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SUMMARY

The object of this thesis research.has been to

develop an improved broad band impedance matching technique.

The technique is capable of resolving points in the wave-

guide which generate reflected energy. A version of the

comparison reflectometer has been developed and fabricated

to determine the mean amplitude of the reflection coeffi-

cient excited at points in the guide as a function of dis-

tance, and the complex reflection coefficient of a specific

discontinuity in the guide as a function of frequency. An

impedance matching computer program has been developed which

is capable of impedance matching the characteristics of each

disturbance independent of other reflections in the guide.

The characteristics of four standard matching elements

have been compiled, and their associated curves of reflection

coefficient and shunt susceptance as a function of frequency

are presented in Appendix A. The characteristics of the

four standard matching elements (symmetrical capacitive iris,

asymmetrical inductive iris, inductive metal post, and di-

electric post) are also programmed into the impedance match-

ing program listed in Appendix B.

A sample of each of the four standard matching ele-

ments have been fabricated, and results measured by both the
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comparison reflectometer and a slotted line setup have been

compared with theoretical predictions. The measurements

made by the comparison reflectometer on the sample standard

matching elements have shown agreement within the accuracy

of the comparison reflectometer.

A shunt slot radiator was fabricated, and its charac-

teristics were measured and impedance matched to demonstrate

the computer aided broad band impedance matching technique.

The shunt slot radiator was impedance matched over a 2 GHz

bandwidth to a VSWR of 1.16 to 1.0. A theoretical dimen-

sional perturbation has been made on the matching element

to determine the extent of the sensitivity of the impedance

match to machining tolerance.

As a result of this research, an economical, fast,

and reliable impedance matching technique has been estab-

lished which can provide broad band impedance matches.
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CHAPTER I

INTRODUCTION

Motivation for Problem

For many years impedance matching at spot frequencies

has been practiced, and the Smith chart is a well known tool

for narrow band impedance matching. In most cases the

matching element is placed some distance from the disturb-

ance to be matched. In such a configuration the phase

angle of the generalized reflection coefficient resulting

from the matching element and the discontinuity to be

matched varies as 2 aL, where (3 is the propagation constant

and L is the distance between the matching element and the

mismatch. The propagation constant can be expressed in

the form,

= (w2p E K2)12 = 27r/xg (1)

where: Ag is the wavelength in the waveguide, K is defined

for dominant mode propagation in the rectangular waveguide

by K2 = IT
2/a2, a being the width of the guide, w is the

angular frequency in radians per second, p is the permea-

bility, c is the permittivity.

Equation (1) shows that B is frequency dependent and
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as a result complete cancellation of waves generally

extends only over a narrow-band. The greater the distance

L the narrower the bandwidth of the impedance match. If

the distance L were reduced to zero then there would be no

variation in phase angle due to the electrical length sep-

arating the discontinuities, and two discontinuities having

reflection coefficients of equal magnitude and opposite sign,

Appendix C, would present a broad-band match.

In recent years there has been a need to use many

microwave devices over a large portion of a waveguide band-

width. As an example, some antenna systems which transmit

swept signals require matching over a large percentage of a

waveguide band. A11 components which make up this trans-

mitting system and handle the microwave energy, such as

ferrite circulators and phase shifters, couplers, modula-

tors, and many other components, must also have a large

band pass. Without good impedance matching over the band

of interest, large quantities of energy are reflected back

towards the generator and must be absorbed in isolators or

attenuators. As a result, excessive amounts of energy are

demanded from the generator in order to supply the load with

the desired energy. Many times these excessive energy

demands are economically prohibitive and never desirable.

Usually broad band impedance matching is done with-

out much insight into the unmatched component. The loca-

tion of reflections and the number of these reflections have
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in most cases been left unknown, exceptions being only in

the simplest cases. Therefore, impedance matching of com-

plex components has been largely trial and error. The end

result is often neither very satisfying nor very economical.

The location of the discontinuity in the waveguide

and the complex reflection coefficient of the disturbance

as a function of frequency need to be known in order to

gain insight into the problem of impedance matching. In

this work a version of the comparison reflectometer 
1 
is

used to determine these parameters within limits. In some

cases there may be some difficulty determining a disconti-

nuity which will identically cancel out the effect of the

original mismatch. However, the impedance matching tech-

nique described provides the engineer with a powerful tool

to obtain broad band impedance matches that are practically

acceptable.

Definition of the Problem 

Discontinuities in an otherwise uniform transmission

line cause the excitation of a reflected wave in order to

satisfy the boundary conditions on the electric and magnetic

fields at the discontinuity. The reflected wave generally

represents a reduction in transmitted power and is described

as arising from a mismatch in the characteristic impedance

of the line. An additional discontinuity placed in the

transmission line in such a way as to cancel the original
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reflected wave is said to impedance match the transmission

line. This general technique provides a good match for

lossless mismatches if the reflection coefficients of the

mismatch and the matching discontinuity represent waves

which cancel identically and if the discontinuities are

located equal distances from the generator. If, however,

the mismatch and matching element are not located the same

distance from the generator, the match will be frequency

dependent, and therefore of a narrow band nature.

Most mismatches that occur in practice are in fact

reflections arising from multiple discontinuities and gen-

erally cannot be broad band impedance matched by a single

matching element. Successful matching of multiple reflec-

tions requires that the location of each reflection should

be known and that the contribution of each reflecting point

to the total reflection coefficient be known.

The objective of this research has been to develop

an improved broad band impedance matching technique. The

technique is capable of resolving points in the waveguide

which generate reflected energy. A version of the compar-

ison reflectometer has been developed and fabricated to

determine the mean amplitude of the reflected wave excited

at a point in the guide as a function of distance, and the

complex reflection coefficient of a specific discontinuity

in the guide as a function of frequency.1 An impedance

matching computer program has been developed which is capa-
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ble of impedance matching each disturbance independent of

other reflections in the guide. The justification for the

Impedance matching procedure is given in Appendix C.

The characteristics of four standard matching ele-

ments have been compiled, and their associated curves of

reflection coefficient and shunt susceptance as a function

of frequency are presented in Appendix A. The curves take

the form of plots of shunt susceptance, and plots of mag-

nitude and phase angle of the current reflection coeffi-

cient.
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CHAPTER II

BACKGROUND OF IMPEDANCE MATCHING
AND OF REFLECTOMETRY

Impedance Matching 

Reflected waves are generally undesirable and are to

be avoided in waveguides. One method of minimizing reflec-

tions in a waveguide is to design the system such that the

load impedance will completely absorb the incident fields

without reflections. This load corresponds to a character-

istic impedance termination in a transmission line. A

second approach to the problem is to create a reflected wave

near the load that is equal in magnitude but opposite in

phase from the wave reflected by the load. The two reflec-

ted waves therefore cancel each other as shown by Equation

(C-14). Both methods of impedance matching are usually

used simultaneously. The system is initially fabricated so

that the load provides as good an impedance match as is

possible to obtain with a reasonable effort. The reflected

wave that still remains is eliminated by the use of an

impedance matching system that creates a compensating re-

flection. Many waveguide arrangements have been devised

for generating a controllable reflection. Some of these

are analogous to the impedance matching arrangements em-

ployed in transmission lines, while others are unique to
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waveguides.

The shorted stub so commonly used in transmission

lines has a waveguide analogue, the stub guide or E-H tuner.

In Figure 1 there are two types of tuners, the series tuner

and shunt tuner. The series and shunt tuner can be used to

impedance match a discontinuity or mismatched load over a

narrow band of frequencies. To achieve this match the

length of the stub as well as the distance from the load are

critical dimensions. An analysis of this matching procedure

2
is given in rnany electromagnetics texts.

A second important procedure used frequently to im-

pedance match over a narrow band of frequencies is the

quarter wave transformer. The impedance transformer con-

sists of a length of line of impedance Zt that begins a

quarter wavelength from the load, as indicated in Figure 2.

The proper impedance of the quarter wave transformer Zt is

given by Equation (1) as
3
:

Zt = (Zo Zr
1/2 
) . (1)

When the impedance Z. satisfies' Equation (1) the

impedance looking to the load at point P will be equal to

the characteristic impedance of the line, Zo. it should be

noted that the impedance matching just described is exact

only for the frequency corresponding to the waveguide wave-

length kgo. Once this match is achieved at a particular



o 

o- -

o 

shorting plunger

(a) Series T

transmission line
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of side arm

-o

(b) Shunt T

shorting
plunger

transmission line

reactance of side
arm

Figure 1. Series and Shunt Tuners
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Xgo/4

Figure 2. Quarter Wave Transformer

ogo, the match does not hold for a general Xe Xgo. This

results in a narrow band impedance match. There are many

such techniques giving restricted matches.

Ref lectometry 

The basic function of a reflectometer consists of sam-

pling an incident wave and a reflected wave and determining

the ratio of the two. The ratio of the reflected to the

incident electric field is defined as the voltage reflection

coefficient r, and has both real and imaginary parts.

The general procedure
4 

uses two directional couplers

located back to back as in Figure 3. The incident energy

is coupled into the directional coupler D1 and the re-

flected energy is coupled into the reversed directional

coupler D2. Each directional coupler is terminated in a

square law detector. These detectors provide a D.C.

voltage output which is proportional to the square of the

electric field intensity. If the incident detector is used

to provide a feedback signal which enables a high frequency

oscillator to maintain a constant power level, then the
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to level

input
load

(a) Leveled Reflectometer

D1

input

D2

ratiometer

(b) Unleveled Reflectometer

Figure 3. Reflectometer Systems

load
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magnitude squared of the reflection coefficient is pro-

portional to the output of the detector D2, Equation (2):

2
Irl =TEr (2)

where T is a proportionality constant, and Er is the

voltage output of the square law detector.

Alternatively, if the output of both detectors are

used as inputs to a ratio meter than the reading of this

device is a function of the magnitude of the reflection co-

efficient squared.
5

The ratio meter can be calibrated to

provide magnitude of reflection coefficient or voltage

standing wave ratio (VSWR). The use of a swept oscillator

in either of the above two cases will provide a display of

the magnitude of reflection coefficient as a function of

frequency.

It is well to note that these techniques do not

provide phase information. Since the phase information is

unknown, there is no assurance that two discontinuities will

in fact provide a cancellation of waves even though the

curves of the magnitude of the reflection coefficient Irl
are equivalent. Therefore, impedance matching using these

reflectometers is largely trial and error.

Reflecto "meter"

A technique which takes a different approach to
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6
reflectometry was introduced by F. C. deRonde. This

system called the reflecto "meter" utilizes three detectors

in the main transmission line, Figure 4, instead of the two

directional couplers as in Figure 3. The advantage of this

device is improved accuracy of the modulus of reflection

coefficient, but the setup is more difficult to fabricate

than the reflectometer composed of directional couplers.

The common disadvantage is that it gives no phase informa-

tion and cannot resolve individual discontinuities in a

waveguide.

It is desirable when impedance matching to have both

the phase information and the magnitude information of the

reflection coefficient, as indicated in Appendix C. This

information can be obtained using slotted line tech-

niques,7,8 but this procedure is extremely time consuming

when dealing with the many data points needed to cover a

large frequency range. In addition, the slotted line

technique has no provision for the separation of reflectioft

coefficients generated by different discontinuities.

Time Domain Reflectometer 

Time Domain Reflectometer (TDR) is an approach which

can determine the location of discontinuities in a trans-

mission line. TDR is an application of a pulse reflection

technique.9,10 A pulse of energy is transmitted down a

transmission line. If there exists an impedance discontin-

uity in the transmission line, energy will be reflected
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L
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back toward the generator. The location of the discontin-

uity can be determined by measuring the round trip time de-

lay for reception of reflected pulses. The narrowness of

the pulse and the quality of the measuring equipment de-

termine the resolution capabilities of the TDR. The narrow-

band TDR is used when measuring waveguide structures.1° The

amplitude of the reflected pulse is related to impedance, so

any slight deviation from the characteristic impedance level

of the output of the TDR can easily be recognized and

measured.

Time Domain Reflectometry has been applied to open

transmission lines, coaxial cable and recently to waveguide

structures. For the waveguide structures a step modulated

carrier is used10 to remain within the confines of the wave-

guide passband. Generally, the true value of the narrowband

TDR is in applications where long runs of waveguide are

used. The locating accuracy for this device is of the order

of ±3 percent of the distance measured, depending on the

quality of the leading edge of the transmitted pulse.

Network Analyzer

Recently, the network analyzer has been introduced.
11

This device characterizes microwave components in terms of

their scattering matrix. This characterization allows the

microwave device to be modeled and more efficiently used

in complex networks. The network analyzer is an important

impedance matching tool, as a result of its modeling ability.
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However, the network analyzer lacks one important quality,

it cannot measure the effect of individual discontinuities

independent of adjacent disturbances. Therefore, the im-

pedance matching of the composite discontinuities of the

microwave device remains a difficult problem requiring a

composite of matching elements. If however, the composite

reflection coefficients of microwave devices could be broken

down into an ensemble of simpler reflections, then it is

reasonable to assume that the simpler reflections would be

easier to impedance match individually. Themet result is

an overall impedance matched device.

Comparison Reflectometer 

The comparison reflectometer1 is another technique

which provides the location of a disturbance in the guide.

If there is more than one disturbance in the guide these

disturbances are shown as separate disturbances and their

locations are displayed. The comparison reflectometer also

can provide a curve of magnitude and phase of the reflection

coefficient as a function of frequency for each discontin-

uity in the guide.

In using the comparison reflectometer inaccuracies

in the waveguide components are largely cancelled out due

to the technique of taking measurements, as described in

Chapter III. This cancelling effect enables a background

reflection coefficient noise level typically less than

0.00005 to be measured, as shown in Figure31. Because



16

of these attributes a comparison reflectometer has been

chosen as the basis of the computer aided impedance match-

ing technique, and has been fabricated to take the measure-

ments used in this research.
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CHAPTER III

APPROACH TO IMPEDANCE MATCHING

Introduction

The computer aided broad band impedance matching

technique, Figure 5, consists of first collecting data to

determine the combined complex reflection coefficient of

both a reference step and a test discontinuity. The lo-

cation of the disturbance to be impedance matched is then

determined and the complex reflection coefficient is cal-

culated. The physical dimensions and the relative loca-

tion of a preselected matching element are calculated by

the impedance matching computer program. The result is

the impedance matched disturbance. If additional matching

is required, a second matching element may be selected.

The physical parameters of this element are again calculated

by the impedance matching program.

Two sets of data are taken by the comparison reflec-

tometer at 50 MHz intervals from 7.975 GHz through

12.425 GHz. One set of data is taken with the reference

step terminated in a matched load, Figures 6 and 7.

The second set of measurements is taken with the reference

step terminated by the test disturbance. These data are

processed by two computer programs. The first, Test 1,
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Figure 7. Photograph of Comparison Reflectometer System
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determines the mean magnitude of the reflection coefficient

as a function of distance as shown in Figure 8. This curve

locates discontinuities relative to the reference plane.

The second program, Test 2, calculates the complex current

reflection coefficient as a function of frequency at a pre-

determined location in the waveguide, Figure 9. This com-

plex reflection coefficient characterizes the measured

disturbance in the impedance matching program.

The impedance matching computer program developed as

part of this thesis determines the physical dimensions of

a matching element and an appropriate location with respect

to the original mismatch. The program provides the best

impedance match over the bandwidth of interest in the rbot

mean square sense. This "best" impedance match is depen-

dent on the matching element and the method of choosing

its parameters. The input data for the matching program

are the results of the comparison reflectometer program,

Test 2. All of these programs discussed are listed in

Appendix B.

Theory of Operation of a Comparison Reflectometer 

Introduction 

The comparison reflectometer first introduced by

D. L. Hollway,1 is an instrument designed to locate and

measure the characteristics of reflections in waveguides and

transmission-line systems. It is particularly suitable for

measuring small reflections in microwave components up to
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one meter inlength.

The principle of operation is the comparison of the

total magnitude of reflection coefficient of a known re-

ference disturbance and a test disturbance with that of the

known reference disturbance. From this comparison the lo-

cation of the test mismatch can be determined, and its com-

plex reflection coefficient as a.function of frequency cal-

culated. A high speed digital computer is used to perform

the necessary calculations.

Governing Equations 

Consider a waveguide system shown in Figure 6. A

component having a single reflection 1 r,lexpljel is

connected to a reference reflection having the scattering

coefficients shown in Figure 10. The reflection coefficient

of the combination may be written,

bl/a1 = (S22 (1-s331'1)+s32r1s23)/(1-s33r1) (1)

b1/a1 = [S
22 

- r1(s22 S33 - S32 S2301-s r ) (2)
33 •

Generally, the reflection to be measured will be

located at some distance L
1 from the 

reference plane, so

that the.value of r1 measured at this plan will be,

= 11'1 1 exP [j(e-261,1)] . (3)
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Figure 10. Scattering Representation of a Single Reflection
Connected to a Reference Connection

The theory and computations are simplified, and the

accuracy of the results improved if a reference reflection

is used having a reflection coefficient which is-essentially

constant in magnitude and phase throughout the frequency

band at a stationary reference plane. A design which has

been found by D. L. Hollway
12 

to be superior to others in

this respect consists of a symmetrical E-plane taper, having

only negligibly small reflections followed by a sudden step

back to full guide height.

If we ignore for later simplicity the small correc-

tion required for the step capacitance, the step reflec-

tion, shown in Figure lla, may be considered as a lossless

transformer', having turns ratio N, set in the guide at

the reference plane as in Figure llb.

Let rr be the voltage reflection coefficient of

this reference as seen from the generator side, then
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and

rr = S22 = (N
2
-1)/(N

2
+1)

S
33 

= (1-N
2
)/(1+N

2
)

S
32 

= S
23 

= 2N/(1+N
2
)

Since rr has been chosen to have zero phase it

will be written without a modulus sign,1

The total reflection coefficient at -the reference

plane is found by substituting Equations (4), (5), (6)

into Equation (2), the result being

but

(4)

(5)

(6)

r = bl/a1 = (Fr(l+Frri) +S23532F1)/(1+FrF1) (7)

2
S32 • S2 = 1-F3 r.

therefore r = (rr+ ri)/(1+rrri)

r+1 rilexp{j(e--2f3L)})/(t+rrir lexpfj (0-2.SL) 1) (8)

A measured curve of the total reflection coefficient

r is shown in Figure 12 for a fabricated capacitive iris and

the fabricated reference step. The oscillations in the

waveform as a function of frequency is in part a function of

Separation distance L as described. by Equation (8).
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c = Irilcos(8-4L)

s = IrlIsin(8-2e1J)

Substituting Equations (9), (10) into (8),

( 9 )

(10)

r = [ (rri-c+js)]/[1+rr(c+js)] (11)

r=ur(lidr1 1 2)+c(l+r)+js(1-rr2)]/[1+2rrc+rr2 1 1'11 2] (12)
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Part of the return wave passes through the directional

coupler C4, Figure 6, and produces a DC voltage which is

independent of the phase of r. The output of the crystal

detector at C3 is proportional to Irl
2
•

ing the magnitude of (12),

Therefore, squar-

2 2 2 2 ,2 2
(1+1r1 1 ) + 2crr(1+1r1) )(l+rr )

+c
2
(1-1-rx.

2
)
2
+s

2 
1-rr

2
)
2
]/(1+2crr

+rr
2 
lr1 1.

2
)
2

• (13)

We are concerned chiefly with small reflections,

therefore terms such as rr
3 

11'1 1
3
 are small compared to unity.

If rr = .2 and .1 then rr
3 
lrl i is equal to 8 x 10

-6 
.

Ignoring these and terms containing cos (20 -4 aL) for later

simplicity, the denominator of Equation (13) may be written

as:

(1+2crr +rr 
2
1r1 1

2
)
2

1/(1-4crr+4rr
2
1r1

2
)

with these approximations,

2 2 . 2 2 2
Irl a r

r 
+ir

1
1 -2r

r 
1r
1

1 +2r
r
1r
1

I

(14)
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2 , 2 2 2
"I r11 +rr 1 rit ) cos(0-28L)

In order to compute 1r1 1 cos (0-28L), (15) may be

rearranged,

Let .

and

lycos(8-28L) -

2 2 2 ,
lrl - rr 

2 
lril

2

1
2r 
r 
(1-r 

r
2 
-1r

1 
1
2 
+r
r
21 

r
1
2 
)

A E (1-r
r 
2-1r

1 r 1 2+r2lr1 1 2)

(15)

(16)

(17)

G(v) = 1r1 2/2riA. (18)

Then (16) can be rewritten as,

lrilcosce-21310 = G(v)-(r 
2
+ 

2 
-2rr

2 2 
irl i )/2TrA (19)

The term G(v) is a function of wavenumber and is to be

determined from the readings of the digital volt meter as

will be described in the next sections. A is a correction

term near unity.

Up to this point in the derivation only one reflec-

tion has been considered in addition to the reference. In

general, the components being measured will contain more than

one reflection, 1'1, r2 „kat distances -1, L2 ....Ln, and
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these must be computed from the data G(v).

Assume that interactions between adjacent test re-

flections may be neglected, then by superposition,

series,

CO

G(v) = nIcos(en-47rL v) (20)

The above equation may be written as a Fourier

CO

G(v)
n=1

cos(47nL"v)+bnsin(47rnL"v)]

where Ln = ni," and L" is the unit length.

The component reflections are found by taking the

finite Fourier transforms.

V
2

fan = 1/v" G(v)cos(nffv/v")dv

and

v2

bn = 1/v" G(v)sin(n7 iv/vdv

f
v
1

where 2v" = v2 - vl, the range of wavenumber interval in

which the G(v) is measured. And L' = -\1
4

From (20) an and bn are also equal to

(21)

(22)

(23)
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= IrnIcosen

bn = I rnIsine

using the trig expansion,

cos (x - y) = cos x cos y + sin x sin y .

Irnl = 
(an2.03n2)1/2

Therefore,

and

(24)

(25)

(26)

On = arctan (bn/an). (27)

The phase angle of the total voltage reflection co-

efficient was loSt when the r.f. signals were rectified by the

detector crystals, however, both the magnitude and phase

angle of the measured component may be computed from the

transforms. It is well to point out that Irl is the mag-

nitude of the total voltage reflection coefficient when the

reference step and the unknown device to be measured are

attached in the guide.

Substituting L' = 4 into the sine and cosine argument

of Equations (22) and (23),

nwv/v' = 47Lnv. (28)
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Since Ln = h/2(v2-v1), (29)

for an arbitrary distance L the wavenumber range v2 - vl

must be adjusted. The message here is that for an arbitrary

distance along the waveguide, the angle traversed by the ar-

guments of the sine and cosine terms of the Fourier transforms

(22), (23) must be an integral multiple of 27. This is im-

portant to recognize since the computer program will be cal-

culating the Fourier integrals for an arbitrary distance L.

Therefore the limits of the wavenumber range must be adjusted

to satisfy Equation (22) and (23).

Method of Measuring G(v). The Hewlett-Packard Model

416B ratio meter has been used, Figure 6. This particular

ratio meter requires inputs of 1 KHz signals from two square

law detectors. Two sets of measurements are taken, one with

r1 measured and a second with r2 measured. The corresponding

voltages out El and E2, obey the equation,

2 2

Ir1 I /Ir2 I = tan(CE
1 
)/tan(CE2), (30)

where C is a constant peculiar to the ratio meter used and

can be related to a conduction angle, i.e., time lag between

pulses generated in the ratio meter. Consider now that if we

take one set of readings with the reference step terminated

in a matched load, then 1r
2 1 = r 

Then consider that the
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second set of measurements are taken with the reference sten

terminated by the unknown device to be measured. Using this

approach Equation (30) may be rewritten as:

2 2

Irl = rrtan(CE)/tan(CEr). (31)

The quantities rr and C are known from previous

measurements. The quantities E and Er are measured for each

unknown. Using Equation (31), Equations (22) and (23) may

be rewritten as

, v2

a
n 
= r 

r
/2v-A [tan(CE)/tan(CE ) ] cos(2711,v)dv (32)

v

and b
n 
= rr/2v"A

v l

v2

[tan(CE)/tan(CEr)]sin(271,v)dv. (33)

Equations (32).and (33) are the equations which are

used by the digital computer to calculate the reflection co-

efficient as a function of distance.

At a particular distance corresponding to the loca-

tion of a discontinuity in the guide, the complex reflection

coefficient as a function of frequency is determined by in-

tegrating Equation (32) and (33) over small overlapping

wavenumber ranges and selecting the frequency corresponding

to the wavenumber in the center of each range as the fre-

quency of the particular integration, Figure 13. Each sub-

interval initially has ten data points or 500 MHz bandwidth
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and is staggered two data points or 100 MHz. Each subin-

terval must satisfy Equation (29) for the location down the

waveguide. Since this location is an arbitrary number, the

wavenumber range must be appropriately adjusted such that

an even interger multiple of it is equal to Ln, the distance

location. This adjustment is done from the low side of the

subinterval.

0 o

11.875111.975 112.975112.175 L2.275 I
11.925 12.025 12.125 12.225 12.325

11.975I 11.075111.175 111.275 111.3751
12.025 12.125 12.225 12.3215 12.425

Figure 13. Wavenumber Subintervals Given in GHz

As a result of the overlapping procedure and the subinter-

val adjustment, the calculated results of complex reflection

coefficient* are known at unequal frequency intervals of

approximately 100 MHz. While the reflectometer data is

taken at equal frequency intervals, the integrals are in

terms of wavenumber, 1/Ag," which does not correspond-

ingly occur at equal intervals. The method used in pro-

*At this point the complex voltage reflection co-
efficient r is transformed to the complex current reflection
coefficient Fr by the equation F1 = -r:

**The usual definition, 27/Xg is not used here for
convenience.
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gramming the integrals (32) and (33) is a point by point

calculation of the area under the curve formed by the argu-

ment of the integrals.12 This is discussed further in

Appendix B.

Selected Waveguide Discontinuities 

Introduction

Four waveguide discontinuities were selected as a

library of matching elements. Families of curves of the

characteristics of these elements, the symmetrical capaci-

tive iris, the asymmetrical inductive iris, the solid metal

inductive post, and the dielectric post, are given in Appen-

dix A. The above elements also serve as matching elements

for the impedance matching computer program. The equations

which model the matching elements are programmed in the match-

ing program and are called upon to impedance match the dis-

continuities measured by the comparison reflectometer.

