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FOREWORD

This report was prepared by the Chrysler Corporation Space Division,
New Orleans, Louisiana, and contains the results of a study performed for
the National Aeronautics and Space Administration, Office of Advanced
Research and Technology, under contract NASW-2294, "Upper Stage Technology
Evaluation Studies".
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Conductivity 3-50
3.r36 Variation of Stage Length Due to Insulation Thermal
v>f.v -?-^:*'j "„• -̂ ' *";•>?.-..<; ••«•"* »/*' -'•:••.•.'.'•.»*'! .«-•«!-*.ir?wi-:Conductivity 3-51
3-37 Variation of Stage Volume Due to Insulation Thermal
.,*;?„» •'!}•«- • ' . .•; i -P-, V.'.-" .,';>•'v '<-.-..' ?•-•.•; - .. .• •• . • i • .ff-utf {•

Conductivity " ' 3-52
3-38 Variations of RDT&E Cost Due to Insulation Thermal
•̂*'. ." . l t^ *- - ' •-• "-* .• ?• f"' ••• '-v-̂ ; • - •• > ' - • •.-"•; 'V'-P''' -*Vr?^ ?

Conductivity ' 3-53
3-39 Variation of First-Unit Cost Due to Insulation Thermal
. .' - i <C ' ' - • ,"• , f^r^ • ' " -'^ -V . -; %:?*• '

' ' Conducitivity 3-54
3-40 Variation of Program Cost Due to Insulation Thermal
-•>. ,- • -f1 -' . " - * , . . , • • • • «.*. % • ^ ""•'fcV,-**1 :

Conducitivity ' 3-55
3-41 The Number of Stage Launches Required to Save One

"Shuttle Flight (insulation Thermal Conducitivity 3-56
3-42 Break-Even Technology Costs for Insulation Tnermal
~* 'Conducitivity " 3-57
3-43 Variation of Stage Weight Due to Structural Weight 3-58

xii



LIST OF ILLUSTRATIONS (Continued)

Figure Title

3-44 Variation of Stage Length Due to Structural Weight
3-45 Variation of Stage Volume Due to Structural Weight
3-46 Variation of RDT&E Cost Due to Structural Weight
3-47 Variation of First-Unit Cost Due to Structural Weight
3-48 Variation in Single-Stage Program Cost Due to

Structural Weight 3-64
3-49 Variation in 20-Stage Program Cost Due to Structural Weight 3-65

4-1 Maximum Ideal Velocities Attainable (Single Stage) 4-6
4-2 Maximum Ideal Velocities Attainable (Two Stages) 4-7
4-3 Maximum Ideal Velocities Attainable (50,000-lb Stage,

1500-lb Payload) 4-8
4-4 Round-Trip Synchronous-Orbit Mission Stage Sizing

(Payload-to-Stage Weight Ratios) 4-9
4-5 Round-Trip Synchronous - Orbit Mission Stage Sizing for

a 3000-lb Payload (Stage Weights) 4-10
4-6 Effective Propellant Mass Fractions for Short Duration

Missions 4-11
4-7 Effective Propellant Mass Fractions for Long Duration

Missions 4-12

xxxi



LIST OF TABLES

Table Title Page

1-1 Task 2 Work Orders 1-2

2-1 Summary of Stage Design Constraints 2-3
2'-?2' Summary of Structural Design Data 2-4
2-3; Summary of Tankage Design Data 2-5
2-,4 Miscellaneous Subsystem Weights (Pounds) 2-6
2-5., Technology Level of Systems 2-8
2—6 Inves.tment Learning; Curves 2-8
2-7 Stage Weights for Various Specific Impulses 2-43
2-8: Cos.ts for Various Specific Impulses. 2-58
2r-9; Partials w.ith Reapect to, Specific Impul.ses 2-58
2-10; Summary of Stage Design Constraints 2-62
2-11 Summary of Structural Design Etata 2-63
2-12 Summary of Tankage Design Data 2-64
2-!-13, Miscellaneous Subsystem Weights; (Pounds), 2-65
2H14, Technology Level of Systems, 2-67
2-15; Investment Learning Curves 2-67
2-16. Summary of Stage Design Constraints 2-114
2V17» Summary of Structural Design D,ata 2-115
2-18 Summary of Tankage Design Data 2-116
2-rift Miscellaneous Subsystem Weights (MSFC Tug), 2-117
2--2Q Technology Level of Sys.tems 2-120
2-21 Investment Learning Curves 2-120
2-22 Shuttle Cargo Bay Criteria 2-137
2—23 Summary of Stage Design Constraints 2-144
2-24, Summary of Structural Design Data 2-145
2-:25 Summary of Tankage Design Da.ta 2-̂ 146
2-26> Miscellaneous Subsystem Weights; (MSFC Tug)- 2-147
2r27/ Technology, Level of Systems. 2-150
2>28 Investment Learning Curves 2-150

3~1 Summary of Stage Design. Constraints 3-2
3;-2 Summary of Structural Design Data, 3-3
3t-3 Summary of Tankage Design Data 3-4
3v-4 Miscellaneous Subsystem Weights (MSFC Tug) 3-5
3;-5 Shuttle Cargo Bay Criteria 3-6
3>-6 Weight Summary for the Baseline. Stage 3-9
3:-7 Design Data Summary for the Baseline Stage, 3-10
3'>-8; Cost Summary for the Baseline Stage (20-Stage Program). 3-12
3,-9' Technology Level of Systems 3-13
3:-10 Investment Learning Curve 3-13
3:̂ 11 Baseline Stage Data for Area Ratio. Analysis 3-32



LIST OF TABLES (Continued)

Table Title

3-12 Relative Break-Even Points 3-66
3-13 Summary of Methods to Improve the Stages Mass Fraction 3-67

4-1 Major Assumptions - Metallic Hydrogen Stage 4-13
4-2 Major Assumptions - Activated Helium Stage 4-15
4-3 Properties of Helium, Neon and Argon 4-16
4-4 Weight Statement Activated Helium Stage 4-18
4-5 Weight Statement Metallic Hydrogen Stage 4-19

xv



Section 1

INTRODUCTION

In the performance of this contract, Chrysler conducted various studies
to evaluate advanced technology relative to chemical upper stages and orbit-
to-orbit stages. The objectives of these studies were essentially three-
fold: 1) to provide NASA with data to provide a quantitative basis for making
decisions for future allocation of available resources in the continuing
development of propulsion technology, 2) parametric data for use in other
studies, and 3) quantitative information to be used in the selection and
direction of other studies.

To meet the objectives of this contract, three different tasks were
undertaken. Two of these tasks (1 and 3) were small in nature, and dealt
entirely with the modification and documentation of the stage sizing computer
program developed for a use in contract NAS7-790(1), while the third and
main task (Task 2) of this contract dealt primarily with the application of
the computer program in accomplishing various task assignments made by NASA.
Six work orders (summarized in table 1-1) were assigned by NASA under Task
2. Analytical studies were performed under each of these assignments, with
the exception of work orders 3 and 4, which called for additional computer
program modifications.

Under Task 1, a cost model, developed specifically for preliminary
design tradeoff studies and long-range program cost projections, was included
in the stage sizing computer program. This permitted parametric sensitivity
and optimization analyses to be performed on the basis of cost as well as
weight during Task 2.

Although the majority of the effort expended under this contract was
associated with the development of analytical data under Task 2, Work Orders
3 and 4 involved the modification of the computer program. The objectives
of these two assignments were to provide the capability to handle other
types of potential propellants. Under these work orders the thermal
routines in the sizing program were modified to permit the use of storable
propellants, and 14 new monopropellant stage geometries were added to the
sizing program.

Documentation of the Tasks and Work Orders, which were concerned with
the sizing program itself, has been included in the program utilization
report under Task 3, and published as two separate reports (2, 3).
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Table 1-1. Task 2 Work Orders.

Work Order Description of Work

1

2

Developed LH2/LOX stage data

Developed data to indicate stage sensitivity to engine
tolerances

Modified thermal routines to accomodate storable
propellants

Added stage geometries to computer program for mono-
propellant configurations

Determined the relative gain obtainable through
improvement of stage mass fraction.

Studied future propulsion concepts.

The work conducted under the remaining four work orders (1, 2, 5 and 6)
issued for Task 2, quantitatively assessed the merits'" of advances in various
technologies related to improved performance of space vehicles. The results
of the analyses conducted under these work orders are contained in this
report.

The purpose of Work Order 1 (of Task 2) was to assess the merits of
technology advances in space propulsion in the areas of increased chamber
pressures and reduced engine weight. This was accomplished by developing a
set of general data which covered a wide range pf engine specific impulses
and weights, and stage sizes. In addition, more detailed analyses were
undertaken to determine the implications of ultra-high chamber pressures
(up to 10,000 psi), moderate increases in chamber pressures (up to 3,000 psi)
and the reduction of engine weight.

At the completion of Work Order 1, it was mutually decided that it would
be advantageous to investigate other methods to improve the mass fraction of
a stage. Such investigation provided a comparison of the various means of
increasing stage performance. Therefore, Work Order 2, "Stage Sensitivity
to Engine Tolerances" was replaced with two additional work .orders (5 and 6),

Under Work Order 5, "Relative Gains Obtainable Through Improvement of
Mass Fraction," a set of quantitative data was developed to show the relative
gains which might be realized through the use of more advanced structural
material, a reduction in subsystem weights, etc.

