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THE VLBI TIME DELAY FUNCTION
FOR SYNCHRONOUS ORBITS

ABSTRACT

VLBI is a new satellite tracking technique that to date has been applied
largely to the tracking of synchronous orbits. These orbits are favorable for
VLBI in that the remote satellite range allows continuous viewing from widely
separated stations. The primary observable, geometric time delay, is the time
difference for signal propagation between satellite and baseline terminals.
Extraordinary accuracy in angular position data on the satellite can be obtained
by observation from baselines of continental dimensions. In satellite tracking
though the common objective is to derive orbital elements. A question arises
as to how the baseline vector bears on the accuracy of determining the elements.
Our approach to this question is to derive an analytic expression for the time
delay function in terms of Kepler elements and station coordinates. The
analysis, which is for simplicity based on elliptic motion, shows that the
resolution for the inclination of the orbital plane depends on the magnitude of
the baseline polar component and the resolution for in-plane elements (semi-
major axis, mean orbital longitude and eccentricity) depends on the magnitude
of a projected equatorial baseline component. An application is made to obtain
orbital elements from VLBI tracking of the ATS-3 synchronous satellite.
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THE VLBI TIME DELAY FUNCTION
FOR SYNCHRONOUS ORBITS

INTRODUCTION

Very Long Baseline Interferometry (VLBI) is a recently developed RF tech-
nique that is coming into use for the tracking of spacecraft. In this technique
the spacecraft radiates noise over a broad frequency band and the amplitude
variations of the signals are simultaneously recorded at two widely separated
observing stations. Their incoming signals are essentially the same except for
a difference in arrival time (geometric time delay, Tg ) and a relative doppler
frequency shift (fringe rate, VF ). The stations are each instrumented with VLBI
backend systems which include independent atomic frequency and timing standards
and magnetic tape recorders for the processing and recording of the signals.
A detailed discussion of the methods of VLBI whereby signals are processed and
reduced to tracking data is given in Ref. 1. Here we are concerned with the
analytic properties of the VLBI tracking data as related to satellite orbital
elements.

The time delay measures the time difference for signal propagation between
satellite and the terminals of the baseline formed by the two stations. Thus

R1 - R2 (
C (1)

R , and R 2 denoting the range to the stations and c the speed of light. Fringe
rate is defined as a delay rate. The equation is

VF f (2)

f being the signal frequency.

When tracking at remote range these observables essentially yield angular---
data. The resolution for determining position will depend not only on instrumental
factors such as the stability of the atomic standards, signal recording bandwidth,
and SNR, but also on the station locations. An electrical interconnection between
station terminals is not utilized so the baseline can be of continental dimensions.
It is then possible to achieve extraordinary accuracy in the measurement of
angles. This is the well known feature of VLBI.
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For satellite tracking there is a further interest to see how the baseline
vector, both in magnitude and orientation, appear in the problem of determining
orbital elements. The orbits tracked by VLBI to the present time are largely of the
near-geostationary type. This report then derives for these orbits an analytical
expression for Tg in terms of station coordinates and Kepler elements and
examines its dependence on the baseline components. The analysis assumes
elliptic motion and is limited to arc length such that secular drift can be treated
as a small quantity. An application of the analysis is made to the tracking data
of the ATS-3 satellite.

ANALYSIS

Series expansion of T .
.g_

Earth center of mass, O, and
terminals. Then by Eq. 1

Let ri denote the satellite position relative to the
S1 and S2 denote the location of the baseline

| 7 -
-

g C

I 7 - S21
C

(3)

or

i/ (2 r 
r ((2 ^ r

C C

The parameter for the series expansion of the radicals is a ratio on the order of
the Earth radius to the satellite geocentric radial distance. A series with a
stronger convergence can be formed by utilizing the property of the synchronous
orbits. This is accomplished by taking as a point of reference a geostationary
position near the satellite.

Let t be a time for the satellite crossing of the right ascending node and
let a denote an Earth-fixed point P in the equatorial plane such that OP equals
the semi-major axis (Figure 1). The direction of a is taken to coincide with the
right ascending node at t = ta . Then at this instant a and the satellite position r
are colinear.

