-]

ed B S

i

- ‘md ——

= |

Nros po §% 2%

TECHNICAL REPORT TR=200

NGL 21-002-008 ANUD

NOOO14~67=A=0239=-N021
(NR=Q44=431)

FGRAAL
TECHNICAL DOCUMENTATION

BY

Ce Ky MESZTENYI
He BREITENLOHNER
\J. C. YEH

0CT, 1972

PN

(NASA-CR-129907) FGRAAL: TECHNICAL
DOCUMENTATION C.X. Mesztenyi, et al

(Maryland Opniv.) Oct. 1972 55 p

N73-13198

CSCL

09B Unclas
G3/08 50323

UNIVERSITY OF MARYLAND

TECHNICAL REPORT TR~200 0CcT, 1972
NGL 21-002-008 AN
NO0O14=67=A=(0239=-n021

(NR=QU4=431)

FG6GRAAL
TECHNICAL DOCUMENTAT]ION
BY

Ce Ko MESZTENYI
He. BREITENLOHNER
Je Co YEH

ABSTHRACT

THIS REPORY UESCRIBES THE IMPLEMENTATION OF FGRAAL, A FQRTRAN
EXTENDED GRAPH ALGORITHMIC LANGUAGE (TECHNICAL REPORT TR-179) FOR
THE UNIVAC 1108« THE REPORT CONTAINS THE DESCRIPTION OF THE IMPLE=-
MENTED DATA STRUCTURES FOR SETSs LISTS AND GRAPHS, IT SUMMARIZES
THE CHANGES MADE FOR THE RALPH COMPILER TO ACCOMODATE THE SPECIAL
STATEMENTS OF FGRAAL, IT GIVES THE CALLING SEQUENCES GENERATED BY
THE CHANGED COMPILER, IT DESCRIBES THE OBJUECT TIME SUBROUTINE
PACKAGE ,

THIS RESEARCH WAS SUPPORTED IN PART BY THE OFFICE OF NAVAL
RESEARCH UNDER GRANT N00014=67=-A=0239-0021(NR=044=431), AND THE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION UNDER GRANT NGL

21-002-008.

2,

3.

6,

7
8,

TABLE OF CONTENTS

INTRODUCTION 1=1
HINTS FOR EFFICIENT PROGRAMMING IN FGRAAL 2=1
2.1, EFFICIENT USE OF SETS :
2.2, SET EXPRESSIONS AND ASSIGNMENTS
FGRAAL STORAGE STRUCTURE ON THE UNIVAC 1108, 3=1
3.1, . DYNAMIC STORAGE,
3.2 "~ DATA REPRESENTATION
3.2.1, UNIVERSAL SEQUENCE AND THE PROPERTY BLOCKS
3.2,20 SETS
3e204, PROPERTIES
3.2.5. GRAPH STRUCTURES
3,2,6, TYPE ASSIGNMENTS,
3.247, STRUCTURE OF HEADERS
3.3, REPRESENTATION OF A CONTRACTED GRAPH
EXAMPLE OF A GRAPH STRUCTURE 4=1
THE FGRAAL COMPILER 51
Sels THE RALPH COMPILER
Se2s MUDIFICATIONS TO RALPH
5e201, DATA TYPES
5¢2e20 IMPLEMENTATION OF NEW STATEMENTS
5e2030 IMPLEMENTATION OF NEW SYNTACTIC FEATURES
Se2elts HANDLING OF TEMPORARIES
SeJoe OPTIMIZATION _
" COMPILER GENERATED INSTRUCTION SEQUENCES 6=1
6.1, DECLARATION STATEMENTS
6¢2, CALLING SEQUENCES
6.3, FREEING A SET OR LIST
LD SET = OPERATIONS, «~RELATIONS, =ASSIGNMENT
6.5, SPECIAL SET FUNCTIONS
6501, CREATE FUNCTION
6¢542, SUBSET FUNCTION :
6543, ELT, INDEXe SIZE AND PARITY FUNCTIONS
6.6, PROPERTY ASSIGNMENT AND RETRIEVAL
6.7 LIST ASSIGNMENT AND LIST FUNCTIONS
6701, LIST ASSIGNMENT STATEMENT
6.7¢20 LIST FUNCTIONS
6.8, GRAPH OPERATIONS
6.8.1, ASSIGN STATEMENT
6¢8.24 DETACH STATEMENT
6.8¢3, GRAPH FUNCTIONS
6.9, ITERATIVE STATEMENTS
6:9¢1, WHILE STATEMENT
69420 FOR ALL STATEMENT
6,10, REMOVE STATEMENTS

LIBRARY PROGRAMS 7e1
APPENDIX, SUMMARY OF FGRAAL 8=1

2-1
2=2
2=3

3-1
3=5
3=5
3=-7
3=12
3-14
3-16
3-18
3-19

3=20

5=1
5=2
5=2
5=2
5-3
5=3
5=l

6-1
6~2
6=2
6=3
6=3
6=3
6=4
6=5
6=5
6=6
6-6
6=6
6=7
6=7
6=8
6-8
6=9
6=-9
6~9
6-10

1-1

1, INTRODUCTION

A GRAPH ALGORITHMIC LANGUAGE HAS BEEN DEFINED Ag AN EXTENSION
OF ALGOL AND FORTRAN IN THE TECHNICAL REPORTS TR-158 AND TR-179,
RESPECTIVELY, FGRAAL, THE FORTRAN VERSION OF THIS _ANGUAGE, HAS
BEEN IMPLEMENTED FOR THE UNIVAC 1108, THIS REPORT CONTAINS DE-
TAILS OF THIS IMPLEMENTATION, FOR QUESTIONS REGARDING THE DEFINI=-
TION OF THE LANGUAGE AND IYS USAGE ONE SHOULD CONSULT THE TECHNI-
CAL REPORT TR=179., THE APPENDIX OF THIS REPORT CONTAINS A TABLE
SUMMARIZING THE SPECIAL FEATURES OF THE LANGUAGE,

THE UNIVAC 1108 IS A WORD ADDRESSABLE COMPUTER wITH 3¢ BIT
WORDS, IT HAS PARTIAL WORD INSTRUCTIONS THUS CERTAIN DATA PACKING
INTO ONE WORD CAN BE IMPLEMENTED EFFICIENTLY. IT ALSO HAS A SET
OF MASKED SEARCH INSTRUCTIONS wHICH ARE USED FOR CERTAIN SET O
PERATIONS IN FGRAAL VERY EFFICIENTLY,

IN CHAPTER 2 SOME HINTS ARE GIVEN FOR ACHIEVING EFFICIENCY BOTH
IN STORAGE AND EXECUTION TIME, BASED ON THE IMPLEMENTED DATA STRU=-
CTURE,

THE FGRAAL IMPLEMENTATION CAN BEST BE DESCRIBED IN THREE PARTS:
THE DATA STRUCTURES, THE COMPILER AND THE OBUECT TIME LIBRARY
PACKAGE, THE PHYSICAL REPRESENTATION OF DATA STRUCTURES FOR THE
VARIOUS DATA TYPES ARE SHOWN IN CHAPTER 3, WHILE CHAPTER 4 GIVES A
FULL EXAMPLE OF A GRAPH AND THE ASSOCIATED DATA STRUCTURE NECES=
SARY FOR ITS REPRESENTATION, THE FGRAAL COMPILER IS A MODIFICA=-
TION OF THE RALPH COMPILER FOR FORTRAN V AND MAD, THE MAJOR CHAN=-
GES IN THE COMPILER ARE DESCRIBED IN CHAPTER 5, AND CHAPTER 6
GIVES SPECIAL INSTRUCTION SEQUENCES GENERATED BY THE FGRAAL COMPI-
LER FOR THE VARIOUS FGRAAL STATEMENTS, THE OBJECT TIME LIBRARY
PACKAGE HAS BEEN WRITTEN IN UNIVAC ASSEMBLY LANGUAGE TO CUT DOWN
THE OVERHEAD, THE ROUTINES IN THE PACKAGE ARE GROUPED, AND THEY
ARE DESCRIBED IN CHAPTER 7,

WE TAKE THIS OPPORTUNITY TO THANK PROF, V. R, BASILI FOR HIS
HELP AND ADVICE IN PREPARING THIS REPORT,

2, HINTS FOR EFFICIENT PROGRAMMING . IN FGRAAL

THE READER SHOULD BE ABLE TO GAIN SUFFICIENT INFORMATION ABOUT
MODIFYING HIS PROGRAM TO ACHIEVE MAXIMUM EFFICIENCY UNDER THE
GIVEN IMPLEMENTATION BY READING THIS CHAPTER ALONE, HOWEVER TO
UNDERSTAND FULLY WHY THESE RECOMENDATIONS FOR EFFICIENCY ARE VA=
LID, THE REST OF THIS REPORT MUST BE READ,

THE PRIMARY GOAL OF FGRAAL IS THE EASY IMPLEMENTATION OF GRAPH
ALGORITHMS ARISING IN APPLYCATION, USUALLY THE EASY IMPLEMENTATION
OF THE ALGORITHM ALSO MEANS THAT THE PROGRAM CAN BE EASILY DE-
BUGGED AND DOCUMENTED, UNFORTUNATELY AN EASILY IMPLEMENTED AL~
GORITHM CAN BE VERY INEFFICIENT IN MEMORY SIZE REQUIREMENTS AND IN
EXECUTION TIME, OBVIOUSLY, THE EFFTCIENCY OF FGRAAL PROGRAMS DE=-
PEND ON THE ARRANGEMENT OF SPECIAL DATA (SETS, PROPERTIES, ETC,)
IN THE IMPLEMENTED FGRAAL SYSTEM, THE ARRANGEMENT OF THESE DATA
ARE DESCRIBED IN THE NEXT CHAPTER, IN THIS CHAPTER, WE GIVE SOME
HINTS TO ACHIEVE EFFICIENT PROGRAMS BASED ON THE IMPLEMENTED DATA
STRUCTURE IN FGRAAL, '

GENERALLY WE SUGGEST THAT THE PROGRAM BE WRITTEN AND DEBUGGED
WITH AN EFFICIENT IMPLEMENTATION IN MIND, THIS DOES NOT MEAN THAT
THE FIRST VERSIOUN BE AS EFFICIENT AS POSSIBLE, ONLY THAT IT LEND
ITSELF TO EASY IMPROVEMENT, ONCE A PROGRAM IS DEBUGGED, THE EFFI=-
CIENCY OF THE PROGRAM CAN BE IMPROVED BY INSERTING FORTRAN EQUIVA=-
LENCE AND DEFINE STATEMENTS, LINEAR ARRAYS AND SOME CHANGE OF THE
ORIGINAL PROGRAM, THESE TYPES OF IMPROVEMENT WILL BE ITLLUSTRATED
IN THE FOLLOWING SECTIONS,

2,1, EFFICIENT USE OF SETS

* STORAGE CAN BE SAVED DURING EXECUTION
* OF A PROGRAM IF SETS ARE MADE EMPTY
* AS SOON AS THEY ARE NOT NEEDED,

THIS IS BECAUSE EACH SET WITH NO ELEMENT (EMPTY) OR WITH ONE ELE-
MENT (ATOMIC) USES ONLY ONE MEMORY LOCATION WHICH wAS ASSIGNED TO
IT BY THE COMPILER,

* IT IS ADVANTAGEOUS TO KEEP THE NUMBER
* OF NOY EMPTY OR ATOMIC SETS UNDER 15
* AT ANY TIME DURING EXECUTION,

SETS WITH TwWU OR MORE ELEMENTS ARE REPRESENTED IN EITHER COLUMN
OR BLOCK FORM (SEE NEXT CHAPTER FOR DETAILS)., THE COLUMN FQRM
REPRESENTATION OF SETS ARE ATTACHED TO THE UNIVERSAL SEQUENCE AND
AS SUCH THEY DO NOT REQUIRE EXTRA STORAGE SPACE, FGRAAL PROVIDES
UP TO 15 SETS TO BE REPRESENTED IN COLUMN FORM, AS SOON AS MORE

2=2

THAN 15 SETS HAVE TwO OR MORE ELEMENTS, SOME OF THE SETS wILL
AUTOMATICALLY Bt TRANSFORMED INTO BLOCK FORM, A SET WITH N ELE=~
MENTS OCCUPIES 2xN/3 MEMORY LOCATIONS WHEN IT IS IN BLOCK FORM,
THE RESULT OF A SET OPERATION IS ALWAYS PLACED IN COLUMN FORM
UNLESS IT IS EMPTY OR ATOMIC, SINCE SETS IN BLOCK FORM OCCyPY
EXTRA SPACE AND REQUIRE EXTRA TIME TO GET THEM INYQO THIS FORM, ONE
AVOIDS THIS OVERHEAD BY KEEPING THE NUMBER OF NOT EMPTY OR ATOMIC
SETS UNDER 15 AT ANY TIME DURING EXECUTION,

ONE CAN KEEP DOWN THE NUMBER OF SETS By USING EQUIVALENCE STA=-
TEMENTS, E.G, ASSUME THAT THE SETS S AND T ARE USED IN TwO
NON«OVERLAPPING SEGMENTS O+ A PROGRAM, AFTER DEBUGGING THE PRO~
GRAM, ONE CAN MAKE THE TwO SETS EQUIVALENT BUT STILL KEEP THEIR
NAME ¢

SET S o T

EQUIVALENCE (S,T)
(SEGMENT 1 USES S)
(SEGMENT 2 1'SES T)

2.2, SET EXPRESSIONS ANU ASSIGNMENTS

THE MUDIFICATION OF A SET BY OTHER SETS
IS MOST EFFICIENTLY IMPLEMENTED BY A
SEQUENCE OF SIMPLE SET ASSIGNMENT OF THE
FORM S = S ,0P, X » RATHER THAN BY USE
OF A COMPLEX EXPRESSION,

* % % % %

THE PRESENT IMPLEMENTATION OF FGRAAL DOES NOT MAKE ANY ATTEMPT
TO OPTIMIZE THE EVALUATION OF COMPLEX SET EXPRESSIONS, E,G. THE
SEY EXPRESSION
(S DF, X) JUN, Y
IS EVALUATED FIRST BY USING A TEMPORARY SET T' FOR
S ODF. X --->' T'
AND THE FINAL RESULT IS OBTAINED By THE EVALUATION OF
TY JUN, Y

A VERY FREQUENTLY OCCURING SET ASSIGNMENT STATEMENT Is RECOG=-
NIZED BY THE FGRAAL COMPILER, THIS STATEMENT,

S =S ,0P, X

MODIFIES A SET S WITH AN OTHER SET X BY TAKING THE UNION, DIF=-
FERENCE, INTERSECTION OR SYMMETRIC SUM OF THEM, I.,E. OP]S ANY

2=3

" ONE OF UN, DF, IT OR SM, THIS STATEMENY IS IMPLEMENTED SUCH THAT
THE RESULT OF THE SET EXPRFSSION, S,0P,X, IS GENERATED IN THE
SPACE PROVIDED FOR S, THIS FEATURE OF FGRAAL MAKES IT MORE EFFI-
CIENT TO USE MORE STATEMENTS INSTEAD OF ONE STATEMENT wITH COMPLEX
EXPRESSION, E,Gs THE EXECUTYION OF THE TWO STATEMENTS,

