
4

1

TECHNICAL REPORT TR-2QO
NGL 21-002-008 AN«J
N00014-67-A-0239-no21

OCT. 197?

F G R A A L

TECHNICAL DOCUMENTATION

BY

C. K. MESZTENYI
H, BREITENLOHNER
J. C. YEH

!

1
(NASA-CR-129907) FGEA
DOCUMENTATION L K! S e l z t e n e t a l
(Maryland Dniv.) Oct. 1972 55 \ csCL

N73-13198

Unclas
G3/08 50323

5
5
I

UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTE
COLLEGE PARK, MARYLAND

TECHNICAL REPORT TR-200
NGL 21-002-008 ANU
N00014-67-A-0239-n021

OCT. 197?

F G R A A L

TECHNICAL DOCUMENTATION

BY

C. K. MESZTENYI
H. BREITENLOHNER
J. C. YEH

ABSTRACT

THIS REPORT DESCRIBES THE IMPLEMENTATION OF FGRAAL» A FORTRAN
EXTENDED GRAPH ALGORITHMIC LANGUAGE (TECHNICAL REPORT TR-i?9) FOR
THE UNIVAC 1108. THE REPORT CONTAINS THE DESCRIPTION OF THE IMPLE-
MENTED DATA STRUCTURES FOR SETS» LISTS AND GRAPHS. IT SUMMARIZES
THE CHANGES MADt FOR THE RALPH COMPILER TO ACCOMODATE THE SPECIAL
STATEMENTS OF F&RAAL. IT OWES THE CALLING SEQUENCES GENERATED BY
THE CHANGED COMPILER. IT DESCRIBES THE OBJECT TIME SUBROUTINE
PACKAGE.

THIS RESEARCH WAS SUPPORTED IN PART BY THE OFFICE OF
RESEARCH UNDER GRANT N0001«*-67-A-0239-0021 (NR-QMf-Ol) , AND THE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION UNDER GRANT NGL
21-002-008.

TABLE OF CONTENTS

1. INTRODUCTION 1-1
2. HINTS FOR EFFICIENT PROGRAMMING IN FGRAAL 2-1

2.1. EFFICIENT US* OF SETS 2-1
2.2. SET EXPRESSIONS AND ASSIGNMENTS 2-2
2.3. PROPERTIES 2-3

3. FGRAAL STORAGE STRUCTURE ON THE UNIVAC 1108. 3-1
3.1. DYNAMIC STORAGE. 3-1
3.2. DATA REPRESENTATION 3-5
3.2.1. UNIVERSAL SEQUENCE AND THE PROPERTY BLOCKS 3-5
3.2.2. SETS 3-7
3.2.3. STAQUES (LISTS) 3-12
3.2.4. PROPERTIES 3-1*
3.2.5. GRAPH STRUCTURES 3-16
3.2.6. TYPE ASSIGNMENTS. 3-18
3.2.7. STRUCTURE OF HEADERS 3-19
3.3. REPRESENTATION OF A CONTRACTED GRAPH 3-20

4. EXAMPLE OF A GRAPH STRUCTURE 4-1
5. THE FGRAAL COMPILER 5-1

5.1.
5.2.
5.2.1.
5.2.2.
5.2.3.
5.2.4.
5.3.

6. COMPILER
6.1.
6.2.
6.3.
6.4.
6.5,
6.5.1.
6.5.2.
6.5.3.
6.6.
6.7.
6.7.1.
6.7.2.
6.8.
6.8.1.
6*8.2.
6.8.3.
6.9.
6.9.1.
6.9.2.
6.10.

7, LIBRARY
8, APPENDIX

THE RALPH COMPILER
MODIFICATIONS TO RALPH

DATA TYPES
IMPLEMENTATION OF NEW STATEMENTS
IMPLEMENTATION OF NEW SYNTACTIC FEATURES
HANDLING OF TEMPORARIES

OPTIMIZATION
GENERATED INSTRUCTION SEQUENCES 6-1

DECLARATION STATEMENTS
CALLING SEQUENCES
FKEEING A SET OR LIST
SET - OPERATIONS, -RELATIONS* -ASSIGNMENT
SPECIAL SET FUNCTIONS

CREATE FUNCTION
SUBSET FUNCTION
ELT, INDEX* SIZE AND PARITY FUNCTIONS

PROPERTY ASSIGNMENT AND RETRIEVAL
LIST ASSIGNMENT AND LIST FUNCTIONS

LIST ASSIGNMENT STATEMENT
LIST FUNCTIONS

GRAPH OPERATIONS
ASSIGN STATEMENT
DETACH STATEMENT
GRAPH FUNCTIONS

ITERATIVE STATEMENTS
WHILE STATEMENT
FOR ALL STATEMENT

REMOVE STATEMENTS
PROGRAMS 7-1
. SUMMARY OF FGRAAL 8-1

5-1
5-2
5-2
5-2
5-3
5-3
5-4

6-1
6-2
6-2
6-3
6-3
6-3
6-4
6-5
6-5
6-6
6-6
6-6
6-7
6-7
6-8
6-8
6-9
6-9
6-9
6-10

1-1

1. INTRODUCTION

A GRAPH ALGOHITHMIC LANGUAGE HAS BEEN DEFINED AS AN EXTENSION
OF ALGOL AND FORTRAN IN THt TECHNICAL REPORTS TR-158 AND TR-179,
RESPECTIVELY. FGRAAL» THE FORTRAN VERSION OF THIS LANGUAGE, HAS
BEEN IMPLEMENTED FOR THE UNIVAC 1108. THIS REPORT CONTAINS DE-
TAILS OF THIS IMPLEMENTATION. FOR QUESTIONS REGARDING THE DEFINI-
TION OF THE LANGUAGE AND ITS USAGE ONE SHOULD CONSULT THE TECHNI-
CAL REPORT TR-179. THE APPENDIX OF THIS REPORT CONTAINS A TABLE
SUMMARIZING THE SPECIAL FEATURES OF THE LANGUAGE,

THE UNIVAC 1108 IS A WORD ADDRESSABLE COMPUTER *ITH 35 BIT
WORDS, IT HAS PARTIAL WORD INSTRUCTIONS THUS CERTAIN DATA PACKING
INTO ONE WORD CAN BE IMPLEMENTED EFFICIENTLY. IT ALSO HAS A SET
OF MASKED SEARCH INSTRUCTIONS WHICH ARE USED FOR CERTAIN SET 0-
PERATIONS IN FGRAAL VERY EFFICIENTLY.

IN CHAPTER 2 SOME HINTS ARE GIVEN FOR ACHIEVING EFFICIENCY BOTH
IN STORAGE AND t-XECUTION TIME, BASED ON THE IMPLEMENTED DAyA STRU-
CTURE.

THE FGRAAL IMPLEMENTATION CAN BEST BE DESCRIBED IN THREE PARTS:
THE DATA STRUCTURES, THE COMPILER AND THE OBJECT TIME LIBRARY
PACKAGE. THE PHYSICAL REPRESENTATION OF DATA STRUCTURES FOR THE
VARIOUS DATA TYPES ARE SHOWN IN CHAPTER 3, WHILE CHAPTER ** GlyES A
FULL EXAMPLE OF A GRAPH ANO THE ASSOCIATED DATA STRUCTURE NECES-
SARY FOR ITS REPRESENTATION, THE FGRAAL COMPILER IS A MODIFICA-
TION OF THE RALPH COMPILER FOR FORTRAN V AND MAD. THE MAJOR CHAN-
GES IN THE COMPILER ARE DESCRIBED IN CHAPTER 5, AND CHAPTER 6
GIVES SPECIAL INSTRUCTION SEQUENCES GENERATED BY THE FGRAAL COMPI-
LER FOR THE VARIOUS FGRAAL STATEMENTS. THE OBJECT TIME LIBRARY
PACKAGE HAS BEEN WRITTEN IN UNIVAC ASSEMBLY LANGUAGE TO CUT DOWN
THE OVERHEAD. THE ROUTINES IN THE PACKAGE ARE GROUPED, AND THEY
ARE DESCRIBED IN CHAPTER 7,

WE TAKE THIS OPPORTUNITY TO THANK PROF. V. R. BASILI FOR HIS
HELP AND ADVICE IN PREPARING THIS REPORT.

2-1

2, HINTS FOR EFFICIENT PROGRAMMING IN FGRAA|_

THE READER SHOULD BE ABLE TO GAIN SUFFICIENT INFORMATION ABOUT
MODIFYING HIS PROGRAM TO ACHIEVE MAXIMUM EFFICIENCY UNDER THE
GIVEN IMPLEMENTATION BY READING THIS CHAPTER ALONE. HOWEVER TO
UNDERSTAND FULLY WHY THESE RECOMENDATIONS FOR EFFICIENCY ARE VA-
LID, THE REST OF THIS REPORT MUST BE READ.

THE PRIMARY GOAL OF FGRAAL IS THE EASY IMPLEMENTATION OF GRAPH
ALGORITHMS ARISING IN APPLICATION. USUALLY THE EASY IMPLEMENTATION
OF THE ALGORITHM ALSO MEANS THAT THE PROGRAM CAN BE EASILY DE-
BUGGED AND DOCUMENTED. UNFORTUNATELY AN EASILY IMPLEMENTED AL-
GORITHM CAN BE VERY INEFFICIENT IN MEMORY SIZE REQUIREMENTS AND IN
EXECUTION TIME, OBVIOUSLY, THE EFFICIENCY OF FGRAAL PROGRAMS DE-
PEND ON THE ARRANGEMENT OF SPECIAL DATA (SETS, PROPERTIES, ETC.)
IN THE IMPLEMENTED FGRAAL SYSTEM. THE ARRANGEMENT OF THESE DATA
ARF DESCRIBED IN THE NEXT CHAPTER, IN THIS CHAPTER, WE GIVE SOME
HINTS TO ACHIEVt EFFICIENT PROGRAMS BASED ON THE IMPLEMENTED DATA
STRUCTURE IN FGRAAL,

GENERALLY WE SUGGEST THAT THE PROGRAM BE WRITTEN AND DEBUGGED
WITH AN EFFICIENT IMPLEMENTATION IN MIND. THIS DOES NOT MEAN THAT
THE FIRST VERSION BE AS EFFICIENT AS POSSIBLE, ONLY THAT IT LEND
ITSELF TO EASY IMPROVEMENT. ONCE A PROGRAM IS DEBUGGED, THE EFFI-
CIENCY OF THE PROGRAM CAN »E IMPROVED BY INSERTING FORTRAN EQUIVA-
LENCE AND DEFINE STATEMENTS, LINEAR ARRAYS AND SOME CHANGE OF THE
ORIGINAL PROGRAM. THESE TYHES OF IMPROVEMENT WILL BE ILLUSTRATED
IN THE FOLLOWING SECTIONS.

2,1. EFFICIENT USE OF SETS

* STORAGE CAN BE SAVED DURING EXECUTION
* OF A PROGRAM IF SETS ARE MADE EMPTY
* AS SOON AS THEY «RE NOT NEEDED.

THIS IS BECAUSE EACH SET WITH NO ELEMENT (EMPTY) OR WITH ONE ELE-
MENT (ATOMIC) USES ONLY ON* MEMORY LOCATION WHICH wAS ASSIGNED TO
IT BY THE COMPILER.

* IT IS ADVANTAGEOUS TO KEEP THE NUMBER
* OF NOT EMPTY OR ATOMIC SETS UNDER 15
* AT ANY TIME DURING EXECUTION.

SETS WITH TWO OR MORE ELEMENTS ARE REPRESENTED IN EITHER COLUMN
OR BLOCK FORM (SEE NEXT CHAPTER FOR DETAILS). THE COLUMN FORM
REPRESENTATION OF SETS ARE ATTACHED TO THE UNIVERSAL SEQUENCE AND
AS SUCH THEY DO NOT REQUIRE EXTRA STORAGE SPACE. FGRAAL PROVIDES
UP TO 15 SETS TO BE REPRESENTED IN COLUMN FORM. AS SOON AS MORE

2-2

THAN 15 SETS HAVE TWO OR MORE ELEMENTS* SOME OF THE SETS WILL
AUTOMATICALLY et TRANSFORMED INTO SLOCK FORM. A SET WITH N ELE-
MENTS OCCUPIES 2*N/3 MEMORY LOCATIONS WHEN IT IS IN BLOCK FORM.
THE RESULT OF A SET OPERATION IS ALWAYS PLACED IN COLUMN FORM
UNLESS IT IS EMPTY OR ATOMIC. SINCE SETS IN BLOCK FORM OCCupY
EXTRA SPACE AND REQUIRE EXTRA TIME TO GET THEM INTO THIS FORM, ONE
AVOIDS THIS OVERHEAD BY KEEPING THE NUMBER OF NOT EMPTY OR ATOMIC
SETS UNDER 15 AT ANY TIME CURING EXECUTION.

ONE CAN KEEP DOWN THE NUMBER OF SETS BY USING EQUIVALENCE STA-
TEMENTS, E.G. ASSUME THAT THE SETS S AND T ARE USED IN TWO
NON-OVERLAPPING SEGMENTS 0»- A PROGRAM. AFTER DEBUGGING THE PRO-
GRAM, ONE' CAN MAKE THE TWO SETS EQUIVALENT BUT STILL KEEP THEIR
NAME:

SET S , T
EQUIVALENCE (S,T)
(SEGMENT 1 USES S)
(SEGMENT 2 "SES T)

2.2. SET EXPRESSIONS ANU ASSIGNMENTS

* THE MODIFICATION OF A SET BY OTHER SETS
* IS MOST EFFICIENTLY IMPLEMENTED BY A
* SEQUENCE OF SIMPLE SET ASSIGNMENT OF THE
* FORM S s S .OP. X , RATHER THAN BY USE
* OF A COMPLEX EXPHESSION.