Symmetrical Capacitive Iris 

The symmetrical capacitive iris shown in Figure 14a

is modeled by the circuit in Figure 14b. This iris is

formed by obstacles of small but finite thickness with edges

perpendicular to the electric field (H
10 

- mode in rectangu-

lar guide). The equations used are given by N. Marcuvitz13

and are in terms of the physical dimensions of the iris.

Figure 14, on the next page, shows this arrangement.
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Consider now the equivalent circuit of Figure 14b. Bb

is given by:

and

where

4
+Asin

1+Acos
4

and

Trd'
2b
)

(271-bd1)

B
b
/Y
o =

csc(27rL/Xg )

Ba/Yo = 1 o 
/Y +3 tan(wL/A )

/y = ln sec(Trci1 g)_7d 1L
1 o 71 2b 2bd

g(

1
16

2

) ( 1-3Ag

/ 2
cos2( it) )šin4

  2 )
A

g

Trd'
2b

(34)

(35)

(36)

(37)

Where the physical parameters b, d', L, and d are shown in

Figure 14a, and ag is the guide wavelength.

Equations (34) to (37) are programmed inthe impe-

dance matching program. They were also programmed in order

to calculate the library of families of curves in Appendix A.

' Restrictions. The equivalent circuit is valid in the

wavelength range b/Xg < 1, where Equation (34) is in error by

less than 2 percent. Equation (36) is in error by less than

5 percent when di/b < 0.5 and 1/d < 0.5. A comparison of

calculated and measured results are made in Chapter V.
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Asymmetrical Inductive Iris 

The asymmetrical inductive iris shown in Figure 15a

is modeled by the circuit in Figure 15b. This inductive

iris is formed by an obstacle of small but finite thickness

with edges parallel to the electric field (H10 - mode in

rectangular guide),. The equations used are given by N.

Marcuvitz13 and are in terms of the physical dimensions of

the inductive iris.

Where:

and

where

and

Consider now the equivalent circuit of Figure 14b.

X
a
/Z
o 
= (4a/À )(a/7D')

2
 , 7D'/X <<1.

X
b
/Z
o 
= (a/16X )(7D /a)

2
, 71) /X <<1

1 1

D, 

- 

d' 1.4.L In( 47
L
d'
)" ' d' 

« 1,
7dl — e .1 J2

D1
 

-1! (4Ld' 3 37) , L/d' << 1.

(38)

(39)

(40)

(41)

Where the physical parameters b, d', L and a are shown in

Figure 15a. The free space wavelength is and the guide

width is a. Equations (38) through (41) are programmed as

part of the impedance matching program. They were also

programmed in order to calculate the library of curves in

Appendix A.
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Restrictions. The equivalent circuit is valid in the

wavelength range a < X < 2a. For D I, D1 < 0.2a and a < X

Equation (38) through (41) are estimated to be in error by

less than 10 percent. A comparison of calculated and mea-

sured results are made in Chapter V.

Solid Inductive Post 

A solid metallic post of circular cross section with

axis parallel to the electric field (H10 - mode in rectan-

gular guide) is shown in Figure 16a with the equivalent cir-

cuit in Figure 16b. The equations used are given by N.

Marcuvitz13 and are in terms of the physical parameters of

the inductive post.

Consider now the equivalent circuit of Figure 16b.

Where:

and

where

Xa/Zo - xj0/2z0 = a \ Ird)2
2X ( 2X
9

2
(
2a
E1) (S,,cot

a a
-S 1) 2] csc2

n
Xb = a (7d)

2 
sintx

zo Xg a a 

)

So = lnl 4a sin7x

] 

- 2sin 27x
ird a a

(42)

(43)
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and

CO

+2E

n=2

1 2(n7x
sin n a )1

s = 
-2- 
1 cot(Trx)-sin(27rx

a a )

)2  
— 

4 1
  1 sin

(2n7x)
a2 

•
2

n=2 )
._ (2a \ 

(44)

(45)

The physical parameters x, d, and a are shown in Figure 16a.

Equations (42) through (45) are programmed as part of the

impedance matching program. They were also programmed in

order to calculate the library consisting of families of

curves in Appendix A.

Restrictions. The equivalent circuit is applicable

in the wavelength range a < a< 2a. The results are reliable

to within a few percent for d/a < 0.1 and 0.8 > x/a > 0.2.

A comparison of calculated and measured results will be

made in Chapter V.

Dielectric Post

A cylindrical dielectric obstacle of circular cross

section aligned parallel to the electric field, (H10 - mode

in rectangular guide), is shown in Figure 16a with the

equivalent circuit in Figure 17b. The equations used are

given by N. Marcuvitz
13 

and are in terms of the physical

parameters of the inductive post..



44

a

Cross Sectional View

T

(a) Dielectric Post

jX
b

jX
b

a

Top View

(b) Equivalent Circuit

T

-->

Figure 17. Dielectric Post and Equivalent Circuit



45

Consider now the equivalent circuit of Figure 17b.

Xb 
Zo a2,303) 1 

J1(a) cao(a)J1(8)-13J00)J1(a)

(2a/Xg) (nd/a)2sin2 (7x/a)

2

(46)

J
0 
(B) and J

1 
(B) are the bessel functions of the first kind

with orders 0 and 1 respectively.

and a = Trd/À , Trd/À.

where

Xa/Zo - xbizo (a/2ag)csc
2
 (nx/a)P0(3)/J0(a)

1

$Jo(a)J1(R) - aJo(a)J1(a)

2
- So + a,41

[4a sin nx -2 sin2 7TX
S
o 
= ln 7d a a

[+2E /11242a)
n=2 \X

0.
llsin2 nTrx)a

(47)

(48)

where the dielectric constant e l = L—, and eo is the freeo

space dielectric constant. For an obstacle with a complex

dielectric constant, e l-je ll= E, the above formulas are still
60

valid provided 6', Xa/Zo and Xb/Zo are replaced by cl-je and



46

j(Xa/Z0), and -j(x13/Z0) respectively. It should be noted

that resonant effects occur for large values of c' with

attendant changes in sign of the circuit elements. Only

low loss dielectrics are considered herein and only the

real part of the dielectric constant will be considered in

this research.

Restrictions. The equivalent circuit is applicable

in the wavelength range 2a > X > a, and for the centered

cylinder (x = a/2) in a wider range 2a > X > 2a/3. Equa-

tions (46) through (48) are estimated to be in error by

only a few percent in the range d/a < 0.15 and 0.2 < x/a <

0.8 provided that neither Xa/Zo nor xb/Z0 are too close to

resonance. Since this research is concerned with reflec-

tion coefficient values < .2 the above resonance criterion

presents no problem. A comparison of calculated and mea-

sured results are made in Chapter V.

Matching Computer Program

Introduction 

The computer program which calculates the physical

dimensions of the matching element and its location from

the mismatch is referred to here as the matching program.

This matching program uses an iterating technique to deter-

mine the desired physical dimensions. The criterion which

has been used is the least root mean square of the resultant
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mismatch (LRMS).* The RMS of the mismatch reflection co-

efficient has been used as the matching criterion in this

research to reduce the net energy reflected over the band-

width. This criterion does not always lead to the lowest

peak VSWR over the matched band. If it is important to

decrease the upper limit of the VSWR obtained by using the

RMS criterion then the criterion described in the recommen-

dations section of Chapter VI may be used at the possible

expense of increasing the average VSWR over the matched

bandwidth. The term resultant mismatch is used here to

identify the reflection coefficient observed by the gen-

erator when a matching element is present in the waveguide.

In order to assist in the selection of a matching

element, a library of selected matching elements has been

compiled and is given in Appendix A. The selected matching

elements consist of the symmetrical capacitive iris, the

asymmetrical inductive iris, the solid metal inductive post,

and the dielectric post. Information is presented in the

form of plots of magnitude of current reflection coefficient

and phase angle as a function of frequency. Also, plots of

shunt susceptance are given, normalized to the characteris-

tic impedance, as a function of frequency.

1 M I \2
*RMS E ,j(mismatch reflection coefficient! ,"ici n=1

where M is the number of data points in the preselected
bandwidth.
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Program Description 

The impedance matching computer program is described

with reference to the functional flow chart of Figure 18.

A listing of the program statements is given in Appendix B.

The impedance matching computer program is an iterative pro-

gram which iterates in three dimensional space. The space

has three coordinates of which two are of the physical di-

mensions of the matching element. The third dimension is

the location of the matching element relative to the mis-

match. A 3 x 3 x 3 array is used in dimension space form-

ing a total of twenty-seven points.

The program begins by reading in data and storing

needed constants. Nine sets of data cards are required as

input for this program. The symbol corresponding to the

particular data read is presented in Table 1. An explana-

tion of the data cards read is also given by comment state-

ments in the matching program listed in Appendix B.

Depending on the matching element chosen, an ini-

tial center point in dimension space is selected. This

point is denoted as the (1,1,1) point. If the capacitive

or inductive iris is selected, the I coordinate corresponds

to the thickness of the iris, and the J coordinate corres-

ponds to the height of the iris If, however, the metal

inductive post or the dielectric post is selected as match-

ing elements, then the I coordinate corresponds to the

distance from the centerline of the post to the sidewall,
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Read Data (1)

Generate a 27
Point Matrix
From the (1,1,1)
Point (2)

Reduce Distance
Between Generated
Points by 1/2 (12)

Branch to Chosen Element (3)

Capacitive
Iris (4)

v 
Inductive
Iris (4)

v

Metal Inductive
Post (4)

FCalculate Resultant Mismatch
(5) 

Calculate RMS Mismatch
Over Bandwidth (6)

Select Coordinates
of Smallest RMS (7)

Compare With
(1,1,1) Point
(8)

Not

Dielectric
Post (4)

•

Sarne

Check to See How
Many Times
Comparison Has Been
Made (9)

Same

If < 3

Set Indices
of (I,J,K) to
(1 1,1) (11)

If > 3

1 Print and PlotResults

Figure 18. Impedance Matching Program Functional
Flow Chart
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Table 1. Impedance Matching Computer Input Data

Symbol Corresponding Data

MACHEL Designates matching element,

EPRIM Value of the dielectric constant of the
dielectric post matching element

LE Number of data points of the calculated
mismatch reflection coefficient

FR(I) Frequency in GHz corresponding to data
points of the calculated mismatch reflec-
tion coefficient

XREL Real part of the mismatched reflection
coefficient to be impedance matched

YIMAG Imaginary part of the mismatched reflec-
tion coefficient to be impedance matched

FRBEG,
FREND

Band limits .to be matched over

NOO Number of times mismatch is to be impe-
dance matched

ALENGH(I) Value of the initial relative distance
between the measured mismatch and the
preselected matching element (the number
of different ALENGH(I) equal NOO)
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and the J coordinate corresponds to the diameter of the

post. In all cases the K coordinate corresponds to the

distance between the matching element and the mismatch. In

step 2 of Figure 18, the (1,1,1) point is used to generate

a set of satellite points on either side of the (1,1,1) point

lying on the three axes. These points are referred to as the

nearest neighbor points and are described by the coordinates

(1,1,1), (3,1,1), (1,2,1), (1,1,3), (2,1,1), (1,3,1) and

(1,1,2), as shown in Figure 19. The nearest neighbor points

are of the greatest interest, therefore, in order to conserve

computer run time calculations are made only for nearest

neighbor points.

Step 2 of Figure 18, therefore consists of incre-

menting the (1,1,1). point to generate the 7 principal points

of the 27 point array. In step 3 the matching element is

selected according to the information given by the first

data card. Table 2 shows the initial bonditions used in the

matching program.* In step 4 the reflection coefficient of

the matching element chosen is calculated over the desired

bandwidth (given by the last data card). This is done for

*The initial conditions were selected to reduce the

run time of the matching program by selecting them as rea-

sonably as possible. Large deviations of the physical di-

mensions of the matching elements were made and in all cases

the resulting dimensions returned to the same value. There-

fore, there was an absence of secondary minima as a function

of matching element physical dimensions.
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J

A

(1,3,1)

•

(2,1,1)

(1,1,3) 
•

(1,1,2)

(1,1,1) 
• 
 (3,1,1)>

•
(1,2,1)

Figure 19. Dimension Space Coordinates, Showing
the Seven Nearest Neighbor Points
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all seven points in dimension space. Step 5 calculates the

resultant mismatch between the disturbance in the waveguide

(given by data) and the calculated matching element for all

seven nearest neighbor points in dimension space. The equa-

tion used is referred to as the matching equation derived in

Appendix C and given here as:

rIt =
Fla exp (-j2M +rIb- 2 rIarm exp t-j213L]

1-rIarIb exp [-j2131J3 •
(49)

r
Ia is the current reflection coefficient 

of the disturbance

at point A in an otherwise matched transmission line, I'm

is the current reflection coefficient of the disturbance at

point B in an otherwise matched line, and L is the distance

between points A and B in Figure 20.* Equa(tion (49) gives

the total current reflection coefficient as seen by the gen-

erator as a result of two disturbances located in the line at

points A and B. The equation is in terms of the individual

current reflection coefficients that would be generated if

each disturbance were placed individually in an otherwise

matched transmission line. The program is implemented such

that either Fla or rlb can play the roll of the matching

element. If the disturbance is matched by placing the

*The complex current reflection coefficient rI is
equal to the negative of the complex voltage reflection co-
efficient r, i.e. F1 = -r.
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0—rIb

0-

B A

L

rIa

(a) rIa Originating at
Point A

.1,

(b)i I'm Originating at
Point B

o---rIt --):

Y
o

Yo

Y
o

(c) rIt Combined Reflection Coefficient

Figure 20. Current Reflection Coefficients Generated by
Disturbances on an Otherwise Matched Trans-
mission Line
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matching element on the generator side, then the matching

element is represented by rm. If matching is accomplished

on the load side of the disturbance, then the matching ele-

ment is represented by F1

Table 2. Matching Element Initial Conditions on Dimensions

Element Thickness Height

Capacitive Iris

Inductive Iris

0.05 cm 0.32 cm

0.05 cm 0.32 cm

Element Diameter Sidewall Distance

Metal Inductive Post 0.16 cm 0.47 cm

Dielectric Post 0.16 cm 0.47 cm

At this point in the program the resultant mismatch

as a function of frequency at intervals of approximately 100

MHz has been calculated for each point in dimension space.

Step 6 of Figure 18 determines the root mean square (RMS)

value of the current reflection coefficient over the fre-

quency band of interest, i.e., the seven RMS mismatch values

corresponding to the seven points in dimension space. Step

7 of Figure 18, selects the smallest of these RMS values

or least root mean square (LRMS) and determines its corres-

ponding coordinates in dimension space.
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Step 8 is a branch decision. If the point selected

in step 7 is not equal to the (1,1,1) point then the branch

is made to step 11 and the values of the dimensions of the

point (I,J,K) corresponding to the LRMS are assigned to the

(1,1,1) point. In effect this moves the (1,1,1) point in

dimension space. The computer returns to step 2 and calcu-

lates new nearest neighbor points around the new (1,1,1)

point. If, however, the point corresponding to the LRMS in

step 8 is in fact the (1,1,1) point, then a regional minimum

has been determined and a check is made on the size of the

increment. If the increment size has not been reduced to

1/8 the original size at the beginning of the program the

computer reduces the existing increment size by a factor of

2 in step 12 and returns to step 2 to determine a better

representation of the minimum mismatch. On the other hand,

if the increment size has been reduced by a factor of 8 then

the computer exits step 9 and prints, plots and punches re-

sults. The initial incrpment size used in the program is

shown in Table 3 and was determined empirically to avoid

large differences in reflection coefficients from neighbor-

ing points.

Program Output. The matching program output con-

sists of printout, plots, and punched cards. A typical

printout is given in Figure 21. The type of matching ele-

ment, the bandwidth matched over, the physical dimensions

of the matching element and the location of the matching



CAPACITIVE IRIS IS THE MATCHING ELEMENT  

NUMBER Or-1NCREMENT = 8.

MATCHED BAND IS FROM 9.795 GHZ. TO 10.995 GHZ.. .  

HaViESS= .0438 IN CM HEIGHT= .1600 IN CM

RESULTANT MISMATCH

OWANCE TOWARD THE oEN.-PRON mIgAlatHr. .8375 CM

..macmo. --UNMATCHED"

VRE3JENCY IN GHZ. .MAG. REFL. COEFF. VSWR MAG.REFL.COEFFe0/5UR8. MEASURED

8.195 .07719 1.1673 .06696
8.395 .07506 1.1623 .07138
8.595 .07186 1.1549 .07563
B.795 .06767-- 1.1452 .07973
8.995 .06255 1.1334 .08373
9.195 .05655 1.1199 .08761
9.395 .04973 1.1047 .09140
9.595 .04214 1.0880 .09511
9.795

---
.03381 1.0700 .09875

9.995 .02480 1.0509 .10232
10.195 .01516 1.0308 .10584
10.395 .00510 1.0103 .10931
10.595 .00638 • 1.0128.__ .11272
10.795 001758 1.0358 .11609

_ 10.995 002941 1.0606 .11942
11.195 .04171 1.0870 .12271
11.395 ....., .05440 1.1150 .12596
11.595 .06743 1.1446 .12919
11.795 .08076 1.1757 .13238
11.995 .09434 1.2083 .13554
12.195 .10812 1.2424 .13868
12.395 .12205 1.2780 .14179

Figure 21. Printout of Matching Program Results
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element from the mismatch toward the generator is given.

The modulus of the reflection coefficient of both matched and

unmatched discontinuity as well as the VSWR of the matched

discontinuity are.given.

A typical plot is given in Figure 22. The VSWR of the

original discontinuity as well as the VSWR of the impedance

matched discontinuity are given on the same plot as a

function of frequency.

In order to add more flexibility to the impedance

matching computer program,the output also consists of a set

of punched cards which are punched according to the format

of the data cards for the matching program. The real and

imaginary parts of the resultant mismatch are punched on

these cards. Therefore, if it is desirable to improve on

the existing impedance match, the output cards may be used

as data cards for the matching program and the type of

matching element changed to provide, in many cases, an

improved impedance match. The result is the original

discontinuity matched by two matching elements. The lo-

cation of the second matching element calculated by the

matching program is referenced to the element nearest the

generator, resulting from the first impedance match. This

can be done as many times as may be deemed practical.
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Table 3. Initial Increment Size of Physical Dimensions

Dimensions*
Capacitive and
Inductive Iris Dimensions*

Metal and
Dielectric Post

Relative
Distance

0.1 Relative
Distance

0.1

Thickness 0.01. Sidewall
Distance

0.01

Height 0.1 Diameter 0.05

*in centimeters

V
O
L
T
A
G
E
 
S
T
A
N
D
I
N
G
 
W
A
V
E
 
R
A
T
I
O
 

1.32 -

1.30 -

1.28 -

1.26 -

1.24 -

1.22 -

1.20 -

1.18 -

1.16 -

.14

.12

.10

.08

.06

.04

.02

.00
9 . 10 11

FREOUENCY IN GHZ.

12

Figure 22. Typical Example of the Matching Program Output
Plot of the VSWR of an Unmatched and Matched
Disturbance
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CHAPTER IV

EXPERIMENTAL EQUIPMENT

Introduction 

The comparison reflectometer system and various test

waveguide discontinuities constitute the experimental equip-

ment. The comparison reflectometer shown in Figure 23 is

comprised of various microwave components including a back-

ward wave oscillator (BWO), a coherent synchronizer, a

ratio meter, and directional oouplers.

Four waveguide discontinuities were fabricated and

measured to demonstrate the validity of Equations (III-34)

through (111-48). A shunt slot radiator was also fabricated

to demonstrate the validity of the impedance matching tech-

nique.

Comparison Reflectometer System 

Functional. Diagram. A block diagram of the comparison

reflectometer system fabricated for this research is shown in

Figure 23. A photograph of the system is given in Figure 7.

Microwave energy is generated by the backward wave

oscillator (BWO) and is directed through the waveguide to

tlie pin diode modulator. The modulator amplitude modulates

the microwave energy at the audio oscillator frequency of

1 KHz. While the audio oscillator generates a sine wave,



Punch Signal Push Button
Scope to Monitor to take Reading
Phase Locks

Phase Lock
I.F. Signal
Out

Paper
Punch

Digital
Voltmeter

01

Volts

A

0-10

Synchronizer
1 KHz
Oscillator

Ratio
MeterI Coherent

Error Signa

20dB Directional 10dB
Coupler

Cl
Directional
Coupler v C3 C4

BWO Modulator Isolator
Sweeper

C2 10dB Directional
Coupler

-I H

Leveling Signal
External
Capacitor

Reference
Step

/

  Matched
/ Load 

Unknown
Matched
Load 

Figure 23. Comparison Reflectometer Block Diagram
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the modulator is driven to the extent that the output of the

modulator is an amplitude modulated square wave. The iso-

lator serves to prevent reflected energy from pulling the

BWO frequency. The wave is next partially reflected by the

reference step. This step reflects a known ratio of inci-

dent energy from the reference plane. The amplitude and

phase of this reflection coefficient is constant over the

frequency band. Next either the matched load is attached,

in which case essentially all of the remaining wave is ab-

sorbed, or the unknown is attached in which case part of the

energy is reflected from the unknown and the remaining en-

ergy is absorbed in a matched load.

The two directional couplers Cl and C2 provide feed-

back necessary to ensure a phase locked, constant power out-

put from the BWO. Couplers C3 and C4 are the essential el-

ements of the reflectometer. The incident wave traveling

toward the load is coupled out by C3. The reflected wave is

coupled out by C4. Couplers C3 and C4 are terminated in a

square law detector. The output of each detector is a

square wave whose amplitude is proportional to the square of

the electric field intensity incident on the respective

detector. The ratio meter takes the ratio.of these two in-

put signals and provides a voltage output that is propor-

tional to the square of the total reflection coefficient.

This reflection coefficient can either be the total re-

flection coefficient of the reference step and the measured



63

device or it can be that of the reference step terminated

by a matched load. This voltage output E is measured by the

digital voltmeter, and the value measured is punched on

paper tape at the command of the push button.

The BWO is phase locked every 50 MHz by the coher-

ent synchronizer from 7.975 GHz to 12.425 GHz. At each of

these 89 phase lock points a measurement is taken by de-

pressing the push button, Figure 23. One complete set of

measurements is made with the reference step terminated in

a matched load and a second complete set is taken with the

reference step terminated by the unknown device. During

these measurements the gain of the ratio meter is left un-

disturbed. From the data collected the magnitude of the

total reflection coefficient of the reference step termina-

ted in the unknown device may be calculated by the digital

computer. Detailed operating instructions for the comparison

reflectometer are given in Appendix C.

Backward Wave Oscillator. The RF source used in

this research is an Airborne Instruments Laboratory, Sweep

Oscillator type 210. This BWO is used with the plug in

unit which provides a frequency sweep from 7.975 GHz to

12.425 GHz. The oscillator frequency can be controlled

by an external sweep voltage or by an internal sweep gen-

erator. The internal sweep can be set to a repetitive

sweep with a variety of sweep rates or can be set up to

sweep once through the band and return to the lowest
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frequency, remaining there until activated by a front

panel push button. The rate of this sweep is an adjustable

parameter. In the reflectometer setup of Figure 23 the BWO

is operated in this internal signal sweep mode. The RF

signal is then blanked out while the oscillator is return-

ing to the lowest frequency. The oscillator then remains

at this starting frequency until again triggered by the

front panel push button. In order to enable the coherent

synchronizer to phase lock and a voltage reading to be

taken, the oscillator sweep is slowed down by adding an

external 200 micro-farad capacitor to the connector pro-

vided on the back panel of the unit.

When the oscillator frequency is in a capture re-

gion of the coherent synchronizer a correct error signal to

the helix of the BWO will restilt in the phase locking of

the BWO to the crystal controlled oscillator of the co-

herent synchronizer. The frequency is then held within 7

parts in 109. When the internal sweep voltage increases

sufficiently to overcome the error correction signal on the

helix of the BWO, the phase lock is broken. The error sig-

nal returns to zero, and the sweep signal resumes control of

the RF output. The RF frequency, therefore, continues to

increase until it again is within the lower bound of the

2.5 MHz capture region of the 25 MHz IF of the coherent

synchronizer. In this way, the BWO is phase locked every
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50 MHz from 7.975 to 12.425 GHz. This is done automatically

with perfect repeatability when the system is properly set

up. The entire run of 89 measurements requires 10 to 15

minutes depending on the selected sweep rate.

Coherent Synchronizer. The instrument used to obtain

desired phase locks is

coherent synchronizer.

phase lock a source at

the Sage Laboratories, Inc. model 244

This device is generally used to

a single frequency. Because of this,

the unit is equipped with five crystals in the basic os-

cillator. Depending on the frequency at which the phase

lock is desired, one of the crystals operating at 5000.000

KHz, 5012.500 KHz,'5006.250 KHz, 5000.00 KHz, or 4993.750 KHz

is selected. One of the 5000.000 KHz crystals is used in

the fixed mode. The other four

variable mode. In the variable

correct crystal and pulling the

a variable front panel

to 18 GHz can be phase

control,

locked,

the basic oscillator operates

quency of

frequency

5.000000 MHz. This

multiplier chain to

crystals are used in the

mode,. by selecting the

frequency of this crystal by

any frequency from 100 MHz

However, in the fixed mode

at a crystal controlled fre-

signal is multiplied by a

provide a 100 MHz signal,

Figure 24. Functionally, the 100 MHz signal excites a

varactor multiplier which in turn generates harmonics from

100 MHz to 18 GHz. Each harmonic is 100 MHz apart. This

signal is then applied to the mixer which also has as an

input the RF signal fromthe BWO oscillator to be phase
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Figure 24. Simplified Block Diagram of Coherent Synchronizer
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locked. The output of the mixer is the sum and difference

of the two inputs. This output is the input to the 25 MHz

amplifier which has a 2.5 MHz 3 dB bandwidth. If there

exists a signal within approximately 1.5 MHz of 25 MHz

this signal is amplified. Other signals are not amplified.

The level meter gives an indication of the presence of a

25 MHz signal. Therefore, when a phase lock has occurred

there is positive indication on the level meter. The output

of the 25 MHz amplifier drives a phase detector which com-

pares the phase of the 25 MHz reference signal tapped from

the multiplier chain with the output of the 25 MHz amplifier.