The purpose of the last work order (6), was to determine the relative
merits of various distant future propulsion concepts, such as the use of
metallic and atomic hydrogen, activated oxygen and compounds of activated
helium, and metastable activated helium. However, because thermochemical
.property data for these propellants were difficult to obtain, it was possible
•to investigate only two of these propellants: metallic hydrogen and activated
;helium.
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The results of the analyses of these future propellants, as well as the
results of the other analytical work conducted under Task 2, are presented in
the remainder of this report.
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Section 2

TASK 2 - WORK ORDER 1.,

LOX/HYDROGEN STAGE DATA

2.1 GENERAL

The objective of this work order was to provide quantitative data which
could be used in assessing the merits of technology advances in space pro-
pulsion, such as increases in chamber pressure, or decreases in engine weight.
This was accomplished by the development of general data for a range of
specific impulses and engine weights and several different missions. In
addition, more detailed data were developed for ultra-high chamber-pressure
increases, moderate chamber-pressure increases, and reductions in engine
weights. These data are discussed in sections 2.2 through 2.5.

2.2 GENERAL LOX/HYDROGEN STAGE DATA

A set of generalized parametric data was developed for LOX/Hydrogen
stages which relates engine specific impulse and weight to stage size and
cost. These data are presented for a wide range of specific impulses and
engine weights, and for three missions having different constraints. The
three missions considered were: 1) earth orbit to synchronous orbit and
return; 2) a single-burn Mars planetary orbit insertion; and 3) a two-burn
Mars planetary mission.

Data presented in these generalized curves can be used to evaluate any
technology advancement which will result in an improvement in either engine
weight or specific impulse. In addition to being useful in estimating stage
weight and cost, the curves can be utilized to determine partial derivatives
(i.e., wstage, Cost, etc.) and the break-even point for certain propulsion

Isp Weng
technology developments. An example would be to determine how much money could
be saved in the area of program costs if the engine weight was decreased by 10
percent through the use of lighter turbomachinery. Other examples of the use
of these curves are described in section 2.2.4, Sample Solutions.

The generalized data developed in this task are presented in subsections
2.2.1 through 2.2.4.
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2.2.1 Data and Assumptions

Throughout the study, certain constraints, guidelines and pertinent
design data were used. These are summarized for the generalized data in this
section. Table 2-1 gives the design constraints used for both the synchro-
nous and Mars missions. Table 2-2 presents the prime structure data used in
computing the weights of the shell and thrust structure. Table 2-3 summa-
rizes the assumed tankage design data, including pertinent thermal and
meteoroid protection data. These data are shown forieach mission. The
weights assumed for the astrionics systems and for other miscellaneous
systems are given in Table 2-4. The subsystem weights shown for the synchro-
nous mission reflect the fail-operational/fail-operational/fail-safe design
philosophy currently being considered in the orbit-to-dfbit shuttle prelimi-
nary designs.

The stage geometry selected as the baseline for this analysis was the
tandem tank configuration (10111). This geometry was selected primarily as a
matter of convenience because the structure conversion factors (complex-to-
monocoque structure weight ratios) used in the sizing program were more
accurate for this configuration than for others. A typical stage geometry is
illustrated in figure 2-1.

The costs, excluding the engine costs which were input, generated during
this analysis were based on cost estimating relationships which are predicated
on historical cost data and pertinent vehicle parameters.*- ' In general, the
cost estimating relationships of any cost element contain coefficients which
indicate the technology level and complexity of that .individual element.
Table 2-5 presents the technology base assumed for the main systems on the
stage. Table 2-6 lists the percent learning curves used to compute the invest-
ment costs.

The program cost data developed during this analysis include only the
RDT&E, investment, and upper stage propellarit costs. The program costs pre-
sented do not contain the other cost elements normally included in the
operations costs, because they are mainly launch vehicle and mission model
oriented, and for identical missions and similar size upper stages the
operational costs are relatively insensitive to variations in upper stage
weight. Hence, any program cost sensitivities which are determined from these
program cost data will be of sufficient accuracy.

2.2.2 Synchronous Mission

2.2.2.1 Mission Profile

The profile selected for the synchronous mission was the transfer of
payloads between a low inclination, low altitude, earth (parking) orbit and a
synchronous orbit. This mission would require the liquid hydrogen-liquid
oxygen stage to perform one of the following maneuvers:

1. Delivery of a payload from low earth orbit to synchronous orbit
and return without a payload.

2. Transport a payload from low-parking orbit to synchronous orbit
and return with the same or a different payload; and
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Table 2-1. Summary of Stage Design Constraints

Constrlin7 "~~ ____Jlission

Maximum Stage Diameter (In.)

Shell - Tank Spacing (In.)

Tank -.Tank Spacing (In.)

Engine - Tank Spacing Factor (Chamber)

Engine - Tank Spacing Factor (Exit)

Engine - Booster Spacing (In.)

Engine Gimbal Angle (Degrees)

Thrust - To - Weight Ratio

Axial Acceleration (G's)

Lateral Acceleration (G's)

Pay load Density (Lb/Ft3)

Inert Weight Contingency Factor (%)

Single Stage
Synchronous

260

9.0

9.0

4.0

0.8

0.0

3.0

0.25

1.00

0.05

25.0

7.5

Interp lanetary
(Mars)

260

9.0

9.0

4.0

0.8

0.0

3.0

0.25

1.00

0.05

25.0

7.5
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Table 2-2. Summary of Structural Design Da'ta

Material

Density (lt>/ft3)'

Material Strength (psi)

Tension

Oomp'ressiori

Modulus of Elasticity (psi)

Safety Factors

Tension

Compression

Moriocoque-to-Complek Structure
Weiglit Ratio

Spider Beam Multiplicalbioh Factor

Aluminum

183 iO

67,000

46,000

107

1.25

i.oo'

*

N/A-.

Aluminum

183.0

67,000

46,000

107

1.25

1.00

*

N/A

* A function of diameter and limit load; see appendix G*
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Table 2-4. Miscellaneous Subsystem Weights (Pounds)

""""""— -_^_____^ Mission
Subsystem """ —

Hydraulic/Pneumatic

Destruct

Propellant Utilization

Communications

Instrumentation

Guidance, Navigation and Control

Electrical

Electric Power and Distribution

Total

Synchronous

550 -

50

500 '

400 *

200

600

200

2000

4500 ,.

Interplanetary
(Mars)

60

20

50

110

50

250

30

110

680
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L \

Figure 2-1. Tandem Tank Stage Configuration (10111)
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Table 2-5. Technology Level of Systems

Area Technology Level and Technique*

Structures
Shell
Thrust Structure
Tankage
Meteoiroid Shield
Tank Support
Propellant Feedlines

SOA - Aluminum Sheet Stringer
SOA - Aluminum Sheet Stringer
SOA - Aluminum Mondcoque
SOA - Aluminum Mbnbcoque
ADV - Composite
SOA - Aluminum

Propulsion
Main Engines
Reaction Control Thrusters

N/A - Cost Input
SOA - Monopropellaht

Miscellaneous Subsystems
Electrical Power and Distribution
Electrical
Commuriicat ion
Instrumentation
Guidance, Navigation and Control
Hydraulic/Pneumatic
Propellant Utilization
Destruct

Adaptation of
existing hardware
to a new unmanned,
reuseable upper stage

*SOA - State-of-the-art Technology
ADV - Advance Technology

Table 2-6. investment Learning Curves

System Learning Curve

Structures

Propulsion

Miscellaneous Subsystems

Assembly and Checkout

90%

95%

90%

90%
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3. Fly empty from the parking orbit to synchronous orbit, and return
with a payload to the original departure orbit.

The typical profile for this mission is depicted in figure 2-2. This
involves a Hohmann-type transfer maneuver from low earth orbit to synchronous
altitude, a plane change and circularization at synchronous orbit, a return
Hohmann transfer and plane change at synchronous orbit and circularization
into the original low earth orbit.

The four velocities used for this mission assumed a Hohmann-type trans-
fer between a 28%-degree inclination, 100-nautical-mile circular orbit and an
equational (0-degree inclination) synchronous orbit. The velocities were
corrected to account for the effects of the stage's initial thrust-to-weight
ratio and specific impulse. However, the effect of orbital regression on the
velocity requirements was not considered.

2.2.2.2 Stage Weights for the Synchronous Mission

Stages were analyzed with payloads which ranged from 0-pound round trip
to 15,000-pound round trip, and various combinations of specific impulses and
engine weights. Specific impulses of 455,465 and 475 seconds, and engine
weights of 100, 1000, and 3500 pounds were selected to ensure that most, if
not all, possible combinations were included. The results of the stage
sizing analyses are presented as carpet plots in figures 2-3 through 2-11.
These nine figures show the stage weights for different sets of payload up
and payload down, and various combinations of engine specific impulse and
weight.

2.2.2.3 Cost Data for the Synchronous Mission

RDT&E, Theoretical First Unit (TFU), and program costs were determined
for the various stages sized in this analysis (section 2.2.2.2). The costs
were computed with a computer routine, developed specifically for upper
stages, which determines costs from cost estimating relationships.^' How-
ever, in this analysis the various combinations of engine RDT&E and TFU costs
were input to the program to ensure that the results would be applicable to a
wide range of developments in engine technology. Engine RDT&E costs of 50.0,
225.0 and 400.0 million dollars, and TFU engine costs of 0.5, 1.0 and 1.5
million dollars were selected for this analysis. The resulting costs are
depicted in figures 2-12 through 2-22.

Stage RDT&E costs, independent of engine first unit costs, are presented
for the 3-engine RDT&E costs as a function of stage weight.

