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INTRODUCTION

In this paper we define semivector spaces and develop some of
their algebraic aspects including some structure theory; then top-
opogize these spaces to obtain semilinear topological spaces for

which we identify a hierarchy of local convexity axioms; establish

a number of fixed point and minmax theorems for spaces with various

local canexity properties; illustrate how the spaces of concern
arise natﬁfally as various hyperspaces of linéaf and semilinear
(topological) spaces; and; finally,_indicate briefly how all the
above are applied in socio-econémic,anélysis and optimization.i
.In contrast to vector spaces, we build semivector spaces upon

underlying commutative semi-groups, so that the space need not

_have an origin (identity element) and its elements need not possess

inverses. In the same contrast, a consequent weakness of semivector

. spaces is. the ability for the distribution (A + u)s = As & us to

fail altogethex or for certain pairs (A, u) of field elements, where
s is a generic semivector, As and s are results of "scalar multi-

plication" and ® is "semivector addition." WNeither is Os required

_to equal the origin e even if e belongs to the semivector space

(0 denotes the additive identity of the field). Also, in the case

‘'where the reals are taken as the field, singleton sets need not be

convex. These are some of the features distinguishihg semivector

. spaces from vector spaces. Section 1 treats these and other alge-

braic matters pertaining to semivector spaces. As a result, some

("gross'") structure theory is also developed. Examples are provided
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to illustrate a vafiety of semivector spaces.

In Section 2,.semivector spaces are topologized by tequiring
their_algeb:aic operations ("scalar multiplication" and "semi~
vector addition") to be continuous. It is asked when the.topology
of the mob underlying a semilinear topological_space can be
strengthened to yield translates ofsopenvsets by points open with-
out destroying the continuity of either of the algebraic operations.
After a hierarchy of local convexity axioms iS'identified for real
semilinearvtopological sogCes, product invariance is investigated
for spaces of the various types of 1ocai'convexity;

Section 3 dealsbwith the real semilinear topological spaces
in which singleton sets are convsx ("pointwise convexity"). In
this section we generalizo orﬂektend centtal fixeo point results
due to S. kakutani [194], H. F. Bohnenblust and S._Karlin [1950]
and K. Fao [1952], which in turn are generalizatioos of results
due tobL. E,‘J.bBrouwer [1912], J.vSohsoder [1930] and A. Tychonoff
[1935], respectively. ‘In particular, our Theorem 3.1 generalizes .
Kakutani's FPT (Fixed Point Theorem), and it is used to establish
" Theorem 3;2 where Tychonoff's FPTbis_generaiized by ﬁeans of pro-
.cedure ﬁsed by Fan [1952]. Theorem.3.3 and the Miomax Theorems
3.4 and 3.5:are applications which we believe to ﬁave significance
for economic tﬁeory and the theotiesvof gsmes and opti@ization.
Theoreml3.6.sktends Fan's FPT. Theorem 3.7 and the-Minmsx Theorem
3.8 stand in relation to it ss do 3.3 and 3.4 to 3.2; Using the

fixed point theory of this section,_elsewhere, in [Prakash, 1971]
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and [Sertel, 1971], we show the existence of dynamic equiliﬁria for
certain rather general social and economic systemé. J. L. Kelley
has indicated’the importance of convexity arguménts as the basis
for results.distinguishing the theory of linear topological spéces
from that of topological groups [1955; p. 110]. .The results pre-
sentéd héré may be taken to illustrate that much of the power
gained from convexity properties does not require as strong a
structure as that of a linear fopological space.

Sectioﬁ 4 constructs a.vafiety of semivector and topological
semivector spaces as hyperspaces. Many of these, e.g.,vthe semi~
vector épaces conéisting of the non—~vacuous compéct and convex sets
in a vector space, are imporfant for social and economié analysis
and the theories of games and optimization. In models used in
these areas, the behavors in a social s&stem or consumers and pro-~
ducers in aﬁ economic system or the players in a game or, finally,
optimizing agentsbin general are restricted in their choice typi-
célly to a compact and convex region in a linear topological space.
For example, in the case of a consumef, the choice 6f commodify
bundles (vectors) which can be enjoyed is the set of cqmmodity
bundles which can be acquired without'exceeding a budget constraint.
In the case of a'player in a gaﬁe,.the choice of-stratégy may be
limited to the set of probabilityAmeasures defined on some sigma~
algebfa_of."actions"‘(see [Sertel, 1969, 1971]), where this set of
probability.measures is coh&ex, but also compact when suitable

topologies are used.



Section 5 indicates, albeit briefly, how the material of the
earlier sections is épplied in social and economic equilibrium analysis
and optimization. We intend to make suéh.app1ications the subject of

a soon forthcoming separate paper.



1. SEMIVECTOR SPACES

1.0 Defiﬁition: Let (S, #) be an Albelian semigroup and let
CF(1$, .) be a field,1 “denoting its additive and multiplica-
tive idéntity by Ohand 1, respectively. Then S together with
a‘ﬁap ¥: F x S + S, where we denote Y(A, s) = As,‘ will

be calied a semivector space over F iff the following are

satisfied:_

Axiom.iz s = s

Axiom 2: A(s) = (A » Ws s, t €S53 A, 1 evF.
Axiom 3: A(s @ t) = As @ At

The elements of § wiil be called semivectors. A subset

T S will be called a semivector subspace of S 1ff it is a

semivector space under the restrictioms to T of the algebraic

operations of S. If F =R, the field of reals, then S will

be called a real semivector space.
’ _One may note_thaf Axioms 1 and 2 yield a'épecial type of
automa;oh fu;ther particulafized by Axiom 3.
Given a semivector spaée S over a field :F, for each
A eF let WA denote the restriction of V¥ to A X S, Then,
for éaéh A #0, WA is an automorphism of S onto S3

furthefmore, if S has an origin (or a null elément, or

identity) e definéd by the propérty that e ® s = s for all

s €S, then le = e,

1The reader will soon notice, as M, P, Schlitzenberger already has,
that the full set of field axioms for F is unnecessary for much of the
development to follow. In ignoring the fact that these axioms can be
relaxed at various points in the development below, we are exchanging
some (easily obtainable) generality for uniformity in exposition,



On the other hand, WO is an endomorphiém of S under
which W (S) is a semivectot subspace whicn is "nnscéled,"
in the.sense that m =n for all n ¢ WO(S) and all u € F,
Wé-wili denote Wo(S) By N.

As_with an'ordinary'semigroup, if S does not‘havc an
1dentity, one may pass from S to S \J{e} by adjunction of an
identify. e (where e does not stand fot any element in S).
In~the_case where S 18 a semivector space, this is done by
extending @ and ¥ to S U {e}, setting e @ e =‘e,

e ®s =sde-= s(s'EIS), and Xeb= e(d € F) Henceforth we
will adopt the convention of denoting by s® a semivector
space with identity e, obtained by adJunction if necessary.

