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CORRELATION TECHNIQUES AND MEASUREMENTS

OF WAVE-HEIGHT STATISTICS

H. Guthart W. C. Taylor K. A. Graf D. G. Douglas
Stanford Research Institute

Menlo Park, California 94025

I INTRODUCTION

Electromagnetic interactions with the sea have been the subject

i*of some study for a number of years. These studies, however, have been

severely hampered by an incomplete description of the scattering surface.

As a consequence, a verification of theoretical models has been difficult

to obtain. While an assessment of different scatter models could re-

quire measurements of various different characteristics of the surface,

the most useful description of the surface is probably the correlations

of the wave heights. The two-dimensional spatial correlation of the sur-

face heights, R(6), is given by:

h(r ) h(r + 6)
R(~5) = — - - - - (la)

h'Or) h'Cr + 1)

where h is the fluctuating component of wave height, 6 is the separation

between sensing points, the overbar designates a spatial average, and

h is the root -mean-square value of the fluctuating component of wave
— »

height. The spatial correlation coefficient, R(6), is the two-dimensional

Fourier transform of the power spectral density frunction of the surface

fluctuations. In general, the spatial correlation is expected to be

anisotropic. In addition to the spatial correlation coefficient, the

type of measurements that could be expected to specify the scattered
— »

electromagnetic signal would include space-time correlations, R(6,r),

References are listed at the end of the report.



h(r,t) h(r +5, t + T)
R(6,T) = , (Ib)

h'(r) h'(r + ~6)

where T is the time lag. Such measurements should be capable of pre-

dicting not only the mean level of the reflected signal, but also the

s tatistical nature of the scattered electromagnetic signal.

For small wave heights (h « A.) the electromagnetic scattering

from the surface is considered to be proportional to the power spectral

density (PSD) of the wave-height fluctuations (i.e., the interaction is

described by Bragg scattering). As a consequence, a backscatter radar

measures the surface fluctuations at a discrete wavelength--namely,

(A./2 sin 9), where \ is the radar wavelength and 6 is the angle of

incidence with the zenith. A verification of the model for the scattering

of electromagnetic waves from the sea surface, then, requires a measure-

ment of wave statistics at a wavelength of (X/2 sin 6). Unfortunately,

early radar experiments did not have the accompanying "sea truth"

measurements and the results are surrounded by considerable controversy,

Radar (or radiometric) measurements are usually made in the

centimeter-wavelength band, corresponding to the short-gravity-wave

and capillary-wave portion of the spectrum. Recent results reported by

Pierson3 indicate that the capillary-wave part of the spectrum does not

"saturate." This is a very important result, for it indicates that an

estimate of the capillary-wave spectrum cannot be inferred from the

gravity-wave spectrum. In addition, the capillary-wave spectrum is most

sensitive to local wind conditions and therefore subject to a good deal

of variability. These considerations indicate the need and desirability

for short-gravity-wave and capillary-wave measurements if the questions

and controversy surrounding the electromagnetic interactions with the

sea are to be resolved.

2



In the past, several means have been used for measuring the surface

fluctuations. These are (1) resistance-type or capacitance-type wave-

height gauges, (2) optical sensors, and (3) accelerometers. These three

alternative techniques offer significantly different measurements of the

surface fluctuations. The accelerometer size suggests its unsuitability

for measurement of wave-height statistics in the centimeter-wavelength

regime. Optical and wave-staff techniques will be discussed in Section

II, including the development of the resistance-type staff used in these

studies.

Section III describes the initial measurement of wave-height

correlations actually undertaken in the SRI wind-wave tank.

Section IV discusses the results of the wave-height measurements

described in Section III.

The conclusions of these studies are discussed in Section V,

where recommendations for future studies are also put forward.

It is a pleasure to acknowledge Prof. H. Medwin of the Naval Post-

graduate School and Prof. E. Y. Hsu of Stanford University for their

generous assistance in setting up the experiment.

The authors are further indebted to G. R. Hilbers, J. W. Granville,

and R. L. Martin of the Electromagnetic Sciences Laboratory, SRI for

their invaluable assistance in the performance of these tests.