S
S

S |.DF. ‘
S WUN, Y

IS MORE EFFICIENT THEN THE EXECUTION OF THE COMBINED STATEMENT

S T (S OFe X) JUN, Y
2.3, PROPERTIES

* USING FORTRAN ARRAYS FOR STORING
* PROPERTY VALUES CAN BE MORE EFFICIENT
* THAN USING DECLAKRED PROPERTIES,

IN THE IMPLEMENTED FGRAAL DATA STRUCTURE» THE PROPERTY VALUES
WITH PROPERTY IUENTIFIERS ARE LINKED TO THE ELEMENTS IN THE UNI=-
VERSAL SEQUENCE. THIS REQUIRES TWICE AS MANY MEMORY LOCATIONS AS
THE ACTUAL MEMORY SPACE NEFDED TO STORE THE PROPERTY VALUES ONLY.
THE RETRIEVAL AND MODIFICATION OF A PROPERTY VALUE OF AN ELEMENT
IS ACCOMPLISHED BY A SEARCH IN THE LINKED PROPERTY BLOCKS OF THE
ELEMENT, CLEARLYr» THIS REQUIRES MUCH MORE TIME THEN THE RETRIEVAL
AND MODIFICATION OF PROPERTY VALUES IF THEY COULD BE ARRANGED IN A
FORTRAN TYPE OF LINEAR ARRAY, SINCE THE ELEMENTS OF THE UNIVERSAL
SEQUENCE ARE IDENTIFIED BY POSITIVE INTEGERSs ATOMIC SETS CAN BE
USED AS INDICES FOR DIMENSIONED VARIABLES, THIS FEATURE OF FGRAAL
MAKES IT POSSIBLE TO CHANGE PROPERTY VARIABLES INTO FORTRAN TYPE
DIMENSIONED VARIABLES TO ACHIEVE BETTER EFFICIENCY,

THERE ARE SOME RESTRICTIONS ON THE USE OF LINEAR ARRAYS FOR
PROPERTIES:

(1) THE USE UF LINEAR ARRAYS FOR PROPERTY VALUES DEFINES THE
PROPERTY FOR ALL VALID INDEX VALUES CORRESPONDING TO ELEMENTS IN
THE UNIVERSAL SEQUENCE, A SPECIAL VALUE MyST BE USED IF ONE WANTS
TO MAKE DISTINCTION FOR UNUEFINED PROPERTY FOR AN ELEMENT IN THIS
REGION,

{2) THE ELEMENTS FOR WHICH THE PROPERYY IS DEFINED sHouLD OCCU-
PY A CONTIGUOUS AREA IN THFE UNIVERSAL SEQUENCE IF A LINEAR ARRAY
IS USED, FURTHERMORE, THE FIRST OF THESE ELEMENTS, AND THE SIZE OF
THE REGION SHOULD BE KNOWN,

WITH THESE RESTRICTIONS IN MIND, ONE COULD ATTEMPT TO CHANGE A
DEBUGGED FGRAAL PROGRAM TO ACHIEVE HIGHER EFFICIENCY, THE STEPS TO

BE TAKEN FOR THIS CHANGE ARE AS FOLLOWS:

ASSUME THAT THE PROPERTY P IS USED FOR ELEMENTS IN A CONTIGUOUS
AREA OF THE UNIVERSAL SEQUENCE, THE FIRST OF THESE ELEMENTS IS X1
AND THE SIZE OF THIS AREA IS NX,

THEN REPLACE THE ORIGINAL DECLARATION STATEMENT

PROPERTY P
WITH THE FOLLOWING TWO STATEMENTS

DIMENSION PA(NX)
DEFINE P(X) = PA(X=X1+1)

ANY APPEARANCE UF THE STATEMENT,
REMOVE P
MUST BE REPLACED WITH A SMALL LOOP

DU 222 I=1sNX
222 PA(I) =V

WHERE V IS A SPECIALLY DEFINED VALUE FOR 'UNDEFINED' PROPERTY, IN
THIS CASE, THE SPECIAL FUNCTION.,

CHECK (P, X)
SHOULD BE REPLACED BY THE EXPRESSION

p(x’ .NE. V

3=-1

3, FGRAAL STURAGE STRUCTURE ON THE UNIVAC 1108,

THIS CHAPTER DESCRIBES THE REPRESENTATION OF THE SPECIAL DATA
STRUCTURES DURING THE EXECUTION OF AN FGRAAL PROGRAM, IN SECTION
1» THE DYNAMIC STORAGE IS UESCRIBED, THIS STORAGE HOLDS ALL THE
SPECIAL DATA OF THE FGRAAL PROGRAMS, EXCEPT FOR THE HEADERS CORRE=~
SPONDING TO THE DECLARED VARIABLES: SETS, LISTSs, PROPERTIES AND
GRAPHS, SECTION 2 DESCRIBES THE REPRESENTATION OF THE UNIVERSAL
SEQUENCEs» AND THE SETSe LISTS, PROPERTIES AND GRAPHS IN THE DYNA-
MIC STORAGE, SECTION 3 SHOWS THE REPRESENTATION OF A CONTRACTED
GRAPH, THAT 1S, THE GRAPH REPRESENTATION MODIFIED BY THE LIBRARY
ROUTINE CONTR,

3.1, DYNAMIC STORAGE,

THE DYNAMIC STORAGE AREA IS THE WORKING SPACE OF THE FGRAAL
SYSTEM AND IT IS A CONTIGUOUS ARRAY OF COMPUTER wORDS WHERE ALL
DATA VALUES EXCEPT THOSE ASSIGNED BY THE COMPILER ARE STORED, THE
SIZE OF THIS STURAGE AREA VARIES AND CAN BE OPTIONALLY DESIGNATED
BY THE USER, LOGICALLY SPFAKING, THE DYNAMIC STORAGE AREA CAN BE
SUBDIVIDED INTO THREE DYNAMIC, VARIABLE-SIZED PORTIONS, THE UPPER
PORTION IS THE UNIVERSAL SEQUENCE, THE MIDDLE PORTION IS THE
UNUSED STORAGE AREA AND THE LOWER PORTION IS THE LINKED=BLOCK
AREA, THE TWwWO END PORTIONS, STARTING FROM THE TwO END BOUNDARIES
OF THE DYNAMIC STORAGE AREA EXPAND THEIR SIZES By SEIZING STORAGE
FROM THE MIDDLE PORTION, WHENEVER THESE TWO END=PORTIONS MEET
(AND THE MIDDLE PORTION DISAPEARS) THE AVAILABLE STORAGE IN THE
DYNAMIC STORAGE AREA IS EXHMAUSTED AND PROGRAM EXECUTION I TER=-
MINATED WITH AN APPROPRIATE MESSAGE,

IN FGRAAL, FROM THE DATA STRUCTURE POINT OF VIEWs,» THERE ARE TwO
TYPES OF STORAGE STRUCTURE ! (1) LINEAR ARRAY, (2) LINKED-BLOCK,
THE LINEAR ARRAY IS USED MAINLY FOR THE REPRESENTATION OF THE
UNIVERSAL SEQUENCE, WHILE THE LINKED-BLOCK STRUCTURE IS USED FOR
THE REPRESENTATION OF ALL OTHER TYPES OF DATA (E,6, STAQUE, GRAPH,
PROPERTY, ETC,)« THE LINEAR ARRAY (OR THE UNIVERSAL SEQUENCE) IS
LOCATED ON THE UPPER PORTION OF THE DYNAMIC STORAGE AREA, THE
LINKED=-BLOCKS ARE LOCATED ON THE LOWER PORTION OF THE DYNAMIC
STORAGE AREA, HOWEVER, THE STORAGE MANAGEMENT ROUTINE KEEPS TRACK
OF THE STORAGE ALLOCATED TO EACH PORTION AND PREVENTS THEM FROM
OVERLAPPING INTO EACH OTHER, THE STORAGE MANAGEMENT ROUTINE ALSO
MAINTAINS A SET OF GLOBAL POINTER VARIABLES WHICH ARE UPDATED

- WHENEVER THE STATUS OF THE DYNAMIC STORAGE CHANGES, THE VALUES OF
THESE POINTERS ARE EITHER RELATIVE OR ABSOLUTE ADDRESSES, A RELA=~
TIVE ADDRESS, I+ REFERS TO THE LOCATION OF D(I), WHERE ARRAY D IS
THE DYNAMIC STORAGE AREA, AN ABSOLUTE ADDRESS REFERS TO THE AC-

3=2

TUAL LOCATION IN THE COMPUTER MEMORY, THE INITIAL (I,E. BEFORE
ANY DATA IS CREATED) VALUES OF THESE POINTERS ARE AS FOLLOWS @
(NOTE ¢ LOC(A) DENOTES THE ABSOLUTE LOCATION OF VARIABLE A),

NAME INITIAL VALUE
NU - LAST ELEMENT CREATED 0
ND - SIZ2E OF THE DYNAMIC STORAGE - QPTION X 4096
NF - FIRST AVAILABLE BLOCK LOC (D(ND=1))
NL = LAST AVAILABLE BLOCK LOC (D(ND=1))
D - DYNAMIC STORAGE, D!I),I=1,,,¢ND D(ND=1)=0p

INITIALLYs THE ENTIRE DYNAMIC STORAGE AREA CAN BE VIEWED AS A
LARGE UNUSED BLUCK, WHENEVER A NEW UNIVERSAL ELEMENT IS CREATED
BY THE EXECUTION OF f*CREATE?' STATEMENTS, ONE COMPUTER WORD IS
CARVED OUT FROM THE TOP OF THIS BLOCK AND THE POINTER NU IS INCRE~
MENTED BY 1., THE CREATION OF NEW ELEMENTS MAYBE CONTINUED UNTIL
THE LOC(D(NU)) 1S EQUAL TO NL, (I.,E, THE AVAILABLE SPACE IS EXHAU-
STED) THE ALLOCATION OF 2=WORD BLOCKS IS CARRIED OUT BY TAKING
AwAY THE BOTTOM TWO WORDS FROM THE UNUSED BLOCK. WHENEVER A BLOCK
IS RELEASED (I ,E, AVAILABLE FOR OTHER USES) IT IS LINKED TOGETHER
TO FORM A SINGLELY=LINKED AVAILABLF-BLOCK LIST WITH NF AS ITS LIST
HEADER, THE SUBSEQUENT REAQUESTS FOR A 2«wWORD BLOCK WILL BE SATIS=-
FIED THROUGH THE ALLOCATIONM OF A BLOCK FROM THIS AVAILABLE-BLOCK
LIST, THE NEw BLOCK WILL NOT BE CREATED OUT OF THE UNUSED PORTION
OF THE DYNAMIC STORAGE AREA UNTIL THE AVAILABLE-BLOCK LIST IS
EXHAUSTED, IN OTHER wORDS» THE STORAGE MANAGEMENT ROUTINE TRIES
TO SATISFY THE REQUEST FOR A 2-WORD BLOCK BY ASSIGNING AN EXISTING
AVAILABLE BLOCK BEFORE AN ATTEMPT 1S MADE 7O ALLOCATE A NEw BLOCK.
THE ALGORITHM FOR ALLOCATING A 2-wWORD BLOCK (WHICH IS 70 BE POIN-
TED TO BY 'AVAIL') IS AS FOLLOWS ¢ (NOTE ¢ LINK(A) DENOTES THE
CONTENTS OF THE LINK FIELD OF VARIABLE A)

1, THE AVAILABLE=BLOCK LYST IS NOT EMPTY
IF (NF =2 0) THEN GO TO 2,

ELSE
AVAIL = NF
LINK(NF) = LINK(LINK(NF))
RETURN

2, THE AVAILABLE~BLOCK LTST IS EMPTY, CHECK THE UNUSED PORTION
IF (NL < LOC(D(N'"))+2) THEN GO TO 3,

ELSE
AVAIL = NF
LINK(NF) = LOC(NF)w2
NL = LINK(NF)
RETURN

3, THE AVAILABLE SPACE IS EXHAUSTED
OUTPUT MESSAGE

TERMINATE PROGRAM

THE ALGORITHM TO FREE A 2-wWORD RLOCK (D(K), D(K+1)) IS ¢

1, LINK THE 2=WORD BLOCK INTO THE AVAILABLE=-BLOCK LIST
LINK(D(K)) = LINKI(NF)

2, UPDATE THE LIST HEADE®, NF
LINK(NF) = LOC(D(K}))
RETURN

THE SCHEMATIC DIAGRAM OF THE DYNAMIC STORAGE AREA IS GIVEN IN
FIGURE 1, (K1,K2s,,,2KM ARE BLOCKS IN THE AVAILABLE=-BLOCK LIST),

D(1)

D (NU)

NL

KN

NF

et TP T TR R T T LSS d kbt
* *
* UNIVERSAL *
* SEQGUENCE *

* *
*--mﬂ--o-o—--'._—--——---------QQQ-------‘
* *®
* (FREE) *
* - x
-—--—----—o--——-—--------——-——--‘---'—
* 0 *
* (LAST FREE) *
---————------------_ - _------
* *
* (USED) *
* *

*--—-—-----------—o---—-.--n-----------‘

* NL *
x . (FREE) %

*--—------—---o---------C-—-------‘—— *x

* x
&x e o o o o *
* *

*----—---------0-—-‘---------a-------t
* - K1 *
* (FIRST FREE) »

*--—-—--—--—--—---,---—-_------------#

* *
* : ¢ o 8 & e *
* *

N T P TP PRI T I 20 Ll bt s

FIGURE 1, DYNAMIC STORAGE AREA,

3.2, DATA REPRESENTATION

ALL LINKS BETWEEN THE BLOCKS REPRESENTING DATA ARE wITH ABSO-
LUTE ADDRESSES EXCEPT REFERENCES TO THE ELEMENTS IN THE UNIVERSAL
SEQUENCE WHERE THEIR RELATIVE ADDRESSES ARE USED, E.G, 'I*' REFERS
TO THE ELEMENT IN THE UNIVERSAL SEQOUENCE D(I1),

3e241, ‘UNIVERSAL SEQUENCE AND THE PROPERTY BLOCKS

THE UNIVERSAL SEQUENCE 1S A SEQUENCE OF ELEMENTS GENERATED BY
THE FGRAAL 'CREATE' FUNCTIONS, ITY IS THE UNION OF ALL SET ELE~-
MENTS IN THE FGRAAL SYSTEM (E.G, NODES(G), ARCS(G), ELEMENTS OF
ANY SET)» HENCE IT IS CALLFD THE UNIVERSAL SEQUENCE. THIS SE~
QUENCE IS IMPLEMENTED AS A LINEAR ARRAY LOCATED ON THE UPPER END
OF THE DYNAMIC STORAGE AREA, D(I), I=1+2,,.,e2NU, EACH MEMORY WORD
IN THIS ARRAY, CALLED AN ELEMENT ID WORD, REPRESENTS ONE ELEMENT
IN THE UNIVERSAL SEQUENCE, THE RELATIVE LOCATION OF AN ELEMENT IN
THIS SFEQUENCE IS CALLED ITS UNIVERSAL SEQUENCE NUMBER, DIFFERENT
TYPES OF PROPERTIES MAYBE ASSIGNED TO AN ATOMIC SET (HENCE TO ITS
ONLY ELEMENT IN THE SET) BY THE PROPERTY ASSIGNMENT OR CONDITIONAL
'‘CREATE®' STATEMENTS IN FGRAAL, THE PROPERTIES ASSQCIATED wITH AN
ELEMENT ARE IMPLEMENTED AS A PROPERTY-RING WHERE ITS ELEMENT ID
WORD IS A RING HEADER AND PROPERTY BLOCKS ARE THE RING ELEMENTS,

EACH ELEMENT ID wORD IS DIVIDED INTO TwO HALFWORD FIELDS. THE
LEFT HALF OF THE ELEMENT II' WORD IS RESERVED FOR THE REPRESENTA=
TION OF SETS IN COLUMN FORM (SEE SETS), THE RIGHT HALF OF THE
ELEMENT ID WORD CONTAINS THE ADDRESS POINTER TO A LINKED LIST OF
PROPERTY BLOCKS WHICH IS ASSOCIATED WITH THIS ELEMENT (IF THERE IS
ONE), OR THE COMPLEMENT OF ITS UNIVERSAL SEQUENCE NUMBER T0 SIGNI-
FY THE NONEXISTENCE OF THE PROPERTY LIST, THE LINK FIELD oF THE
LAST PROPERTY BLOCK ON THE PROPERTY LIST CONTAINS THE COMPLEMENT
OF THE UNIVERSAL SEQUENCE NUMBER (WHICH POINTS INDIRECTLY 7O THE
ELEMENT ID WORD), THE COMPLEMENT IS NECESSARY TO SIGNIFY THE END
OF A PROPERTY LIST, THE ELEMENT ID WORD TOGETHER wlTH ITS ASSO-
CIATED PROPERTY=LIST FORM A PROPERTY-RING WHERE ELEMENT ID WORD IS
ITS RING HEADER. FIGURE 3 SHOWS THE LAYOUT OF THE UNIVERSAL SE-
QUENCE AND THE PROPERTY BLOCK LISTS,