Figure 2-13 shows the TFU stage costs for the 3-engine TFU costs as a
function of stage weight. The TFU stage costs are independent of engine
RDT&E costs.

The program costs for the synchronous mission are presented for the nine
combinations of engine RDT&E and TFU costs as a function of stage weight.
Although presented as program costs, the costs shown in these figures include
only the RDT&fi, investment, and upper stage propellant costs. They do not
contain the other cost elements normally included in the operations costs,
because they are mainly launch vehicle and mission model oriented, and for
identical missions and similar size upper stages the operational costs are

2-9
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relatively insensitive to variations in upper stage weight. Hence, any pro-
gram cost sensitivities which are determined from these data will be of
sufficient accuracy.

The costs of propellants for various sizes of stages are presented in
figure 2-23. These costs are based on $0.35/lb and $0.02/lb, for hydrogen
and oxygen, respectively. They have been included so that missions which
required reusable stages could be priced.

2.2.3 Planetary Missions

2.2.3.1 Mission Profiles

In addition to the data developed for the synchronous mission, general
LOX/hydrogen stage data were generated for two planetary missions. The first
corresponded to a mission in which a relatively small stage circularized a
payload into an orbit about the planet Mars after a long interplanetary coast.
The stage was assumed to be placed on a Mars trajectory by another stage or
booster. This mission profile, for this single-burn case, is shown in figure
2-24. The selected coast times and AV's correspond roughly to a typical Mars
mission.

The second planetary mission required a single stage to perform two
major burns. The first burn provided the transfer velocity to place the
stage on an interplanetary Mars trajectory. The second burn performed the
same function as discussed for the previous planetary mission; i.e., circu-
larization into an orbit about Mars. The mission profile for the two-burn
Mars stage is shown in figure 2-25. Again, velocities and coast times were
selected to approximate a typical Mars mission.

Hereafter, the two cases are referred to as the single-burn and dual-
burn Mars missions.

2.2.3.2 Stage Weights for the Mars Missions

Stages capable of carrying payloads ranging from 0 to 10,000 pounds on
the two selected Mars missions were sized for engine specific impulses of
445, 465 and 475 seconds, and engine weights of 100, 1000 and 3500 pounds.
As with the synchronous mission, these values of specific impulse and
engine weight were selected to ensure that most possible combinations were
included in the analysis. The results of the interplanetary stage sizing
are presented in figures 2-26 through 2-28, and^in figures 2-29 through
2-31 for the single-and dual-burn Mars missions, respectively,

2.2.3.3 Cost Data for the Planetary Mars Missions

As in the analysis of the synchronous mission, RDT&E, TFU, and program
costs were determined in the same manner for the stages sized for the two
Mars missions. The stage RDT&E costs, which are independent of engine TFU
costs, are given as a function of stage weight in figure 2-32, for the 3
different engine RDT&E costs.

The TFU Mars stage costs are depicted in figure 2-33, for the three
different engine TFU costs as a function of stage weight. The TFU stage
costs are independent of the engine RDT&E costs.
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The program costs for the Mars missions are presented in figures 2-34
through 2-42, for nine combinations of engine RDT&E and TFU costs, as a
function of stage weight. As stated above, these costs reflect only the
RDT&E, investment, and upper stage propellant costs; they do not contain
other cost elements normally associated with operations (see subsection
2.2.1.).

The cost of the upper stage propellants is presented in figure 2-43 for
various sizes of stages. These costs are based on $0.35/lb and $0.02/lb for
hydrogen and oxygen, respectively.

2.2.4 Sample Solutions

The generalized data presented in the preceding subsections can be used
to solve a variety of problems; e.g., the determination of partials of stage
weight and cost with respect to specific impulse. In order to reduce the
need for interpolation, assume the stage of interest will be designed to
retrieve a 15,000-pound payload from synchronous orbit and return it to low
earth orbit. Also assume that the engine to be used with the stage has a
specific impulse of 465 seconds, a weight of 1000 pounds, and the following
costs:

Engine RDT&E Cost

Engine TFU Cost

$225M

$1.0M

The weight of this stage (189,500 Ib) can be determined from figure 2-7.
The stage weights for the same mission and engine weight, but with specific
impulses of 455 and 475 seconds, can be determined from figures 2-4 and 2-10,
respectively. These stage weights are shown in table 2-7. Figure 2-44 shows
these data in graphic form. The partial of stage weight with respect to
specific impulse can be found from the slope of the curve. The weight of a
stage corresponding to any specific impulse between 455 and 475 seconds can
also be determined from figure 2-44.

Table 2-7. Stage Weights for Various Specific Impulses

I (sec)
sp

455

465

475

W (Ib)
STAGE

206,500

189,500

175,100

Similar data pertaining to the RDT&E, FTU and program costs can be
determined from figures 2-12, 2-13 and 2-18, in the same manner. These data
are listed in table 2-8, for the three specific impulses, and graphically
presented in figures 2-45 through 2-47. The partial derivates, as determined
from the figures, are depicted in table 2-9.
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Table 2-8. Costs for Various Specific Impulses

I (sec)sp

WSTAGE (Ib)

RDT&E Cost ($M)

FTU Cost ($M)

X— s.

coK
M^
60
O JJ
!-i co

P4 O
O

5 Stages

10 Stages

20 Stages

455

206,500

937.3

26.20

1107.0

1231.0

1459.0

465'

189,000

923.9

25.43

1089.0

1210.0

1431.0

475

175,100

912,7

24.75

1075.0

1191.0

1406.0

Table 2-9. Partials with Respect to Specific Impulse

Stage

Stage Weight

Stage RDT&E Cost

Stage TFU Cost

P
ro

g
ra

m
C

o
st

s

5 Stages

;10 Stages

20 Stages

dX
d Isp

-1540 lie

-1-23 Jlc-

-0.0725 ̂ .

: -i.eofe

; -2.00 ^

• -2-65 J^
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The versatility of the generalized data can be further demonstrated by
expanding the problem, Assum^ that it is desired to increase stage perfor-
mance by improving the turbo-machinery efficiency through some means which
will provide an additional two seconds of specific impulse. The changes in
stage weight and cost can easily be computed from the following differential:

That is,

STAGE = (-1570 — ) (2 sec) = -3140 Ib,

A RDT&E = (-1.23 $M ) (2 sec) - -$2.46 M,
sec

A TFU = (-0.0725 --) (2 sec) = -$Q.U5M,
SGC

APROGRAM 5 = (-1.60 fl ) (2 sec) = -$3.20 M,

APROGRAM .. = (-2.00 ft* ) (2 sec) = -$4.oo M,
LU SGC

APROGRAM 9_ = (-2.65 ft1 ) (2 sec) = -$5.30 M.
<£U S 6C

These delta savings can be utilized to determine the break-even point
for the cost associated with the technology improvement. Because the stage
being evaluated is larger than the payload capability of the shuttle, the
stage must be launched by a regular launch vehicle, and any savings which
would be realized by the gain in additional cargo space (due to the smaller
stage) need not be taken into consideration. Therefore, the computed pro-
gram savings will be equal to the break-even point in the cost of technology
improvement. The number of stages which must be built in order to break-even
can be determined by plotting the computed program saving data versus the
number of stages in the program. The data are depicted graphically in
figure 2-48, which shows the number of stages that must be built in order
for the cost associated with the improvement in technology to equal the
savings obtainable in the program. If a larger number of stages is built
than is indicated for a given technology cost, then a net savings would be
realized.

2.3 EFFECT OF ULTRA-HIGH CHAMBER-PRESSURE INCREASES

A detailed analysis was conducted to assess the merits of ultra-high
chamber-pressure increases. This was accomplished by determining the vari-
ation in stage size and cost due to changes in specific impulse and engine
weight for chamber pressures ranging from 2500 to 10,000 psi. To ensure
that a wide variety of conditions was included in this study, the effect of
chamber pressure on both theoretical and delivered specific impulses was
investigated for two different missions and a wide range of payloads.

The ultra-high chamber-pressure data developed in this task are presented in

subsections 2.3.1 through 2.3.4.

2-59



sa-

1
I

SAMPLE PROBLEM
SyNCHRONOUS MISSION
PAYLOADS: 15K UP/ 0 DOWN

;;• ; j: ; , ^ : .;, : •
... . , . . .-!__-, .v--;^--| -— •.

. , • •> .,(. ; . . ;

1 2 3 4 5 6 7

COST OF IMPROVING TECHNOLOGY ( MILLIONS OF DOLLARS )

Figure 2-48. Break Even Costs

2-60



2.3.1 Data and Assumptions

Throughout the study, certain constraints, guidelines and pertinent
design data were used, which are summarized in this subsection. Table 2-10
gives the design constraints used for both the synchronous and Mars missions.
Fable 2-11 presents the prime structure data used in computing the weights
of the shell and thrust structure. Table 2-12 summarizes the assumed tankage
design data including pertinent thermal and meteoroid protection data. These
data are shown for each mission. The weights assumed for the astrionics
systems and for other miscellaneous systems are given in table 2-13. The
subsystem weights shown for the synchronous mission reflect the fail-
operational/fail-operational/ fail-safe design philosophy currently being
considered in the orbit-to-orbit shuttle preliminary designs.

The stage geometry selected as the baseline for this analysis was the
tandem tank configuration (10111). This geometry was selected primarily as
a matter of convenience because the structure conversion factors (complex-
to-monocoque structure weight ratios) used in the sizing program were more
accurate for this configuration than for others. A typical stage geometry
is illustrated in figure 2-49.