The output of the phase detector is an error signal which,

after being amplified, is applied to the helix of the back-

ward wave oscillator. This error signal can be monitored

by the phase meter.

Because the comparison reflectometer phase locks

at 50 MHz intervals, the reference oscillator of the coher-

ent synchronizer is set in the fixed position. Therefore,

the output of the harmonic generator is a frequency comb

with harmonics at intervals of 100 MHz from 100 MHz to

18 GHz. A phase lock will occur when the RF signal input

to the mixer is 25 MHz on either side of a harmonic on the

comb, Figure 25, since the difference of the harmonic and

the input RF from the BWO is 25 MHz at these points.



68

7.975 8.025
I I I I I i I 1 1
l I 1 I i I I i I

P I 1 i 1 I I I I
1 I 1 I I l I
. U . 1 . 2 8.3 4
1
t Possible Phase Lock Frequencies f ini

I Frequency Comb

GHz

Figure 25. Partial Frequency Comb of Harmonic Generator

It was particularly important for this research to

optimize conditions of the harmonic comb of the harmonic

generator. In order to make a rapid set of measurements it

is important to phase lock automatically from one desired

frequency to the next. This requires essentially a single

adjustment to the coherent synchronizer controls. It was

discovered initially that this was impossible to do and in

fact some of the desired phase lock points were not achiev-

able. Further investigation pointed out that the spectrum

of the harmonic comb from the harmonic generator was not at

a constant level. In fact, some harmonics were apparently

not present.

While it is convenient to consider the harmonic gen-

eration and the mixing as two separate operations, in the

model 244 both are accomplished in one step by a single

varactor. It was discovered that this varactor was not bi-

ased correctly to provide a relatively constant 25 MHz IF

signal when the BWO was swept through the frequency band.

This is equivalent to saying that the harmonic generator
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was not providing a flat spectrum throughout the bandwidth.

Adjustments were made to achieve this flat spectral behav-

ior by observing the 25 MHz signal at the BNC connector

"TP1" provided on the 25 MHz amplifier. Details of this

adjustment are given in Appendix D.

A single adjustment to the error signal potentio-

meter enables consistent automatic phase locks as the BWO

sweeps slowly through the band. Because the IF levels are

relatively constant the time duration of the phase locks

are also relatively constant. Further, this phase lock

time can be adjusted by increasing or decreasing this max-

imum allowable error to the helix of the BWO. By increas-

ing the maximum error voltage a given phase lock exists for

a longer period of time.

Ratio meter. The ratio meter, Hewlett-Packard model

416B was used to determine the ratio of the incident and re-

flected electric field intensities, Figure 23. This ratio

meter has two inputs, both are 1 KHz square wave signals

whose amplitudes are proportional to the square of the inci-

dent and reflected electric field intensities of the output

of the 10 dB directional couplers. Two Hewlett-Packard model

424A crystal detectors operating in the square law region

were used, at the output of the two directional couplers C3

and C4, Figure 23.

The output voltage of the ratio meter is related to

the reflection coefficient measured by the relation:14
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2
Irl = tan 6 , (1)

where is a proportionality constant depending on the ref-

erence adjustment, and the anqle 0 is expressed in terms

of the output voltage measured:
12

e = yE/E
max '

(2)

where E is the voltage measured, Emax is the voltage mea5-

ured when the meter reading is at the uppermost point. of

the scale, and y is defined as a conduction angle. The con-

duction angle Y was determined by programming Equation (3)

on a desk calculator. A discontinuity with a known value

of ir(f)1 was selected and measured at two different fre-

quencies such that,

2

Ir11 2 
= tan 

{YE1/Emax}

Ir 2 1 tan { './E2/Emax} 

(3)

E1, E2 and Em were measured and Ir11 and Ir21 were known.

The unknown y was calculated by an iterative technique to

satisfy Equation (3). In most cases the value of Emax for

the particular ratio meter used is 6.928 volts, givinq a

value for the proportionality constant,
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Y/Emax = (56.6ff/180)(1/6.928)

= 0.1426 radians (4)
volt

Digital Voltmeter. The voltage recording system

used is a Dymec Model DY-5552A voltage measuring and re-

cording system. The system consists of a Model DY-2210

voltage-to-frequency converter, a Hewlett-Packard model

5211 A/E electronic frequency counter, a model DY-2540

scanner/coupler and a motorized tape punch. The voltage-

to-frequency converter converts the voltage output of the

ratio meter to a proportional frequency. This frequency is

sampled and counted by the frequency counter. The display

of this counter is the voltage accurate to the millivolt.

The output of the counter is then scanned by the scanner/

coupler, and the paper punch records the voltage. The

counter is triggered with a remotely located push button.

Reference Step. The reference step, Figure 26, was

fabricated for the comparison reflectometer according to the

design given by D. L. Hollway.12 The reference step is a

gradual symmetrical E-plane taper. At the reference plane

the guide suddenly resumes the standard guide dimensions re-

sulting in a reflection at the reference plane. The mag-

nitude and phase of the reflection coefficient of the ref-

erence step are essentially constant over the band 8.0 to
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Plahe Guide

  Reference

1E----Step

Reference Plane

Plane Guide

-H>To Load

Figure 26. Reference Step

12.4 GHz. This was verified by the National Bureau of

Standards over the band 8.2 GHz to 12.4 GHz, Figures 27

and 28. The reference step was measured in a line termi-

nated in a orecision matched load, the two separated - by a 15

centimeter length of precision waveguide. Frequency marker

pips are provided at 9, 10 and 11 GHz.

A detailed error analysis of the sweep frequency cal-

ibration results has not undergone full NBS review. How-

ever, the uncertainty in the return loss magnitude is be-

lieved to be within ± 2%. This is an uncertainty of less

than 0.006 in reflection coefficient. The uncertainty in

reflection coefficient angle is believed to be within ± 2.5

degrees. These uncertainties were obtained by swept fre-

quency measurements on a calibrated sliding load by NBS.

The magnitude of the reflection coefficient for the

reference step is calibrated at .2 ± .011 (VSWR = 1.5 ±

.034) according to the results of Figure 27. In order to
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simplify programming a constant value (0.2) has been used

for the reference step. Figure 28 shows the phase angle va-

riation to be negligible, therefore, the angle has also heen

considered a constant, and the phase of the disconuity meas-

ured by the comparison reflectometer is referenced to it.

The variation present in the curve of Figure 28 is due to a

phase variation of nL where L is the separation between the

NBS reference plane and the step measured.

Typical Recorded Voltages. Voltages recorded by the

comparison reflectometer setup consist of two sets. The

first set refered to as the reference set is taken with the

reference step terminated with a matched load, Figure 29a.

A second set of voltage readings is taken with the reference

step terminated in the device to be measured, Figure 29h. A

typical set of measurements for a symmetrical capacitive

iris at 50 MHz intervals from 7.975 GHz to 12.425 GHz is

given in Table 4.

The reflectometer computer program, Appendix B, uses

Equation (III-31) to calculate the total magnitude reflection

coefficient of the reference step and the discontinuity to

be measured as shown in Figure 30. The data points of

Figure 30 are connected by a continuous curve, however

111 is only known at frequency points separated by 50 MHz,
starting at 7.975 GHz. Ir(f)j of Figure 30 is the function
that is Fourier transformed from the wavenumber to the dis-

tance domain using Equations (111-22, 23), where G(v) is
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Reference I Precision
Step Guide

(a) Reference Step Terminated by a Matched Load

Precision Guide

Matched
Load

o
Reference Device to be Matched
Step Measured Load

(b) Reference Step and Test Element Terminated by a
Matched Load

Figure 29. Measured Setup of Reference Step



Table 4. Typical Voltage Measurements, Read from Left to Right, and Top to Bottom

2.939
2.551
3.13i)

R..:FnE1.1...L VOLTAGE DATA

2.091
2.975
3.0,12

3.171
2.995
2.979

2.775

2.737
3.138

3.591
3.377
3.027

J.176 3.140 2.830 2.277 2.719
3.010
3.171

2.310 2.916 2.885
3.064
3.352

2.713
3.180
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3.157

2.992
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3.289
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3.041 3.200 3.135 3.180 3.358 3.306 3.247 3.350 3.314 3.254 3.338 3.315 3.192

3.132 3.825 3.0e8 3.035 2.976 3.069 3.194 3.183 3.219 3.371 3.335 3.244 3.289
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2.350
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.991 
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6.464
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6.093
1.510
4.385

6.159 5.601 4.045
-

1.601
6.516
2.956

.382
5.646
5.286

 1.524
3.899
6.530

3.661
1.519
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5.311
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6.565

6.181
1.213

-----
4.002 5.880 -6.617
1.948 .162 .614 
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given by Equation (III-18).

Description of Instrumental Errors. All reflectometers

suffer from small imperfections such as a lack of perfect

directivity in the directional couplers and discontinuities

in the couplings and imperfections in the waveguides. Gen-

erally, the two crystal detectors have different frequency

responses, and these can cause changes in the output re-

sembling those from reflections. The coupling coefficients

of the directional couplers also vary slightly with fre-

quency.

In the comparison reflectometer all measurements are

made by comparison with a single known standard, the ref-

erence reflection F
r
, and therefore, all of the instrumen-

tal defects are nearly cancelled out.

Consider a test component having no internal re-

flections. When the reference readings are taken, all the

instrumental defects show up as a variation in Er with fre-

quency. However, the test readings E will be equal to

Er at every frequency and from (III-31), G(v) is constant

with frequency and an and bn in (III-22, 23) are zero.

Therefore, the instrumental errors have been cancelled out

completely.

When a test component includes reflections, a high

degree of cancellation still exists. The instrument defects

correspond to a pattern of reflections spaced at different

distances from the reference. Because these contribute to



80

both readings, only a small residue can appear in G(v), and

then only when a reflection in the test component rc is in

the vicinity of an instrumental reflection ri. In the worse

case, when the two coincide in position and phase, it has

been shown by Hollway thatl

ir
(measured) (true

1- r ])• (true)
(5)

Since rt is small this error usually may be neglected.

A very serious error occurs should a phase lock be

missed, and special care must be taken to ensure that this

does not occur. If a phase lock is missed the entire set of

measurements must be repeated, unless the value of the re-

flection coefficient can be determined at the point that was

missed.

The method of taking measurements cancels out a great

many errors; however, the drift with time of the ratio meter

is not cancelled out. Therefore, it is important to take the

two sets of measurements as quickly as possible to minimize

this drift error. The effect of this drift is demonstrated

in Figure 31a. Two sets of measurements were taken, each

with the reference step terminated in a matched load sep-

arated by precision guide. Equation (111-22, 23, and 26)

were applied to the data of Figure 31a to obtain the modulus

of reflection coefficient as a function of distance given in
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Figure 31b. The noise level of the system was always found

to correspond to a reflection coefficient variation of less

than .00005 as a function of distance.

After calibration of the equipment, it was found that

point reflections could be located in the waveguide within

a few tenths of a millimeter and measured with an accuracy

of ±3 percent in magnitude and ±5 degrees in phase angle;

these results agree with those of Hollway.1 This phase

error has been verified by comparing the phase of the meas-

ured sample capacitive iris, inductive iris, metal induc-

tive post, and dielectric post referenced to the unit con-

ductance circle. These results are detailed in Chapter V.
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CHAPTER V

EXPERIMENTAL VERIFICATION OF COMPUTED RESULTS

Introduction 

A set of experiments were conducted to validate the

theoretically determined values of reflection coefficient and

resultant mismatch. Computed results

are presented in the following pages.

the validity of the waveguide element

and measured results

As a verification of

equations given in

Chapter III a symmetrical capacitive iris, asymmetrical in-

ductive iris, metal inductive post, and a dielectric post

have been fabricated and were measured using the comparison

reflectometer and also

waveguide mismatch was

flectometer and by the

using a slotted line. A standard

also measured by the comparison

slotted line. In all cases the

re-

slotted line measurements, comparison reflectometer measure-

ments and calculated results are within the uncertai.nty of

the comparison reflectometer.

The utility of the impedance matching program was

tested in two demonstrations. In the first a capacitive

iris was matched with a second capacitive iris as the match-

ing element, and the resulting impedance match agreed with

the expected result for the simple combination of waveguide

elements.
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In order to demonstrate the power of the impedance

matching technique a shunt slot radiator was fabricated,

measured, and impedance matched. A comparison of predicted

and measured resultant reflection coefficients is pre-

sented at selected frequencies.

Reflection Coefficient of Selected Waveguide Elements 

The accuracy of the comparison reflectometer was dem-

onstrated with corroborative measurements of several ele-

ments taken with both the comparison reflectometer and a

slotted line setup. The measurements also demonstrate the

validity of Equations (111-34) through (111-48) as models

of the waveguide matching elements in this research.

Waveguide Standard 

An X-band standard disturbance, Ga. Tech Model

SR120X, with a VSWR of 1.19 was measured by the comparison

reflectometer. Voltage measurements were recorded with the

standard located 30.2 centimeters from the reference plane

of the comparison reflectometer. Calculations of the mag-

nitude of the reflection coefficient as a function of dis-

tance were made using Equation (III-31) and results have

been plotted in Figure 32. The plot of Figure 32 appears

as a continuous curve; however, only the discrete points at

50 MHz intervals from 7.975 GHz to 12.425 GHz are precisely

known. This curve shows the expected periodic dependence

on frequency as a result of the constructive and destructive

interference of waves reflected by the reference step and by
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the measured discontinuity.

The magnitude of -the average reflection coefficient

generated as a function of distance was calculated by the

computer program Test 1, listed in Appendix B. These cal-

culations were made using the results shown in Figure 32

and Equations (TIT-22), (111-23) and (I1I-26). A curve of

the reflection coefficient generated as a function of dis-

tance is presented in Figure 33. An accurate electrical lo-

cation was determined by measuring the distance at the 3 dB

(half power points) and averaging the two distances. The
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electrical location as found by this proceAure was 30.1g

centimeters from the reference plane of the reflectometer.

The difference between,this apparent electrical location

and the physical location is .04 centimeters.
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Figure 33. Electrical Location of a Waveguide Standard

The complex reflection coefficient as a function of

frequency is calculated at the electrical center by Equa-

tions (111-22), (111-23) and (111-26) using overlapping in-

tervals of integration as described in Chapter III and Appen-

dix B. The computer program Test 2, Appendix B, implements

the above equations to obtain the complex current reflection
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coefficient as indicated, Figure 34. Slotted line measure-

ments were taken at the selected frequencies of 9.0 GHz,

9.5 Gliz, 10.0 GHz, 10.5 GHz, 11.0 GHz, and the maximum dif-

ference between slotted line measurements and reflectometer

measurements is only 5%. This difference is within the un-

certainty of the slotted line measurement. The phase of the

waveguide standard is shown in Figure 34b on an expanded

scale. The Bmall variation of one to eleven degrees in

phase angle as a function of frequency is characteristic of

the waveguide E-plane step.

Waveguide Matching Elements 

A symmetrical inguide capacitive iris, asymmetrical

inguide inductive iris, solid inguide inductive post, and an

inguide dielectric post were fabricated and their reflection

coefficients measured. The results of these measurements

were compared with the calculated reflection coefficients

using Equations (111-34) through (111-48) for the respec-

tive waveguide elements.

Table 5 provides a comparison of the physically meas-

nred location and the anparent electrical location of the

various elements as measured hy the comparison reflectometer.



0.20  

0.19 -

0.18 -

• C•17

0.16
u_

•- 0 15

0 C., 4 -L.)
z C.13 -
o

• 12 -

Lt C.11
...J

LL 0• 1 0

re

• 0•09 -

o 0.07

0.06

CD 0.05 -

E 0.04 -

0.03

0.02 -

0.01 -

0 • 00  

o

L

r- i l r r i
9,0 9.5 10.0 10.5 11.0 11-5

FREQUENC Y IN GHZ •

11.5

11 .0

10.5

1C.0

9.5

9.0

0.5

o, 8-8
'LI; 7-5
cr
c..) 7 .
u,
0 6.5

6.0
5.5

5.0

cc 4.5

4.0

3.5

3.0

2.5

2.0

1.s
1.0

0.5 --

0.0 r 1
9.0 9.5

1 1 1 r
10.0 10.5 11.0 11.5

FREQUENCY IN GHZ.

(a) Magnitude of Reflection Coefficient (b) Phase of Reflection Coefficient
o Slotted Line Measurement

Figure 34. Magnitude and Phase of the Reflection Coefficient of a Waveguide
Standard E-Plane Step, Ga. Tech Model SR120X



89

Table 5. Location of Fabricated Waveguide Plements

E lements
Waveguide
Location in
Centimeters

Reflectometer
Result Location
in Centimeters

Difference

Capacitive Iris 27.0 26.94 -0.06

Inductive Iris 27.0 27.16 +0.16

Inductive Post 27.0 27.24 +0.24

Dielectric Post 27.1 27.02 -0.08

Waveguide 30.2 30.16 -0.04
Standard

It is interesting to note that the electrical loca-

tion of the capacitive iris appears .06 centimeters on the

generator side of the geometrical location. The.waveguide

standard, also capacitive, is located electrically .04 cen-

timeters on the generator side of the geometrical location.

This trend is also followed by the dielectric post which

appears electrically to be .08 centimeters on the generator

side of its geometrical center, and is also capacitive.

On the other hand, the inductive post appears to be located

.16 centimeters on the load side of the geometrical location.

Therefore, it could be concluded that a capacitive element

appears electrically to be in front of its physical posi-

tion while an inductive element appears electrically to be

behind its physical location. This interesting observation
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has little consequence as far as impedance matching is

concerned as long as the complex reflection coefficient is

computed at the electrical center.

The phase angle of the complex reflection coeffi-

cient at the apparent electrical location is different from

the phase at the physical location by a factor of 2131,

radians where L is the difference in the two locations. Re-

flectometer calculations of the complex reflection coeffi-

cient were made for the apparent electrical location of each

sample element; theoretical calculations (Equations (111-34)

to (111-48)) were made for the respective physical location.

The results obtained by the comparison reflectMeter should

have the phase correction (28L) applied before comparinq

with theoretically predicted results. In the following,

comparisons are made hetween the predicted calculated

phase at the phySical location with that of the measured

phase at the electrical location.

The fabricated symmetrical capacitive iris, Figure 14,

(Chapter III) was measured by the comparison reflectometer.

A plot of the average magnitude of the reflection coeffi-

cient generated as a function of distance appears as Figure

35. The complex reflection coefficient was calculated at

the electrical location of 26.94 centimeters; This complex

current reflection coefficient is displayed by the admit-

tance Fm3.th chart plot shown in Piaure 3r. A11. Srith chart

plots presented in this thesis are referenced to a matched



9_1

C
O
E
F
F
I
C
(
E
N
T
 

0.13 —

0.12 —

0.11 —

0.10 —

0.09--

cc':;.0.08 —

uj 0.07 —ce

0.06 —
ce

0.05 —
cc

n 0.04—

w
tp 0.03—m

0.02—
(2)

0.01 

:\0.00

!0 20

Thickness=0.081 cm
Height=0.145cm

1
30 40 50 60 70 80 90

015TANCE IN CENT1MEIERS

Figure 35. Distance Plot of a Symmetrical Capacitive Iris

load termination. As the observer moves away from the loca-

tion of the disturbance the phase of the complex reflection

coefficient varies according to exp (-j2aL) whére a is given

by Equation (I-1) and L is the distance between the location

of the disturbance and the observer. For a frequency of

10.0 GHz the phase sensitivity is 182.88 degrees per centi-

meter distance. The departure of the measured points in

Figure 36 from the unit conductance circle can be attributed

to the 0.06 centimeter difference between the physical center

and the electrical center. This difference in distance re-

sults in a phase angle difference of approximately 11
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degrees at 10.0 GHz. The actual phase difference measured

from Figure 36 is approximately 5 degrees. This difference

in phase is within the predicted accuracy of the comparison

reflectometer.1

A comparison of the measurements taken of the fabri-

cated capacitive iris and the calculated results are shown

in Figure 37. In Figure 37, a curve of magnitude of reflec-

tion coefficient is given as a function of frequency. Su-

perimposed on this curve are the theoretical points and the

slotted line measurements, both at selected frequencies.

There is good agreement between the three sets of results.

The phase, in Figure 37b, is compared with the calculated

phase at selected frequencies. The measured results are

in good agreement with the predicted characteristics and it

can be concluded that the capacitive iris is adequately

modeled by Equations (111-34) through (111-37) in the im-

pedance matching computer program listed in Appendix B.

The fabricated asymmetrical inductive iris of Figure

15 was also measured by the comparison reflectometer. A

plot of the average magnitude of the reflection coefficient

as a function of distance is given in Figure 38.

The complex reflection coefficient was calculated

at the apparent electrical location of 27.16 centimeters

with respect to the reflectometer reference plane. This

complex reflection coefficient is given by the admittance

Smith chart plot of Figure 39. The results of Figure 39 are
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within the uncertainty of the comparison reflectometer when

electrical and physical center separation are taken into

account. A comparison of the measurements taken of'the fab-

ricated inductive iris and the calculated results are shown

in Figure 40. The measured magnitude of the reflection co-

efficient is plotted as a function of frequency in Figure

40a, and compared to theoretical points and slotted line

measurements, both at selected frequencies. There is good

agreement between the three sets of data.

The phase in Figure 40b, is compared with the cal-

culated phase at selected frequencies. The 29 degree dif-,

ference in phase between the measured and calculated results
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is largely due to the difference of 0.16 centimeters (equiv-

alent to 29.8 degrees at 10. GHz) between the electriCal and

geometrical locations. Therefore, it can be concluded that

the measured result is in good agreement with the predicted

characteristics.

A sample of the metal inductive post of Figure 16,

was given a similar experimental check. A plot of the aver,-

age magnitude of the reflection coefficient as a function

of distance is given in Figure 41.
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The complex reflection coefficient was calcul.ated at the

apparent electrical .location of 27.24 centimeters. This com-

plex reflection coefficient is displayed, Figure 42, by the

admittance Smith chart plot. While the difference in phase

between the calculated and measured results is 44 degrees at

10. GHz, the difference in phase between the geometrical

location and the electrical location is 43.89 degrees cor-

responding to the n.24 centimeters of Tahle 5. Therefore,

there is a difference of only 0.11 degrees which is well

within the accuracy of the reflectometer.

A comparison of the experimental and theoretical data

for the fabricated inductive post is shown in Figure 43. In

Figure 43a, a curve of magnitude of reflection is given as a

function of frequency. Superimposed on this curve are the

theoretical points and the slotted line measurements, both

at selected frequencies. Again good agreement is found

among the three sets of results.

The dielectric post sample was fabricated from

hot-pressed boron nitride, HD-0092. Boron nitride has a

relative dielectric constant of 4.07 and a loss tangent of

0.0003.

' The locating plot of the average magnitude of the

reflection coefficient as a function distance is given in

Figure 44.
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(a) Smith Chart Display of Current Reflection Coefficient
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(b) Metal Inductive Post

Figure 42. Complex Current Reflection Coefficient of the
Fabricated Metal Inductive Post at the
Electrical Location on Expanded Admittance Plot
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The complex reflection coefficient was calculated at

the electrical location of 27.02 centimeters. For this ele-

ment, the expected difference in phase resulting from the

lack of coincidence of geometrical and electrical centers is

14.6 degrees. The actual phase difference between the meas-

ured response and the unit conductance circle is 1F degrees,

shown in Figure 45. Therefore, the difference in predicted

and measured phase is only 1.4 degrees.

In a test of resolution of the technique a fabricated

capacitive iris and an inductive iris were measured at the

same time by the comparison reflectometer. The capacitive
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Figure 45. Complex Current Reflection Coefficient of the
Fabricated Dielectric Post at the Electrical
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iris was located 27.00 centimeters from the reference plane-

and the inductive iris 51.00 centimeters from the reference

plane. A curve of the total magnitude of the reflection co-

efficient of the reference step, capacitive iris, and induc-

tive iris is given by Figure 47a. From this information the

average magnitude of the reflection coefficient generated

as a function of distance is calculated, Figure 47b. The

electrical location for the capacitive iris is calculated to

be 26.98 centimeters, and that of the inductive iris 51.16

centimeters. The difference in the geometrical and electri-

cal location of the capacitive iris is .01 centimeters. In

Table 5, for a single capacitive iris in the guide the dif-

ference is 0.06 centimeters.

The distance between the electrical and geometrical

locations for the inductive iris is 0.16 centimeters and

compares with the 0.16 cm difference of Table 5. This qood

agreement between the single disturbances and multiple dis-

turbance tests made by the reflectometer tends to justify

the approximations made in Chapter III, Equation (14).

Impedance Matching 

Impedance Matching a Capacitive Iris 

In a trial test of the impedance matching program a

single capacitive iris was used as the waveguide disturbance.

A second capacitive iris was selected as the matching ele-

ment. The disturbance was impedance matched over three dif-

ferent bandwidths to demonstrate the adantabilitv of the im-
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pedance matching program. The iris selected as the mis-

match has a thickness of 0.081 centimeter8 and an iris

height of 0.145 centimeters.

If an impedance match were calculated using a Smith

chart as a tool, generally, a capacitive iris of the same

dimensions would be placed a quarter wavelength from the

first iris, where the wavelength corresponds to the center

frequency of the matched bandwidth. Using this procedure

there would be no control of the resulting mismatch over the

rest of the band. The impedance matching computer program,

Appendix B, calculates the combination of physical dimen-

sions and relative distance between elements which results

in the least root mean square mismatch over the bandwidth

to be matched. Therefore, the technique developed in this

thesis provides some control over the resulting mismatch

over the entire bandwidth. This can be seen by considering

Figure 48. In Figure 48 the VSWR of the initial mismatched

capacitive iris is given together with three other curves

of VSWR, one for each match band.

The narrowest band provides the smallest mismatch

at the center of the band, but the mismatch increases more

rapidly than that of the broader band impedance match. The

narrowest band match is from 10.195 to 10.595 GHz, with a

center frequency of 10.395 GHz. At the center frequency the

VSWR is equal to 1.0006. The next broader bandwidth is from

9.795 GHz to 10.995 GHz, also with a center frequency of
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10.395 GHz. At the center frequency the VSWR is equal to

1.022.

While the effectiveness of the broad band impedance

matching program is demonstrated in these test runs, the

restriction of the matching element to a second capacitive

iris makes the change in resultant mismatch small.