II WAVE-HEIGHT-SENSOR DEVELOPMENT

In this section, some of the alternative schemes for optical

sensing of wave-height fluctuations will be briefly surveyed. This

discussion will be followed by an analysis of the resistance-type wave

staffs used in these experiments. The first two optical methods des-

cribed can, in principle, provide instantaneous spatial measurements of

the surface. The laser profilometer and the wave staffs described in the

next section make "point" measurements, and ergodicity must be assumed to

relate such measurements to spatial statistics. The assumption about

ergodicity is easily justified but the stationarity of surface con-

ditions during the time required to make temporal measurements can impose

a requirement for an array of point sensors.

A. Optical Sensors

Optical sensing of wave-height fluctuations has the promise of

measurements without perturbation of the wave medium. As a consequence,

a good deal of effort is going into the development of optical means

for sensing wave-height fluctuations. The earliest optical techniques

recorded the light reflections from the surface to determine the proba-

bility density function of wave slopes. This is accomplished by taking

advantage of the specular nature of the scattering of light rays from a

surface. For a given geometry, light will be scattered into a detector

only when the normal wave slope is collinear with the bisector to the

angle formed by the illuminator, the surface, and the detector. By

measuring the percentage of the time that glints occur for a given

scatter geometry (and therefore, for a specified wave slope), the

probability density function is determined. The light source for the

early measurements was a flash bulb4 and the sun5. The detector was

film. These experiments have two drawbacks from the point of view of



of the goals of this program. In the first place, the photographic

method utilized involved tedious and slow data analysis. This constraint

has been circumvented by Wu et al.s, and their techniques can be improved

still further with laser illumination and correlation tube detection.

The second drawback of this system is that the probability density function

of the slopes cannot be related to the PSD function of wave heights. It

is therefore unrelated to the electromagnetic backscatter at microwave

frequencies. "Glints" occur only when slopes are very near specular,

so such a system has almost no dynamic range for slope measurements.

Stilwell7 developed a system for measurement of the PSD of the wave-

2
slope fluctuations. This quantity is k (where k is the wavenumber)

times the PSD of the wave-height fluctuations and is indeed pertinent for

comparison with electromagnetic scatter measurements. In this technique,

the sky brightness is taken as a uniform illuminator, or at least a

known monotonic illuminator, of the sea surface. The light reaching

a point at the observer is then a Fourier transform of the wave-slope

distribution, for every point on the surface has a ray incident with

the proper orientation for specular scatter to the observing point.

The technique as pioneered by Stilwell requires considerable data proces-

sing of the photographic plates. Also, the background illumination

must remain constant (and uniform), or it must be monitored.

A third optical technique for wave-height sensing is the laser

profilometer. In this technique a laser is modulated with an RF wave

and used to illuminate a spot on the sea surface. The reflected signal

is detected and the phase of the modulating signal is measured. The

phase history of the reflected signal is then a measure of the wave-

height fluctuations. The initial utilization of this technique8 involved

helium-neon lasers operating at 632.8 nanometers. The large skin depths

(2 m in salt water) preclude the measurement of small gravity and



capillary waves. SRI is currently working on a program for the Advanced

Research Projects Agency to adapt this technique to the infrared por-

tion of the spectrum (wavelength = 10.6 \i), where the skin depths are

very small (~ 10 |i). This technique also has the very desirable property

that the data outputs are computer-compatible.

There are optical refraction methods9 for wave-height sensing;

however, such schemes would involve the submergence of components if

if the method were to be used on the open sea. With submerged com-

ponents, this technique becomes less attractive in non-laboratory

experiments, since it throws away one of the principal advantages of

optical wave-height sensing—i.e., the capability of a non-contacting

sensor.

B. Wave Staffs

Wave staffs have classically been operated as resistance or

capacitive devices. The systems have the obvious advantage of being

inexpensive, and conceptually and electronically simple. Also, their

outputs are computer-compatible. The greatest uncertainty regarding

these probes concerns the effect of meniscus on the probes. Indeed,

there have been reports of distortion on capacitive wave .staffs.

The distortion is reported to occur at frequencies above 20 Hz and

is thought to be a consequence of probe wetting. The same study indicates

that resistance-type staffs are distortion-free.

As an outgrowth of the foregoing, resistance-type wave staffs have

been chosen <for wave-height sensing in this program. Resistance-type staffs

have two configurations. For fresh water, low-resistance wires are used,
••.*' • • .-i

-•*:'' -. f
giving-essentially*zero wire resistance, and the resistance of the water
•-'" ..--*'• • $
is measured as a .function of probe depth. For salt water (with its much

«--••



higher conductivity), high-resistance wires are used; the water acts as

a short circuit for the wire and the measured resistance is proportional

to the length of probe not in the water.