UNIVERSAL SEQUENCE

D(n

DU

D(K)

x *
* *
Aoonwew Eowe ™ok
* * AIl %
Ammmw ek oee™ek
* %*
* g
FEr ety LU L 4
* * AUl »
A o oo o XK o= o o o K
* *
* x
Avmaowikeoo™e)
* x wK *
A e o o B o o @ e
* *®

FIGURE 3, UNIVERSAL SEQUENCE AND PROPERTY BLOCKS

PROPERTY BLOCKS

AT}
RERFREREREEKE
* * AI2 =
RERERERERRERR

AJ1
RN ERR KRR KR
* *x AJ2 %
0 3 2 0K e o o e o

LR}

233132313282 33
* * =1 =x
gk gk ok Kk

AJN
LTIt I E T
* * =J x
o o0 o0 o0 o K

3e2,2, SETS

IN THE FGRAAL SYSTEM, THERE ARE THREE CATEGORIES OF SETS
EMPTY, ATOMIC, AND COMPOSITE, AN EMPTY SET IS A SET WHICH CON=
TAINS NO ELEMENTS,. AN ATOMIC SET 1S A SET WHICH CONTAINS EXACTLY
ONE ELEMENT, A COMPOSITE SET IS A SET WHICH IS THE UNION oF A
NUMBER OF ATOMIC SETS, SETS, REGARDLESS OF THEIR CATEGORIES, ARE
ALWAYS REPRESENTED WITH A SET HEADER, IF A SET IS EMPTY OR A=
TOMIC, IT WILL BE REPRESENTED BY A SET HEADER ALONE., HOWEVER, IF
A SET IS A COMPUSITE SET THEN IT WILL BE REPRESENTED By A SET
HEADER TOGETHER WITH A LIST OF SET ELEMENTS., THERE ARE TWO WAYS
OF REPRESENTING A LIST OF SET ELEMENTS ¢ (1) LINKED=BLOCK REPRE=-
SENTATION AND (2) COLUMN REPRESENTATION, A SET wHOSE ELEMENTS ARE
REPRESENTED IN THE LINKED=BLOCK FORM IS SOMETIMES CALLED BLOCK
SET, A SET REPRESENTED IN COLUMN FORM IS SOMETIMES CALLED COLUMN
SET,

THE SET HEADER OF A DECLARED SET 1S A MEMORY WORD ASSIGNED BY
THE COMPILERs» WHICH IS LOCAL TO THE SUBPROGRAM WHERE IT HAD BEEN
DECLARED, DURING THE PROGKAM EXECUTION, THE LOCATION OF THIS
ASSIGNED MEMORY WORD (OR SET HEADER) BECOMES THE UNIQUE IDENTIFIER
FOR THE ASSOCIATED, DECLARED SET, THE CONTENTS OF THE SET HEADER
IDENTIFIES ITS ASSOCIATED SET AS ! EMPTY, ATOMIC, OR COMPOSITE,

FOR A COMPOSITE SET, THERE IS A LIST OF SET ELEMENTS ASSOCIATED
WITH ITS SET HEADER, THE LINKED~BLOCK REPRESENTATION CONSISTS OF
SINGLY LINKED 2—NORD BLOCKS WHICH CONTAIN THE SET ELEMENTS, THE
COLUMN REPRESENTATION CONSISTS OF THREE MAJOR COMPONENTS ¢ (1)
ASSIGNMENT OF A COLUMN POSITION IN THE UNIVERSAL SEQUENCE TO THIS
SETy (2) SETTING OF THE ASSIGNED COLUMN POSITION IN THE UNIVERSAL
ELEMENT TO INDICATE THE ELEMENT IS ALSO CONTAINED IN THIS SET, AND
(3) SUPPLEMENTARY INFQRMATION CONCERNING THIS SET (E.G, NO, OF
ELEMENTS, FIRST AND LAST ELEMENT, ETC,), IF A SET IS EMPTY OR
ATOMIC THEN IT 1S SUFFICIENT TO REPRESENT THE SET SOLELY By ITS
ASSOCIATED SET HEADER, THt REPRESENTATIONS OF THESE SETS ARE
GIVEN IN FIGURE 4, THE EMPTY SET 1S REPRESENTED By A SET HEADER
CONTAINING ALL 0'S, THE ATOMIC SET WITH THE ELEMENT WHOSE UNIVER=
SAL SEQUENCE NUMBER IS I, IS REPRESENTED BY A SET HEADER wHICH
CONTAINS THE NUMBER I IN ITS RIGHT HALF,

2o o o o ol e ok ok KK ok kg

EMPTY SET * 0 *
S I ETITLL ARSI ST E S

S kR Ak R o RO R K Rk g
ATOMIC SET : %x 0 *)¢ *
(ELEMENT 1) 3ok o ook o o K o ook R oK K o o ok K

FIGURE 4. EMPTY AND ATOMIC SET

"FOR A COMPOSITE SET, THE SET HEADER IS DIVIDED INTO TwO HALF=-
WORD FIELDS, THE LEFT HALF CONTAINS THE ADDRESS POINTER T0 THE
LIST OF SET ELEMENTS BELONGING TO THIS SET, WHILE THE RIGHT HALF
-CONTAINS 0'S, THE LIST OF SET ELEMENTS REPRESENTED IN
LINKED=-BLOCK FORM ARE ARRANGED IN A SINGLELY=LINKED LIST CONSI-
STING OF 2-WORD BLOCKS, EACH 2-WORD BLOCK IS SUBDIVIDED INTO 4
HALFWORD FIELDS. THE SECOND HALFWORD FIELD (OR THE RIGHT HALF OF
THE FIRST WORD) IS THE LINX FIELD wHICH CONTAINS ADDRESS POINTER
TO THE NEXT 2=WURD BLOCK (IF THERE IS ONE) OR IT CONTAINS 'S, IF
THIS BLOCK IS THE LAST ONE ON THE LINKED LIST, THE REMAINING
THREE FIELDS OF EACH BLOCKs CALLED ELEMENT FIELDS, CONTAIN SET
ELEMENTS, THE SET ELEMENTS ARE ARRANGED IN THE ORDER OF THEIR
UNIVERSAL SEQUENCE NUMBER, THE ELEMENTS WITH SMALLER UNIVERSAL
SEQUENCE NUMBERS ARE STORE! FIRST, THE SEQUENCE IN WHICH THE
ELEMENT FIELDS ARE UTILIZEY IS ¢ FIRST,THIRDy FOURTH (OR EQUIVA=~
LENTLY, LEFT HALF OF THE FIRST WORD, LEFT HALF OF THE SECOND WORD,
AND RIGHT HALF OF THE SECOND WORD), WHEN THE NUMBER OF ELEMENTS
IN A SET IS NOT DIVISIBLE MY THREE, THE LAST BLOCK WILL CONTAIN
UNUSED ELEMENT FIELD(S), THE UNUSED ELEMENT FIELDS ARE ZERO TO
DENOTE THEIR EMPTINESS, AN EXAMPLE OF A BLOCK SET IS SHOwWN IN
FIGURE 5.

3=9

ERERRRRKRKRRRERRERRR L

SET HEADER : * Al * 0 *
EIIT I T RS RIS IS

A0 2 o o o o o o o K ok
Al % 11 * A2 *

o o e o T N e B S o o

* I2 * 13 *
o 2ok ook o o o ol ok K K ok

e ok o o ok o oK o e o ol K ok o o ok e
A2 = Iy * A3 *
e mmncecnekenremeen=y
* 15 * 16 *
o o e e o o o oo g ol K Rk ok K e

e ke o o o o K ool o ol K ok o kK
AK x IN * 0 x
Arrnmemame oo e—---)
* 0 * 0 *
00 o ook o o o e o o o oo o Ak ok koK ok

FIGURE 5, SET IN BLOCK FORM CONTAINING ELEMENTS
I1 < I2 < ,,, <IN

IF THE LIST OF SET ELEMENTS IS REPRESENTED IN COLUMN FORM, THE
LOGATION POINTEU TO BY ITS SET HEADER IS A 2=-wORD BLOCK, CALLED
THE SET INFOR BLOCK, wHICH CONTAINS INFORMATION CONCERNING ITS SET
ELEMENTS, THE INFOR BLOCK IS SUBDIVIDED INTO 4 HALFWORD FIELDS 3
(1) COUNT, (2) COLUMN INDEX, (3) FIRST AND (4) LAST., THE COUNT
FIELD CONTAINS THE COMPLEMENT OF THE NUMBER OF TOTAL ELEMENTS IN
THE SET, THE COMPLEMENT OF THE COUNT IS NECESSARY FOR THE PURPOSE
OF DISTINGUISHING A COLUMN FORM REPRESENTATION FROM THE
LINKED=BLOCK FORM REPRESENTATION, THE COLUMN INDEX FIELD CONTAINS
AN INTEGER Ky 0 < K < 16+ WHICH INDICATES THE ASSIGNMENT OF COLUMN
K IN THE UNIVERSAL SEQUENCE TO THIS SET, THE RIGHTMOST COLUMN OF
THE LEFT HALF OF THE UNIVERSAL SEQUENCE IS DENOTED AS COLUMN 1,
WHILE THE LEFTMOST .COLUMN (OR SIGN BIT) IS DENOTED AS COLUMN 18
(NOTE: THE LEFTMOST THREE COLUMN POSITIONS ARE NOT USED FOR RE~
PRESENTING SETS), THE UNIVERSAL ELEMENT HAS ITS K,TH COLUMN SET
TO 1 IF AND ONLY IF IT ALSO BELONGS TO THE SET WHICH HAS COLUMN K
ASSIGNED TO IT, THE FIRST AND LAST FIELDS CONTAIN THE UNIVERSAL
SEQUENCE NUMBER OF THE FIRST AND LAST ELEMENY OF THE SET, RESPEC=-
TIVELY.

3=-10

FOR EACH COLUMN K (0<K<16) THERE ARE TwO INFORMATION wORDS,
C1(K) AND C2(K)» ASSOCIATEL WITH IT, THE ARRAYS C] AND C2 CONTAIN
INFORMATION FOR MANAGING THESE 15 COLUMNS, IF COLUMN K IS NOT
ASSIGNED TO ANY SET, THE RIGHT HALF OF C1(K) CONTAINS A COLUMN
NUMBER WHICH IS THE NEXT FREE (UNASSIGNED) COLUMN, OR IT CONTAINS
0'S TO INDICATE THAT THIS IS THE LAST FREE COLUMN, THIS Iss IN
FACT, A LINKED LIST OF AVAILABLE COLUMN SPACES, HOWEVER, IF CO=-
LUMN K IS CURRENTLY ASSIGNED TO A SET, THEN THESE TWO WORD CONTAIN
INFORMATIONS AS FOLLOWS ¢ (1) LEFT HALF OF Cl1(K) CONTAINS AN AD=-
DRESS POINTER TO THE *INFOR BLOCK®, (2) RIGHT HALF OF Ci(K)»
CALLED TIME FIELD» CONTAINS A GLOBAL REFERENCE COUNT VALUE WHICH
RANKS SETS BY THEIR LATEST USE, AND (3) C2(K) IS SUBDIVIDED INTO
SIX SIXTHWORD FIELDS, THE FIRST SIXTHWORD OF C2(K) IS THE USE=TAG
FIELD WHICH IS SET TO ONE WHENEVER THE SET IS USED IN THE CURRENT
OPERATION, THE SECOND SIXTHWORD FIELD IS THE PROPERTY=TAG FIELD
WHICH IS SET TO ONE IF THE SET IS REPRESENTING NODES(G)» ARCS(G),
OR DOMAIN(P), THE REMAINING 4 FIELDS OF C2(K) ARE NOT USED AND
ARE AVAILABLE FOUR FUTURE EXPANSION, AN EXAMPLE OF A COLUMN SET IS
SHOWN IN FIGURE 6.

3-11

LT T I P L T
SET HEADER « =A * 0 M
22T PR PP L T

o 0 o o o e o Sk o e K o
A x =N * J *
L T T L P
* FIRST = LAST *
o 2000 0 o K e o e KK o

ESIITI ISR PR L LS 3278 PN

Ci(J) =% =A « TIME *
Y L T L L PP

C2(J) == Ux Px * *
' 20 o o o e ok o o e o K K o o

".d...zl
TIPS AT T L S

UNIVERSAL SEWUENCE *

® e 0 DO

L 3R 3K 3 BE 2R BE AN J
* % % * N ®
LR K 3R K BE 3E BN J

FIGURE 6, SET IN COLUMN FORM

THE RESULTS UF SET OPERATIONS MUST BE STORED IN COLUMN FORM (IN
ORBER TO SPEED UP THE SET OPERATION), SINCE A TOTAL OF 15 COLUMN
SETS MAY EXIST IN THE SYSTEM AT ANY ONE GIVEN TIME, A MANAGEMENT
SCHEME IS REQUIRED TO TRANSFER SETS FROM COLUMN FORM TO BLOCK FORM
IN ORDER TO MAKE COLUMN SPACE AVAILABLE, TO PREVENT THE TRANSFER
OF A COLUMN ‘SET WHICH IS CURRENTLY BEING USED THE USE~-TAG FILED
ASSOCIATED WITH THIS COLUMN SET IS CHECKED, TO PREVENT THE TRANS=
FER OF THE SET OF NODES(G) OR ARCS(G) TO A BLOCK FORM (WHICH WOULD
PRODUCE A SECOND LINKED LIST COPY OF THIS SET WHICH ALREADY EXISTS
IN PROPERTY BLOCKS) THE PROPERTY=TAG FIELD ASSOCIATED WITH THIS
COLUMN SET IS CHECKED,

DURING THE PROGRAM EXECUTION, A GLOBAL COUNTER IS MAINTAINED
(FOR COLUMN SETS REFERENCES), WHENEVER ANY COLUMN SET (SAy WITH
COLUMN INDEX K) IS REFERENCED (E,G, DURING SET OPERATIONS) THE
GLOBAL COUNTER 1S INCREMENTED BY ONE AND 1TS UPDATED VALUE IS
STORED INTO THE RIGHT HALF OF C1(K) (THE TIME FIELD), IF A RE=-

3=12

QUEST FOR A COLUMN IS RECOGNIZED AND THERE IS NO FREE COLUMN AVAI=-
LABLE, THE COLUMN MANAGEMENT ROUTINE wILL SELECT ONE COLUMN SET
AND TRANSFER IT TO BLOCK FORM, THE COLUMN SET WITH MINIMUM VALUE
IN THE TIME FIELD AND WHOSE USE=TAG IS NOT SET TO ONE wILL BE
SELECTED, THE COLUMN NUMBER ASSOCIATED WITH THIS SELECTED SET
WILL THEN BE USED 7O SATISFY THE OUTSTANDING COLUMN REQUEST.

