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PRELIMINARY RADAR SYSTEMS ANALYSIS

• . FOR. VENUS ORBITER MISSIONS

SUMMARY

This report consists of a short, preliminary analysis
of the problems involved in mapping the surface of Venus with
radar from an orbiting spacecraft. Two types of radar, the non-
coherent sidelooking and the focused synthetic aperture systems,
are sized to fulfill two assumed "levels" of Venus exploration.
Spacecraft-are - scaled-to-accommodate the _radar.s-L-requirements.,
and the applicability of ballistic and solar electric delivery
modes for the types of missions this analysis suggests is
examined.

The two "exploration levels", regional and local,
assumed for this study are based on previous Astro Sciences
work (Klopp 1969). The regional level is defined as 1 to 3
kilometer spatial and 0.5 to 1 km vertical resolution of 100
percent of the planet's surface. The local level is defined
as 100 to 200 meter spatial and 50-100 m vertical resolution
of about 10 percent of the surface (based on the regional
survey).

Earth-based radar studies of Venus have found that the

radar cross section rapidly decreases for wavelengths shorter
than 10 cm. The size of the spacecraft's radar antenna is
directly proportional to the operating wavelength and thus to

keep the antenna's dimensions small it is necessary to choose as
short a wavelength as possible. Therefore for this study a 10 cm
operating frequency was chosen for both radar systems in order
to minimize the antenna size and maximize the apparent radar

cross section of the surface.
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An initial exploratory analysis was performed to determine

the approximate resolution region of interest for each radar system.

From this investigation it was determined that noncoherent radar

appears to be best suited for regional coverage and synthetic

aperture for local coverage. A more detailed analysis was then

performed and each radar system sized to perform at its respective

coverage level at altitudes between 300 and 1300 km (polar circular

orbits). The antenna'sizes for the two radars are shown in Summary

Figure 1. The noncoherent system's antenna was sized to provide

an azimuthal resolution of 3 km up to an altitude of 700 km where

the antenna length was fixed at 50 m. At altitudes above 700 km,

the ground resolution degrades, reaching 6 km at 1300 km altitude.

The synthetic aperture antenna was sized to provide ground

resolutions of 100 and 200 m. The synthetic aperture antenna

length is less constrained by altitude and beamwidth than the non=

coherent system, and the length actually decreases with increasingly

finer resolution. The decrease in antenna size is balanced by the

increase in input power for finer resolution with the synthetic

aperture system. Summary Figure 2 illustrates the variation in

required input power with altitude for the two radars. The non-

coherent system requires relatively low powers, about 100 watts,

for kilometer scale resolution, while the synthetic aperture system

may require up to 26 kilowatts for 100 m resolution from high

altitudes.

Summary Figure 3 shows the variation in total system weight

(antenna plus electronics) for the two types of radar. The non-

coherent system is dominated by the antenna weight, as is

illustrated by the sharp bend in the curve at the point where the

antenna is fixed at 1.5 x 50 m. There are two effects showing up

in the synthetic aperture system weights. The 100 m resolution

system requires a smaller (and lighter weight) antenna than the

200 m system, but also requires heavier electronics due to higher

peak powers. The two effects offset each other to yield a slower

weight growth rate with altitude.
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Due to the low, circular orbits chosen for this study the
radar mapping spacecraft will be occulted from the sun and earth
for as much as 0.6 hours per orbit. If the spacecraft is powered
by solar panels only, it will be able to map 75 percent of the
planet's surface during a nominal 120 day mission (worst case

conditions). If, however, it uses a sun-independent power
system, such as RTG's or solar panels and batteries, it will not
be affected by solar occultation and can map 100 percent of the

surface in 120 days.
The data telemetry rate is also affected by these

occultations. Data is acquired at rates up to 4400 bps for the
r

noncoherent system and up to 2.5 x 10 bps for the synthetic
aperture system. However, due to the small swath widths chosen

(50-250 km) and the slow sidereal rotation of Venus (1.5°/24 hours),
the spacecraft must wait between 4 and 18 orbits after mapping a
swath until the next swath comes into view. Using this time to
transmit acquired data the bit rates can be reduced to about

1000 bps for noncoherent and 2.5 x 10 bps for synthetic aperture.
A review of the key radar parameters for both the noncoherent
sidelooking and synthetic aperture systems is provided in
Summary Table 1.

Summary Figure 4 illustrates the variation in spacecraft
weight, sized to accommodate the radar systems. RTGs were used
as the power supply up to the point where the radar required more
than 750 watts of input power. At this point the solar panels
of an SEP stage were used as the power supply (the SEP stage
weights are not included on this figure, but are taken into account

for the payload analysis). An RTG powered system was preferred
because the spacecraft pointing problems, already significant due
to the long antennas, are only complicated by the use of solar panels
for power. However, a combined solar panel/battery power system
(also shown in Summary Figure 4) which utilizes stored battery

power when mapping thereby eliminating control conflicts between
the panels and radar antenna, was found to be an attractive
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SUMMARY TABLE 1

VENUS ORBITER RADAR SYSTEM CHARACTERISTICS

SYSTEM
CHARACTERISTICS

RADAR

NONCOHERENT
SIDELOOKING

SYNTHETIC
APERTURE

Resolution

Antenna

Radar Input
Power

System Weight

Data Rate
(Telemetry)

Data Storage

0.5 x 3 km

1,5 x 50 m
(at 700 km alt.)

~ 100 watts

~ 75-240 kg

~ 103 bps

~ 2 x 108 bits

100 x 100 m

1.5 x 20 m
(at 700 km alt.)

0.1 - 2.6 kw

60-180 kg

104 - 105 bps

~ 4 x 10* bits
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alternative to an RTG power source. The spacecraft communications

and data storage systems were based on Mariner '73 and TOPS

technology.
The payload capability (net spacecraft weight in orbit)

of the Titan IIID/Centaur was analyzed for five launch dates. Of
these the '83 and '84 launch dates provided enough payload for
practically all missions, including the lower altitude ones
(which are preferable because of smaller antenna sizes). The °81
launch is adequate for a few low altitude missions, but the '78
and '80 opportunities are completely inadequate for these missions.
Two dimensional solar electric propulsion data was also analyzed
and the Titan IIID/Centaur with a 3.7 kilowatt SEP stage was found
to provide ample payload in orbit for all missions.

This study has demonstrated the feasibility of mapping
Venus from a radar orbiter. The noncoherent system can provide
resolutions of several kilometers but with practical limits on
antenna size cannot map at lower resolutions. The focused

synthetic aperture radar, however, is not constrained by antenna
size and has a very large growth potential. It is clear from
this study that 100 percent of the planet's surface can be mapped

at 100 m-200 m using synthetic aperture radar for about the same
cost in weight as a 3-km resolution, noncoherent radar.

The trade-offs between solar panels and RTG°s still need

further study. The RTG system does not have the pointing problems
that solar panels do, but this advantage for radar mapping, may be
outweighed by the thermal problems resulting in the use of multiple
RTG power units. Also the communications and data handling systems
necessary for synthetic aperture radar require further study.
The requirements identified in this study are certainly not
impossible but do approach current technological limits.

NT RESEARCH INSTITUTE
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PRELIMINARY RADAR SYSTEMS ANALYSIS

FOR VENUS ORBITER MISSIONS

1. INTRODUCTION

It is generally agreed by most scientists and mission
planners that the only way to obtain a surface map of Venus is
through the use of radar, due to the apparently impenetrable
cloud cover» Earth-based radar is constrained, by the large
-distance involved and Venus' earth-synchronous rotation, to
view only a fraction of the Venusian surface at very poor
resolutions. Using advanced techniques a region approximately
80° in latitude by 100° in longitude on the earth-facing
(inferior conjunction) surface has been mapped at resolutions
down to about 40 km. Figure 1 presents a radar map of Venus
with a best ground resolution of about 100 km obtained with
the MIT Haystack-Westford interferometer (Rogers and Ingalls
1969). In the future system improvements will produce best
resolutions down to perhaps 4 km over a small fraction of the
planet's surface. It is certain however that in the foreseeable
future earth-based radar will never provide the resolutions and
coverage consistent with the desires of planetary scientists.
Orbiting, radar equipped spacecraft are an obvious solution to
the problems involved in mapping Venus.