THE PRESENT IMPLEMENTATION OF FGRAAL DOES NOT MAKE ANY ATTEMPT
TO OPTIMIZE THE EVALUATION OF COMPLEX SET EXPRESSIONS. E.G. THE
SET EXPRESSION

(S .DF. X) .UN. Y

IS EVALUATED FIRST BY USING A TEMPORARY SET T» FOR

S .DF. X —> T»

ANI5 THE FINAL RtSULT IS OBTAINED BY THE EVALUATION OF

T» .UN. Y

A VERY FREQUENTLY OCCURING SET ASSIGNMENT STATEMENT IS RECOG-
NIZED BY THE FGRAAL COMPILER. THIS STATEMENT,

S = S .OP. *

MODIFIES A SET S WITH AN OTHER SET X BY TAKING THE UNION, DIF-
FERENCE, INTERSfcCTION OR SYMMETRIC SUM OF THEM, I.E. OP IS ANY

2-3

ONE OF UN, OF, IT OR SM. THIS STATEMENT IS IMPLEMENTED SUCH THAT
THE RESULT OF THE SET EXPRFSSIQN, S.OP.X, IS GENERATED IN THE
SPACE PROVIDED FOR S. THIS FEATURE OF FGRAAL MAKES IT MORE EFFI-
CIENT TO USE MOKE STATEMENTS INSTEAD OF ONE STATEMENT WITH COMPLEX
EXPRESSION. E.G. THE EXECUTION OF THE TWO STATEMENTS,

S = S i.DF. *
S = S .UN. Y

IS MORE EFFICIENT THEN THE EXECUTION OF THE COMBINED STATEMENT

S s (S .OF, X) .UN. Y

2.3, PROPERTIES

* USING FORTRAN ARKAYS FOR STORING
* PROPERTY VALUES CAN BE MORE EFFICIENT
* THAN USING DECLAKED PROPERTIES.

IN THE IMPLEMENTED FGRAAL DATA STRUCTURE* THE PROPERTY VALUES
WITH PROPERTY IDENTIFIERS ARE LINKED TO THE ELEMENTS IN THE UNI-
VERSAL SEQUENCE. THIS REQUIRES TWICE AS MANY MEMORY LOCATIONS AS
THE ACTUAL MEMQKY SPACE NEEDED TO STORE THE PROPERTY VALUES ONLY.
THE RETRIEVAL AND MODIFICATION OF A PROPERTY VALUE OF AN ELEMENT
IS ACCOMPLISHED BY A SEARCH IN THE LINKED PROPERTY BLOCKS OF THE
ELEMENT. CLEARLY, THIS REQUIRES MUCH MORE TIME THEN THE RETRIEVAL
AND MODIFICATION OF PROPERTY VALUES IF THEY COULD BE ARRANGED IN A
FORTRAN TYPE OF LINEAR ARRAY. SINCE THE ELEMENTS OF THE UNIVERSAL
SEQUENCE ARE IDENTIFIED BY POSITIVE INTEGERS, ATOMIC SETS CAN BE
USED AS INDICES FOR DIMENSIONED VARIABLES. THIS FEATURE OF FGRAAL
MAKES IT POSSIBLE TO CHANGE PROPERTY VARIABLES INTO FORTRAN TYPE
DIMENSIONED VARIABLES TO ACHIEVE BETTER EFFICIENCY,

THERE ARE SOME RESTRICTIONS ON THE USE OF LINEAR ARRAYS FOR
PROPERTIES:

(1) THE USE OF LINEAR AWRAYS FOR PROPERTY VALUES DEFINES THE
PROPERTY FOR ALL VALID INDEX VALUES CORRESPONDING TO ELEMENTS IN
THE UNIVERSAL StQUENCE. A SPECIAL VALUE MUST BE USED IF ONE WANTS
TO MAKE DISTINCTION FOR UNUEFINED PROPERTY FOR AN ELEMENT IN THIS
REGION.

(2) THE ELEMENTS FOR WHICH THE PROPERTY IS DEFINED SHOULD OCCU-
PY A CONTIGUOUS AREA IN THF. UNIVERSAL SEQUENCE IF A LINEAR ARRAY
IS USED. FURTHERMORE, THE FIRST OF THESE ELEMENTS, AND THE SIZE OF
THE REGION SHOULD BE KNOWN.

WITH THESE RESTRICTIONS IN MIND, ONE COULD ATTEMPT TO CHANGE A
DEBUGGED FGRAAL PROGRAM TO ACHIEVE HIGHER EFFICIENCY. THE STEPS TO

BE TAKEN FOR THIS CHANGE ARE AS FOLLOWS:
ASSUME THAT THE PROPERTY P IS USED FOR ELEMENTS IN A CONTIGUOUS

ARFA OF THE UNIVERSAL SEQUENCE. THE FIRST OF THESE ELEMENTS IS Xl»
AND THE SIZE OF THIS AREA IS NX.

THEN REPLACE THE ORIGINAL DECLARATION STATEMENT

PROPERTY P

WITH THE FOLLOWING TWO STATEMENTS

DIMENSION PA(NX)
DEFINE PCX) = PA(X-Xl-U)

ANY APPEARANCE OF THE STATEMENT,

RtMOVE P

MUST BE REPLACED WITH A SMALL LOOP

DO ZZZ 1=1,NX
ZZZ PA(I) = V

WHERE V IS A SPtClALLY DEFINED VALUE FOR 'UNDEFINED' PROPERTY. IN
THIS CASE, THE SPECIAL FUNCTION,

CHECK<P,X)

SHOULD BE REPLACED BY THE EXPRESSION

p(X) .NE. v

3-1

3, F6RAAL STORAGE STRUCTURE ON THE UNIVAC 1108.

THIS CHAPTER DESCRIBES THE REPRESENTATION OF THE SPECIAL DATA
STRUCTURES DURING THE EXECUTION OF AN FGRAAL PROGRAM. IN SECTION
1, THE DYNAMIC STORAGE IS INSCRIBED. THIS STORAGE HOLDS ALL THE
SPECIAL DATA OF THE FGRAAL PROGRAMS, EXCEPT FOR THE HEADERS CORRE-
SPONDING TO THE DECLARED VARIABLES: SETS, LISTS, PROPERTIES AND
GRAPHS. SECTION 2 DESCRIBES THE REPRESENTATION OF THE UNIVERSAL
SEQUENCE, AND THE SETS* LISTS, PROPERTIES AND GRAPHS IN THE DYNA-
MIC STORAGE. SECTION 3 SHOWS THE REPRESENTATION OF A CONTRACTED
GRAPH, THAT IS, THE GRAPH REPRESENTATION MODIFIED BY THE LIBRARY
ROUTINE CONTR.

3.1. DYNAMIC STORAGE.

THE DYNAMIC STORAGE AREA IS THE WORKING SPACE OF THE FGRAAL
SYSTEM AND IT IS A CONTIGUOUS ARRAY OF COMPUTER WORDS WHERE ALL
DATA VALUES EXCtPT THOSE ASSIGNED BY THE COMPILER ARE STORED. THE
SIZE OF THIS STORAGE AREA VARIES AND CAN BE OPTIONALLY DESIGNATED
BY THE USER. LOGICALLY SPEAKING, THE DYNAMIC STORAGE AREA CAN BE
SUBDIVIDED INTO THREE DYNAMIC, VARIABLE-SIZED PORTIONS. THE UPPER
PORTION IS THE UNIVERSAL SEQUENCE, THE MIDDLE PORTION IS THE
UNUSED STORAGE AREA AND THE LOWER PORTION IS THE LINKED-BLOCK
AREA, THE TWO END PORTIONS, STARTING FROM THE TWO END BOUNDARIES
OF THE DYNAMIC STORAGE ARE* EXPAND THEIR SIZES BY SEIZING STORAGE
FROM THE MIDDLE PORTION. WHENEVER THESE TWO END-PORTIONS MEET
(AND THE MIDDLE PORTION DISAPEARS) THE AVAILABLE STORAGE IN THE
DYNAMIC STORAGE AREA IS EXHAUSTED AND PROGRAM EXECUTION Is TER-
MINATED WITH AN APPROPRIATE MESSAGE.

IN FGRAAL, FKOM THE DATA STRUCTURE POINT OF VIEW* THERE ARE TWO
TYPES OF STORAGt STRUCTURE ! (1) LINEAR ARRAY, (2) LINKED-BLOCK.
THE LINEAR ARRAY IS USED MAINLY FOR THE REPRESENTATION OF THE
UNIVERSAL SEQUENCE, WHILE THE LINKED-BLOCK STRUCTURE IS USED FOR
THE REPRESENTATION OF ALL OTHER TYPES OF DATA (E.G. STAOuE, GRAPH,
PROPERTY, ETC.). THE LINEAR ARRAY (OR THE UNIVERSAL SEQUENCE) IS
LOCATED ON THE UPPER PORTION OF THE DYNAMIC STORAGE AREA, THE
LINKED-BLOCKS AKE LOCATED ON THE LOWER PORTION OF THE DYNAMIC
STORAGE AREA. HOWEVER, THE STORAGE MANAGEMENT ROUTINE KEEPS TRACK
OF THE STORAGE ALLOCATED TO EACH PORTION AND PREVENTS THEM FROM
OVERLAPPING INTO EACH OTHE*. THE STORAGE MANAGEMENT ROUTINE ALSO
MAINTAINS A SET OF GLOBAL POINTER VARIABLES WHICH ARE UPDATED
WHENEVER THE STATUS OF THE DYNAMIC STORAGE CHANGES, THE VALUES OF
THESE POINTERS ARE EITHER RELATIVE OR ABSOLUTE ADDRESSES. A RELA-
TIVE ADDRESS, i» REFERS TO THE LOCATION OF D<D, WHERE ARRAY o is
THE DYNAMIC STOWAGE AREA, AN ABSOLUTE ADDRESS REFERS TO THE AC-

3-2

TUAL LOCATION IN THE COMPUTER MEMORY. THE INITIAL (I.E. BEFORE
ANY DATA IS CREATED) VALUES OF THESE POINTERS ARE AS FOLLOWS *.
(NOTE : LOC(A) DENOTES THE ABSOLUTE LOCATION OF VARIABLE A).

NAME INITIAL VALUE

NU - LAST ELEMENT CREATED 0
ND - SIZE OF THE DYNAMIC STORAGE OPTION X 4Q96
NF - FIRST AVAILABLE BLOCK LOC(D(ND-D)
NL - LAST AVAILABLE BLOCK LOC(D(ND-D)
D - DYNAMIC STORAGE* D(I),Irl,..,ND D(ND-1)=Q

INITIALLY* THE ENTIRE DYNAMIC STORAGE AREA CAN BE VlEwED AS A
LARGE UNUSED BLOCK. WHENEVER A NEW UNIVERSAL ELEMENT IS CREATED
BY THE EXECUTION OF »CREATt« STATEMENTS* ONE COMPUTER WORD IS
CARVED OUT FROM THE TOP OF THIS BLOCK AND THE POINTER NU IS INCRE-
MENTED BY 1. THE CREATION OF NEW ELEMENTS MAYBE CONTINUED UNTIL
THE LOC(D(NU» IS EQUAL TO NL. (I.E. THE AVAILABLE SPACE IS EXHAU-
STED) THE ALLOCATION OF 2-WORD BLOCKS IS CARRIED OUT BY TAKING
AWAY THE BOTTOM TWO WORDS FROM THE UNUSED BLOCK. WHENEVER A BLOCK
IS RELEASED (I.E. AVAILABLE FOR OTHER USES) IT IS LINKED TOGETHER
TO FORM A SINGLELY-LINKED AVAILABLF-BLOCK LIST WITH NF AS ITS LIST
HEADER. THE SUBSEQUENT REOUESTS .FOR A 2-WORD BLOCK WILL BE SATIS-
FIED THROUGH THE ALLOCATION OF A BLOCK FROM THIS AvAlLABLE-BLOCK
LIST. THE NEW BLOCK WILL NOT BE CREATED OUT OF THE UNUSED PORTION
OF THE DYNAMIC STORAGE ARE* UNTIL THE AVAILABLE-BLOCK LIST IS
EXHAUSTED, IN OTHER WORDS* THE STORAGE MANAGEMENT ROUTINE TRIES
TO SATISFY THE REQUEST FOR A 2-WORD BLOCK BY ASSIGNING AN EXISTING
AVAILABLE BLOCK BEFORE AN ATTEMPT is MADE TO ALLOCATE A NEW BLOCK.
THE ALGORITHM FOR ALLOCATING A 2-WORD BLOCK (WHICH IS TO BE POIN-
TED TO BY »AVAIL») IS AS FOLLOWS J (NOTE ! LINK(A) DENOTES THE
CONTENTS OF THE LINK FIELD OF VARIABLE A)

1. THE AVAILABLE-BLOCK LTST IS NOT EMPTY
IF (NF = 0) TH*N GO TO 2,
ELSE

AVAIL = NF
LINK(NF) = LINK(LINKtNF))
RETURN

2. THE AVAILABLE-BLOCK LTST IS EMPTY* CHECK THE UNUSED PORTION
IF (NL < LOC(D(Ni'M+2 > THEN GO TO 3,
ELSE

AVAIL = NF
LINK(NF) = LOC(NF)-2
NL = LINK(NF)
RETURN

3. THE AVAILABLE SPACE IS EXHAUSTED
OUTPUT MESSAGE

3-3

TERMINATE PROGRAM

THE ALGORITHM TO FREE A 2-WORO BLOCK <D(K), D(K+1M IS !

1, LINK THE 2-WORD BLOCK INTO THE AVAILABLE-BLOCK LIST
LINK(D(K)) = LINK(NF)

i

2, UPDATE THE LIST HEADED, NF
LINK(NF) = LOC(D(K))
RETURN

THE SCHEMATIC DIAGRAM OF THE DYNAMIC STORAGE AR£A IS GIVEN IN
FIGURE 1. (K1,K2»...»KM ARF BLOCKS IN THE AVAILABLE-BLOCK LIST).

3-**

FIGURE 1. DYNAMIC STORAGE AREA.

3-5

3.2, DATA REPRESENTATION

ALL LINKS BETWEEN THE BLOCKS REPRESENTING DATA ARE WITH ABSO-
LUTE ADDRESSES tXCEPT REFERENCES TO THE ELEMENTS IN THE UNIVERSAL
SEQUENCE WHERE THEIR RELATIVE ADDRESSES ARE USED, E.G. '!» REFERS
TO THE ELEMENT IN THE UNIVERSAL SEOUENCE D(D.