3¢2.3, STAQUES (LISTS)

THE STAQUE (OR LIST) IS ONE OF THE NEwW DATA STRUCTURES INTRO-
DUCED IN THE FGRAAL, FROM THE STORAGE STRUCTURE POINT OF VvIEW
THERE ARE THREE DIFFERENT CATEGORIES OF STAQUES : (1) SINGLE WORD
=LOGICALs» INTEGER AND REAL TYPES OF STAQUE ¢ (2) DOUBLE WORD ==
DOUBLE PRECISION AND COMPLEX TYPES OF STAQUE. AND (3) VARIABLE
SIZE -- SET TYPEt OF STAQUE., STAQUES, REGARDLESS OF THEIR DATA
TYPES, ARE ALWAYS REPRESENTED BY A STAQUE HEADER AND A CIRCULAR
DOUBLY«LINKED LLIST OF ITS STAQUE ELEMENTS,

THE STAQUE HEADER OF A VECLARED STAQUE IS A MEMORY WORD AS-
SIGNED BY THE CUMPILERs» WHICH IS LOCAL TO THE SUBPROGRAM WHERE IT
HAD BEEN DECLARED, DURING THE PROGRAM EXECUTION, THE ADDRESS OF
THIS MEMORY WORU BECOMES THE UNIQUE IDENTIFIER OF THE ASSOCIATED
STAQUE, THE STAQUE HEADER CONTAINS TwO HALFWORD FIELDS. THE LEFT
HALF OF THE STAQUE HEADER CONTAINS THE ADDRESS POINTER TO THE
LINKED LIST OF 1TS STAQUE ELEMENTS, THE RIGHT HALF OF THE HEADER
IS THE TYPE FIELD WHICH CONTAINS THE DATA TYPE IDENTIFIER OF ITS
ASSOCIATED STAQUE,

THE STAQUE ELEMENTS ARE ARRANGED IN THE FORM OF A CIRCULAR
DOUBLY=LINKED LIST CONSISTING OF 2-WORD BLOCKS, THE FIRST WORD OF
THE 2-WORD BLOCK IS DIVIDEU INTO TWO HALFWORD LINK FIELDS, THE
LEFT HALF IS THE BACKWARD LINK FIELD POINTING TO THE PREVIQUS
BLOCK AND THE RIGHT HALF IS THE FORWARD LINK FIELD POINTING TO THE
NEXY BLOCK, THE FIRST AND LAST BLOCKS OF THE STAQUE ELEMENT LIST
ARE LINKED TOGETHER CIRCULARLY (I,E, THE BACKWARD POINTER OF THE
FIRST POINTS TO THE LAST AND THE FORWARD POINTER OF THE LAST
POINTS TO THE FIRST), THE SECOND WORD OF THE 2«WORD BLOCK CON=
TAINS DIFFERENT INFORMATION DEPENDING ON THE DATA TYPE OF ITS
STAQUE, FOR THE DATA TYPES IN THE SINGLE WORD CATEGORYs IT CON=-
TAINS THE DATA VALUE OF THE ELEMENT, FOR THE SET DATA TyPe, IT
CONTAINS THE SET HEADER, FOR THE DATA TYPES IN THE DOUBLE WORD
CATEGORY, IT CONTAINS THE ADDRESS POINTER TO ANOTHER 2<-WORD BLOCK
WHICH, IN TURN, CONTAINS THE DATA VALUES OF THE ELEMENT, THE
REPRESENTATION OF DIFFERENY CATEGORIES OF THE STAQUES ARE GIVEN IN
FIGURE 7,

LOGICAL, INTEGER,
LIST HEADER K1
ARk RRkE kKRR ke
* K1 *x TYPEx x KN x K2 =*
2 3k ofe o oK ok Mok ok ok KK R o o o N o oo a0 2

SET TYPE OF LISTS:

LIST HEADER

A 2 e o e o o ol o ok K
* K1 *x TYPE=*
2 ok o ok e ol ok ok ok kK

* VALUE *
AR ok Kk R NOK

K1
0 ok o0 o ol ool o o ok R
* KN x K2 x

| Y T ST T

*SET HEADER =x
o o oo o K

REAL TYPES OF LISTS:

K2
ERERERRERRRRR
* K1 = K3 »

---—------*

* VALUE *
ARk Rk EREREK

K2

koo kR

x Ki{ % K3 *»

P T T Y T % TR TR)

*SET HEADER x
P ITITIIE I .

KN

gk Wk ko kg R
* KN=1% K1 =
Y, S T}
x VALUE *
ok R o e o o Kk

KN
g K e
* KN=3x K31 *

b--------—*

*SET HEADER =
S II I I I T

THE SET HEAUERS ARE SIMILAR TO THE SET HEADERS
OF THE NORMAL SETS EXCEPT NO COLUMN FORM IS USED,

DOUBLE PRECISION AND COMPLEX TYPES OF LISTS!

LIST HEADER
ok ok oo ok o o ok K K

* K1 * TYPE=x

Rk kg kkkkokokk

FIGURE 7,

K1

o 20 ol age 2 o o o e ok Wk
®* KN x K2 *
W on = o o B o e K
* 0 x I1 =»
Wk ko Kk kk ¥k

11

2 o 3 o o g o o ok RO
* VALUE 1 *
W o > o o W o o o R
* VALUE -2 *
20 2k 3 o ok 3o 0ok o ok kK

K2

o ok o ok o ok 0ok ok ok ok
x K1 * K3 x%
Kmemarw Kok
*x 0 * I2 x
o0 g o o ol o o ROk e

12
o o 2o oo o o M K o K
* VALUE 1

Eommanewwonwk

* VALUE 2 *
xRk kR Kk k

REPRESENTATIONS OF STAQUES

KN

o o o 0 o e R o
* KNe1x K1 =*
- o 2 0 o g e K
* 0 x IN x
oo o e
IN

ook o oK o e K

* VALUE 1 . x

Ko o e w kX

* VALUE 2 *
ERERRKRRK R YK

3=-13

3=14

3.2,4, PROPERTIES

THE PROPERTY IS ANOTHER NEW DATA STRUCTURE INTRODUCED IN THE
FGRAAL SYSTEM, FROM THE STORAGE STRUCTURE POINT OF VIEW THERE ARE
THREE DIFFERENY CATEGORIES OF PROPERTIES (AS IT IS IN THE STAQUE):
(1) SINGLE WORD == LOGICAL:» INTEGER AND REAL TYPES OF PROPERTY,
(2) DOUBLE WORD == DOUBLE PRECISION AND COMPLEX TYPES OF PROPERTY,
AND (3) VARIABLE SIZE -= SFT TYPE OF PROPERTY, PROPERTIES, REGAR-
DLESS OF THEIR DATA TYPES, ARE ALWAYS REPRESENTED BY A PROPERTY
HEADER+» PROPERTY INFOR BLOCK AND PROPERTY VALUE BLOCK(S),

THE PROPERTY HEADER OF A DECLARED PROPERTY IS A MEMORY wORD
ASSIGNED BY THE COMPILER (AS IT IS WITH THE SET HEADER), DURING
THE PROGRAM EXECUTION, THE ABSOLUTE ADDRESS OF THIS ASSIGNED ME-
MORY WORD BECOMES THE UNIQUE IDENTIFIER OF THE ASSOCIATED PROPER-
TY, THE PROPERTY HEADER CONTAINS TWO HALFWORD FIELDS, THE RIGHT
HALF OF THE PROPERTY HEADER IS THE TYPE FIELD wWHICH CONTAINS THE
DATA TYPE IDENTIFIER OF ITS ASSOCIATED PROPERTY, THE LEFT HALF OF
THE PROPERTY HEADER IS THE POINTER FIELD WHICH CONTAINS THE COMP-
LEMENT OF THE ABSOLUTE ADDRESS OF A 2=-WORD BLOCK CALLED PROPERTY
INFOR BLOCK, THE COMPLEMENT OF THE ADDRESS IS USED IN ORDER TO
DISTINQUISH A PROPERTY HEAUER FROM A SET HEADER, THE PROPERTY
INFOR BLOCK POINTED TO BY THE PROPERTY HEADER HAS THE SAME FORMAT
AS THAT OF A COLUMN SET INFOR BLOCK (SEE SETS), EXECEPT THAT THE
COLUMN INDEX FIELD IS ZERO UNLESS THE DOMAIN SET IS REPRESENTED BY
A COLUMN SET,

THE ASSIGNMENT OF PROPERTIES TO AN ATOMIC SET CAN BE REALIZED
THROUGH THE EXECUTION OF PROPERTY ASSIGNMENT OR CONDITIONAL
'*CREATE* STATEMENTS, THE PROPERTY VALUE(S) THUS ASSIGNED TO AN
(UNIVERSAL) ELEMENT IS STORED IN A PROPERTY BLOCK WHICH IS LINKED
INTO THE PROPERTY=RING ASSOCIATED WITH THIS ELEMENT (SEE UNIVERSAL
SEQUENCE AND PROPERTY BLOCKS), THE PROPERTY BLOCK CONSISTS OF TwO
CONTIGUOUS MEMORY WORDS, THE FIRST MEMORY WORD IS SUBDIVIDED INTO
TWO HALFWORD FIELDS, THE LEFT HALF IS THE PROPERTY IDENTIFICATION
FIELD WHICH CONTAINS THE UNIQUE IDENTIFIER, THE ADDRESS OF THE
PROPERTY HEADER» OF THE PROPERTY WITH WHICH THIS BLOCK IS ASSOCIA-
TED, THE RIGHT HALF OF THE FIRST WORD IS THE LINK FIELD wHICH IS
USED IN THE LINKAGE OF THE PROPERTY=RING (SEE UNIVERSAL SEQUENCE
AND PROPERTY BLUCK), THE SECOND wORD OF THE PROPERTY BLOCK CON=-
TAINS DIFFERENT INFORMATION DEPENDING ON THE DATA TYPE OF THE
PROPERTY (THIS IS IN THE SAME FORMAT AS THAT OF THE STAQUE). FOR
THE DATA TYPES IN THE SINGLE WORD CATEGORY, IT CONTAINS THE DATA
VALUE OF THE PRUPERTY, FOR THE SET DATA TYPE, IT CONTAINS THE SET
HEADER, FOR THt DATA TYPES IN THE DOUBLE WORD CATEGORYs IT CON=
TAINS THE ADDRESS POINTER TO ANOTHER 2=-WORD BLOCK WHICH, IN TURN,
CONTAINS THE DATA VALUES OF THE PROPERTY, THE REPRESENTATIONS OF
PROPERTIES ARE GIVEN IN FIGURE 8, :

L(P)=PROP,HEADER
AR REREARRBERKR
* «=A =*x= TYPE =»
ook ok R ok K

LOGICAL, INTEGER AND
REAL TYPES

SEY TYPES

(SET IN BLOCK FORM)

DOUBLE PRECISION AND
COMPLEX TYPES

3-15

A=ZINFORMATION BLOCK
RRREERRRRERRRRY
-N * 0 *
E TR = PR Y TS
* FIRST* LAST x
Tk ol ok o ok ok ok K K Kok

PROP, BLOCKS OF ELEMENTS
T ITITITTII YIS EL RS 3
* L(P) * LINK *

B o s K g P D v

* VALUE *
o0 o oo o R o o o o R

30K o KK A R Rk K R
* L(P) * LINK *

P T T T3 St L L T LT T

x SET HEADER *
AREEEREEERERR R R AR

T TIsTLIIIT e 2
Al =« J1 *® A2 *

W om0 40 0 T o o T O W > wm o @

* J2 * J3 *
o 30 200 200 300 2 o KR e R R Rk ok kR

[] []] Y L]

20 3 3 ok 3 o o 200 o ok o ok O o R o ok ok o
* JK=2 % 0 *
T ToR PReRpsr Pt et L Y g
* JKe] * JK *
t 3323333333222 2232

Ao o kK R ok K
= L(P) * LINK *

B o E o 0 o0 = oo = @ T gy 9 W 0 @ 0 wo e 0
* 0 - A *
W AR ok ok

P33 2ITIITETPTE S 2 238 30
A x VALUE 1 x
W o T o g S O W T o W W S P
* VALUE 2 *
3223222 R 202 L]

FIGURE 8, REPRESENTATION OF PROPERTY BLOCKS,

3=-16

3.2,5. GRAPH STRUCTURES

GRAPH STRUCTURES ARE HANDLED SIMILARLY TO PROPERTIES. WITH EACH
DECLARED GRAPH, A GRAPH HEADER CONSISTING OF 2 OR 3 WORDS IS AS=-
SIGNED BY THE CUMPILER, THE FIRST OF THESE WORDS IS THE GENERAL
HEADER OF THE GRAPH, THE SHCOND AND THIRD WORDS ARE THE HEADERS
FOR THE NODES AND ARCS OF THE GRAPH, RESPECTIVELY, WHEN AN ELEMENT
IS ASSIGNED TO THE GRAPH AS A NODE THEN IT HAS A PROPERTY BLOCK
WHICH CONTAINS THE ADDRESS OF THE NODE HEADER OF THE GRAPH AS
PROPERTY IDENTIFIER, IF AN ELEMENT IS AN ARC THEN IT USES THE
ADDRESS OF THE ARC HEADER OF THE GRAPH, AN ELEMENT MAY NOT BE
ASSIGNED TO THE SAME GRAPH AS BOTH NODE AND ARC,

2 2 o 28 50 o 0 o e o 02 e ok o o ol o e ok o o ok o e ok o R OK K o o

L(G) * =0 * Ti x T2 % 3 «x
W o O o 0 5 w2 T s K o O o o e T D 0w o i 8

L(G)+1 * =NA * 1 =x

L(G)+2 x =AA * 2 =x
20 2o 00 0o o o 200 o o O o oo e e o o o ol R oo ol K O o

NA AA

o o e e o ol e ol o o ok K ok 212323232 £ 333222

* - N * 0 *

Rommomwo koo oo ®ew)

* FIRST« LAST x
oo oo o o o K

*x =« M x 0 %

Kmoomwem e ol omwem ek

* FIRSTx LAST x
o o0 o o O o e o ol oK

T1L =0 FOR NODE GRAPH
1 FOR NODE/ARC GRAPH
N = NUMBER OF NODES
M < NUMBER OF ARCS
T2 =0 FOR UNDIRECTED GRAPH

1 FOR DIRECTED GRAPH

THE INTEGERS 3,1 AND 2 IN L(G)sL(G)+}1 AND
L(G)+2, RESPECTIVELY, ARE USED AS
IDENTIFIERS,

FIGURE 9, GRAPH HEADER WITH NODE AND ARC INFORMATION BLOCKS

3=17

THE PROPERTY BLOCKS ASSIGNED TO THE ELEMENTS AS NODES OR ARCS
OF THE GRAPH CONSIST OF ONE BLOCK (2 WORDS). THE LEFT HALF OF
THE FIRST WORD CONTAINS THFE PROPERTY IDENTIFIER, I,E, THE ADDRESS
OF THE NODE OR ARC HEADER, THE RIGHT HALF OF THE FIRST wORD CON-
TAINS THE LINK TO THE NEXT PROPERTY BLOCK, THE SECOND WORD OF THE
PROPERTY BLOCK CONTAINS THE STRUCTURAL INFORMATION, THE STRUC=-
TURAL INFORMATION OF THE GRAPH IS STORED BY ABSOLUTE ADDRESS
LINKS, FOR EACH NODE OF A GRAPH, THE SETS CONSISTING OF THE NEGA-
TIVE COBOUNDARY AND POSITIVE COBOUNDARY OF THE NODE IS REPRESENTED
By A LINK STRUCTURE, THE LEFT HALF OF THE SECOND wORD OF THE
PROPERTY BLOCK 1S USED TO LINK THE NEGATIVE, THE RIGHT HALF WORD
IS USED TO LINK THE POSITIVE COBOUNDARY SETS. THE LINKAGE IS CIR=-
CULAR, I,E., THE LAST ARC IS LINKED BACK YO THE NODE. IF A NODE HAS
EMPTY COBOUNDARY (POSITIVE OR NEGATIVE) THEN IT IS LINKED 70 IT-
SELF, UNDIRECTEU GRAPHS USE THE DIRECTION USED IN THE ASSIGN STA-
TEMENT, NODE GRAPHS USE INUVEPENDENT 2-WORD BLOCKS FOR ARCS, I.E,
THESE BLOCKS ARE NOT LINKED TO ELEMENTS IN THE UNIVERSAL SEQUENCE
AS PROPERTY BLOCKS,

PROP, BLOCKS OF ELEMENTS
Ko Jls ceer JK
MRk Rk o KRR
NODE K B = L(G)+1 =x LINK *
oo an wsem om o o on 1K o 00 W @ v o oo o
* AN1 * AP1 *
AR ERRRE RN KRR KRR

oo o oo o o o o R R oK
ARC J1 AN1 % L(G)+2 = LINK *
Y e LT LT e
* AN2 * voe *
R Rk g K Rk

MEEEEERER R R gkE Rk kg kg
ARC JK ANK * L(BG)+2 x LINK *
L DT PR P
* B * 20, *
KRERERERAREERKEERRKKK

FIGURE 10, GRAPH STRUCTURE LINKAGE,
THE NEGATIVE COBOUNDARY OF NODE K,
L(G) = LOCATION OF THE GRAPH HEADER

3=-18

3¢2,6, TYPE ASSIGNMENTS,

THE HEADERS OF LISTS, PROPERTIES AND GRAPHS CONTAIN A FIELD
CONSISTING OF A TYPE CODE, THIS TYPE CODE IS AN INTEGER AS FOL=-
LOwWS:

SET
NODES

ARCS

GRAPH .