From -here on A will denote the simplex

n . .
-{(XO’ veey A ) £ En+1| Ai = 13 'Xi >0, i=0, ..., n}. Given
' 1-0 » : A

anjftwo'semivectors k;x' in a real semivector space S,

their segment - [x: x '] will be defined as {s = Ax Ovl'x'l
Q.1 € Al}. A suboet TCS will be called‘convex iff
Ix:xi]<:,T _ whenever x,ix' € T. The following.a:e plain:

if A ‘is convex in- S, tnen"uAt='{ua| a € A} 1is convex

¢ e'R);  if B, too, is convex in S, thencso are
A®B=1{a® bl ac€ A b € B} and all convex combinations

AA & A'B ((A Al ) 8 A ) -It ls important to note that, unlike
in vector spaces, in semivector épéces there'is no guarantee |

that x or x' belongs to [x:x'] or even that x € [x:x].-
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For example, consider the commutative semigroup2 ([R], 0) of
the set’ [R] of all non-empty subsets,‘ A, BC R, and obtain
a:real semivector space Qith origin e =j{0} bi setting
XA'=1{Aa| a e A} if A # 0, and AA = R otherwvise,

In,fﬁrther contrast to vector spaces, a Semivectof épace
S need not have aﬁ identity (merely delete all singletons in
the above example), nor need 0s = e even if ‘S has an
identity e (readmit singleton {0} as e). To continue, any
of éhe'examples above iilusfrates that S 'need not be can-
cellaﬁive. of cburse, S need not have aﬁ-inverse e
for each s € S,_ nor need_ s—1 = Y(~1, s) even if it has -
for example, form a regl semivector space by taking the ad-
ditive group G of reals and sefting YA, 8) =.|k|g (A € R,
g € G); A property conspicuously missing in all.of the abovg
examples is the distributivity (X + u)s = As & us, but the
following definition enables us to study thé—struc£ure of
semivector spaces with regard to yarious localized versions

of this property.

Definition: Let (S, ®, ¥) be a semivector space over a

field F. The set D(S) ©F x F defined by D(S)

={Q, ﬁ)l_(l + )s = Xs @ us for all s € S} will be called

‘the region of distributivity of S, and S will be said to

distriButé at (A, W) iff (A,vp) € D(S)., A real semivector

2The semigroup operation @& being defined by

A®B=1{a+blaecA, beB} for all A, B € [R].
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space S will be called pointwise convex iff Alc: D(S);

i.e., Is:s] =s(s € 8),

Since S and F' are both commﬁtative, it follows directly
from the definition of D(S) that D(S) is symmetric, i.e.,
tﬁat' @, ﬁ) e D(S) if (u. A) ¢ D(S). Furthermore, by
A#ioms_Z and 3, (A + u)s = As & ps implies v.(A +vﬁ)s'
= (V. A)s @ '(v.u)é, so that (A, u) € D(S) => F(\, p)< D(S),

where FQ, ﬁ) denotes the set ‘{(v.l, v.u)l v € F},

THEOREM;- Let S be a semivector space over a field F. Then

(denoting WO(S) = N) the following are equiﬁalent:

1. . (0, 0) € D(S); |

2, N is a commutative band (in fact an- "unscaled" semivector
subspace);

3. x{Tn = WO— () | n € N} is a partition of S into a semi-
lattice of semivector subspaces Tn eéch of which distributes

at (0, 0). Furthermore, if F is the field of reals,

then each of the above is equivalent to:

4., N 1is pointwise convex.

. Proof: [It was noted earlier in this section that N is an

"unscaled" semivector subspace of s].
ad (1 =>2): Forany Os=n €N, Os # O0s = (0 +0)s = Os = n,
so that N consists of idempotents.

ad (2 =>‘3): [The Tn's clearly partition §],
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Writing Sup(m, n) =m ® n in (the semilattice) ‘N, the blocks

T form a semilattice by setting Sup(tm, Tn) =

n TSup(lm, n)’

Defining T @ T = {t_ @t |t eT,t €T}, alsonote
v m n m n m m n n _
T 8T C T L ' . ,
n *n Sup (m,n) ] Let tm, t mve Tm. Tm is a semivector

subspace, as O(Xtm) = m, whereby Xtm € Tm; and as

.O(tm 8 té) = m by idempotence of m, so that T, “is closed

under &, Finally, Tm distributes at (0, 0), as (0 + O)tm
=m = m +m=0t @& 0t .
, m m . : :
ad (3 =>1): If each T~ distributes at (0, 0), then so
does s = UT . Now assume F = R,
_ N "n
ad (2 => 4): Use the unscaledness of N and the idempotence

of each of its members. T ,
ad (4 ¥5 1):_Given any s €S, 0s =n and (A,A") € Al’ we
havé 0s ® O0s = X(Os) ® )A' . (0s), and pointwisé convexity of
N eéuétés this to Os = n,

' #
TﬁEOREM; Let '{(Té, 82, ¥y | a € A} be a semilattice of

disjoint semivector spaces over F such that, for each

ae A,_Woa(Ié) = {a} and T, distributes at (0, 0). Denote

gTa = 8. .Then there exists.a ‘sivectox" space (S, &, Y)

over F of which each .(T;, Ga, Wa) is a seﬁivector subspace,
and S distributes at (0, 0).

Proof: :Forléxample, define OIand b4 as below, Order A so
that a_>_5 iff T >T

b? and define a ® b = Sup(a, b)

(@, b € A).. [Replace 'Sup' by 'Inf' throughout if {Ta, a € A}
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is a lower rather than an upper sgmilattice.] Finally, set

Sup(a, b), if a # bj -
t @ té -
t @ tg, if a = by
(t_ T t, €T.3 a, b € A); and define ¥(s8) = Wa(s) iff
a a’ b b ’ ~

s €T _(a € A).
a #

We now turn to structural aspects of distribution at

(0, 2) # (0, 0).

THEOREM: Using.the notation of 1.2, among the following

statements, the first two are eqﬁivaleﬁt; furthermére, if

F = R, then all three are equivalent,

1. s distributes at a‘point ©, A) aistinct from (0, 0).

2, '{Tﬁl n € N} is a partition of S into.a_sémilattice of
semivector subspaces Tn (each of whi;h distribﬁtes a;
(Q, A)) 'such that n is the origin of .Tn(n e N).

3. For each s ¢ S, s 1s the first element of [s:s].

Proof: ad (1 => 2): As shown immediately after 1.1, if

(0, ) € D(S), then (1.0, u.A) € D(S) for all u € F.