The separation vector of the satellite from P is

p = r - a (5a)

and that of station locations similarly are

2

g7-
g

S2

r2

(4)



STATION 1

ta

Figure 1. Satellite and Station Vector Geometry.
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Figure 2. Geometry of Orbital Elements.
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"1 = S- - a

T2 =S2 - a (5b)

In terms of these vectors the time delay is rewritten as

1 - P2

1T = ___( 5 ___ _ _ ( _2 2 )(6)
C C

Then using the expansion

4-1-= 1 -)1-- ) 2 3 * < (7)
2 8 16 (7)

Eq. 6 becomes

1 =( ,-1)2 (P.&2)2) &( ) W( 2).

2 1 O2 2 0 2 2
2

Tlagerovp i t o (8)

The leading members of this series are to be developed in terms of orbital
elements.

Notation for the orbital elements is as follows:

a semi-major axis
e eccentricity
i inclination
a argument of perigee
Q right ascension of the ascending node
M mean anomaly

4



f true anomaly
E eccentric anomaly
n mean motion.

Reference frame. In the Earth-centered inertial reference frame (Figure 2)
the satellite Cartesian coordinates are given by

X2 ) Q1R
x3 R1

P2 P3 rcos f

Q2 Q3 j' sin f

R2 R3 0
(9)

cos Q cos w - cosi sin 2 sin co

- cos Q2 sin ov - cos i sin Q cos co

sin i sin 2

Q, = sin 2 cos cw + cos i cos 2 sin w

Q2 = - sin Q sin co + cos i cos 2 cos c
(10)

Q3 = - sin i cos Q

I, = sin i.sin.c

R2 = sin i cos c

·R3 = cos i

In order to refer the satellite position to P.a transformation is first made to an
Earth-fixed Cartesian system u, v, z where the positive direction of the u -axis
is directed through P. The relation is

v = -sinO

z 0

sin 0 x

cos 0 X
2

0 1 x33

5

where

Pl =

P 2 =

P 3 =

(11)



the rotation angle 0 being of the form

= (oe t + a (12)

where t is measured from epoch, w, is the Earth's rotation rate, and a is a
parameter to be determined.

From Eqs. 9-11 we have

u = r [cos (n - 6) cos (cw + f) - cos i sin (( - 8) sin (w + f)]

v = r [sin (Q - 0) cos (cw + f) + cos i cos (2 -08) sin (wco + f)]

z = r sin i sin (o)+ f) (13)

At time t a the crossing of the nodal line

u (ta) = r, v (ta) = z (ta) 0 (14)

For a positive crossing the conditions are

f (ta)= - cW, a= we ta (15)

Then Eq. 12 becomes

0= We ( -. ta) + (16)

The longitude of the u -axis is clearly

L= - ag (ta) (17)

ag denoting the right ascension of the Greenwich meridian.

To determine t we need the relation between the mean anomaly and true
anomaly which to first order in the eccentricity is

M = f - 2 e sin f (18a)

or

n t + Mo = f - 2 e sin f (18b)

6



where Mo is the mean anomaly at epoch. Evaluating this at t = t and using
Eq. 15 gives the desired relation for t

n t
a

+M = - + 2 e sinco (19)

Now introducing Eq. 19 into 17 yields

L= + c +M + nt - ag (t)- 2 e sin co (20a)

or

L = n + WX+ MM-Og, ) (O) -A (20b)

where

A= (w - n) t + 2 e sin w (21)

In Eq. 20b L is expressed in terms of Q + co + M, known as the mean orbital
longitude, and ag both at epoch; and A which is a higher order term.

The parameter L is a reference longitude for the satellite position. In the
case of a geostationary orbit it is the one parameter determined from time delay
measurements.

Separation vector, 5.' The near-geostationary orbits which we analyze are
characterized by the conditions, e < < 1, i << 1, and I (w - n) t [< < [. Restrictions
on these parameters, form a limit on the magnitude of p..