3.2.1. UNIVEKSAL SEQUENCE AND THE PROPERTY BLOCKS

THE UNIVERSAL SEQUENCE IS A SEQUENCE OF ELEMENTS GENERATED BY
THE FGRAAL 'CREATE' FUNCTIONS. IT IS THE UNION OF ALL SET ELE-
MENTS IN THE FGHAAL SYSTEM (E.G. NODES(G), ARCS(G), ELEMENTS OF
ANY SET), HENCE IT IS CALLED THE UNIVERSAL SEQUENCE. THIS SE-
QUENCE IS IMPLEMENTED AS A LINEAR ARRAY LOCATED ON THE UPPER END
OF THE DYNAMIC STORAGE AREA* D(I), 1=1,2,...»NU. EACH MEMORY WORD
IN THIS ARRAY, CALLED AN ELEMENT ID WORD, REPRESENTS ONE ELEMENT
IN THE UNIVERSAL SEQUENCE. THE RELATIVE LOCATION OF AN ELEMENT IN
THIS SEQUENCE IS CALLED ITS UNIVERSAL SEQUENCE NUMBER. DIFFERENT
TYPES OF PROPERTIES MAYBE ASSIGNED TO AN ATOMIC SET (HENCE TO ITS
ONLY ELEMENT IN THE SET) BY THE PROPERTY ASSIGNMENT OR CONDITIONAL
'CREATE' STATEMtNTS IN FGRAAL. THE PROPERTIES ASSOCIATED WITH AN
ELEMENT ARE IMPLEMENTED AS A PROPERTY-RING WHERE ITS ELEMENT ID
WORD IS A RING HEADER AND PROPERTY BLOCKS ARE THE RING ELEMENTS.

EACH ELEMENT ID WORD IS DIVIDED INTO TWO HALFWORD FIELDS. THE
LEFT HALF OF THfc ELEMENT It' WORD IS RESERVED FOR THE REPRESENTA-
TION OF SETS IN COLUMN FORM (SEE SETS). THE RIGHT HALF OF THE
ELEMENT ID WORD CONTAINS THE ADDRESS POINTER TO A LINKED LIST OF
PROPERTY BLOCKS WHICH IS ASSOCIATED WITH THIS ELEMENT (IF THERE IS
ONE), OR THE COMPLEMENT OF ITS UNIVERSAL SEQUENCE NUMBER TO SIGNI-
FY THE NONEXISTENCE OF THE PROPERTY LIST. THE LINK FIELD OF THE
LAST PROPERTY BLOCK ON THE PROPERTY LIST CONTAINS THE COMPLEMENT
OF THE UNIVERSAL SEQUENCE NUMBER (WHICH POINTS INDIRECTLY TP THE
ELEMENT ID WORD). THE COMPLEMENT IS NECESSARY TO SIGNIFY THE END
OF A PROPERTY LIST, THE ELEMENT ID WORD TOGETHER WITH ITS ASSO-
CIATED PROPERTY-LIST FORM A PROPERTY-RING WHERE ELEMENT ID WORD IS
ITS RING HEADER. FIGURE 3 SHOWS THE LAYOUT OF THE UNIVERSAL SE-
QUENCE AND THE PROPERTY BLOCK LISTS.

3-6

UNIVERSAL SEQUENCE
* *

PROPERTY BLOCKS

D(J)

D(K)

*

*

*

*

* AH

* AJl

* -K

*

*

*
*

*

*
*

*

*

All

* * AI2 *

AJl

* * Ajg *

.,,

...

* * -I *

AJN

* * -J *

FIGURE 3. UNIVERSAL SEQUENCE AND PROPERTY BLOCKS

3-7

3.2,2. SETS

IN THE FGRAAL SYSTEM, THERE ARE THREE CATEGORIES OF SETS :
EMPTY, ATOMIC, AND COMPOSITE. AN EMPTY SET IS A SET WHICH CON-
TAINS NO ELEMENTS. AN ATOMIC SET IS A SET WHICH CONTAINS EXACTLY
ONE ELEMENT. A COMPOSITE SET IS A SET WHICH IS THE UNION OF A
NUMBER OF ATOMIC SETS. SETS, REGARDLESS OF THEIR CATEGORIES, ARE
ALWAYS REPRESENTED WITH A SET HEADER. IF A SET IS EMPTY OR A-
TOMIC, IT WILL BE REPRESENTED BY A SET HEADER ALONE. HOwEvER, IF
A SET IS A COMPOSITE SET THEN IT WILL BE REPRESENTED BY A SET
HEADER TOGETHER WITH A LIST OF SET ELEMENTS. THERE ARE TWO WAYS
OF REPRESENTING A LIST OF SET ELEMENTS : <1) LINKED-BLOCK REPRE-
SENTATION AND (2) COLUMN REPRESENTATION. A SET WHOSE ELEMENTS ARE
REPRESENTED IN THE LINKED-HLOCK FORM IS SOMETIMES CALLED BLOCK
SET. A SET REPRESENTED IN COLUMN FORM IS SOMETIMES CALLED COLUMN
SET.

THE SET HEADtR OF A DECLARED SET IS A MEMORY WORD ASSIGNED BY
THE COMPILER, WHICH IS LOCAL TO THE SUBPROGRAM WHERE IT HAD BEEN
DECLARED. DURING THE PROGRAM EXECUTION, THE LOCATION OF THIS
ASSIGNED MEMORY WORD <OR SET HEADER) BECOMES THE UNIQUE IDENTIFIER
FOR THE ASSOCIATED, DECLARED SET. THE CONTENTS OF THE SET HEADER
IDENTIFIES ITS ASSOCIATED SET AS : EMPTY, ATOMIC, QR COMPOSITE.
FOR A COMPOSITE SET, THERE IS A LIST OF SET ELEMENTS ASSOCIATED
WITH ITS SET HEADER. THE LINKED-BLOCK REPRESENTATION CONSISTS OF
SINGLY LINKED 2-WORD BLOCKS WHICH CONTAIN THE SET ELEMENTS. THE
COLUMN REPRESENTATION CONSISTS OF THREE MAJOR COMPONENTS : (1)
ASSIGNMENT OF A COLUMN POSITION IN THE UNIVERSAL SEQUENCE TO THIS
SET, (2) SETTING OF THE ASSIGNED COLUMN POSITION IN THE UNIVERSAL
ELEMENT TO INDICATE THE ELEMENT IS ALSO CONTAINED IN THIS SET, AND
(3) SUPPLEMENTAL INFORMATION CONCERNING THIS SET (E.G. NO OF
ELEMENTS, FIRST AND LAST ELEMENT, ETC.). IF A SET IS EMPTY OR
ATOMIC THEN IT IS SUFFICIENT TO REPRESENT THE SET SOLELY BY ITS
ASSOCIATED SET HEADER. THE REPRESENTATIONS OF THESE SETS ARE
GIVEN IN FIGURE <*. THE EMPTY SET IS REPRESENTED BY A SET HEADER
CONTAINING ALL O'S. THE ATOMIC SET WITH THE ELEMENT WHOSE UNIVER-
SAL SEQUENCE NUMBER is It IS REPRESENTED BY A SET HEADER WHICH
CONTAINS THE NUMBER I IN ITS RIGHT HALF.

3-8

EMPTY SET * 0 *

ATOMIC SET * 0 * I *

(ELEMENT I) *********************

FIGURE <*. EMPTY AND ATOMIC SET

"FOR A COMPOSITE SET* THF. SET HEADER is DIVIDED INTO TWO HALF-
WOHD FIELDS. THE LEFT HAL*' CONTAINS THE ADDRESS POINTER TO THE
LIST OF SET ELEMENTS BELONGING TO THIS SET» WHILE THE RIGHT HALF
CONTAINS O'S. THE LIST OF SET ELEMENTS REPRESENTED IN
LINKED-BLOCK FORM ARE ARRANGED IN A SINGLELY-LINKED LIST CONSI-
STING OF 2-WORD BLOCKS. E«CH 2-WORD BLOCK IS SUBDIVIDED INTO H
HALFWORD FIELDS* THE SECOND HALFWORD FIELD (OR THE RIGHT HALF OF
THF FIRST WORD) IS THE LINK FIELD WHICH CONTAINS ADDRESS POINTER
TO THE NEXT 2-WORD BLOCK (IF THERE IS ONE) OR IT CONTAINS OfS, IF
THJS BLOCK IS THE LAST ONE ON THE LINKED LIST. THE REMAINING
THREE FIELDS OF EACH BLOCKt CALLED ELEMENT FIELDS* CONTAIN SET
ELEMENTS. THE SET ELEMENTS ARE ARRANGED IN THE ORDER OF THEIR
UNIVERSAL SEQUENCE NUMBER. THE ELEMENTS WITH SMALLER UNIVERSAL
SEQUENCE NUMBERS ARE STORED FIRST. THE SEQUENCE IN WHICH THE
ELEMENT FIELDS ARE UTILIZE!' IS I FIRST,THIRD, FOURTH (OR EQUIVA-
LENTLY» LEFT HALF OF THE FIRST WORD, LEFT HALF OF THE SECOND WORD,
AND RIGHT HALF OF THE SECOND WORD). WHEN THE NUMBER OF ELEMENTS
IN A SET IS NOT DIVISIBLE HY THREE, THE LAST BLOCK WILL CONTAIN
UNUSED ELEMENT FIELD(S). THE UNUSED ELEMENT FIELDS ARE ZERO TO
DENOTE THEIR EMPTINESS. AM EXAMPLE OF A BLOCK SET IS SHOWN IN
FIGURE 5.

3-9

SET HEADER * Al * 0 *

Al * II * A2 *

————— ** 12 * 13 *

A2 * U * A3 *

..—-———— -** 15 * 16 *

AK * IN * 0 *

-- .- ** 0 * 0 *

FIGURE 5. SET IN BLOCK FORM CONTAINING ELEMENTS
II < 12 < ... < IN

IF THE LIST OF SET ELEMENTS IS REPRESENTED IN COLUMN FORM, THE
LOCATION POINTEU TO By ITS SET HEADER IS A 2-WORD BLOCK* CALLED
THE SET INFOR BLOCK, WHICH CONTAINS INFORMATION CONCERNING ITS SET
ELEMENTS. THE INFOR BLOCK IS SUBDIVIDED INTO if HALFWORD FIELDS *.
(1) COUNT, (2) COLUMN JNDE*, (3) FIRST AND U> LAST. THE COUNT
FIELD CONTAINS THE COMPLEMENT OF THE NUMBER OF TOTAL ELEMENTS IN
THE SET, THE COMPLEMENT OF THE COUNT IS NECESSARY FOR THE PURPOSE
OF DISTINGUISHING A COLUMN FORM REPRESENTATION FROM THE
LINKED-BLOCK FOKM REPRESENTATION. THE COLUMN INDEX FIELD CONTAINS
AN INTEGER K» 0 < K < 16» WHICH INDICATES THE ASSIGNMENT OF COLUMN
K IN THE UNIVERSAL SEQUENCE TO THIS SET. THE RIGHTMOST COLUMN OF
THE LEFT HALF OF THE UNIVERSAL SEQUENCE IS DENOTED AS COLUMN 1,
WHILE THE LEFTMOST COLUMN (OR SIGN BIT) IS DENOTED AS COLUMN 18
(NOTE: THE LEFTMOST THREE COLUMN POSITIONS ARE NOT USED F0« RE-
PRESENTING SETS). THE UNIVERSAL ELEMENT HAS ITS K.TH COLUMN SET
TO 1 IF AND ONLY IF IT ALSO BELONGS TO THE SET WHICH HAS COLUMN K
ASSIGNED TO IT. THE FIRST AND LAST FIELDS CONTAIN THE UNIVERSAL
SEQUENCE NUMBER OF THE FIRST AND LAST ELEMENT OF THE SET, RESPEC-
TIVELY.

3-10

FOR EACH COLUMN K <0<K<16) THERE ARE TWO INFORMATION WORDS,
CUK) AND C2(K)» ASSOCIATED WITH IT. THE ARRAyS Cl AND C2 CONTAIN
INFORMATION FOR MANAGING THESE 15 COLUMNS, IF COLUMN K IS NOT
ASSIGNED TO ANY SET, THE RIGHT HALF OF Cl(K) CONTAINS A COLUMN
NUMBER WHICH IS THE NEXT F*EE (UNASSIGNED) COLUMN, OR IT CONTAINS
O'S TO INDICATE THAT THIS IS THE LAST FREE COLUMN. THIS Is» IN
FACT, A LINKED LIST OF AVAILABLE COLUMN SPACES. HOWEVER, IF CO-
LUMN K IS CURRENTLY ASSIGNED TO A SET, THEN THESE TWO WORD CONTAIN
INFORMATIONS AS FOLLOWS I <1) LEFT HALF OF C1(K) CONTAINS AN AD-
DRESS POINTER TO THE »INFO« BLOCK», <2) RIGHT HALF OF C1(K),
CALLED TIME FIELD, CONTAINS A GLOBAL REFERENCE COUNT VALUE WHICH
RANKS SETS BY THEIR LATEST USE, AND (3) C2<K) IS SUBDIVIDED INTO
SIX SIXTHWORD FIELDS. THE FIRST SIXTHWORD OF C2(K) IS THE USE-TAG
FIELD WHICH IS SET TO ONE WHENEVER THE SET IS USED IN THE CURRENT
OPERATION. THE SECOND S2XTHWORD FIELD IS THE PROPERTY-TAG FIELD
WHICH IS SET TO ONE IF THE SET IS REPRESENTING NODES(G), ARCS<G),
OR DOMAIN(P). THE REMAINING H FIELDS OF C2(K) ARE NOT USED AND
ARE AVAILABLE FOR FUTURE EXPANSION. AN EXAMPLE OF A COLUMN SET IS
SHOWN IN FIGURE 6.