Settihg n=20 and.using 1.2, it remains only to prove that

n is the origin of Tn,' which now follows from the fact
that S distributes also at (0, 1): for any

t eT,n®t =0t & 1t = O+ 1t =t ,
n n n n n n n
ad (2. => 1): Trivial,

Now assume F = R,
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'ad'gg:é>'3): Let s € Tﬁ. 'Then Os & 1s =n®s=s.

ad (3 =>1); Obvious.

i

THEOREM: In the statement of Theorem 1.3, replace (0, 0) by
, 15»for some A # 0 and strengthen the hypothesis so that
a’ is.thé origin of Ta(a € A),

Proof: Same as that of Thecrem 173.‘ .
We close this section by giving some exercises and examples
in illustrationAof some.facts‘&hich follow easily from the

above,

Exeréise; Let S° be a cancellative semivector space.3 Then,
among tﬁe following statements, the first three are equivalent,
4 implies 5, and all follow from 6.
1. 1Se distributes at (0, 0).
2. s® distributes af (0, 1).

3. Os = e for all s ¢ Se.

4, For all s € Se,.(—i)s s =e,

5. 1f s° distributes at (a,‘b); thénvit distributes at
(a+ b, ~b) and (@ + b, -a).

6. s° 'digtributes at some (c, d) and (c +d, -d) for
wﬁich d % 0. |

Proof: '3.=> 2 => 1 even without cancellation. ‘Also, 1 => 3,

for Os & Os = Os cancels to Os = e, Given 4, if (a + b)s

implies s = t for all r,s,t € S.

;A semivector space S .is cancellative iff @& s = @ t
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= as ® bs, then (a + b)s ® (=b)s = as & bs @ (=b)s = as,
whereby S° distributes at (a +b, -b); the rest of 5 follows
similarly from 4. Obviously 6 implies 1, i.e., 1-3. To see

that it implies 4, hence 5, merely note that %-e,= e, since

d# 0, and that cs = (c +d ~d)s = (c + d)s ® (~d)s

= cs ® ds 8 (~d)s, cancelling to e = ds & (-d)s.

Exercise: A pointwise convex space s® is a vector space
iff C—l)s.Q s = e for all s € S, |
Remérk; We should caution the reader that a pointwiée cénvgx
space S need not contain an'origin, and thaﬁ, even if it
dées,.Os = e need not be satisfied by all’ s € S, ‘These
deficiencies are illustrated in the order of mention by the
exaﬁples below.
Examgie:' Let (X, %1, Wl) and (Y, Q?, YZ) be disjoint
pointwisg convex spacés containing their respectivg origiﬁs
el = WIO(X) and e2 = WZO(Y).: Define a pointwiée.convéx

- space & 0 Y, &, V) as follows:
(i) x ®x' = x 01 x' _ kx,_x' € X),
) yey =yey G, y' eY),

(iii) x 8y = et xeX, veY);

- v (s, if s e X

G(v) ¥, () = ‘

wkzcs), if s € Y.
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Evidently, X UY contains no origin.

1.10 Example: Let (X, 0;, Yl) and (Y, 62, Yz)‘ be as above,
. . .

except that if x € X  has an inverse in X then x = e

is poﬁ.reqﬁired. Define a pointwise cénvex space (X UY, &, )
with identity e' by leaving (i), (ii) and (iv) of 1.9 un-
chénggd and modifying (iii), for x € X and y €Y, to

) y; if x = el; |

1

(iii)’ x ey =
o lx, ifx#e.

el for all 'y €Y.

[
™
.

Evidently, Oy

1.11 Exer(:ise:4 Let X be a semivector space over a field F and
X, & ah‘ABelian semigroup. In particular, X ahd Y may
be:ijects in the category of semivector spéces over a field
F. Letb Hom(X, Y) denoté the get of all motphismé from X to
Y. Define "scalér multiplication" and "seﬁiyector addition"
in Hdm(x, Y) by setting Af(x) = f(Ax) and (f & g)(x)
= f£(x) e'g<g) for all x €X, '511 AE€F and all f, g
e:Hom(x; Y) . Then, Hom(X, Y).-is a semivqctér space'over the
':field F. These facts are not altered even if X is strengthened

to be a vector space or Y to be an Abelian group.

4Thié example was suggested by some of the constructions of Keimel
[1967a and 1967b].
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2. TOPOLOGICAL SEMIVECTOR SPACES

2.0 Definition: Let S and F be topological spaces such that F

is a field and'(S,_O, ¥) is a semivector space over F. Then

- (8, 8, ¥) is called a semilinear topological space (or topo-

logical semivector space) over F iff & énd Y are continuous.

"In‘a semilipear topological space, it is immediate from the
: confinuity ofv.W thaﬁ each Wk is'contindoué. Hence, writing
M= %; 80 long és A # 0, we have Wp continuous, whereby
Wl is both open and a closed map. VIt_foliowsvalso that ? is an
open mai) when re_striétgd to (F\ {0o}) x s. '

Stréngthenability of ;he Topology5

If  (Se, ®) is a commutative mqﬁ wiih‘Haﬁsdorff topology
on Se, it is possible to strengthen the topology on S® with-
out déstroying the continuity of ® and in such a wa& that
(€9) the nbd system of e is unaltered, while (ii) U®s is
‘now open whenever U is open in S° and s e S° [?aalman-

De Miranda, 1964;vTheqrem 3.2.13]., Given a semiiinear topologi~-

cal space (Se, 8, W). over a field F with Se.Hausdorff, by

a "stfeggthened" .topqlogy on S% we will mean,ohe which satis-
fies_(i)7and (ii) as_jﬁst stated. We may ask now whether there
exisﬁs é,streﬂgthened tbpology on S% under whiéh (Se, e, Y)

remains'avsemilinéaf topological space.. (Of course, in a linear
topological spaqe.the topology is already a strengthened version

of itself). .

We are grateful to Prof, T. Bowman for pointing out an error in an
earlier draft of this section,
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Hhving Paalman~De Miranda's result as stated above, the
queétion ¢learly boils down to whether the continuity of V¥
can_bé preserved under a strengthened topology on s€, A1~
though we are unable to assert in general when this can be done
and when it cannot, we recognize a research problem here and
offer the follbwing as an example where it cannot be done even
though the space whose topology is to be strengthened is, as
the reader may check, a pointwise convex semilinear topological
~ space with identity and with a topology which is locally

compact,‘metrizable, 3° locally convex (see 2.2 and 4.4), etc.

Exaﬁgle: Let F be'the real field with usual topology, and define
a real semilinear topological space (KQ(R), ®, ¥) over F, where
KQ(R) is thé set of all nonempty éompact and convex subsets of

R (the ;bpological group of the reals with usual tdpblogy),

whefe [a, b] & [c, d] ='{x +y| &, y) € [a, b] x [c, d]}

and Ala, b]

[Xa, Ab] for all a, b, ¢, d € R, A € F, with
a s band ¢c <d, and where the fiﬁite topology is taken on the
hyperépace Se = KQ(R). Fix attention to any non-singleton

e

t € S, and consider the restriction Y& . F x {t} > s® of V.