LOGICAL

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

NN E UN=O

3.2,7. STRUCTURE OF HEAU'ERS

3-19

THE FOLLOWING TABLE SUMMARIZES THE CONTENTS OF THE HEADERS:

ELEMENT
VALID

REMOVED
SET

EMPTY

ATOMIC

BLOCK

COL.UMN

LISTY
SET
LOGICAL
INTEGER
REAL
DBL .PR,
COMPLEX

PROPERTY

' SET
LOGICAL
INTEGER
REAL
DBL .PR,
COMPLEX

GRAPH
GRAPH
NODES
ARCS

INFO ,BLOCK
FIRST WORD

SECOND w,

NOTES:
X

Y

R T e P P e TSI I I I It
* 11111111%112222222222333333»
%«012345678901234567x890123456789012345%
L3RI i P Ll P T e T L T P e T
*x COLUMN SET BITS =» ADDRESS OF PROP, *

* * BLOCK OR COMPL, =
* * OF THE ELEMENT *
*100000000000000000% : *
‘---——-----—’----‘-*-—-—---------—----*
* ZERO * ZERO *
* ZERO * ELEMENT *
%« ADDRESS OF THE % 2ERO *
* FIRST BLOCK * *
* ADDRESS OF THE * ZERO *
* INFO, BLOCK * *
S 0y D 0 o R e B i 0 O 2 B o o i w B
* ADDRESS * 0 *
* OF * 4 *
* THE * 5 %
* FIRST * 6 *
* ELEMENT * 7 *
* BLOCK * 8 *
W e o O > O e e e N P o e U S gy D D = g ae W W I
*=ADDRESS * 0 *
* OF THE * 4 *
* PROPERTY * 5 *
* INFORMATION * 6 *
* BLOCK * 7 *
* * 8 *
A D g S e TP g P WD TP 05 40y 9 WK T w90 P i G oy s W I
* -0 * . X Y 3 =
*=ADDRESS OF INFO, =x 1 *
* BLOCK * 2 *
b L U T P T DL T T P "Ry LTS LY T PR ey
*x=NO, OF ELEMENTS » 2ERO OR COLUMN «x
* * NUMBER IF IN SETs
* FIRST ELEMENT * LAST ELEMENT *

AEEERRRAERAR R R AR R R R KRR R E R Rk

= ZERO OR ONE FOR NOUE OR NODE/ARC GRAPH, RESPECTIVELY,
= ZERO OR ONE FOR UNUIRECTED OR DIRECTED GRAPH, RESP,
= (MINUS) INDICATES COMPLEMENT IN THE PROPER HALF wORD,

3=20
3.3, REPRESENTATION OF A CONTRACTED GRAPH

CONTRACTION OF A SUBGRAPH CORRESPONDING TO THE GIVEN SET OF

NODES 1S ACCOMPLISHED IN TWO STEPS:
STEP 1,

A NEW NODE, Ny IS CREATED WHICH WILL CORRESPOND TO THE CONTRAC=-
TED SUBGRAPH, ALL NODES INVOLVED IN THE CONTRACTIONs, INCLUDING
THOSE NODES WHICH WERE PARY OF PREVIOUS CONTRACTIONs, ARE ASSIGNED
NEw PROPERTY BLUCKS, CALL THESE NODES N1,N2ss,,sNM, THE OLD PRO=-
PERTY BLOCKS ARE LINKED TO THE NEW BLOCKS BY STORING THEIR NEGA=
TIVE ADDRESSES IN THE LEFT HALVES OF THE FIRST WORD OF THE NEwW
PROPERTY BLOCKS:

NEW PROPERTY BLOCK OF NI

ST RS t 2123333 3T R pEERkE
2 3 * "A x o k.3 x *
-k - o Ko™ ww ke wowlk t T T L
x . = * * * * *
YT I 2k W ok ok ok kg REK

A XxTagppkeak
* * * OLD PROPERTY BLOCK OF NI
¥orweten=ek (CONTENTS UNCHANGED)
* x *
33 PPy

STEP 2.

THE ARCS IN EACH ORIGINAL POSITIVE AND NEGATIVE COBOUNDARY
CYCLE ARE REARRANGED SO THAT THE ARCS INTERNAL TO THE CONTRACTED
SUBGRAPH PRECEDE THE ARCS CONNECTING THE SUBGRAPH WITH THE RESY OF
THE GRAPH, THE LINKAGES IN THE SECOND WORD OF THE NEWLY CREATED
PROPERTY BLOCKSs ASSOCIATE!" WITH THE NODES N+N1,,.,»NM ARE DEFINED
AS FOLLOWS:

1, THE LEFT FIELD OF THE SECOND WORD (NCOB POINTER) OF N POINTS
TO THE FIRST NON=INTERNAL ARC OF THE NCOB OF Ni, IF NO
NON«INTERNAL ARCS EXIST, THEN IT POINTS YO N1,

2, FOR NI (1<I<Me1), THE LEFT FIELD OF THE SECOND WORD OF NI
POINTS TO THE FIRST NON-INTERNAL ARC OF THE NCOB OF NI+1, IF NO
NON=INTERNAL ARCS EXIST, THEN IT POINTS TO NI+i.

3, THE LEFT HALF OF THE SECOND WORD OF NM PQOINTS TO N,

A CORRESPONDING LINKAGE STRUCTURE IS DEFINED FOR PCOB OF N
USING THE RIGHT FIELDS OF THE SECOND WORD OF THE NODES,

3=21
THE LINKAGE STRUCTURE IS ILLUSTRATED BELOW FOR A 2-NODE CONTRA=-

CTION:

A2
Ay

AS | A10

GIVES THE FOLLOWING LINKAGE (ONLY THE SECOND WORDS OF THE BLOCKS
ARE SHOWN):

N
* * *
R Lt DTS
x Al * Abh =
P TT IS 2
Ny Ng

CREATED NEw NODE

* d *

et PO T
%*x A7 x* A9 x
kR Rk kg RRE

* * *

x A1 *x AD =

NEW PROP, BLOCK

OLD PROP,BLOCK

» * *
Ko wmew
*« N =N =
RRERRERE LS

L * *

ey TP T3]

x A6 * A9 »

113133322 2]
Al A3=Ag
] *® * * * *
Fopgomekoaoek krwonfeowoal
* A2 x * * * A4 =
23T TTES L *‘*******‘%i
A2 A4
* * * % * *
2 o 2 > K PO T T S TR T
* N1 =% * * *x A5 %
EhEkkERRRER SRR Kk g Rk R
AdS
* * *
Lot TR T]
* * Nl =
REREERA AR RS

T TTIIT LI I T

REERERERE %R
A6=A3 A9
* .] * » *
Yooveltoneek LT T LY T
* A7 » * * ®x A1Q*
SRR R ENKE ok o Kk ok ok ok
A7 A0
* % * * * *
Aoowelonee fonasgeonoel
% A8 % % * % N2 %
3333 T2 TS XX gER XA K
A8
L % *
L Tt 1L
* N2 » *

4, EXAMPLE OF A GRAPH STRUCTURE

IN THIS EXAMPLE, IT IS ASSUMED THAT 10 ELEMENTS WERE CREATED.
THE ELEMENTS HAVE AN ALPHANUMERIC PROPERTY WITH '300' AS THE PRO-
PERTY IDENTIFIER (ADDRESS OF THE PROPERTY HEADER), FURTHERMORE THE
ELEMENTS WERE ASSIGNED TO A GRAPH AS NODES AND ARCS SUCH THAT THE
GRAPH IDENTIFIER IS t500*, THUS '501' AND *'502' CORRESPONDS TO THE
NODE AND ARC IDENTIFIER, RESPECTIVELY, THE GRAPH HAS THE FOLLOWING

STRUCTURE?

THE FOLLOWING FIGURE GIVES THE STORAGE STRUCTURE OF THE ABOVE

EXAMPLE

D(1) 7998 5998

0 o e o e o 0 o oK o o o oK koK o o a0 o e o oo o o o o o T2 FTY 3" 21T

* * 7998 x * 30U % 5998 x. *x 501 * «~1 =«

ok o ok o ok K ok R K ok ok KKK LI DL LT Y] X o o 0 e o e o e o
* tAY % * 5988 x 5998 x
133323223233 1% 3 ok o KR Kk ok Kk &

D(2) 7996 . 5996

ok ook gk ok o kR kK RER R R KRR R 3T I 2T TS S]

* *x 7996 * * 300 %= 5996 x * 6501 x =2 =

T Tt T L. FTT T TR L T S L DT T
* B % * 5986 * 5988 »
33222 TE 3 TP 121331

D(3) 7994 5994

oo ok o oK kK ok oo KOk K o0 o 2 o o o o o RRKKKRERERE KRR

* * 7994 * * 300 % 5994 x * 501 % =3 x

Aok o o o ol K ok ok o Ok K W omar e e ws i w o o oo R L Tt Y 3 TR TN

* 'Ce *
REREKTRRRRKERER

* 59082 x 5984 =
PP T T P YT

D(4)
AE AR RREEEREEEK

* * 7992 *
Ao e i o R ROk

D(s5)
e T 11 LT L L

*. x 7990 *
2o o o o 0 o o e K K

D(e)

'TT3331333 3322 2
* * 7988 =
ARk RkER g AR RAREKE

D(?7)
ek RRRk KR RE T EE

* *x 7986 %
AR RARERER KRR K

0¢(8}
T T 1 I LT T

* * 7984 *
ook ok ok K ok ok X kK

D(9)
YT I T T

% * 7982 *
EERERREEERRARES

D(10)
ERRRBREEREREKE

* * 7980 *
PSS T T T T2 2

7992
EERRRTRREERERKE

* 300 % 5992 x

oo o o on " e K o on oo o0 on v
% D *
AERERTRRREREREEK

7990
AR kRt kg kR pRkkk

* 300 % 5990 »
* 'EY *
200 o R WK g o o ok R ok

7988

AR KRR RE RN R
* 300 x 5988 x
e o v o o v o o
* tve *
Ao o o W g e R

7986
FTt1i I I T YIETE
% 300 % 5986 =

Avomvcavaeloeesaef
* rxe *
AEREREEEE R KR KKK

7984
T TI eI I LI

x 300 » 5984 x

A e o o W o Y v 0 o
* rye *
ARRERER IR RRR AR

7982
EEERRIAERERBRRR

* 300 * 5982 =»

‘--—o‘-‘--a—--*
* A *
ARRRREEAAEREREE

7980
Tt P T LTy T

* 300 % 5980 =

L 3 twe L
AEEE R R ok kR Rk

5992
TPt T I PEL PR 1

* 501 =« -} *
B an gn 98 o 02 1K a0 a0 g K
x 5984 x 5986 =*
([2TT 22322322333 3

5990
e T I TITITIL

x 601 % =5 «x
aswwenfaawagwek
* 5990 % 5980 =*
ok e a0 o o o ok kR K

5988

AR ER KRR EREEKE
x 502 ® =~ *
L TR Y T R T T
* 5998 * 5982 =*
ok e K R o R

5986

ok Rk ok Rk ok ok R
2 502 x =7 =
| PURIENESPRSIppS, SP
x 5996 % 5992 =
kg SRk kEpkkk

5984

kol gk
* 502 *x =8 =
Romwreowfaomeoses
* 5980 x 5994 =
I T332 3123333323

5982
SRS RRAEEEEER

* 502 x =9 =%
Foaneomaefomwsees
® 5994 * 5996 *
AR R RREEERE R

5980
EARAEERRRERERE

*« 502 = =10 x
Loamomwoafawemewe g
* 5992 x 5990 =
P P TI T T

4=2

4=3

ASSUMING THE GRAPH IS CONTRACTED, SUCH THAT THE NODES 8, C AND

s

G

D WERE CONTRACTED INTO A NEW NODE WITH ALPHANUMERIC PROPERTY
'8CD* e

THE CHANGED STORAGE STRUCTURE IS AS FOLLOWS!

0(1)

' TTIIIT RIS 20
* % 7998 =*
ok ok ok kR ok ok ok Wk

D(2)

T T IT Iy I
* % 7996 *
wkok o Rk kR KK

D(3)
e T LIt L L

* *x 7994 *
333213113323 223

7998 .

SRRV ERRERE KRR
x 300 x 5998 =
rrmcwtakesewansk
* tAY *
AERREEREREREERE

7996 |
RN gk gk kW

* 300 x 5996 =»

= oman K o e oo ow i
* g %
ok 1 o o O ok o o ok ok o K

7994 :

AR TRk g kk®
* 300 *x 5994 «x
-------nno-oﬁ
* 'Ce *
(3332323232228

5998

o ot o o K o O g ok
* 501 x =) «x
Voo wmmiloswwe oK
* 5988 x 5998 =
e T I T TITII L,

5996
ERSAERERRR KR K&

*=5076 % =2 %
| e TR L PR TS L R
* §994% x 5994 «
0o g 0 o0 oo o g K

5976
e R R KRR RN

* 501 x «2 =
W o - - g o
* 5986 x 5982 «
kR Rk kR KRk

5994

kKRB REERRKEE
2=5974 % =3 %
Aeworananfacaesek
* 5980 = 5992 x»
ot e o 20 00 o o e o ok T o K o K

5974

W o gl o ok o o ok ok
x 501 % =3 =%
Romntoekeoamare ik
* 5982 x 5984 =*
T 331232832 22 3

Di(y)
AR RRRRREKRRERE

x * 7992 *
3T I IIITI R 2

D(s)

ook o o Rk K K
x * 7990 x
Ao R ko K kK

D(&)
I LIt T e s

* * 7988 *
A o o o oo o KK

D7)
EITIITEL LI L

* *x 7986 x
2T T LS 2

D(a)
IS YT I T I L

% x 7984 x
Ak o o oo R R K

D(9)
T LRI T

* x 7982 %
ok o o o K o o kK

7992

EERERERERRRREES
* 300 x 5992 x
P T L Ty e et
* D *
AERE TR KRRk RR K

7990
RN R R

+ 300 % 5990
L T T T Y APy
* 'E *
o020 o R 0 g ok o

7988

200k o oo Y o ok o o ok o o
* 300 % 5988 x
R amwm Koo oo
* rye *
2 26 o0 200 o 300 o o e ot o ok

7986
RERRERE KRR KK

* 300 *x 5986 =*
W enwm e e K w o o o R
g *Xe *
T

7984
AP REETR KR RKE KR

* 300 % 5984 »

Kerovereafoacoemew
* vy *
AERERRRERR KRR

7982
ERRRKPRE R KRR KR

x 300 = 5982 »