C. Development of a Resistance-Type Wave Staff

The development of a resistance-type wave staff was undertaken

for initial application to a fresh-water wind-wave tank. The geometry

of the probe is shown in Figure 1. The sensing wire has a diameter of

0.16 cm. The circuit is completed with a ground wire that is sheathed

so that the part in contact with water is independent of wave height.

The spatial resolution of such a wave staff is then specified by the

diameter of the sensing electrode, independent of the interelectrode

spacing.

Electrolytic effects dictated the choice of an alternating-current

probe (in contrast to a dc probe). Since measurements of wave-height

fluctuations occur at frequencies of the order of tens of Hertz, an alter-

nating frequency to remove electrolytic effects was selected in the

kilohertz regime to obtain the desired separation between the carrier

frequency and the wave frequencies to be measured.

Since the goal of these experiments is to measure the spatial cor-

relation coefficient of the wave-height fluctuations, a pair of wave staffs

was designed. To minimize the coupling between staffs, the probes were

operated at two frequencies unharmonically related (175 kHz and 280 kHz).

A block diagram of the electronic systems is shown i?» Figure 2. The probe

common-mode filters, shown in Figure 2, were designed to minimize the

coupling between staffs. The bridge of Figure 2 is used to cancel the

bias voltage around the operating point of the probe, so that the fluc-

tuations in voltage produced by the wave-height fluctuations can be

amplified without overloading the detector. A calibration for this
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probe system (output voltage as a function of depth) is shown in

Figure 3. The probe response is seen to be linear over this 10-cm inter-

val. The probe design and two sets of probes and electronics were

provided to the NASA Langley Research Center as part of the program.

An operating procedure and set of circuit diagrams were provided also.

To verify that meniscus effects are negligible on resistance-type

staffs, a test program was undertaken. The depth of the probe in still

water was varied sinusoidally by a mechanical oscillator supporting the

probe. The frequency of oscillation was varied between 0.1 and 5 Hz

and the amplitude was varied up to 8 cm. Although 5 Hz is lower than

the highest frequency of interest, Colonell11 observes that the water

surface can be accelerated only as much as the acceleration due to

gravity. As a consequence, probe oscillations having a combination of

amplitude and frequency giving that limit are sufficient to test the
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ability of a probe to respond to wave-height changes. In the current

tests, accelerations in excess of that of gravity were applied.

Figure 4 shows the probe output as a function of depth for six of

the twenty different combinations of amplitude and (mechanical) frequency

that were documented in the error study. (Nominally, amplitude increases

from bottom to top photos, while frequency increases from left to right

photos.) The maximum drainage and meniscus errors, which give hysteresis-

type signatures, are expected for the conditions with maximum acceleration

(at the ends of the excursions). Indeed, the tests with maximum accelera-

tion near that of gravity [Figs. 4(d) and 4(e)] show the maximum absolute

error. In any case, the error is seen not to exceed 1 mm. In fact, for

the larger amplitudes, it appears that the error is no greater than the

nominal oscilloscope line width. The hysteresis effect seen in Figure

4(c) is a consequence only of "play" in the mechanical drive, while in

4(f) the effects are due to a combination of this and of meniscus drainage.

To examine the effects of the proximity of one staff on the dynamic

response of a second, further tests were undertaken. It was determined

that the linearity and slope of the probe response to height fluctuations

were not perturbed by the presence of a second probe. For purposes of

correlation measurements, only the linearity of the probe response to

the wave-height fluctuations is important, and therefore these probes are

suitable sensors of wave-height statistics.

With the completion of these tests, the suitability of wave

staffs for measurement of the wave-height fluctuations has been demon-

strated. In the next section, the measurement program in the wind-wave

tank will be discussed.

11
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Ill MEASUREMENTS OF WAVE -HEIGHT FLUCTUATIONS

With the development of the wave-height sensors, measurements of

the wave-height fluctuations in a wind-wave tank were undertaken. The

SRI wind-wave tank is shown schematically in Figure 5. The tank has a

cross section 1.83 m (6 ft) by 1.83 m (6 ft) and is 9.1 m (30 ft)

in length. It is filled with 0.9 m (3 ft) of water. Two blowers, with

a total capacity of 60,000 cubic feet per minute, can blow winds up to

18 m/s (pa 36 knots) over the surface of the water. Figure 6 shows the

wave condition in the wave tank at a wind speed of 16 m/s. The larger

figure is looking through the plexiglas wall toward the beach (reflec-

tions from the beach are negligible). The inset to this figure gives a

closer view of the wave structure. It is seen that there is considerable

foam and spray for this wind condition.