This study concerns itself with a preliminary evaluation
of two types of radar systems, the Noncoherent Side-Looker and
the Focused Synthetic Aperture, for use in mapping the Venusian
surface. Although neither radar system has yet been developed for
use in a spacecraft, both have been flown in aircraft mapping
parts of the earth (the synthetic aperture being used for this
just recently). Hopefully from this analysis the reader will be
able to judge the relative merits of each type of radar. However,
it must be kept in mind that this is a simplified preliminary
analysis, and not an actual mission definition.

Ill RESEARCH INSTITUTE
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FIGURE I.

RADAR BACKSCATTER INTENSITY MAP OF VENUS AT 3.8cm

( Rodgers and Ingalls 1970)



It was assumed for this study that the radar systems

satisfy the requirements of one of two levels of exploration.
The Regional level is defined as 1 to 3 kilometer spatial and
0.5 to 1 kilometer vertical resolution with 75 to 100 percent
coverage of Venus' surface. The Local level is defined as
100 to 200 meter spatial and 50 to 100 meter vertical resolution
with about 10 percent surface coverage. The local coverage
is of those areas singled out by the regional mapping to be of
special interest. These resolution levels are based on the

findings of a previous Astro Sciences study (Klopp 1969) wherein
the scientific objectives of Venus exploration were considered.

The ranges in resolution over which Noncoherent and
Synthetic Aperture Radars are most efficient in terms of weight

are discussed in Section 2. The methodology developed to
semi-optimize the two radar system parameters is then set down

and the variations in antenna dimensions, power, weight and
data rate with changing measurement specifications are
illustrated. In Section 3 these raw parameters are used to
size the spacecraft requirements. With this data and the
trajectory and payload analysis (also performed in Section 3)
several launch vehicles and upper stages are evaluated.
Representative or sample missions are then discussed in detail.

Section 4 draws together the conclusions of this study and
contains recommendations for further study.

NT RESEARCH INSTITUTE
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2. THE RADAR MAPPING ORBITER

2 . 1 Basics of Noncoherent and Synthetic Aperture

Radar Resolution

Noncoherent radar achieves two dimensional ground

resolution through the use of two methods. In the direction

of spacecraft motion (the azimuth direction) the ground

resolution is essentially that length which is illuminated

by the radar beam as illustrated by Figure 2. Azimuth

resolution, r , is therefore proportional to the antenna

beamwidth in that dimension. This beamwidth is inversely

proportional to the antenna's azimuth dimension which means

that the azimuth dimension must increase as the azimuth resolution

improves .

Resolution perpendicular to the direction of motion is

achieved using echo time delay. A pulse is generated by the

radar system, bounced off the target area, and its echo analyzed

by delay time. Referring to Figure 2, range resolution r ,

can be expressed as,

where c is the velocity of the radar wave, T is the pulse width (in

seconds) and f is the grazing angle. The range resolution is then

directly proportional to the pulse width. Note that range

resolution cannot be obtained directly under the spacecraft

(Y = 90°).

The swath width on the planet's surface is that area

which falls within the radar antenna's range beamwidth. ___ The ____________

swath width is inversely proportional to the range dimension

of the antenna.

NT RESEARCH INSTITUTE
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Vertical resolution can be obtained by the noncoherent

radar through the shadowing of the range elements „ Vertical

resolution, r , is then,

rv - rr tan Y (2,2)

The ground resolution element for noncoherent radar, as

shown in Figure 2, is constrained by the above relationships

and practical antenna restrictions to be elongated in the

azimuth direction. As will be shown later, the rectangular

resolution element is the best that can be obtained with

noncoherent radar,

Synthetic aperture radar overcomes the poor aximuth
resolution of noncoherent radar by synthetically creating a

long linear antenna. With each pulse transmission, as the real

antenna moves over a fixed path, a new element of the synthetic

antenna is generated. In the focused mode a phase shift is

applied to the returning pulse to account for the spherical

(rather than planar) wave. The resultant azimuth resolution

is much smaller than the beamwidth of the physical antenna.

This is approximately,

xRs
.(2.3)

where X is the wavelength, R the slant range, and D the total
S S Q

length of the synthetic aperture „ The length of the synthetic

aperture is constrained by a number of factors as will be seen
later.

The range resolution, vertical resolution, and swath

width are all essentially the same for synthetic aperture as

for noncoherent radar 0 However with synthetic aperture a

square ground resolution element is possible to obtain, which

is more easily interpreted than the elongated cell of noncoherent,

NT RESEARCH INSTITUTE
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For both radar systems the resolution is also dependent

on the depression angle, a, (see Fig, 2). For the low altitude or

"flat planet" case the range resolution for both systems degrades

to 1/2 its maximum value when a > 60°. For the synthetic

aperture system aximuth resolution degrades to 1/2 its maximum

value when a < 30° (Greenberg, 1967). Thus for this study the

depression angle for both radars has been fixed at 45°.

2.2 Wavelength Selection

It is known from previous experience that spacecraft

radar antennas necessary for regional-local resolution are

generally quite large (Goldman and Brandenburg 1971).

Fundamental antenna theory states that the dimension of an

antenna is directly proportional to the wavelength (D « X).

Therefore in order to keep the antenna small it is best to

pick an operating wavelength as short as possible, keeping in

mind the radar cross section. Figure 3 shows the variation

in Venus' normalized cross section with wavelength. The curve

is fairly flat at wavelengths above 10 cm, but falls off

rapidly at shorter wavelengths. Since models of the Venusian

atmosphere predict only a small amount of atmospheric attenuation

at a wavelength of 10 cm, it is advisable, then, to pick a

wavelength in that spectral region. Thus for all the radar

systems investigated in this study, a 10 cm operating wavelength

was used.

2.3 Selection of Resolution Ranges for Noncoherent

and Synthetic Aperture Radar Systems

Figure 4 illustrates the variation in system weight

with resolution for the two radar systems of interest. The

weights shown are based entirely on the radar electronics and
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antenna weights and do not reflect any data management, power

or other systems requirements. The system weights were computed

using a method developed in the Klopp study (1969) for a fixed

spacecraft orbit (circular-polar). From Figure 4 it appears

that the noncoherent system is a good choice if resolutions

worse than 1 km are desired. For resolutions under 1 km

the synthetic aperture system is obviously preferred.

The choice of which system to investigate at each of

the resolution levels of concern in this study is readily

apparent from Figure 4. Noncoherent side-looking radar is

applicable at the regional level and synthetic aperture at

the local level.

2.4 Radar Systems - Parametric Development

In this subsection the system parameters, such as

antenna size, power requirements, data acquisition rate, and

electronics weight, are developed for the noncoherent and

synthetic aperture radar systems. The scaling laws used were

derived by Klopp (1969). The effect on the systems due to

varying the measurement specifications over those ranges

consistent with the definitions of regional and local levels

and with varying altitude is shown.