By Eq. 5a

u- .a

Pv ) (22)

The components of p are to be expressed in terms of the mean anomaly. But
first the relation between the true and eccentric anomaly

r cos f = a (cos E - e)

r sin f = a l- e2 sin E (23)

7



is introduced in Eq. 9. Then the components of p in Eq. 22 can be written as

pu/a = (cos E - e) [cos (Q + X - 9) + (1 - cos i) sin (f - 0) sin a]

- ViTTT sin E [sin (Q + w - 9) -(1 - cos i) sin (f - ) cos co] -1

pv/a = (cos E - e) [sin (i) + co - ) -(1 - cos i) cos (if - 8) sin w]

+ /f--- sin E [cos (f + c - 8) - (1 - cos i) cos (Q-) cos co]

p. /a = sin i [(cos E - e) sin co + V-e 2 sin E cos c] (24)

The magnitude squared of p appears in one of the terms in the expansion
of Tg given in Eq. 8. This is readily calculated from Eq. 24 giving

p2/a2 = 1 + (1 - e cos E) 2

- 2 ((cos E - e) [cos (Q + c -9) + (1 - cos i) sin (Q - 9) sin cc]

- l-e 7 sin E [sin( + - ) -(1 - cos i) sin( -) cos o}) (25)

The mean anomaly is introduced by the Fourier series expansion of cos E
and sin E

cos - e -- + 1 -M - os 2M

3e ( 3 e)(e e36a)

3 e2
+ _ cos 3M+--- (26a)

E=( 8 i ( sin 2M sin 3M +.... (26b)

and

8



1/F=' sin E = (1_ 5. e2
8

sin M + -
2

5e_ sine 2M
12/

+ -- sin 3 M +- ...
8

(26c)

Combining Eqs. 25, 26a, and 26b and using the approximation,4 <i < < 1 we have
after rearranging terms

p2
= 1 - cos (M + f + w - 0)

2 a2

+ e [- os M + 2 cos ( + C - 0)

+ e2 [ + cos 2 M - cos (M +
4 2 M+

-- os (2 M + Q + -

+ + os(3 M Q + cW - 0) + 3cos (3 M + 0 + cv - 0)

1sin sin]-sin M sin (f), + co - 0)I

i 2

-- sin (M + )sinin( -0)+ O (e 3 , i2 e)
2

(27)

This equation appears to have terms of the zeroth and first order. A closer
inspection, however, reveals that the lower order terms cancel. To show this
we need to rewrite the form of the arguments. The relation used is obtained by
combining Eqs. 16 and 19 giving

p M + Q + o- 6 = A - (me - p n) t + (p - 1) Mo
(28a)

or alternatively

p M + + - 0 = (p - 1) M + A - (o e - n) t (28b)

where p is a positive or negative integer.

9



For the first two terms of Eq. 27 we have using Eq. 28a

1 - cos (M + n + ) - I) - cos [A - (woe - n) t]

[A - ( e, - n ) t] 2

2 (29)

This is a second order term since we consider arc length such that I (we - n) t <<1.

Next the coefficient of e in Eq. 27 is

I =-cos M + - cos (Q + w ) - -cos (2 M + + -(30a)
2 2

or rearranging the arguments by Eq. 28b

3 1
I -- cos M +- cos [M + (We - n) t - A] - -cos [M - (ce - n). t + A]

2 2

Then using the approximation cos ( M + 77 ) - cos M - r1 sin M we have

I - - 2 [(w e - n) (t - ta) - 2 e sin w] sin M (30b)

Thus by a cancellation of the zeroth order terms the expression of Eq. 30a
becomes of the first order.

We now rewrite Eq. 27 using Eq. 28b

p2 3
P 

2
1 - cos [A - (We - n) t] + e - cos M + - cos [M + (C) e - n) t - A]

2 a2 2

-- os [M- - cos [A- (w - n) t]
+2 2 2 4

3 1
+ cos 2 M +--cos [2 M + A - (WCe - n) t] - -cos [A - (We - n) t]

4 4

10



+ os [2M + (cose - n) t + i os [A - (We - n) t]
4 c4 i

- cos[2 M + 2 wcA+(wen)t + (e3i2e) (31)

bearing in mind that the coefficient of e can be approximated by the expression
of Eq. 30b.