A. Data Recording

The output of the wave-staff electronics is recorded on an Ampex

FR1300 analog tape recorder with FM electronics. The data are recorded

in bursts of 25.6 s. The signal-to-noise capability of this recorder

is about 40 dB. The frequency spectrum of the wave-height fluctuations of

wind-driven waves is sharply peaked (for example, the 30dB bandwidth

of the waves of this experiment is only 25 percent of the dominant

frequency). When such a signal is recorded on a tape recorder, the

limit on measurable frequency content is the tape-recorder signal-to-

noise-ratio specification. To circumvent this constraint, the desired

signal can be preconditioned by "whitening" or compensated before it

is recorded. To this end, a simple high-pass RC network with a cutoff

of 12 dB per octave and a cutoff frequency of 10 Hz was designed and

constructed for use in this experiment to permit measurements of the

13
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frequency spectrum up to 20 Hz. The power response function G(f)

of this network is given by:

-2

G(f) « [1 + (10/1) ] (2)

where f is frequency in Hz. More elaborate compensating networks can

easily be constructed.

B. Data Processing

The recorded analog data are A/D converted at a 40-Hz sampling

rate. The cross correlation and autocorrelation coefficients and the PSD

function of wave-height fluctuations are numerically computed. For the

computations, from a pair of probes an ensemble of 20 records of duration

T seconds (usually T = 6.4 s or 25.6 s) is averaged. To suppress the

sidelobes in the frequency domain, each time record is weighted with the

Tchebysheff polynomial.18 The Tchebysheff weighting function was chosen

to suppress the sidelobe level to less than 60 dB below the mainlobe peak.

The complex spectrum of each of the weighted time records is

determined using Fast Fourier Transform (FFT) techniques. Define H . (f)
th

and H (f ) as the complex spectra of the i record of the weighted time

functions at two points in space separated a distance 6 . The averaged

cross spectrum H (f) (where the A dependence has been suppressed) is

given by

20

(3)

20

|H(f)|
20 L li

16



where JH (f)| is the magnitude of the cross spectrum and cp(f) its phase.

The Fourier transform of the averaged cross spectrum is the space-time
—» —»

correlation coefficient, R(6 ,T), for the probe separation 6 , defined
P -. '

in Eq. (Ib). As 6 -* 0, the time records become identical and R(6,r)

i i2

becomes R(0,T), the temporal autocorrelation coefficient; and |H (f)|
J. ̂

becomes the temporal PSD function of wave-height fluctuations at a

point, |H(f)| . The two-dimensional Fourier transform of R(6,0),

measured at sufficient points to adequately define this curve, is the

spatial PSD function of the surface fluctuations. For every probe

separation, 6, the autocorrelation coefficient and PSD function of each

probe as well as the cross-correlation coefficient and the phase of the

cross spectrum were computed and plotted as shown in Figure 7. The

figure shows the aforementioned quantities for a wind speed of 13.0 m/s,

a probe separation of 8 cm along the wind vector, and at a fetch (i.e.,

the length of water surface parallel to the wind direction that

experiences wave-generating action of the wind) of 6 m. In the following

paragraphs the data taken in the wind-wave tank will be presented.

C. Time-Domain Results

The two-dimensional space-time correlation coefficients were measured

at three wind speeds—6, 9, and 13 m/s at a fetch of 6 m. These data are

presented in various formats in the following sections.

1. Wind Speed of 6 m/s

Figure 7 shows the measured space-time correlation co-

efficients at several probe separations along the wind vector. The

correlation is observed to peak at a time delay, T , for probe separations,
M

6. Under the assumption that waves propagate in a narrow cone of angles

about the wind vector, the group velocity of the wave packets can be

inferred from the data as having the format shown in Figure 8. Figure

17
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FIGURE 7 WAVE-HEIGHT STATISTICAL-DATA FORMAT
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+3.2 -3.2

TIME DELAY, r — seconds
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FIGURE 8 SPACE-TIME CORRELATION COEFFICIENT FOR LONGITUDINAL PROBE
SEPARATION, 5, AND WIND SPEED = 6 m/s
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Figure 9 shows the optimum space-time correlation coefficient, R(6,T ),
M

[i.e., for any probe separation, R(6,T ) is the peak correlation of the

envelope of the correlation coefficient] as a function of probe separation.

