD

S

§

(M

E

a.
£

-»•

•x,

1
4

O

- — -«.

1
i

5

t

A
B

T
A

C
V

 M
S

T
LS

T

^

S

•r5uji
i
t-
X
UJ
N

ll

L_J

i
C4

cc
a ,i

^ ^

•̂s
E
m

•*«j-̂

c

1
c
s

OC

rs
u *°

?l
o -

M

_
a

i r-1

T
1

3
(N

^

I

1

5
-J

a
* j-

oc

1

<N

i*<> "z +
c

.§
a

S c"" i
S

• ' • • " •= 1
2
c

S

3
a
O

Z'

s

1 1<r ^
.., — ^^

1 ft

l! ,en • -z 01
0 ~ Ul

51 i!
11 Si
2 g SI

> . ,. , ,- n fl 5i

"1

I!

-J

-8

1

^ 1

~* !
s

(l >

a . * 1
ffl J E Ul

o «£|

2 *
i<

X.

s

1

If !
s - «« e
III! s s

>!!

li 1

o

ot,
-M

o

•§
0)

0)
4^

cdp
o>^_>
<u
u
a

Q
o>

I

D-2

phases allows starting the execution of a new microinstruction each

time a new "clock duration" period starts.

A microinstruction may contain either a constant (type II micro-

instruction) or the address of a nanoinstruction (type I micro-

instruction). For a type II microinstruction, phase 1 provides suffi-

cient time to execute the instruction (complete the STEP successor and

literal assignment), and no additional phases are required. For a

type I microinstruction, the events taking place in each of the three

phases are identified below.

Phase 1: Condition test, (conditional) external

operation execution, (conditional) logic

operation initiation after completion of

prior logic operation, and successor micro-

program address control.

Phase 2: Holding phase for logic operation phase 3

controls.

Phase 3: Completion phase for performing logic unit

.operations and changing destination regis-

ters specified in the logic operation.

If a type I microinstruction does not require the initiation of

a logic operation (the condition fails and the logic operation was

conditional), the execution is completed in phase 1. Otherwise,

phase 3 is initiated at the end of the clock duration period by

loading the command register concurrently with changing the desti-

nation registers for the phase 3 also in process from a prior type I

microinstruction. Registers change state during the time a clock

pulse is actually present (at the end of a clock duration period).

Phase 3 completes the execution of a logic unit operation. The

commands for phase 3 in the command register have two parts: logic

D-3

specification and destination specification. The logic specification

commands apply continuously and are taken directly from the command

register. The destination specification commands are always executed

at the same clock pulse time as the phase 1 initiating a new logic

operation.

Phase 2 is a holding phase, the existence of which depends only

on subsequent microinstructions. A one-clock duration period hold is

created by each subsequent type II microinstruction, or by each type I

microinstruction for which the conditional logic unit operation is not

to be executed. A phase 2 is created from the original phase 3, which

is extended into the next clock duration period as the new phase 3.

During phase 2 the original phase 3 logic specification commands con-

tinue to apply. Thus, the current contents of the selected adder

source registers are used to develop adder outputs. The dynamic con-

ditions AOV, ABT, MST, and LST from these adder outputs are available

to be tested in a concurrent phase 1.

The phased execution of a sequence of microinstructions is sug-

gested in Figure D-2, with each microinstruction being symbolically

represented by a capital letter. Subscripts indicate phase. The sub-

script 3,2 indicates a phase 2 that was formerly an "original" phase 3.

Microinstruction

Type

DO LUOP

Phase 1

Phase 3 or 3,2

Clock 0

A

I

True

AI\
Z3

B

. I

True

V,

C

I

False

Cl

B̂

D

I

True

D1V
N̂

3

E F

II I

True

El Flx

^

Increasing Time

Figure D-2. Example of Phased Execution of Microinstructions

«
7

°c

I
1
?
0
X
t

a

"«

c
CO

i

4

I
"<

i

]

â
T

|
S

i
X

1
a

— -o

" s
11
^
o '•»

5

jj

|
3
9

|

I

•o
+t

0

1
c

Is
5 *>

It
--•— 5£

_

•' • ,

O)
.

"

•

•

.
(M

H

<

£'
5

a
ccI
III

i -

-4

r
to u
o *-

c 'i
0 t>
u (•

" S« a
0} c

a E

!!
^* ~+

|
L, ^

4, 0
o 3 e
"* ij §

II CD

It
c 'S,
O Q

.0 J

1 -

o ..