Early in the study, parametric performance data for ultra-high chamber-
pressure hydrogen/oxygen engines were obtained from Rocketdyne '̂ '• These
data covered theoretical performance, delivered vacuum specific impulses,
vacuum specific impulse efficiency and turbo-machinery efficiency data for
both open- and closed-cycle engines. These data cover chamber pressures
ranging from 2500 to 10,000 psi. These parametric engine performance data
are presented in appendix B.

The engine weights used in this analysis were computed from scaling laws
for a fixed-nozzle, pump-fed engine. The equations used for the engine
weights were ' ' :

f\

Weng = 5.0 + 0.0183F + 2.5 X 10"5(JD; lbf (1000 lb f <F < 8000 lbf)

Weng = 80.0 + 0.0105 F + 2.5 X 10"|-; lbf (8000 lbf < F< 8000 lbf)

Weng = 110.0 + 0.00966F + 2.5 X 10"5(f̂ ); lbf (30,000 lbf < F < 250,000 lbf)

where F is the engine thrust in
PC is the chamber pressure in psi, and •
6 is the nozzle expansion ratio.

The costs generated during this analysis were based on cost estimating
relationships which are predicated on historical cost data and the pertinent
vehicle parameters'^'. In general, the cost estimating relationships of any
cost element contain coefficients, which indicate the technology level and
complexity of that individual element. Table 2-14 presents the technology
base assumed for the main systems on the stages. Table 2-15 lists the
percent learning curves used to compute the investment costs .

A set of reference cost data was developed for the range stage weights
considered. The reference RDT&E, TFU, and 20-stage program costs are shown
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Table 2-10. Summary of Stage Design Congtraints

•"̂^̂ -̂̂..̂ ^̂ ^̂  • • • ••"" •••• . - . ̂~'^- •

ConstrainT""̂  : ___^ssion
• >„• •/-...- ^̂ ^̂ --— — ^_

Maximum Stage Diameter (In.̂

IShell - Tajik Spacing (In.)

Tank - Tank Spacing (In.)
t ' ft ** - * ! t

Engine - Tank Spacing Factor (Chanjber)

Engine - Tank Spacing Factor (Exit)

Engine - Booster Spacing (In.}

Engine Gimbal Angle (Degrees)

Thrust - To T Weight Ratio

Axial Acceleration (G's)

Lateral Acceleration (G's)

Payload Density (Lb/Ft3-)

Inert Weight Contingency Factor (%)

Single Stage
Synchronous

2j30

9-P -

9.Q

4.Q

0.8

Q.Q,

3.0

0.25

l.QO

0.05

25.0

7.5

Inj-erplanetary
v '"{Mars)'

260

?r(Q

9.0

4.Q

p. 8

Q;0

3.0

0.25

1.00

$.05

25.0

7.5
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Table 2-11. Summary of Structural Design Data

Material

Density (lb/ft3)

Material Strength (psi)

Tension

Compression

Modulus of Elasticity (psi)

Safety Factors

Tension

Compression

Monocoque-to-Complex Structure
Weight Ratio

Spider Beam Multiplication Factor

Aluminum

183.0

67,000 '

46,000

107

1.25

1.00

*

N/A

Aluminum

183.0

67,000

46,000

10?

1.25

1.00

N/A

* A function of diameter and limit load; see appendix C,
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Table 2-13. Miscellaneous Subsystem Weights (Pounds)

1 — - — -» Mission
Subsystem • — -_̂ .

Hydraulic/Pneumatic

Destruct

Propellant Utilization

Communications

Ins trumenta tion

Guidance, Navigation and Control

Electrical

Electric Power and Distribution

Total

Synchronous

550

50

500

400

200

600

200

2000

4500

Interplanetary
(Mars)

60

20

50

110

50

250

30

110

680
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\

Figure 2-49. Tandem-Tank Stage Configuration (10111>
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Table 2-14. Technology Level of Systems

Area . ; Technology Level & Technique

Structures
Shell
Thrust Structure
Tankage
Meteoroid Shield
Tank Supports
Propellant Feedlines

SOA - Aluminum Sheet Stringer
SOA - Aluminum Sheet Stringer
SOA - Aluminum Monocoque
SOA - Aluminum Monocoque
ADV - Composite
SOA - Aluminum

Propulsion
Main Engines
Reaction Control Thrusters

New, advance, reuseable LH2/LOX
SOA - Monopropellant

Miscellaneous Subsystems
Electrical Power and Distribution
Electrical
Communication
Instrumentation
Guidance, Navigation and Control
Hydraulic/Pneumatic
Propellant Utilization
Destruct

Adaptation of

existing hardware to a

new unmanned, reuseable

upper stage

* SOA - State-of-the-art Technology
ADV - Davance Technology

Table 2-15. Investment Learning Curves

System Learning Curve

Structures

Propulsion

Miscellaneous Subsystems

Assembly and Checkout

90%

95%

90%

90%
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in figures 2-50, 2-51 and 2-52, respectively. These data were used as the
basis for determining the cost variations discussed in Ihe subsequent para-
graphs of this section. ;

The prpgram cost data developed during this analysis include only the
RDT&E, investment, and upper stage propeilant costs." 'The program costs pre-
sented dp not contain the other cpst elements normally included in the
operations costs, because they are mainly launch vehicle and mission model
oriented, and for identical missions and similarly sized upper stages, the
operational costs are relatively insensitive to variations in upper stage
weight- Hence, any program cost sensitivities which are determined from
these program cost'data will be of sufficient accuracy.

2.3.2 Mission Profiles

The two missions considered in this study were: 1) an earth orbit to
synchronous orbit and return, and 2) a tw.o-burn Mars planetary mission. The
missioti profiles selected for this analysis are discussed ip the. next two
paragraphs.

2.3.2.1 Synchronous Mission Profiles

The prpfile selected for the synchronous mission was the trarisfer of
payloads between a low-inclination, Ipw-altitude earth (parking) orbit and
a synchronous orbit. This mission would require the liquid hydrogen-liquid
oxygen stage >tp transport a payload from low-parking orbit to synchronous
orbit and return with the same or a different payload of equal weight.

The typical profile for this mission is depicted in figure 2-53. This
involves a Hphmann-type transfer maneuver from low earth o,rt>it to synchro-
nous altitude, a plane change and circularizatiqn at synchronous orbit, and
a return Hqhmann transfer and plane change at synchronous QTbi£ arid circulars-
zation into the original low earth orbit.

The foiir velocities used for this mission assumed a Hqhman,n-type
transfer between a 28%-degree inclination, lOO-qautical-inile circular orbit
and an equational (0-degree inclination) synchronous orbit. The velocities
were not corrected to account for the effects of stage initial thrust-to-
weight ratio and specific impulse, nor those of orbital regression on the
velocity requirements.

2,3.2.2 Mars Mission Profile.

In addition to the data developed for the synchronous? mission, data
were generated for a planetary mission. This mission required a single
stage to perform two major burns. The first to provide the necessary
velocity to place the stage on an interplanetary trajectory; the second burn
to circularize the stage and payload into an orbit about the planet Mars.
The mission profile for the two-burn interplanetary mission is shown in
figure 2-54. The coast times and velocities were selected to approximate a
typical Mars mission.
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2.3.3 The Effect of Ul tr a -High .Chamber rPregguy Increases

Cost variations due to increases in .chamber press-yre were determined for
each of the following types of engine performance:

1) Theoretical specific impulse,

2) 97 Percent of. theoretical specific impulse,

3) Closed-engine cycle-delivered specific impulse., and

4) Openrengine cycle-delivered specific impulse.

The results of the analyses for each of the above are discussed in the sub-
sequent paragraphs. A comparison for the closed and open engine cycles is
made in subsection 2.3.4.

2.3.3.1 Variations for Theoretical Specific Impulses

The effect of ultra-high increases in chamber pressure was analyzed by
Determining the variation in stage size and cost which result from the corre-
sponding changes in theoretical specific impulse. The influence of ultra-
high chamber pressure was determined for stages which had the capability of
gairrying payloads of up to 15,000 pounds on a round-trip synchronous mission,
and 10,000 pounds on a two-burn Mars mission. The weight of stages corre-
gppnding to various payloads is shown in figure 2-55, for both the synchro-
nous and Mars missions. These weights are presented' for a chamber pressure
of 2500

Figures 2-56 through 2-58 depict the savings in RPT&E, TFTJ and program
costs, which might be realized through increased chamber pressure on a
stage(s) designed for a synchronous mission. These post sayings do not re-
flect the cost required to develop the technology associated with the ultra-
high chamber pressures. The cost savings are presented in each figure for
round-trip payloads of 1000, 7500 and 15,000 pounds, which correspond to
Stages weights of 67-68,000, 127-130, OQO and 196-200,000 pounds, respectively.
Similar data, but for the two-burn Mars mission, are shown in figure 2-59
through 2-61. The stage weights which correspond to the lOQOr, 5000- and
1Q, 000-pound payloads are 14--15, 000, * 36-3,7,000 and 62-64,000 pounds,
respectively.

2.3.3.2 Variations for 97 Percent Theoretical Specific Impulse

An analysis, similar to the one based on theoretical specific impulses,
was conducted for the specific impulses equal to 97 percent of the theoreti-
cal value. Figure 2-62 depicts the range of stage sizes and corresponding
payloads investigated during this analysis. These weights are for a stage
w.ith an engine having a chamber pressure of 2500 psi.