Strengthen the topology on -Se by déclaring the translates

‘U ® s to bé (basic) open for each s € s® and each "originally"
open U C:Se. The facf ié.that. Wtb is not continuous under

the s;rengtheqed tobqlogy on Se. Fof let. U be an oﬁen nbd

of e, and consider the (basic) open nbd U ® At of At for

some A > 0. Now the inverse image R of U #® At under yt
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contains (A, t), but it contains no (U, t) such that
0 < u < A. For suppose that 0 < p < A and that ut = At ® u

for some u € U. Then t = %-t & %-u, which is impossible

A i . A A LA
since diam (a t & a-u)_z diam q: t) and, as E-> 1, diam q; t)

> diam (t), whereby diam (t) < diam q% t'*'% u), contradicting

" that ut = At ® u. Thus, A = Inf(Q), so that £ is not

open showing that Wt is not continuous. Thus, the semilinear
topological space just considered, despite all its properties,

does not remain a semilinear topological space when its topology

. is strengthened in the fashion sought.

Real Semilinear‘Topologicél Spaces and Axioms of Local Convexity

The following intuitively pleasing fact is a natural one
early to check.
Lemma: 1In real semilinear topological spaces topological closure

(C1) preserves convexity.

Proof: Let Q be convex in §, a real semilinear topological

space. - 1f Q = ¢ there is nothing to prove, so let q,.q'_ be
adhereﬁt points of Q. Suppose Aq ® A'q’ =Aa ¢ C1(Q) for some
@A, A\") e Al. Then there exists a nbd V of q disjoint from

C1(Q). The map f: S X S > S, defined by (x,x') = Ax & A'x’',

'being.continuoug, there is a nbd U X U' of (q, q') such

that QU x U')c V., Since q and q' are adherent peints of
Q, however, there exists (y, y') € U x U' such that y, y' € Q.

Then, by convexity of Q, Q(y, y') € Q, a contradiction.
. ' #
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Apért-from preparation for their use in the fixed point
theory of Section 3, our motivation for stating the following
"axioms of local convexity" derives from the fact that, al-
though for a topological subspaée X of a linear topologicalb
(Hdusdérff) space the first three are always equivalent and
all four are equivalent when X is convex, we are able to
assert only weaker relationships between them in the case of
semilinear topological spaces. Given a subset X in a real

semilinear topological space, we have the following

2.2 Axioms:

0. For any x € X and any nbd VAof X, in'theAsubspace
topology of X there exists a convex nbd U of # such that
II::\U

1. Thgre exists a guasi~unifofmity E ='{Ea¢= X x X| a € A}
of X inducing iﬁs subspace topology, such that, for each
Ea-'t-:' E, there.eiis'ts a closed }?.B € E with EBc E, and
EBCx)‘convex.for each x € X;

2. The‘x?e"existsv a'qua.si-unifko’rmity E= {Ea: X x x| o € A} of
X induciﬁg its subspace topology, such that, for each . |
.Ea € E, there éxists a closAed EB €E -wiﬂ? EBC EOL and
-EB (K)' convex for each coﬁpact and convex gui:set KC X;

3. X.is convek and there exists a uniformity E = {Eat: X x XI
d € A} of X inducing its'subspace‘topology, such that, for

each E € E, there exists a coﬁvex EB € E withHC1(EB)C:'§1{
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X will be called O°/1°/2°/3° locally convex (l.c.) accordingly

as itAsatisfieé 0/1/2/3 among these axioms. Thus, 0° local

convexity is the familiar local convexity.

'Propositibn: Given a subset X of a real semilinear topological

space,
1. If X i1s 1° l.c., then it is 0° l.c.;

2., If X is 2° 1,c, énd pointwise convex, then it is 1° l.c.; and

3. If X is 3° l.c., then it is 2° l.c,

Proposition: Every 0° 1.c. T1 space is pointwise convex.

Proof: Let X be a 0° l.c. T, space, and let x € X, As X is

0° 1.c., there is a local base B ='{Ba].a € A} at x consisting

of convex nbds. Thus, Xx € B= f\Ba, and B is convex. In fact,
. ' A- ’

= {x}. For, supposing y € B for some y # x, as X 1s Tl’

there exists a nbd U of x to which y does not belong, whereby

y ¢ RJC: U for some Ba e'B; contradicting that y € B. Thus

{x} is convex. : ' ‘ p

Products of Semilinear Topological Spgces

Given a family {(S &~ Wu)l o € A} of semivector spaces
over a fleld F ‘their product (S = H S o ? @, W) is the semivector
space the algebraic operatlons 0 and Y of which are deflned

coordinatewise as follows.

{sa}“a c A @ {ta}a e {Sa ) 'ta} we A

]

A({s } ) = {w.,\“(s )}a A

a’a €A
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(sa, t, € 8,5 O € A {Sa}a e A’ {ta}a c A €5 Ae F) of
}

coufse, e={ is the origin of § iff e is the origin

“a’a € A
of Sa for each o € A, Furthermore, S distributes wherever
all of its factors do so. Turning to semilinear topological
spéceé, the product, taking the product topology on S, is, of

course, a semilinear topological space iff each of its fact-

ors is.

2.5 Lemma: Let'{Xdl o € A} be a family of 2° l.c. spaces of which

all bﬁt finitely many_Xa are convex, and lét E be a quasi-uni-
formity induciﬁg the product topology on X =11 Xd. Then, for
every F € E, there exists a closed E € E suéhAthat‘EC:'F and
E(X) ié qonﬁex whenever K is the product K =1 Kﬁ of compacﬁ
and convex subsets’KaC:.Xa. y

Proof: Contained in F, find a basic H € E which restrictsba

finite set NG A of coordinates, including (w.l.g.) the set

M & A of indices m for which Xm is not convex. Now

X XOC)’

H=1I1H x I &
N B o

A\N
where Hh belongs to the quasi-uniformity En of Xn(n £ N).
For each n € N, ﬁsing the 2° l.c, of X » find a closed En € En
such that EnC: H with En(Kh) convex for each compact and
. : = X ’
- convex th: Xn. Wrife E g En x AQN (Xa Xa)' 4
2.6 Lemma: The product of a family of 1° 1.c. spacés is 1° l.c.

if all but a finite number of the factor spaces are convex.
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Proof: Imitate the last proof. ¢

Upon noting that projectiohs preserve éonvexity, and
assumiﬁg that the product space is compact; it is easily veri-
fied also that the factor spaces are 1°/2° l.c.. Finally, the
proof:of the following stronger proposition for the case of

3° l.c. spaces is omitted being straightforward.