For both systems circular polar orbits with altitudes

varying between 300 and 1300 km were used. The polar orbit

was chosen to maximize the rate of the planet's apparent

rotation under the orbit. (Venus has no known oblateness

factor to perturb the orbit.) Circular orbits were used

because radar operates most efficiently and at constant

resolution over constant altitudes. (Elliptical orbits require

varying power levels and antenna orientation for constant

resolution throughout the orbit.) A minimum orbital altitude

of 300 km was used to avoid atmospheric drag (Uphoff 1970) while

a maximum of 1300 km was chosen to provide a range thought to

be typical for the two types of radar consideredc
I I I R E S E A R C H I N S T I T U T E
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2.4.1 Noncoherent Sidelooking Radar Systems

Development

Figure 5 illustrates the logic used to size the

noncoherent radar system. The four chief input parameters

are azimuth, range, vertical resolution and swath width.

These four parameters were varied within the limits of the

regional level in order to judge their influence on the total

radar system. This will become clearer in the following

discussion.

2.4.1.1 Antenna Size

The range beamwidth, £ , of the antenna determines

the swath width, W, as shown in Figure 6. Radar map inter-

pretation is aided by having large continuous swath widths *,

For the regional level a 1000 km swath width might be

desirable. To obtain this size swath at a 300 km altitude

and 45° depression angle requires a beamwidth of 116°. This

covers area directly beneath the spacecraft which cannot be

resolved in range. Even decreasing the depression angle a

to its minimum value of 18°, so that R2 just skims the horizon,

part of the 1000 km swath still falls beneath the spacecraft.

Thus a 1000 km swath width cannot be obtained at 300 km altitude.

At 1300 km the 1000 km swath is possible with a beam width of

25° and depression angle of 45°. The relationship between

beamwidth P (in radians) and antenna range dimension D is,

D = L-25 X (2.4)
3r

where x, the wavelength, is 10 cm. The required range dimension

at 1300 km is then 29 cm. This is the maximum dimension

possible, for as the altitude is decreased the beamwidth

becomes larger for a fixed swath width. As will be seen later

NT RESEARCH INSTITUTE

12



in
o
z
c

K
o
K
o
2

bl 9

I f«
bl < < -

_ K K 30
o 3 ui z :r
P (9 a u (£
2 ^ 5 £ S
^ u »- ** °bl "J ,,
tf> «*> ui DC 3
5 5 «/> K w H
2» Z « bl t c

i: i z 5 2
j 2 o. S L

< W 1- o o <" u

5) W — K. S CD 3

• •

1-

™/8 1, < f-l-!
T 2 X
± 2 t-S ui a

* II- 1** "̂̂  ?,
on <n

.E
L

E
M

E
N

T
L
S

E
S

/R
E

S
; £

f f

5 ^

1

1

„,

Z ^

.l!J

1R
A

D
A

R
W

E
IG

H
T

f
<r
Ul

1

<fs
a

i , i

i —

— i
bl

3
3
a.

a
ui

UJ

Ul

^ **cc ^
> 0
< a

UJ
_J

&
Ul

S
Y

S
T

E
M

1
W

E
IG

H
T

tt

f *
5 Q.

1 H 1

Jf ^* 1

•» * J

T1
z
o

IStf) C.

a: t:

IP
c <

te.
a

UJ

o =>o a-

bJ Ul

U
K

UJ
»-
<n
CO

a:
<
a
<
or

Z
. UJ

u*> t
UJ

UJ Z
a: o
o ?

O

O
o

UJo

13



-i i ~\= cos (——— coscO

2 cos a
,f W sinlV7 ,+ 8) I

I =tan'
r I R0- w' cos (4,+ 8) J

w
R. =

2 8

FIGURE 6. SIDE-LOOKING RADAR GEOMETRY

14



the azimuth dimension of the antenna ranges between 20 and

50 meters. It is unlikely that antennas 50 meters long and

less than a third of a meter wide can be successfully

fabricated, folded, deployed, and pointed while keeping a

X/10 surface accuracy. The swath width requirements may be

relaxed in favor of a larger antenna range dimension and

structural rigidity.

If the antenna's range dimension is fixed at 105 meters

the width of the ground swath will range between 50 km and

250 km at altitudes between 300 and 1300 km, respectively.

By patching a suitable number of these swaths, correctly

overlapped, together a surface map may be built up. This

reduction of swath size not only enables a realistic antenna

size to be used but also considerably decreases the load on

the power and data acquisition subsystems.

The azimuth beamwidth, 8 , is related to the resolution
3

in that dimension, r and the slant range, R_, by the
3 £,

expression,

0,87 r

The antenna's azimuth dimension is given by,

where X is equal to 10 cm. Obviously, the smaller the

resolution desired the larger D0 must be. Figure 7 illustrates
3

the resolutions achievable with four azimuth dimensions at

altitudes between 300 and 1300 km. A 50 m antenna was considered

to be the largest which could be used for a spacecraft radar

system in this study. Note that 1 and 2 km resolution is

achievable only at low altitudes with the largest size antennas.
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FIGURE 7. AZIMUTH RESOLUTION VS. ALTITUDE AND ANTENNA
AZIMUTH DIMENSION (NONCOHERENT SIDELOOKING RADAR)
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The procedure employed here was to select the smallest

azimuth dimension which provides 3 km. resolution until the

50 m antenna size limit was reached. Figure 8 shows the azimuth

dimensions selected and the resolutions they provide. The 50 m

size limit is reached at 700 km, and the resolution begins to

degrade with increasing altitude until at 1300 km, 6 km azimuth

resolution is the best achievable.

The antenna weights, W., are given by the relationship

W A = N D r D a (2.7)

where D is given above, D is fixed at 1.5 m and N is the areal

density. Little experience exists in large, rectangular, space-

craft antenna design from which to determine representative

values for N. Figure 9 shows the results obtained for N as a

function of dimension by fitting a second order curve to a number

of large antennas designed at JPL (Heer and Yang 1971). Using

the appropriate values of N the 1.5 x 21.5 m antenna weighs

59 kg, the 1.5 x 37 m, 131 kg and the 1.5x 50 m, 200 kg.

2.4.1.2 Pulse Length

The range and vertical resolutions are determined by

the pulse length, T. Range resolution is given approximately

by

CTr ss cos \|f

where c is the speed of light and i|r is an average grazing angle.

Note that the range resolution is directly affected by the

length of the pulse. Pulse compression techniques allow a long

pulse to be transmitted with the returning echo processed so

that the effective or compressed pulse length, T , is much

I I I R E S E A R C H I N S T I T U T E
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shorter than the transmitted pulse. A pulse compression

ratio, T/T , of 200 was used here.

The compressed pulse is constrained by,

q 2 r cos ty.
3.33 x 10 y sec < T < - ^— - - ±- sec (2. -8)

^— C "™" C

for a wavelength of 10 cm, and 1>^ is the grazing angle at the near

edge of the swath. (Klopp, 1969). The inequality on the left hand side

is derived from constraining the receiver bandwidth to 10 percent

or less of the operating frequency.
The range and vertical resolutions are related by,

'

In order to achieve vertical resolutions of about 1 km (regional)

at a 45° depression angle (a) the range resolution must also be

about 1 km. Since the azimuth resolution is 3 km or worse the

ground resolution elements, r x r , are rectangular. . Hence ita r
is necessary, therefore, to design for a fixed set of vertical

resolutions. Figure 10 illustrates the relationship between

range resolution, vertical resolution and altitude.

Taking vertical resolutions between 0.5 and 1 km as
the most desirable for the regional level, the associated pulse

lengths may be computed. Figure 11 shows the compressed and

actual pulse lengths which must be used to obtain these

vertical resolutions.

2.4.1.3 Pulse Repetition Frequency (PRF)

The pulse repetition frequency, the number of pulses

radiated each second, is dependent chiefly on the number of

pulses desired per resolution element, m, and the length of
time, t , that the radar beam dwells on an azimuth resolution

NT RESEARCH INSTITUTE
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element. The power contained in the pulse is inversely

proportional to the square root of the number of pulses analyzed

per resolution element. In this respect it is advantageous to

use a large m» However, the average power that must be fed to

the radar system is directly proportional to m. These two

considerations tend to balance each other; m is often chosen

as unity.