The cost savings in RDT&E, TFU and a 20 -stage program, which might be
obtained for a synchronous mission stage through increased chamber pressure,
are presented in figures 2-63, 2-64, and 2-65, respectively. The cost
saving presented in these figures does not reflect the cost associated with
the technology required to increase the chamber pressure. Thie cost savings
are presented in each figure for stages capable of carrying round-trip

2.-J4
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payloads of 1000, 7500 and 15,000 pounds. The corresponding stage weights
are 74-76,POO, 142-146,000 and 219-224,000 pounds/ '"

A similar set of data for the two-burn Mars mission is shown in figures
2-66 through 2-68. The stage weight's which correspond to the 1000-, 5000-
and 10,000-ppund payloads are 16-17,000, 39-40,000 and 68-70,000 pounds,
respectively.

2.3.3.3 Variations for a Closed-Engine Cycle

In addition to the effects of theoretical specific impulses, analyses
were conducted to determine the effect that ultra-high increases in chamber
pressure would have on the delivered specific impulse of .the stages, and
hence the stage's weight and cost. Two different engine cycles were investi-
gated. The first was the pump-fed closed-engine cycle, such as a topping or
expansion cycle. Although the pump-fed closed-cycle engines are limited, by
a turbo-machinery efficiency of approximately 80 percent, to a maximum
chamber pressure of 4000-5000 psi, chamber pressures up to 10,000 psi were
studied (see appendix B). The results of this analysis for the synchronous
(0-̂ 15,000-lb? pay loads) and Mars (0-10,000-lb payloads) missions are depicted
in figures 2-69 through 2-75. The stage weights corresponding to the various
payloads are presented for both the synchronous and Mars missions in figure
2r69, These stages were designed with a closed-engine cycle having a chamber
pressure of 2500 psi.

The cost savings for RDT&E, TFU and program, which might be realized
through increased chamber pressure on a stage(s) designed for a synchronous
mission, are presented in figures 2-70, 2^71 and 2-72, respectively. These
cost savings do not reflect the cost required to develop the technology
required to obtain these ultra-high chamber pressures. The cost savings are
illustrated in each figure for round-trip payloads of 1000, 7500 and 15,000
pounds, which correspond to stage weights of 75-78,.OOP, 144-148,000 and
221-228,000 pounds,^respectively.

Similar data, but for the two-burn Mars missions, are shown in figures
2-73 through 2-75. The stage weights which correspond to the 1000-, 5000-
and 10,000-pound payloads are 16-17,000, 39-41,000 and'68-7.0,000 pounds,
respectively.

2.3.3.4 Variations for an Open-Engine Cycle.

The second type of engine cycle studied was the pump-fed open-engine
cycle. Although this cycle is capable of operating at chamber pressures
higher than the previously discussed closed cycle (see section 2^3.3.3), the
specific impulse efficiency of the open-cycle engine begins to decay rapidly
with increased chamber pressure. Hence, for stages using engines with open
cycles, the stage weight and costs increase with increasing chamber pressures.
The results of the open-engine cycle investigation are presented in figures
2-76 through 2-82. Figure 2-76 depicts the weights of stages using an open-
cycle engine with a 2500 psi chamber pressure, as a function of payload.

Presented in figures 2-77, 2-78 and 2-79 are the RDT&E, TFU and program
negative cost savings, respectively, which would be incurred for a synchro-
nous mission stage through increased chamber pressure. These indicated
increased costs associated with the open-cycle engine do not include the
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technology costs associated with obtaining the ultra-high chamber pressures.
The delta costs are presented in each figure for stages capable of carrying
round-trip payloads of 1000, 7500 and 15,000 pounds. The stage weights
which correspond to these payloads are in the order of 82-102,000, 157-195,000
and 197-242,000 pounds, respectively.

For the Mars mission, a similar set of data is presented in figures
2-80 through 2-82. The variations in cost are presented for stages designed
to carry 1000-, 5000- and 10,000-pound, payloads, which correspond to stage
weights of 17-20,000, 42-48,000 and 73-83,000 pounds.

2.3.4 Comparison of the Closed- and Open-Engine Cycles

The most probably effect that ultra-high increases in chamber pressure
would have on stage size and cost is best illustrated by comparing the re-
sults of the analyses of the open- and closed-engine cycles. Figures 2-83
through 2-86 show the stage weight variations and the differences in cost
for stages designed to carry a 15,000-pound payload (round trip) on the
synchronous mission. This size stage was one of the largest investigated
during this study. Because the open-cycle engine has a lower delivered
specific impulse (7 seconds) at 2500 psi than the closed-cycle engine, the
stages using an open-engine cycle weigh more at the 2500-psi reference
chamber pressure. This is why the stage weight curves for the two cycles
do not intersect at 2500 psi in figure 2-83.

The higher stage weights also result in higher costs for the open-engine
cycle stages at the reference chamber pressure. The RDT&E, TFU and program
savings depicted in figures 2-84, 2-85 and 2-86, respectively, indicate a
higher cost associated with the open-engine cycle. The cost associated with
developing the ultra-high chamber pressure technology are not reflected in
these cost comparisons. The data presented in these figures are referenced
to the cost of a stage with a 2500-psi closed-cycle engine.

A similar set of data is presented for a Mars mission stage in figures
2r87 through 2-90. This stage, which was designed to carry a 1000-pound
payload, was one of the smallest considered in this study.

In both instances, the large synchronous stage and the small Mars stage,
the use of the closed-engine cycle yields stages which are smaller and less
expensive. However, as indicated in the engine performance data (see
appendix B), the closed-engine cycle is limited by turbo-machinery efficien-
cies to maximum chamber pressures of 4000-5000 psi. Present state-of-the-
art turbo-machinery has efficiencies in the order of 80 percent, which
correspond to a chamber pressure of 4200 psi. Hence, for all practical
purposes, open-engine cycles must be selected for all chamber pressures in
excess of 4000-5000 psi. But, because the delivered specific impulse of an
open-cycle engine operating at these chamber pressures is 15 to 17 seconds
less than that of the closed-cycle engine:, stages using open-cycle engines
will weigh and cost more. In fact, as chamber pressure is increased further,
the stage using an open-cycle engine becomes even more costly because the
delivered specific impulse drops rapidly with chamber pressure increase.

2-101



VI
a:

-U
Q
Q.

u_
Q
</>z
Q

vo
0
O,

z

O

to

G>

0

-10

-20

-30

-40
2000

TWO BURN MARS MISSION
DELIVERED SPECIFIC IMPULSE '
OPEN ENGINE CYCLE U
EXPANSION RATIO 400: 1 ',4
MIXTURE RATIO 7.0: 1 U

4000 6000 8000

CHAMBER PRESSURE ( PSI)

Figure 2-80. RDT&E Savings for a Mars Mission Stage
(Delivered Open-Cycle Specific Impulse)

10000

2-102



CO

o
Q
u_
O
IS)
z
o

COo
u

oo

oo
o
z

CO

Q

CO
UJ

0

.-1

-2

-3

-4
2000

J_

iPAYLOADpt"

r
4 -

t
t' f•

-J—.

•{ -4--

:T

TWO BURN MARS MISSION
DELIVERED SPECIFIC IMPULSE
OPEN ENGINE CYCLE
EXPANSION RATIO 400: 1
MIXTURE RATIO 7.0: 1

4000 6000

CHAMBER PRESSURE ( PSI)

8000

Figure 2-81, TFU Savings for Mars Mission Stage
(Delivered Open-Cycle Specific Impulse)

10000

2-103



CO;
0£

541
o

g_j_j
1
?

I
02

S;

Q
LL.

to.
Q

<t

0

,10

2̂0

-.30

-40
2000

TWO BURN MARS MIS.SIQN
DELIVERED SPECIFIC IMPULSJ
OPEN ENGINE- CYCLE
EXPANSION RATIO ' 400,: I
MIXTURE RATIO, 7.0:1

4000 6000

CHAMBER PRESSURE ( PSI)

8000 10000

Figure 2-82. Program Savings for a Mars Mission Stage
(Delivered OpenrCycle Specific Impulse),

2-104



CO
Q
z

2
u_
o
to
Q
Z
<
oo
Z)
O

o
LLJ

LU

O

300 _

275

250

225

200

OPEN ENGINE

2000 4000 6000 8000 10000

CHAMBER PRESSURE ( PSI)
Figure 2-83. A Comparison of Stage Weights for a Synchronous Mission

2-105



to
ans
b
u_

9
toz

u
UJ

-to

Q
UJ

<

; CLOSED ENGI

:" ! ; : " " ' :SYNC,HRONPU.S MjSSION
r'^'':;;^R^-:--PAY LOAD 15000 LB ~

; -DELIVERED SPECIFIC IMPULSED
^~j:;EXPANSION RATIO 400:1-
^rhrhfr;;MIXTURE RATIP .6,0: 1 -

:OPEN ENGINE

2000 4000 6000 8000 10000

CHAMBER PRESSURE ( PSI)
Figure 2-84. A Comparison of RDT&E Cost Differences for a Synchronous

Mission Stage

2-106



1/1
Di

o
Q
LU

O
1/1
z
o

oo

oo
O
(J

z
Z)

Qi

1/1
o
z
>
1/1

Q

CLOSED ENGINE CYC

SYNCHRONOUS MISSION
4l4f PAY LOAD

; iDELIVERED SPECIFIC IMPULSEfH
i;.^:;:IJEXPANSION RATIO 400: 1 Hf

r "i ";j-.ftiTHtn7it""

^T--*r--MOPEN 'ENGlNE''CYCLEr
;<iiL 4^.'!^ :: j L...-L x : z - .-F ..!-.