2.7 Proposition: The product of a family of spaces is 3° l.c. iff

each of the factor spaces is 3° l.c..
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. FIXED POINT AND MINMAX THEOREMS

Throughout this séction we will be concerned only with point-
wise convex real semilinear topological (pcrst) spaces, not nec-
essarily containing an origin; these spaces will be assumed Haus-
dorff, and the real field will be taken with the usual topology.

Gifen topological spa¢es X and Y and a mapping f of X into
the set of non-empty subsets of Y, wﬁen we say that f is upper

semicontinuous (usc), we will mean that, for each x € X, given a

nbd VEC Y of £(x), there exists a nbd U of x such that f(U)Q V.
For the composition of two binary relations F& A X B and

ECC X D, we will write E° F for the set (binary relation)
{(a, d)lgx € B NC such that (a, x) eF and (x, d) € E}.

In the sequel, 1CQX)"! _should be read as "the set of non-empty

~ closed and convex subsets of X",

3.1 THEOREM (Fixed Point): Let S be a pcrst space, let X be the

closed convex hull X = {x = loao- ¢ ... & )\nan| A= ()\o, ey
| ln) € Aﬁ}.of' {ao, ceep an}C'S, and let f: X"-*CQ(X) be an

upper semi-continuous transformation of X into the set CQ(X)

of non-empty, closed and convex subsets of X. Then there

exists a (fixed) point x € X such that x € f(x).

Proof: Let y: Ah -+ X be the map defined by Yy(QA) = )‘oao @

cee B )‘nan’ and 1gt ¥ An x An + X x X be the map defined

by Y(d, n) = (xpv()\),'tp(u)). Since the algebraic operations of.

S are continuous, so are Y and Y.
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i.e_t g X x X be the graph of f and let GC& An X An be
the graph of the map F: A > An. def ined by FQL) = np'l(f(zp(x))).
Thﬁs‘ G = w—l (g). Since An is compact, by continuity of
w; X = WCAn) is compact, hence regular. Thus g is closed,
since f is usc. Hence, by continuity of v, G_ is closed,
whereby F is usc by compactness of An' |

Clearly, for eaéh Ae An’ FO)_ is non-empty; also, it is

closed, since £ (1)) is closed and Y is continuous, Further-

more,bFOt) is convex, For let ﬁ, 11‘ e F(A), 1.e., for some
' , = . v
Y ¥ .e fWQA)), let y uoao_Q e B ua _ and

y! =.p5'ao @...8na; for B' = (1- B) e [0, 1] let

ﬁ % Bu & B'u'. Then ;.E FQA), sinée! denotiné y = ﬁoao @
vee B ﬁnan’ by pointwise convexity of S, y = Sy ® B'Y';»
and, by convexity of £f(YQ)), BY_O-B'y' e £@W)).

_Hé.’nce, by Kakutani's fixed point theorem (1941), thére
exists a A* ¢ An such that A% g F(A*), implyiﬁg that

YOK) € fYOR S X, | Ly

THEOREM (Fixed Point): Let f: X > X be a continuous'trans-

formation of a 1° 1l.c., compact and convex subset X of a
pcrst space; Then there exists a (fixed) point x € X such .-

thét x = f(x).

Proof: Since X is compact, there exists a unique uniformity
on X compatible with its subspace topology. Since X is 1° 1.c.
we assume'that'{EQCZ X x X| o € A} 1s a fundamental system of

closed entgﬁrages of this uniformity such that Ea(x) is
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(closed and) convex for all x € X, Define Ya = {x| x¢
Ea»(f(x))}. We will show that Y, is non—empty and closed for
each a € A. Then, as the intersection of any finite collect-
ion of Ya's is non~empty, compactness of X will imply that

n

G €A
implies x = f(x).

YOt # ¢, thus proving the theorem, for x € o Q A Ya

' To show that Y, is non-empty, let {DOLI o € A} be a
family»of_ open symmetric entoui'ages such that Da.c Ea (a E‘A).
Thus, for any given o € A, {Da(x)l x € X} 1is an open‘;:lov‘er
qf X, so that there exis.t X ceey x € X ﬂrith X (v iLio Da(xi)'
‘Denote the closed convex hull of {xo, cery xn}' by |
P =" {§_= ono 0. oo B lnxnl. A= O‘o’ ceey )‘n) € An}. Define
thé ﬁap Ga on P by Ga(p) = Ea(f(p)) n .P.‘., I‘hen, by symmetricity
of D,& E,, for all p € P, Ga(p) is non-empty; clearly it is
also _cio_sed and coﬂvex. Thus Ga maps P into CQ(P). Denoting
the graph of E, ° f by Qa’ the graph of Gd is simply
I'a = Qa ) P x P, Since an is usc (by fhe closedness of Ed in
the compact X X X). and since f is continuous, >E;1 °f is usé, _
i.e,, Qa is closed, as X is regular (in f’ac’t,-'c'ompact). Hence,
‘I‘-a is closed and, by comlﬁacthess of the range XA, Ga is usc,
T}tus, .by Theor 3.1, there exiéts p € P such ‘that P E Ga(p),
i.e., p t—:'vYa, shoying that Y, is non-empty. Y is obviously
closed, s'ince'.it is nothing but the projection 'n‘x(Qa N » of

the compact set Qa N A where A is the diagonal in X X X,
' ‘ #
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THEOREM "(Fixed Point): Let {xal o € A} be a family of 1° l.c.,

‘compact and convex subsets of Cpcrst) spaces, and let

‘{fa: X +-Xa| o € A} be a family of continuous functions on

X =II'X, Define F: X > X by F(x) =1 £ (x). Then there

A ° A Y
exists a (fixed) point x € X such that x = F(x).
Proof: Cleafly, X is a non-empty, compact and convex subset
of a pcrst space. Since each Xa is 1° 1.c¢., so is X, Further~
more, F is continuous, as each fa is éo. Hencé, the result
foilbws-readily‘by application of Theorem 3.2. #
THEOREM (Minmax): Let X

and X, be 1° 1,c., compact and con-

1 2

vex, Let u be aAcontinuous real-valued function on X = X1 X Xz,

such that

fisz) ='{il| u(xl, x2) = Max u(y, x2)}

| yeky
fZCxl) = {le u(xl, xz) = Min u(xl, z)}
zeX
- 2
define‘functions f1 : X2 > X1 and f2 : Xl g Xz; Then
M;x M;n u(xl, xz) = M;n M;x u(xlg xz).
1 2 ’ 2 1 s

Proof: It is obvious that; for all (il, §2) € X,

— > B > I}
Max u(xl, x2) > Min Max u(xl, xz) > Max Min u(xl, xz) >

% X, % )
M}:‘;n'u(:-;l,“xz). N
2 -
Clearly, the functions'f1 and f2 are continuous, so that the

function F: X + X defined by FCgl, xz).=-(fl(x2), f2(x1))

is continuous, Then by Theorem 3,3, there exists an x* € X
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such that x* = (x¥ xg) = F(x*)., Hence, Max u(xl, x;)

1!