Thus p2 is second order in e, i, and (We - n)t. Now the term in the expansion
of Tg (Eq. 8)

p2 (11)

is still another order of magnitude lower since cr1 5-2 It is generally small
compared to the linear term, P · (, -. 2 )' To analyze the latter we need to
consider the vector difference, - =3 - ~2'

Sigma vectors. By Eq. 5b

-l,zu S .1 cos L + Sy 1 sin L -

1 = av I = - S 1 Sin L + Sy, 1 Cos L

0-1, Z S.. I~

a

(32a)

and

a-2

a'2 --2,v = -

'2, 

Sx* 2 cosL + Sy.2 sin L - a

Sx,2 sin L + Sy,2 COS L

Sz. 2

(32b)

Sx, 1 , Sy 1, S , and S 2, Sy, 2 Sz, 2 denoting the Earth-centered Cartesian
station coordinates. The magnitudes are

- ==a 2 + Sa - 2 a (S, 1 cos L + Sy.1 sin L)

11
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= a2 + S2 - 2 a (Sx,2 cos L + Sy, 2 sin L)

where

S 1 = S,1 + y,1 + SS I + S2 I y+s2

S2 =/S2 2 + Sy2 + Sz2

The difference of the unit vectors is denoted by

1 - 2 - a =

OU

'7

a-z

the components being

cU = S cos L + Sy sin L - a

av = - Sx sin L + Sy cos L

0 = S.
O' z

-Sy y'

y0l

Sy, 2

F2 

-S. Sz,1 Sz,2

1 a2

a=a(1 -1
\l 012/

The magnitude of a is then

12

(33b)

(34)

where

(35)

SX 1
x = Jxl

a-I

Sx 2x,2

-
2

and

(36)

a-= /2 + Sx +- 2 + Sz 2 a (S x co s L + S sinL)"y Z/a2 -+ Sx 2 y
(37)



It will be useful to express the components of C through angles ,/, v defined
by the equations

Oa = a- COS [. COS v

(38)cv = cr cos tu sin v

az = C sineu

Then

O'
tan v= v

and

(39)

z
-sin -=_

The leading term in the expansion of Tg in Eq. 8 is c
is readily determined by the above equations to be

(rl - Or2) = -u A a - a a AL

The geometrical significance of the components of C

a = a . This is a reasonable approximation when the
the station directions is about 50° or less. Then

(40)

a,1 - 2 . Its differential

(41)

is clarified when
angle between a and

_ . l 2

cr1

But by Eq. 5b

w1h - 2 = S1 - S2 = D

where D is the baseline vector. Hence

%1 qu = D

C1 cr z - Dz

13
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and

D
v

D D
tan v -v, sin '- z cos (44)

D D D

where Deq = D + D 2 is the projection of D on the equatorial plane.

Finally another useful relation is

D
a cos L-· D cos /t Deq (45)

0-1 0-1

Expansion of p . a. The term of T (Eq. 8) linear in -p is of the form

P* (0-1 - 2 ) =P .0 . From Eqs. 24 and 38 we have that

p' = a - cos , (- cos v + (cos E - e) (cos (Q + w - - v)

+ (1 - cos i) sin (Q - - v) sin co) - --e 2 sin E (s i n (Q + co-- v)

- (1 - cos i) sin (Q -0 - v) cos co)}

+ a a sin / sin i [(cos E- e) sin c + / i---eTsin E cos co] (46)

Then eliminating E by Eqs. 24a and 24c and using the approximation i < < 1

p . = a a cos ,L - co s v + cos (F + M) + T (cos (F - M - 2 c)

- cos (F + M)) + e cos F + -cos (F + 2 M))
2

+ e [cos (F - 2 M - 2 ) - cos (F 2 M) - 3 cos (F - 2 )+ 8 [cos (F - 2 M - 2w) - cos (F + 2 M) - 3 cos (F - 2w)
8