2000

Figure

4000 6000

CHAMBER PRESSURE ( PSh)

8000 10000

2-85, A Comparison of TFU Cost Differences for a Synchronous
Mission Stage

2-107



C£

3

I

o
O-

LU

!r?
oo

<

§
Lu

^O/ IS

2
>
CO

B

CO

. jgp- :•: ; .-.: .JJlFJijij

•HbPEN ENGINE CYCLED

-160

-180
2000 4000 6000 8000 10000

CHAMBER PRESSURE ( PSI)

Figure 2-86. A Comparison of Program Cost Differences for a Synchronous
Mission Stage

2-108



Q
Z

2
U-o
i/>
Q
Z
<
t/1
ID
O
x

O

LU

O

. : . -if-ci-i-T: •!^^d-::-ir -. rrrn7
^rfiv:.i :.]:-;:^;;^rtr- • j - . - r p j

i:;'r{:;;.;i Jrcij .:: \ -fi->

TWO BURN MARS MISSION ft~\
PAYLOAD 1000 LB
DELIVERED SPECIFIC IMPULSE I
EXPANSION RATIO 400:1 :lf

h- MIXTURE RATIO

:.TT|i:4JQ.PEN

4-.4l-:-v-. - ,--:-.}ftr4rr •/ ! • -[•-.- H^r'^lv^l :'' r'r "i -'4- - 7-

CLOSED ENGINE CYCLED :
^ ; ; : i ---rvF------^- ~:;r~

2000 4000 6000 8000 10000

CHAMBER PRESSURE ( PSI)
Figure 2-87. A Comparison of Stage Weights for a Mars Mission

2-109



0£

3
o
U-o

0
-j
1

V?

Qo
LU

H-
©

CO

0
2>

LU

n J C L $ . E D E N I N E CYCLE

''"'^-:-H|^^f]TWO BURN MARS MISSION ?f|
: ! :JPAYLOAD 1000

^-DELIVERED SPECIFIC IMPULSE
; I^JEXPANSION RATIQ

;-tr~-tntpT;F:

2000 4000 6000 8000 10000

CHAMBER PRESSURE ( PSI)

Figure 2-88. A Comparison of RDT&E Cost Differences for a Mars
Mission Stage

2-LLO



oo
ce:

o
Q
u.
O
IA)
z
o

in
i/i
O
u

L̂I-

z

o

>
00

r>r~--CLOSED ENGINE CYCLE;

:-TWO BURN MARS MISSION
•4r..~j PAY LOAD 1000 LB
i ; '-.-.-IDELIVERED SPECIFIC IMPULSE

^4-^EXPANSION RATIO 400:1
.,..<&..-4-'•] - ^MIXTURE RATIO 7.0: 1

-0.41
2000 4000 6000 8000 10000

CHAMBER PRESSURE ( PSI)

Figure 2-89. A Comparison of TFU Cost Differences for a Mars
Mission Stage

2-111



3
o

vo
Z

Q

M-!
C5

o.

<

O
UL.

O

<

<

".*'::' -J.:"-1

:.,..,*...'!. . a ^ . j j

--;.:TWQ B^RN MARS MISSIQN
r3-^HrH^|---fft|^i-PAY LOAD 1QOO

..,,-,m..- : .-.rt'T:Sa:KDELIVEREQ SRE^IFIC (MPULSErlrH

llil ::;JT;t^-:^MIXTURE RATjQ

4000 6000

CHAMBER PRESSURE ( PSI)

8000 10000

Figure 2-90. A Comparison of Program Cost Differences for a Mars
Mission Stage

2-112



2.3.5 Conclusions Concerning Ultra High Chamber Pressures

This analysis indicates that, unless another engine cycle is developed,
chamber pressures will be probably limited to less than 4000 psi for two
reasons. The first being that the most efficient of engine cycles (closed)
is theoretically limited to chamber pressures of about 6200 psi, and practi-
cally to pressures of 4000-4500 psi.

The second reason is that if there are no overriding considerations,
such as additional performance is required to perform a necessary mission,
then the high chamber pressures cannot be justified on the basis of cost
savings. That is, the difference in the savings which would be realized
during a program (five million dollars for 20 stages and less for fewer
stages) and the cost required to develop the higher chamber pressure would
not yield a larger enough return, if any, to base the need for higher
chamber pressure on cost alone.

2.4 EFFECT OF MODERATE CHAMBER-PRESSURE INCREASES

As a result of the analysis of ultra-high chamber-pressure increases, a
study was undertaken to assess the implications that decreases in stage
length (due to moderate increases in chamber pressure) would have on program
costs, including the shuttle transportation costs. This was accomplished by
determining the number of shuttle launches required before the savings
obtained from the smaller stages would equal the cost of developing the
necessary chamber-pressure technology resulting in a smaller stage.

Three different synchronous mission stage sizes were considered for
chamber pressures ranging from 500 to 3000 psi. The results obtained in
this study are discussed in the subsequent portions of this subsection.

2.4.1 Data and Assumptions

Through the study, certain constraints, guidelines and pertinent design
data were used. These are summarized in this section. Table 2-16 gives
the design constraints used. Table 2-17 presents the prime structure data
used in computing the shell and thrust structure weights. Table 2-18
summarizes the assumed tankage design data, including pertinent thermal and
meteoroid protection data. The weights assumed for the astrionics systems
and other miscellaneous subsystems are given in table 2-19. These weights
reflect the miscellaneous subsystem philosophy recently being considered
in an in-house MSFC Space Tug Study ^7'.

The stage geometry selected as the baseline for this analysis was the
40121 configuration, which has a large single hydrogen tank with ellipsoidal
domes, and four small oxygen tanks with hemispherical bulkheads suspended
below the thrust cone. This stage was selected instead of the tandem tank
configuration because a shorter stage geometry will be more advantageous for
use in the cargo bay of the shuttle. A typical stage geometry is shown in
figure 2-91.

The parametric oxygen-hydrogen engine system performance, weight and
geometry data used in this study were obtained from Rocketdyne for use in
the "LOX/Hydrogen Engine Technology for Advanced Missions" study, contract
NAS7-790. These data covered engines utilizing topping, expander and gas
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Table 2-16. Summary of Stage Design Constraints

Maximum Stage Diameter (In.)

Shell r Tank Spacing (In.)

Tank - Tank Spacing (In.)

Engine - Tank Spacing Factor (Chamber)

Engine - Tank Spacing Factor (Exit)

Engine - Booster Spacing (In.)

Engine Gimbal Angle (Degrees)

Thrust - To T Weight Ratio

Axial Acceleration (G's)

Lateral Acceleration (G's)

Payload Density (Lb/Ft?)

Inert Weight Contingency Factor (7»)

Single Stage
Synchronous

174,0

6-Q

6.Q

4.Q

0.8

Q..Q

3.Q

Q.25

1.00

0,.05

2̂ .0,

7-. 5



Table 2-17. Summary of Structural Design Data

Material

Density (lb/ft3)

Material Strength (psi)

Tension

Compression

Modulus of Elasticity (psi)

Safety Factors

Tension

Compression

Monocoque-to-Complex Structure
Weight Ratio

Spider Beam Multiplication Factor

Aluminum

183.0

67,000 '

46,000

107

1.25

1.00

*

N/A

Aluminum

183.0

67,000

46,000

10?

1.25

1.00

*

N/A

* A function of diameter and limit load; see appendix C.
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TaBle 2-18, Summary of Tankage Design Data

Mission

Tankage
Material
Density (lb/ft3)
Allowable Stress (psi)
Factor of Safety
Minimum Skin Gauge (Iii.)
Land factors (Bulkheads-)
Land Factors (Cylindrical Section)

SyHciirbridus

'Aluminum
183:0
16;000
i.io
6Y025
9. • 1°
b':05

Thermal 'Protection
Initial Fuel/Oxidizer Temperature (PR)
Initial Fuel/Oxidizdr Pressure (psi)
External Insulation Temperature (°R)
Insulation Density (lb/ft3)
Insulation Thermal Conductivity (Btu7Hr-Ft-°R)

15:0/15.0
A

4.5
*

Meteoroid Protection
Probability of no Punctures
Nominal Mission Altitude (ri.'m.)
Shield Material
Material Density (Ib/ft3)
Material Yield Stress (psi)
Minimum Skin Gauges (In.)

0;995
200

Aluminum
183.0
70,000
6.015

Miscellaneous
Minimum Fuel/Oxidizer tillage Volume (%)
Residual Fuel/Oxidizer Fraction (7o)
Feedline Flow Velocity (fps)
Tank Support Factor

5.0/5.0
2.0/2.0
20 ..6

A function of temperature and thickness; see appendix Ci
Dependent upon configuration; see appendix C«

>>. A % • ̂
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Table 2-19. Miscellaneous Subsystem Weights (MSFC Tug)

Item

Electric Distribution

Electric Power
Power Systems
Fuel Cell Reactants

Communication/ Instrumentation
Communications
Data Management
Instrumentation

Guidance, Navigation, and Control
Guidance, etc.
Rendezvous and Docking Radar

Hydraulic/Pneumatic
Purge
Umbilical
Tug/Orbiter Service

Propellant Utilization

Miscellaneous
Destruct System
Docking Adapter
Subsystem Mounts
Orbiter Interface
Pay load Interface
Purge

TOTAL

Weight
(lb)

200

300

295

210

145

35

1515

2700
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generator cycles. The data for the topping and expander cycles included
thrust levels from 15,000 to 120,000 pounds, area ratios from 100 to 400,
and mixture ratios of 5.0, 6.0 and 7.0. Data were supplied for chamber
pressures of 500 to 1000 psi, and 1000 to 3000 psi, for the expander and
topping cycles, respectively. The gas generator cycle data covered lower
thrust engines (5,000 - 15,000 Ib) and chamber pressures of 800 and 1000 psi.
These parametric engine data were published in appendix B of the final
report ' ' for the study cited above.