3-11

SET HEADER

* -A * 0 *

* -N * J *

-»——..— »* FIRST * LAST *

C1(J)

UNIVERSAL SEQUENCE

* .A * TIME *
*_....—-*_—-—.-*
* U* P* * *

«•*<-)«. ,21

*
*
*
*
*
*

0
1
1
0

*
*

FIGURE- 6. SET IN COLUMN FORM

THE RESULTS OF SET OPERATIONS MUST BE STORED IN COLUMN FORM (IN
ORDER TO SPEED UP THE SET OPERATION). SINCE A TOTAL OF 15 COLUMN
SETS MAY EXIST IN THE SYSTEM AT ANY ONE GIVEN TIME, A MANAGEMENT
SCHEME IS REOUIKED TO TRANSFER SETS FROM COLUMN FORM TO BLOCK FORM
IN ORDER TO MAKfc COLUMN SP«CE AVAILABLE, TO PREVENT THE TRANSFER
OF A COLUMN SET WHICH IS CURRENTLY BEING USED THE USE-TAG FILED
ASSOCIATED WITH THIS COLUMN SET is CHECKED. TO PREVENT THE TRANS-
FER OF THE SET OF NODES(G) OR ARCS(G) TO A BLOCK FORM (WHICH WOULD
PRODUCE A SECOND LINKED LIST COPY OF THIS SET WHICH ALREADY EXISTS
IN PROPERTY BLOCKS) THE PROPERTY-TAG FIELD ASSOCIATED WITH THIS
COLUMN SET IS CHECKED.

DURING THE PROGRAM EXECUTION* A GLOBAL COUNTER IS MAINTAINED
(FOR COLUMN SETS REFERENCES), WHENEVER ANY COLUMN SET (SAY WITH
COLUMN INDEX K) IS REFERENCED (E.G. DURING SET OPERATIONS) THE
GLOBAL COUNTER IS INCREMENTED BY ONE AND ITS UPDATED VALUE IS
STORED INTO THE RIGHT HALF OF CHK) (THE TIME FIELD). IF A RE-

3-12

QUEST FOR A COLUMN IS RECOGNIZED AND THERE IS NO FREE COLUMN AVAI-
LABLE* THE COLUMN MANAGEMENT ROUTINE WILL SELECT ONE COLUMN SET
AND TRANSFER IT TO BLOCK FORM, THE COLUMN SET WITH MINIMUM VALUE
IN THE TIME FIELD AND WHOS* USE-TAG IS NOT SET TO ONE WILL BE
SELECTED. THE COLUMN NUMBER ASSOCIATED WITH THIS SELECTED SET
WILL THEN BE USED TO SATISFY THE OUTSTANDING COLUMN REQUEST.

3.2.3. STAQUES (LISTS)

THE STAQUE (OR LIST) IS ONE OF THE NEW DATA STRUCTURES INTRO-
DUCED IN THE FGKAAL. FROM THE STORAGE STRUCTURE POINT OF VIEW
THERE ARE THREE DIFFERENT CATEGORIES OF STAQUEs : (1) SINGLE WORD
-LOGICAL* INTEGER AND REAL TYPES OF STAQUE » (2) DOUBLE WORD —
DOUBLE PRECISION AND COMPLEX TYPES OF STAQUE. AND (3) VARIABLE
SIZE — SET TYPt OF STAQUE. STAQUES. REGARDLESS OF THEIR DATA
TYPES. ARE ALWAYS REPRESENTED BY A STAQUE HEADER AND A CIRCULAR
DOUBLY-LINKED LIST OF ITS STAQuE ELEMENTS.

THE STAQUE HtAOER OF A DECLARED STAQUE IS A MEMORY WORD AS-
SIGNED BY THE COMPILER. WHICH IS LOCAL TO THE SUBPROGRAM WHERE IT
HAD BEEN DECLARED. DURING THE PROGRAM EXECUTION, THE ADDRESS OF
THIS MEMORY WORU BECOMES THE UNIQUE IDENTIFIER OF THE ASSOCIATED
STAQUE. THE STAQUE HEADER CONTAINS TWO HALFWORD FIELDS. THE LEFT
HALF OF THE STAQUE HEADER CONTAINS THE ADDRESS POINTER TO THE
LINKED LIST OF ITS STAQUE ELEMENTS. THE RIGHT HALF OF THE HEADER
IS THE TYPE FIELD WHICH CONTAINS THE DATA TYPE IDENTIFIER oF ITS
ASSOCIATED STAQUE.

THE STAQUE ELEMENTS ARE ARRANGED IN THE FORM OF A CIRCULAR
DOUBLY-LINKED LIST CONSISTING OF 2-WORD BLOCKS, THE FIRST WORD OF
THE: 2-woRD BLOCK is DIVIDED INTO TWO HALFWORD LINK FIELDS. THE
LEFT HALF IS THt BACKWARD LINK FIELD POINTING TO THE PREVIOUS
BLOCK AND THE RIGHT HALF IS THE FORWARD LINK FIELD POINTING TO THE
NEXT BLOCK. THt FIRST AND LAST BLOCKS OF THE STAOuE ELEMENT LIST
ARE: LINKED TOGETHER CIRCULARLY (I.E. THE BACKWARD POINTER OF THE
FIRST POINTS TO THE LAST AND THE FORWARD POINTER OF THE LAST
POINTS TO THE FIRST), THE SECOND WORD OF THE 2-WORD BLOCK CON-
TAINS DIFFERENT INFORMATION DEPENDING ON THE DATA TYPE OF ITS
STAQUE, FOR THE DATA TYPES IN THE SINGLE WORD CATEGORY. IT CON-
TAINS THE DATA VALUE OF THE ELEMENT, FOR THE SET DATA TyPE» IT
CONTAINS THE SET HEADER, FOR THE DATA TYPES IN THE DOUBLE WORD
CATEGORY, IT CONTAINS THE ADDRESS POINTER TO ANOTHER 2-WQRD BLOCK
WHICH, IN TURN, CONTAINS T«E DATA VALUES OF THE ELEMENT. THE
REPRESENTATION OF DIFFERENT CATEGORIES OF THE STAOuES ARE GIVEN IN
FIGURE 7,

3-13

LOGICAL, INTEGER, REAL TYPES OF LISTS:

LIST HEADER

* Kl * TYPE*

Kl

* KN * K2 *

* VALUE *

K2

* Kl * K3 *

———..** VALUE *

KN

*.. * KN-1* Kl *
.......«_-*
* VALUE *

SET TYPE OF LISTS.*

LIST HEADER

* Kl * TYPE*

Kl

* KN * K2 *

*SET HEADER *

K2

* Kl * K3 *
.—..—.*
*SET HEADER *

KN

.. * KN-J* Kl *

————**SET HEADER *

THE SET HEAUERS ARE SIMILAR TO THE SET HEADERS
OF THE NORMAL SETS EXCEPT NO COLUMN FORM IS USED.

DOUBLE PRECISION AND COMPLEX TYPES OF LISTS.*

LIST HEADER

* Kl * TYPE*

Kl

* KN * K2 *

* 0 * II *

K2

* Kl * K3 *

—.-——.** 0 * 12 *

KN

... * KN-1* Kl *
. *.....*.....*
* 0 * IN *

11

* VALUE 1 *

12

* VALUE 1

* VALUE 2 *

* VALUE 2 *

IN

* VALUE 1 *
-——_.-„-
* VALUE 2 *

FIGURE 7. REPRESENTATIONS OF STAQUES

3,2.<*. PROPERTIES

THE PROPERTY IS ANOTHER NEW DATA STRUCTURE INTRODUCED IN THE
FGRAAL SYSTEM. FROM THE STORAGE STRUCTURE POINT OF VIEW THERE ARE
THREE DIFFERENT CATEGORIES OF PROPERTIES (AS IT IS IN THE STAQUE)J
(1) SINGLE WORD — LOGICAL* INTEGER AND REAL TYPES OF PROPERTY,
(2) DOUBLE WORD — DOUBLE PRECISION AND COMPLEX TYPES OF PROPERTY,
AND (3) VARIABLE. SIZE — S^T TYPE OF PROPERTY. PROPERTIES, REGAR-
DLESS OF THEIR DATA TYPES, ARE ALWAYS REPRESENTED BY A PROPERTY
HEADER, PROPERTY INFOR BLOCK AND PROPERTY VALUE BLOCMS).

THE PROPERTY HEADER OF A DECLARED PROPERTY IS A MEMORY WORD
ASSIGNED BY THE COMPILER <«s IT is WITH THE SET HEADER). DURING
THE PROGRAM EXECUTION, THE ABSOLUTE ADDRESS OF THIS ASSIGNED ME-
MORY WORD BECOMES THE UNIQUE IDENTIFIER OF THE ASSOCIATED PROPER-
TY. THE PROPERTY HEADER CONTAINS TWO HALFWORD FIELDS. THE RIGHT
HALF OF THE PROPERTY HEADE* IS THE TYPE FIELD WHICH CONTAINS THE
DATA TYPE IDENTIFIER OF ITS ASSOCIATED PROPERTY. THE LEFT HALF OF
THE PROPERTY HEADER IS THE POINTER FIELD WHICH CONTAINS THE COMP-
LEMENT OF THE ABSOLUTE ADD*ESS OF A 2-WORD BLOCK CALLED PROPERTY
INFOR BLOCK. THE COMPLEMENT OF THE ADDRESS IS USED IN ORDER TO
DISTINGUISH A PROPERTY HEADER FROM A SET HEADER. THE PROPERTY
INFOR BLOCK POINTED TO BY THE PROPERTY HEADER HAS THE SAME FORMAT
AS THAT OF A COLUMN SET IN^OR BLOCK (SEE SETS), EXECEPT THAT THE
COLUMN INDEX FIELD IS ZERO UNLESS THE DOMAIN SET IS REPRESENTED BY
A COLUMN SET.

THE ASSIGNMENT OF PROPERTIES TO AN ATOMIC SET CAN BE REALIZED
THROUGH THE EXECUTION OF PROPERTY ASSIGNMENT OR CONDITIONAL
•CREATE* STATEMtNTS. THE PROPERTY VALUE(S) THUS ASSIGNED T° AN
(UNIVERSAL) ELEMENT IS STORED IN A PROPERTY BLOCK WHICH IS LINKED
INTO THE PROPERTY-RING ASSOCIATED WITH THIS ELEMENT (SEE UNIVERSAL
SEQUENCE AND PROPERTY BLOCKS). THE PROPERTY BLOCK CONSISTS OF TWO
CONTIGUOUS MEMOKY WORDS. THE FIRST MEMORY WORD IS SUBDIVIDED INTO
TWO HALFWORD FIELDS. THE LEFT HALF IS THE PROPERTY IDENTIFICATION
FIELD WHICH CONTAINS THE UNIQUE IDENTIFIER, THE ADDRESS OF THE
PROPERTY HEADER, OF THE PROPERTY WITH WHICH THIS BLOCK IS ASSOCIA-
TED. THE RIGHT HALF OF THE FIRST WORD IS THE LINK FIELD WHICH IS
USED IN THE LINKAGE OF THE PROPERTY-RING (SEE UNIVERSAL SEQUENCE
AND PROPERTY BLOCK). THE SECOND WORD OF THE PROPERTY BLOCK CON-
TAINS DIFFERENT INFORMATION DEPENDING ON THE DATA TYPE OF THE
PROPERTY (THIS IS IN THE SAME FORMAT AS THAT OF THE STAOuE). FOR
THE DATA TYPES IN THE SINGLE WORD CATEGORY, IT CONTAINS THE DATA
VALUE OF THE PROPERTY. FOP THE SET DATA TYPE, IT CONTAINS THE SET
HEADER. FOR THt DATA TYPES IN THE DOUBLE WORD CATEGORY, IT CON-
TAINS THE ADDRESS POINTER TO ANOTHER 2-WORD BLOCK WHICH, IN TURN,
CONTAINS THE DATA VALUES OF THE PROPERTY. THE REPRESENTATIONS OF
PROPERTIES ARE GIVEN IN FIGURE 8.

3-15

L(P)rPROP.HEADEK

* -A * TYPE *

A=INFORMATION BLOCK

* .N * 0 *

-...———** FIRST* LAST *

LOGICAL, INTEGE*
REAL

PROP, BLOCKS OF ELEMENTS

* L(P) * LINK *
...— --- -..— --- .*
* VALUE *

SET TYPES *********************
* L(P) * LINK *

———...———** SET HEADER *

Al * Jl * A2 *

—-.————«•——** J2 * J3 *
(SET IN BLOCK FORM) *********************

* JK-2 * 0 *

•————•————** JK-1 * JK *

DOUBLE PRECISION AND
COMPLEX TYPES *********************

* L(P) * LINK *

—.———.«.———** 0 * A *

A * VALUE 1 *

*—..—..————.-** VALUE 2 *

FIGURE 8. REPRESENTATION OF PROPERTY BLOCKS.

3-16

3.2,5. GRAPH STRUCTURES

GRAPH STRUCTURES ARE HANDLED SIMILARLY TO PROPERTIES. WITH EACH
DECLARED GRAPH, A GRAPH HEADER CONSISTING OF 2 OR 3 WORDS IS AS-
SIGNED BY THE COMPILER. THE FIRST OF THESE WORDS IS THE GENERAL
HEADER OF THE GRAPH, THE SECOND AND THIRD WORDS ARE THE HEADERS
FOR THE NODES AND ARCS OF THE GRAPH, RESPECTIVELY. WHF.N AN ELEMENT
IS ASSIGNED TO THE GRAPH AS A NODE THEN IT HAS A PROPERTY BLOCK
WHICH CONTAINS THE ADDRESS OF THE NODE HEADER OF THE GRApH AS
PROPERTY IDENTIFIER. IF AN ELEMENT IS AN ARC THEN IT USES THE
ADDRESS OF THE ARC HEADER OF THE GRAPH. AN ELEMENT MAY NOT BE
ASSIGNED TO THE SAME GRAPH AS BOTH NODE AND ARC.

L(G) * -0 * Tl * T2 * 3

—————————*«.-».#——L(G)+1 * -NA * 1
•———..••..—•«-—..••—..—«.«••—..•«•..—

L(G)+2 * -AA * 2

NA AA
***************** *****************
* - N * 0 * * - M * 0 *

* FIRST* LAST * * FIRST* LAST *
***************** *****************

Tl = 0 FOR NODE GRAPH
1 FOR NODE/ARC GRAPH

N = NUMBER OF NODES
M = NUMBER OF ARCS
T2 = 0 FOR UNDIRECTED GRAPH

1 FOR DIRECTED GRAPH
THE INTEGERS 3,1 AND 2 IN L(G),L(G)+l AND

L(G)+2, RESPECTIVELY, ARE USED AS
IDENTIFIERS.