+ 3 cos F) + [- 4 cos (F + M) + 3 cos (F + 3 M) + cos (F - M)]

(47)

14



a a sin IL sin i{- sin a + ( 8 )

e ee 2
+ -sin (2 M + w) - -sinM cos + sin (3M +

2 4 8

where

F= +-co- - v (48)

To show the dependence of the arguments in Eq. 47 on the mean anomaly, Eq. 48
can be rewritten using Eq. 28b

F + p M = (p - 1) M + A - (we - n) t (49)

where the right member is now a sum of an integral multiple of M plus higher
order terms.

It is useful to write p .5r in a form that shows the harmonic of each term
explicitly. From Eq. 49 we readily have

F+pM=- (e -p n) t + A + (p- 1) Mo (50)

Introducing this into Eq. 47, yields

p.- = a a Cos {- cos V + c co(A - v) cos (e -n) t + sin (A - v) sin (w-n) t

+ - 3 cos (A - v - M) cos- e t - 3sin (A - v - M0 ) sin e t

+ cos (A- v + M0 ) cos (oe - 2n) t + sin (A- v + M0 ) sin (we - 2 n) t]

+ [- 4 cos (A - v) cos (c - n) t -4 sin (A- v) sin (we - n) t

+ 3 cos (A - v + 2Mo) cos (We - 3 n) t + 3 sin (A - v + 2 Mo) sin (we - 3n)t

+ cos (A - v - 2M 0 ) cos (e + n) t + sin (A - v - 2 M) sin (e + n) t]

15



[os (- v- 2- 2- 2 ) cos (e + n) t + sin(A- v- 2M - 2 ) sin (ce + n)t

- cos (A- v) COS ( e - n) t - sin (A- v) sin (We - n) t]

+e2 i 3 co s (A - v - M+ 8 [3cos(A- M 0) cos "e t + 3 sin (A - v - MO) sin We t

- 3 cos (A- v - M - 2 ) cose t - sin (A- v - M
o

- 2 co) sin e t

+ cos (A - v - 3M
o

- 2 c) cos (We + 2 n) t + sin (A -v - 3M o - 2 w) sin (e+ 22n) t

- cos (A- v + Mo) cos (oe - 2n) t - sin(A- v + Mo) sin (We - 2n) t]

+ a a sin / sin i sin + MO) cos n t + cos (w+ MO) sin n t

+ [ 3 sin w + sin (w+ 2 Mo) cos 2n t + cos (W+ 2 Mo) sin 2 n t]

e2 3
-e

2 -[3csin()cos (w + M)) sin n t
4 0' 2

3 sin (w + 3Mo) cos 3 n t - 3 cos (c + 3Mo) sin 3 n t

+ cos c os Mo sinn t + cos cu sin M cos n t]} (51)

Discussion. The above equation is written as the sum of two parts, one

having the common factor a o cosu and the other having the factor a a sin/u sin i.

Within the approximation a a2- it can, by Eqs. 44, 45, and 51, be put in

the form

a e
q

52)
· a '' + D

z
sin i ... (52)

* rO'1 O1
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the ratio a/a, 0.9. Thus the members on the right side depend on the equatorial
component of the baseline, Deq . and the polar component, D,, respectively. This
expression affords some incite on how these components bear on determining
orbital elements.

Consider first Tg measured from a polar oriented baseline. With reference
to Eqs. 51 and 52 we can see that the resolution for determining the inclination
depends on the baseline according to the formula A i , (Dz cos i) -1 . This is an
analogue for the orbital element of the more familiar relation in VLBI where
resolution in measuring angular position depends on the reciprocal projected
baseline length. The determination of elements other than the inclination varies
as (Dz sin i)- ' which is much degraded for small inclination. The
polar oriented baseline is then primarily for accurate measurement of the inclina-
tion of the orbital plane.