The costs generated during this analysis were based on cost estimating
relationships which are predicated on historical cost data and pertinent
vehicle parameters.' ^ In general, the cost estimating relationships of any
cost element contain coefficients which indicate the technology level and
complexity of that individual element. Table 2-20 presents the technology
level assumed for the main systems on the stage. Table 2-21 lists the
percent learning curves used to compute the investment costs.

The program cost data developed during this analysis include only the
RDT&E, investment, and upper stage propellant costs. The program costs pre-
sented do not contain the other cost elements normally included in the
operations costs, because they are mainly launch vehicle and mission model
oriented, and for identical missions and similarly sized upper stages the
operational costs are relatively insensitive to variations in upper stage
weight. Hence, any program cost sensitivities which are determined from
these program cost data will be of sufficient accuracy.

2.4.2 Mission Profile

The mission profile selected for this analysis was the return of
variously sized payloads from synchronous orbit. This mission profile,
illustrated in figure 2-92, is similar to one being considered for a MSFC
Space Tug. This two-burn mission would require the liquid oxygen/liquid
hydrogen stage to be launched and placed in synchronous orbit by another
stage or by itself with the use of external drop tanks. That is, the stage
has a full (internal) propellant load at the beginning of the synchronous
orbit coast. The first burn-,utilizing the "on-board" propellants is the
retro maneuver associated with the return Hohmann transfer and plane change
at synchronous orbit. The second and final burn circularizes the stage into
a low earth orbit.

The velocities used for this mission assume a Hohmann transfer between
an equatorial (0-degree inclination) synchronous orbit, and a 28%-degree
inclination, circular 100-nautical-mile orbit. The velocities were not
corrected to account for the effects of the stage's initial thrust-to-weight
ratio (T/W = 0.25) and specific impulse, nor were the effects of orbital
regression on the velocity requirements considered.

2.4.3 Stage Size and Cost

Stages were analyzed with engines having chamber pressures ranging from
500 to 3000 psi and engine nozzle expansion ratios of 100:1, 250:1 and 400:1.
The results of the stage sizing analyses are presented in figures 2-93
through 2-97. The stage weights which correspond to various engine area
ratios are depicted as a function of chamber pressure in figures 2-93, 2-94,
and 2-95, for stages capable of carrying payloads of 1000, 20,000 and 50,000
pounds, respectively.
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Table 2-204 Technology Level of Systems

Area Technology Level & Technique *

Structures
Shell
Thrust Structure
Tankage
Metetirbid Shield
Tank Supports
Propellant Feedlines

SOA - Aluminum Sheet Stringer
SOA - Aluminum Sheet Stritiger
SOA - Aluminum Mdnbeoque
SAO - Aluminum Mbhb'coqiie
ADV - Composite
SOA - Aluminum

Propulsion
Main Engines

Reaction Control Thrusters

New, advance, feu's eable low
PC, LH2/LOX
SOA - MorioprOgeilarit

Miscellaneous Subsystems
Electrical Power arid Distribution
Electrical
Commuhicat ion
Instrumentation
Guidance, Navigation arid Control
Hydraulic/Pneumatic
Propeilant Utilization
Destfxiet

Adaptation of existing

hardware to a hew

unmannedj retis eable

upper stage

*SOA - State-of-the-art Technology
ADV - Advance Technology

Table 2-21. investment Learning Curves

System Learning Curve

Structures

Propulsion

Miscellaneous Subsystems

Assembly and Checkout

90%

95%

90%

90%
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The overall stage lengths are presented as a function of chamber pressure
in figure 2-96. ... - .

The shuttle cargo bay volume required for the stages sized during this
study are shown in figure 2-97. Although the maximum stage diameter varied
from 123 inches (on the small 12-13K stage) to 174 inches (the maximum allow-
able diameter on the larger stages), the required shuttle cargo bay volume was
computed on the basis of a useable cargo bay diameter of 174 inches. That is,
there would be additional clearance, and hence unused space around stages whose
diameters are less than 174 inches.

The RDT&E, TFU and program costs were determined for the various stages
sized in this analysis. The costs were computed with a computer routine,
developed specifically for upper stages, which determines costs from cost
estimating relationships.^ The resulting RDT&E, TFU and program costs are
depicted for various stage sizes in figures 2-98, 2-99 and 2-100,
respectively.

The 20-stage program costs shown in figure 2-100, include only the
RDT&E, investment, and upper stage propellant costs. Other costs which are
normally included in operations have not been included (see subsection 2.4.1).

2.4.4 Variations in Stage Size and Cost

The differences in stage size and cost were determined for the various
stages investigated, using the stages with engines having 500-psi chamber
pressures as references. The results, depicted in figures 2-101 through
2-106, show the reductions in stage size and cost which accompany increases
in engine chamber pressure.

The reductions in stage weight, stage length and shuttle cargo volume
required for the stage, which result from moderate increases in chamber
pressure, are given in figures 2-101, 2-102 and 2-103, respectively. These
data are presented for three differently sized stages and two area ratios.
The payloads which correspond to the stage weights of 12-13,000, 51-55,000
and 109-119,000 pounds, are 1000, 20,000 and 50,000 pounds, respectively.

Figures 2-104, 2-105 and 2-106, show the estimated RDT&E, TFU and
program cost savings obtained through increased chamber pressure. These
data are presented for the two smaller sized stages and two nozzle expansion
ratios. These cost data do not reflect the cost associated with developing
the higher chamber pressure technology.

2.4.5 Technology Break-even Points

Because the costs of obtaining the higher chamber pressure technology
were unknown, it was necessary to "back-into" the problem in order to ascer-
tain the technology break-even points. These were found by determining the
technology cost which would equal the cost saving resulting from a smaller,
higher performance stage. That is,

Break-even Investment Costs = Stage RDT&E Savings

+ (Number of flights) (Investment Savings/Stage + Operations

Savings/Stage + Launch Savings/ Launch) .
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Although the KDT&E savings are independent of the program size, the other
savings terms in parentheses are functions of the number of stages used in
the program.

The savings associated with the stage RDT&E and program(investment and
operations) can be readily found from the savings data presented in figures
2-104 through 2-106, and similar program cost data developed, but not pre-
sented, for programs having various numbers of stages. However, for the
launch cost savings, it was necessary to assess the implications that the
smaller stages (due to increased chamber pressure) have on shuttle launch
costs.

i
This was accomplished by determining the number of shuttle launches

needed before the additional extra payload gained in each launch of a stage
(because of lighter, shorter stages) would equal the equivalent payload of
a single shuttle launch without a stage. The extra cargo bay volume which
can be utilized for other additional payloads is equal to the reduction in
cargo bay volume required for the stage (see figure 2-103). The shuttle
cargo bay criteria used in this analysis are presented in table 2-22.
Various densities were assumed for the additional payload, and the computed
extra payloads were checked to ensure that the volume and weight limitations
of the cargo bay were satisfied.

Table 2-22. Shuttle Cargo Bay Criteria

Cargo Bay Length

Cargo Bay Diameter

Maximum Allowable Cargo Diameter

Maximum Allowable Cargo Volume

Maximum Allowable Cargo Weight

60.0 ft

15.0 ft

14.5 ft

|9908 ft-

65000 Ib

The results of this analysis, which show the number of stage launches
required to save one shuttle flight, are presented in figures 2-107 and
2-108, for two different stage sizes. Only the volume-limited cargo space
case is presented in figure 2-107, for the smaller stage, because the criti-
cal density of the extra payload (the ratio of maximum allowable extra pay-
load weight to volume) is unrealistically high for the weight limited case.
Although the opposite is true for the larger stage (51-55,600 Ib), similar
data are presented for the larger stage in figure 2-108, for both the weight-
and volume-limited cases.

The launch cost savings were computed from the number of stage launches
required to save one shuttle flight, and used in conjunction with the stage
savings data (figures 2-104 through 2-106) to determine the technology
break-even points.
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The number of shuttle plus stage launches required to break-even (tech-
nology, investment costs = savings) are depicted in figures 2-109 through
2-111, for the two stage sizes, various technology investment costs and
various expenditure rates for technology investment costs. As indicated in
these figures, approximately 6 to 7 shuttle plus stage launches would be re-
quired before a cost of $5 million for higher chamber pressure technology
would be made up by the savings realized through the use of smaller stages.
The unrealistic volume-limited cargo space case, figure 2-;lQ9, indicates
that net return will occur after only 2 to 3 flights.>

In computing the technology break-even points, it was found that the
stage investment and propellant cost savings (A Program - A RDT&E) consti-
tuted only a small part of the total savings which might be. realized. That
is, the stage RDT&E and shuttle launch savings made up almps.t the entire
savings. Whether the stage RDT&E or shuttle savings were dominant, depends
upon the level of technology investment and the chamber pressure. The
savings in stage RDT&E are the overriding factor at the lower technology
investment costs and the higher chamber pressures.