FIGURE 9. GRAPH HEADER WITH NODE AND ARC INFORMATION BLOCKS

3-17

THE PROPERTY BLOCKS ASSIGNED TO THE ELEMENTS AS NODES OR ARCS
OF THE GRAPH CONSIST OF ONE BLOCK (2 WORDS). THE LEFT HAL? OF
THF FIRST WORD CONTAINS THE PROPERTY IDENTIFIER* I.E. THE ADDRESS
OF THE NODE OR ARC HEADER. THE RIGHT HALF OF THE FIRST WORD CON-
TAINS THE LINK TO THE NEXT PROPERTY BLOCK. THE SECOND WORD OF THE
PROPERTY BLOCK CONTAINS THF. STRUCTURAL INFORMATION. THE STRUC-
TURAL INFORMATION OF THE GRAPH IS STORED BY ABSOLUTE ADDRESS
LINKS. FOR EACH NODE OF A GRAPH* THE SETS CONSISTING OF THE NEGA-
TIVE COBOUNDARY AND POSITIVE COBOUNDARY OF THE NODE IS REPRESENTED
BY A LINK STRUCTURE. THE LEFT HALF OF THE SECOND WORD OF THE
PROPERTY BLOCK IS USED TO LINK THE NEGATIVE* THE RIGHT HALF WORD
IS USED TO LINK THE POSITIVE COBOUNDARY SETS. THE LINKAGE IS CIR-
CULAR, I.E. THE LAST ARC IS LINKED BACK TO THE NODE. IF A NODE HAS
EMPTY COBOUNDARY (POSITIVE OR NEGATIVE) THEN IT IS LINKED TO IT-
SELF. UNDIRECTED GRAPHS USE THE DIRECTION USED IN THE ASSIGN STA-
TEMENT. NODE GRAPHS USE INDEPENDENT 2-WORD BLOCKS FOR ARCS, I.E.
THESE BLOCKS ARE NOT LINKED TO ELEMENTS IN THE UNIVERSAL SEQUENCE
AS PROPERTY BLOCKS.

PROP. BLOCKS OF ELEMENTS
K» Jl, « • « » JK

NODE K B * L (6)4-1 * LINK *

...—.—.——.—** AN1 * API *

ARC Jl AN1 * L(G)+2 * LINK *

—..-..-».———*
* AN2 * ... *

ARC JK ANK * L(G)+2 * LINK *

—..._,—..—.-...*
* B * * .. *

FIGURE 10. GRAPH STRUCTURE LINKAGE.
THE NEGATIVE COBOUNDARY OF NODE K.
L(G) = LOCATION OF THE GRAPH HEADER

3-18

3.2.6. TYPE ASSIGNMENTS.

THE HEADERS OF LISTS» PROPERTIES AND GRAPHS CONTAIN A FIELD
CONSISTING OF A TYPE CODE. THIS TYPE CODE IS AN INTEGER AS FOL-
LOWS:

0 SET
1 NODES
2 ARCS
3 GRAPH
U LOGICAL
5 INTEGER
6 REAL
7 DOUBLE PRECISION
8 COMPLEX

3-19

3.2,7. STRUCTURE OF HEADERS

THE FOLLOWING TABLE SUMMARIZES THE.CONTENTS OF THE HEADERS!

* 11111111*112222222222333333*
*0123456789Q1234567*890123456789012345*
***************************************ELEMENT

VALID

REMOVED
SET

EMPTY
ATOMIC
BLOCK

COLUMN

LIST
SET
LOGICAL
INTEGER
REAL
DBL.PR.
COMPLEX

PROPERTY
SET
LOGICAL
INTEGER
REAL
DBL.PR.
COMPLEX

GRAPH
GRAPH
NODES
ARCS

INFO.BLOCK
FIRST WORD

SECOND W.

NOTES;
X = ZERO OR ONE FOR NOUE OR NODE/ARC GRAPH, RESPECTIVELY.
Y = ZERO OR ONE FOR UNDIRECTED OR DIRECTED GRAPH, RESP.
- (MINUS) INDICATES COMPLEMENT IN THE PROPER HALF WORD.

COLUMN SET BITS

loooooooooonoooooo
ZERO
ZERO

ADDRESS OF THE
FIRST BLOCK
ADDRESS OF THE

INFO, BL<KK

ADDRESS
OF
THE
FIRST
ELEMfeNT

BLOCK

-ADDRESS
OF THE
PROPERTY

* INFORMATION
* BLOCK
*

-0
-ADDRESS OF INFO.

BLOCK

*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*

ADDRESS OF PROP.
BLOCK OR COMPL.
OF THE ELEMENT

ZERO
ELEMENT
ZERO

ZERO

0
4
5
6
7
8

0
4
5
6
7
8

X Y 3
1
2

-NO. OF ELEMENTS * ZERO OR COLUMN
* NUMBER IF IN SET*

FIRST ELEMFNT * LAST ELEMENT *

3-20

3.3, REPRESENTATION OF A CONTRACTED GRAPH

CONTRACTION OF A SUBGRAPH CORRESPONDING TO THE GIVEN SET OF
NODES IS ACCOMPLISHED IN TWO STEPS*.
STEP 1,
A NEW NODE, Nr IS CREATED WHICH WILL CORRESPOND TO THE CONTRAC-

TED SUBGRAPH. ALL NODES INVOLVED IN THE CONTRACTION* INCLUDING
THOSE NODES WHICH WERE PART OF PREVIOUS CONTRACTION* ARE ASSIGNED
NEW PROPERTY BLOCKS. CALL THESE NODES N1,N2»...*NM. THE OLD PRO-
PERTY BLOCKS ARt LINKED TO THE NEW BLOCKS BY STORING THEIR NEGA-
TIVE ADDRESSES IN THE LEFT HALVES OF THE FIRST WORD OF THE NEW
PROPERTY BLOCKS!

NfeW PROPERTY BLOCK OF NI
******* *********** *******
* » * > * -A * *__*—̂ * *
-*——* *--—*._._* *_...*.
* . * * * * * *
******* *********** *******

A ***********
* * * OLD PROPERTY BLOCK OF Nl
—— * (CONTENTS UNCHANGED)
* * *

STEP 2.
THE ARCS IN tACH ORIGINAL POSITIVE AND NEGATIVE C080UNDARY

CYCLE ARE REARRANGED SO THAT THE ARCS INTERNAL TO THE CONTRACTED
SUBGRAPH PRECEDE THE ARCS CONNECTING THE SUBGRAPH WITH THE REST OF
THE GRAPH, THE LINKAGES IN THE SECOND WORD OF THE NEWLY CREATED
PROPERTY BLOCKS* ASSOCIATED WITH THE NODES N,Nl,...,NM ARE DEFINED
AS FOLLOWS:

1. THE LEFT FIELD OF THE SECOND WORD (NCOB POINTER) OF N POINTS
TO THE FIRST NON-INTERNAL ARC OF THE NCOB OF Nl, IF NO
NON-INTERNAL ARCS EXIST* THEN IT POINTS TO Nl,

2. FOR NI <1<I<M-1), THE LEFT FIELD OF THE SECOND WORD OF NI
POINTS TO THE FIRST NON-INTERNAL ARC OF THE NCOB OF NI+1. IF NO
NON-INTERNAL ARCS EXIST* THEN IT POINTS TO NH-1,

3. THE LEFT HALF OF THE SECOND WORD OF NM POINTS TO N,
A CORRESPONDING LINKAGE STRUCTURE IS DEFINED FOR PCoB OF N

USING THE RIGHT FIELDS OF THE SECOND WORD OF THE NODES.

3-21

THE LINKAGE STRUCTURE IS ILLUSTRATED BELOW FOR A 2-NODE CONTRA-
CTION:

N

A3=A6
Nl) -* (N2

GIVES THE FOLLOWING LINKAGE (ONLY THE SECOND WORDS OF THE BLOCKS
ARE SHOWN) .*

N

CREATED NEW NODt

* *

*——** Al *

*
*
*

* * *
* — .-*-.-_*
* A7 * A** *

* * *
* ---- * ---- *

* Al * A3 *

NEW PHOP. BLOCK

OLD PHOP.BLOCK

N2
*
*

* *

„•*-—** N * N *

* * *
....-—*
* A6 * A9 *

Al
*

* A2 * *

A2
* * *

.—._——*
* Nl * *

* * *
-.—._-.*
* * A<* *

A6=A3
* - *

* * *
-.......*
* * AS *

A5
* * *

—.-.—-** * Nl *

* A7 * *

A?
* * *
........*
* A6 * *

A8
* * *

—„.—** N2 * *

A9
* * *
-..-...-*
* * AID*

AID
* * *
........*
* * N2 *

4-1

4. EXAMPLE OF A GRAPH STRUCTURE

IN THIS EXAMPLE, IT IS ASSUMED THAT 10 ELEMENTS WERE CREATED.
THE ELEMENTS HAVE AN ALPHANUMERIC PROPERTY WITH »3QO» AS THE PRO-
PERTY IDENTIFIEK (ADDRESS OF THE PROPERTY HEADER). FURTHERMORE THE
ELEMENTS WERE ASSIGNED TO » GRAPH AS NODES AND ARCS SUCH THAT THE
GRAPH IDENTIFIEK IS »500»» THUS »501« AND «502' CORRESPONDS TO THE
NODE AND ARC IDtNTlFIER* RESPECTIVELY. THE GRAPH HAS THE FOLLOWING
STRUCTURE:

THE FOLLOWING FIGURE GIVES THE STORAGE STRUCTURE OF THE ABOVE
EXAMPLE:

D(l) 7998 5998
*************** *************** ***************
* * 799B * * 30U * 5998 *- * 501 * -1 *
*************** *«.—.«•-*-..—..* *___—*_—„—*

* 'A' * * 5988 * 5998 *
*************** ***************

0(2) 7996 5996
*************** *************** ***************
* * 7996 * * 300 * 5996 * * 501 * -2 *
*************** *..——*—.—* *...-.v*......*

* *B* * * 5986 * 5988 *
*************** ***************

D(3) 7994 5994
*************** *************** ***************
* * 7994 * * 300 * 5994 * * 501 * -3 *

*************** *——*——.* *.»—-*—.—** »C» * * 5982 * 5984 *
*************** ***************

4-2

0(4)

* * 7992 *

7992

* 30" * 5992 *

———.«-•** »D» *

5992

* 501 * -4 *

.„——«••»—*
* 5984 * 5986 *

0(5)

* * 7990 *

7990

* 300 * 5990 *

5990

* 501 * -5 *

* 'E« *

* 5990 * 5980 *

0(6)

* * 798« *

7988

* 30» * 5988 *

5988

* 502 * -6 *

* «V» *

* 5998 * 5982 *

D<7>

* * 7986 *

7986

* 300 * 5986 *
—.—.......*
* »X» *

5986

* 502 * -7 *

——.«-.—.—** 5996 * 5992 *

0(8)

* * 798*+ *

7984

* 300 * 5984 *

5984

* 502 * -8 *

* 'Y» *

* 5980 * 5994 *

0(9)

* * 7982 *

7982

* 300 * 5982 *

5982

* 502 * -9 *

* «Z» *

* 5994 * 5996 *

0(10)

* * 7980 *

7980

* 300 * 5980 *
............*

5980

* 502 * -10 *

* »W» *

* 5992 * 5990 *

4-3

ASSUMING THE GRAPH IS CONTRACTED, SUCH THAT THE NODES B, C AND
D WERE CONTRACTED INTO A NEW NODE WITH ALPHANUMERIC PROPERTY
•BCD«t

THE CHANGED STORAGE STRUCTURE IS AS FOLLOWS:

0(1) 7998 . 5998
*************** *************** ***************
* * 7998 * * 300 * 5998 * * 501 * -1 *

*************** *——*——* *-..•«.*— —.—** «A« * * 5986 * 5998 *
*************** ***************

0(2) 7996 5996
*************** *************** ***************
* * 7996 * * 300 * 5996 * *-5976 * -2 *
*************** *—«.—*——* *„„„••».*..«..-.*

* *B» * * 5994 * 5994 *
*************** ***************

5976

* 501 * -2 *

..———.—** 5986 * 5982 *

D(3) 7991* 5994
*************** *************** ***************
* * 7994 * * 300 * 5994 * *-5974 * -3 *

*************** *-.——*•»—•* *..—•*-.-.—** »C» * * 5980 * 5992 *
*************** ***************

5974

* 501 * -3 *

* 5982 * 5984 *

4-4

0(4) 7992 5992
*************** *************** ***************
* * 7992 * * 3QO * 5992 * *-5972 * -^ *
*************** *—-._-.*..._-__* *......*......*

* »D» * * 5978 * 5978 *
*************** ***************

5972

* 501 * -u *

———„—** 5984 * 5986 *

0(5) 7990 5990
*************** *************** ***************
* * 7990 * * 3QU * 5990 * * 501 * .5 *

*************** *——*——* *——.*„„..„—*
* »E» * * 5990 * 5980 *
*************** ***************

D(6) 7988 5988
*************** *************** ***************
* * 7980 * * 30n * 5988 * * 502 * -6 *
*************** *__«-«_*._.....* *__.•--*_._...._*

* »V» * * 5998 * 5982 *
*************** ***************

0(7) 7986 5986
*************** *************** ***************
* * 7986 * * 300 * 5986 * * 502 * -7 *
*************** *>.-—*......* *...~»~*._.__.*

* »X» * * 5996 * 5992 *
*************** ***************

0(8) 7984 5984
*************** *************** ***************
* * 7984 * * 300 * 5984 * * 502 * -8 *

*************** *——*——* *.——*—„-.** »Y» * * 5980 * 5994 *
*************** ***************

0(9) 7982 5982
*************** *************** ***************
* * 7982 * * 300 * 5982 * * 502 * -9 *

*************** *——*.——* *—«•—*-..-_—*
* »*» * * 5994 * 5996 *
*************** ***************

D(10) 7980 5980
*************** *************** ***************
* * 7980 * * 300 * 5980 * * 502 * -10 *
*************** *-..»—*..«.—* *•«•—.-*.-.«,«•*

* »W« * * 5992 * 5990 *
*************** ***************

D(ll) 7978 5978
*************** *************** ***************
* * 7978 * * 300 * 5978 * * 501 * -U *
*************** *—-«••*.«.—-•* *.,«—»-*—•«—*

* 'BCD' * * 5996 * 5988 *
*************** ***************

5-1

5. THE FGRAAL COMPILER

THIT FGRAAL COMPILER TRANSLATES FGRAAL SOURCE PROGRAMS INTO OBJECT
CODE. TO SIMPLIFY ITS USE* IT ACCEPTS THE SAME INPUT (SYMBOLIC
ELEMENTS OR CARUS), PRODUCES THE SAME OUTPUT {RELOCATABLE BINARY
ELEMENTS) AND IS CALLED IN A SIMILAR WAY AS ALL LANGUAGE PROCES-
SORS ON THE UNIVAC 1108 UNDER EXEC 8. THE FOLLOWING SECTIONS
DESCRIBE THE UNIVERSITY OF MARYLAND RALPH COMPILER, AND THE MODI-
FICATIONS NECESSARY TO EXTEND IT TO FGRAAL.