When measured from an equatorial oriented baseline r has a term linear
in time. By Eq. 44 this term can be rewritten

a C cos / sin (A - v) sin (w
e

- n) t

a- a Deq [sin (A - v)] (a'e - n) t

a Dv ()e n) t 

since- IA I < < 1 and (We - n)t I < < 1. The difference % - n then can be measured
as D-', that is the reciprocal of the projected equatorial baseline component normal
to the OP line. This term is the basis for a precise determination of n since it
appears differenced with we . Further examination of the terms of Eq. 51 cor-
responding to Deq shows that the eccentricity is of the first order and inclination
is of the second order.

The elements f2, w, and M0 arise in the arguments of trigonometric terms
having coefficients e, i, or (We - n) t to the first order. Consequently their
resolution is degraded. For the limiting case of a geostationary orbit these
elements become indeterminate.

The mean orbital longitude is however well defined. This appears in the
leading term of the expansion of g, namely ar - a2. By Eqs. 41 and 43

17



D aD
A (al - a2) - _ A a _ v A ( + ) + M) (54)

0r1 r1

The semi-major axis can be considered determined from the mean motion as
described above. Then

A (Q + co + Mo) - A (oC - 2 ) ./Dv

It is possible then to determine the summed elements, Q + co + M0 , with a higher
precision than its individual components.

TRACKING OF ATS-3

VLBI satellite tracking observations yield geometric time delay data as a
function of time. By identifying this numerical function with the analytical
expression, Tg(t), the Kepler orbital elements can be deduced. This has been
done using data from a VLBI tracking experiment on the ATS-3 communication
satellite.

The C-band noise signals of the spacecraft were observed at the ATS sites
of Rosman, North Carolina and Mojave, California during June 3, 1971 to
June 10, 1971 when the satellite longitude was approximately 790W, a few
degrees east of Rosman. The difference in the latitude of the two stations
differs by scarcely more than 8', the geodetic coordinates being

Latitude Longitude (W) Height (m)

Mojave 35°19'53'.'78 116 0 53'16"'14 887
Rosman 35011'56'.07 820 52'32"'81 828

The equatorial component is 3050 km and polar component is 12 km.

Figure 3 shows the distribution of tracking periods superimposed on a
curve representing the time delay function. The periods are each of three
minute duration. On day numbers 152, 153, 154, and 155 observations were for
a restricted part of the day but for day 159 observations were distributed over
a twelve hour period. The precision of the time delay data is 5 to 10 nanoseconds
corresponding to 1.5 to 3 meters.

18



TRACKING PERIOD

156

DAY NUMBER

Figure 3. Time delay curve showing the VLBI tracking periods of ATS-3, days 152-159, 1971.

As a starting point for calculating the orbital elements the terms of the time
delay function were evaluated using a priori elements (based on range and range
rate tracking from Mojave and Rosman) issued by the ATS project. Terms
greater than 30 nanoseconds (10 meters) were retained for which the functional
form was essentially

C g =: Co + C1 t + C
2

COS we t + C3 sin we t + 
4

cos 2 oe t

+ C. sin 2 wce t (55)

The coefficients were evaluated by the method of least squares, the standard
deviation in time delay being 0.66 microseconds. One of the coefficients was
smaller than the st. dev. and therefore was not regarded as significant. Five
elements were determined and are compared with those issued by the ATS project.
The epoch is May 31, 1971, 0 0 h .

ATS Project VLBI Time Delay

42,165.43
2.914 X 10 - 3

1."'706
87°150

168.'652
-0.°712

42,1I65.54
2.-96 x 10x- 3

'

1:.o61°6
950

168261-

Element

a (km)
e
i'

Mo
w+ +M o

c)

Difference

0.11'
5x 10x5

-0.1
80'

-0°04

1:9



It should be understood that the method here is not expected to yield ac-
curate values for the elements since the model is based on the approximation of
elliptic motion. To derive a best estimate of the ATS-3 orbit from VLBI obser-
vations we are using GEODYN (Ref. 1). This program has an optimum force
field model and employs rigorous numerical methods which are designed for
application to geodynamic investigations.
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