Shunt Slot Radiator 

The shunt slot radiator has been selected to demon-

strate the power of this computer aided impedance matching

technique. Interest in the slot was primarily motivated by

by the need to broadband impedance match this element when

it is used in a broad side steerable array. While this re-

search is concerned primarily with inguide disturbances,

the radiating slot provides an interesting application of

this matching technique.

The reflectometer measured the slot apparent electri-

cal location as 28.68 centimeters from the reference step

as shown in Figure 29. The geometrical center of the slot

is located 27.0 centimeters from the reflectometer refer-

ence step.. Therefore the electrical center is located 1.68

centimeters on the load side of the physical center of the

slot.

The shunt slot is a radiating device, and there are

surface currents on the outer surface of the waveguide in

the vicinity of the slot. These surface currents together

with the disturbed surface currents on the inside wall of
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tfle slot, determine the electrical location of_the slot as

measured by the comparison reflectometer.
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Unlike the nonradiating elements, the shunt slot

radiator showed a marked separation between the electrical

location and the geometrical location.

In Figure 50a, and 50b the magnitude and phase of

the complex reflection coefficient at the apparent elec-

trical location are given. These results were calculated

by the comparison reflectometer programs, Test 1 and 2.

It is possible to calculate the complex reflection coeffi-
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cient two ways at the physical location. The complex re-

flection coefficient can be calculated at the apparent elec-

trical location and multiplied by exp (-j28(1.68 cm)) re-

sulting in the correct magnitude and phase at the physical

center of the slot. On the other hand, the complex reflec-

tion coefficient can be calculated directly at the physical

location by the program Test 2. This calculation at the

geometrical location results in an erroneous result. The

error stems from the fact that the locating nature of the

transforms of Equation (111-22) and (111-23) attenuate the

magnitude of the reflection coefficient at distance points

not equal to the electrical location, shown in Figure 49.

To test for the existance of secondary regional

mat.ching minima the slot radiator was matched by a capaci-

tive iris using several different initial positions for the

matching iris. Ideally, the matching program should find

the same match point (location, iris dimension and RMS

mismatch) independent of the starting point, in the ab-

sence of secondary minima. These results are tabulated in

Table 6. The relative starting locations are the electri-

cal center, (0,0), and ±0.5566, ±1.1133, ±1.6699 and

±2.2265 centimenters from the electrical center. These

distances correspond to 1/8 wavelength, 1/4 wavelength, 3/8

wavelength, and 1/2 wavelength magnitudes respectively at the

frequency of 9.395 GHz. The frequency of 9.395 GHz was

chosen for convenience.
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Table 6. Capacitive Iris Matching of the Slot Radiator,

Referenced to the Slot Electrical Center

Initial Iris
Distance Distance
From RMS Iris Iris From
Electrical Mismatch Thickness* Height* Electrical
Center Center
of Slot* of Slot*

2.2265 0.105 0.054 0.154 .2.177

1.6699 0.105 0.041 0.160 2.182

1.1133 0.064 0.044 0.185 0.013

0.5566 0.063 0.095 0.160 0.032

0.0000 0.063 0.095 0.160 0.025

-0.5566 0.063 0.095 0.160 0.031

-1.1133 0.064 0.044 0.185 0.012

-1.6699 0.098 0.050 0.160 -2.182

-2.2265 0.098 0.050 0.160 -2.176

*In centimeters

At any selected frequency point the complex reflec-

tion coefficient varies in phase as a function of distance

from the generating disturbance. This variation can be

expressed in the form of Equation (1):

r(f,L) = rc(f)exp[-j2a], (1)
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where 6 is the propagation constant and Fc(f) is the com-

plex reflection coefficient of the disturbance when L = O.

The greater the distance L between the matching element and

disturbance the more rapid the change in phase with fre-

quency.

As a result of this variation in phase of the com-

plex reflection coefficieint as a function of distance, it

is reasonable to expect a least root mean square mismatch

(LRMS) to occur for matching iris placements at intervals

of g/2 distance as shown in Figure 51, where ag is the

guide wavelength of the center frequency of the matching

bandwidth. However, because the RMS is taken over the en-

tire bandwidth of interest, this distance is not expected

to be exact. As the magnitude of the distance L increases

so does the phase change with frequency. Therefore, the

quality of the impedance match is expected to change as the

matching element is located at distances that are integral

multiples of Xg/2. It is important to notice the absence

of large secondary minima when initiating calculations

from different relative separation distances L between the

disturbance and the matching element. All five points of

Table 6 that are 1/4 wavelength or less from the electrical

center resulted in virtually the same match point. At each

end the two most distant startinq points aqain resulted in

essentially identical match points each .located approximate-

ly Xg/2 from the central point.
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• Regional Minima
0 Starting Points

Xg/2
Distance

Figure 51. Schematic Plot of RMS Mismatch as a Function of
Separation Distance L, Showing the Absence of
Secondary Minima Within Xg/2 Intervals Centered
at Regional Minima, Initial Startinq Position of
Table 6 Are Sketched

Better RMS impedance matches are accomplished by plac-

ing the capacitive iris on the load side of the geometrical

center of the slot. In fact, the lowest RMS impedance match

is achieved by placing the capacitive iris approximately

0.03 centimeters on the generator side of the apparent elec-

trical center of the slot.

In all of the broad hand impedance matching done in

this research, the best broad band matches were achieved with

the matching element placed in the immediate vicinity of the
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electrical center. This result is to be expected, since a

large separation distance L between disturbance and matching

element results in an interference pattern which is generally

dominated by the exp(-j28L) phase factor of Equation (III-

49), and is narrow band in nature.

In Table 6 the starting positions of 0.5566, 0.0000,

and -0.5566 centimeters results in an impedance match which

places a capacitive iris of equivalent dimensions at prac-

tically the same location. The slight variation in the fin-

al location is due to the final increment size of the rela-

tive distance, ALENGH in the impedance matching program de-

scribed in Appendix B. Starting positions of 1.6699 and

2.2265 centimeters in Table 6 result in the placing of an

iris at the same location of approximately 2.18 centimeters

resulting in an RMS mismatch of 0.105. This is not physi-•

cally realizable, however, since the •iris would be located in

the slot. A11 other entries in Table 6 are physically real-

izable because they are either located at the apparent elec-

trical location or 2.18 centimeters on the load side of the

apparent electrical location. From Table 6 it is easily

recognized that when impedance matching the slot by a capa-

citive iris, superior results are achieved by impedance

matching in the vicinity of the electrical center. Table

6 agrees with Figure 51 and demonstrates the absence of

large secondary minima within relative distances which are
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multiples of Ag/2.

Impedance Matching the Slot Radiator 

For completeness the characteristics of the shunt

slot radiator were impedance matched by each of the four

matching elements at the apparent electrical location.

Table 7 provides a tabulation of the calculated results of

the slot relative to the apparent electrical location. The

relative quality of the impedance match is indicated by the

RMS mismatch achieved using each matching element. The

physical dimensions of each matching element are given, and

the placements toward the generator are given. The two

best matches occur with the inductive metal post and the

dielectric post with a dielectric constant of 4.07. The

metal post located 1.175 centimeters toward the load matches

the slot to an RMS mismatch of 0.056, Figure 52a. The di-

electric post located 0.012 centimeters toward the load

matches the slot to an RMS mismatch of 0.058, Figure 52b.

From Figure 52a the resultant VSWR at 8.551 GHz is 1.177,

and at the upper limit of the matching band, 10.560 GHz,

it is 1.184. In all cases the slot radiator has been im-

pedance matched over 2 GHz bandwidth, 8.551 GHz to 10.560

GHz. Prom Figure 52b the VSWR at 8.551 GHz is 1.09 and at

the upper limit of the band, 10.560 GHz, it is 1.188. Both

the metal inductive post and the dielectric post provide

good impedance matches, less than 1.2 VSWR over the chosen

2 GHz bandwidth. It is interesting to note that the metal
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inductive post matches the slot radiator to less than 1.23

VSWR over the entire band from 8.551 GHz to 11.934 GHz.

Table 7. Slot Radiator Impedance Matched by a Single
Matching Element Referenced to the Apparent
Electrical Center

Matching
Element

RMS
Mismatch

Physical
Dimension

Physical
Dimension

Distance
Toward
Generator
in
Centimeters

Capacitive
Iris

0.063 0.095* 0.160** 0.025

Inductive
Iris

0.072 0.051* 0.335** 1.187

Inductive
Post

0.056 0.010+ 0.315++ -1.175

Dielectric 0.058 0.297+ 0.477++ -0.025

* Thickness in Centimeters
** Height in Centimeters
+ Diameters in Centimeters
++ Sidewall Distance in Centimeters

The above results can be improved by use of the impe-

dance matching program to successively match the slot with

two elements. The slot is first matched with a single match-

ing element, and the results of this impedance match are

then recorded on data cards in the form of the complex re-

flection coefficient of the resulting mismatch. If the

matching element is located on the load side of the distur-
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bance then the reference plane of the reflection coefficient

of the resultant match is that of the original disturbance.

When the matching element is located on the generator side

of the disturbance, the reference plane of the resultant mis-

match is that of the matching element.

The results of the first match are then used as data

cards, i.e., the disturbance to be matched, and an addition-

al matching element is calculated by the impedance matching

program. Following this strategy, the results of the four

impedance matches of Table 7 were matched with an addition-

al element. The results of this impedance.match are tabu-

lated in Table 8 as the RMS mismatch over the 2.GHz band-

width of interest. The element used to match the slot the

first time is listed in the first column. The second -match-

ing element used is listed by the first row. For example the

first number in the second column of numbers, 0.063 is the

RMS mismatch resulting from matching the slot with both a

capacitive iris and an inductive iris located in the guide.

The first matching element is the capacitive iris and

the second is the inductive iris. There are four com-

binations which produce good matches as seen in Table 8.

These combinations are the inductive post-capacitive iris

combination with an RMS value of 0.047, inductive post-

inductive iris combination with an RMS of 0.056, inductive

post-dielectric post combination with an RMS of 0.049 and

dielectric post-capacitive iris combination with an RMS of
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0.056.

Table 8. Slot Radiator Impedance Matched by Two Matching
Elements

Second
Match

First
Match

Capacitive
Iris

Inductive
Iris

Inductive
Post

Dielectric
Post

Capacitive
Iris

Inductive
Iris

Inductive
Post

Dielectric
Post

xxxxx 0.063 0.093 0.061

0.071 xxxxx 0.078 0.072

0.047 0.056 xxxxx 0.049

0.056 0.058 0.088 xxxxx

The curves of VSWR as a function of frequency are

given for the above combinations in Figures 53, 54, 55 and

56, respectively. The relative location of the matching

elements with respect to the slot is given by the (a) part

of the respective figures, and the VSWR is given by the (b)

part of the respective figures.

The dielectric post-capacitive iris matching combina-

tion was fabricated to compare the computer predicted result-

ant mismatch with an exPerimentallv measured resultant mis-

match. The boron nitride was machined into a post with a
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Capacitive Iris Combination
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diameter of 0.117 t .002 inches and inserted between the

walls of the waveguide to the position given in Figure 56.

While the tolerance on the post location was difficult to

measure, it is estimated to be within 0.002 inches of the

desired location. The symmetrical capacitive iris was ma-

chined to fit two slots sawed through the broad side of the

waveguide. The slots are 0.014 ±.002 inches wide and 0.074

.002 inches deep. The dielectric post was positioned

guide, and the capacitive irises were fitted into the

in the

respec-

tive slots. A silver based conductive paint was painted on

the outside wall of the waveguide over the ends of the irises

and on the intersection of the iris and the inside waveguide

walls.

The impedance matched shunt slot was then measured

by the slotted line at 100 MHz intervals starting at 8.575

GHz through 10.875 GHz. The results of these measurements

are tabulated in Table 9. The results are also given in

Figure 57 where the calculated impedance match is plotted

as a function of frequency and the measured results are

plotted at discrete points. The excellent agreement dis-

played between the computer calculated VSWR and the experi-

mentally measured VSWR, validate the impedance matching com-

puter program and in turn the entire computer aided broad

band impedance matching technique.

The Effect of Fabrication Tolerances 

While mechanical tolerance is of little importance in
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Table 9. VSWR Measurements of the Fabricated Impedance
Matched Shunt Slot Radiator

Frequency in GHz Measured VSWR

8.575 1.07
8.675 1.08
8.775 1.07
8.875 1.12
8.975 1.14
9.075 1.155
9.175 1.16
9.275 1.14
9.375 1.145
9.475 1.115
9.575 1.07
9.675 1.04
9.775 1.02
9.875 1.015
9.975 1.02

10.075 1.04
10.175 1.07
10.275 1.08
10.375 1.12
10.475 1.13
10.575 1.13
10.675 1.15
10.775 1.17
10.875 1.19
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theoretical studies, the allowable tolerance greatly influ-

ences the cost of a practical device. Certainly the spec-

ified tolerances should depend on the effect of the dimen-

sional variations on the resultant mismatch. This is true

because generally closer tolerances increase the expense of

fabrication.

In Table 10 the RMS mismatch values for the final

nearest neighbor points for the slot impedance matched by a

dielectric post are given. The final increment size for

the sidewal1 distance of the dielectric post is 0.00125

centimeters, for the post diameter it is 0.00625 centimeters,

and for the relative separation distance it is 0.0125 centi-

meters. Table 10 shows the variation in the RMS mismatch

as a result of a change in a single dimension holding the

remaining two dimensions equivalent to the LRMS or (1,1,1)

point dimensions. Since the unequal increment sizes were

selected so as to produce equivalent changes in RMS mis-

match, it is difficult to determine the relative sensitivi-

ty of this mismatch to changes in a single parameter.

Therefore, it is of further interest to examine the sensi-

tivity of the LRMS mismatch as a function of equal incre-

ment variations of each physical dimension, since this sen-

sitivity determines the importance of machining tolerances.

An examination of the effect of machining tolerances

on the resultant mismatch was conducted in two steps. First

the slot was theoretically impedance matched by a dielectric
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Table 10. Final RMS Mismatch Values for the Nearest
Neighbor Points of the Dimensional Space
Array for the Case of the Slot Matched by
a Dielectric Post

Coordinates* s
(I,J,K)

Sidewall
Distance

Diameter Separation
Distance

RMS
Mismatch

(1,1,1) 0.47750 0.29750 -0.0125 0.058713

(1,1,2) 0.47750 0.29750 -0.025 0.058813

(1,1,3) 0.47750 0.29750 +0.000 0.058982

(1,2,1) 0.47750 0.29125 -0.0125 0.058790

(1,3,1) 0.47750 0.30375 -0.0125 0.059385

(2,1,1) 0.47625 0.29750 -0.0125 0.058715

(3,1,1) 0.47875 0.29750 -0.0125 0.058717

• Corresponds to sidewall distance of the dielectric

post.

J Corresponds to diameter of the dielectric post.

K Corresponds to relative separation distance.
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post with various dimensions. The dimensions consisting of

the optimum dimensions determined by the impedance matching

program and variations of these dimensions by four thou-

sands of an inch. Because the diameter of the post is the

easiest dimension to machine to ± 0.001 inches, the diameter

was held constant and the sidewall distance and relative

distance between disturbances was varied. The dielectric

post material used is boron nitride grade HD-0092 NA

pressed. The average reflection coefficient over the 2.GHz

bandwidth from 8.551 to 10.560 GHz was used to compare the

quality of the resulting matches obtained. Table 11 gives a

tabulation of the dimensional combinations used and the

average theoretical reflection coefficient obtained. From

Table 11 the largest average matched reflection coefficient

0.0544 has a corresponding diameter of 0.2975 centimeters,

sidewall distance of 0.4673 centimeters, and a relative

displacement of 0.0023 centimeters. This combination will

be retained and used in the next step of the perturbation

examination, since the strategy is to obtain an indication

of the worst effect of tolerances.

The second phase of this exaMination consists

of using the combination of dimensions which produce the

largest average matched reflection coefficient and perform-

ing a second match on this result using a capacitive iris as

thematching element. The effect of tolerances is studied

by varying the capacitive iris height and relative distance
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from the first match determined in the first step of this

study. The thickness of the capacitive iris is held con-

stant in this study since this is generally determined by a

commercially available shim stock and the match is relative-

ly insensitive to ± 0.002 inch variation. The physical di-

mensions used for the capacitive iris are iris thickness

0.0350 centimeters, iris height 0.060 ± .01016 centimeters

and iris distance from electrical location of slot 0.70 ±

.01016 centimeters. Table 12 illustrates the average total

matched reflection coefficient and the respective physical

dimensions.

Table 11. Average RMS Mismatch Over the Band of 8.55 GHz
to 10.56 GHz Resulting from the First Phase of
the Machining Tolerance Study, Dielectric Post
Diameter = 0.2975 Centimeters, el = 4.07

Relative
Displacement*

Sidewall
Distance*

0.4673

0.4775

0.4877

-0.0023 -0.0125 -0.0227

0.0544 0.0537 0'.0533

0.0542 0.0536 0.0532

0.0542 0.0535 0.0532

*In Centimeters
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Table 12. Average RMS Mismatch Over the Band of 8.55
GHz to 10.56 GHz Resulting from the Second
Phase of the Machining Tolerance Study,
Capacitive Iris Thickness = 0.0350 Centimeters

Relative
Displacement*

Iris
Height*

0.0498

0.0600

0.0701

0.6898 0.7000 0.7101

0.058 0.057 0.054

0.055 0.054 0.054

0.055 0.055 0.055

*In Centimeter8

The largest mismatch listed in Table 12 results from

the capacitive iris dimensions of iris thickness 0.0350

centimeters, iris height 0.0498 centimeters and relative

displacement 0.6898 centimeters. Figure 58 gives curves of

the first impedance match by the dielectric post resulting

in an average mismatch reflection coefficient of 0.054 and

the results of matching the first match by a capacitive iris

giving an average reflection coefficient of 0.058.

It is interesting to note that while the dielectric

post-capacitive iris combination match has a higher aver-

age reflection coefficient than the dielectric post match,

the combination match is a better broad band match over a

larger bandwidth of interest.

From Table 11 the most sensitive dimension to change
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is the relative distance along the waveguide. In the second

row first column of numbers in Table 11 the relative dis-

placement is -0.0023 centimeters, that is, 0.0023 centimeters

toward the load from the electrical location of the slot

radiator. The average reflection coefficient is 0.054.

From Table 12 the most sensitive parameter is the iris

height. In the second row of numbers, reducing the iris

height to 0.0498 centizneters increases the average reflec-

tion coefficient to 0.0579. Therefore, close tolerances

are indicated for the relative distance between the dielec-

tric post and the electrical location of the slot radiator.
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Close tolerances are also indicated for the capaci-

tive iris height. However, the overall results indicate

that the entire matching process is relatively insensitive

to machining tolerances of ± 4 thousanth of an inch or

± 0.01016 centimeters.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Introduction 

Several important conclusions can be drawn as a

result of this study. They deal with the experimental

equipment and with the computer aided matching program. The

following paragraphs highlight these conclusions

Conclusions 

As a result of this research, an economical, fast,

and reliable impedance matching technique has been estab-

lished which can provide broad band impedance matches.

The measured results of the comparison reflectometer

in resolving waveguide disturbances and in the determination

of their complex reflection coefficients have been excellent.

Reflectometer measurements have been compared with both

theoretical calculations and slotted line measurements.

Measurements of the sample waveguide discontinuities

have pointed out the difference in the apparent electrical

location and the geometrical location. While the two lo-

cations were closely spaced for the inguide disturbances,

measured as described in Chapter V, there was a consider-

able difference in the locations for the shunt slot radiator.

The shunt slot radiator was impedance matched relative to
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the apparent electrical location both theoretically and

experimentally over a 2 GHz bandwidth as shown in Figure 56.

The excellent agreement between the theoretical and experi-

mental impedance matches demonstrates the validity of this

research.

The impedance matching computer program demonstrated

an ability to calculate the physical dimensions of a pre-

determined matching element in order to achieve an impedance

match which is best over a specified bandwidth in the RMS

mismatch sense, Chapter III.

It has been shown that the computer matched solu-

tions are relatively free of secondary RMS minima. Region-

al minima are found at intervals of approximately half

guide wavelength separations between the measured distur-

bance and the matching element, described in Chapter V,

Table 6.

For the cases investigated the impedance match im-

proved in the vicinity of the apparent electrical center of

the test disturbance. The shunt slot radiator was impe-

dance matched to a VSWR of 1.16 to 1.0 over a 2 GHz band-

width. This match was fabricated to demonstrate the valid-

ity of the impedance matching program. The agreement be-

tween the predicted and measured results for the matched

slot was very good.

It was found that while machining tolerances affect

the calculated impedance match, for a reasonably good
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matching tolerance of ± 0.002 of an inch the results are

relatively insensitive. This conclusion increases the

practical significance of this research, by providing a

technique that is practically realizable.

Recommendations 

There are several areas in which this research can be

extended. Extension of the theory of the comparison

reflectometer, to enable it to measure larger disturbances,

both in magnitude of reflection coefficient and in physi-

cal length, can be made. The impedance matching computer

program can be extended by both adding additional matching

elements and enabling the program to calculate the location

and physical parameters of more than one matching element

simultaneously. A modification of the matching criterion

could be implemented. The program could also be extended

to select the most favorable type of matching element.

Extending the Comparison Reflectometer 

The comparison reflectometer fabricated for this re-

search is capable of locating disturbances resulting in re-

flection coefficients less than or equal to 0.2. This limita-

tion is in part due to the approximations made in the develop-

ment of the theory and in part due to the reference step fab-

ricated, since the development assumes that the tested reflec-

tion coefficient does not exceed the reference reflection coef-

ficient. Secondly an equipment limitation is present in the
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ratio meter used. The combined Regnitude of the reflection

coefficient of the reference step and the test disturbance

of 0.2 reflection coefficient results in a full scale de-

flection of the ratio meter. Measuring reflection coeffi-

cients greater than 0.2 would result in off scale deflec-

tions. For single frequency measurements the range of

the ratio meter may be adjusted to prevent overdriving the

unit. This is not possible in the comparison reflectom-

eter system, however, since the two sets of measurements

taken are compared to reduce instrumental errors.

The length of line which can be measured is dependent

on the sample intervals. At present the comparison reflec-

tometer is phased locked, and a sample is taken every 50 MHZ.

As such, the approximate limit on the line length measured

is one meter. This can be increased to 5 meters by phase

locking and taking a reading every 10 MHz. The closer the

samples are taken in the wavenumber domain the greater the

relative allowable distance between the reference step and

test element.

The Impedance Matching Program 

The impedance matching program was developed to match

an arbitrary waveguide element as measured by the comparison

reflectometer. The impedance match is performed by calculat-

ing the physical dimensions of a single preselected matching

element. The criterion used by the matching program is the

LRMS reflection coefficient resulting from the combined
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wave reflected by the disturbance and the matching element.

It may be desirable in some applications to use a

maximum point VSWR criterion. That is, the matching pro-

gram determines the maximum VSWR over the matching band-

width for each of the dimensional space nearest neighbor

points. The point selected as the (1,1,3y point would be

that nearest neighbor point which has the smallest maximum

VSWR.

The matching program could also be extended to auto-

matically select an element among the programmed matching

elements which would provide the best broad band impedance

match. This could be accomplished by assuming a broad band

match and solving Equation (111-49) for the complex re-

flection coefficient of the required matching element.

The prospective matching element that compares most favora-

bly with the required complex reflection coefficient could

then be selected. This selection could be made by loosely

comparing the slope and phase of each available matching

element with the necessary characteristics calculated from

Equation (111-49).

The function of the matching program implemented in

this work is to minimize the VSWR resulting from the test

element and a single matching element using the RMS cri-

terion. To this end the program functions properly. In

some cases it is important to achieve a lower VSWR mis-

match than is obtainable with the programmed matching ele-
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ments. For these cases it is desirable to use two or more

matching elements to achieve the desired impedance match.

This, in fact, has been demonstrated in Chapter V when

matching the shunt slot radiator.

It is important to recognize that the first impedance

match using a dielectric post was calculated as the LRMS

over the selected 2 GHz bandwidth, subject to increment size.

The result of the prodedure was then improved upon by the

capacitive iris by again impedance matching this initial

result using the LRMS criterion. The slot and two matching

elements are not a true optimum, however, since the two

matching elements were not determined simultaneously.

To demonstrate that a lower overall reflection co-

efficient is possible, the mismatch resulting from th-6 di-

mEnsional combinations of Table 11 were used as the input

data to the impedance matching program. A capacitive iris

was sized for each case providing an LRMS mismatch. The

results of this study are given in Table 13. The first

row listed in Table 13 corresponds to the original comb-

bination of Figure 55a. This is also the combination of

elements which has been fabricated, and a comparison of

theoretical and experimental results are shown in Figure 56.

There are six combinations in Table 13, resulting from per-

turbations of the dielectric post, which provide a lower RMS

mismatch than 'that originally obtained. A comparison of

the response of the initial combination and the combina-
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tion of matching elements resulting in an RMS mismatch of

0.054 is given in Figure 59.

While the improvement observed is small it must be

remembered the dimensional changes were constrained to be

small. The results do indicate clearly that if more than

one element is needed to provdde a desired broad band imped-

ance match an extension of the program to simultaneously

adjust more than one element would be desirable.

Table 13. RMS Mismatch Using a Capacitive Iris
as the Second Matching Element

RMS
Mismatch

Iris
Thickness

Iris
Height

Relative Distance
from Electrical
Center

0.056 0.0350 0.0600 0.7000

0.055 0.0575 0.0600 0.6875

0.056 0.0300 0.0600 -0.6275

0.055 0.0512 0.0600 0.7625

0.057 0.0412 0.0538 0.6375

0.054 0.0737 0.0600 0.7375

0.056 0.0400 0.0600 -0.6875

0.056 0.0450 0.0600 0.6125

0.057 0.0300 0.0600 -0.5625
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APPENDIX A

LIBRARY OF THE CHARACTERISTICS OF SELECTED MATCHING ELEMENTS

The.following families of Curves are included to

provide engineering insight into the type of response

associated with each element. Curves also indicate the

dependence on parameters of the discontinuity.