Aemeoorefocmeos)
*x 2 *
o 000 o o o o o o ok kK

5992
ERRERRERgRKRE KX

*=5972 * =4 =x

| PR P

* 5978 x 5978 x
TSI I T

5972

R R KK

* 501 x =4 =%
t L 3 T s Y
* 5984 * 5986 *
T T LI T TI I

5990
o ok o 200 2 o 200k o e e o e ok o

% 501 % «5 %
L TET L LT T e e
* 5990 *x 5980 =»
W R o g o g ok

5988
Rk ok kR
* 502 = =g =

% 5998 » 5982 x

LTI I I T e

5986
RIS LT TR T L

* 502 x «7 =
L JNPSY " TRY 3T e
* 59096 x 5992 x
133233 TTITIIS

5984
RAKEBRER gk E g E R

* 502 *x =8 x
P L T2 1 T e
* 5980 % 5994 x
o 2k e ok 2 2 300 ok e o o K ok K

5982
AEERBRKR AR RKR X

* 502 * =9 x
W o o 0 o - *
* 5994 2 5996 x
ol e e 2o e o o g o ok ok

D(10)
R EgREREERREEE

* * 7980 =
T TTT T L T

D(11)

AR ERREERRREOKE
* *x 7978 %
TSI ET IS IS 2 L L 3

7980

RERBEER R ERRER KK
%= 300 = S§980 =
krocowrafneneank
* 'We t
Ak e W o g K ok kR

7978

LTI T YT 23]
* 300 x 5978 =x
PP LY T L e
* ‘BCDY *
AR RRT KRk kKKK

5980

REERR RNk Kk g pkkR
* 502 » <10 %
Wt @ o = e o
* 5992 % 5990 *
e T Y T I TI L,

5978

A e o o R o o g
* 501 2 =311 =
Aoworwmonmame i
* 5996 * 5388 =*
EREREEEKKKERER R

S, THE FGRAAL COMPILER

THE FGRAAL COMPILER TRANSLATES FGRAAL SOURCE PROGRAMS INTO OBJECT
CODE, TO SIMPLIFY ITS USEs IT ACCEPTS THE SAME INPUT (SYMBOLIC
ELEMENTS OR CARUS), PRODUCES THE SAME OUTPUT (RELOCATABLE BINARY
ELEMENTS) AND IS CALLED IN A SIMILAR WAY AS ALL LANGUAGE PROCES-
SORS ON THE UNIVAC 1108 UNUER EXEC 8., THE FOLLOWING SECTIONS
DESCRIBE THE UNIVERSITY OF MARYLAND RALPH COMPILER, AND THE MODI-
FICATIONS NECESSARY TO EXTEND IT TO FGRAAL,

FGRAAL IS IMBEDDED INTO FORTRANs AND MOST OF THE SYNTACTIC
RULES OF FORTRAN APPLY ALSO TO THE EXTENSION, THE STATEMENTS MUST
BE ANALYZED FAIRLY THOROUGHLY TO DETERMINE THEIR NATURE. FOR
INSTANCE, THE EXPRESSION *'A(I)* CAN BE A FORTRAN FUNCTION CALL, A
REFERENCE TO A SUBSCRIPTED FORTRAN VARIABLEs OR A REFERENCE TO A
PROPERTY IN FGRAAL, DEPENDTNG ONLY ON THE WAY IN WHICH 'A* AND 'I°*
ARE DECLARED, ANY OF THESF CAN OCCUR IN A FORTRAN EXPRESSION,
SIMILARLY, THE STATEMENT *S=T* MUST BE TRANSLATED DIFFERENTLY WHEN
'St AND 'T' ARE SETS OR LISTS THAN WHEN THEY ARE NORMAL FORTRAN
VARIABLES,

FOR THIS REASON, AND BECAUSE THE UNIVERSITY OF MARYLAND RALPH
COMPILER WAS READILY AVAILABLE AND COULD BE MODIFIED EASILY TO
ACCEPT THE NEw FEATURES, WF CHOSE TO MODIFY IT FOR OUR PURPOSE,

WRITING A PREPROCESSOR INSTEAD, WHICH WOULD TRANSLATE FGRAAL
INTO FORTRAN (WiTH APPROPRTATE SUBROUTINE CALLS SUBSTITUTED FOR
FGRAAL CONSTRUCTS) WOULD HAVE REQUIRED A VERY THOROQUGH ANALYSIS OF
THE PROGRAM, DUPLICATING MUCH OF THE WORK OF A COMPILER,

THE OTHER EXTREME,» WRITING A COMPILER FROM SCRATCH, WOULD
HAVE HAD THE ADVANTAGE OF HEING ABLE TO CONTROL THE METHODS OF
COMPILATION MORE COMPLETELY, BUT THE AMOUNT OF WORK INVOLVED WOULD
HAVE BEEN GREAT» AND MUCH OF IT WOULD HAVE BEEN A DUPLICATION OF
FUNCTIONS OF ALREADY EXISTING COMPILERS,

5.1, THE RALPH COMPILER

THE FOLLOWING IS A BRIEF DESCRIPTION OF RALPH, WHICH CANNOT
DO FULL JUSTICE TO ALL ITS FEATURES,

RALPH (REENTRANT ALGORITHMIC LANGUAGE PROCESSOR) IS A FOUR
PASS COMPILER, DESIGNED TO COMPILE PROGRAMS QUICKLYs WITH LESS
EXTENSIVE OPTIMIZATION THAN THE UNIVAC FORTRAN V COMPILER,

PASS ONE READS THE SOURCE PROGRAM AND TRANSLATES IT TO INTER-
'MEDIATE OBJECT CODE (TRIPLES), AT THE SAME TIME IT BUILDS THE
SYMBOL TABLES, THE STATEMENT RECOGNIZER IS TABLE DRIVEN, THE
VARIOUS STATEMENTS ARE PROCESSED IN INDIVIDUAL PARTS OF THE COMPI=-
LER, WHICH USE A COMMON POOL OF SUBROUTINES. THESE INCLUDE A
SYNTAX SCANNER, AN EXPRESSION COMPILER, THE SYMBOL TABLE ROUTINES,
AND A ROUTINE FOR OUTPUTTING TRIPLES TO A SCRATCH FILE, wHICH DOES

ALL OPTIMIZATION,

PASS TWO CLEANS UP THE SYMBOL TABLE, PROCESSES EQUIVALENCE
STATEMENTS, AND .ALLOCATES DATA STORAGE,

PASS THREE CONVERTS THE INTERMEDIATE OBJECT CODE TO MACHINE
INSTRUCTIONS,» SOME OF WHICH MAY NOT YET BE COMPLETE. 1IT READS THE
TRIPLES, DETERMINES THE MOVES OF THE OPERANDS, AND FINDS A TABLE
ENTRY FOR THAT PARTICULAR COMBINATION, FROM THAT IT DETERMINES
THE MODE OF THE RESULT, IF ANY, AND FINDS THE DEFINITION SEQUENCE
FOR THE TRIPLE, THE DEFINTTION SEQUENCES CONTAIN PSEUDO INSTRUC=-
TIONS (FOR REGISTER ALLOCATION, TRANSFER OF CONTROL.» DEFINITION OF
REGISTER CONTENTS, ETC,.) AS WELL AS MACHINE INSTRUCTIONS, wHOSE
REGISTER AND OPERAND FIELDS ARE FILLED WITH SPECIAL CODEs, AN
INTERPRETER ANALYZES THESE: REPLACES THE FIELDS BY REAL ADDRESSES,
AND WRITES THESE, WITH ANY RELOCATION INFORMATION, TO A SCRATCH
FILE, INCOMPLETE ADDRESSES (FORWARD REFERENCES TO LABELS, ETC,)
ARE FLAGGED,

PASS FOUR READS THE OUTPUT FROM PASS THREE, MODIFIES THE IN=
COMPLETE INSTRUCTIONS, AND WRITES THE FINISHED RELOCATABLE ELE=
MENT, IT ALSO PRINTS AN OMJECT CODE LISTING WHEN REQUESTED.

5.2, MODIFICATIONS TO RALPH

THESE FALL INTO TWO GROUPS: SOME ARE LANGUAGE RELATED. AND
WOULD HAVE TO BE TREATED SIMILARLY IN MOST IMPLEMENTATIONS, OTHERS
ARE DIRECTLY RELATED TO THE COMPILER WHICH IS BEING MODIFIED,

52,1, DATA TYPES

THERE ARE SEVERAL NEW VARIABLE TYPES: SETS, STAQUES, PROPER-
TIES, AND GRAPHS, SETS, STAQUES» AND PROPERTIES OCCUPY SINGLE
WORDS IN THE PROGRAMS, WHICH MAY POINT INTO DYNAMIC STORAGE AT
EXECUTION TIME, GRAPHS CONSIST OF THREE WORDS, ONE HAS INFORMA=-
TION ABOUT THE GRAPH, THE OTHER TWO.ABOUT THE ARCS AND NODES,
RESPECTIVELY, SET IS A VARIABLE TYPE, LIKE INTEGER OR REAL.
STAQUES AND PROPERTIES HAVE ONE OF THE TYPES INTEGER. REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL, OR SET ASSOCIATED WITH THEM,

MOST OF THESE NEw VARIABLES REQUIRE THAT AN INITIAL VALUE IS
COMPILED FOR THtM, THIS IS DONE AT THE END OF PASS THREE, USING
THE INFORMATION IN THE SYMBOL TABLE,

5¢2.2 IMPLEMENTATION OF NEW STATEMENTS

DECLARATION STATEMENTS ARE HANDLED IN THE SAME WAY AS FORTRAN
DECLARATIONS, THE SYMBOL IS ENTERED INYO THE MODE TABLE, AND, IF
NECESSARY, INTO THE DIMENSION TABLE,

ASSIGN, DETACH, AND REMOVE STATEMENTS ARE TRANSLATED INTO
CALLS TO APPROPRIATE SUBROUTINES,

THE SAVE AND RESET STATEMENTS ARE NOT YET IMPLEMENTED,

5=3

THE TWO NEW LOOP STATEMENTS ('WHILE' AND *FOR ALL') CAN BE
HANDLED SIMILAR TO THE DO LOOP, MOST OF THE CODE IS GENERATED AT
THE BEGINNING OF THE LOOPS» AND ONLY THE LOOP VARIABLE HAS TO BE
REMEMBERED FOR THE TERMINATION, AND A TRANSFER AND A LABEL HAVE TO
BE GENERATED AT THE END, ONE SPECIAL PROBLEM CONCERNING *'FOR ALL®
LOOPS IS DISCUSSED IN SECTION 5,3,4,

5.2,3, IMPLEMENTATION OF NEw SYNTACTIC FEATURES

THE SET OPERATIONS ARF SIMPLY ENTERED INTO A TABLE OF LEGAL
OPERATORS, THEY ALL PRODUCE SUBROUTINE CALLS,

THE GRAPH OPERATIONS (BOUNDARY OPERATIONS) ARE HANDLED SIMI-
LARLY, EXCEPT THAT THEY ALL CALL THE SAME SUBROUTINE, AND THE
SPECIFIC OPERATION IS TRANSMITTED THROUGH A FLAG WORD,

THE FUNCTIONS *NODES*'» 'ARCS?', AND *DOMAIN' ARE TRANSLATED
INTO CONSTANY OFFSETS FROM THE GRAPH OR PROPERTY, AND THEIR REe
SULTS ARE SETS, THIS CAUSED SOME DIFFICULTY BECAUSE OF THE WAY IN
WHICH RALPH PASSES CONSTANT OFFSETS FROM PASS ONE TO PASS THREE,

PROPERTIES CAN APPEAR ON EITHER SIDE OF ASSIGNMENT STATE-
MENTS, THE TwO CASES HAVE A DIFFERENT MEANING, AND EACH MyST BE
TRANSLATED DIFFERENTLY,

THE SUBSET FUNCTION PRESENTED A PARTICULARLY DIFFICULT PROB-
LEM, IF IT IS NOT TO BE TRANSLATED INLINE, WHICH wOULD GENERATE
TOO MUCH CODE, 1T REQUIRES A CALL BY NAME TO EVALUATE THE LOGICAL
EXPRESSION, THIS IS ACHIEVED BY TRANSLATING THE LOGICAL EXPRES=~
SION INTO AN INTERNAL FUNCTION, AND PASSING THE ADDRESS OF THAT
FUNCTION TO THE SUBSET ROUTINE, ,

THE ARGUMENTS TO LIST ASSIGNMENT STATEMENTS ARE PASSED IN ONE
ARRAY, CONTAINING THE ADDRESS OF EACH ITEM, AND A FLAG INDJCATING
WHETHER OR NOT THE VARIABLF IS ANOTHER LISTs AND WHETHER OR NOT IT
NEEDS TO BE COPIED (FOR LISTS AND SETS),

5.2.4, HANDL ING OF TEMPORARIES

TEMPORARY RESULTS FROM SET OPERATIONS PRESENT A NEW PROBLEM:
THEY DO NOT CONTAIN A VALUE WHICH CAN BE SIMPLY FORGOTTEN, BUT
THEY POINT TO AN ALLOCATED AREA IN DYNAMIC STORAGE WHICH HAS TO BE
FREED, THIS OCCURS IN THE EVALUATION OF EXPRESSIONSs WHEN PASSING
SET EXPRESSIONS TO A SUBROUTINE AS AN ARGUMENT, AND DURING THE
EXECUTION OF 'FOR ALL' LOOPS, FOR WHICH A SET HAS TO BE KEpT
THROUGHOUT THE EXECUTION OF THE LOOP,

FREEING EACH TEMPORARY EXPLICITLY WOULD CREATE MUCH EXTRA
CODE, SO THAT A BETTER METHOD HAD TO BE FOUND, SINCE ALL SET
OPERATIONS ARE EXECUTED IN SUBROUTINES, A FLAG IS PASSED IN THE
CALLING SEQUENCEs» INDICATING WHEN A TEMPORARY SET RESULT IS NO
LONGER NEEDED, THE SUBROUTINE CAN THEN USE THE SET WITHOUT CO=-
PYING ITs IF IT WISHES TO VO SO, OTHERWISE IT HAS TO FREE THE SET
BEFORE IT EXITSe. THIS IS MADE THE RESPONSIBILITY OF THE SyBROy=
TINE, SET ARGUMENTS TO FORTRAN SUBROUTINES CAN BE HANDLED IN THE
SAME WAY, PROVIDED THAT THE SUBROUTINE EXIT SEQUENCE TAKES CARE OF

FREEING ALL THE SETS,
TRANSFERS OUT OF 'FOR ALL' LOOPS ARE MORE DIFFICULY, SINCE

THE TRANSFER MAY BE IMBEDDFD INTO A CALLING SEQUENCE, IT IS NOT
POSSIBLE TO SIMPLY REDEFINE THE JUMP INSTRUCTION, INSTEAD, FOR
EACH TRANSFER OUT OF A 'FOR ALL' LOOP, A DUMMY LABEL IS CREATED AT
THE END OF THAT LOOP, FOLLOWED BY A RELEASE OF THE SET, AND A JUMP
TO THE REAL LABELs OR A JUMP TO A DUMMY LABEL AT THE END OF THE
NEXT *FOR ALL' LOOP,

5.3, OPTIMIZATION

REPEATED SET OPERATIONS ARE ELIMINATED IN THE SAME wAy AS ALL
REPEATED ARITHMETIC OPERATIONS, AS LONG AS NO LABELS INTERVENE,
THE SAME HOLDS FOR PROPERTY RETRIEVALS AND THE NONDESTRUCTIVE LIST
RETRIEVALS, THLIS FEATURE CAN BE TURNED OFF BY USING THE *o' OP=-
TION ON THE COMPILER CALL CARD,

OPERATIONS OF THE FORM

SET = SET UN, X 0OR SET = SET .DFO X

ARE FREQUENT ENUUGH THAT IT SEEMED WORTHWHILE TO HAVE SPECIAL
ENTRIES FOR THEM, THIS RENUCES THE LENG6TH OF THE CALLING SEQUENCE
By ONE HALF,» ANU MAY ALSO ®E USED BY THE SUBROUTINE TO AyOI1D UN=
NECCESSARY COPYING OF THE SET,