The minimum time, t , that a target resolution element

will spend within the radar beam is,

(2.10)£
o

2 R
Vh

sin"
R, sin (°a/2)

h + R - R.]̂ sin (cc+0r)

where R, is the slant range to the near edge of the swath (see

Fig. 6), 8 is given by Equation 2.5, a =45°, and p = 4.75°,
- 3 L

v. is the spacecraft's horizontal ground velocity, and is given

by,

1/2

vh •
R

R + h
3.25 x 10

R + h

14
(2.11)

for circular orbits where R and h are expressed in meters,

(Venus' surface rotational velocity is extremely low and has

been neglected here.)

If one pulse (m) is to be transmitted every t seconds,

then the pulse repetition frequency, p, is

1/t (2.12)

Table 1 lists the values of v. and p used in this section.

t and p are constant up to 700 km altitude because the azimutho
beamwidth is decreasing (D increasing) at a rate which effectively

O

cancels out the decreasing ground velocity's effect.
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TABLE 1

VARIATIONS OF GROUND VELOCITY, OBSERVATION TIME.

AND PULSE REPETITION FREQUENCY WITH ALTITUDE

Altitude,
h

300 km

500
700
900

1100

1300

Ground
Velocity,

Vh

6.8 km/sec

6.5
6.2

5.9
5.7

5.5

Observation
Time,

o

0.41 sec

0.41

0.41

0 . 54

0.65
0.73

Pulse Repetition
Frequency,

P

2.44 pulses/sec

2.44

2.44
1.86
1.54
1.37

a = 45°

3r = 4.75°
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2.4.1.4 Power

The peak transmitted power for noncoherent radar systems

can be expressed as,

10"30 (S/N) FQ T R2
3 ga 3r

2 A cos *2 • ' ' '

T T n m

where:
S/N = signal to noise ratio =10
FQ = system noise figure = exp[3.8-.344 ln(100x)] ='20.24
T = input noise temperature = 700° K for Venus
R2 = slant range to far edge of swath (see Fig. 6)

• 0a = azimuth beamwidth (see Section 2.4.1.1)
3 ' «
0 = range beamwidth = 4.75°

A = atmospheric attenuation factor =
i r\

exp (6.5 x 10" / X sin ty 2) « 1.1
T = pulse length (see Section 2.4.1.2)
T = compressed pulse length
m = pulses per azimuth element
X = wavelength = 10 cm

The b'ackscatter coefficient, n, was estimated to be ~5 x 10
for a 10 cm wavelength and 45° depression angle (Evans and
Hagfors 1968).

The variation of the required peak power with altitude

is shown on Figure 12. These peak power requirements are not
very stringent, being less than 1000 watts for a burst of about
6.5 microseconds.

The average power, "p, is given by the relationship,

m "• PP= SL̂ JL- -P T Pt (2.14)
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where P.. is peak power. The average power requirements are also

shown on Figure 12 (right ordinate). The average power is always

less than two watts.

The operational power requirements of the radar system,

the input power, P. , may be scaled as a function of average

power,

P. = 100 + 3 P watts (2.15)in

Thus for the cases considered here an input power of 106 watts

is sufficient for the noncoherent radar system at altitudes up

to 1300 km.

2.4.1.5 Weight

The weight, W , of the radar electronics is best expressed

as a function of the peak power generated (Klopp, 1969).

Wr = 13.6 + 9.1 In (0.1 Pt X) kg, (2.16)

where 13.6 kg is the minimum weight. The weights of the radar

electronics for the range of altitudes between 300 and 1300 km

and the two values of vertical resolution used are given in

Table 2.

The total radar system weight is the sum of the electronics

weight and the antenna weights, given at the end of Section 2.4.I'M.

The total system weight is shown in Figure 13. The antenna weights

tend to dominate the system, especially at the higher altitudes.

The bend in the curves is caused by a constant antenna size

(1.5 x 50 m) above 700 km.
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TABLE 2

RADAR ELECTRONICS WEIGHT

Altitude,

km

300

500
700
900
1100

1300

Electronics Weight, kg

rv*= 0.5 km

13.6

20.8

26.3

31.4

36.9

40.2

rv = 1.0 km

13.6

13.6

13.8

18.7

24.3
27.8

r = Vertical Resolution
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2.4,1.6 Data Acquisition

The data acquisition rate, DR., is the last parameter to

be determined. A good approximation to this data collection

rate, where each resolution element is described by G binary

bits, is,

DR - c T t
 (cos *1 + cos M (2

C O

where all terms were defined previously (see Figure 6). Setting

G equal to six bits per Resolution element, the data acquisition

rate is shown as a function of altitude in Figure 14. The curves

flatten out and begin falling off at about 700 km altitude. Once

again this is due to the constraint on antenna size. .Although

the swath width continues to increase with altitude the size of

the resolution element decreases more rapidly beyond 700 km, with

the net result that the radar views fewer resolution elements per

unit time.

2.4.1.7 Noncoherent Radar Systems - Summary

Noncoherent side- looking radar systems operating with a

depression angle of 45° at a wavelength of 10 cm, in circular

polar orbits between altitudes of 300 and 1300 km at Venus and

mapping at the regional level, have requirements which appear

to be reasonable in terms of spacecraft design. The antenna

must be between 21.5 m and 50 m in length and 1.5 m wide, which

may present some problems. The peak and input powers range

between 20 and 2000 watts and 100 and 106 watts, respectively,

and should not be any burden to present power systems. The

total system weights, 75 to 250 kg, are not too high for

integration into a spacecraft and the data acquisition rates,
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1000 - 4400 bps, can easily be handled by current systems.

The actual spacecraft sizing is described in Section 3,

but the large antenna length is the only significant problem

seen to hamper the use of noncoherent radar for regional

Venus mapping.

2.4.2 Focused Synthetic Aperture Radar Systems-

Development

Synthetic aperture radar was selected to cover the

local scale of resolutions and coverage described in

Section 1. The radar system scaling that follows will therefore

be aimed at ground resolutions of about 100 m and swath widths

of about 100 km.

Figure 15 illustrates the logic used to size the

synthetic aperture radar system. Here the three chief input

parameters are ground resolution, vertical resolution, and

swath width size. As was seen in Section 2.1 a square ground

resolution element is obtainable with synthetic aperture radar,

where it was not with noncoherent. Range resolution is

specified "in Figure 15, but range and azimuth resolution may be

used interchangeably as they are equal.

2.4.2.1 Pulse Length

The range and vertical resolutions are related through

shadowing in the same manner as for noncoherent radar. Recall

equation 2.9,

r
r - v

r tan HN

where r is the range and r is the vertical resolution. For

synthetic aperture radar the range and azimuth resolutions are

conveniently selected as equal, so the vertical resolution is
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allowed to float, while the ground resolution (r , r ) is
a r

fixed. (Vertical resolution was allowed to float for the

noncoherent system, while only range resolution was fixed).

The synthetic aperture radar system is scaled to provide ground

resolutions in the 100 to 200 meter range.

The compressed pulse length, T , is constrained by the

same conditions as noncoherent radar,

q 2 r cos Y-,
3.33 x 10 sec < TC < - ̂  - =~ sec

where the terms have been previously defined. Figure 16

illustrates the variation in the compressed and actual pulse

lengths as a function of altitude for 100 and 200 m ground

resolutions, using a pulse compression ratio of 200. Vertical

resolution varies from 1.1 r at 300 km to 0.73 r at 1300 km

since ¥, remains close to 45° .