FGRAAL IS IMBEDDED INTO FORTRAN* AND MOST OF THE SYNTACTIC
RULES OF FORTRAN APPLY ALSO TO THE EXTENSION. THE STATEMENTS MUST
BE ANALYZED FAIKLY THOROUGHLY TO DETERMINE THEIR NATURE. FOR
INSTANCE* THE EXPRESSION «A(I)« CAN BE A FORTRAN FUNCTION CALL* A
REFERENCE TO A SUBSCRIPTED FORTRAN VARIABLE* OR A REFERENCE TO A
PROPERTY IN FGRAAL, DEPENDING ONLY ON THE WAY IN WHICH »A» AND '!'
ARE DECLARED. ANY OF THESF CAN OCCUR IN A FORTRAN EXPRESSION.
SIMILARLY, THE STATEMENT »S=T» MUST BE TRANSLATED DIFFERENTLY WHEN
»S» AND »T» ARE SETS OR LISTS THAN WHEN THEY ARE NORMAL FORTRAN
VARIABLES.

FOR THIS REASON, AND HECAuSE THE UNIVERSITY OF MARYLAND RALPH
COMPILER WAS READILY AVAILABLE AND COULD BE MODIFIED EASILY TO
ACCEPT THE NEW FEATURES, W<? CHOSE TO MODIFY IT FOR OUR PURPOSE.

WRITING A PREPROCESSOR INSTEAD, WHICH WOULD TRANSLATE FGRAAL
INTO FORTRAN (WITH APPROPRIATE SUBROUTINE CALLS SUBSTITUTED FOR
FGPAAL CONSTRUCTS) WOULD H-VE REQUIRED A VERY THOROUGH ANALYSIS OF
THE PROGRAM, DUPLICATING MUCH OF THE WORK OF A COMPILER.

THE OTHER EXTREME* WRITING A COMPILER FROM SCRATCH* WOULD
HAVE HAD THE ADVANTAGE OF HEING ABLE TO CONTROL THE METHODS OF
COMPILATION MORE COMPLETELY, BUT THE AMOUNT OF WORK INVOLVED WOULD
HAVE BEEN GREAT* AND MUCH OF IT WOULD HAVE BEEN A DUPLICATION OF
FUNCTIONS OF ALREADY EXISTING COMPILERS.

5,1. THE RALPH COMPILER

THE FOLLOWING IS A BRIEF DESCRIPTION OF RALPH, WHICH CANNOT
DO FULL JUSTICE TO ALL ITS FEATURES,

RALPH (REENTRANT ALGORITHMIC LANGUAGE PROCESSOR) IS A FOUR
PASS COMPILER, DESIGNED TO COMPILE PROGRAMS QUICKLY* WITH LESS
EXTENSIVE OPTIMIZATION THAN THE UNIVAC FORTRAN v COMPILER.

PASS ONE READS THE SOUHCE PROGRAM AND TRANSLATES IT TO INTER-
MEDIATE OBJECT CODE (TRIPLES). AT THE SAME TIME IT BUILDS THE
SYMBOL TABLES. THE STATEMENT RECOGNIZER IS TABLE DRIVEN. THE
VARIOUS STATEMENTS ARE PROCESSED IN INDIVIDUAL PARTS OF THE COMPI-
LER, WHICH USE A COMMON POOL OF SUBROUTINES, THESE INCLUDE A
SYNTAX SCANNER, AN EXPRESSION COMPILER, THE SYMBOL TABLE ROUTINES*
AND A ROUTINE FOR OUTPUTTING TRIPLES TO A SCRATCH FILE, WHICH DOES

5-2

ALL OPTIMIZATION.
PASS TWO CLtANS UP THE SYMBOL TABLE, PROCESSES EQUIVALENCE

STATEMENTS* AND ALLOCATES MATA STORAGE.
PASS THREE CONVERTS THE INTERMEDIATE OBJECT CODE TO MACHINE

INSTRUCTIONS, SOME OF WHICH MAY NOT YET BE COMPLETE. IT READS THE
TRIPLES, DETERMINES THE MO»ES OF THE OPERANDS, AND FINDS A TABLE
ENTRY FOR THAT ^ARTICULAR COMBINATION. FROM THAT IT DETERMINES
THE MODE OF THE RESULT* IF ANY, AND FINDS THE DEFINITION SEQUENCE
FOR THE TRIPLE. THE DEFINITION SEQUENCES CONTAIN PSEUDO INSTRUC-
TIONS (FOR REGISTER ALLOCATION, TRANSFER OF CONTROL, DEFINITION OF
REGISTER CONTENTS, ETC.) AS WELL AS MACHINE INSTRUCTIONS, WHOSE
REGISTER AND OPtRAND FIELDS ARE FILLED WITH SPECIAL CODES. AN
INTERPRETER ANALYZES THESE, REPLACES THE FIELDS BY REAL ADDRESSES,
AND WRITES THESE* WITH ANY RELOCATION INFORMATION, TO A SCRATCH
FILE. INCOMPLETE ADDRESSES (FORWARD REFERENCES TO LABELS, ETC.)
ARE FLAGGED.

PASS FOUR READS THE OUTPUT FROM PASS THREE, MODIFIES THE IN-
COMPLETE INSTRUCTIONS, AND WRITES THE FINISHED RELOCATABLE ELE-
MENT. IT ALSO PRINTS AN OBJECT CODE LISTING WHEN REQUESTED.

5.2. MODIFICATIONS TO RALPH

THESE FALL INTO TWO GKOUPSt SOME ARE LANGUAGE RELATED* AND
WOULD HAVE TO BE. TREATED SIMILARLY IN MOST IMPLEMENTATIONS, OTHERS
ARE DIRECTLY RELATED TO THE COMPILER WHICH IS BEING MODIFIED.

5.2.1. DATA TYPES

THERE ARE SEVERAL NEW VARIABLE TYPES: SETS, STAQuES, PROPER-
TIES, AND GRAPHS. SETS* STAQUES, AND PROPERTIES OCCUPY SINGLE
WORDS IN THE PROGRAMS, WHICH MAY POINT INTO DYNAMIC STORAGE AT
EXECUTION TIME. GRAPHS CONSIST OF THREE WORDS* ONE HAS INFORMA-
TION ABOUT THE GRAPH* THE OTHER TWO ABOUT THE ARCS AND NODES,
RESPECTIVELY, SET IS A VARIABLE TYPE, LIKE INTEGER OR REAL.
STAQUES AND PROPERTIES HAVE ONE OF THE TYPES INTEGER* REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL, OR SET ASSOCIATED WITH THEM.

MOST OF THtSE NEW VARIABLES REQUIRE THAT AN INITIAL VALUE IS
COMPILED FOR THtM. THIS IS DONE AT THE END OF PASS THREE, USING
THE INFORMATION IN THE SYMBOL TABLE,

5.2.2. IMPLEMENTATION 0»- NEW STATEMENTS

DECLARATION STATEMENTS ARE HANDLED IN THE SAME WAY AS FORTRAN
DECLARATIONS, THE SYMBOL IS ENTERED INTO THE MODE TABLE, AND, IF
NECESSARY, INTO THE DIMENSION TABLE.

ASSIGN, DETACH, AND REMOVE STATEMENTS ARE TRANSLATED INTO
CALLS TO APPROPRIATE SUBROUTINES,

THE SAVE AND RESET STATEMENTS ARE NOT YET IMPLEMENTED.

5-3

THE TWO NEW LOOP STATEMENTS ('WHILE* AND »FQR ALL') CAN BE
HANDLED SIMILAR TO THE DO LOOP. MOST OF THE CODE IS GENERATED AT
THF BEGINNING 0? THE LOOPS* AND ONLY THE LOOP VARIABLE HAS TO BE
REMEMBERED FOR THE TERMINATION* AND A TRANSFER AND A LABEL HAVE TO
BE GENERATED AT THE END. ONE SPECIAL PROBLEM CONCERNING «FOR ALL'
LOOPS IS DISCUSSED IN SECTION 5.3.4.

5.2.3. IMPLEMENTATION 0»- N£w SYNTACTIC FEATURES

THE SET OPERATIONS ARF SIMPLY ENTERED INTO A TABLE OF LEGAL
OPERATORS. THEY ALL PRODUCE SUBROUTINE CALLS.

THE GRAPH OPERATIONS (BOUNDARY OPERATIONS) ARE HANDLED SIMI-
LARLY, EXCEPT THAT THEY ALL CALL THE SAME SUBROUTINE, AND THE
SPECIFIC OPERATION IS TRANSMITTED THROUGH A FLAG WORD.

THE FUNCTIONS 'NODES', 'ARCS', AND 'DOMAIN' ARE TRANSLATED
INTO CONSTANT OFFSETS FROM THE GRAPH OR PROPERTY, AND THEIR RE-
SULTS ARE SETS. THIS CAUSED SOME DIFFICULTY BECAUSE OF THE WAY IN
WHICH RALPH PASSES CONSTANT OFFSETS FROM PASS ONE TO PASS THREE.

PROPERTIES CAN APPEAR ON EITHER SIDE OF ASSIGNMENT STATE-
MENTS. THE TWO CASES HAVE A DIFFERENT MEANING, AND EACH MuST BE
TRANSLATED DIFFERENTLY.

THE SUBSET FUNCTION PRESENTED A PARTICULARLY DIFFICULT PROB-
LEM. IF IT IS NOT TO BE THANSLATED INLINE, WHICH WOULD GENERATE
TOO MUCH CODE, IT REQUIRES A CALL BY NAME TO EVALUATE THE LOGICAL
EXPRESSION. THIS IS ACHIEVED BY TRANSLATING THE LOGICAL EXPRES-
SION INTO AN INTERNAL FUNCTION, AND PASSING THE ADDRESS OF THAT
FUNCTION TO THE SUBSET ROUTINE.

THE ARGUMENTS TO LIST ASSIGNMENT STATEMENTS ARE PASSED IN ONE
ARRAY, CONTAINING THE ADDRESS OF EACH ITEM, AND A FLAG INDICATING
WHETHER OR NOT THE VARIABLE IS ANOTHER LIST, AND WHETHER OR NOT IT
NEEDS TO BE COPIED (FOR LISTS AND SETS).

5.2.U. HANDLING OF TEMPORARIES

TEMPORARY KESULTS FRO" SET OPERATIONS PRESENT A NEW PROBLEM:
THEY DO NOT CONTAIN A VALUE WHICH CAN BE SIMPLY FORGOTTEN, BUT
THEY POINT TO AN ALLOCATED AREA IN DYNAMIC STORAGE WHICH HAS TO BE
FREED. THIS OCCURS IN THE EVALUATION OF EXPRESSIONS, WHEN PASSING
SET EXPRESSIONS TO A SUBROUTINE AS AN ARGUMENT, AND DURING THE
EXECUTION OF 'FOR ALL' LOOPS, FOR WHICH A SET HAS TO BE KEpT
THROUGHOUT THE EXECUTION Of- THE LOOP.

FREEING EACH TEMPORARY EXPLICITLY WOULD CREATE MUCH EXTRA
CODE, SO THAT A BETTER METHOD HAD TO BE FOUND. SINCE ALL SET
OPERATIONS ARE EXECUTED IN SUBROUTINES, A FLAG IS PASSED IN THE
CALLING SEQUENCE, INDICATING WHEN A TEMPORARY SET RESULT Is NO
LONGER NEEDED. THE SUBROUTINE CAN THEN USE THE SET WITHOUT CO-
PYING IT, IF IT WISHES TO DO SO. OTHERWISE IT HAS TO FREE THE SET
BEFORE IT EXITS. THIS IS "ADE THE RESPONSIBILITY OF THE SUBROU-
TINE. SET ARGUMENTS TO FORTRAN SUBROUTINES CAN BE HANDLED IN THE
SAME WAY, PROVIDED THAT THE SUBROUTINE EXIT SEQUENCE TAKES CARE OF

FREEING ALL THE SETS.
TRANSFERS OUT OF «FOR ALL» LOOPS ARE MORE DIFFICULT, SINCE

THF TRANSFER MAY BE IMBEODPD INTO A CALLING SEQUENCE* IT IS NOT
POSSIBLE TO SIMHLY REDEFINE THE JUMP INSTRUCTION. INSTEAD, FOR
EACH TRANSFER OUT OF A »FO» ALL* LOOP, A DUMMY LABEL IS CREATED AT
THE END OF THAT LOOP. FOLLOWED BY A RELEASE OF THE SET, AND A JUMP
TO THE REAL LABEL* OR A JU*P TO A DUMMY LABEL AT THE END OF THE
NEXT 'FOR ALL» LOOP,

5.3. OPTIMIZATION

REPEATED SET OPERATIONS ARE ELIMINATED IN THE SAME WAY AS ALL
REPEATED ARITHMETIC OPERATIONS. AS LONG AS NO LABELS INTERVENE.
THF SAME HOLDS ^OR PROPERTY RETRIEVALS AND THE NONDESTRUCTIVE LIST
RETRIEVALS. THiS FEATURE CAN BE TURNED OFF BY USING THE »Q» OP-
TION ON THE COMPILER CALL CARD.