= Min'ﬁfo, xz), thus proving the desired equality. #
X, - :
2

THEOREM (Minmax): Let A, and A2 be non-empty but finite sets,

each lying in a pcrst space, and let Xl and X2 be the closed
convex hull of A1 and AZ' respectively, Let u be a continu~

ous real-valued function on X = X; x X,, such that

-f1Cxé) ='Ex1| u(xl, xé) = Max u(z, xz)}

| o
f, () = {le u(x;, X,) = Min ulxy, z)}
o . zeX
o o 2 B
define maps fl : XZ - CQ(Xl) and f2 : Xl +> CQ(XZ). Then
M;x Min ux, x,) = M;n M;x u(x,, xz).

Proof: Use Theorem 3.1.

THEQBEM;(Fixed Point): Let f: X + CQCX) be an upper semi-

continuous trénsformation of a 2° 1,c., compact and_convex
subset X of a pcrst’space.inﬁo the set CQ(X)Aof non—eﬁpty,‘
closed and-coﬁvex subséts of X.  Then there exists.a (fixed)
point x e X such that x € f(x).. |

gggggf As in‘the proof of Theorem 3.2, it suffices to show
that the sets Yav= {xlsx.g E, (f(x))} are-non;empty and closed,
where, in this case,'{EdI o € A} is a fundamental system of
closed entourages of the space X such that Ea(K) is (closed
and) convex for each non-empty, compact and convex subset

KC X. The proof is the same as that of Theofem 3.2 except
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that appeal is now made to the upper semi-continuity, rather

than the contimuity, of f. - , #

THEOREM (Fixed Point): Let {X | o € A} be a family of 2° l.c.

conipac_t and convex subsets of perst spaces, and let

'{fa: X > CQQ(a)I o € A} be a family of upper semi~continuous

transformations, where X = I X . Define F: X + I CQ(X )
- ‘ /A o A ¢

by E(x) =11 fa(x) (x € X), Then there exists a (fixed) point
A ' ‘

% € X such that x € F).

/

. Proof: Clearly, F is an usc transformation of the non-empty,

compact and convex space X into CQ(X). Aithough X need not
be 2° 1,c., by the 2° local convexity of each Xo:.’ the uni-

formity on X allows a fundamental system>.{Ei| i € 1} of

 closed entourages such that, whenever K is the product

k = Il K of compact and convex subsets K. < X , E, (K) is

A o a - "o i
closed and convex (See Lemma 2.4). Notice that F(x) is such
a product of compact and convex sets fu(x)<¢: Xa.' Thus, as in
Theorem 3.6 defining Y, ={x| x¢ Ei('F(x-))}, it is clear that
Yi is non-empty and closed for each i € I, implying that
n Y, # ¢ and proving the theorem., 4

THEOREM (Minmax): Let Xl and X2 be 2° 1l.c., compact and con-

vex, each lying in some pcrst space, and let u be a continu-

ous real-valued function on X = Xl X X2, such that

fl(xz) = {xll u(xl, xz) = Max u(y, xz)}
yex,
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fZCXl) =i{x2| qul, xz) = Min u(xl, z)}
z€X2

»défine point-to-set transformations £,0 X, > CQ(Xl) aqd

-+ CQ(XZ), respectively. ‘Thén Min Max u(xl, xz)

£f.:+ X
2° "1 % X

2 1

= Max Min qul,.xz)._

X %

_Proof: Straightforward | 4
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HYPERSPACES AS EXAMPLES

In this section we,show how (topological) semivector spaces

arise naturally as certain hyperspaces of certain (topological)

vector and ‘semivector spaces, In topologising hyperspaces, we use

the upper semifinite, finite or, when applicable, uniform topology, :

regarding all of which we adopt E Michael [1951] as standard

reference.6

4,0

4.1

Standing Notation: Given a set X, [X] will denote the set of

non-empty subsets of X, If X is a topological space, C(X),

o) an& KCX) will denote the set of non~empty subsets of X
which are closed, opéﬁ and compact, respecfively. If X lies

in a real semivector space, @(X) will denote the set of non-

- empty convex subsets of X. Finally, we will denote

CQX) = CX) N QX), 0Q(X) = 0(X) N Q(X) and XKQ(X) = K(X) N QX).

Lemma: Let X be a subset of a real semilinear (Hausdorff) top-

ological space, and let H(X) denote the hyperspace C(X) if X is

“regular, and K(X) otherwise. Equipping H(X) with the finite top-

ology, HQ(X) = H(X) N Q(X) is then closed in H(X).
f_f_go_f;: For some 'direoted set D, let {.Pn € HQ(X)| n € D} b.e a
net in HX) converging to.P;..'(Of course, P*:é HEX)). Letv
p “ p; P ,'and take an arbitrary convex combiootion
= lp* ® A'p . We need to show that p € P o ‘
There exist nets {p € P | n € D} and {p €P l n € D}

7
converging, respectively,_to 1 and p;. It suffices to show

6For'définitions, see the Appendix at the end.

The existence of such nets is guaranteed in virtue of
Lemma 1 of the Appendix. :
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B : S = Aln!
tha;_thg net {pn € ?nl n € D}? dgféned by p_ = Ap_ @ A'p!,
converges to 5*.8 Define Q: X X X >~ X by Q(x, x') = Ax & A'x'.
By continuity of )}, for each nbd V of 5*, there exists a
nbd U x U'€@ X x X of (p_, p!) such that Q(U x ADY —3 '
: *

Clearly,'IBn € Pnl n € D} is eventually in V, ' "

.~. Let (S, #, ¥) be a semivector space over F and, for any
A, B S; define A®B={a®blaca, beB} and
A=Y@, A) ='{Aal a € A}, Then ([s], ®, ¥) is a semivector
space;iand if F = R, then (Q(S),‘Q, ¥) 1s a semivector sub-
space of [S]; furthermore, in this case, S is a semivector
subépace of @(8) iff S is pointwise convex; and § is pointwise
conyex oniy if Q(S) is So; |

A topdlogical semivector space (S, @, ¥) ié a topological

.seﬁivector subspace of (X¥(S), ®, ¥), which, in tufn, is a
topblogica} semivector subspace of ([s]1, 9{'W), giving the
finite topologies to K(S) and [S]. _Furhtérmore, K(S) is.
Hausdorff iff S is so. If (s, &, ¥) is a semilineér topo-
1ogic$1'space with é "strong" topology,'(cf, Section ?),‘i.e.,
a topbiqu in whiéh U'$ s is open whenever U &S 1is open and
s e.S (sﬁch as in lineaf tdpologicai spaces), then ©e), 8, ¥
is a topolqgical semivector'subépace of ([s], @, ¥), giving
the finite topology to 0(S) and to [S]. It féllows that Q(S)
-and KQ(s) are ;opoiogical semivector subspaces of [S] whenever
s8] is aAtbpological semivecﬁor space, and 0Q(S) is a (topo-

logical) semivector space whenever 0(S) is a (topological)
8

For, then, Lemma 2 of the Appendix guarantees that 5* € P,.
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semivector space.