The families of curves provide the current reflection

coefficient and the normalized shunt admittance as a func-

tion of physical dimensions and frequency, for the capaci-

tive iris, the inductive iris, the solid metal inductive

post and the dielectric post located in an otherwise

matched waveguide. A waveguide description and an equiva-

lent circuit are given for each type of discontinuity.

The following results are based on an evaluation of

the respective equations given by N. Marcuvitz,
13 and

reproduced in Chapter III, Equations (34) to (48). The

following curves were calculated for propagation in rec-

tangular waveguide with a width a = .9 inches and height

b= .4 inches.

A typical discontinuity of each type was fabricated

and its characteristics measured. A comparison of the

evaluation of Equations (111-34) to (111-48) for the re-

spective physical parameters, Chapter V, Table 2, shows

good agreement with the results measured by the compari-
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son reflectometer, as described in Chapter V. A11 curves

given apply to the admittance Smith chart plot.
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Dielectric Post with 3.85 Dielectric Constant, .114 cm Diameter,

and Varied Sidewall Distances in Centimeters
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APPENDIX B

COMPUTER PROGRAM LISTING

Three computer programs are described on the follow-

ing pages. The programs are written in Fortran V computer

language for the Univac 1108 compiler. The first program

described is referred to as Test 1. This program calculates

the mean reflection coefficient generated as a function of

distance.12 That is, it determines the electrical location

of discontinuities in a waveguide. A functional block

diagram of Test 1 and Test 2 are shown in Figures 89 and

90 respectively. The second program, Test 2 calculates the

complex reflection coefficient as a function of frequency at

a predetermined position in the waveguide.12 The above two

programs utilize voltage measurements taken by the compari-

son reflectometer.

The third program listed is the impedance matching

program. This program uses data generated by Test 2, as the

disturbance to be impedance matched, Chapter III. The match-

ing program then calculates the physical dimensions and lo-

cation of a predetermined matching element. The location is

relative to the original disturbance.. Generally, this pro-

gram requires five seconds run time on the Univac 1108 to

realize an impedance match.

Comment statements have been provided throughout the

program listing to partially explain the meaning of para-
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meters used.

Test 1 begins with a listing of constants to be used.

Statement (9) and (10) give values to XMAX and XMIN, the

range in distance along the waveguide relative to the ref-

erence step. A table of sines and cosines are generated by

statements (27) to (33). The use of this table reduces com-

puter run time, since it requires less time to obtain this

information from memory than to calculate the sine and co-

sine when needed. An envelope shaping function,1 when used,

reduces side lobe levels at the expense of broadening the

main peak of the locating curve. This part of the program

has no direct application to this research, therefore, state-

ment (38) prevents it from entering the following calcula-

tions. The constant NO read in at statement (43) is the

number of sets of data to be read by the computer. The con-

stant NF is the number of data points measured. REFPT

the maghitude of the reflection coefficient of the ref-

erence step.used.

Data is read in without a decimal point present.

Therefore, statements (57) through (60) place the decimal

point in the proper location. Statements (69) through (72)

calculate Equation (III-31). Statements (72) and (78)

determine the wavenumber and the wavelength for each fre-

quency corresponding to a voltage measurement by the compar-

ison reflectometer. Equation (III-31) is normalized to the

2
average value of Irl (YRS(N)), for purposes of the computer
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Constants

Calculate Table of
Sines and Cosines

CalculAte Envelope
Shaping Function

Read in Data

Calculate Total
Reflection Coefficient

Calculate Frequency Points
Calculate Wavelengths
Calculate Wavenumber

Normalize Total Reflection
Coefficient to Average
Reflection Coefficient

Reduce Wavenumber Range
to Satisfy Equation (111-29)

Plot Total
Reflection Coefficient

Single Distance Integration
Calculate Complex Reflection
Coefficient (111-22-23)

Maximum Distance Check no

Increase Distance

yes

Write and Plot Output

Figure 89. Functional Flow Chart of Test 1 Computer
Program
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calculation, by statements (80) to (90). The total mag-

nitude of the reflection coefficient measured is plotted

out by statements (91) and (120) using a plot subroutine

not given here. The wavenumber range is adjusted by state-

ments (121) to (159) in order to satisfy Equation (111-29).

A single distance integration is performed by state-

ments (162) to (178). It has been found by D.L. Hollway
12

that linear interpolation between values of YRS(N) cannot

be used without loss of accuracy, therefore, integration is

performed by considering each value of YRS(N) to apply over

the internal from (WN(NN-1) + (WN(NN))/2 to (WN(NN) +

(WN(NN+1))/2. The range of integration WNRR extends from

WNT (top) to WNB (bottom).

The discrete Fourier transform, or the fast Fourier

transform, was not used in this program because the discrete

Fourier transform requires that data samples be taken at

equal increments of the argument. While samples are taken

at equal intervals of frequency (50 MHz), the transformation

is from wavenumber to distance. The wavelength of the

energy in the waveguide deviates from the free space wave-

length due to the dispersion of energy within the wave-

guide, therefore, the wavenumber intervals are not equal in

increments. The wavenumber intervals corresponding to

equal frequency intervals, increases as the frequency is

increased.

H(L,1) and H(L,2) are the real and imaginary parts
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of the reflection coefficient generated at the distance

Y(L), statements (185) and (186). Depending on the slope

of the magnitude of this reflection coefficient the dis-

tance Y(L) is increased by .5 or .25 by statements (197)

to (202). If Y(L) is equal to or greater than XMAX in

statement (204) the calculations are completed and the re-

maining plots and printout are executed.

Test 2 is very similar to Test 1, the difference

being in the size in the internal WNRR. In Test 1 the en-

tire spectrum measured was used for each distance calcula-

tion. The result is a magnitude and phase of an average

reflection coefficient generated at the distance of interest.

In Test 2, however, a single distance or location is of

interest and this is read into the program by XSET. For

this particular distance XSET, the reflection coefficient

is calculated over overlapping subintervals of 500 MHz.

Each subinterval overlapping by 100 MHz, Figure 13. The

value of the reflection coefficient calculated over any par-

ticular subinterval is assigned to the center frequency of

that subinterval. The result is that at approximately 100

MHz intervals the reflection coefficient is known. Since

each adjusted subinterval WNRR must satisfy Equation (III-

29), where the distance Ln is the predetermined location_of

the discontinuity, the resulting reflection coefficient is

known at unequal subintervals of frequency.

Calculations are actually made at ten locations along
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Frequency
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Figure 90. Functional Flow Chart of Test 2
Computer Program
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the waveguide at intervals XINCR centered around the loca-

tion, of the discontinuity, XSET. This is done to provide

insight as to the effects of dispersion, on the reflection

coefficient of the disturbance measured, as the energy tra-

vels through the waveguide.

In order to provide a smoother, more accurate curve,

a linear interpolation is made between the 50 MHz points,

resulting in data at 10 MHz intervals. This does not add

any information about the total reflection coefficient, but

it reduces the ripple in the resulting waveform, inherent

in the algorithm used to perform the integration.

The upper bound of the first subinterval is the upper

bound of the measured spectrum, point NF. The lower bound

of this subinterval is given by the statement (109) and is

referred to as the NS point. The remaining calculations

through statement (184) are duplicated from Test 1. The

subinterval is shifted down the spectrum 100 MHz by the

statement (216), and the program returns to statement

Table (302) to determine the reflection coefficient from

this new subinterval. When subscript NS is less than or

equal to NSS., the subscript corresponding to the lowest data

point taken, the program then exists from statement (110) to

statement (220). The program prints and plots results and

ends.

The impedance matching program calculates the phy-

sical dimensions of a predetermined matching element and the
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location of the element in the waveguide relative to the

location of the disturbance as calculated by Test 1. The

results of Test 2 on punched data cards are the input data

for this matching program.

The program begins with a list of constants. Comment

statements have been provided in the program listing to iden-

tify selected parameters. The matching element to be used is

identified by the constant MACHEL, the number of data points

by LE. Since the data points are not known at equal fre-

quency increments, the frequency points are read in at state-

ment number (60). The real and imaginary part of the reflec-

tion coefficient is read in corresponding to the highest

frequency point first, by statements (62) and (63). The

complex reflection coefficient of the test element is

referred to as GAM(N), where N varies from 1 to LE.

This program is equipped to begin calculations from

any position along the waveguide, the starting position

being denoted by ALENGH(1). The constant NOO read in at

statement (108) denotes the number of times the results will

be recalculated at corresponding starting points

read in by statement (111). This is a particularly interest-

ing feature, since the set of physical parameters and the

quality of the impedance match is a function of X /2 changes

in the ALENGH(1) starting point, Chapter V. Generally, the

best impedance match will be achieved by setting the starting

ALENGH to zero, i.e. the electrical location of the test ele-
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ment.

Depending on the matching element selected, various

appropriate starting,points are programmed in statements

(116) to (119) and described in Table 2. The three dimen-

sional array is generated by statements (128) to (139). A

description of this dimensional space array is given in

Chapter III. There are two cases possible, the matching ele-

ment may be located on the generator side of the measured

mismatch or the matching element may be located on the load

side of the measured mismatch. The results of Appendix C

are used accordingly.

Statement (149) branches the program to the appro-

priate section of the program pertaining to the matching ele-

ment designated by the value of MACHEL. The reflection co-

efficient for this chosen matching element is then cal-

culated for the seven points of interest in dimension space,

see Figure 19. The value of the complex reflection co-

efficient is carried by the variable four dimensional array

GGAN (I, J, KK, N), where the first, second and fourth index

correspond to the axis of the dimensional space array of

Figure 19. The third index corresponding to frequency.

When the array GGAM is completed, control is transferred to

statement (375). Statement (378) to (400) calculate the

RMS of the mismatch, resulting from the measured discontin-

uity and the matching element, for each point in dimension

space. Statements (405) to (418) determine the smallest
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RMS value, while statements (419) to (432) determine the

value of the I, J, K indices that correspond to this small-

est value. Statement (436) tests for termination. If the

indices corresponding to the least RMS are the I=1, J=1,

K=1, then a minimum value has been determined, if not, con-

trol is shifted to statement (439). If a minimum value has

been determined, a check is made to determine whether the

increment size has been reduced to 1/8 of the original size,

if not, control is shifted to label 350 where the present

increment size is divided by two. If on the other hand the

increment size is 1/8 of the original value, control is

shifted to statement (447) or label 200, and the program be-

gins to write output. If a minimum was not determined at

statement (436) control if shifted to statement (439) or

label 108 and the physical parameters of the dimension space

(1, 1, 1) point are set equal to the physical dimensions of

the point corresponding to the LRMS mismatch. Control is .

then shifted to lable 250 and calculations are again per-

formed for the seven points in dimension space centered

around the new (1, 1, 1) point.

Calculations to determine the physical parameters of

the "matching element are performed over the bandwidth of in-

terest having the index points JBEG and JEND. When the match-

ing element size has been determined the results of the mis-

match are calculated over the entire known spectrum origin-

ally read in. Therefore, the characteristics of the chosen
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matching element must again be calculated as determined by

statement (468), and the resulting mismatch again calculated.

The output consists of printout of RMS mismatch over

the band of interest, size and location of the matching ele-

ment, and a listing of the reflection coefficient and the

VSWR of the mismatch over the full band. A plot is made of

the VSWR of the original disturbance and the matched dis-

turbance over the full band. Also, data cards are punched,

recording the real and imaginary parts of the resultant mis-

match. Some typical results of this program are given in

Chapter III.
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Test 1

Statement Label
Number Nurnber Statement

I3UF(20000)
2* DIMENSION PTITLE(12),RTITLE(12).mTITLE(12)
3* .DIMENSION X(400),VTITLE(12).HTITLE(12)
4* D1mENSION P(200),S(1260).CKS(100),YREF(90),YU(90)
a*  :11,1'7"G ION Y.R.1.1011.1 '11,1L1 uvrt.il o .1-0-4110.t_ALLY_L4Olar FRI 10n LeIRS11110.1_
6* OINENSION NREF(100).NYU(100)
7* L__PRESET.CONSTANTS_AND.TABLES_OF_FUNCTIONS._
8* C XMAX IS THE MAXIMUM DISTANCE IN CMS FROM iHE REF. REFLECTION
9*_  .XWAX=100.
10* AMIN=5.
 ri34_15:-LiEeaariDETHE_IAAVEaUWE—I-N—IAICHES  

12* 0,G4=0.9
PLRF=-1

14* PLRF=1.0
-15*_____C_ _ PLPX PHASE ANDLE-0Fr_THE REFLECTION-COEFFICIENT-AGAINST-DISTANCE.- 
16* PLPX=1.
_12+  PLPX=-1._.
18* N5=I
19* PI=3.1415926536
20* C RPV.RADIANS PER VOLT.IS A CONSTANT OF THE RATIOMETER. IT IS THE

...21*_____C_CONDUCTION ANGLE AT FULL_SCALE_DIVIDEDA3T-THE_CORRESPONDING.
22* C VOLTAGE OUTPUT.
_23*  RPV=56.6*P11(6..928+180.)__
24* C ATTEN CORRECTS FOR A WAVEGUIDE ATTENUATION OF 0.036 OB/FOOT.
.25* _ ATTEN=0.036*2.3026/(10.*12.*2.54)
26* C TABLES OF SINES AND COSINES
27* 006A=1,500
28* 5(N)=SIN(N*PI/500.)
_29* _S(O-500)=-5(N)  
30* 6 CONTINUE
_31* _________j08N=1,260
32* 5(N+1000)=S(N)
33* _ . _ 8 L;ONTINUE
34* C ENVELOPE SHAPING FUNCTION
_35*  ..1435N;12.200  
36* PANGLE=2.*PI*N/200.

.37* _P(N)=1.-0.889*COS(PANGLE).+.0.0112*COS(2.*PANGLE)_________________
38* P(N)=1.

CONTINUE
40* C 2

_Al* C %LIS THE NUMER QE_UNKNOAN_CDMPONENT5 Tn RE_MEASLIRED.
42* C NO IS THE FIRST DATA CARD.
43*   .11EAD(5.601)NO
44* 601 FORMAT(I3)

HEAD(5.400)NF
46* 400 FORMAT(I3)

_47* READ15,12).REFPT
48* 12 FORMAT(F10.5)
.49* REFPTS=REFPT*REFPT
50* U0600K=1,NO
51*   .READ(5,200)(NREF(N).N=1,NFJ
52* READ(5.201)(NYU(N),NZIFNF)

_53* .20n FORmAT(4X,1411X.I.411XLI-4..11,14.1X,I4.1 XLIA4.1ILIALLIX41.4J.IX....1.4A4X.14
54* 1,1X0I4,1X,I4,1X,I4,1X04,1X,I4r2X)
55*   FORMAT(4X.1.4.1X.I.4J.IXF.I4.1XtI.4,1XLI.4.1XL144.1X.I4,1X44411X1.14,1XPILL
56* 1.1X.I4.1X,I4,1X,I4,1X04.1X,14r2X)
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57* 00500N=1,NF
58* YREF(N)=NREF(N)/1000.4_
59* YU(N)=NYU(N)/1000.

_ 60* 500 CONTINUE
61* A9ITE(6,502)

_62* 502__FORMATUr1.30X,IREFERENCF vrU_TAGE_DATVi/t.) 
63* nRITE(6.501)(TREF(N).N=1.NF)
64* - wRITE(6.503)
65* 503 FORMAT(////r30WVOLTAGE DATA WITH UNKNOWN IN LINE'0//)
66* nRITE(6.501)(YU(N),Nr1rNF)
b7* 501 FOROT(15(3X0F5.3))

 ____ER(.0=7.975  
69* U0202N=1,NF
70* C's5(N)=(REFPT**2*C0S(YREF(N)*RPV))/SIN(YREF(N)*RP0)_

. 71* YRS(N)=AcKS(N)*SIN(YU(N)*RPV))/COS(TU(N)*RPV)
72* YR(N)=SO9T(YRS(N))
73* FR(N+1)=FR(N)+.050

G 3NT I NUc•
76* NF9=NF+1
76* D056N=1,NFP
77* oN(N)=5ORT((FR(N)/29.9695)**2(1./(2.*2.54*WGW))**2)
75*. 0L(N)=1./WN(N)
79* 56 CONTINUE

--80*_  _YR6=0.
61* YRSW=.0.
62* _ _ -U049N=1,1F
63* IRd=YRw+yR(N)*(WN(N+1)-WN(N))
64* . _ visw=yRS4+YRS(N)*(WN(N+1)-WN(N))_
85* 49 CONTINUE

--Bo*   IRSM=YR5,1/(10LINF*11WN1NS)1
67* YX=YR4/(NN(NF+1)-.WN(NS))
65*. L)050N=1,NIF
69* YRS(N)=YRS(N)'-.YRSM
90*._-____ 50 CONTINUE - --
91* 1F(PLRF)16016.51
92*  51 CONTINUE
93* REAL LTRSZ.LENGTH
94* LOGICAL 30X.FIXLIMtUSELIML_
95* DATA HTITLE/,FREOUENCY IN GHZ
96* .. _ ._2 . ,/
97* DATA VTITLEPMAGNITUDE OF TOTAL REFLECTION COEFFICIENT
 __2_

99* CALL PLOTS(IBUF(1).20000r2)
100* _   D0401N=1INF
201* x(N)=YR(q)
102* _401. CONTINUE
103* CALL PLOT(10.r.-3..-3)
.104*  MOD=1_
105* LTRSZ=.1
105* UP=2.5
107*
106*
109*
_110*
111*
112*
1130

OVER=0.
HEIGHT=5..

- LENOTH=5.
PERCNT=.9  
NUMINr=6
HL3N0=FR(1)
riu0NO=ER(39)
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114* ICOUNT=89
115* 6DX=.TRUE,
116* FIKLIM=.FALSE.
117* USELIM=.FALSE.
118* 403 CALL PLOTX(MODEeXPICOUNT.UP,OVERFHEIGHTPLENGTHPBOXFFIXLIM,USELIM,
_119*  NUMINT,VTITLErHILTLELLIRSZJJ111N0sVUANDEELBNO_LHUEIND1RERCNII. 
120* 16 LONTINJE
121* FUNCTION OF DISTANCE.
122* *NR=WN(NF)..-WN(NS)
123* EL7ASH=0.5/WNR
124* IST=ELDASH+1.
_125* L=I
126* YRS(NF+1)=YRS(NF)
127* IF(KMIN-IST)66,86.84
126* 84 Y(L)=XMIN
1.9* TO 66
130* 86 Y(L)=IST
_131*.  C—DISTi.NCE LOOP_EGIAC
132* 88 CONTINUE
133* NN=NS
164* kM=(Y(L)-.0.04)/ELDASH
135* M=R:A
1:55* XA=0.
137*  K8=0.
138*
139*
140*
141*
142*
143*
144* ATTER=1.+ATTEN*T(L)
145* .. 85 1F(WN(NN+1)+WN(NN)-2.*WNES)81.914.95
146* 81 NN=N:441.
147* bD TO 85
148* 95 IF(NN-1)301,301,89

..149* 101 NN=W1+1
150* GO TO 91
151* 89 IF (WN(NN)+WN(NN-1)-2.*WN3)_914.91,93
152* 93 NN=NN-1
153* GO TO 95
154* 91 CONTINUE
_155*  .*NA=CWN(NN)+WNINNAllii,--,INA
156* *NSO=WN(NN-1)
157* wNST=4N(NN)
158* "(")=WNO+WNA/2.
159* wN(NN-1)=WN3-WNA/2.
160* C 6
_161* C SINGLE DISTANCE_INTEGRAILDN
162* 0094N=NN.NF
163* ALP=2.*(Y(L)-0.04)*WN(N)
164* C ALPHA=4.*PI*Y(L)*WN(N) • NALP IS THE MULTIPLE OF 2.*PI REMOVED.
165* NALP=ALP
166* AA=1000.*(ALP-NALP)

-167*  IF (AA) 9Piaa#92 
168* 90 AA=AA+1000.
169* 92 NA=AA
170* AANAZ(AA-NA)

wNTZ(WN(NF+1)+WN(NF))/2.
riNRR=WNR*M/RM

C WAR=FOTAL WAVE NUMBER RANGE.
C WARR=A FUNCTION OF DISTANCE,IS THE RANGE REDUCED TO MAKE THE ANGLE.AN_INTEGER
C *2*Pi

fiN3=4AT7oRR
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171* SALP=S(NA)*(S(NA+1)-S(NA))*AANA
172* NA=NA+250
173* CALP=S(NA)+(S(NA+1)-S(NA))*AANA
174* .___IP=1.+(wN(N)-WN(NN))*199./(WWNF1rWN(NO)
175* YRSPI=YRS(N)*P(IP)*(WN(N+1)-WN(N-1))
176*.  _____AA=XA+YRSPI*CALP 
177* X3=XEi+YRSPI*SALP
173* 94 CONTINUE
179* wN(NN)=4NST
160* .I.N(NN-1)=WNSO
181* HL1=XA/(REFPT*WNRR*2.)
182* HL2=X0/..(REFPI*WNRR*2.0  
163* HLSO=HLI*HL1+HL2*HL2
184* CORRN=ATTER/(1.-HLSO,REFPTS+MLSO*REFPTS)
185* H(L.1)=HL1*CORRN
136* H(Lr2)=HL2*CORRN .
187* H(L.3)=SORT(H(L.1)**2.4 1(02)**2.)
_188*  _ANG=57.2.9578*ATAN(H(.L..21/1i(LE1))
189* 1F (H(L.1)) 96.102.102
190* 95 IF (H(L.2)) 100.98.98_
191* 93 H(Lt4)=ANG+180.
192* GO.TO 104
193* 100 H(L.4)=ANG-180.
194*   50_1'3 104
195* 102 H(L,4)=ANC
196* 104 CONTINUE
197* NXL=Y(L1
198* IF (Y(L)-NXL-0.01) .112.112.116
199* 112 IF (H(L.3)-0.005) 114.114.116
200* 114 Y(L+1)=Y(L)+0.5. 
201* 50 TO 118
202* 116 Y(L+1)=Y(L)+0.25
2U3* 118 L=L+1
204* ,.. IF (XMAX-Y(L)) 122.122.88
205* C 7
20o*  r lISTANCE=LOOP ENDS_ 
207* 122 CONTINUE
2U8* LEZL-1
209* wRITE(6.109)
210* _109 FORMAT(1H10Y(LY'r6X.IA(N)145X08(N).!.3X0MAO.-REFP.T._COEFF.1.3X._
211* PPHASE ANG.',///)
_212* 10.5__wRITEI5t108LIYALIJAAILt.11.A=Ii..4),L=1.LF) 
213* 108 FORMAT(F10.2,3F10.5,F10.1)
.214* _110.CONTINUE
215* IF (PLRF) 411.411.412
216* 412 CONTINUE
217* DATA RTITLE/'DISTANCE IN CENTIMETERS
21b*  2 t/ 
219* UATA PTITLE/1 MAGNITUDE OF AVERAGE REFLECTION COEFFICIENT
220* 2
221* U0404N=1.LE
222* X(N)=H(N.3)
223* 404 CONTINUE
_224* AR:X(1)
225* U01000N=1.LE
246* IF(X(N).GT.AR)AR=X(N)...
227* 10011 CONTINUE
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226* VLND=0.0
229* VJ3ND=AR+.1*AR
230* CALL PLOT(10.0-3.,-.3)

_ 231*. MODE=1
232* LTRSZ=.1

___233* uP=3.  
234* OlIER=0.

- 235* _______LENGTH=5.
236* HEIGHT=5.0
237* .HL6ND=Y(1)
236* HJ3NO=Y(LE)

___239* NjMINT=12 
240* ICOUNT=LE

_ 241* _ . ..60X=.TRJE.
242* FIXLIM=.FALSE.

.. 243* jSELIM=.FALSE.
244* FIXLIM=.TRLJE.

_245*   LISELIM=.TRUE.__  
246* PERCNT=.99

- 247* CALL PLOTY(MODE.X0Y,ICOUNT0UP0OVER0HEIGHTILENGTH080X*FIXLIMFUSELIM.-_.
246* 1 0NUMINT,PTITLE,RTITLE0LTRS2PVLBNO0VU8NOPHL8ND*HUSND,PERCNT)
249* 411 LONTINUE
25U* IF (PLPX) 408.4080410

___251*  
252* uATA MTITLEOPHASE ANGLE
253* 2 0/ . -
254* u0406N=10LE

- 255* x(N)=H(Nr4)
256* 406 CONTINUE

___257* MODE=1
256* CALL PLOT(10.0-3.0*.3)

- 259* HEIGHT=5.
260* LENGTH=5.

_ 261* LTRSZ=.1
262* UP=3.

___263*   (AIER=0.
264* HL3ND=XMIN
265* HJ3ND=T(LE)
266* ICOJNT=L

- 267* 6DX=.TRUE. • •
266* FIXLIM=.TRUE.

_269* LS=LIM=.1.RU''.
270* VJ3ND=160.