2.4.2.2 Pulse Repetition Frequency (PRF)

For the noncoherent radar system it was practical to

transmit just one pulse for each azimuthal resolution element

and base the pulse repetition frequency accordingly. This is

not the case however for the synthetic aperture system, where

the effective (generated) length of the aperture (and thus the

ground resolution) is based on the number of pulse returns from

each azimuth resolution element. In order to keep the actual

physical antenna aperture small it is necessary to use the

highest prf possible. For the case studied here the maximum

prf is obtained if the time between the end of the pulse

transmission and the beginning of the sidelobe return (from the

subspacecraft point) is used to receive the swath return from

the previous pulse. The pulse repetition frequency is then,

R2 - V + CT
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The change in the prf with altitude is shown for 100 m and 200 m

resolution in Figure 17.

2.4.2.3 Antenna Size

The swath width of the synthetic aperture system is

dependent on the range beamwidth and antenna dimension in

exactly the same manner as for noncoherent radar. Once again

a 1.5 m range dimension is used, which provides swath widths

between 50 and 250 km at altitudes between 300 km and 1300 km,

respectively. However, these swath widths are in keeping with

the coverage specifications of local mapping.

The azimuth beamwidth, p , is related to the antenna's
3

azimuth dimension, D , by,

D = 1-25 \
a Pa

Angular ambiguities will result during the creation of the

synthetic aperture if the sidelobe of the synthetic aperture

gain pattern does not fall outside the main lobe of the real

aperture. This results if the distance the real aperture

travels between pulses is too large compared to the actual

physical length of the aperture. These ambiguities may be

avoided if,

•- 4 v.
D > £
a - P

where v, is the ground velocity given by equation 2.11 and

listed in Table 1. The maximum antenna length is constrained

by the need to transmit and receive m pulses from a target while

it passes through the beam. This is expressed by,

1.25 p X R9Da< -nr̂ —2, (2
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where

P X R

Since the average power is directly proportional to m

(Eqn. 2.14), it is best to use the minimum value of m to keep

the power consumption as low as possible. This does cause the

antenna to be larger than optimum, but not as large as for the

noncoherent system. The values of m used are shown on Figure 18.

Combining the constraints of equations 2.19 and 2.20,

the minimum antenna azimuth dimensions are shown as a function

of altitude on Figure 19. Using the scaling law for antenna

densities developed in Section 2.4.1.1, the synthetic aperture

antenna weights are also illustrated in Figure 19. Notice, that

although these antennas are large, between 10 and 35 m, they are

considerably smaller than those necessary for noncoherent radars

providing resolutions an order of magnitude worse. Note also

that the better resolution (100 m) case requires a smaller antenna

than the poorer case (200 m) . This is one of the attractive

aspects of synthetic aperture radar; the size of the resolution

element is directly proportional to the length of the antenna,

just the opposite of the noncoherent system.

2.4.2.4 Power

The peak power, Pt, contained within the pulse envelope

for the synthetic aperture system may be expressed as,

2.35 x 10" 30 (S/N) F T v. R0
3 a 2 B 2 A cos *«

p = - 1 - i_2 - h 2 ̂  "r - 2 (2e22)

P T TC n X
J
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where the terms have all been previously defined. Just as for

the noncoherent system (Section 2.4.1.4),

S/N - 10

F = 20.24

T = 700° K

0r = 4°75
A = 1.1

n = 5 x 10~4

X = 10 cm

The variation with altitude of required peak powers is shown for

100 and 200 m ground resolution in Figure 20.

The average power is again expressed by

_ m T Pj.
P = t

o

where t is given by Equation 2.10. The variation in peak power

is also shown on Figure 20.

The input power, P. , is dependent on the average power,

Pin = 10° + 3 T

The input power, ranging between 120 and 2500 watts, is

shown in Figure 21. Notice that these powers are very much

higher than those required for noncoherent radar systems at

the same altitudes.
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2.4.2.5 Weight

The weights of the synthetic aperture -radar electronics

listed in Table 3 are based on the peak power requirements,

through the relationship,

W = 13.6 + 9,1 In (0.1 Pt X)

The total system weights, the sum of the radar electronics

weight and the antenna weight, are shown as a function of

altitude in Figure 22. There is very little difference in

weight between the high resolution (100,m) and the low

resolution systems. The high resolution system requires

a higher peak power but a smaller antenna than the lower

resolution system. The two requirements just about balance

one another in weight, although the higher power system will

require a larger spacecraft power supply system.

2.4.2.6 Data Acquisition

The data acquisition rate for synthetic aperture radar

systems is obtained by multiplying equation 2.17 by m, the

number of pulses;

DR - c TG t <cos Yl + cos V
C O

where G is once again set equal to 6 binary bits per resolution

element„ The resultant acquisition rate is shown as a function

of altitude in Figure 23. The collection rate increases with

altitude because of the continuously enlarging swath width,

containing resolution elements of a fixed size. This effect is

damped slightly due to the decrease in the spacecraft's ground

velocity with altitude.
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TABLE 3

RADAR ELECTRONICS WEIGHT

SYNTHETIC APERTURE RADAR

Altitude
km

300

500

700

900

1100

1300

Electronics Weight, kg

r* = 100 m

45.1

55.5

62.2

67.2

71.3

74.8

r = 200 m

30.5 ,

41.5

48.5

53.7

58.0

61.5.

r = Ground Resolution
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2o4.2.7 Focused Synthetic Aperture Radar Systems -

Summary

The focused synthetic aperture radar systems described in

this section are able to fully satisfy the requirements for

local resolution with antennas under 35 m long and total system

weights between 60 and 180 kg. From the viewpoint of these two

parameters the synthetic aperture radar is considerably superior

to the noncoherent radar discussed previously., However the

power requirements and the data acquisition rates are considerably

more demanding on the power supply and data handling subsystems

than for noncoherent systems. It remains to be seen now how

well these two radars fit into a spacecraft. In the next section

spacecraft will be sized for each radar over the 1000 km range

in altitude, with the effects of their power weight, and data

rate requirements on spacecraft subsystems discussed.
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3', MISSION ANALYSIS

Now that the radar system requirements have been

determined, it remains to size spacecraft to accommodate them.

The three spacecraft subsystems most greatly affected by the

radar system requirements are the data handling, communications,

and power supply. Each of these is also affected by actual

orbit parameters such as altitude, inclination, and stay time.

3.1 Orbit Considerations

One of the main problems associated with the low

circular orbits (300 km to 1300 km in altitude).used in this

study is that of earth and solar occultations. Figure 24 shows

typical locations in the orbit (true anomaly) of the earth and

solar occultation zones for a 300 km altitude orbit„ (For a

circular orbit, 0° true anomaly is taken to be the point of

'injection "into the orbit). Even though the figure presents

occultation geometry for a Venus mission beginning on a

specific arrival date (July 30, 1980), certain observations

can be made which apply to all arrival dates considered in

this report.

In general, the orbiter will enter zones of earth or
sun occultation during almost every orbit and these zones will
most frequently overlap. The amount of time in occultation in
either zone will be no greater than about forty percent of the
orbital period. Although not shown on the figure, Canopus
occultation will also occur during every orbit (since a polar
orbit at Venus is very nearly polar to the celestial sphere) for
about forty percent of the orbital period.