00

*

„ . -

in

v

' =
«

i
m

CM

a
O

K
" 01

^

5

i

u
o
0)
3-
£
„

C
o

1
o
u

1

. i

3
e
|
•g

*

I
**

£
U *

at "

«
9 *

M «o *

-

•3
Q

1

§
to

a
Q

f
1

§
s
3
j
w
0

t
L,

0)

E

c

**
i

i!
i

c
s \
* L

^
S «

:

=

|

S
u

c
c
e

s
s
o

r

V
3
U
H

E
itii_ii

(0

1
*c
ou
a<
£
S
,v

S
u

c
c
e

s
s
o

r

£
*3
fe

4>

a
J!
u

|
o

a

A
O

 c
o

n
tr

o
l

1
Z

u

S
T

E
P

ID

A
D

 c
o
n
tr

o
l

B.
S

;•

ILS

H
3

O u

if 5

««• D

"a " '
<
i

IK

1-
«
6

JH
bo
rt

s
o

'o
111V

Q
•o
rt

>
o

1— 1

^__
H
c
.2
U

Vi

In

^

CO

Q
0)

1
£

,la
= i

D-5

The phase 3 or 3»2 in progress is determined by the logic unit

operation (LUOP). As indicated in Figure D-2, the old phase 3 is

completed and the next clock initiates the new phase 3 (microinstruc-

tions A, B, D and F) if the LUOP is true for type I microinstructions.

The old phase 3 is extended (it turned out to be a phase 2) if LUOP

is false (microinstruction C creates a phase 2 for B), or if it is

type II (microinstruction E), creating a phase 2 for D. This latter

case shows how a change by a type II microinstruction can affect the

result of a prior type I microinstruction. The destinations for D do

not get their new values until the end of phase 1 for F at clock 6,

and thus are enabled to use register values that come into existence

after clock 5 has expired.

Figure D-3 illustrates instruction phasing and overlap by a time

flow and decision diagram. Time flow is from left to right, repre-

senting one full clock duration period. The bottom section shows

phase 1, the activity of the current microinstruction. Multiple

lines from a box indicate alternatives (not necessarily mutually

exclusive). The top section shows the phase 3 commands of a prior

microinstruction that are in progress. The phase 3 may turn out to

have actually been a hold in phase 2 if the command register does not

change. (LUOP was false).

The following .events occur in phase 1 in order of ascending num-

bers. The sequence is logical and is not strictly uniform in time

increment.

1. Develop microprogram address MPAD, using MPAD CTLS register

content to select either MPCR or AMPCR content, and

2. Select the proper increment amount (+0, +1 or +2).

3. Read out the addressed microprogram word. .

D-6

h. Decode the word to determine if microinstruction is type II

or type I.

If the microinstruction is type II:

5a. Use low order.part of word as literal(s).

lla. STEP successor to MPAD CTLS register.

lib. Clock literal(s) to specified register(s): SAR and/or LIT;

AMPCR. (Note that all register changes occur in step 11).

If the microinstruction is type I:

5b. Use low order part of word as address to nanomemory.

6. Read nanomemory.

7. Decode result.

8. N [1-U] Select condition to test

9. N [5] True/complement condition bit value = :SC

lOa. N [6] Do logic unit operations = : HJOP

lOb. N [7] Do external operations = : EXTOP

lie. If EXTOP is true then:

N [8 - 10] enable condition adjust if not 000, and

N [51 - 55] enable memory device operation if not 0000.

lid. If LUOP is true then:

complete destination part of phase 3 of prior logic unit

operations (bits 3̂ -50) and

N [17 - 50] decode and load command register.

lie. Successor to MPAD CTLS register:

N [11 - 13] if SC is .true; or

. N [lU - 16] if SC is false

llf. Reset tested condition if appropriate.

D-7

The event sequence in phase 2 or 3 starts as follows, where numbers

correspond to the sequence for phase 1.

la. N [17 - 19] Select X input to adder

Ib. N [20 - 26] Select Y input .to adder .

3a. N [27] Inhibit carry . • -

3b. N [28 - 31] Select and do adder operation

7. At this point the dynamic conditions from the adder

are available for test in the subsequent instruction

now in phase 1 (in its step 8).

9. N [32 - 33] Select shift direction and do shift.

At the end of phase 3 the following events occur:

llg. When LUOP is true (step lOa of same phase l), any or

all of the following independent register changing

destination events may occur while the clock pulse

is present.