6-1

6. COMPILER GENERATED INSTRUCTION SEQUENCES

THIS CHAPTER CONTAINS THE DESCRIPTION OF THE INSTRUCTION SE-
QUENCES GENERATED BY THE FGRAAL COMPILER FOR THE SPECTIAL FEATURES
OF FGRAAL, THE FGRAAL COMPTLER IS AN EXTENSION OF THE RALPH COMPI-
LER, THUS IT GENERATES INSTRUCTION FOR THE FORTRAN STATEMENTS
ALSO, THERE 1S NO ATTEMPT MADE TO DESCRIBE THESE INSTRUCTION SE-
QUENCES, ONLY THE SEQUENCES REVELANT TO FGRAAL FEATURES ARE DES-
CRIBED HERE,

6.1, DECLARATION STATEMENTS

DECLARED SETSs PROPERTIES, LISTS AND GRAPHS RECEIVE INITIAL
DATA ASSIGNMENTS BY THE COMPILER, THESE DATA ARE INITIALIZED AS

FOLLOWS:

AARREEEERRR TR EREERAK AR EARE AR
SET * 0 * 0 *
e L T I T I R I P P P TR 2 2)

AR R REER R AR KT Rk kR gk gk Rk kxR &

PROPERTY * -0 * TYPE »
ok o K K R R R o o R g kR Kk K

P T T T Lt I TS TR e T L 22 2 T 2
LIST * -0 * TYPE *
e T T e L I e e YT R E A R A S

ARRRRARRARREERE TR KRR AR R R AR E®

GRAPH G x -0 ® XXXX YYYY 3 =%
Py PP P P DLl D : - L L % 4

G+l = -0 * 1 =

o e = w2 o a7 o O W P w3 - w - e e o)

G+2 * -0 * 2 *

ARBREREEARERRARETRAXKK R ERAR SRR RERKE LR KX

WHERE XXXX FOR NODE GRAPH
FOR NODE/ARC GRAPH
YYYY FOR UNDIRECTED GRAPH
FOR DIRECTED GRAPH
TYPE FOR SET TYPE

FOR LOGICAL TYPE

FOR INTEGER TYPE

FOR REAL TYPE

FOR DOUMLE PRECISION TYPE
FOR COMPLEX TYPE

O~NOOMEFEFOrOrO

6=-2
6.2, CALLING SEQUENCES

THE COMPILER GENERATES CALLING SEQUENCES FOR THE FGRAAL LIBRARY
ROUTINES, THESE CALLING SENUENCES ARE IN THE SAME FORM AS THE
FORTRAN CALLING SEQUENCES, I,.E,

LMJ X11,LIBR
+ ARG1
00000 tetoss
+ ARGN
+ w,8,

WHERE 'LIBR' IS THE NAME OF A LIBRARY PROGRAM, ARGir.,.?ARGN ARE
THE ADNRESSES OF THE ARGUMENTS, W,B, IS THE WALK BACK WORD, REGI=-
STERS AQ=A5 ARE ASSUMED TO BE FREE TO USE BY THE LIBRARY PROGRAMS
WITHOUT SAVING FHEM, RESULTS ARE RETURNED IN Ag OR IN AO0-A%,

SETS IN THE CALLING SEQUENCES HAVE AN ADDITIONAL FEATURE.,
BESIDES THE ADDRESS OF THEIR SET HEADER, THERE IS A FLAG IN BIT

POSITION 123

RREERBEEERREEREEVER R RN R R KB R R KT R KK KRR
* F * ADDRESS OF SET *
235 o 2 3 3k 0% o ot e e 2R e e o o o 2 o ok ok o o ol ok K ol ol o e o ok K o ok K

WHERE THE FLAG IS SET BY TME COMPILER TO ONE, IF THE SET IS A
TEMPORARY SET SUCH THAT IT SHOULD BE CLEARED AFTER IT 1S UsED AS
AN INPUT TO THE LIBRARY PROGRAM, OTHERWISE IT IS SET TO 2RO, IN
ALL ARGUMENTS THE X FIELD (INDEX REGISTER MODIFICATION) MAY BE
NONZERO, AND INDIRECY ADDRESSING MAY ALSO BE SPECIFIED,

THE FLAG POSITION IS ALSO USED IN LIST ASSIGNMENTS FOR SIMILAR
REASONS BUT IT 1S EXTENDED FOR IDENTIFYING LISTS,

6.3, FREEING A SET OR LIST
THE COMPILER RECOGNIZES THE SIMPLE ASSIGN STATEMENTS,

JEMPTY, AND L
8) (L

.NILO
)

S
(S

AND TRANSLATES THEM INTO THE FOLLOWING CALLING SEQUENCES, RESPEC=
TIVELY:?

LMJ X11,68SZRO LMy X11,68L2R0
+ LOC(S) + LOC(L)
+ wW.B, + w,B8,

6.4, SET -« OPERATIONS, =RELATIONS, =ASSIGNMENT

LET S AND T BE SETS, THE FOLLOWING SET OPERATIONS @

S JUNs T S JOF, T
S JITe T S M, T

AND SET RELATIONS @

S EQ¢ T S NE, T
s QIN. T S .NIN. T

"~ ARE TRANSLATED INTO THE CALLING SEQUENCES OF THE FORM ¢

LMy X11,G88XXXX
+ FsS
+ FoTl
+ w.8,

WHERE G$XXXX IS AS FOLLOWS:?

GSSUN FOR LJUN,

6G$SIT FOR ,IT,

O$SDF FOR ,DF,

GSSSM FOR ,SM,

GSSIN FOR ,IN,

GSSNIN FOR ,NIN,

GSSNE FOR .NE, AND ,EQ,

THE SET HEADER FOR THE RESULT OF THE ABOVE SET OPERATIONS wILL BE
RETURNED IN REGISTER A0, THE LOGICAL RESULT OF THE SET RELATIONAL
OPERATION WILL ALSO BE RETURNED IN REGISTER A0,

6,5, SPECIAL SET FUNCTIONS

645,14 CREATE FUNCTION
THE FUNCTION
CREATE(0)
IS TRANSLATED INTO THE.CALLING SEGUENCE

LMy X11+,GSCRTQ
+ . WeB,

AND THE LIBRARY ROUTINE RETURNS THE ATOMIC SET IN AO,
THE CONDITIONAL CREATE FUNCTION,

CNEATE(Pl'Vl'pZOVZD ooQOPNOVN)

WITH PROPERTY IUENTIFIERS PI AND PROPERTY VALUES VI ARE TRANSLATED
INTO THE CALLING SEQUENCE

LMJ xlloGSCRT

M
+
+ N

+ WeB,

WHERE N IS THE NUMBER OF PAIRS OF PROPERTY IDENTIFIERS AND VALUES.,
A IS THE ADDRESS OF ONE ARRAY CONTAINING THE ADDRESSES OF ALL
PROPERTY HEADERS FOLLOWED MY ALL PROPERTY VALUES:

A + P1 A+N + Vi
+ P2 + v2
[] L] []] L] L]
+ PN + VN

THESE ARRAYS ARE GENERATED BY THE COMPILER, WHEN A PROPERTY VALUE
IS OF TYPE SET, THEN THE AUDRESS OF THE VALUE, VI, IS FLAGGED, IF
THE FLAG 1S ONE THEN THE SET WILL RE FREED BY THE LIBRARY ROUTINE
BEFORE RETURN,

64542, SUBSET FUNCTION

THE EXPRESSION
SUBSET (X,<LOGICAL EXP,>)

IS TRANSLATED BY THE COMPILER AS

LMy X11,G$SUBS
+ 0
+ X
J 'FUNCTION?
+ (W, By,)

WHERE 'FUNCTION' IS THE ADURESS OF AN INTERNAL SUBPROGRAM wHICH
EVALUATES THE LOGICAL EXPRESSION, -

THE FUNCTION
SUBSET (S, X» <LOGICAL EXP,>)

Ié TRANSLATED SIMILARLY, BUT THE FIRST ARGUMENT IS THE ADDRESS OF

_®

THE SET S.
6,5.3, ELT, INDEX, SIZE AND PARITY FUNCTIONS
THE FUNCTIONS, ”
ELT(I+S) » INDEX(XsS) » SIZE(S) s PARITY(S) ,
ARE TRANSLATED AS STANDARD FORTRAN FUNCTIONSs, BUT THEIR NAMES ARE
REPLACED BY GSELT+ GSINDX, GSSIZE, AND GSPARI,
646, PROPERTY ASSIGNMENT AND RETRIEVAL

THE RETRIEVAL OF A PROPERTY VALUE,
P(X)

OF AN ATOMIC SET X IS TRANSLATED INTO THE FOLLOWING CALLING SE-
QUENCE

MJ X11+GSPRRT
+ P

+ X

* w.B.

L

WHERE P AND X ARE ADDRESSES OF THE PROPERTY HEADER AND SET HEADER. .
RESPECTIVELY, THE VALUE IS RETURNED IN A0 (OR AQ0=Aj) FOR DOUBLE
PRECISION AND CUMPLEX) BY THE LIBRARY ROUTINE,

THE ASSIGNMENT OF A PROPERTY VALUE,

PI(X) = vV

TO AN ATOMIC SET X IS TRANSLATED INTO THE FOLLOWING CALLING SE=-
QUENCE

LMY X11+GSPRST
+ P
+ v
+ X
+

w.B,

WHERE P AND X ARE AS BEFORE, AND v IS THE ADDRESS WHERE THE VALUE
IS FOUND, IN CASE OF A SET=VALUE, Vv IS FLAGGED,. IF THE FLAG IS
ZERO, THEN THE SET IS COPIED, IF IT IS ONE, THE SET IS LINKED INTO
THE PROPERTY CHAIN DIRECTLY,

6=6

6,7, LIST ASSIGNMENT AND LIST FUNCTIONS

6.7.1, LIST ASSIGNMENT STATEMENT

THE STATEMENT,
L=# OR L = ,NL.
IS TRANSLATED INTO THE CALLING SEQUENCE
LMJ X11,6SLZRO ’
+ L
+ w‘e.
THE STATEMENT,
L = Al 3 A2 ¢ +.¢ ¢ AN

IS TRANSLATED INTO THE FOLLOWING CALLING SEQUENCE

LMy X11,6GSLIST
+ ARG
+ N
+ L
+ W.B,

WHERE N IS THE NUMBER OF APGUMENTS. L IS THE ADORESS OF THE LIST
HEADER AND ARG IS THE ADDRESS OF A COMPILER GENERATED ARRAY CON-
TAINING THE ADDRESSES OF THE N ARGUMENTS INVOLVED IN THE CONCA-
TENATION,

ARG + F1,LOC(AYL)
+ F2,LOC(A2)
.
+

o
FN¢.LOC(AN)

THESE ADDRESSES ARE FLAGGED IN BIT POSITIONS 12 AND 13 WITH THE
FOLLOWING CODE:

Al IS A VARIABLE wHICH HAS TO BE COPIED

AT IS A LIST wWHICH HAS TO BE COPIED

Al IS A SET WHICH NEED NOT BE COPIED

AT IS A LIST wHICH CAN BE CONCATENATED wITHOUT
COPYING 17

Fl

W -o

6,7,2, | LIST FUNCTIONS

THE FUNCTIONS,

6=7

FIRST(L) » DFIRST(L) ,
LAST(L) o+ DLAST(L)

ARE TRANSLATED INTO THE FOLLOWING CALLING SEQUENCE

LMY X11,GSLGET
+ T
% L
+

W.8,

WHERE

FOR FIRSTY

FOR DFIRST

FOR LAST

FOR LAST AND DLAST

W =-O

AND L IS THE ADURESS OF THF LIST HEADER,
THE VALUE IS RETURNED IN AQ0 (AQ0=Al FOR DBL,PR, AND COMPLEX) BY

THE LIBRARY ROUTINE,

6.8, GRAPH OPERATIONS

6.8,1, ASSIGN STATEMENT
THE STATEMENTS,
ASSIGN Gy X
ASSIGN Gy X = Y
ASSIGN G' X = Y' b4
ARE TRANSLATED INTO THE FOLLOWING CALLING SEQUENCESs» RESPECTIVELY!

LMJ X11,6%AS61

+ G
+ X
+ w.8,
LMJ X11,68A5G2
+ G
+ X
+ Y
+ w.B,

MJ X11,G8ASG3
+ G
+ X

+ Y
+ 2
+ w.B,

WHERE G 1S THE ADDRESS OF THE GRAPH HEADERy, Xy Y, Z ARE THE AD-
DRESSES OF THE ATOMIC SETS.

648.2, DETACH STATEMENT
THE STATEMENTS,
VETACH 6
VUETACH G, S
VETACH Gy S = T

ARE TRANSLATED INTO THE FOLLOWING CALLING SEQUENCES, RESPECTIVELY:

LMJ X11,6G$DET1
+ (]
+ w.B,
LMJ X11,G$DET2
+ G
+ S
+ w.8,
LMJ X11,GSDET3
+ G
+ S
+ T
+ w.B,

WHERE G IS THE ADDRESS OF THE GRAPH HEADERs S AND T ARE THE AD-
DRESSES OF THE CORRESPONDING SET HEADERS, :

6.8,3. GRAPH FUNCTIONS
THE GRAPH FUNCTIONS,
STAR(GQS)v coB(G.S)» PBD(G,S)y ETC,
ARE TRANSLATED INTO THE FOLLOWING CALLING SEQUENCE
LMy X11,6G8$BDRY

+ + ++
EUVD~

-0

WHERE G IS THE ADDRESS OF THE GRAPH HEADER, S IS THE ADDRESS OF

THE SET HEADERy AND T IS DEFINED AS FOLLOWS (OCTAL):®

T
STAR 202
PSTAR 102
NSTAR 002
cov 212
PCOY 112
NCob 012
ADJ 200
PADJ 100
NADV 2000
INC 201
PINC cci1
NINC 101
BL 211
PBD 011
NBU 111
6,9, ITERATIVE STATEMENTS
6,8,1, WHILE STATEMENTY

THE STATEMENT
DO # WHILE <LOG.EXPR,)
IS TRANSLATED AS

FSXXXA (TRANSLATION
OF
LOGICAL
EXPRESSION)
JZ AQ'FSXXXB

[ENENEERE NN

stevstons
J FeXXXA
FeEXXXbB s0evetooe
6.,9,2, FOR ALL STATEMENT

THE STATEMENT
D0 # FOR ALL X ,IN, S
IS TRANSLATED AS

LMJ X11,6$001

6-10

+ S
+ TEMP
+ W.B,
F$XXXA LMy X11,68002
+ X
J FEXXXB
+ TEMP
+ W.B,
Seosveor o
S0s0oe0ere
J FEXXXA
F$XXXB LMJ X11,6$D03
+ TEMP
L 4 w.B,

WHFRE 'TEMP' IS A TEMPORARY LOCATION ASSIGNED BY THE COMPILER,
THE THREE LIBRARY ROUTINES» G$0D01-3, ARE FOR INITIALIZATION, I-
TERATION AND TERMINATION OF THE LOOP, RESPECTIVELY, THE COMMUNICA=
TION BETWEEN THESE ROUTINES IS ACCOMPLISHED BY THE CONTENTS OF
"TEMPY,

THE LAST ROUTINE, 6SDO3» IS ALSO CALLED IF THE DO RANGE IS LEFT
BY TRANSFER STATEMENTS (ABNORMAL EXIT),

6.10, REMOVE STATEMENTS

THE STATEMENT
REMOVE p'oooto(S)OoooT'ooo

WITH PROPERTIES PeQreeesr SETS SyTy,eo ARE TRANSLATED INTQ CONSECU=
TIVE SUBROUTINE CALLS, ONE FOR EACH. ARGUMENT IN THE LIST OF THE
STATEMENT,

IF THE ARGUMENT IN THE STATEMENT IS A PROPERTY, THEN THE CAL=-
LING SEQUENCE IS

LMJ X11,6GSRMV1
i P
+ W.B.
IF THE ARGUMENT IS A PROPERTY ON A SET, THEN
LMJ X11+GSRMY2
+ Q

+ S
.§ wW,B,

6=-11

IF THE ARGUMENT IS A SET, THEN

LMy X11+,G3RMY3
+ T
+ w.,B,

7 LIBRARY PROGRAMS

THIS CHAPTER DESCRIBES THE OBJECT TIME LIBRARY PACKAGE oF
FGRAAL, THE ENTRY POINTS ARE SUCH THAT THE FIRST TwO CHARACTERS OF
THEIR NAMES ARE 'Gs*, EXCLUDED FROM THIS CONVENTION ARE THE SPE-
CIAL FUNCTIONS CF FGRAAL SUCH AS EXPAND, CONTR, ETC.