The occultation data presented in Figure 24 is for a
"worst case" situation in that the time of occultation per orbit
will decrease with increasing orbital altitude. Thus, for an
altitude of 1300 km the amount of time in earth or solar occulta=
tion reduces to about thirty percent of the orbital period.;
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The polar orbiting spacecraft (in a circular orbit) can
completely map Venus''surface in about 120 days. The surface

appears to rotate at only,~ 1.5° per 24 hour day under the
spacecraft. By mapping a swath between 50 and 250 km in width
(and with 20% overlap) the spacecraft must wait between 4 and
18 orbits, depending on altitude, before the next swath comes
into view. This time can be used to transmit collected data

to earth, and thus lower the load on the communications system
considerably. Of course transmission is still possible only

outside the earth occultation zones.
The effect of earth and solar occultations on mission

operations will "depend on the spacecraft's power supply system.
In Section 2 it was established that during periods of mapping
the radar system would require hundreds of watts (noncoherent
radar requires ~ 106 watts and synthetic aperture requires up
to 2.5 kilowatts) and acquire large volumes of data, probably
more than can be transmitted in real time.

If the spacecraft uses solar cells as the primary
power source, there can be no radar mapping during periods
of solar occultation, unless the spacecraft carries batteries
of sufficient capacity. Also, if the transmission data load
is very high, the batteries may be required to provide power to

the communication system during solar occultation to maximize
available transmission.time. Figure 25 illustrates a power
profile for a synthetic aperture radar orbiter at 500 km altitude.
At this altitude, there are approximately 6.4 orbits from the
start of one mapping period to the next. Assuming all mapping
is done during one orbit, there are 5.4 orbits available for
recharging the batteries and transmitting data. The figure shows

a "worst case" situation in that periods of earth and solar
occultation do not overlap, possibly requiring the batteries to

supply radio power. Note in Figure 25 that the portion of the
power profile termed "other" includes general housekeeping and
that during periods of mapping and data transmission."other"
also includes the power load for the data handling and storage units.
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A spacecraft whose power supply does not depend on the
sun (e.g. RTG's) will not have such a complex power profile as
one which is solar dependent. Only earth occultations will have
an effect on the overall mission operations.

3.2 Minimum Data Transmission Rate

The minimum data transmission rate depends on the data
acquisition rate, the number of orbits the system has to telemeter
the data collected to earth during the mapping of one swath, and
the type of power system. As was seen in Figures 14 and 23 the

o
acquisition bit rate varies from about 10 bps for noncoherent
to over 10 bps for synthetic aperture radar. The minimum rate
at which data must be relayed to earth is essentially the total
amount of data collected over one orbital pass (the product of the
data acquisition rate, the orbital period, and the fraction of
the orbit over which mapping occurs) divided by the total amount
of time available for transmission before the next swath rotates
into view. For a spacecraft which is effectively independent
of solar occultations (RTG's or solar cell/battery combination)
the radar may map during 100 percent of each orbit and transmit
during 60 percent or more of each orbit, depending on altitude
and location of the earth occultation zone. Figure 26 illustrates
the variation of this data rate with altitude for the synthetic
aperture and noncoherent radar systems. Three cases are shown;
(1) synthetic aperture with local resolution (100 m _< r < 200 m)
and 100% coverage of the planet, (2) synthetic aperture with local
resolution (100 m < r < 200 m) and 10% coverage, and (3) noncoherent
with regional resolution (0.5 km < r < 1.0 km) and 100% coverage.
Cases 2 and 3 satisfy the requirement for local and regional
coverage, respectively, as discussed in Section 1. Here it was
assumed that the spacecraft was earth-occulted for 0.6 hours
per orbit, independent of altitude (worse case). The local
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coverage Is based on mapping for .10 percent of each orbit,

again with 0.6 hours earth-occultation factored into the

transmission time. Case 1,illustrates the resulting increase

(10X) in data load if the entire surface were to be mapped at

100-200m resolution.

If the spacecraft's power supply is from solar cells

alone, i.e., without sufficient battery capacity to power the

radar system during solar occultations, only 70=80 percent of

Venus' surface can be mapped. The average data rate over the

whole 120 day mission will be proportionately lower* The

actual minimum permissable data rate, however, will depend on

the placement of the earth and solar occultation zones.

The spacecraft's communication subsystem was sized to

provide a data transmission rate between the minimum, shown

on Figure 26, and the maximum, the data acquisition rate given

in Figures 14 and 23. After reviewing the advantages of the

synthetic aperture system it was decided to size its data

storage capacity to handle the data accumulated in the

mapping of 100 percent of Venus' surface, rather than the 10 percent

called for in Section 1. This provides excellent resolution of

the entire surface for, as will be seen, very little penalty in

weight and power.

3.3 Spacecraft Sizing

The primary consideration in sizing a spacecraft for the

radar mapping of Venus was the power supply subsystem. As was

indicated previously, a spacecraft using RTG's is somewhat more

flexible when considering the mission's sequence of events in

orbit (i.e.,, mapping and transmitting data). A further

consideration in favor or RTG's is that of attitude pointing.

During periods of mapping, the radar antenna must be kept

pointed at the correct area on the surface with a high degree

of accuracy. If the spacecraft uses solar cell power alone,
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then the solar panels must be kept normal, or very nearly normal
to the spacecraft - Sun line for maximum efficiency. This -<•
double pointing requirement would lead to severe mechanical
requirements throughout a single orbit. The problem is further
complicated by the fact that the orbit is inertial in space, so
that the apparent position of the sun will move through about
180° in the Venus orbit plane during 120 days of elaped mission
time. Thus the solar panel pointing mechanism must also account
for the Sun's apparent motion about the orbit plane. If the
spacecraft uses a solar cell/battery combination power supply,
the problem shifts to one of rotating the spacecraft back and
forth between the proper attitudes for mapping, charging the
batteries, and transmitting data. The possibility of a dual
pointing requirement exists if the spacecraft must charge and
transmit simultaneously in order to maximize transmission time.

The use of RTG's eliminates the triple pointing problem.
During mapping, the only pointing constraint is that of the
radar antenna to the surface, and during transmission of radar
data, the constraint is that of the high gain antenna to the
earth.

RTG's were used as the spacecraft power supply except
for those cases for which the radar system required more than
750 watts of input power (see Figure 21). The RTG's assumed
for sizing purposes are those currently being developed for
the TOPS (Grand Tour), each RTG weighing 29.5 kg and supplying
140 watts of raw power. The scope of this study did not permit
a detailed investigation of the thermal and nuclear radiation
properties of RTG's in the Venus environment. It is noted that
this may present a serious problem and should be studied in
detail.

It appears that the most practical source of power for
those radar systems requiring about one kilowatt would
be solar cells since the weight penalty for sufficient RTG's
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would become prohibitive. The power levels for these;radar
systems approach the power levels of small solar electric
propulsion stages. It is possible, then, to utilize the solar
panels from the SEP as the power supply for the radar system and
design on integrated SEP/spacecraft. This approach was considered
in this study. High power cases were constrained to the use of
solar electric low-thrust Earth-Venus transfers. The spacecraft
subsystems were sized as being integrated with the SEP module.

Table 4 lists spacecraft subsystem weights for selected
examples of radar system, altitude and resolution. The first
example depicts a spacecraft with a noncoherent radar at 500 km
altitude and a vertical resolution of 0.5 km. The radar system
requires 101 watts of power and RTG's are used as the power
supply. The second example shows a spacecraft with synthetic
aperture radar at 500 km altitude a_nd a range resolution of
100 m. The radar requires 424 watts of power and again RTG's
are used for power. For comparison, the third example shows
the same radar system and altitude, but uses solar cell/battery
combination for power supply. As may be expected, the use of
RTG's leads to an overall heavier spacecraft for the same power
output as one which uses solar panels and batteries. In the
final example, a synthetic aperture radar orbiter at 1100 km and
100 m range resolution, the radar system requires over 1800 watts
of power, thus an integrated SEP/spacecraft is assumed. The
weight budget for solar panels is not shown since it would be
scaled primarily for the SEP and would therefore appear in the
SEP subsystems weight allocation. Note, however, that power
conditioning equipment and a small battery for housekeeping
are included in the spacecraft module.