N [3k - 36] A registers

N [37 - UO] B register

N [Ul]

N [1*2]

N [1*3]

N [1*1*]

MIR

AMPCR

BR1

BR2

N [1*5 - U6] MAR | not totally independent, since

N [U6 - 1*8] CTR J they share N [U6]

N [1*9 - 50] SAR

llh. When LUOP is false, this was a phase 2.

D-8

TIMING EXAMPLES

1. All Type I unconditional instructions

a. Al + B -»• Al

b. A2 + B -»> A2

c. A3 + B -»• A3

d. Al C -*• Al;

2. All type I instructions
Both AOV and ABf test true

a. Al + B -*> Al

b. If AOV then A2 + B -*> A2

c. If ABT then A3 + B -*• A3

•• d. Al C-»A1;

3. All Type I instructions
AOV tests false; ABT tests true

a. Al + B -*• Al

b. If AOV then A2 + B— *A2

c. If ABT then A3 + B— »• A3

d. Al C-*- Al;

4. Type I and Type II instructions
Resulting Al contains least four
bits left justified

a . 2 -+> SAR; 3 -*• LIT

b. Al and LIT C -*• Al

c. 4-*SAR; .15-* LIT

d. Al C—*A1;

IClocfc

0'
1

o-
1

a

1

2
3

Z

CR /
3

b-
1

CR A
3"

AOV Test b-
1

• CR

3

AOV Test
1

• S
• L

b
i

CR . A
3

c-
1

1

CR A
3

ABT Test e
1

. CR Rem

' A
j 3

: x
ABT Test c

1

•CR
3

4
«

CR A
3

d-
1

-CR A
3

d-
1

lins a
I

CR A
3

d-
<

^CR Rem
f A

C 3
•S
•L

d-
1

CR
3

3

• CR

3

CR
3

ins b
1«»

•CR
3

D-9

MICROPROGRAM WORD CONTENT

M-word Bits

0 0

1 0

SAR

SAR

1 1 0 0

1110

1111

#

0 0 0 0

0 0 0 0 0 0 0 0

LIT

AMPCR

LIT

* N-ADDRESS

Instruction Literal

Type Assignment

II k=:SAR

II k=:SAR; j=:LIT #

II i=:AMPCR

II 3=:LIT #'

I

Heavy bars indicate possible contraction points for narrower memories,

in which case the bits are moved to the left.

$ indicates unused, 0 supplied by TRANSLANG translator.

* indicates a field that is right justified if the hardware configû
ration does not require the entire addressing range, left fill with
zeros.

wherever LIT appears may be replaced by SLIT meaning convert the
constant as if it were being loaded into SAR, and left fill with
zeros .

N-WORD CONTENT

The assignment of bits and their menaing in the N-decoder or N-memory

is summarized in Table D-l, and is described in detail below. Bit

positions in the memory are indicated by integers in boxes. Each box

surrounds a field of related bits. The defined alternatives are des-

cribed, and mnemonics given for each. The mnemonics that directly cor-

respond to TRANSLANG reserved words are identical.

Other mnemonics are provided for descriptive references.

D-10

LEGEND:

+ ADD (twos complement)

SUBTRACT (twos complement)

v OR (logical inclusive)

N NOT N (ones complement)

Don't care, 0 or 1

=: Assign into

MS Most significant

LS Least significant

D-ll

Table D-l. Nanomemory Decoding

TIMING AND
GENERAL ACTION

DURING PHASE 1

r
Conditional Control <

I

AT END OF PHASE 1

(a) Successor Determination

(b) External Operations |

PHASE 2

' Optional Holding Phase

PHASE 3

AT END OF PHASE 3

(

Destination Specification c

*•

N-M EMORY
BITS

1-4
5
6
7

11-16

8-10

51-54

17-19
20-26

27
28-31

32-33

.34-36
37-40

41
42
43
44

45-46
46-48
49-50

SPECIFIC ACTION

Condition selection
Condition test (true/complement)
Conditionally update command register from bits 17-50 of nanomemory
Conditionally initiate actions shown below under "at end of Phase 1"

Microprogram address (MPAD) controls

Condition adjust (local; global; interrupt Interpreters)

Request signals for main memory or peripheral device operations

Dynamic conditions available for test in Phase

Adder input X select
Adder input Y select
Inhibit carries
Adder or logic operation
Dynamic conditions available for test in concurrent phase 1
Shift (right, left, circular) by amount in SAR