4,2 Propoéition: Let S be a real semilinear topological épace,
and let X s® be convex, Then K@ (X) is convex. Assume that
s® has a strong topology (i.e.., a topology which 1s a .strength-
enéd version of itself, as described above) and equip XK@ (X)
with the upper semifinite topology. If X is 0° l.c., then

so is KQ(X) - although it need not be Hausdorff even if X

is Hausdorff. Furthermore, if X is pointwise convex (so that
KQ(X), too, is pointwise. convex), then XK@(X) is 0° 1l.c. only
if X is 0° 1.c.,

Proof: 'I'heA rest being clear, we only prove that X@(X) with the
'upp'er semifinite topology is 0° l.c. when X is so. Let

A € X@(X), and let W KQ(X) be a nbd of A. Find a basic

nbd .<V> of ‘A such that <V>C W, Then V& X is a n';Jd of

AC X, By continuity of @, fof each a € A there exist open
nbds,Ua of e and Wa of a such that Ua o Wac V, while the

0° local convexity of s allows us to assume each Ua to be
~convex and the st.rong.v t‘op-ology assures us that each Ua + Wa

is open. {Ua & wal a € A} thus being an open cover of the

compact A, it has a finite subcover {Ua K W | i e 1},

i i

Denoting U = U, and W =W W, , we see that ACU & A
) I i I i

C U®WCVand that U ® A is convex. Furthermore, U & A
is open.'in the strong topology, so that <U & A> = XKQ(U & A)

is an open convex nbd of A € KQ(X), while <U € A> C <y>C W,
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as desired, : . #

Coroliarz: If X is convex in a (Q;) locally convex real
linear topologicol space {(not necessarilyAHéusdorff), then
KQCX) is convex, pointwise conve# ond; with'the ﬁpper semi~
fioiﬁe topology, 0° 1l.c., as well,

252255: The topology of a linear topological space being

strong, the last proposition applies. ‘ | 4

Corollagz: Let X be convex‘and T1 in a semilinear topological
spéce with strong topology. Then X is 0° 1,c, iff XQ(X)

with the upper semifinite topology is 0° lic.

Egggﬁtl "Onlj if" follows from 4.2; As X is pointwise convex

by 2,4, "if'" also follows from 4,2, o p

Proposition: Let L be a (0°) locally convex linear topological
space. The KQ(L), with'the uniform (or, equivalently, the
finite) topology, is 3° l.c,,

Proof} Let'{Wd[ o € A} be a fundamental system of convex

-and symmetric nbds of the origin e € L, so that'{EdC:L X L|

o € A} is a fundamental system of entourages of the uniform

structure of L, having defined Ea(x) x & Wa for each 0 € A

and x € L. For any P € KQ(L), Ea(P) 'P'Q WaCZI;is a nbd
of PC L. By definition, the uniformlétructure on K@ (L)

is the one generated by A and collections Fa(P).='{T € KQ(L) |
P CEdCf) and P 0 E,(t) # ¢ fp.f all t € T}, that is to say,

F @) =1{T ¢ kQ(L)lﬂP:Ea‘('r) and TCEd(P)} (P‘g KQCL)).



-33-

It_suffiges to show that each F&bis convex, To see this,

fix o and note that (P, Q) e F, iff PCQ® W, and

QC:‘P 9 W&. Let CP,_Q); CP'; Q') € F&;.ana consider an
arbitrary convex combination (F, a) =..O\P.0_ l"P', AQ &.2'Q"),
recélling that KQ(L) is a pointwise convex (topological) |
sémivector space,iso_thaf §, 6’3 XQ(@)., Since Wa is convex,

we have P = AP @ A'P'CCA(Q @ W) #A'(Q" # W ) = AQ 8 1'Q" & W,
= 6 @ Wa. Similarly, QP e Wd. Hence, (‘f’, .6) € Fa’ as

.was to be shown. 4
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APPLICATIONS IN SOCIO—ECONOMIC ANALYSTS AND OPTIMIZATION

Fixedvﬁoint methods have been a traditionai means of demon-
strating the existence of economic equilibria, which can be looked
upon asffiked point$ of certaiﬁ economic adjustment processes. For
example,‘éiven a finite number of commodities which are exchanged
in an ecohomy,ICOnsier a'vector of pridces Qith a price for each
éoﬁmodity. - By choice‘of definition for 'commodity' the prices can
be assumed non-negative without loss of generality, and they can
bé scaled so as to add up to unity as long’és at least one commod-
ity is écarce in the sensé~of having a positive price. Modelling
the (exchange) economyjto'resemble an auction hall, whenever a price
vector is proposed to the particiﬁants, each declares the ambunt of
éach commodity whicﬁ he wants and, given his pfeseﬁt-endowment of
commodities to be used in exchange, he can afford at the proposed

prices.’,As_a_result, there may be (positive, zero, or negative)

excess demand for a given commodity. If theré is positive (negative)
excess demand for some commodity, its pfice is bid up'(down). An

" equilibrium here'is'a price vector for which the excess demand in

each commodity'is zéro, so that no ;ommodity price is bid up or
down while'éll markefs_are "élearéd". One asks whether such an
equilibrium_gxis;s. Under rather'reasopasle conditions on the
preferencés pf the individuals, using a suitable fixed point
théorem, §né“can‘show that indeed there.does exist an equilibrium
and, in fééf, one can say more concerning the'stability, optimality,

etc, of such équilibria.
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Thé above hints at how fixed point methods may be used in tﬁe.

equilibriﬁm analysis of the simplest of'écéﬁomic systems, ATo do
the same for optimization theory, suppose one is trying to find
a pdiht i*'in a compact and convex set X lying in a réai linear
topological space,'such that x* maximizes scméAreal-valued fqnction
f:X - R, where we simplify matters by assuming that f is quaéi—
. concave and upfer simeiconfinuous. Supﬁose one can design an -
algorithm consisting of a point-to-set transformation T:X - cqX)
such that f(y) >fx) for all ye T(x) ¢ X).'unleés X maxi-
‘mizes £, in which case f(x) = Sup f ana x € T(x) is é fixed point
§f T, solVing the maximization xprbblau. In probiqns such as this,
-fixed point theo:éms tell us which mbnotonicélly.improving maps T
have fixed péints, SOIthat we may design one which works. Also,
before trying to optimize, one méy wish to feel assured that there
exists‘an optimum. Iq ﬁfoving thé exiéteﬁce of such optima, fixed
point méthdds-again becomg very dsefﬁl,