. 271* VLEND=-180.
272* PERCNT=.99

_. 273*. CALL PLOTY(MODE.X,YrICOUNTrUP,OVER0HEIGHT0LENGTH,30X0FIXLIM0USELIM .
274* 1 0NUMINT,MTITLE,RTITLE0LTRS2tVLEIND0VUBND 0 HLBND 0 HUBND0PERCNT)

___275*   ...403. CONTINUE  
27b* 600 LONTINUE

_ 277* . CALL PLOT(0.0,0.0t999).
278* END

END OF COMPILATION: NO DIAGNOSTICS.
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Test 2

Statement Label
Number Number Statement

1*  DIMENSION PTITLE(12)_ 
2* DIMENSION YL(20).6(10.50.4),0200),ENN(6)
3* pIMENSION_EMS1(10)
4* DIMENSION Y(100)
5* DIMENSION IBUF(20000),NREF1100).NW(1001,/REFilOADIATUA1001iS(1260)  
6* 1oCKS(100).FR(500).YRS(500).YR(100).WN(500),WL(500),H(100.4).X(100)
7* 2,HTITLE(12),VTITLE(12),RTITLE(12)
6* DIMENSION ARYR(500)

_9* CALL PLOISAIUF(1).280.00.21 
10* leiGW=0•9
11* NS=1
12* P1=3•1415926536
13* RPV=56,602I/(6,9281'180 ) 
14* ATTEN=0•036*2•3026/(10**12.*2•54)
.15*  JDO6N=1,500
16* S(N)=SIN(N*PI/500.)
17* S(N+500)=-5(N)
16* 6 CONTINUE
19* DO8N=1,260
20* S(N+1000)=5(N)
2/, 8  LONTINUE
22* READ(5.2000)NO
23*__ . _2000 FORMAT(12)
24* READ(5.12)REFPT 

 12 FORMAT(F10.5)
26* C XINCR IS THE INCREMENT IN CM. FROM THE LOCATION OF THE MISMATCH.
27*  fiA0(5,601)XINER 
28* 601 FORMAT(F10.5)
29* REFPTS=REFPT*REFPT  
30* D02001h1=1,NO
_31* IS THE UPPER.FREQUENCY LIM/T. 
32* READ(5r9)NF
_33* 9 FORMAT(I3)
34* C XSET IS THE LOCATION IN CM. OF THE MISMATCH FROM THE REFERENCE.
.35s   READ(5,602)XSET
36* 602 FORMAT(FI0.5)
37*  READ(5.200)(NREF(N).,N=1,NF) 
36* READ(5,201)(NYU(N),N=1,NF)
39* PULFORMAT(4X,I4L1)(4/4,1X214.1x./4...1.xf.74_.1x414...1Y4/s.1Y.IlLs1X/I4.1X.I4 
40*
.41s. _____201 FORMAT(4X,I4r1X,I4c1X_PI4c1X,I4,1XLI4LIXLI4/1XLIWILLIWL1XLIALIXeI4 
42* 1.1)014,1X.I4.1X.I4.1X.I4.1X,I4,2X)
_43*________ 00500N=1,NF
44* YREF(N)=NREF(N)/1000.
45* YU(N)=NYULNLLIDOO
46* 500 CONTINUE

FR(1)=7.975
46* D055N=1.200
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49* PANGLE=2.*PI*N/200
50*   P(N)=1.-0.889*COSLPANCES1±0A211,2*COS(2.*PANGLF)
51*

P_ 52*   55 C NNIJE
53* D0202N=1,NF
54* CKS(N)=(REF2/1*A2.*COS(YRFF(N)*RPV))/SINCYREFCNI*Rin1 
55* YRS(N)=CCKS(N)*SIN(YU(N)*RPV))/COS(YU(N)*RPY)
56*   YR(N)=SGRT(YRS(N)) 
57* 202 CONTINUE
58* NFP=NF+1
59* D01002N=1,461
.60* ER(N+1)=FRCNiii.010
61* wN(N)=SORMFR(N)/29.9695)**2-(1./(2.*2.54*wW)**2)
62* wL(N)=1./WN(N)
63* 1002 CONTINUE
64* j=1
65* 001000N:1.88
66*  DELY=YRS(N+111-.YRCIN1
67* D010011=1,5
68* ARYR(J)=YRS(N)+DELY*.2*(I-11 
69* j=j+1
70* 1001 CONTINUE
71* 1000 CONTINUE

__72*  ARYR(J)=YRS(119)
73*
74* ___ t 4NFF:-.Ns4
75* NFP=NFF+1 0
76* D01004N=1.NFP
77* YRS(N)=ARYR(N)

_78* _1004 CONTINUE  
79* YRSw=0.
80* 0049N=NSoNF
81* YRSW=YRSw+YRS(N)*(WON+1)-wL(N))
82*. 49 CONTINUE
83* YRSM=YRSw/(WONF+1)=WONS))
_84*  DO5ON=NS,NF 
85* YRS(N)=YRSIN)-YRSM
86*   50 CONTINUE
87* YRS(NF+1)=YRS(NF)
88*  YL(1)=XSET-4.*XINCR__ 
89* NFF=NF

_914. NSS=NS 
91* CALL PLOT(0.0.3.0.-3)
92* 005000LL=1,10
93* C PLOT AXIS.
94* CALL PLOT(10.0.0.03L  
95* CALL PLOT(0.0.2.203.3)
96*   CALL PLDT(4.406,2.203,2)
97* CALL PLOT(2.203.0.0.3)
98*   CALL PLOT(2.203,4.406t2) 
99* CALL PLOT(0.0.0.0.3)
100* YOLL+1)=YOLL)+XINCR_  
101* wRITE(6.84)YOLL)
102*  84_FORMAT(1M0,10X0DISTANCF,,F8-20 Jet.1. 1) 
103* ATTFR=IOATTEN*YOLL)
104* XINT=I00.
105* IF(Y(LL).GT.21.) XINT=50.
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106* NF=NFF
107* L=I
108* C BEGINNING OF NEW WAVENUMBER RANGE IDENTIFIED BY (L)
_109*_._ ___ 302 N5=NF-XINT
110* 1F(NSS+1-NS)303,301,301

_111*  303 CONTINUE
112* NN=NS
113* wNR=(WN(NF+1)+WN(NF).!-WNAN5LnWNCR5.r_111/2.
114* ELDASH=0.5/WNR
115* RM=(YOLL)-0.04)/ELDASH_ 
116* m=RM

_117* IE(M)301.301.66 
118* 86 XA=0.

.119* X9=0.
120* NNRR=WNR*M/RM
_121.* WNT=(WN(NF+1)+WN(NF))/2.  
122* C wNR=TOTAL WAVE NUMBER RANGE.

_123*_____C_WNRR=A_FUNCTION OF_DISIAMCF.IS THE RANGE REnucEn TO Meer Twr ANr:45 AN_TNTEAER_____
124* C *2*PI
1250 wNB=WNT-wNRR
126* 85 IF(wN(NN+1)+WN(NN)-2.*WN8)8101,95
127* 81 NN=NN+1
128* GO TO 85

_129* 95 IF(NN-1)3011_301A0 
130* 89 IF (wN(NN)+WN(NN-1)..2.*WNB) 91,91.93
131* 93 NN=NN-1
132* GO TO 95
133* 91 CONTINUE
134* wNA=CWN(NN)+WN(NN+1))/2.-.WNE)

_135*  wNSO=WN(NN•al___ 
136* wNST=WN(NN)
137* wN(NN)=WNB+WNA/2. 
138* wN(NN-1)=.018-WNA/2.
139* ENN(1)=WNT
140* ENN(2)=WNB

__141* ENN(3)=WNA 
142* C 6
143* 0094N=NN.NF
144* ALP=2.*(YOLL)-0.04)*WN(N)

_145* NALP=ALP
146* AA=1000.*(ALP-NALP)

_147*  IF(AA)222.222i223
148* 222 AA=AA+1000.

_.223 NA=AA
150* AANA=(AA-NA)

_151* SALP=S(NA)+(S(NAtil?.S(NAII*AANA 
152* NA=NA+250

_153* CALP=S(NA)+(S(NA+1J-MNA))*AANA 
154* u'l1.+(wN(N)-WN(NN))*199./(WN(NF)-WN(NN))
155* YRSPI=TRS(N)*PlIP.)*SWNINI112.1tNiftT1i)
156* ENN(4)=XA

__157* ENN(5)=X8
158* XA=XA+YRSPI*CALP

_159*  xa=mii+nspIfsALP
160* 94 CONTINUE
 _ AN(NN)=WNST

162* WN(NN-1)=WN50



195

163* HL1=XA/(REFPT*WNRR*2.)
_164f_ _ __M1.2=0/(REFPT+WNRA*2.)
165* HLSO=HL1**2+HL2**2

1:7:  LORRN=ATTFRa1A-ALSOREFIPTStHLSOAREF_PTS) 
C THE FOLLOWING NEG. SIGN CONVERTS FROM IMPEDANCE SMITH CHART TO- 

_168* C ArALITANCE_SNITH_CHART.
169+ 111L.:;::HLI*CORRN1

HL2*CORRN
171* B(LL.03)=SORT(m(L.1)**2+H(L.2)**2)
172*_____C_-__PREPARATION FOR THE.SMITH_CHART_ELDT.
173* ANG=ABS(ATAN(H(L.2)/H(L.1)))
_174*
175*
176*
177*

IFSH(0211700.701.70.1
701 IF(H(01))703/7020702

_ 702 ANG=ANG
GO TO 710

178* 703 ANG=PI-ANG
179* GO TO 710
_180* 700 IF(H(Lt1))/OALZOS/7n5
181* 704 ANG=ANG+PI

.182* GO TO 710
183* 705 ANG=2.*PI-ANG
184*__ __ 710 CONTINUE

B(LL.L.4)=ANG*57.29578
186*  FN(L)=29.9695ASAR/11wN(Nr)-waRP/20*.t2+(1..1(5.08*WGW11**2) 
187* X(L)=2.203+(H(L.1)*2.203/.22)
188* _ Y(L)=2.203+(H(L.2)*2.203/.22)
189* C PLOT CURVE WITH 9.10.11.12 GHZ MARKERS.

_ IF(L-1)950.950.951
191* 950 CALL PLOT(X(1).T(1).3)
_192*  451_CONTINUE  
193* AL=ABS(FN(L)-9.001)

.194+______ _ .IF(AL*-.05)507,507,51P
195* 512 AL=ABS(FN(L)-10.001)

IF(AL-.05)508.508,513
197* 513 AL=ABS(FN(L)-11.001)
198*  _IF(AL',..05)509,509,519
199* 514 AL=ABS(FN(L)-12.001)
200*,_ IF(AL-.05)510.510.506  
201* 507 CALL SYMBOL(X(L),T(L)..070100.00-1)
202*. _ _ CALL SYMBOL(X(L),YALLPA1L8H 9.0  Aw2.0.n.A) 
203* GO TO 506
-204* 50R CALL_SYMBOLIKILILY(L)..07t1.0-n..-1) 
205* CALL STMBOL(X(L).T(00.1.9H 10.0 GHZ.0.0.9)
.206*___ GO TO 506
207* 509 CALL SYMBOL(X(OrT(L)..07,10.00-1)
208* CALL SYMBOL(X(LLettOr.1,9H_11.0_GHZ0...0.9)
209* GO TO 506 •
210*  510 _CALL_SYM8DLIKALLitills.07.1.0-0.-11 
211* CALL SYMBOL(X(L),T(00.1,9H 12.0 GHZ.0.0.9)
.212*  506 CONTINUE
213* CALL PLOT(X(L).Y(L).2)
214* C. END OF SMITH CHART PLOT& 
215* LE=L

217* L=L+1
218*__ END OF REFLECTION.COEFFICIENT_AS_A FUNCTION OF FREO. AT MST.%
219* Go To 302
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220* 301 CONTINUE
221* IF(LL.NE.5)GO TO 5000
222* wRITE(1,1071)LE
223*_ 1071 FORMAT(I2)
224* *RITE(1.1070)(FN(I),I=LEr1r-1)
225* 1070 FORMAT(BF10.4) 
226* wRITE(1,1072)(H(I.1),I=1,LE)
227* WRITE(1,1072)(HCIr2),I=1,LE) 
228* 1072 FORMAT(8F10.6)
229* 5000 CONTINUE
230* wRITE(6.952)

_231* 952 FORMAILIA.14_1()X1 'FREQUENCY( .1(IX. ImannitTUIIF nr nErLErTInm corrrtrIEN 
232* 1T'r///)
233* D01010L=IrLE
234* WRITE(6.953)(FN(L).(8(LL,Lr3),LL=1.10))
235* 953 FORMAT(10X,F6.3,10X,10F10.4)  
236* 1010 CONTINUE

__237* WRITE(6,960)  
238* 960 FORMAT(1H1.10X0FREDUENCY'.10XOPHASE ANGLE,r///)
239* _ 001020L=IrLE
240* WRITE(6.1021)(FN(L),(B(LL.04),LL=1.10))

. 241* 1021 FORMAT(10X.F6.3.10X.10F10.4)
242* 1020 CONTINUE
243*  00229J:1,1F
244* I=LE+1-J
245* X(J)=B(5,Ir3)
246* 229 CONTINUE
247* 00231J=1,LE
248* I=LE+1-J

_249*  Y(J)=FN(I)
250* 231 CONTINUE
_251* REAL LTRSZFLENGTH.
252* LOGICAL BOXPFIXLIM.USELIM
253*._ DATA HTITLE,"FREOUENCY_IN GH2. 
254* 2 '/

_255* DATANTITLEI±KABN/ToBF OF aFglErTIOm VIEPPVIEN7 
256* 2
257* CALL PLOT(10.L.n3._r_r1)  
256* MODE=1
259* LTRSZ=.1
260* UP=4.5

_261* DVER=0.
262* HEIGHT:5.
263* LENGTH=5.
264* HLBND=Y(1)
265* _   HUBNO=Y(LE)
266* ICOUNT=LE
267* 80X=.TRUE. 
268* USELIM=.FALSE.
269*   FIXLIM=.FALSE 
270* USELIM=.TRUE.
271*   FIXLIM=.TRUE.
272* VLBND=0.

_273* 1tUBNO=L2 
274* NUMINT=16

PERCNT=.9
276* CALL PLOTY(MODE.X.YeICOUNTrUP,OVER,HEIGHT,LENGTHFBOX,FIXLIMPUSELIM
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277* 1 rNUMINT.VTITLEPHTITLErLTRS2tVLBNDrVUBNCItHLBNDrHUBND0PERCNT)
_278*  D02304=1ELE 
279* 1=LE+1-J

.280* X(J)=B(5rIt4)
281* 230 CONTINUE
_282* C9LL_P1OI110.t..3...*3) 
283* DATA HTITLE/'FREGUENCV IN GHZ.

2284* t/ 
285* DATA RTITLE/'ANGLE IN DEGREES
286*_. 2 r/  
287* MODE=1

_288211 LIRS2= 1 
289* UP=4.5
290* OVER=0.
291* HEIGHT=5.
_292* LENGTH=5.  
293* HUBND=Y(LE)
_294* _____HLBND=Y(11
295* PERCNT=.9
296* ICOUNT=LE  
297* 80X=.TRUE.
298* USELIM=.FALSE.  
299* FIXLIM=.FALSE.
_300*  VU9ND=180. 
301* VLBND=-180.
302* NUMINT=16
303* CALL PLOTY(MODErX.YrICOUNT,UPOVERtHEIGHT0LENGTHrBOX.FIXLMUSELIM
304* 1 tNUMINT.RTITLE.HTITLErLIRSZ,VLBND.NUBNDtHLBNDtHUBNOIPERCNT)
305* 1006 D01007LL=1,10

_306* ____1001008L=1/11
307* J=LE+1-L
308* 8(LL0Lr1)=B(LLtJt41 
309* 1008 CONTINUE

.310* 1007 CONTINUE
311* CALL PLOT(10.....3....3)

_312*  _DATA PTITIF/IDISTANCF IN 
2313* '/

314* LTRSZ=.1
315* UP=4.5
316*___ OVER=0
317* HEIGHT=5.

_318*  LENGTH:5.
319* HLBND=YL(1)
320*, HU9ND=YL(10)
321* PERCNT=.9
322*  ICOUNT=10
323* 80X=.TRUE.
324*  LSELIM=.TRUE. 
325* FIXLIM=.TRUE.
_326* _ VUBND=360.
327* VLBND=0.0
32B* _ NUMINT=6
329* 001011I=1.4
_330* MODE=1  
331* IF(I.GT.1)MODE=4

.F4=9,0tIl
333* LF=5
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334* IF(I.GT.1)LF=12
335* IF(I.GT.2)LF=16
336* IF(I.GT.3)LF=23
337*__________ U01012LL=1,10
338* OLL)=8(LL.LF01)
339* 1012 CONTINUE
340* CALL PLOTX(MODE.X.ICOUNT,UPIOVER.HEIGHT.LENGTH.80)0FIXLIMPUSELIMP
341*__ 1 NUMINTPRTITLEPPTLTLE,LTRSZuVUIND.VU8ND.MLBNO.HUBNO4PERCNTI____ 
342* 1011 CONTINUE
343*   600 CONTINUE
344* 2001 CONTINUE

_345*  CA1L_PL0/10.0.0.0.9449)
346* END

END OF COMPILATION: NO DIAGNOSTICS.
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Matching Program

Statement Label
Number Number Statement

1* DIMENSION 0(100)
2* olm-NSION-REttloui 
3* DIMENSION FR(90).WN(90),WL(90),FSWL(90),OP(4),WIDTH(4),ALENGM(4)

---Iii---- --- DIMENSION . AA(90)iC0190TibIt9OTARMS13430IiSEIVOYIBET4(90)------------
5* DIMENSION XREL(90).YIMAG(90)_
b* OIMENSION'OUF(20000)-rXt901,YOO1J-NTITLE(12)iVTITLE(12)
7* DIMENSION ALPHA(3.90),PETE(3,90).BESOA(3190)0ESOB(3,90),BESIA(3,9

8* 10) DESI8(3,-90-iSOPT3i'96T-o.SIIT3;90Y------------- ------ - - ----- --
9* COMPLEX OAM(90),AGAM(4,90),OAMMA(90),OAMMAH,88AM,YI0ZIIPYT

- 10*--- ----COMPLEX GGAM(3,3,90.3)
11*   COMPLEX ZI,ZT
12*--- COMPLEX X3AM(100)
13*  COMPLEX YII
14* CTHIS PRORAM -DETERM/NES-THE-UTMERSTUNS-DF-TRE-DESIGNATED
15*  CALL PLOTS(19UF(1),20000,2)
16* C -MATCHING ELEMENT, IN ORDER TO. IMPEDANCE-1MATCH-THE- MEASURED-
17* C MISMATCH.
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18* C LIST OF CONSTANTS.
--19* PI:3.1415926536
20* C=2.998*(10**10)
21* C WAVEGUI0E WIDTH IN INCHES:WGW
22* wGW1-.0.9
23* A=0Gre,*2.54
24* C wAVEGuIDE HEIGHT IN INCHEs=wGH.
25* WGH=.4
26* Br.wGHt2.54

E IS THE'BASE OF THE NATURAL LOD.
28* E=2.7182818284
29* SOTwO=SORT(2.)
30* C 
-31* - C 
32* C** THE VALUE OF THE FIRST DATA CARD IS MACHEL. **
33* C** THE'vALuE OF MACHE L SELECTS THE TYPE oF MATCHING-ELEMENT. **
34*  C** THE VALUE OF MACHEL MAY BE 1 OR 2 OR 3 OR 4 WHERE **
-35* C** I CORRESPoNOS TO-THE -CAPACITIVE-/RIS-. *f---

36* C** 2 CORRESPONDS TO THE ASYMMETRICAL IND. IRIS. **
37* C** 3 CORRESPONDS TO THE SOLID INDUCTIVE POST. **
36* C** 4 CORRESPONDS TO THE DIELECTRIC POST. **
39* c **
40* C ******* ******* ******************************** ***** ******* *************
41* C DATA-tARD- ORDER.
42* C FIRST DATA CARD:MACHEL

-43* C SECOND DATA CARO=EPRIM
44* C THIRD DATA CARD:LE(NO OF DATA POINTS)
45* C FREO. D TA C RDS
46* C REAL AND IMAGINARY PARTS oF UNMATCHED REFLECTION COEFF.

C BAND OMITS To FIEMATCHED-OVERT--
48* C N00,1 THE NU%9ER OF TIMES THE DEVICE IS TO RE MATCHED
44* C ALENGH TH: STARTING - VALUEFOR-LENGTH DOWN THE-GUIDE.
50* C NOTE., THE NUMBER OF ALENGH DATA CARDS SHOULD BE c TO THE NO.INDO
51* READ(5,560)MACHEL ** -
52* 560 FORmAT(I1)
53* C EPRIM IS'THE RELATIVE-UTELECTRIC CUNSTANT-F0H IHE-DIELECTRIL FT T.
54* READ(5,601)EPRIM

- 55i- ---601 FORMAT(FIO.3)
56* READ(5,1010)LE
57* 1010 FORmAT(I2)
58*  wRITE(6.2050)mACHEL,LE
5-9* 205b FORMATi1H1.7,/;10X0MACYEL-t rIlri WYNUMBER-0 MATA IIINTS--"Tr5T-
60* READ(5,1011)(FR(I),I=1,LE)
61* -1011 FORk1AT(8F10.4)
62* READ(5,1)(XREL(I),I=1.LE)

- 63*  READ(5.1)(yIMAD(I),I=1,LE)
64* 1  FORmAT(8F10.4)  
65* WRITE(6.2052)
66* 2052 FORMAT(///,10X0REAL PART OF THE  MISHATCH9,///)

wRITE(6,2051)(XREL(T)TI=LEili1)
68* 2051 FORmAT(10X0F10.7)
-69* 4RITE(6.2053)

70* 2053 FORMAT(///,10)(0ImAOINARY PART OF THE MISMATCHI.///)
--71* WRITEI6i20511TYIKAGITTTNIZar-1T
72* D084=1,LE

--73* 'OAm(N):)(REL(NM-00.1-*Y/MAGIN)
74* 8 CONTINUE
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75*  001020N=1,LE
-76* r=1.E+1-N
77*  XGAm(N)=GAM(/)
78* -IUD -CONTINUE
79*  001021N:1.LE

--go* SAmIN)=TGAmINI
81*  1021 CONTINUE
82* C-- FRBEG - AN0 FREND--ARE THE FREAMENICT-BAND-tImiTS-/N-ZR2-.--Or-THE-MATCHING
83* C BANDWIDTH OF INTEREST.
84* READ(5'.*3)FRBEG.FREN0
85* 3 FORMAT(2F10.3)
—66* 0041-1,LE
87*  DIF:ABs(FRBEG-FR(I))  
88* IF(DIF.LE.0.07)00 TO 5
89*   4 CONTINUE
90* 5 JBEG=I'
91* 006I=1.LE
—92* DIF=ABSIFREND-FR(1))
93* IF(DIF.LE.0.07)G0 TO 7
914* 6 CONTINUE
95*  7 JEND=I
96* IF(JBEG.GE.JEND1JBEG:l  
97* C FR IS FREOUENCY IN GHZ.

--98*- f--mN IS INGUIDE wAVENUMBE / cm.
99* C WL IS INGUIDE WAVELENGTH /N CM.
100* -- C  FswL IS FREE sPACEWAVELENGTH-DUVW.
101*   002I=1,LE
-102* wN(/)=SORTOFR(1)/29:-9695)6T*2=TI.,12.*2.5W.TWGWY1**2)
103*   wL(I)=1./wN(7)
-104* FSiiL(I)=26957FRCIT--
105* BETA(I)=2.*PI/wL(I)
106* 2 CONTINUE
107*   C INITIAL VALUES FOR THE PHYSICAL PARAMETERS OF THE MATCHING ELEMENT.

-108* REA3(5,4001)N00
109* 4001 FORMAT(12)

-110* 003002NR:1,0D
111* READ(5.4000)ALENGH(1)
112*   -4606 FORmAT(F10.5)
113* wRITE(6.5001)ALENGH(1)
114* -----5001 FORmAT(///,10XOSTARTING-VALUt UP-ALEN0H-m-1,F10.4)
115* mm.1-0
116* 0115(1ji-.-12
117r  IF(mACHEL.GE.3)0P(1)=.16

--lišs wIDTH(1)=.oS
119*   IF(mACHEL.GE.3)WIOTH(1)=.47
-120* C INCREmENT PHYSICAL-PARAMETERS-WROUNO-TRE-MITI/ FOINT-IN
121*  C DIMENSION SPACE.
122* C 1HIS PROGRAM PREFORMS-AN-INCREMENTINS-WOJUSTMENT 70-200M .IN;
123*   ANCRMT=1.

-124* IP(mACHEL.LTOJANUMBR=.1
125*   IF(MACHEL.GE.3)ANUMBR=.05
-126* o0 To 250 

. _ . . _ _

127* 350 ANCPMT:ANCRMT*2.
-126* 2.6-6-0P(2)=DF(1)•ANUMB /ANCRMT
129*   FALS0=DP(1)
-130* ---- -FALBW:WIOTH(1)
131* IF(OP(2).LT..04.AND.MACHEL.LT•3)0P(2)=FALESD_..  -__
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132* IFiDP(2).LT..005. AND.MACHEL.GE.31DP(2):FALBD
133* DP(3)=DP(1)+ANUM3R/ANCW4T
134* WIDTH(2)=WIDTH(1)-.01/ANCRmT
135* IF(wIDTH(2).LT..03.AND.MACHEL.LTi-3)WIDTHT2F=FAL8W  
136*   IF(wIDTH(2).LT..48.AND.MACHEL.GE.3)wIDTH(2)=FAL8W
-137* .4IDTH(3)=CDT,-1(1)4-.01/ANCRNr
138* ALENOH(2)=ALENGH(11-.1/ANCRMT
139* ALENGH(3)=ALENGH(1)+.1jANCRMT
140* C RETURN TO RECALCULATION.
141* C--FIXED MISMATCH IS GAM.
142* C THE  FIXED MISmATCH AT A POINT ALENGH TOWARD THE GENERATOR IS AOAN.
-14-3* u0302M1,3
144* 00303N=JBEorJEND
145* AGAM(M,N)=GAM(N)*CEXP((-0,-IT*2.*8ETA(NY*ALENGHIM7T--
148* IF(ALENGH(m1.LT.0.)AGAm(M.N)=GAWN)
147* 303 CONTINut
148*  302 CONTINUE
149* GO To (399,499,599,599),MACHEL
150* C************************ ****** ** **************** *** ****** **** ***** *****
151* 399 CONTINUE
152* C MATCHING ELEmcNT,,CAPACITIVE IRISI,COMPLEX REFLECTION COEFF.
153* C AS A FUNCTION OF DIMENSIONSPACE AND- FREGUENCY. .
154* D0300L=J3EG,JEND
155* AB=s0RT(1.-(B/WL(L))**2)
156* AA(L)=(1./AB1-1.
157* -300 CONTINUE
158* C v.IDTH(I) IS EQUAL TO THE THICKNESS OF THE IRIS.
159* C Dp(i) /S EQUAL Td TWICE THE IRIS HEIGHT-.
160*   D0252J=1,3
161* D(J)=3-0P(j)
162* D02511=1,3
163* - IF(I.E0.1.AND.J.EQ.10R;1-.E0;1;AUD.J.E0.2.0R-;-1.EG.1-.AND-Wil.E(iT3.0R.
164* 11.E0.2.AND.J.E0.1.0R.I.E0.3.AND.J.E0.1)G0 TO 2003
165* - GO TO 251
166* 2003 CONTINUE
-167* COND=WIDTH(I)/OP(7)----
168* IF(COND.GE.1.)DP(J)=FALBD
169* 'IF(C0ND.GE.1.)WIDTH(I)=FALEW
170* GM=1.+(wIDTH(I)/(PI*DR(.1)/1*ALOG14.*PI*DP1J1/(E*WIDTH(I)))
-171* CO1J1=COS(RI*DP(J1/(2.*B))
172*  SI(J)=SIN(PI*)R(J)/12.*B1/
173* St.(,11=1./C0S(PI*DPTU)*GMM.1-4),
174* 00301KK=J3EG,JEND
175* BONE=PI.DP(J)*WIDTH(I)/(2.*R*0(J1)
176* 8Tw0=AA(KK)*(ST(J)**4)/11.+AA(KK)*(C0(j)**4))
177* 'BTRE=(1./18.)*((3/wL(KK))**21*(11.-3.*1COIJ/4*21-1*IZT*TSITJTF*41
178*  BNORM=.(2.*B/WL(KK))*(ALOG1SE(J)1-80NE+8TWO+BTRE)
179* BA:3NoRm..(8/D(j))*TAN(pI*WIDTH(I7/WLIKKT
180* 88:(6/0(J))*1./SIN(2.*pI*WIOTH(I)/WL(KK))
181* YI=(0r1)*3A+1.
182* ZII=1(0.1)/8B1+1./YI
183* YT=.(0,1)*3A+1./ZII
184* D0250^4=1,3
-185* 8GAm=lyT=1.17(1.+TT)
186* GGAm(I,J,KK,N)=8GAm*CEe((0,1)*2.*BETA(KK)*ALENGH(N/)
187*   IF(ALENGH(N).OE.0.1GGAMI.J-iKK,N)=86Ag
188* 260 CONTINUE
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189* C I CORRES. TO THICKNESs OF THE IRIS.
190* -1:- J CORRES TO HEIGHT OF-TRIs.
1»... C KK CORRES TO FREQUENCY.
192* C GGAM IS THE CoMFLEXREFLEOTON COEFF. 0 15E127-ADMITTANCE.
193* C  SmITH CHART  PLOT. 
-1-§9* 361 CON-TINDE
. 195* 251 CONTINUE
1984,— 252 CONTINUE
197* GO To 404
198*'-----c-******* * i ***** ***-i************* *44-0-***7044-***T.*******Tie-sw********---
199* 499 CONTINUE
280i------C-- mATCHING ELEMENT-TASYMMETRICA-C-INDUCTIVE-TRIST-COMPLEX-REFLECTION-
201* C AS A FUNCTION OF DIMENSION SPACE AND FREQUENCY.