Input to A registers (A1. A2, A3) from BSW
B register input source selection
MIR input from BSW
AMPCR input from BSW "1
BR1 input from BSW
BR2 input from BSW I c|ock commands

MAR input from BSW or LIT f
CTR input from LIT. BSW, or increment CTR
SAR input from BSW, or complement SAR

D-lfi

Phase 1 Controls

Controls N [1 - 7] are.used directly from the N-memory and are effective

before the end of the first clock (phase 1).

l l
0

0

0

0

0

0

0

0

1
1
1
1
1
1
1
1

2

0

0

0

0

1
1
1
1
0

0

0

0

1
1
1
1

3
0

0

1
1
0

0

1
1
0

0

1
1
0

0

1
1

M
0

1
0

1
0

1
0

1
0

1 .
0

1
0

1
0

1

CONDITION SELECTION

Not implemented

LCI

LC2

MST

LST

AST

AOV

COV

RMI

RDC

Not implemented

Local condition 1

Local condition 2

Adder most significant

Adder least significant

Adder bit transmit

Adder overflow

Counter overflow

How How
Set@ Reset® Dominant

. CAJ CAJ S

CAJ. CAJ

CAJ Test

CAJ Test

bit* -

bit* -

-

' . - •

Overflow Test

Memory accepts MIR info Memory Test

Read complete

Not implemented

Not implemented

Not implemented

Not implemented

Not implemented

Memory Test

•

S .

S.

S

-

-

-

- .

R

S

S

*MST. and LST in the hardware are true if the value is 0. The Microtrans-

lator complements the programmer-specified test for these so the test is

as if the true value were 1, consistent with the other conditions.

@CAJ is condition adjust N [8 - 10]

EXT is external source

Test is by inclusion of the selected condition in a type I microinstruction

Dominant if both set and test:

S is set to 1 .,

R is reset to 0

D-13

[T| COMPLEMENT/TRUE CONDITION TEST

0 NOT Complement value of selected condition =: SC

1 Value of selected condition =: SC
• - . • . " ' " * '

[IT] LOGIC UNIT CONDITIONAL

If LUOP resulting from this control is 0, do not change command register;'

otherwise at end of this.clock, complete the phase 3 for the prior

instruction in the command register and replace its content from controls

N [1 7 - 50]. • : . • • . '

0 Unconditionally TRUE=: LUOP

1 Conditionally SC=: LUOP

IT] EXTEENAL OPERATIONS CONDITIONAL ' •

If EXTOP resulting from this control is 0, do nothing; otherwise in this

clock initiate any specified memory/device operation N[51 - 5*0 and

adjust any specified condition N[8 - 10],

0 Unconditionally TRUE=: EXTOP ,

1 Conditionally =: EXTOP

| 8 9 10 j CONDITION ADJUST

The indicated action takes place at the end of phase 1 if EXTOP has been

determined to be true in this phase 1. Bits are set to true or 1; reset

to false or 0.

000 No action ..

001 SET LC2 Set local condition 2

0 1 0

011 Not implemented . . .

1 0 0

1 0 1 .

1 1 0

11 1 SET LCI Set local condition 1

D-lU

MPAD Controls

'The MPAD (microprogram address) is determined by the value in the MPAD

controls register at the start of phase 1. Depending on the value of

SC determined during phase 1, either one of the following two sets of

controls is loaded into the MPAD controls register at .the end of phase

1. Concurrently, changes to the MPCR and AMPCR occur as indicated by

the original content (at the start of phase l) of the MPAD controls

register (and for the AMPCR, possibly a type II or barrel switch output),

MPCR is the value in the MPCR before the end of phase 1. For type II

instructions, MPAD becomes 1 + MPCR and MPCR becomes MPAD —"STEP"., o o

Registers Changed

11 12 . 13

TRUE"
SUCCESSOR

Used

0

0

0

0

1

1

1

1

if SC=1

0'- 0

0 1

1' 0

1 1

0 0

0 1

1 0..

1 1

MPAD
controls
register

WAIT

STEP

SAVE

SKIP

JUMP

EXEC

CALL

' • • RETN

MPM
address
will be'

. MPCR

• 1+MPCR: .