S Tb cﬁmé to the pérticularAcéntribugion of semiiinear topological
‘spaces aﬁd fheit fixgd point prqpertieé.as presented heré; imagine
- the casévwhere the '"feasible rggion" to whiChvchoices are constrained
is altered py the very qhoice of point in fhag fégioﬁ. (For instance,
whetﬁer or.noﬁ'One'haé choseﬁ to learn mathematics whén young affects
what one may or may not do when older. Also, unless one invests some .
of.one's resources in building a spaceéhip, éne is not able to go to

the Moon.) Allow it to happen, furthermore, that the constraints
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operating on one‘s_fﬁture chOice:of behavior depend also on other
agénts? choices and constraints. Givén a set A of choicedmaking
agents o € A, assume that the feasiblé region for each o is
always atboint kaie CQ(Xa), where Xa € KQ(LQ) for some (0°)
locally convex real linear topological space >Lu. From 4,5 we

know that, taking the finite topolog; on‘ Yd = KQ(XG), Ya is

3° 1l.c.; we also know that it is compact and convex, lying in a
pointwise convex real semilinear topological space KQ(La). Further-
more, all ;hgse properties are sharéd by Za ='xa X Yd. Denote‘

X=1 X&, = 1 XB and Z = I Z. Assume that each a's feasible
A A\{o} A '

region kd is determined by a continuoug "feasibility transformation"
tys Z *_Ya. vGiven'a feasible region ka and a poiﬁﬁ_xa e X represent-
ing how all the other agents chose to behave, q COmputes the set

a(ka’ xa) of 'best' choices x, € ka such that fa(xa; xa)

= S:p fa(" ka), given some éontinudus and quasi~-concave real-

valued function fa:X -+ R representing a comp;ete preordering of X
according to o's preferences. Then a(k&, xg) will be a honempty
- compact and convex subset of ka~' Xa’ where (ka, xa) is also the

projection T ). Hence,'{ta(z)} x a(kd, xa) is nonempty,

Y X X
o o o
compact and convex in Y X X = Z_, Thus, I({t_(z)} x o (kg xa))

- _ o o o PO
is nonempty, compact and convex in Z. If a is usc, as it will be
"in this case, then we have an usc map of Z into XQ(Z). It is easy

to see how our fixed point theory now yields a fixed'point z € 2,

which in this case is a "dynamic social equilibrium" - "dynamic,"
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.becausé'tﬁe feasible regions kd were allqwed tq change as a function
of z, not necessarilyibeing‘consfant.

The simplicity brought by .'the method above is tflat feasible
regions are treated as points in a semilinear'topolbgicéi (hyper)
space, without being restricted to consideratioﬁ as sets per se.
Many quite general forms of "feasibility.transformations" now
become easy to work with, giving simplicity, as well as generality,
to the analysis of "dynémic social systems" (where feasible regions
are not necessarily.fixgd, but are endogenous to the adjustment
processes in the systém).

‘We have indicated ohly'how one uses the methods presented here

. in proving the existence of economic énd‘social equilibria. Equi~
librium analysis, of cburse, is meant to do more than just prove
equilibria to exist., Nevertheless, tﬁe existence question has to
be settled in the affirmative for a sufficiently unrestrictive set
of conditions before one can proceed on sbund footing. 1In
[Prakash, 1971] and [Sertel, 1971] such a footing is offered in

more detail and generality and with rigor.
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APPENDIX
‘Definitiont: @ Let X and Y be topological spaces, and let [X] denote

the set of all non-empty subsets of X . The upper Semifinite gu.s.f.)

- topology on [X] is the one generated by taking as a basis for open
collections in [x] all collections of the form <U> = {A € [X]I Acul,

and the lower semifinite (l.s.f:.) topology omn [x] is the one generated by

taking as a sub-basis for open collections in '[X] all collections of the
form <U>T = {a e [x]| ANU 4 ¢}, where U is an open subset in X .

- The finite topology omn [X] 1is the one generated by taking as basis for

open collections in [X] all collections of the form <IH_""’Un>

g2 A n U, +¢ for i =1,.0.,n} . ‘A mapping

- n
={aex]l]acuu
A 1 .

f: Y - [X] is called upper semi-continuous (u.s.c.) [resp. lower

'semi-continuous'(l.s.c.)] iff it is continuous with respeét to the

u.s.f. [resp. l.sff.]_ tbpology on [x].

Remark: It follows that f is continuous with the finite topology_on

[X] iff it is both u.s.c. and l.s.c.

LEMMA # 1: Leﬁ X be an& tépological space and let é&(x) , the set of
all nonempty closed gdbséts of X, carry the finite tbpology. For some
directed set (D,. AZ)‘, let. {Pn € G(X)l n e D} be a net in C(X)

: converging to sqﬁg point P*.eXZ(X) . Then, for every p* € P*, there

exists a net {pn € Pn’CZX\ n €D} in X, converging to p* .
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Proof. Let p* € P* be such that there exists no nét {pn € Pnl n € D}
which converges to p*. Then tﬁere exists anbd U of p*, UCX,
such that for every m €D, En €D, n2m, for yhich P Nu=¢.
Define 'ix=,<X, u>={aec®| Acx, ANU# el Clearly, U is

a nbd of P* §uch that if Pn nNuv=g¢, fhen Pn £ 'L(‘. Then u' is a nbd
of P* such that the net {Pn\ n € D} is not eventually in U . This

is a contradiction. _ ' #

LEMMA # 2: Let X be a Hausdorff topological space, and let ¥ (X)

dénote the hypérspace C(X) if X is regular, and X (X) otherwise, where

¥ (X) ~ denotes the set of 511 ﬁonempty compact subsets of X and where

¥ (X) is equipped with the finite topology. For séme direéted set (D, 2),
let f{p_ € %((X)I n € D} be a net in ;'&((X) converging to some P* € ¥ (X).

Then, for every net {p’n € Prl C X\ n € D} in X which converges to & point

p*ex’ p‘.':ep*.

Proof. Let a net {pn € Pn\ n € D} converge to some point p* € X and
suppose p¥* !’:‘P* . Then there exist nbds U of the subset P* and V of
the point p*, U, VCX , such that unv =A¢.‘ Since {Pn\ nebp}
converges to P*, there exists ..m €D such that for every n2m, n €D,
P € U=<U>= A en@| Acul implying that P NV=9, for ¥

is a nbd of P* € ¥ (X) . Thus the net {pn € Pn,l_ n € D} is eventually not

in V . This is a contradiction. N » #
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