-- -202* -- 00400I=1.3 
_

20'3* 00401J=1.3
204* --- IF( I.E0.1.AND.J.EQ;10R.T:E0;1-.AND-;-j.E0.20R.I.E0.1 .AND.J.EQB.OR.-
205* 1I.E002.AND.J.E0.1•OR.I.E0.3.AND.J.E0.1)G0 TO 2007
206* u0 TO - 401
207* 2007 CONTINUE
208* ----- - COND=WIDTH(I)/DP(J)
209* IF(COND.GE.I.)DR(J)=FALBD_
2111* ^ IF(CoND.GE'.1.)wIDTH(I).1iFALBW
211*  CAPDP=(0P(J)/SOTWO)*(1.+(WIOTH(I)/(0*DP(J)))*ALOG(4.*P/*OR(J)/(E*
212* 1WIDTH(I)M
213* CARD=C(4./(3.*PI))*WIDTH(I)*DP(J)**3)**(1./4.)
214* -- 00402KK=J3EG.JEND
215. C XA AND X8 ARE NORMALIZED IMPEDANCES.
als. — XAL-(4.*A/OL(KK))*((A/(pI*CAPOP))**2F
217*  X8:(A/(16.*WOKK)))*((pI*CAPD/A)**2) 

---is. ZI7.(0,-1)*x941:
219* ZII:(1./((1./((0,1)*XA))+1./ZI))
220*---- ZT:(0,-1)0(9+2II
221*  Boilm=(1.-zT)/(1.+ZT)
222* D0403N=1,3 

_

223* GGAm(I,J.KK.N):8GAm*CExPt(0,1)*2.*BETA(KK)*ALENGH(N))
224* IFiALENGH(N).OE.0.1-GGAm(II7.IOGN)11SPIRE
225* 403 CONTINUE
228*  C- I CORRES. TO THICKNESS-OFTHE-IRIS.
227* C J CORRES. TO HEIGHT OF IRIS.
228* 'Cr Ki CORRES. To'FREouENcY.
229* C  GGAM IS THE COMPLEX REFLECTION COEFF. AS PER ADMITTANCE

-.Ms C 5%,IITH-CmARTPLOT.
231* 402-CONTINUE
232i 401 CONT/NUE
233* 400 CONTINUE
234*--------- G0 - T0 404
238* C 
-236* 599 CONTINUE -- ------ 

___

237* C MATCHING ELEMENT 'SOLID INDUCTIVE POST,  COMPLEX REFLECTION COEFF.
238*--- c 'As A FUNCTION OF DIMENSION P
239. C AS A FUNCTION OF DIMENSION SPACE AND FREQUENCY.
240* — C Dp(I) IS DEFINED TO BE THE DIAMETER OF 7HE POST.
241* C  WI3TH(I) IS DEFINED TO BE  THE  DISTANCE OF THE CENTER LINE OF  THE POST
-2.92i--- C -FROM-THE'SIDE-wALL.
293* D05401=1,3
244. IFtWIDTm(I).GT.1.82)WIDTHM:FALOW
295* D0591KK:J3EG.JEND
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246* N=2
—247* -M-2
246* XSII=0.0
249* XS00=0.0
250* 543 XI:SoRT(1./((N**2)-((2.*A/FSWL(KK))**2))/

—251* X50=A(SININ*PI*WIDTH(I)/A/I**2f*IYI-47N/
252* XSOO=XSO+XSOO
253* IF(xSO.LE..001)G0 TO-545
254* 544 N=N+1

-255* GO TO 543
256* 546 XI=SoRT(4**2/((m**2)-((2.*A/FSWOKK))**2)))
257* XSI:T(SIA(2.0*PI*WIDTH(I1/A1)*IxI-1.1)
256* xSII=X5I+XSII
259* ABK5IL-A5S(xSI)
260* IF(A8XSI.LE..001)G0 TO 547
261* 546 M=m+1
262* GO TO 545
263* b4---T CONTINu:.
264* SOP(I,KK)=XSOO*2.-2.*((SIN(PI*WIDTH(I)/A))**2)
265* SII(I r KK)=KSII+(.5*(1./TAN(PI*WICITH(I)/A)F.;.SIN(2-+"*PI*WIDTRTI)%All
266* 541 CONTINUE
267* 540 CONTINUE
268* D05481=1,3
"269*
270* 

CT=1./TAN(pI*WIOTH1I17A)

271* 

CSsrA1./SIN(PI*WIDTH(I)/A))**2
SN61-(sIN(PI*WIDTH(T)/A))**2

272* D0549J=1,3
273* '- IF(I.E0.1.AND..j.E0.1-.OR:I.-EQ.I.AND;-J.E0.2.0Rj.-EQ+-1-.A1104-3;El.3.-Ok.
274* 1I.EQ.2.AND.J.E0.1.0R.I.E0.3.AND.J.E0.100 TO 2008
275* GO TO 549
276* 2008 CONTINUE
277* IF(DP(J).GE..22)DP(J)=FAL8D
278* IF(OP(J).LE..0)G0 TO 200
279* PDOA=(PI*Dp(J)/A)**2
280..  PDOL-API*DP(J)/(A*20)**2

—281* SOPP=AL0G((4.*ARPI*DPNY7iSIN(PI*WIOTAT/T7X111
282* 00550KK=J3EG,JEND
283* C XA AND XB ARE NORMALIZED IMPEDANCES.
284* XD-z(A/wL(KK))*PDOA*SNS
285* -- - XA=K8/2.+A/(2.*wL(KK))*CSS*ISOpP+SOP(IiKK)=.1(PI*DP1j)/12.*Ati**2)*
286*  1l((sOPP+SOp(TIKK))*CT-SII(I.KK))**21)
247* 2I=-(0.-1)*x8+1.
288* ZII:(1./((1./((0,1)*XA))+1./ZI))
289* ZT:(0,-I)*K3+ZII
290* BGAm=(1.-ZT)/(ZT+.1)
291* 00551K=1,3
292*  GGAm(I,J,K0K)=5GAm+CEXP((0.1)*2.*BETA(KK)*ALENGH(K))
—293* IF(4LENGH(K).GE.0-XYGGAWTTIU.KKiK7=8GAM--
294* 551 CONTINUE

-295* C I CORRES TO D/STANCE 0F POST FROM SIOE- WALL.
296* C J CORRES TO DIAMETER OF POST.  
297* C KK CORRES TO FREQUENCY.
298* C K CORRES TO DISTANCE BETWEEN MISMATCHES.
-299* S50 CONTINUt
300*  54g CONTINUE
31711* 548 CONTINUE
302. GO TO 404
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303*
- 304* -------699-CONTINUE
305* C MATCHING ELEMENT 9DIELECTRIC POST, COMPLEX REFLECTION COEFF.

-As A- FUNCTION-OF -DIMENSION -SPAtE-ANO-FREOuENCTi-GIVEN-THE DIELECTRICi------
SoEpRm:soRT(EPRIm)

7308* f Dp-15 DErINED-TO-BE-TAL D/AmETER OF-THE-DrECECTRIC POS .
309*  C wiDTH IS DEFINED TO  BE THE DISTANCE FROM THE SIDEWALL TO THE CENTER-
310* -C LINE'oF THE POST.
311* C 8rSLA IS THE 9ESSEL FUNCTION WITH ALPHA AS ITS ARGUMENT.
312* C BESLB IS THE BESSEL•FUNCTION'WITH BETE'AS-ITS-ARGumENT.
313*  00602J:1,3
314* -IF(DF(J).GE.;34213PrUTEFALBD
315* p0603N:JBEG,JENO
316*-- ALpHA(J.N)=PI*DP(J)/FSA.(N)
317* BETE(J.N)=ALPHA(JrN)*SoEPRM
318* BEs0A(J.N)=BSSL(ALPHAijrN).11--
319*  BES08(J,N)=BSSL(BETE(J,N)01)
320*. BES/A(J,N)B5SL(ALPHA(jrN),1)
321* BF.50(JrN)=BSSL(qETE(J0),3)
322* -t -J CORR=S TO DIAMETERi N CoRRES- TO-FREE;;SPACE-WAVELENGTH.
323* 603 CONTINUE
324* ' --- 602 CONTINUE
325* C CALCULATE SO THE PARTIAL SUM.
- 326i-----t- -1 COR9rSTO DISTANCE-FROM -SIDEWA-CC.
327* C L CORRES TO FREE-SPACE WAVELENGTH.
320* '006o41=1.3.
329* IF(03TH(1).LT..46)WIDTH(I)=WIDTH(1)

- D0605L=J3EG.JEND
331* N=2
332* XS00-0.0
333* 606 XI:sORT(1./((N**2)-((2.*A/FSWL(L))**2)))
3344i   XS0=((sIN(N*PI*WIDTH(/)/A))**2)*(Xr.:1.7N)
335* x500=xSo+xsoo
336* --- -IF(xSO.LE..001)G0 TO 608
337* 607 N=N+1
338* GO TO 606
339* 608 CONTINUE
3401- SOP(IPL)=X500*2.-2-.*((5INIPIi-4/OTHTT)/A/1**2)
341*  605 CONTINUE
342* 604 CONTINUE
343* C CALCULATE THE SHUNT AND SERIES IMpEDANCE FOR THE POST MODEL. 
-344$ - 7i 06091=1,3
345*  00810J=1.3
-346* IF(I.7o.I.AND.T.E0-.4.ORTI-i-6TY;ANDTJ.E0.2.-OR.TWO;Y;ARD.'J.-E0T3'0R.
347* 1I.E0.2.AND.J.E0.1.0R.I.E0.3.AND.J.EG.1)G0 TO 2009
346*------ - GO TO 610
349* 2009 CONTINUE
350* C CORRrS-TO -DISTANCE-FROM-THE-SIDEWALET ----
351* c J CORR 75 TO DIAMETER OF DIELECTRIC.
352* SOpp=ALOG(04.*A/(PI*DP(J))*SIN(PI*w/DTMI)/A1))
353* ' D0611k1=JBEG,JENO
354* --C M CORR=S TO FREQ.
355* XEI:(2..A/wL(M))*((PI*Op(J)/A)**2)*(SIN(P/*WIDTH(I)/A)**2)/WALPHA
7356* 11-J-•-m)2)*dESIS(jiMY/BESIA(JiM)).FT1-.7(ALPHA(JPM)*BESOA(J.M)* -----
357* 2BE5I3(J.M)-BETEW.MI*BESOB(J.M)*BESIA(JIPM)))-2.)
358* -XA7..50;a+(A/(2.4.All(M)))*(1./(SIN(P4WIOTWII/A)**2)1*(tRES08(Jim)f----
359* IBEs0A(J.m))*(1./(BETE(Jtm)*RESOA(Jtm)*RESIB(J.m)-ALPHA(J.m)4,
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360*   28ES09(J,M)*PESIAO,M)))-(50PP+SOP(IIM))*(A(.PHA(J.M)/4.))
361* YI=1./((0,1)*X+1.)
362* TII=1./((0,-1)*XA)+YI
363* YT=1./((0.1)*XB+14/YII)
364* BGAm=(1,7-1.)/(1.4-YT)
365* D0612N=1,3
366* GGAY(I.J.M,N)=9GAM*CExpI10:11*2.*BETA(M)*ALENGH(N))  
367* -------- IF(ALENGH(N).GE.0.-1GGAM(1j-JiMiN)=BGAM
368* 612 CONTINUE

-369* GGAM IS THE-COMPLEX-REFLECTION-COEFF-AS-PER-ADMITTANCE-SMITH-CHART. 
370* 611  CONTINUE 
-171* 610 LONTIgUE
372* 609 CONTINUE

- 373* -" GO TO 404 -
374* C 

- 375* 404 CONTINUE'
376* C  CALCULATE THE MISMATCH AND THE RMS OF THE MISMATCH. THEN DETERMINE
-377* C -THE 5yALLEST VALUE-ANO-EXYTOR-RETURN-TO-INCREMENT-INFOING- SPACE.  

378* D02011:1,3
379* D0202J=1.3
380* DO2n3K=1,3
381*
382* 
383* --2.E0.1.AND.J;EG:3;ANO.IGEO;1;11R;T:-EG.2;AND:WEGGITAND.K;EG;I:OR.I7E---
384* 30.3.AND.J.E0.1.ANO.K.E0.1)G0 TO 2001
385* GO To 203
386* 2001 CONTINUE
387* - PARTE'4=0.0
388*  D0204N=JBEG,JEND
-389* GAwAAH:(AGAm(K.N)+GGAMITTOi-R.K)-2.*AGAMTKINT*GGAMTD'U.N.X»,(1.-AG 
390* IAM(K.N)*GGAm(I.J.N.K))
391* SNGLVL7(CABS(GAMMAH))*42
392+ PARTSy:PARTSM+SNGLVL
393+ 204 CONTINuE
394* RS=soRT(PARTSM)

-395*-- ARys( I,J.K)=(1.15GRT(UEND-UREGTT*RS-
396* C THE Ro0T y=AN SQ. OF THE MISMATCH OVER THE BAND OF INTEREST HAS BEEN
397* C CALCULATED.
398* 203 CONTINUE
399* 202 CONTINUE
400+ 201 CONTINUE
401* C UETERyINE THE SMALLEST-VACUE-DF-WFMSTITITK).ANu SET-Tr-twAt. TO Tilt
402* C C=NTER POINT IN DIMENSION SPACE.
403*  C AF4MS IS THE RoOT MEAN SQUARE MISMATCH OVER THE-BANO-OF INTEREST:
404* C DETtRyINEATION OF THE LEAST OF THE ARMS ENSEMBLE.
405* ATEsT=ARMS(1,1,I)
406*  D02051=1,3 
407* • D0206J=1.3
408* 00207C-.1.3
409* IFt/.Eo.I.AND.J;EO;I;A-0-0(;EG:4;Tia;MT;AND.-T.-EGGT:AND;K;E12;2;oR 
410*
411+ 2.E0.1.AND.J.E0.3.AND.K.E01.0R.T.EQ.2.ANO.-J:EgaiANO:G
412* 30.3.AND.J.E0.1.AND.K.E0.1)G0 TO 2004 
413* GO TO 207
414*  2004 CONTINUE
415* IF(ARms(Ii-J4K);LT.ATESt)ATEST=AR IrJ-00
416* 207 CONTINUE. . . _ . 
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417* 206 CONTINUE
416* 205 CONTINUE
419* D01001:1,3  
420* D0101J=1.3
421* D0102K=1,3  
422* .I.t071;ANUTT.ZO;I".-AND-OC.-E0-.V.OR 
423*
424*
425* 30.3.AND.J.E0.1.AND.K.E0.1)G0 TO 2005
426* GO To 102
427* 2005 CONTINUE
7428* IF(A3S(ATEST-ARMStriaig-rntr.T;EI2OTG0-TIT-1-03--
429* 102 CONTINUE
430*  101 CONTINUE
431* 100 CONTINUE
432* 103 CONTINUE
433*  MM=Iv.+1
434* --C---TEST- FOR TERNINATION.
435* IF(mm.E0.1)Go TO 108
436* IF(I.NE.1.0R.J.NE.-1.011.K.NE-.1)G0 TO 108
437* IF(ANCRmT.GE.8.)G0 TO 200
438* GO TO 350
439* 108 CONTINUE
440* WIDTH (1 ) =wIDTHTI)
441* UP(1)=DR(J)
442* ALrNGH(1)=ALENGH(K)
4434,- ITI:ITIME(IT2•IT3)
444* IF(IT1.LT.1.5E+5)O0 TO 203
445*  GO TO 250
446* 1:- RESULTANT NISmATCN-PRUCEEDURE IS CARRIED oUT.
447* 200 CONTINUE
448* WRITE(6,370)IrjoK
449* 370 FORmAT(1H1,//,10X,IOPTINUM CHO/CE HAS  INDICES (0./10,0 1,1100,01.
450* 11)#)
451* WRITE(6,800)
452*  ---800 FORvIAT(//,10x000ORDINATECTiTi-WiI-01WRUOT-MEAN - SOUARE OVER-MATCH--
453* 1ED 8AND.,//)
454* D080211=1.3
455* 00803JJ=1,3
456* 006040c:1,3
457*  IF(II.E0.1.AND.JJ.E0.1.AND.KK.E0.1.0R.II.E0.1.AND.JJ.E0.1.AND.KK.E
-458+ IQ. 2. 0R.II .E0. F.-ANDWUTEWITANO-.xx.E0.3.0R7M-MI- A)'1II;-61:1:EG:2-iAND:
459*
460* 3AND'.KK,E0.1.0R.-II.E0.3.AN0.-JJ.TO.I.AND,KK.E0.11G0 TO 2006
461* GO To 004
462* 2006.  CONTINUE
463*  WRITE(6,801)II,JJ,KKIPARMS(InJjoKK)
464* FORA7(21)(0(-TinT/T1ir1i'i villf r-) i10)iF10.7).
465* 804 CONTINUE
466* 803 CONTINUE
467*   802 CONTINUE
468* GO TO (398,498i5901.698),MACHEL.
469* C 
470i 398 'CONTINUE
471* 
472* 

D(J)=9-DR(J)
D0395WK=1,LE

473* Ab=s0RT(1.-(B/WL(KK))**2)
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474* AA(KX)=(1./A8)-1.
475* Omr.1.4.(WIDTH(I)/(PI*DPNII14-ALOG(4 isPI*DP-ta)/(E*WIDTMTIV)) 
476* C0(J)=COS(PI*DP(J)/(2.0))
477* ~ 3I(J)=SIN(PI*DP(J)/(2.*3)1
478*  SE(J)=1./C0S(PI*DP(J)*GM/(2.*B))
479* 10NE:PI.DP(J)*wIDTHCII/(2-.-0*DTJ,T
430* 8Two=AA(KR)*(SI(J)**4)/(1.+AA(KK)*(C0(J)**4))
481* BTRE:(1./16.)*((B/WL(KK))**2Ist(1.3.*(COW1*t2Y1--**2T*(SITJ)**47 
482* BNORm=t2.*8/WL(10())*(ALOG(SE(J))-BONE+8TWO48TRE)
483* BA:3N0Rvt..(8/0(J))*TANIPI*WID7H(I)7WL(KIOT
484*  BB:(8/D(J))*1./SIN(2.*pI*WIDTH(I)/WL(KK)) 
485* YI:(0.1)*3A+1.
486* VI:((0,1)/RB)41./yr
487* YT:(0.1)*3A+1./ZII-
488* 3GAm=(yT-1.)/(1.+YT)
489* GOAA(I.J.KK,K)=30AM*CUP((0.1)2.*SETA(Kg)4ALENGH(K),
490*  IF(ALENG,100.GE.0.)GGAm(I.J.KK,K)=BGAM
491* AGAmtKoCK)=GAM(XfairCExp((0.-11-i2.*BETATXXITOLENZRIX7)
492* IF(ALENGH(K).1-7.0.)AGAM(K/00()=GAM(XK)
493*------- -- GAmmA(KK)=IAGAm(K,KK).-sGAM(IijiKK,K)=i2-.-4AGAM(KiRK)*GGAMITT.J.KKTKI1----
494* 1/(1.-AGAM(oKK)*GGAm(I,J,K1010)
495* 395 CONTINUE
496*  DH:DP(J)/2.  
497* WRITE(6.2261
498* 226 FORmAT(1H1,///r1OXOCApACITIVE IRIS IS THE MATCHING ELEMENT')
499* - WRITE(6,242)ANCR4T-
500* 242 FORMAT(//lIOXONUMRER OF INCREMENT = 1,F4.0)
501* WRITE(6.270)FR(JREG)iFR(JEND)
502* 270 FORMAT(//"10XONATCHED BAND IS FROM ',F7.30 GHZ, TO soF7.3.1 GHZ.
-503* 11)
504* WRITE(6.227)wIDTH(I),Dm.ALENGH(K)
505* 227 FORMAT(//.10XOTHICKNESS=
506* 10 IN CM',100 1 DISTANCE TOWARD THE GEN. FROM MISMATCH: 1.F8.4)
507* GO TO 999
506* 
509* 498 CONTINUE
510* CARDP:(DP(J)/SOTwO)*(1. +(WIOTH(I)/(PI*OP(J)))*ALOG(4.*PI*DP(J)/(E*
511* 1WIDTH(I))))
512* CAP3=((4./(3.*PI))*WIDTH(I)*DP(J)**3)**(1./4.)
513* ------ 004960(=1,LE
514* C XA AND X5 ARE NORMALIZED IMPEDANCES.
515* XAr.(4.*A/WOKK)1*((A/(OI*CAPDP))**2)
516* XB=IA/(16.*wL(KK)))*((pI*CAPD/A)**2)
517* ZI7.(0.-1)*x8+1.
518* ZI1=(1./((1./((0,1)*XA))+1./ZI))
519* -- - -27=(0.-1)*x8+ZII
520*  BGAmr-(1.-27)/(1.+ZT)
-521* 0DAM(I,J.KK.K)=BGAM*CExPTTOrl7iT2.IBETA7XX7WALtNGH(101 
522* IF(ALENGH(K).0E.0.)GGAm(I.J.KK,K)=8GAM
523* - - AGAm(K000:GAM(KK)*CEXP((04-1)*2.*BETAIKX1*-ALENIGHIK77-
524* IF(ALP-NGH(K).L7.0.)AGAM(K,KK)=GAm(KK)
525* -- - - GAMMA(KK)=(AGAM(K.KK)+GGAM(IiJ,KX.K)=2;i1AGAMtKTKIMOGAMCI.J.KIC,X1)
526* 1/(1.'AGAM(KIKK)*GGAM(I,J,KOK))
527* -496-CONTINuE
528* DH:DR(J)/2.
529* WRITE(6.405)
530* 405 FORMAT(1H1.///,10X0INDUCTIVE ASYMMETRICAL IRIS IS THE MATCHING El
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531*
--532*---
533*
534*
535*

--536*
537*
538*

1EMENT.)
- WRITE(6,406)ANCRMT

406 FORIAT(//.10x0NuMBER OF INCREMENT = o.F4.0)
-WRITE(-6.470)FR(JBEG)TFWCJENU/

470 FORMAT0/.10x0MATCHED BAND  IS FROM ,,F7.3,9 GHZ. TO IP.F7.30 GHZ.

539*
540*--
541*

ITT
WRITE(6,407)WIDTH(I),DH.ALENGH(K)

107 FORMAT(//r1OXOTHICKNESS = r.F5.4i1)01CM0-.10X0REIGRT =-1-1Fer.TA0
ICM.1,10X0DISTANCE TOWARD THE GEN. FROM MISMATCH = opF8.4)

- GO TO 999
COMMON*OUTPUT 

---542* 598 CONTINUE
543* C MATCHING ELEMENT 'SOLID INDUCTIVE POST. COMPLEX REFLECTION COEFF.
544*-------C- AS A FUNCTION OF DIMENSION P -
545* C As A FUNCTION OF DIMENSION SPACE AND FREQUENCY.
546* C Dp(I) IS DEFINED TO BE THE DIAMETER OF THE POST.
547* C  w/DTH(I) Is DEFINED TO BE  THE DISTANCE OF THE CENTER LINE OF THE ROST
548* C -FROM THESIDE...WALL.
549* 00525KX=1,LE
550* N=2
551* mr.2
552* XSII=0.0
553* XS00=0.0
554* 513 XI=SGRT(1./((N**2T=T1-2.*A/FSWC(KICT7702TT)
555*  xSo=l(sIN(N*PI*WIDTH(I)/A))**2)*(XI.1./N)
556* . XS00=XSO+Xs00
557* IF(xSO.LE..001)G0 TO 515

- 558* 514 N=N+1
559* GO TO 513
-560* 515 XISORT(M**2/1-(M**2T=1(2TWA7F5WLMT7-**2)))

561*. XSI:((sIN(2.*M*PI*WIDTH(I)/A))*(X/-1.)),
562* XS1I=XSI+XSII
563*

- 564*
565* 516

--566*
567* 517

-
569*
570*------- 525
571* 
572*
573*

- 574*
575*
5764, --- --
577*
—576*
579*
580*
581*

583*
-7584*
585*
586*
587*

ABxsI:ABS(xSI)
IF(ABXSI.LE..001)60 TO 517 
m=m+1
GO TO 5)5  
CONTINUE
SOR(IrKK)=x500*2.-4.*1(SIN1PI*WIDTHTIT7ATT**-27--
SII(I,KK)=)(s/I+(.5*(1./TAN(PI*WIDTH(I)/A))-SIN(2.*PI*WIDTH(I)/A))
CONTINUE
CT=1./TAN(pI*WIDTH(I)/A)
CS5:(1./SIN(PI*WIDTR(I)7A717,.72-
SNS=(SIN(PI*WIDTH(I)/A))**2
PD0A=(pI*Dp(J)/A)**2
PDO:(P1.0P(J)/(A*2.)1**2
SOPP=ALOG((4.*AMPI*DP(j))*SIN(PI*WIDTWIT/A)TI -
D0526KK:1,LE

XA AND - X3-ARE NORMALIZED IMPEDANCES.
x3r.(A/.:LAKK»tPD0A*SNs
XA=0/2.+A/(2.*WOKKY)+CSS*(SOPP+SOP(I,KK)-(1PI*DPNY/(2.*A))**2)*-

1(((soPpfsop(IIKK))*CT-SII(I,KK)).0*2))
ZI:(0,-1)exP+1.