OPERATIONS OF THE FORM

StT = SET .UN. x OR SET = SET .DF. X

ARF. FREQUENT ENOUGH THAT IT SEEMED WORTHWHILE TO HAVE SPECIAL
ENTRIES FOR THEM. THIS REDUCES THE LENGTH OF THE CALLING SEQUENCE
BY ONE HALF, ANU MAY ALSO HE USED BY THE SUBROUTINE TO AvOlD UN-
NECCESSARY COPYING OF THE SET.

6-1

6. COMPILER GENERATED INSTRUCTION SEQUENCES

THIS CHAPTER CONTAINS THE DESCRIPTION OF THE INSTRUCTION SE-
QUENCES GENERATED BY THE FGRAAL COMPILER FOR THE SPECIAL FEATURES
OF FGRAAL. THE FGRAAL COMPILER IS AN EXTENSION OF THE RALPH COMPI-
LER* THUS IT GENERATES INSTRUCTION FOR THE FORTRAN STATEMENTS
ALSO THERE IS NO ATTEMPT MADE TO DESCRIBE THESE INSTRUCTION SE-
QUENCES. ONLY THE SEQUENCES REVELANT TO FGRAAL FEATURES ARE DES-
CRIBED HERE.

6.1. DECLARATION STATEMENTS

DECLARED SETS. PROPERTIES. LISTS AND GRAPHS RECEIVE INITIAL
DATA ASSIGNMENTS BY THE COMPILER. THESE DATA ARE INITIALIZED AS
FOLLOWS:

SET * 0 * 0 *

PROPERTY * -0 * TYPE *

LIST * -0 * TYPE *

GRAPH G * -0 * XXXX YYYY 3

•————«—-——••——•"—••"•-••G+l * -0 * 1

—————••——-——••——•"""'-•G+2 * -0 * 2

WHERE XXXX = 0 FOR NODE GRAPH
= 1 FOR NODt/ARC GRAPH

YYYY = 0 FOR UNDIRECTED GRAPH
= 1 FOR DlRfcCTED GRAPH

TYPE = 0 FOR SET TYPE
= U FOR LOGICAL TYPE
= 5 FOR INTEGER TYPE
= 6 FOR REAL TYPE
= 7 FOR DOUBLE PRECISION TYPE
= 8 FOR COMPLEX TYPE

6-2

6,2, CALLING SEQUENCES

THE COMPILER GENERATES CALLING SEQUENCES FOR THE FfiRAAL LIBRARY
ROUTINES. THESE CALLING SEQUENCES ARE IN THE SAME FORM AS
FORTRAN CALLING SEQUENCES, I.E.

LMJ X11,LIBR
4- ARG1

+ ARGN
+ W.B,

WHERE »LIBR» IS THE NAME OF A LIBRARY PROGRAM, ARGl*...*ARGN ARE
THE ADDRESSES OF THE ARGUMENTS, W.B, IS THE WALK BACK WORD. REGI-
STERS AQ-A5 ARE ASSUMED TO BE FREE TO USE BY THE LIBRARY PROGRAMS
WITHOUT SAVING THEM. RESULTS ARE RETURNED IN AQ OR IN AO-Al.

SETS IN THE CALLING SEQUENCES HAVE AN ADDITIONAL FEATURE.
BESIDES THE ADDKESS OF THEIR SET HEADER, THERE IS A FLAG IN BIT
POSITION 12:

* F * ADDRESS OF SET *

WHERE THE FLAG IS SET BY TH£ COMPILER TO ONE, IF THE SET IS A
TEMPORARY SET SUCH THAT IT SHOULD BE CLEARED AFTER IT IS USED AS
AN INPUT TO THE LIBRARY PROGRAM. OTHERWISE IT IS SET TO ZERO. IN
ALL ARGUMENTS THE X FIELD (INDEX REGISTER MODIFICATION) MAY BE
NONZERO, AND INDIRECT ADDRESSING MAY ALSO BE SPECIFIED,

THE FLAG POSITION IS ALSO USED IN LIST ASSIGNMENTS FOR SIMILAR
REASONS BUT IT IS EXTENDED FOR IDENTIFYING LISTS.

6.3. FREEING A SET OR LIST

THE COMPILER RECOGNIZES THE SIMPLE ASSIGN STATEMENTS*

S = .EMPTY. AND L = .NIL.
(S = fi) (L = »)

AND TRANSLATES THEM INTO THE FOLLOWING CALLING SEQUENCES* RESPEC-
TIVELY!

LMJ Xll,<i$SZRO LMJ X11,G$LZRO
+ LOC(S) + LOC(L)
+ W.B. + W.B.

6-3

6.4. SET - OPERATIONS* -RELATIONSi -ASSIGNMENT

LET S AND T bE SETS» THE FOLLOWING SET OPERATIONS :

S .UN. T S .OF. T
S .IT. T S ,SM, T

AND SET RELATIONS I

S .EG. T S .NE. T
S .IN. T S ,NIN. T

ARE TRANSLATED INTO THE CALLING SEQUENCES OF THE FORM J

LMJ X11,0$XXXX
+ F,S
* F'T
* W.B.

WHERE GSXXXX IS AS FOLLOWS:

GSSUN FOR .UN,
GSSIT FOR .IT.
te$SDF FOR .OF.
6SSSM FOR ,SM.
&SSIN FOR .IN.
CJSSNIN FOR .NIN.
b$SNE FOR .NE. AND .EG.

THE SET HEADER F-OR THE RESULT OF THE ABOVE SET OPERATIONS wH-L BE
RETURNED IN REGISTER AO. THE LOGICAL RESULT OF THE SET RELATIONAL
OPERATION WILL ALSO BE RETURNED IN REGISTER AO.

6.5. SPECIAL SET FUNCTIONS

6.5.1. CREATE, FUNCTION

THE FUNCTION

CREATE(O)

IS TRANSLATED INTO THE CALLING SEQUENCE

X11»G»CRTO
W,B,

AND THE LIBRARY ROUTINE RETURNS THE ATOMIC SET IN AO.
THE CONDITIONAL CREATE FUNCTION,

CKEATE<P1,V1»P2,V2»...,PN,VN)

WITH PROPERTY IDENTIFIERS HI AND PROPERTY VALUES VI ARE TRANSLATED
INTO THE CALLING SEQUENCE

LMJ Xll.GSCRT
+ A
+ N
* W.B.

WHERE N IS THE NUMBER OF PAIRS OF PROPERTY IDENTIFIERS AND VALUES.
A IS THE ADDRESS OF ONE ARPAY CONTAINING THE ADDRESSES OF ALL
PROPERTY HEADERS FOLLOWED MY ALL PROPERTY VALUES:

A + PI A+N -f VI
+ P2 + V2
• • • * • •
* PN * VN

THFSE ARRAYS ARE GENERATED BY THE COMPILER, WHEN A PROPERTY VALUE
IS OF TYPE SET, THEN THE Al'DRESS OF THE VALUE, VI, IS FLAGGED. IF
THE FLAG IS ONE THEN THE STT WILL BE FREED BY THE LIBRARY ROUTINE
BEFORE RETURN.

6.5.2. SUBSET FUNCTION

THE EXPRESSION

SUBSET (X,<LOGIC«L EXP,»

IS TRANSLATED BY THE COMPILER AS

LMJ X11»GSSUBS
* 0
+ X
J 'FUNCTION*
+ <W. B.)

WHFRE 'FUNCTION' IS THE ADDRESS OF AN INTERNAL SUBPROGRAM wHICH
EVALUATES THE LOGICAL EXPRESSION.

THE FUNCTION

SUBSET <S, X, <LOGICAL EXP.»

IS TRANSLATED SIMILARLY, BUT THE FIRST ARGUMENT IS THE ADDRESS OF

6-5

THE SET S.

6.5.3. ELT, INDEX* SIZE AND PARITY FUNCTIONS

THE FUNCTIONS,

ELT(IrS) » INDEX(X»S> » SIZE(S) » PARITY(S) ,

ARE TRANSLATED AS STANDARD FORTRAN FUNCTIONS, BUT THEIR NAMES ARE
REPLACED BY GSELTr GSINDX, G5SIZE, AND GSPARI.

6.6. PROPERTY ASSIGNMENT AND RETRIEVAL

THE RETRIEVAL OF A PROPERTY VALUE,

P<X)

OF AN ATOMIC SET X IS TRANSLATED INTO THE FOLLOWING CALLING SE-
QUENCE

LMJ X11»G»PRRT
* P
* X
* W.B.

WHERE P AND X A«E ADDRESSES OF THE PROPERTY HEADER AND SET HEADER,
RESPECTIVELY. THE VALUE IS RETURNED IN AQ (OR AO-Al FOR DOuBLE
PRECISION AND COMPLEX) BY THE LIBRARY ROUTINE,

THE ASSIGNMENT OF A PROPERTY VALUE,

P(X) = V

TO AN ATOMIC SET X IS TRANSLATED INTO THE FOLLOWING CALLING SE-
QUENCE

X11»G*PRST
* P
* V
* X
* W.B.

WHFRE P AND X AHE AS BEFORE, AND V IS THE ADDRESS WHERE THE VALUE
IS FOUND. IN CASE OF A SET-VALUE, V IS FLAGGED. IF THE FLAG IS
ZERO, THEN THE SET IS COPIED, IF IT IS ONE, THE SET IS LINKED INTO
THE PROPERTY CHAIN DIRECTLY.

6-6

6.7. LIST ASSIGNMENT AND LIST FUNCTIONS

6.7.1. LIST ASSIGNMENT STATEMENT
THE STATEMENT,

L = » OR L = .NIL.

IS TRANSLATED INTO THE CALLING SEQUENCE

L«J X11»G*LZRO
* L
* W.B.

THE STATEMENT,

L = AI : A2 : ... : AN

IS TRANSLATED INTO THE FOLLOWING CALLING SEQUENCE

L*J X11»G*LIST
+ ARG
+ N
* L
+ W.B.

WHfRE N IS THE NUMBER OF ARGUMENTS, L IS THE ADDRESS OF THE LIST
HEADER AND ARG IS THE ADDRtSS OF A COMPILER GENERATED ARRAy CON-
TAINING THE ADDHESSES OF T*E N ARGUMENTS INVOLVED IN THE CONCA-
TENATION.

ARG * F1,LOC<A1)
* F2»LOC<A2)

+ *FN»LOC<AN)

THESE ADDRESSES ARE FLAGGED IN BIT POSITIONS 12 AND 13 WITH THE
FOLLOWING CODE:

FI = 0 AI IS A VARIABLE WHICH HAS TO BE COPIED
=1 AI IS A LIST WHICH HAS TO BE COPIED
=2 AI IS A StT WHICH NEED NOT BE COPIED
=3 AI is A LIST WHICH CAN BE CONCATENATED WITHOUT

COPYING IT

6.7.2. LIST FUNCTIONS

THE FUNCTIONS,

6-7

FIKST(L) > DFIRST(L) ,
LAST(L) » DLAST(L)

ARE TRANSLATED INTO THE FOLLOWING CALLING SEQUENCE

LMJ X11,G$LGET
+ T
«• L
+ W.B.

WHFRE

T = 0 FOR FIRST
= 1 FOR DFIRST
= 2 FOR LAST
= 3 FOR LAST AND DLAST

AND L IS THE ADDRESS OF TH* LIST HEADER.
THE VALUE IS RETURNED IN AO (AO-A1 FOR DBL.PR. AND COMPLEX) BY

THE LIBRARY ROUTINE.

6.8. GRAPH OPERATIONS

6.8.1. ASSIGN STATEMENT

THE STATEMENTS*

ASSIGN G, X
ASSIGN Gi X - Y
ASSIGN G, X - Y, Z

ARE TRANSLATED INTO THE FOLLOWING CALLING SEQUENCES* RESPECTIVELY:

LMJ X11,»SASG1
+ G
•«• X
+ W.B.

LMJ X11,G$ASG2
+ G
•f X
+ Y
•»• W.B.

LMJ X11,GSASG3
•»• G
•f X

6-8

* Y
+ 2
+ W.B.

WHERE 6 IS THE ADDRESS OF THE GRAPH HEADER* X, Y, Z ARE THE AD-
DRESSES OF THE ATOMIC SETS.

6.8.2. DETACH STATEMENT

THE STATEMENTS*

DETACH G
DETACH G, S
DETACH 3f S - T

ARF TRANSLATED INTO THE FOLLOWING CALLING SEQUENCES' RESPECTIVELY!

LMJ XlltGSDETl
+ G
* W.B.

LMJ X11»G$DET2
+ G
+ S
* W.B.

LMJ X11,G$DET3
+ G
+ S
+ T
+ W.B.

WHfRE 6 IS THE ADDRESS OF THE GRAPH HEADER* S AND T ARE THE AD-
DRESSES OF THE CORRESPONDING SET HEADERS.

6.8.3. GRAPH FUNCTIONS

THE GRAPH FUNCTIONS*

STAR(G,S)» COB(G»S>» PBD(G,S)» ETC.

ARE TRANSLATED INTO THE FOLLOWING CALLING SEQUENCE

LMJ XlltGSBDRY
+ T
+ G
+ S
* W.B.

WHERE G IS THE ADDRESS OF THE GRAPH HEADER, S IS THE ADDRESS OF

6-9

THE SET HEADER, AND T IS DEFINED AS FOLLOWS (OCTAL)S
T

STAK £02
PSTAK 102
NSTAR 002

COB 212
PCOB H2
NCOtJ 012
AOJ 200

PADJ 100
NADJ 000
INC 201

PINC CC1
NINC 101

BU 211
PBU Oil
N8U Hi

6,9, ITERATIVE STATEMENTS

6.9.1. WHILE STATEMENT

THE STATEMENT

DO * WHILE <LOG.EXPRt>

IS TRANSLATED AS

FSXXXA (TRANSLATION
OF

LOGICAL
EXPRtSSION)

JZ AO'FSXXXB

j F$XXXA
FSXXXbt...

6.9.2. FOR ALL STATEMENT

THE STATEMENT

DO « FOR ALL X .IN. S

IS TRANSLATED AS

LMJ XH»6$DOl

F4XXXA

FSXXXB

•f

LMJ

J

6-10

S
TfeMP
W.B.
XU,G$D02
X
F'XXXB

W.B.