The solar panels, batteries and power conditioning
equipment in the power subsystem, the control computer and
sequencer, attitude control, cabling, thermal control and
structure and mechanical devices were sized by use of scaling
laws developed by Dunkin and Spadoni (1972). As mentioned
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previouslyj the RTG's proposed for TOPS were assumed
for those systems using RTG's. An overall subsystems

contingency factor of 10% was assumed.
Data handling and storage, and telecommunications

subsystems were sized from proposed hardware designs of

Mariner (1973) and TOPS Technology. The Mariner subsystems
were used for the noncoherent radar, having low data acquisition

and transmission rates. A 20-watt TWTA S-band transmitter and
40 inch high gain antenna yield a maximum transmitted bit rate
(16.2 kbps) which is well above the requirements for noncoherent
radar. The Mariner magnetic tape recorder has a storage capacity

o
(1.8 x 10 bits), adequate for the noncoherent radar system..

Since data transmission and storage requirements for
synthetic aperture radar are much greater than those for non-
coherent radar, more sophisticated electronics than the Mariner
technology level are required. The 40 watt S- and X-band
TWTA transmitter from TOPS using a 9 foot rigid paraboloid high
gain antenna can provide a transmitted bit rate of 1.8 x 10 bps
for low altitude synthetic aperture radar. Mass data storage
for synthetic aperture is on the order of several billion bits.

Q

The proposed tape recorders for TOPS have a capacity of 10 bits
each; thus, multiple units of TOPS tape recorders were used as
required by the synthetic aperture system.

All of this is not to say that these electronic subsystems

can be utilized in a high data rate radar orbiter without
modification. They were selected to indicate weight allowances
typical of anticipated hardware designs. New technology require-

ments for these subsystems should not be any more significant
than those required for the radar system itself.

Figure 27 presents spacecraft weight in orbit for the
radar systems, resolutions and range of orbit altitudes considered
in this study. The curves are for RTG powered spacecraft, except
where noted, since this will yield the heaviest spacecraft concept

and thus indicate an upper limit to the required payload curves.
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High resolution synthetic aperture systems require over 750 watts
of power at altitudes over approximately 700 km, hence the curve
switches to an integrated SEP/spacecraft concept. The weight of
the SEP module is not included in this portion of the curve. The
point labeled "solar cell/battery spacecraft" corresponds to the
third example in Table 4, and is shown on Figure 27 for comparison.

3.4 Trajectory and Payload Analysis

Table 5 presents the Earth-Venus interplanetary transfer
data which were used for determining launch vehicle payload
capability. Earth-Venus ballistic trajectory data from 1978 to
1985 were searched for the launch time which yielded the lowest
combination of departure and arrival velocities (i.e., minimum
total energy) for each launch opportunity. The effects of launch
window constraints were not included. Note that the late 1984
opportunity is the only one that approaches the launch constraint
of -•+ 36° declination at ETR.

The best available SEP data (Horsewood and Mann, 1970)
were used to find suitable Earth=Venus SEP transfers as an
alternative spacecraft delivery system. The data is two-
dimensional, thus no information is available as to specific
launch dates or launch and arrival geometries. The data is
merely representative of SEP capability. The data is presented
in a form which is launch vehicle dependent. SEP transfers were
chosen which yielded adequate final mass at a minimum power level.
The Titan IIIC(7) data was scaled from Titan IIIC data by scaling
methods developed by Bartz and Friedlander (1971). Note that the
selected power levels of the SEP stages are more than adequate
for use as power supply systems for the high altitude, high
resolution synthetic aperture radar systems.
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Figure 28 presents the payload capability of the Titan HID/

Centaur launch vehicle for the ballistic interplanetary transfers.

The propulsion system assumed for orbit capture is a pressure-fed

Earth-storable system having a 295 sec Isp. Comparing Figure 27

with Figure 28, only the 1983 opportunity provides sufficient

payload capability for both radar systems and all orbit altitudes

under consideration. The 1981 and 1984 opportunities do provide

sufficient payload capability with the Titan IIID/Centaur, at lower

altitudes (see Figure 27), whereas the 1978 and 1980 opportunities

are inadequate with this launch vehicle. Should greater payload

capability be required, either a larger launch vehicle, such as

the Titan HID(7)/Centaur, an orbit insertion propulsion system

with a higher mass fraction (e.g. space-storable propellant) can

be utilized or elliptical orbits would have to be considered.

Figure 29 presents the payload capability of the SEP systems

given consideration. The weight of the SEP stage is not included

in the non-jettisoned payload curves. The Titan IIID/Centaur with

a 3.7 kw stage provides more than adequate payload capability, even

though the SEP stage is carried into orbit with the spacecraft,

whether or not it is utilized in an integrated concept. It can,

of course, be jettisoned prior to orbit insertion, thus providing

even greater payload capability.

The Titan IIIC(7) launch vehicle with SEP does not provide

adequate payload capability over the full range of radar systems

and orbit altitudes considered. Comparing Figures 27 and 29, it

can be seen that (excluding the integrated SEP/spacecraft curve)

the non-jettisoned curve provides only marginal payload capability

at the lowest altitude, and the jettisoned payload curve is only

somewhat more adequate. Note, though, that the non-jettisoned

payload curve for the Titan IIIC(7) does provide .sufficient payload

capability for those radar systems which could utilize the

integrated SEP/spacecraft concept.
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3.5 Sample Missions

Comparing the spacecraft weight curves (Figure 27) with
the launch vehicle capability curves (Figures 28 and 29) it is
evident that there are a large number of mission combinations
possible. There are four possible combinations of delivery-mode
and radar system; ballistic with noncoherent or synthetic aperture
radar, and solar electric propulsion with noncoherent or synthetic
aperture radar. Table 6 contains the spacecraft subsystem break-
down for a sample mission of each combination. For each sample
a low altitude orbit was chosen to keep the antenna size down,
and to reduce the pointing problems, required power and system
weight.

Sample mission I is a ballistically delivered non-coherent
radar system in a 300 km orbit. The radar system consists of a
relatively small (for non-coherent) antenna with 14 kg of electronics
and is able to provide 0.5 x 3 km spatial and 0.5 km vertical
resolution of the entire planetary surface in 58.5 km swaths.
Three 140 watt RTG's are required for the spacecrafts operation,
including 101 watts of radar input power. The Mariner "73
communications and data handling and storage subsystems are
adequate for this mission even though the spacecraft may be
earth-occulted for a fairly large fraction of each orbit. The
total spacecraft mass is 545 kg. and, referring back to Figure 28,
can be launched with the Titan IIID/Centaur in '81, '83 or '84,
with the 12/2/81 launch providing the shortest (110d) flight
time.