1+MPCR

2+MPCR

1+AMPCR

1+AMPCR

1+AMPCR

2+AMPCR

eto ciiu. <_M

/

•• MPCR
receives

value

MPAD

MPAD

MPAD

MPAD

,MPAD

MPAD

. MPAD

. rueusc j_ i , i —
15 16 1

AMPCR FALSE
receives SUCCESSOR
value Used

0

0

MPCR * 0o
0

1

1

MPCR * Io
1

if

0

0

1

1

0

0

1
1

sc=o.

0

1
0

1
0

1
0

1

*CALL and SAVE override any change to the AMPCR from either a type II

instruction or the BSW. . The type II overrides the BSW.

D-15

CD
Z
O

UJ
D

UJ
e/5

Z
O
h-
O

DC
j-
CO

^^
^
DC
CD

A

O .

.

O
•gr•>

0
o
o

2
O«a
o:a
o c
= r
*o

a

h-

5

£
) g

«

Z

h
i

^
n
z

Z
LJ
(T

0
Z

Z

S
•»

3
<t

r

o
t9
u

a:
O
Ul
Z

t

<

°

O

k.o

£

s

O .

5
4

a>
m 9

& 8

Q z

f | S

u
a
K

O

.j i
z Q

o

K
_i

a:
</>

^ 0

«n
u.

S ^j Z-^
15
. o

{/)

I

*v

J

>

F
2:
L "

r-'

o

u

i

^

J

P ^

a)

fr

i
ccz •»

o -j 5
(/><" I

a:
u

2

(E

a.
S

J

xf «= « '|g. .^ . . .^ .

1 S S

§
- > a a a o a a Q
i aea .o -a- -c .o . * a- a.

S

» M M

I s . * > * * + - *
5 < a: a: a: a:

| -ktk:^sisl

3 "^

a:

£?z
«"°-^

S •* o< §

OQ-jj

— J </>

i-
z

* o

O

?JV,

>S.

* O

uj o:

UJ Z

D-16

Phase 3 Controls

Controls N[l7 - 50] are partially decoded and stored in the

command register at the end of phase 1 if LUOP is true. Beginning

with the next clock (regardless of whether the microinstruction is

type I or type II) the controls N[17 - 33] become active causing

selection of inputs to the adder, the appropriate adder operation,

and kind of shift. These controls continue in effect over one or more

clocks until next a type I instruction (at the end of its phase l)

changes "the command register. Concurrent with this change, the con-

trols previously in the command register, N[3̂ - - 50] are used to

specify the desired set of destination registers to receive new values.

It is thus possible that subsequent type II instructions will

cause changes to the result of the logic unit operation specified in

the command register. These changes may occur if either the literal

register or AMPCR is an input to the adder. These changes may affect

the values of the adder dynamic conditions MST, 1ST, ABT, or AOV.

Also if a shift is specified, a change to the SAR will change the

amount of the shift and thus change the barrel switch output.

I 17 18 19 | ADDER INPUT X SELECT

0

0

0

0

1
1
1
1

0

0

1
1
0

0

1
1

0

1
0

1
0

1
0

1

LIT'

CTR

Al

A2

A3

Zeros

Literal register to LS byte*

Not implemented

Counter to MS byte*

Not implemented

Al register

A2 register

A3 register

* Zeros elsewhere

D-17

| 20

0

0

1

1

comp

comp

0

0

0

0

0

0

21

0

1

0

1

0

0

1
1 .
0

1

22

0

1

1

0

0

0

0

1
1
1

23

0

0

0

0

0

1
1
0

1
.1

2k

0

0

0

0

1

0

1
1
0

1

25

0

0

1
1

26 |

0

1

0

1
comp

comp

0

0

0

0

0

0

1
0

0

1
1
1

ADDER

BO --

BT —

BF —

Bl —

B-0-

B-T-

B— 0

B— T

B--F

B— 1

B-F-

B-l-

LIT

CTR

AMPCR

BMAR

INPUT Y SELECT

0 in MS bit

B MS bit in MS bit

B MS bit in MS bit

1 in MS bit

0 in center bits

B in center bits

0 in LS bit

B LS bit in LS bit

B LS bit in LS bit

1 in LS bit

$

$

Literal register to LS byte*

Not implemented

Counter to MS byte*

Not implemented

AMPCR in least 12 bits*

Last concatenation of MAR and base
register

*Zeros elsewhere

^Center selection of B gating as F or 1 is achieved by using: the Y

complement operator (see Appendix E) and comp for MS bit and LS bit

gating (means 0 for 1, B for B, and vice versa). No complement

operators exist for OAD and AAD. .These corrections are done by the

Microtranslator.