THE LIBRARY PACKAGE IS VIVIDED FUNCTIONALLY INTO TEN GRQUPS,
THE FIRST FOUR OF THESE GROUPS, DATA REFERENCES IN THE DyYNAMIC
STORAGE, PROCEDURES, DYNAMIC STORAGE ROUTINE AND THE SET ROUTINES,
ARE BASIC IN THE PACKAGE IN THE SENSE THAT THEY ARE CALLED BY THE
ROUTINES IN THE OTHER PACKAGE, THE OTHER GROUPS ARE INDEPENDENT
FROM EACH OTHER. THE FOLLOWING TABLE SUMMARIZES THE ELEMENTS IN
THE TEN GROUPS,

R RO R R T R g KRR Koo R K kKN o % K

* ELT, x ENTRIESx TITLE *
a0 e 3 2 o 0 o o 00 00 e e K o g oo o o R a0 o o ok e o o o o o o o o e e ok
* * % COMMON DATA *
* GSDATA x GSNUO x ZERO AS LOWER LIMIT OF UNIV,.SEQ. x
*x * GSNU * LAST CREATED ELEMENT *
* * GENF % FIRST FREE BLOCK *
% * GSNL * LOWEST BLOCK ALLOCATED *
* * GSDA * ADDRESS OF DYNAMIC STORAGE *
*x * GSD x* DYNAMIC STORAGE *
* * GSMASK * MASKING BITS FOR COLUMN SETS *
* * * *
L ey et T LT L Ll T L TSP L LT Y T RN PRSP PR TR T PSR SRR
* * * PROCEDURES *
* PROCS % IDYST3 x FREE A 2=wWORD BLOCK %
* * ELEMNT = OBTAIN ELEMENT FROM ITS PROP,BLOCK =
* * REMOV = UNCHAIN A 2«WORD BLOCK *
* * REMPR x REMOVE A PROPERTY BLOCK *
* * INSRT & INSERT A 2«WORD BLOCK INTO A CHAIN =«
x * SAVEX = SAVE RETURN ADDRESS *
* * PTYP * GETS TYPE GROUP OF PROPERTY *
* * SETONE = SET A BIT IN A COLUMN *
* x SETZRO = RESET A BIT IN A COLUMN *
* * PTAG * SET PTAG ON A COLUMN SET *
* * * *
L T rererpeey L PRl L L T T PR T L T Y e ey ity S S e e ——"
* * * DYNAMIC STORAGE ROUTINES *

* GSDYN » GSDYN x OBTAIN A 2-WORD BLOCK *

L TR e L L LT LD Ld £ LT L T Tl L T 1 TR T TP e Y TRy Sy P iy g

Ao ra e R ranPOR Lm0 et 0wme e oo o e S G0 % e o oS oo oo o K

x * * SET ROUTINES *
* GSSZRO *= GBSZRO * FREE A SET *
* * GSSCZR * FREES A SET IF FLAGGED *
x * CFREE # FREE A SET IN COLUMN FORM *
%* « BFREE % FREE A SET IN BLOCK FORM *
* * CRTRN % FREE A COLUMN INDEX - *
* G$SASG * GBSASG *x SET ASSIGNMENT *
* G$SOPR * GSSUN x SET UNION *
* * GSSSM x SYMMETRIC SUM *
* * GSSDF x SET DIFFERENCE *
* * GSSIT *x SET INVERSECTION %
* *« GSSCT & SET CONTAINMENT »
* * GSSEQ@ % SET EQUIVALENCE *
* * GSSNE % SET NOY EQUAL *
& B$SCPY * GSSCPY x COPY A SET INTO A COLUMN SET *
* * GSSCP1 % COPY A SET INTO A CERTAIN COLUMN *
* GSCDIS * GSCDIS = PUT A COLUMN SET INTO BLOCK FORM *
* GSCGET * GSCGET % OBTAIN A FREE COLUMN *
* G$SCZRO * GSCZRO x CLEAR A COLUMN *
* G$SETI *= GSSETI = INITIALIZE FOR GET-NEXT ELT, %
* GSINI =* GSIN1l *x REGISTER INIT, FOR GET NEXT *
x * GSINIQ = INITIALIZATION FOR INTERNAL USE *
* * JSNS$ * DATA WORD FOR GET NEXT *
x * GSINIC x REGISTER SET=UP FOR COL,SEARCH *
* GSNXT * GSNXT % SET NEXT ELEMENT OF SET *
* * GSNXTQ » FOR INTERNAL USE *
* * GSNXTB % GET NEXT ELT, OF BLOCK SET *
* GSGNHD * GSGNH1 » GENERATE HEADER FOR COLUMN SET, *
* * * PREVIOUS HEADER EXISTED *
x * GSGNHZ2 x PREVIONS HEADER EXISTED BUT NEw %
* x * LIMITS ARE GIVEN *
* * GSGNH3 x NO PREVIOUS HEADER *
N o e o " g 0 I R P T I D g O T D 4 D g O D DD S P OB G e e T S D P e e D g = o o o o
* * * LISY ROUTINES *
* GSLZRO * GSLZRO x EMPTY A LIST *
* GSLGET * GSLGET % LIST FUNCTIONS *
* GSLIST *x GSLIST » LIST ASSIGNMENT *.

A

t---_----‘-——-----‘---—----- [pne= p—— - g e T o S e e K

LA R I 2K R BE BE SR BE 2R BN BE BF BE BE BE R BF BF B BE NE BE N AR X AR X BE BE NP IR BE BE SR BE IR K 3.2 K R 2R

* * PROPERTY ROUTINES
G$RMV1 * GSRMV1 = REMOVE PROPERTY P .
GSRMV2 * GSRMV2 « REMOVE PROPERTY ON A SET
GSRMV3 % GSRMV3 x REMOVE ELEMENTS FROM UNIVERSE
GSPROP * GSPRST * PROPERTY ASSIGNMENT
x GSPRRT * PROPERTY RETRIEVAL
G$SPREM % GSPREtM » REMOVE A PROPERTY FROM AN ELEMENT
G$PADD x GSPAUD = ADD ELY, TO PROPERTY SET
G$PSUB * GSPSUB »x REMOVE ELT, FROM PROPERTY SET
GSFNDF = GSFNUF x FIND FIRST ELT, WITH PROPERTY
. * GSFNUL = FIND LAST ELY, WITH PROPERTY
G$GPR1 * GSGPR1 % FIND PROP,BLOCK OF ELT,
[y spppp e T T TS T LR P TR TR Y LD T T R P P I S P
* * GRAPH ROUTINES
G$ASG =% GSASG1 * ASSIGN Gy X
* GBAS62 % ASSIGN Gy X=Y
* GPASG3 * ASSIGN G, X=Y, 2
GSDETY » GSDEV1 * DETACH FULL GRAPH
GSDET2 = GSDET2 * DETACH ELEMENTS FROM GRAPH
GSDET3 * GSDET3 # DETCH LINKS FROM GRAPH
GSBDRY *x GSBDRY = GRAPH OPERATORS
G$DOMN = GSDOMN » DOMAIN OF A PROPERTY (NODES/,ARCS)
GSDETA = GSDETA x DETACH AN ARC
GSASGN x GSASGN x ASSIGN A NODE
GSGPR2 % GSGPR2 & FIND GRAPH PROPERTY BLOCK
R nm Ko K T e e o e o e T oo g o O G 0 5 e W 0P g S 5 W e .-
* * SPECIAL FUNCTIONS
GSCRT = GSCRI = CONDITIONAL CREATE
GSCRTO = GSCRTO = CREATE ELEMENT
G$DO x G$DO1l = INITIALIZATION FOR FORALL ST,
* GSD02 & RETRIEVE ELEMENY FOR FORALL ST,
* G$D03 % TERMINATE FORALL STATEMENT
GSCHCK ® GSCHCK x PROPERTY CHECK
GSELT = GSELT = ELT FUNCTION
GSINDX % GSINLUX » INDEX FUNCTION
G$SIZE * G$SIZE » SIZE FUNCTION
* GSPARI = PARITY FUNCTION
GSSUBS = GSSUBS x SUBSET FUNCTION
Smmema oo e e e e 5 o g a0 O o I I0 o 65 O v = I
* * DIAGNOSTIC ROUTINES *
GSERR % GSERR = ERROR AND WARNING ROUTINE ' *
* GSERRD » ERROR MESSAGE DATA »
ceomsrvaniorececererifeorrara®eemans Jp—— [P TSPy pp——
* * SPECIAL LIBRARY ROUTINES *
* CONTR & CONTR = CONTRACT NODE SET %
* EXPAND x EXPAND % EXPAND CONTARCTED NODE SET *

* NODSET = NODSET = OBTAIN SET OF CONTRACTED NODES &

‘--------*--------*---—-- ----------------------_---Q----ﬂ

LR R BE JE JR BE BE 2R 2 2R 2R AR I IR IR AL JE 2b K 2R R SR B BE R K B IR IR IR B I B A 25 2B

FUNCTION TABLE,

* * NO,.=* * * FCT =
* NAME *ARGS® ARGS, = MEANING *TYPE »
* * * * ==« LIST FUNCTIONS! e=w * *
* FIRST * 1 = LIST * RETURNS THE FIRST OR LAST ELE= *TYPE =
* DFIRST * * * MENT OF THE LIST,» WITH 'D', x OF
* LAST * * * IT ALSO DELETES THE ELEMENT x LISTx
* DLAST = * * FROM THE LIST, * *
t----_—--*---—*-—'---—U-‘---f--—----——00-——---------------*-----*
% x % * e=e SET FUNCTIONS: =w= * *
% CREATE * 1 % 2ERO % CREATED ELEMENT AS AT,SET + SET »
* CREATE * 2N *PROP ,NAMEx* GIVES AT,SET WITH MATCHING PRO- x SET =*
* x *xAND VALUE=x PERTIES, CREATES ONE IF NON~ = *
* * * IN PAIRSx EXISTENT, * *
* ATOM x 1 % INT, * AT,SET WITH THE GIVEN SEQ.NUMBERx SET =x
* ELT * 2 % INT,SET * AT,SET IN SPEC, PLACE IN THE SET# SET *
+ INDEX * 2 % AT,SET, *» INDEX NO, OF AT,SET IN THE SET, # INT =
« SIZE * 1 » SET * NUMBER OF ELEMENTS IN THE SET # INT =
+« PARITY = 1 = SET * TRUE FOR ODD, FALSE FOR EVEN x LOG *
* * * % NUMBER OF ELEMENTS, * *
*x COUNT = 1 x ZERO * MAXIMAL SEQUENCE NUMBER x INT =
« COUNT * 1 & AT,SET #* SEQUENCE NUMBER OF THE AT.SET # INT =
*« SUBSET = 3 = SET,LOG * ELEMENTS OF FIRST,DUMMY ARGUMENTx SET =*
* * * * WHICH SATISFY LOG.,EXPR, * x
+ CHECK % 2 »PROP,NAMEx TRUE IF PROPERTY IS DEFINED FOR % LOG *
- . « AT,SET * AT,SET, OTHERWISE FALSE * *
-____-_-----‘---------‘------------gu-------------------*-----*
. * * % ==we PROPERTY FUNCTIONS: === xTYPE =
* 'PROP % 1 = AT,SET =* RETURNS THE ASSIGNED PROP,VALUE x OF =
*x NAME' =x * * » PROPx
W o o o o o 0 K D o Y TP O O I D 2 e O o 0 9 T e o 4 D S D S e O D -y~ *
* * * » e=e GRAPH FUNCTIONS! === * *
+* NODES * 1 % GRAPH ® NODES OF THE GRAPH * SET =%
+ ARCS * 1 % GRAPH = ARCS OF THE GRAPH * SET »
* INC « 2 % GRAPH, #* UNION OF ALL BOUNDARY NODES OF # SET =
x * x SET = THE GIVEN SET OF ARCS, * *
* STAR * 2 x GRAPH, x UNION OF ALL ARCS INCIDENT 7O x SET =
* *] SET =% THE GIVEN SET OF NODES, * *
* BD * 2 % GRAPH, =*x SYMMETRIC SUM OF ALL BOUNDARY *x SET =
x * % SET = NODES OF ARCS IN THE SET, * *
* COB %x 2 % GRAPH, * SYMMETRIC SUM OF ALL ARCS INCI- x SET =
* * * SET = DENT TO THE NODES IN THE SET, =]
* ADJ * 2 % GRAPH, #* UNION OF ALL NODES ADJACENT TO s« SET #
x * * SET = THE NOPES IN THE SET, % *
RemvocarnRiccana i Tammnonn oS nmn s e mm o T oo e 5 T 0w e e o i e o K

STATEMENTS
::::::=====:=:======:==:=:==::=:::=====:::=::==:==:=::::::::::=::
* CATEG, = FORM * MEANING *
* DECLARATION * *
* SET X'Y'.'. * x'Y'o.e ARE SET VARIABLES. *
* YTYPE' STAQUE L¢Proees * LyPosee ARE LISTS OF 'TYPE'= *
* * REAL» INTEGER,» LOGICAL OR SET,x*
*® *TYPE' PROPERTY A;By.qs * AOB'... PROP.FUNCTIONS OF '*TYPE *x
* * REALy INT,» LOG, OR SET, x
* GRAPH G(*MOU') yT(*'MOD")y o % GyTross ARE GRAPH OF *MOD'= *
* ’ * DIRECTED OR UNDIRECTED, AND *
* %* PSEUDO= ,MULTI~ OR NODE-GRAPHS,*

-----—--n----.--‘--------------------------—-----------------—*

* ASSIGNMENT * %
* S'SET-EXPRESSION? * SET ASSIGNMENT *
* LoseetXiLiYSoo, * LIST ASG,: XoLoYsoeo,e ARE CONST,,x
* * VBLE, OR LIST OF SAME TYPE, *
* P{X)='EXPRESSION® * PROPERTY 'P' ASSIGNED TO ATOMIC =
* x SET X WITH VALUE *EXPRESSION' *

* GRAPH * *

* ASSIGN G X * AT,SET X ASSIGNED YO 6 AS NODE, =
* ASSIGN GoeX=Y * ATOMIC SETS X»Y ARE ASSIGNED AS =
* * ADJACENT NODES IN GRAPH G. *
* ASSIGN GeX=YyZ * AT,SETS X,YeZ ASSIGNED TO GRAPH =
* x G AS ARC Z WITH END=NODES XysY,.%*
* DETACH G»S * ELEMENTS OF SET S ARE REMOVED x
x * FROM GRAPH G, %
---------------—-------------‘.-----------—--—--------—--------
* ITERATIVE * *
* * EXECUTES STATEMENTS THROUGH ONE =
* * LABELED WITH *ST#? , *
* DO *STH' FOR ALL X.IN,S * FOR EACH ELEMENT X OF SET ¢ *
* DO 'STH' WHILE LOG.,EXPR, = WHILE LOG,EXPRESSION 1S TRUE x

‘-------------------------‘---*---------------------------------*

* REMOVE * *
* REMOVE SeTreeerAsBroos * REMOVES SETS SyT FROM UNIVERSE, =
* * PROPERTIES AyB FROM AT,SETS =
* ' * WHERE DEFINED, *
--------------------------------------—-----------------------*
* SAVE=-RESET * *
* * GRAPHS Gy,40? PROPERTIES Pyees *
* SAVE GrseerProe,, * SAVED ON AUXILIARY STORAGE *
* RESET‘G'.'.'P'O.. RESET FROM AUXILIARY STORAGE. *

‘-----—---------------0.------*--------—---‘------n---m---------&