  2II2(1./((1./((0,1)*XA))+1./ZI))

BGAm=().-ZT)/(ZT+.1)
GGAM(I,J,K0K)=9GAm*CEX P(t0i1)*2.*BETA(KK)*ALENGH(K))-- -
IF(ALENGH(K).GE.0.0)GGAM(I.J.KK.K)=8GAM
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58B* C I CORRES TO DISTANCE OF POST FROM SIDE WALL.
589* C J CORRES TO DIAMETER OF POST.
590*  C KK CORRES TO FREQUENCY.
591* t K CORRES TO DISTANCE BETWEEN-mIsmATNETi--
592*  AGAm(K,KK)=GAM(KK)*CE)w((0.-1)*2.*BETA(KK)*ALENGH(K))
593* IF(ALENGH(K)..T.0.0)AGAM(KIKK)i-GAM(KM)
594* GAmmA600.1.(A0Am(K.KK)+GGAM(I.J,KK.K)-2.*A0AM(K,KK)*GGAm(I.J.KK.K))
595* 1/(1.-AGAMIK.KK)*GGAm(I.j.KKiK))
596* 526 CONTINUE
597* 'WR/TE(6.519)
598* 519 FORMAT(1H1,///.10X.ISOLID INDUCTIVE POST IS THE MATCHING ELEMENTt)
S99* WRITE16,520)ANCAM1
600*

- 601*
602*
603*
604*
605*
606*
607* GO TO 999
608*  
609* 698 CONTINUE
610*  D0620N=1.LE
611* ALp-14(j.N)E-PI*DPUJT/FSIWL(N)
612* BETE(J.N)=ALRHA(J.N)*S0EPRM
613* BEs0A(J.N)=BSSL(ALPHA(J,N).11-
614* BEs03(J,N):3SSL(RETE(J.N).1)
615* BESIA(J,N)=SSSL(ALPHA(J,N),3)
616* BEsI5(JrN)=BSSL(BETE(J,N)0) 
617* 60-CONTINuE

_ 616* D06211.:1,LE
619* - N=2
620* X500=0.0
621* - 622 XI=SORT(1./((N**2)-1(2,*A/FSWL(L))**2)))
622*  XS0=(CSIN(N*PI*WIDTH(I)/A))**2)*()(I.1./N)

"623* -XS00=XSO+XSO6
624* IF(xSO.LE..001)G0 TO 624
625* 623 N=N+1
626*   GO TO 622
627* -624 CONTINUE
628*  SOp(I,L)=Xs00*2.-2.*((sIN(PI*WIDTH(I)/A))**2)
629* 621 CONTINUE
630* SORP=ALOG((4.*A/(PI*DP(J))*SIN(PI*WTOTH(I)/A)))
631* - 00625M:1.LE
632*   XB:(2.*A/WL(M))*((PI*Dp(J)/A)**2)*(SIN(P/*WIDTH(I)/ A)**2)/MALPHA
633* 1(J.M)**2)*BESI9(J,M)/BESIA(J,M))+(1;/(ALPHA(JiM)*BESOA(JiM)ii------
634* 29ESI3(J,M)-9ETE(JsM)*SES08(J,M)*8ES/A(J,M)))-2.)
635* XAL.:S*X134.(A/(2.*WL(M)-Y)*(1;7(SIN(PT*WIDTWIT/AI,4.420+TIBLSOg
636*   IBEsoA(J,m))*(1./(BETE(J.M)*BES0A(J.m)*BESIB(J.M)-ALPHA(J.M)*
637* 23ES03(J04)*BESIA(J.M)))-(5OPP*S0P(I.M))*(ALPHA(M)/4-0)
636* TI=1./((0,1)*XE1+1.)
639* --- TIII-.1./((0,-1)+XA)+YI
640* YT=1./((U01)*X8+1./TII)
641* BGAm-(yT-1.)/(1.+Y7)
642*   GGAM(I,J.M,K)=BGAN*CE),((0,1)*2.*BETA(M)*ALENGH(K))
643* " IF(ALENGN(K).GE.0.)GGAWIIJiMiK)=BGAM
644* AGAM(K.M)=.0AMM*CEXP((0.-1)*2.*GETA(M)*ALENGH(X))

520 FORMAT(//.10)(0NUMBER oF INCREMENT = ter4.0)
WRITE(6.521)FR(J3EG).FR(JEND)

521 FORMAT(//,10X1 0 MATCHED BAND IS FROM ',F6.30 GHZ.1.9 TO '.F6t3.9 G
1HZ.t)
WRITE(6.522)0P(J).40TH(1),ALENGH(K)

522 FORMATIMIOWDIAMETER = T,F6.4. .vflUX,•SIDEVIALL DISTAN  
1,F6.4,t Cm.tplOXODISTANCE TOWARD THE GEN. FROM MISMATCH r. tpF8.4)
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645* IF(ALENGM(K).LT.0.)AGAWK.M)=GAM(M)
646* GAmmA(M)=(A0Am(KiM)4GGAW(TIJ4M.K)-z27*AGAM(K4M)4ZGAM(ITJ4MiK))/(1.4-
647* 1AGAM(K.M)*GGAM(I.J.M.K))
648* --625 CONTINUE
649* WRITE(6,626)
660* 626 H)AMATTIMI,7T7ITOXOUIELtEIRTC-PDST I5 1HE MATCHING-MEMENTO--
651* WRITE(6,627)ANCRMT
652* • 627 FORMAT(//.10)(i0 NOMBER CIF INCREMENT-t-fiF4:0) .
653* WRITE(6.628)FR(JREG),FR(JEND)
654*----- 628 FORMAT(//0.0X0MATCHED BAND I5•FROM-'1F7.3i* GHZ. TO -I.F7.3,' OH2. 
655* 1')
-650* 14RITE(6-.629)WIOTHTT1T0OIZI-i7(LENGM CT
657* 629 FORMAT(//.10X0OISTANCE FROM SIDEWALL = 1.F6.4.1)(.1CM.fp5X0DIAMET
658*-- - • lER = 9,F6.40 CM.0 iSX,i0ISTANCE TOWARD THE GEN, FROM MISMATCH r.
659* 2F8.4)
660*. C - 

661* 999 CONTINUE
662*
663*
664. -

WRITE(-6,220
228 FORMAT(//,10X0RESULTANT MISMATCH9)

WRITE(6,229)
665* 229 FORmAT(//,10X0FREOUENCY IN GH2.',10X0MAO. REFL. COEFF.',10)(..VSW
666* 1(1 1 ,10)(0MAS.REFL.COEFF.OISURB.l i/77
667* 00240N=1.LE
668* AMAG=CABS(GAMMA(N)1
669* VSwR=(1.+AmAG)/(1.-AMA8)
670+ AmmAG:cABS(GAM(N))
671* VS,ARR:(1.+AMMAO)/(1.ANMAO)
672*-- X(N)=VSwRii
673* wRITE(6,230)FR(N).AMAG.V5WR.AMMAG
-674* ----2-30FORmAT(10A.F8.3i1556F1075TIOGFB.47105(TFID.5)
675* 240 CONTINUE
676* - — WRITE(6,231)
677* 231 FORMAT(IHI,///,45X0MATCHING ELEMENT',38)01UNMATCHED ELEMENT')
6784,- - WRITE(6,232)
679* 232 FORMAT(//rIOXOFREOUENCY',10X0BEAL REFL. COEFF.',I0X.IIMAG REFL.
680* I COEFF.,,i004.REAE-REFLT-tOEFF;TVID-501/MAZ:-REFL.

D0241N=1,LE
682* - • WRITE(6,233)FR(N)iGGAM(riJWirK),GAM(N)
683* 233 FORmAT(10X,F8.3.14x.F10.6.16X.F10.6.15)0F10.6,15X.F10.6)
634* - -241 CONTINUE
685* C PUNCH DATA CARDS.
686* -001001At1.LE
687* REL(N)=REAL(GAM(N))
688*-- -YIMAG(N):A/MAG1GAM(N1)
689* 1001 CONTINUE
-690* - D01003N=1.LE
691*  REL(N)=REAL(GAMMA(N))
692* YImAG(N)=A/mAUIGAMMA(N)7
643*  1003 CONTINUE
694* WRITE(1.1004)(RELTN1A:LEi10=1)
695* WRITE(1,1804)(YIMAG(N),N=LE.1...1)
696* - —1004 FORAT(RF10.6)
697* C PLOT CoPARISON BETWEEN UNMATCHED AND MATCHED DISTURBANCE.
698* D03000N=1.LE
699* Y(N)=FR(N)
700*-- — 3000 CONTINUE
7U1* RB=x(1)
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702*   003001N=1,LE
-703* TP:X(N:.GT.RB)R3IX(N)
700z: 3001 CONTINUE7 

VL8N0=1.
706*  VUBND=PB
-707* CALL PL0T(10..-3..-3)
706* REAL LTRSZ.LENGTH
709* LOGICAL BOx.FIXLMUSELIM
710*   DATA HTITLEOFREOUENCY IN GHZ. 
ill* -2 -17
712* DATA VTITLEPVOLTAGE ST ANDING WAVE RATIO 
713* 2 I/

714* D03002NA=1.2
715* IF(NA.EQ.1)G0 TO 3003
716* ND03004=1.LE
717* " AR=CA15(6AmmA(N))
718*  x(N)=11.+AR:/(1.-AR)
719* 30.04 CONTINUE
720* 3003 CONTINUE
721* m0D==1
722* IF(NA.EG.2)MODE=4
723* LTRS7=.1
724* UP=4.5
-725* OVER-0.0
726* HE15HT=4.5
727*   LEN3TH=4.5
728* HL5N7=1,(1)
729* HUBNO=T(Lc)
730*  ICouNT=LE
—731* D0x=.TRuE.
732* USELIM=.TRUE.
733* FIxLIm=.TRUE.
734* NUmINT=20
735* CALL PLOTY(mODE.X,YFICOUNTiUP.OVER.HE/GHTiLENGTH-r-BOX.FIXLMUSE(:IM---- --
736*  1 PNUmINT,VTITLE,HTITLE,LTRSZ,VLSND.VUBND,HLBNOrHUBND.PERCNT)  
737* 3002 CONTINUE
738* CALL PLOT(0.0,0.0/999)

- 739* --- END

END OF COMPILATION: NO DIAGNOSTICS;
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APPENDIX C

DERIVATION OF THE IMPEDANCE MATCHING EQUATION

The objective of this derivation is to establish the

key equation which has been used in the impedance matching

technique. Due to the comparison reflectometers' unique

ability to locate discontinuities in an otherwise matched

waveguide and to determine the reflection coefficient as a

function of frequency for each disturbance, it will only be

necessary to deal with two disturbances at a time, the ori-

ginal mismatch and the matching element.

The reflection coefficient measured and calculated

in this thesis apply to the admittance Smith chart. The

following derivation also applies to the admittance Smith

chart.

The following equations will be required:

Phase propagation constant

= 2Tr/X
g

Current reflection coefficient

rIo = IFIo lexp[jeo ]

(C-1)

(C6-2)
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Current reflection coefficient generated by the disturbance

having the shunt admittance Y, where the characteristic ad-

mittance is Yo

rI = (Y-Y0)/(Y+Yo) (C-3)

Generalized current reflection coefficient

ri = rIoexp[- j2BS] = 11'101 exp[jec]exp[-j2BS] (C-4)

Given a transmission line:

L

•
B

Yo

Figure 91. Transmission Line with Disturbance

The quantity Ya is a single shunt admittance in an otherwise

uniform transmission line. The total admittance at point A

is that formed by Ya and the characteristic admittance of the

line, and is given by:
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Ya = Ya+Yo (C-5)

This admittance defines the current reflection co-

efficient rIa at A by Equation (C-3). (C-6)

rIa = Ya/(Ya4-2Yb)

The reflection coefficient at point B is given in

terms of ria and L (the distance from A to B) as:

rIab = rIaexp[-j2BL] (C-7)

Similarly, if the only disturbance in the transmission

line were a shunt admittance Yb at B, the 
reflection co-

efficient at point B is given by:

rIb = Yb/(Yb-1-2Yo)

Consider now, both Ya and Yb in the transmission

line as in Figure 89.

Generator
Side

Yb

L

Ya

B A

Yo

(C-8)

Figure 92. Transmission Line Containing a Discontinuity
at Point A and Point B
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The total admittance at point A looking away from the gener-

ator is given by Equation (C-5). On the load side of Yb at

point B the admittance is given by :

Y/Yo = (yA /y0+j tan (344)/[1+j(ya/y0)tan . (C-9A)

Defining normalized admittance y = Y/Y0 and yA = YA /Y0,

Equation (C-9) can be expressed as:

y +j tan 131.,)/(1-1-j yl tan . (C-9B)

The total admittance on the generator side of point B is

given by Equation (C-10).

(yt yb+(ya+1+j tan (31.)/[1+j(ya+1)tan W. (C-10)

Simplifying the above we have:

yt.= Ya+yb+ltj(Yb+Yal7b+1)tan SL 
1+j(Ya+1)tan

Substituting yt into Equation (C-3), the reflection co-

efficient as pertaining to the admittance Smith chart is

given by:
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r.
t 
 = 2yaexp (-j2$L) +yayb-yaybexp (-j2$L)+2yb

4+2ya+2yb+yayb-yaybexp(-j2$L)
(C-11)

From Equation (C-6) and (C-8), y and y
b 
can be expressed in

a

terms of r
Ia 

and r
Ib

y
a 
= -2r

Ia
/(rIB-1) (C-12)

yb = -2rIbprIB-1) (C-13)

Substituting (C-12) and (C-13) into (C-11) and simplifying:

expc-j2w+r -2r r X ( j4L)
Ib Ia IbP--ps-

r
I t 1-r r

Ib
exp(-j2f3L)

1C-14)

Equation (C-14) expressed the total current reflec-

tion coefficient at point B as a result of ya and yb. This

total current reflection coefficient is in terms of the re-

flection coefficient r
1a 

and r
Ib 

which are defined by

Equations (C-6) and (C-8) respectively, r r
Ia
, and r

Ib

are reflection coefficient referenced to the admittance

Smith chart.

Expressing r in the form of Equation (C-14) is
It

particularly compatable with the comparison reflectometer.

For example, for a positive distance L, ria corresponds to
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the mismatch measured by the comparison reflectometer and

r
Ia 

corresponds to the matchinq element a distance L toward

the generator from the mismatch. The'total mismatch result-

ing from this match is given by 
rIt. 

The objective of this

research is to reduce F
It 

to the lowest possible value over

the bandwidth of interest.
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APPENDIX D

COMPARISON REFLECTOMETER OPERATING PROCEDURE

The setup procedure is referenced to the reflec-

tometer setup of Figure 23. In the following paragraphs

it will be assumed that the operator has recently assembled

the comparison reflectometer and a complete calibration of

the system is required. It will also be assumed that

the individual components of the system are in good con-

dition and teet their individual specifications.

In order to reduce 60 Hz powerline ripple from inter-

fering with the 1 1:Hz modulated r.f., it was found necesSary

to float the comparison reflectometer above ground. This was

done by plugging all of the units into the powerline using

two-to-three prong adaptors, leaving the pig tails ungroun-

ded.

When energizing the comparison reflectometer it is

essential to turn on the coherent synchronizer first and then

the BWO. This prevents poSsible damage to the BWO helix.

Consequently, when shutting down the units the BWO should be

shut down first followed by the coherent synchronizer.

Coherent Synchronizer 

The LFE Model 244 should be set up using the follow-

ing procedure when used in the comparison reflectometer set-

up.

(1) Switch the front panel switch to multiply.
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(2) Switch the reference mode to tunable.

(3) Switch the frequency tune to fixed.

(4) Turn signal level approximately 1/4 revolution

from full on.

(5) Switch frequency fine tune to the 8-16 GHz

range.

(6) Switch the front panel switch to 50 MHz marker

position.

(7) Switch mode switch to 16-32 MHz/volt oscillator

sensitivity.on back panel.

(8)' Connect 25 MHz tap TP1 to the input of a high

impedance scope.

(9) Connect power line plug to powerline stabiliz-

ing transformer.

(10) Switch on power to unit.

(11) Turn phase lock error voltage to off.

(12) Allow approximately one hour to warm up.

This unit is now ready for the final operating procedure.

Type 210 Sweep Oscillator 

The AIL BWO should be set up using the following

procedure when used in the comparison reflectometer setup.

(1) Insert the 8.0-12.4 GHz plugin.

(2) Push sweep select button to slow.

(3) Turn rate inner knob clockwise, sweeper will

stop after a single sweep.

(4) Outer rate knob is used for fine rate adjust.
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(5) Push off button under AM.

(6) Depress blank button.

(7) Depress XTAL button.

(8) Attach output from crystal detector on direc-

tional coupler C2 to input of oscillator plugin, Figure 23.

(9) Connect 200 micro farad external capacitor to

range ext. BNC on back panel.

(10) Plug in power line connector.

(11) Depress line button and wait for the r.f.

light to go on.

(12) Switch r.f knob on plugin to on position.

(13) Adjust level control to obtain -10 dBm

(.1 mw) power level at the output of directional coupler

C3, Figure 23.

The unit is now set up for final operating procedure.

Audio Oscillator 

Set audio oscillator to 1 KHz. This can be done by

connecting the output of the audio oscillator to the input

of the Hewlett-Packard 5211A electronic counter and adjust-

ing the oscillator for a 1 KHz counter reading.

Turn the gain down on the audio oscillator and

connect its output to the bias connector of the waveguide

modulator. Connect a high impedance oscilloscope's input

to the crystal detector on C3, Figure 23. Increase the

audio oscillator gain until a square wave is obserVed on

the scope. Care must be taken not to exceed the maximum
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rating on the bias level of the modulator.

Ratio Meter 

The Hewlett-Packard Model 416B ratio meter should

be set up using the following procedure when used in the

comparison reflectometer setup. The reference step should

be terminated in a matched load.

(1) Turn the error voltage gain up until a phase

lock is registered on the level meter of the coherent synch-

ronizer. This will stabilize the frequency, and therefore,

also the amplitude of the reflected wave.

(2) Connect the incident and reflected inputs to

detectors on C3 and C4 respectively.

(3) Plug in ratio meter power line using adapter.

(4) Switch detector to XTAL.

(5) Switch excess incident attenuation to 10 db.

(6) Switch reference attenuator to -30 db.

(7) Switch on power to the unit.

(8) Allow unit to warm up for one hour.

(9) Adjust reference adjust for a 100% scale

reading.

(10) Measure voltage at output using the. Dymec volt-

age measuring system.

(11) Adjust output voltage, using the control on the

back panel, to 6.928 volts. This voltage is Emax.

(12) Readjust reference adjust to center of scale.

This unit is now set up for the final operating procedure.



223

Voltage Measurement System

The Dymec model DY-552A voltage measuring and record-

ing system is comprised of the model DY-2210 voltage-to-

frequency converter, the H.P. model 5211A/B electronic

counter, the model DY-2540 scanner/coupler, and the motor-

ized tape punch. This system should be set up according to

the following procedure when used as part of the compari-

son reflectometer setup.

(1) Switch on power to voltage-to-frequency conver-

ter.

(2) Switch range switch to 10 volt.

(3) Connect output of ratio meter to input of volt-

age-to-frequency converter.

(4) Connect output of voltage-to-frequency converter

to input of electronic counter.

(5) Make proper zero adjustment and calibrate volt-

age-to-frequency converter.

(6) Switch on power to electronic counter.

(7) Turn sample rate to the hold position.

(8) Turn sensitivity half way.

(9) Switch function switch to frequency/second posi-

tion.

(10) Switch on power to scanner/coupler.

(11) Switch start switch to automatic.

(12) Switch decay switch on back of panel to fast.

(13) Switch back panel switch to tape.
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(14) Plug in push button to remote reset according

to the diagram on back panel of electronic counter.

(15) Switch on tape punch.

This unit is now set up and ready for the system final oper-

ating procedure.

Coherent Synchronizer Spectrum Test 

If a reliable phase lock is to be made at 50 MHz

intervals, the coherent synchronizer must be in good oper-

ating condition. It is important that the spectrum be

relatively flat and that all phase lock points be achievable.

This is checked by tapping the 25 MHz signal from the 25 MHz

amplifier and displaying it on a high impedance oscilloscope.

A representation of the varactor spectrum can be then ob-

served by sweeping the leveled RF input of the BWO and

observing the IF signal on an oscilloscope. A small wire

was replaced in the coaxial varactor mount, shorting the

center post to the grounded outer conductor. The distri-

butive inductance and capacitance of this wire serves to im-

pedance match the varactor to the varactor mount.

The coherent synchronizers RF input was initially

connected to the directional coupler by a type N adapter

and a type N cable to the type N connector of the coherent

synchronizer. It was experimentally determined that the

frequency response of the cable interferred with the opera-

tion of the varactor. A solid type N coaxial line re-

placed the cable, and the varactor spectrum was then
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adjusted so as to provide a flat harmonic spectrum from

8.0 GHz to 12.4 GHz. These adjustments allow phase lock

points from 7.975 GHz to 12.425 GHz.

Adjust the lock range to zero on the front panel of

the coherent synchronizer. Depress the fast button on the

AIL BWO sweeper and turn the sweep knob to the clockwise

position for repetitive sweep. Use the sweep output of

the swept oscillator to trigger the oscilloscope and depress

the blanking button on the sweep oscillator plugin.

Adjust the oscilloscopes' time sweep until one full

sweep of the BWO fits within the scope, Figure 93. What is

actually seen is the level of the 25 MHz signal as the RF

to the input of the coherent synchronizer is swept. There-

fore, the characteristics of the bandpass of the I.F. amp-

lifier is reproduced every time the BWO frequency is within

88 89

Figure 93. Display Showing the I.F. Band Pass as the RF
Input is Swept
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25 MHz of a varactor harmonic, Figure 25. The level con-

trol on the front panel of the coherent synchronizer should

be adjusted to achieve as much gain as possible and yet to

keep the noise level down. This can easily be done, since

there is a point where increasing the gain increases the

noise level sharply. The varactor should be adjusted such

that the amplitude level of the peaks of the response of

Figure 90 are relatively constant. Since this adjustment

for the model 244 is a tedious one of trial and error, it

is suggested that as much care as possible be taken with this

instrument.

System Operating Procedure. With all individual in-

struments operating according to the previously discussed

procedures, the system is now ready to be set up for measure-

ments.

(1) Depress the slow button on the sweep oscillator.

(2) Turn the rate inner knob clockwise, to single

sweep and stop position.

(3) Turn outer knob half way.

(4) Attach the test element to the comparison re-

flectometer as in Figure 23.

(5) Depress sweep button on sweep oscillator.

(6) While oscillator is in the process of a slow

sweep, monitor the meter on the ratio meter and adjust re-

ference control to ensure that the needle remains in the

range of the meter scale. Steps 5 and 6 may need repeating
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so that ir a single sweep, without changing controls, the

needle swings symmetrically on the scale.

(7) Reduce the sweep rate such that it takes approx-

imately 15 minutes to sweep the band one time. This time

can be reduced as the operator gains experience with the

equipment.

(8) Set the oscilloscope to internal trigger and set

the sweep rate to maximum. Adjust the scope gain such that

the 25 MHz wave will half fill the screen when a phase lock

has occured. This can be done by turning the lock range to

maximum. When the scope adjustment has been made return

the lock range to zero.

(9) Adjustment of the lock range determines the

phase lock duration. During the phase lock duration a mea-

surement is taken with a normally closed push button. On

the particular model 224 used in this research the control

was set approximately 1/64 inch above the zero volt line.

This setting is best made after working with the control

while making a sweep.

(10) Depress the front panel start button. This

starts the slow sweep. As the frequency increases the wave-

form will increase on the oscilloscope and the level on the

level meter will increase. When a phase lock is made the

phase of the sine wave on the oscilloscope will change

phase by 180° and'will remain very stable in amplitude and

phase. The level meter will jump as the phase is locked
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and remain at that level. The phase meter on the coher-

ent synchronizer which is an indication of the error volt-

age on the helix of the BWO, will begin to move, as the

internal sweep attempts to change the BWO frequency. At

this time a measurement is taken by depressing the hand

held push button, Figure 23. When the error voltage is at

its maximum setting and can no longer hold the BWO, the

phase lock is broken. The phase meter centers, the level

drops to zero and the sine wave disappears from the scope.

The BWO jurnps to a higher frequency and continues to.in-

crease slowly until again phase locked automatically. This

is done 89 times and gives one set of measurements.

The second set of measurements is taken with the re-

ference step terminated in the matched load, Figure 23. The

procedure is the same as that described in the above para-

graphs. It is important not to change any adjustment on

the ratiometer or measuring equipment during the two sets

of measurements, since the two will be compared during the

calculations (III-31).

When measurements are completed, the information on

the tapes is punched on data cards by a tape to card con-

verter. These data cards are then used as data in the re-

flectometer computer programs, Appendix B.
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