D-18

271 INHIBIT CARRIES

0

1

| 28

0

0

0

0-

0

0

0

0

1
1
1
1
1
1
1
1

Allow carries

Not implemented

29

0

0

0

0

1

1

1

1

0

.0

0

0

1
1
1
1

30

0

0

1
1
0

0

1
1
0

0

1
1
0

0

1
1

31 |

0

1
0

1
0

1
0

1
0

1
0

. 1
0

1
0

1

| ADDER OR L

X + Y

X NOR Y

X NRI Y

X •+ Y + 1

X NAN Y

X OAD Y

X XOR Y

X NIM Y

X IMP. Y

X EQV Y

X AAD Y

X AND Y

X- Y - 1

X RIM Y

X OR Y

X - Y

OGIC OPERATION (See Appendix E)

Function

X Y

X Y

. X V Y

X + (XVY)

(X Y)v(X Y)

X Y

X V .Y

(X Y)V.(X Y)

X + (X Y)

X Y

X + Y

. X V Y

X .V Y

X + Y + 1.

Bitwise Logic

Y v/ y
.A. r̂̂ J-

X < Y

X -*.Y

X ̂ Y
X > Y

X <, Y

X = Y

X A Y

X ;> Y

X V Y

Complement*

12

2

1

15

8

none

9

11

h
6

none

7

0

1U

13

3

*The complement is the decimal equivalent of the operation for which

the Y select is ones complemented.

D-19

I 32 33 I SHIFT TYPE SELECTION

The barrel switch (BSW) output is the result of the adder output shifted

as indicated by the shift type selection. The shift uses the current

content of the shift amount register (SAR) at the?start of the last

clock of phase 3.

0

0

1
1

0

1
0

1

R

L

C

Wo ̂ shi

Shift

Shift

Shift

Lft

right

left

right

end off,

end off,

circular

zero

zero

, all

fill to

fill to

bits

left

right*

LH

LH

RH

LH V RH

Âctually a right circular shift of the word-length complement of the

SAR content with zero fill to the right.

Assume that the shift is to be developed by selection from an ordered

set of signals twice the width of the logic unit, with initial value

all zeros. Let the two halves of this set be LH and RH, with LH the

more significant. The unshifted adder output is aligned to LH. A

right shift is performed. The amount of the right shift is that speci-

fied in the SAR for R, L, or C; otherwise 0. ,The resulting shifter

adder output is in general now at some intermediate position of the

signal set. The last column indicates the single width selection from

this signal set used to determine the barrel switch output.

D-20

Phase 3 Input Clocks

Results as specified in the command register from bits N[3̂ - 50] are

clocked into selected registers at the end of phase 3. This occurs at

the end of phase 1 of the first successor instruction for which LUOP

is set to 1 (true).

31* 35 36 | A REGISTERS INPUT FROM BARREL SWITCH

0

1

-

-

-

-

37

0

0

1
1
1
1
1
1
1
1

111

0

1

_ _

..- .- Al

0

1 - A2

0

- 1 A3

38 39 ^O

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

O i l

1 0 0

1 0 1

1 1 0

1 1 1

Al unchanged

BSW to Al

A2 unchanged

BSW to A2

A3 unchanged

BSW to A3

B REGISTER INPUT SOURCE SELECTION

B unchanged

Not implemented

BAD Adder (unshifted)

Not implemented

BBA BSW v Adder

B BSW

BEX External input

BMI Memory Information Register (MIR)

BBE BSW v External input

BBI BSW V MIR

MEMORY INFORMATION REGISTER INPUT

MIR unchanged

MIR BSW to MIR

D-21

_52J AMPCR INPUT

0 No change from BSW

1 AMPCR BS¥ least bits to AMPCR*

*A conflict in loading AMPCR can occur that will prevent this loading

from the BSW. Assume that the phase 3 in progress indicates load

AMPCR from BSW. Also assume that the MPAD controls at the same time

indicate SAVE or CALL (as a result of the phase 1 prior to the one in

progress). Then if the current phase 1 indicates that a new phase 3

should be initiated, the conflict in AMPCR loading is resolved in favor

of the old MPCR.