As the probe separation increases, this quantity indicates the degree to

which wave propagation is frozen . For frozen flow (one-dimensional

propagation in a non-dispersive medium) R(6,T ) would remain at a value
M

of 1.0 for all probe separations 6. Figure 10 shows some measured space-

time correlation coefficients for probe separations transverse to the wind

vector. It is seen in these data that the peak correlation occurs for

zero time delay, independent of probe separation, for probe separations

up to 8 cm.

Figure 11 shows the data points for the measured spatial corre-

lation coefficient along and transverse to the wind vector. The spatial

correlation data of this figure are qualitatively similar to those

reported by Medwin.13 Wave-height statistical data were also obtained

along radii, at constant angles to the wind vector, for increments in

angle of 15° . The symmetry of the correlation coefficients about the

wind vector was verified as well. Figure 12 shows the measured spatial

correlation coefficient, specified in polar coordinates, for probe

separations along radii at constant angle to the wind vector. The

angle § is zero for measurements along the wind vector. In this figure

a smooth curve through the data is shown. The data in Figure 12 indicate

that the dominant oscillatory motion has the same wavelength if the

correlation coefficients are plotted against 6 cos6. This result is

consistent with the idea of one-dimensional wave propagation. The

envelope of the spatial correlation coefficient is an estimator of wave

packet size. The packets are observed to be anisotropic with a 2-to-l

aspect ratio—i.e., the packet dimension along the wind vector is twice

the dimension transverse to the wind vector.
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2. Wind Speed of 9 m/s

Figure 13 shows the measured space-time correlation co-

efficients at several probe separations along the wind vector. The

character of the data is similar to that of the comparable data shown for

-0.8 -

-3.2 +3.2 -3.2

TIME DELAY, r — seconds

+3.2

FIGURE 13 SPACE-TIME CORRELATION COEFFICIENT FOR LONGITUDINAL PROBE
SEPARATION, 5, AND WIND SPEED = 9 m/s

a wind speed of 6 m/s. Figure 14 shows the optimum space-time correlation

coefficient as a function of longitudinal probe separation. Figure 15

shows some representative space-time correlations for transverse probe

separations. The spatial correlations for longitudinal and transverse

probe separations are illustrated in Figure 16 where it is observed that

the wave packets are again anisotropic, with a length to diameter ratio

of approximately 2.
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3. Wind Speed of 13 m/s

The correlation coefficients similar to those shown previously

at 6 and 9 m/s are shown in Figures 17 through 20 for a wind speed of

13 m/s. The data are qualitatively very similar to those shown at lower

wind speeds.
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FIGURE 17 SPACE-TIME CORRELATION COEFFICIENT FOR LONGITUDINAL PROBE
SEPARATION, 6, AND WIND SPEED = 13.2 m/s
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FIGURE 19 SPACE-TIME CORRELATION FOR TRANSVERSE PROBE SEPARATIONS, 6,
AND WIND SPEED = 13.2 m/s

D. Frequency-Domain Results

p
The temporal PSD function of the wave-height f luctuations, | H ( f ) j ,

is the Fourier transform of the autocorrelation coefficient:

R ( 0 , T ) exp i ( 2 n f T ) dT (3)

or

f h ( t ) exp i (2nf t ) dt (4)
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The temporal PSD function of the wave-height fluctuations measured in the

wind-wave tank is plotted in Figure 21 for various wind speeds at a fetch

of 6.5 m. There are a number of observations that can be made of these

data. A second-harmonic component is observed at all wind speeds (the

second-harmonic component at 8 m/s manifests itself as a shoulder to the

fundamental component). Tests of the electronic instrumentation associated
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FIGURE 21 POWER SPECTRAL DENSITY FUNCTION OF WAVE-HEIGHT
FLUCTUATION FOR SEVERAL WIND SPEEDS AT A FETCH
OF 6.5 m
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with the wave staffs and the staffs themselves showed that this effect

was not due to the measuring system. As a consequence, it is believed

that this is indeed a water-wave phenomenon. In the next section,

these observations of second-harmonic components will be shown to agree

with calculations based upon theory.