J F*XXXA
LMJ X11,G$D03
«• T*MP
* W.B.

WHERE 'TEMP' IS A TEMPORARY LOCATION ASSIGNED BY THE COMPILER.
THE THREE LIBRAKY ROUTINES* GS001-3, ARE FOR INITIALIZATION* I-
TERATION AND TEKMINATION 0* THE LOOP» RESPECTIVELY. THE COMMUNICA-
TION BETWEEN THtSfc ROUTINES 15 ACCOMPLISHED BY THE CONTENTS OF
'TEMP*.

THE LAST ROUTINE, G5D03* IS ALSO CALLED IF THE DO RANGE IS LEFT
BY TRANSFER STATEMENTS (ABNORMAL EXIT).

6.10. REMOVE STATEMENTS

THE STATEMENT

REMOVt Pf..t»Q(5>r...Ti...

WITH PROPERTIES P»Q»...t S*TS S.T,... ARE TRANSLATED INTO CONSECU-
TIVE SUBROUTINE CALLS, ONE FOR EACH ARGUMENT IN THE LIST OF THE
STATEMENT.

IF THE ARGUMfcNT IN THE STATEMENT IS A PROPERTY, THEN THE CAL-
LING SEQUENCE IS

LMJ X11,GSRMV1
+ P

IF THE ARGUMENT IS A PROPERTY ON A SET, THEN

LMJ
+
+

Q
S
W.B.

6-11

IF THE ARGUMENT IS A SET, THEN

LMJ XH
+ T
+ W.B,

7-1

7. LIBRARY PROGRAMS

THIS CHAPTER DESCRIBES THE OBJECT TIME LIBRARY PACKAGE OF
FGpAAL. THE ENT«Y POINTS ARE SUCH THAT THE FIRST TWO CHARACTERS OF
THEIR NAMES ARE 'G$»t EXCLUDED FROM THIS CONVENTION ARE THE SPE-
CIAL FUNCTIONS OF FGRAAL SUCH AS EXPAND, CONTR, ETC.

THE LIBRARY HACKAGE IS DIVIDED FUNCTIONALLY INTO TEN GROUPS.
THE FIRST FOUR OF THESE GROUPS, DATA REFERENCES IN THE DYNAMIC
STORAGE, PROCEDURES, DYNAMIC STORAGE ROUTINE AND THE SET ROUTINES*
ARE BASIC IN THE. PACKAGE IN THE SENSE THAT THEY ARE CALLED BY THE
ROUTINES IN THE OTHER PACKAGE. THE OTHER GROUPS ARE INDEPENDENT
FROM EACH OTHER. THE FOLLOWING TABLE SUMMARIZES THE ELEMENTS IN
THE TEN GROUPS.

* ELT. * ENTRIES* TITLE *
********************4************************************
* * * COMMON DATA
* GSDATA * GSNUO * ZERO AS LOWER LIMIT OF UNIv.SEQ.

* GSNU * LAST CHEATED ELEMENT
* GSNF * FIRST FREE BLOCK
* G$NL
* GSDA
GSD
GSMASK

PROCS IDYST3
ELEMNT
REMOV

LOWEST BLOCK ALLOCATED
ADDRESS OF DYNAMIC STORAGE
DYNAMIC STORAGE
MASKING BITS FOR COLUMN SETS

PROCEDURES
FREE A 2-WORD BLOCK
OBTAIN ELEMENT FROM ITS PROP, BLOCK
UNCHAIN A 2-WORD BLOCK

REMPR * REMOVE A PROPERTY BLOCK
INSRT * INSERT A 2-WORD BLOCK INTO A CHAIN
SAVE*
PTYP
SETONE
SETZKO
PTAG

*
GSDYN * GSDYN

SAVE RETURN ADDRESS
GETS TYPE GROUP OF PROPERTY
SET A HIT IN A COLUMN
RESET A BIT IN A COLUMN
SET PTAG ON A COLUMN SET

DYNAMIC STORAGE ROUTINES
OBTAIN A 2-WORD BLOCK

*

*
*
*
*
*
*
*
*
*
*
*

*
*

7-2

G*SZRO

GSSASG
GSSOPR

6SSCPY
*
* GSCDIS
* GSCGET

GSCZRO
GSSETI
GflNl

GSNXT

GSGNHD

GSLZRO
GSLGET
GSLIST

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

G5SZKO
GSSCZR
CFREE
BFREt
CRTRN
GSSASG
GSSUN
GSSSM
GSSDF
GSSIT
GSSCT
G*SE«
GSSNt.
GSSCHY
GSSC^l
GSCDIS
GSCGtT
GSCZKO
GSSETI
GSIN1
GSINIQ
ISNS
GSIN1C
GSNXT
GSNXTQ
GSNXtB
GSGNH1

GSGNM2

GSGNH3

G$LZ«0
GSLGtT
G5L1ST

*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*

SET ROUTINES
FREE A SET
FREES A SET IF FLAGGED
FREE A SET IN COLUMN FORM
FREE A SET IN BLOCK FORM
FREE A COLUMN INDEX
SET ASSIGNMENT
SET UNION
SYMMETRIC SUM
SET DIFFERENCE
SET INTERSECTION
SET CONTAINMENT
SET EQUIVALENCE
SET NOT EQUAL
COPY A SET INTO A COLUMN SET
COPY A SET INTO A CERTAIN COLUMN
PUT A COLUMN SET INTO BLOCK FORM
OBTAIN A FREE COLUMN
CLEA* « COLUMN
INITIALIZE FOR GET-NEXT ELT .
REGISTER INIT. FOR GET NEXT
INITIALIZATION FOR INTERNAL USE
DATA WORD FOR GET NEXT
REGISTtR SET-UP FOR COL. SEARCH
GET NEXT ELEMENT OF SET
FOR INTERNAL USE
GET NEXT ELT. OF BLOCK SET
GENERATE HEADER FOR COLUMN SET»

PREVIOUS HEADER EXISTED
PREVIOUS HEADER EXISTED BUT NEW

LIMITS ARE GIVEN
NO PREVIOUS HEADER

LIST ROUTINES
EMPTY A LIST
LIST FUNCTIONS
LIST ASSIGNMENT

*
*
*

*
*

7-3

GSRMV1 ..
GSRMV2
G*RMV3
GSPROP

GSPREM
GSPADD
GSPSUB
GSFNDF

GS6PR1

* GSASG
*
*
* GSDET1
GSDET2
GSDET3
GSBDRY
G$DOMN
GSDETA
G5ASGN
GSGPP2

GSCRT
GSCRTO
G$DO

GSCHCK
GSELT
GSINDX
GSSIZE

GSSUBS

GSERR

CONTR
EXPAND
NODSET

* PROPERTY ROUTINES
GSRMVl * REMOVE PROPERTY P ,
GSRMV2 * REMOVE PROPERTY ON A SET
GSRMV3 * REMOVE ELEMENTS FROM UNIVERSE
GSPRST * PROPERTY ASSIGNMENT
GSPRKT * PROPERTY RETRIEVAL
GSPRtM * REMOVE A PROPERTY FROM AN ELEMENT
GSPAUD * ADD ELT. TO PROPERTY SET
GSPSUB * REMOVE ELT. FROM PROPERTY SET
GSFNUF * FIND FIRST ELT. WITH PROPERTY
GSFNUL * FIND L*ST ELT. WITH PROPERTY
GSGPR1 * FIND PHOP. BLOCK OF ELT.

* GRAHH ROUTINES
GSASGI * ASSIGN G, x
GSAS62 * ASSIGN G, X-Y
GSASG3 * ASSIGN G. X-Y, Z
6SDET1 * DETACH FULL GRAPH
GSDET2 * DETACH ELEMENTS FROM GRAPH
GSDET3 * DETCH LINKS FROM GRAPH
GSBDKY * GRAPH OPERATORS
65DOMN * DOMAIN OF A PROPERTY (NODES»ARCS)
GSDETA * DETACH AN ARC
GSASGN * ASSIGN A NODE
GSGPK2 * FIND GHAPH PROPERTY BLOCK

* SPECIAL FUNCTIONS
GSCRf * CONDITIONAL CREATE
GSCRTO * CREATE ELEMENT
GSDOl * INITIALIZATION FOR FORALL ST.
GSD02 * RETRIEVE ELEMENT FOR FORALL ST.
GSD03 * TERMINATE FORALL STATEMENT
GSCHCK * PROPERTY CHECK
GSELT * ELT FUNCTION
GSINUX * INDEX FUNCTION
G$SI£E * SIZE FACTION
GSPAKI * PARITY FUNCTION
GSSUBS * SUBSET FUNCTION

* DIAGNOSTIC ROUTINES
GSERR * ERROR *ND WARNING ROUTINE
GSERKD * ERROR MESSAGE DATA

* SPECIAL LIBRARY ROUTINES
CONTK * CONTRACT NODE SET
EXPAND * EXPAND CONTARCTED NODE SET
NODStT * OBTAIN SET OF CONTRACTED NODES

8-2

FUNCTION TABLE.

^

* N0.» * FCT
NAME *ARGS* ARGS. MEANING *TyPE

* * — LIST FUNCTIONS: — *
FIRST * i LIST HETURNS THE FIRST OR LAST ELE- *TYPE
DFIRST * WENT OF THE LIST, WITH »D» , OF

*
*

*
*
*

LAST * IT ALSO DELETES THE ELEMENT LIST*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*

DLAST FROM THE LIST.

— SET FUNCTIONS:
CREATE 1 * ZERO CREATED ELEMENT AS AT. SET SET
CREATE 2N *PROP.NAME* GIVES AT, SET WITH MATCHING PRO- SET

* *AND VALUE* PERTIES, CREATES ONE IF NON-
*

ATOM
FLT
INDEX
SIZE
PARITY

COUNT
COUNT
SUBSET

CHECK

»PROP
NAME*

NODES
ARCS
INC

STAR

BD

COB

ADJ

1
2
2
1
1

1
1
3

2

1

1
1
2

2

2

2

2

IN PAIRS* EXISTENT.
INT. * OT.SET WITH THE GIVEN SEQ. NUMBER* SET
INT, SET * AT. SET IN SPEC. PLACE IN THE SET* SET
AT. SET, * INDEX NO. OF AT. SET IN THE SET. * INT
SET * NUMBER OF ELEMENTS IN THE SET * INT
SET * TRUE FOR ODD, FALSE FOR EVEN * LOG

* NUMBER OF ELEMENTS. *
ZERO * MAXIMAL SEQUENCE NUMBER * INT
AT. SET * SEQUENCE NUMBER OF THE AT. SET * INT
SET, LOG * CLEMENTS OF FIRST, DUMMY ARGUMENT* SET

* WHICH SATISFY LOG.EXPR. *
PROP. NAME* TRUE IF PROPERTY IS DEFINED FOR
AT. SET * AT. SET, OTHERWISE FALSE

AT. SET

GRAPH
GRAPH
GRAPH,

SET
GRAPH,

SET
GRAPH,

SET
GRAPH,

SET
GRAPH,

* SET

... PROPERTY FUNCTIONS: —
RETURNS THE ASSIGNED PROP. VALUE

. — GRAPH FUNCTIONS: —
NODES OF THE GRAPH
ARCS OF THE GRAPH
UNION OF ALL BOUNDARY NODES OF
THE GIVEN SET OF ARCS.

UNION OF ALL ARCS INCIDENT TO
THE GIVEN SET OF NODES,

SYMMETRIC SUM OF ALL BOUNDARY
NODES OF ARCS IN THE SET,

SYMMETRIC SUM OF ALL ARCS INCI-
DENT TO THE NODES IN THE SET.

UNION OF ALL NODES ADJACENT TO

LOG

TYPE
OF

*

PROP

SET
SET
SET

SET

SET

SET

SET
THE NOPES IN THE SET. *

STATEMENTS

8-3

* CATEG. * FORM MEANING

DECLARATION
SET X.Y....
'TYPE' STAQUE L.P....

'TYPE' PROPtRTY A,B»...

GRAPH G('MOW')»T('MOD'),..

A,B

X.Y..., ARE SET VARIABLES.
L.P.... ARE LISTS OF »TYPE«=

REAL. INTEGER. LOGICAL OR SET.
,. PROP,FUNCTIONS OF »TYPE»

REAL» INT.» LOG. OR SET.
G,T»... ARE GRAPH OF 'MOD»=
DIRECTED OR UNDIRECTED, AND
PSEUDO-,MULTI- OR NODE-GRAPHS.

ASSIGNMENT
* S='SET-EXPRESSION'
* L=...:X:L:Y:...

P (X) = »EXPREi>SION'

SET ASSIGNMENT
LIST ASG.J X.L.Y,.,. ARE CONST,r*

VBLE. OR LIST OF SAME TYPE.
PROPERTY »p» ASSIGNED TO ATOMIC

SET X WITH VALUE 'EXPRESSION'

GRAPH
ASSIGN G.X
ASSIGN G.X-Y

ASSIGN G.X-Y,Z

DETACH G.S

AT.SET X ASSIGNED TO G AS NODE.
ATOMIC SETS X»Y ARE ASSIGNED AS

ADJACENT NODES IN GRAPH G.
AT.SETS X,Y»Z ASSIGNED TO GRAPH
G AS ARC Z WITH END-NODES X»Y.

ELEMENTS OF SET S ARE REMOVED
FROM GRAPH G.

ITERATIVE

DO 'ST«» FOR ALL X.IN.S
DO »ST»» WHILE LOG.EXP*.

EXECUTES STATEMENTS THROUGH ONE
LABELED WITH «STtt'

FOR EACH ELEMENT X OF SET S
WHILE LOG.EXPRESSIQN IS TRUE

REMOVE
REMOVE S,T,...,A,Bi... REMOVES SETS S.T FROM UNIVERSE.

PROPERTIES A.B FROM AT.SETS
WHERE DEFINED.

SAVE-RESET

SAVE G.....H....
RESET G.....P*,t.

GRAPHS G,.... PROPERTIES P,...
SAVED ON AUXILIARY STORAGE *
RESET FROM AUXILIARY STORAGE. *