U3 | BR1 INPUT

0 No change

1 BR1 BSW next least byte to BR1

| 44 | BR2 INPUT

0 No change

1 BR2 BSW next least byte to BR2

[45 : 5b| MAR INPUT

0 - No change

1 0 LMAR LIT to MAR

1 1 MA.R BSW least byte to MAR

i 1
'LU6J (MAR & COUNTER INPUT SELECT)

0 LIT

1 BSW least byte

D-22

0

1
-

47

0

0

0

1

48 |

0

1

1

0

COUNTER INHJT

No change

LCTR LIT to CTR (ones complement)

CTR BSW least byte to CTR (ones complement)

INC Increment CTR (mod 256)

At the end of phase 3, LCTR and CTR reset the COV condition bit, and

INC sets the COV upon incrementing from HEX FF to HEX 00 unless the

concurrent phase 1 tests COV.

| 49 50 I SAR INHJT

0 0 N o change

0 1 CSAR Complement SAR (See table in syntax for complements)

1 0 SAR BSW least bits*

*The number of bits used is the integer not less than loĝ (logic unit

width in bits).

If the phase 3 in progress specifies eventual loading of the SAR from

the BSW while a type II instruction attempts to load the SAR, the result

to the SAR is the result of the type II.

D-23

I 51 52 53 ^ I MEMORY AND DEVICE OPERATIONS

The indicated action is initiated if EXTOP has been determined to be

1 prior to the end of this phase 1.

0 0 0 0 ' N o change

0 0 0 1 —
0 0 1 0 M R 1 Memory read using MAR1 a s address

0 01 1 MR2 Memory read using MA.R2 as address

0 1 0 0

0 1 0 1

0 1 1 0 MW1 Memory write from MIR using MAR1 as address

0 11 1 MW2 Memory write from MIR using MAR2 as address

1 0 0 0 N o t implemented

1 0 0 1 Not implemented

1 0 1 0 N o t implemented

1 0 1 1 N o t implemented

1 1 0 0 N o t implemented

1 1 0 1 N o t implemented

1 1 1 0 N o t implemented

1 1 1 1 N o t implemented

Interpreter based systems with a switching interlock use the following

condition bits for synchronization of activity requests with memory

and devices (see the subsequent discussion):

RMI Memory accepts MIR information

RDC Read Complete, or Request of Device Complete

(only for devices read from or written to by

Interpreter request).

In order to safely use these conditions they must be reset by testing

before they may be depended upon.

Memory Operations

The memory operations include read (MR) and write (MW). Each memory

operation uses as a memory address some part of the value in MAR1 and

MAR2 (BR1 or BR2 concatenated with MAR). A portion of the address

specifies a memory module, with the rest indicating locations within

the module.

Memory Use Sequence

The sequence of operations necessary to access S-memory is simple in

single interpreter systems where no conflict in access can exist. In

such cases once the address setup is complete (as in the MIR for

write), the memory read (or write) can be initiated. After a suitable

time the data from memory can be accessed via BEX or BBE. In the pre-

sence of conflict potential, the following control sequence should be

used.

1. The S-memory address should be in the selected base register

and MAR.

2. Memory read

2.1 A test of RDC should be included in some prior

instruction. By convention this should be the previous

memory read (or device read or write by request). A

test of RMI should be included if address register

changes are required before the RDC is returned.

2.2 The memory read can occur in the instruction after the

address is (unconditionally) loaded into MAR1 or MAR2.

2.3 A RMI is returned when the memory has accepted the

address and the memory is connected to the requesting

Interpreter.

D-25

2.U A group of intervening instructions can be issued.

Once RMI is set and tested, these instructions may

change the address registers or even include device

read or write operation on- demand.

2.5 A RDC (read complete) signal is returned when data

will become available•for entry into the Interpreter

following clock.

3. Memory Write

3.1 The data to be written should be in MIR.

3.2 The address should be in the selected base register

and MAR.

3.3 The memory write can occur in the instruction after

both the address and data have the desired values.

3.^ Return of RMI indicates that the memory is connected

and therefore the address and data have been accepted

and thus the address registers and MIR may be subse-

quently changed.

D-26

Bibliography

1. Bingham, Davis, Faber, Fisher, McGonagle, Reigel, Zucker,

"Microprogramming Manual for Interpreter Based System,"

Burroughs Corporation Technical Report TR 70-8, November 1970.

2. "D Machine Users Manual," Burroughs Corporation Technical

Report, April 1971.

3. Notes from a short course in "Microprogramming", Continuing

Engineering Studies Course 7107, University of Pennsylvania,

June 1971.