It is further observed in Figure 21 that the fundamental components

of the wave spectra exhibit a "saturation" effect—i.e., the amplitude

at a given frequency component reaches a maximum and does not increase

with increasing wind speed. By way of contrast, the components beyond

the second-harmonic peak do not saturate. This result is consistent

with a second-harmonic theory, as will be discussed in the next section.

The high-frequency components are observed to exhibit 5th-power decay with

• 12 -5 14
increasing frequency (i.e., |H(f)|ocf ), as proposed by Phillips.

The temporal PSD function of wave-height fluctuations is plotted

in Figure 22 as a function of fetch for a wind speed of 6 m/s. The

frequency of the dominant component is seen to decrease with increasing

fetch although the wave amplitude grows with fetch. A "saturation" in

the amplitude of the frequencies of the fundamental component is evident

in this data as well.

The phase velocity and spatial wavelength in a particular direction

can be determined by examining the phase difference of the spectral com-

ponents measured at two points. This phase difference is spoken of as

the "phase" of the cross spectrum. Measurements of the phase of the

cross spectrum as a function of frequency are shown in Figure 23 for

several longitudinal separations of the probes and in Figure 24 for

several transverse probe separations at a wind speed of 6 m/s. The phase

of the cross spectrum for longitudinal separations is well defined and

evidences some dispersion (as discussed in Section IV) for small

separations at all frequencies. As the probe separations get larger,
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FIGURE 22 POWER SPECTRAL DENSITY FUNCTION OF WAVE-HEIGHT FLUCTUATION
AT A WIND SPEED OF 6 m/s FOR VARYING FETCH

the high-frequency components become decor-related (as evidenced by a

uniform probability for the phase to be anywhere between 0 and 2n),

but the low frequencies continue to show dispersive effects. A dis-

continuity in the slope of the phase of the dispersion occurs at frequencies

in excess of about 5/3 of the dominant frequency component. This is a

manifestation of the second-harmonic-wave components. The relative phase

for transverse probe separations remains reasonably constant, indicating

no average transverse velocities. (That is, the transverse phase velocity
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is. infinite.) For increasing probe separations, the higher-frequency

components evidence decorrelation. Figures 25 and 26 show the measured

relative phase as a function of frequency for several probe separations

and for a wind speed of 9 m/s. The character of these data is similar

to that shown for the 6-m/s data.

A variety of data obtained in the wind-wave tank have now been

presented. The next section will discuss some implications of the

observations.
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IV DISCUSSION OF RESULTS

The measurements shown in the foregoing section can be inter-

preted unambiguously if the spatial two-dimensional power spectral density

(PSD) function of wave-height fluctuations can be calculated. In prin-

ciple, the PSD function is obtained by taking a straightforward two-dimen-

sional Fourier Transform of the two-dimensional spatial correlation

coefficient (in a form such as shown in Figure 12). A calculation of

the PSD function was made with the data of Figure 12. The results of the

calculation were sufficient to define the dominant wavenumber and a 40-

percent bandwidth about the dominant wavenumber. This wavenumber band

defined only the first 10 dB of the PSD function. Beyond this bandwidth

the PSD function exhibited the effects of statistical error (in the form

Of negative values of the PSD function). These statistical errors are a

consequence of the nonstationarity in the measurements of the two-

dimensional correlation coefficient. The measurements of correlation

coefficients shown in Figure 12 took one week's test time, since they

were made with a single pair of probes having a variable spacing. In

the course of this test time, the wind speed, air temperature, etc.(and

therefore the wave-height fluctuation statistics) could not be maintained

with sufficient accuracy to calculate the PSD function over a greater

dynamic range than 10 dB. Greater dynamic range can be achieved by using

a wave-staff array (an array of probes) making simultaneous measurements

at a number of probe separations.

The measurements in the wind tank lend themselves to a consistent

Set of results with the assumption that the wave propagation in the wind-

wave tank is approximately one-dimensional. This approximation allows

us to relate temporal frequency fluctuations to spatial wavenumber
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fluctuations in a way that is analogous to the Taylor hypothesis in tur-

bulent fluids.

With the foregoing assumption, the phase of the cross spectrum

becomes an indicator of wave dispersion. For transverse probe separation,

the phase should not exhibit (and in fact does not exhibit) a finite

velocity at any frequency. For longitudinal separation, the phase,

cp(f,6), should vary as

where U is the drift current (if any exists ) on the surface, and U(f)

is the phase speed of the waves and is a well-known function of frequency.