Sample mission II illustrates the ballistically
delivered synthetic aperture system. The 90 kg. radar system
consists of a 34 kg., 1.48 x 14.3 m antenna and 56 kg; of
electronics, and is capable of 100 percent surface coverage at
100 x 100 m spatial and 100 m vertical resolution. Five RTG's
are necessary for spacecraft power supply due to the 424 watt
radar power requirement. The more advanced TOPS communication
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TABLE 6 FOUR SAMPLE VENUS RADAR MAPPING MISSIONS

I II III IV

DELIVERY MODE
RADAR SYSTEM

ALTITUDE
ORBIT PERIOD

RESOLUTION
AZIMUTH
RANGE
VERTICAL
SWATH WIDTH

LAUNCH VEHICLE

LAUNCH DATE

SPACECRAFT
POWER SYSTEM
COMMUNICATIONS

DATA STORAGE

RADAR SYSTEM
WAVELENGTH
DEPRESSION ANGLE
ANTENNA
WEIGHT

PEAK POWER
INPUT POWER
PULSE WIDTH
PRF
ELECTRONICS
WEIGHT

DATA RATE
MAX ACQ.
MIN TELE.
(AT 10% COVERAGE)

BALLISTIC
NONCOHERENT

300 km
1.57*1

3.0 km
0.5 kin
0.5 km
58.5 km

TIIID/C

'81, '83,
'84

545 Kg
3RTGs*
20 WATT
TOT,
40" ANT.,
SBAND
46 Kg
1.8xl08 bits
9 Kg

73 Kg
10 Cm
45°
1.5x21.5 m
59 Kg
93 WATTS
101 WATTS
4x10-4 SEC.
3 pps

14 Kg

2000 bps
880 bps

BALLISTIC
SYNTHETIC
APERTURE

500 km
1.64h

100 m
100 m
100 m
87 km

TIIID/C

'83, '84

741 Kg
5RTGs*
40 WATT
TWT,
91 ANT.,
XBAND
61 Kg
4x109 bits
56 Kg

90 Kg
10 Cm
45°
1.48x14.3 m
34 Kg
104 WATTS
424 WATTS
9.4x10-5 SEC
1800 pps

56 Kg

6.25x105 bps
1.8x105 bps
(3x104 bps)

SEP
NONCOHERENT

500
1.64*i

3.0 km
0.5 m
0.5 m
98 km

TIIIC(7)-
JETT SEP

650 Kg
3RTGs*
20 WATT
TWT,
40" Ant.,
SBAND
46 Kg
1.8x108
9 Kg

152 Kg
10 Cm
45°
1.5x37.0 m
131 Kg
222 WATTS
101 WATTS
4.6x10-4 SEC
2.4 pps

21 Kg

3100 bps
760 bps

SEP
SYNTHETIC
APERTURE

700 km
1.72h

100 m
100 m
94 m
129 km

TIIIC(7)-INT SEP/
SPACECRAFT

550 Kg + SEP
SEP POWER SUPPLY
40 WATT
TWT,
9' ANT.,
XBAND
61 Kg
2x109 bits
42 Kg

112 Kg
10 Cm
45°
1.48x19.0 m
50 Kg
2.1x104 WATTS
769 WATTS
9.8x10-5 SEC
1306 pps

62 Kg

8.8x105 bps
1.08x105 bps
(2.8x104 bps)

*1 RTG = 140 WATTS
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and data handling subsystems must be used together with 4 10
bit capacity tape transports to handle the high resolution data
load. Referring again to Figure 28, the 741 kg. spacecraft can
be delivered to the 500 km circular Venus orbit by the Titan HID/
Centaur in '83 or '84, with the 6/5/83 launch providing the s
shortest flight time (120 ) and the largest payload margin.

An SEP delivered, noncoherent radar orbiter is illustrated
by Sample III. Again in a 500 km polar circular orbit this radar
system is designed to provide 005 x 3 km spatial and 0.5 km
vertical resolution of 100 percent of Venus' surface. At this
altitude a 1.5 x 37 m antenna weighing 131 kg. is required.
The radar electronics, requiring 101 watts of input power, weight
only 21 kg. The Mariner '73 communications and data handling
and storage systems are adequate for this mission as in Sample I.
The 650 kg. spacecraft can be delivered using a 3.3 KWE SEP stage
on a Titan IIIC(7) Centaur (see Figure 29) in 140 days, if the
SEP stage is jettisoned before orbit insertion. Since the low
(101 watt) radar power requirement may easily be supplied by
3 RTG's, jettisoning the SEP stage is not a mission drawback.
It is, rather, an advantage as the problems involved in solar=
panel pointing may be ignored.

Sample Mission IV is an example of a SEP delivered
synthetic aperture radar system. The 112 kg. radar consists of
a 1.48 x 19 m, 50 kg. antenna and 62 kg. of electronics, and
provides 100 x 100 m spatial and 94 m vertical resolution of at
least 75 percent of the planets surface. Because of the large
amount of data collected in one orbital pass the TOPS communi-
cation and data handling and storage system must be used, as it
was for Sample II. The high (769 watts) radar power requirement
necessitates the use of a solar cell power supply system. The
integrated SEP stage-spacecraft concept was therefore chosen for
this example. Figure 29 shows that the 550 kg. spacecraft (less
SEP stage) can be delivered by the Titan IIIC(7) launch vehicle
with a flight time of 140 days. Some surface coverage is lost
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due periods of solar occultation when enough power for mapping
is not available. This may be, however, overcome by the addition
of batteries. The added constraint of solar panel pointing must
also be considered as a drawback of this mission.

It is interesting to note from Table 6 that while the
noncoherent radar produces spatial resolutions over thirty times
worse than the synthetic aperture system, the total spacecraft
weights are nearly equal. Thus with the wide launch vehicle
capabilities previously illustrated there is a definite tendency
to favor the synthetic aperture system for mapping where the
differences in weight between the two systems are minimal, and
if data handling for synthetic aperture radar presents no
problems.
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4. CONCLUSIONS AND RECOMMENDATIONS

This study has demonstrated in a preliminary manner the
feasibility of using both noncoherent side-looking and focused

synthetic aperture radar systems to map the surface of Venus from
an orbiting spacecraft. Of course since this study is preliminary
it has overlooked many of the systems-oriented problems, but
it has shown that the major system's requirements are within
the realm of current technology„

The spacecraft masses for both radars, sized by a fairly

conservative method, fall within the 500 to 1000 kg. range. These
masses are well within the capabilities of the Titan IIID/Centaur,
using either the ballistic or SEP delivery modes.

The fabrication, storage, and deployment of the long
(20-50 m) radar antennas required by the non-coherent system may
be a problem. The synthetic aperture system requires antennas
about half as long as the non-coherent, and this may be reduced

by increasing the peak power and pulse repetition frequency.
Further work in the design of long rectangular antennas needs
to be done before the problem can be better assessed.

The power requirements of the two radars range from
100 watts to 2.5 kilowatts, and are not beyond the capacities
of current power systems. Operations at Venus make the RTG-type
power unit preferable to solar panels because of the former's
independence of the sun's position relative to the spacecraft.
The RTG's eliminate the need to have the spacecraft maintain
orientations in three directions; toward the sun for the solar

panels, toward the earth for communications and precisely toward
the planet's surface for the radar, and thus relaxes the
constraints on the attitude control system. The thermal output

of the RTG's and its effects on the spacecrafts design was not
investigated in this study. It could be that this is a disadvan-
tage which negates the RTG's advantages.
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Current data and communications systems are adequate for

use with the noncoherent system, but may be only marginal for

the synthetic aperture system. The latter requires a data

storage system able to accept data at over one megabit a second

(for the high altitude cases), very near the current system

limits. Also, the communications requirements are very close

to the DSN ground transmission limit (1-2.5 x 105 bps).

This study has demonstrated the superiority of the

synthetic aperture system over the noncoherent. Although the

noncoherent radar is a less sophisticated system requiring a

low input power, its total spacecraft weight is about equal

to that of the synthetic aperture radar system. This is due

chiefly to the large antenna required by the noncoherent system,

and with a limit of about 50 meters on antenna size there is no

way in which resolution better than one kilometer can be obtained.

Synthetic aperture radar, on the other hand, has a large growth

potential. Its resolution capabilities are not so closely tied

to antenna size as the noncoherent radar, which allows for much

more flexibility of design. Furthermore, advancements in radar

and spacecraft technology should continue to improve the overall

feasibility of the synthetic aperture radar system for space

missions. In view of the fact that earth-based radar observations

of Venus are approaching the capability of a noncoherent system,

it would seem most reasonable to emphasize development of synthetic

aperture radar for a comprehensive Venus mapping mission in the

early 1980's.
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