If a drift current exists on the surface, a wave frequency, f,

becomes translated to a stationary observer. The apparent frequency,

f , to a stationary observer of a wave frequency, f, is given by
a

f = f
a

UQ+U(f)

U(f)

When the formalism of Eq. (5) was fitted to the measured longitudinal

phase data at 6, 9, and 13 m/s, the agreement between calculation and

measurement was very good for frequencies less than about 5/3 times the

dominant frequency, and indicated a drift current of 5.4, 7.5, and

18 cm/s, at wind speeds of 6, 9, and 13 m/s, respectively. To test

this estimate of drift speed, .direct measurements of the surface drift

current were made. These measurements were accomplished by timing

particles introduced into the water as they passed two stations at a fixed

distance apart in the tank. It was found that care had to be taken

that the particles had a negligible amount of area exposed to surface
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winds. If such a precaution was not observed, erroneous observations

resulted. Food dye was also used in place of particles. The food dye

was also introduced at the surface. The results of both sets of measure-

ments are shown in Figure 27. A comparison of the drift speeds inferred

from phase measurements, as given above, with the direct measurements

of drift speed is shown in Figure 27. The agreement is very satisfactory

between the two estimates. As previously noted, the phase of the cross

spectrum agreed with theory, when drift velocity was taken into account

up to about 5/3 the dominant frequency. The agreement between calculation

and measurement can be extended to all frequencies if the second-harmonic

components are adequately taken into account. Tick16 has modeled the

second-order effect. Essentially, the second-harmonic terms predicted

by Tick are coupled to the fundamental terms so that they move at a

velocity associated with the fundamental terms. This perturbs the
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observed phase. Tick's results can be approximated for the complex

second-order frequency spectrum, H (f), by

H (f ) *
S

4TT2

s
g

00

J f /2Hp(f ') Hp(f-f ') exp
—00

i2rrf 6
UQ+U(f)

exp
i2n(f-f ' )&
UQ+U(f-f ' )

df

(6)

for frequency, f, beyond the dominant frequency component, f , and where

g is acceleration due to gravity and the subscripts F and s designate

first-order and second-order terms. Equation (6) represents the second-

order contribution to the spectrum at a point. The total spectrum is

then the sum of the first- and second-order terms. To make a calculation

of second-order effects for comparison with measured data, an estimate

of the first-order spectrum is required. The signal measured on wave

staffs already represents the sum of first- and second-order terms. As

a consequence, the definition of the first-order term is ambiguous and

some experimentation is required. As an initial estimate, the first-

order spectrum H (f) was taken to be the measured spectrum H (f) except

for a band of frequencies (~ + 25 percent) around the second harmonic.

In the second-harmonic band the first-order spectrum was taken to be

a power-law continuation to the first-order spectrum. That is:

for f ^ 1.5 f , f £ 2.5 f

N[f/1.5fo;f, for l.5f0* f ̂  2.5fQ

where N is chosen so that H (1.5 f ) [2.5 f /I. 5 f ]~N = H (2.5 f ).
M O 0 0 M 0

To calculate the total phase and amplitide characteristic between

a pair of probes spaced 6 cm apart, an ensemble of 20 data records each

of 6.4 s duration was used. The procedure for calculating the complex
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cross spectrum was to take the data of an upstream probe, compute the

amplitude and phase of the downstream probe, and ensemble-average the

product of the upstream probe record with the computed downstream

probe record. For each record of the upstream probe a first-order and

second-order term is calculated using Eq. (7) and Eq. (6) for zero

separation (6 = 0). The spectrum of the upstream probe is then the sum

th
of these terms. For the i record of the ensemble, this becomes

00

2
4lT f* 2

Vf) " HliF(f) + T J f' HliF<f
(8)

To calculate the response of a probe downstream of the first probe,

the upstream probe record is used. For probe separation 6 it should

be observed that the first-order term is advanced in phase 2nf6/[u +U(f)]

th I— -
so that the downstream probe spectrum of the i record, H .(f), becomes

4TT

g
f f/2H (f) H (f-f')
J liF liF

exp i
2TTf'6

U
exp i

2TT(f-f')6

UQ+U(f-f')
df' (9)

The twenty records of the ensemble are then averaged as indicated

in Eq. (2), and the phase and amplitude of the cross spectrum are pre-

dicted. The predicted amplitude and phase are then compared to the

measured quantities. For the assumption of the first-order spectrum of

the form given in Eq. (7), the agreement is poor. As a second estimator

of the first-order spectrum, the functional form was chosen as follows:
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V5/3 V f/
(5/3)1

(5/3)f
0

where N is a variable parameter. With this form as a starting point,

the computation was run again and the agreement between calculation and

experiment was very good. Figure 28 shows the calculated and measured

cross spectrum for a wind speed of 13 m/s, a probe separation of 8 cm,

a drift current of 18 cm/s, and N taken equal to 3.5. The agreement

between the calculated and measured phase [Fig. 28(b)] is particularly

good at frequencies less than 12 Hz. Beyond this frequency, the measured

data manifest the effects of decorrelation and some aliasing which were

not included in this calculation. The calculated and measured amplitudes

agree to within 3 dB for frequencies not affected by aliasing. (Less

than about 16 Hz.)

It is of interest to consider the consequences of the second-order

effects. From Figure 28(b), it is deduced that the wave dispersion is

almost negligible beyond the dominant frequency component (the phase-

frequency characteristic is nearly linear, and passes through 0 or 2n

for f = 0). This is not surprising when it is recognized that this result

implies that the higher order components will propagate at the wave speed

of the dominant frequency component, thereby resulting in the maintenance

of the non-sinusoidal wave shape as the wave propagates. The observation

of increasing amplitude of the second-harmonic components with increasing

wind speed (deduced from the results depicted in Figure 21) is also con-

sistent with the second-order effects calculated above. The amplitude of

the second-harmonic component will increase with the amplitude of the

fundamental component (even though any single frequency in the fundamental

component saturates); this is a consequence of the convolution in fre-

quency space.
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A final test of the assumption of one-dimensional wave propagation

is to compute the group velocity of the wave packet and compare the

result with an estimate of the group velocity inferred from the space-

time correlation measurements. After Fisher and Davies,17 the group

velocity is estimated from the family of space-time correlation co-

efficients. For all probe separations, the space-time correlation

coefficient is plotted. An envelope for this family of curves is then

constructed. The point of tangency of the correlation coefficient

defines a data point for a 6-t diagram—i.e., for every probe separation

there is a time delay for tangency to the envelope. The family of cor-

relation coefficients then defines a line on the 6~t diagram. The

slope of this line is the group velocity of the wave packet.

An alternative estimate of group velocity can be obtained since

the dispersion relation is known. For a short-gravity-wave packet, the

group velocity is

v - «» * * - *->„

where U(k) is the phase velocity expressed as a function of wavenumber

and U is again the surface drift current. A comparison of the measured

and calculated group velocity (with the assumption of one-dimensional

wave propagation and using the previously inferred values of drift speed)

yields agreement to better than 10 percent for the two estimates for

wind speeds of 6, 9, and 13 m/s.
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V CONCLUSION AND RECOMMENDATIONS

A resistance-type wave staff has been developed to measure the

statistics of wave-height fluctuations. In addition to providing NASA

Langley with sets of instrumentation, an initial set of measurements

has been conducted in a wave-tank. The temporal PSD function of wave-

height fluctuations evidenced second-harmonic components and the spectral

variation beyond the second harmonic has a (-5) power-law decay.

The two-dimensional spatial correlation coefficient was measured

directly. The longitudinal dimension of the wave packet was twice the

transverse dimension. The two-dimensional spatial power spectral density

function was computed from the correlation data. The dynamic range of

the resulting PSD function was limited, by the nonstationarity of the wave

statistics in the time required to perform the experiment (about a week),

to 10 dB and a bandwidth of 40 percent around the dominant wavenumber.

With the assumption that the ^propagation of the waves in the tank

was approximatly one-dimensional, the wave-height statistical measurements

were used to infer surface drift speeds, and to verify, with very satis-

factory results, Tick's second-order perturbation theory for waves.

The initial measurements of wave statistics are very encouraging,

but additional effort would be appropriate. A more careful measurement

of the two-dimensional correlation coefficient (with an array of probes)

to circumvent the difficulties of nonstationarity should be attempted.

The validity of the assumption of nearly one-dimensional wave propagation

could then be unambiguously determined.
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