2.4.6 Conclusions Concerning Moderate Chamber Pressure Increases

The results of this analysis indicate that the cost of developing the
technology required for moderate chamber pressure can probably be recovered
through stage and program savings. However, the net total sayings will be
marginal. These data also show that the possibility for recovering the
technology development cost increases with both stage size, engine nozzle
expansion ratio, and shuttle launch costs. This last fact is the consequence
of the savings in shuttle launch costs being an order of magnitude larger
than the potential savings which might be realized in stage investment and
operations cost ( A Program - A RDT&E).

Although some benefit in the form of monetary savings will be derived
from increased chamber pressure, the major justification probably will be
dictated by other constraints; such as the need for additional performance
from higher chamber pressures, to perform a certain design mission.

2.5 EFFECT OF REDUCTION OF ENGINE WEIGHT

While the analysis of moderate chamber pressures was being conducted,
a study was undertaken to assess the implications that reductions in engine
weight would have on stage and program costs. Three different synchronous
mission stage sizes were considered for various reductions in engine weight
ranging from 0 to 30 percent. The results obtained are discussed in the
subsequent portions of this subsection.

2.5.1 Data and Assumptions

Throughout the study, certain constraints, guidelines and pertinent
design data were used which are summarized1 in this section. Table 2-23
gives the design constraints used. The prime structure data used in comput-
ing the shell and thrust structure weights are shown in table 2I-.24. Table
2-25 summarizes the assumed tankage design data, including pertinent thermal
and meteoroid protection data. The weights assumed for the astrionics
systems and other miscellaneous subsystems are given in table 2-26. These
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Table 2-23. Summary of Stage Design Constraints

Mission

Maximum Stage Diameter (In.)

Shell - Tank Spacing (In.)

Tank - Tank Spacing (In.)

Engine - Tank Spacing Factor (Chamber)

Engine - Tank Spacing Factor (Exit)

Engine - Booster Spacing (In.)

Engine Gimbal Angle (Degrees)

Thrust - To - Weight Ratio

Axial Acceleration (G's)

Lateral Acceleration (G's)

Pay load Dens, it y (Lb/Ft3)

Inert Weight Contingency Factor (%)

Single Stage
Synchronous

174.0

6.0

6.0
•> '

4.0

P-8

q.p

3.0

Q.25

1.00

0.05

25.0

7.5
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Table 2-24. Summary of Structural Design Data

Material

Density (lb/ft3)

Material Strength (psi)

Tension

Compression

Modulus of Elasticity (psi)

Safety Factors

Tension

Compression

Monocoque-to-Complex Structure
Weight Ratio

Spider Beam Multiplication Factor

Aluminum

183.0

67,000 '

46,000

107

1.25

1.00

*

N/A

Aluminum

183.0

67,000

46,000

107

1.25

1.00

*

N/A

* A function of diameter and limit load; see appendix C»
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Table 2-25. Summary of Tankage Design Data

Mission

Tankage
Material
Density (lb/ft3)
Allowable Stress (psi)
Factor of Safety
Minimum Skin Gauge (In.)
Land Factors (Bulkheads)
Land Factors (Cylindrical Section)

Synchronous

Aluminum
183.0

60,000
1.10
0.025
oao
0.05

Thermal'Protection
Initial Fuel/Oxidizer Temperature (°R)
Initial Fuel/Oxidizer Pressure (psi)
External Insulation Temperature (°R)
Insulation Density (lb/ft3)
Insulation Thermal Conductivity (Btu/Hr-Ft-°R)

3.6.0/162.6
15.0/15.0

450.0/470.0
4.5

Meteoroid Protection
Probability of no Punctures
Nominal Mission Altitude (n.m.)
Shield Material
Material Density (lb/ft3)
Material Yield Stress (psi)
Minimum Skin Gauges (In.)

0.995
200

Aluminum
183.0
70,000
0.015

Miscellaneous
Minimum Fuel/Oxidizer Ullage Volume (%)
Residual Fuel/Oxidizer Fraction (%)
Feedline Flow Velocity (fps)
Tank Support Factor

5.0/5.0
2.0/2.0
20.0

* A function of temperature and thickness; see appendix C.
A Dependent upon configuration; see appendix C.
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Table 2-26. Miscellaneous Subsystem Weights (MSFC Tug)

Electric Distribution

Electric Power
Power Systems
Fuel Cell Reactants

Communicat ion/ Ins trumentat ion
Communications
Data Management
Instrumentation

Guidance, Navigation, and Control
Guidance, etc.
Rendezvous and Docking Radar

Hydraulic/ Pneumatic
Purge
Umbilical
Tug/Orbiter Service

Propellant Utilization

Miscellaneous
Destruct System
Docking Adapter
Subsystem Mounts
Orbiter Interface
Payload Interface
Purge

Total

200 Ib

300

295

210

145

35

1515

2700 Ib
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weights reflect the miscellaneous subsystem philosophy being considered in
an in-house MSFC Space Tug study(l)«

The stage geometry selected as the baseline for this analysis was the
40121 configuration, which has a large single hydrogen tank with ellipsoidal
domes; and four small oxygen tanks with hemispherical bulkheads, suspended
below the thrust cone. This stage geometry was selected instead of the
tandem tank configuration because the shorter stage would be more advahr.
tageous for use in the shuttle's cargo bay. A typical stage having this
configuration is illustrated in figure 2-112.

The parametric oxygen-hydrogen engine system performance, weight and
geometry data used in this study, were obtained from Rocketdyne for use in
the "LOX/Hydrogen Engine Technology for Advanced Missions" studys contract
NAS7-790. These data covered engines utilizing topping, expander and gas
generator cycles. The data for the topping and expander cycles included
thrust levels from 15,000 to 120,000 pounds, area ratios from 100 to 400,
and mixture ratios of 5.0, 6.0 and 7.0. Data were supplied for chamber
pressures of 500 to 1000 psi, and 1000 to 3000 psi, for the expander and
topping cycles, respectively. The gas generator cycle data covered lower

thrust engines (5,000 - 15,000 Ib) and chamber pressures of 800 and 1000 psi.
These parametric engine data were published in appendix B of the final report
for the study cited above.

The costs generated during this analysis were based on cost estimating
relationships which are predicated on historical cost data and pertinent
vehicle parameters.^' In general, the cost estimating relationships of any
cost element contain coefficients which indicate the technology level and
complexity of that individual element. The technology level assumed for the
main systems on the stage is presented in table 2-27. Table 2-28 lists the
percent learning curves used to compute the investment costs.

The program cost data developed during this analysis include only the
RDT&E, investment and upper stage propellant costs. The program costs pre-
sented do not contain the other cost elements normally included in the
operations costs, because they are mainly launch vehicle arid mission model
oriented, and for identical missions and similarly sized upper stages the
operational costs are relatively insensitive to variations in upper stage
weight. Hence, any program cost sensitivities which are determined from
these program cost data will be of sufficient accuracy.

2.5.2 Mission Profile

The mission profile selected for this analysis was the return of a
variously sized payload from synchronous orbit. This mission profile,
illustrated in figure 2-113, is similar to one being considered for a MSFC
Space Tug. This two-burn mission would require the liquid oxygen/liquid
hydrogen stage to be launched and placed in synchronous orbit by another
stage or by itself with the use of external drop tanks. That is, the stage
has a full (internal) propellant load at the beginning of the synchronous
orbit coast. The first burn utilizing the "on-board" propellants is the
retro maneuver associated with the return Hohmann transfer and plane change
at synchronous orbit. The second and final burn circularizes the stage into
a loW earth orbit.
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Table 2r.27, Technology Leyel of Systems

Area Technology Level and^Technology

Structures
Shell
Thrust Structure
Tankage
Meteoroid Shield
Tank Supports
Propellant Feedlines

SOA - Aluminum Sheet Stringer
SOA - Aluminum Sheet Stringer
SOA - Aluminum Monocoque
SOA - Aluminum Monbcoque
ADV - Composite
SOA ~ Aluminum

Propulsion
Main Engines
Reaction Control Thrusters

New, Advance, Reuseable LH2/LOX
SOA - Monoprbpellant

Miscellaneous Subsystems
Electrical Power and Distribution
Electrical
Communication
Instrumentation
Guidancej Navigation arid Control
Hydraulic/Pneumatic
Propellant Utilization
Destiruct

Adaptation of existing

hardware to a new

unmanned, reuseable

upper stage

* SOA - State-of-the-art Technology
ADV - Advance Technology

Table 2-28. Investment Learning Curves

System Learning Curve

Structures

Propulsion

Miscellaneous Subsystems

Assembly and Checkout

90%

95%

90%

90%
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The velocities used for this mission assume a Hohmann transfer between
ah equatorial (0-degree inclination) synchronous' brbiti, and a 28%-degree
inclination; circular 100 nautical mile orbit. The velocities were not
corrected to account for the effects of the stage's initial thrust-to-weight
ratio (T/W = 0.25) and specific impulse, nor were the effects of orbital
regression on the velocity requirements considered.

2.5.3 Stage. Size and Cost

Variously sized stages were analyzed with engines having chamber pres-
sures ranging from 500 to 3000 psi and nozzle expansion ratios of 100:lj
250:1 and 400:1. The results of the sizing analyses are presented in
figures 2-114 through 2-116. The stage weights which correspond to various
engine area ratios are depicted as a function of chamber pressure fbr stages
capable of carrying payloads of 1000, 20,000 and 50,000 pounds; These data
are based on nominal engine weights; that isj 100 percent the normal engine
weight.

The overall length of the states investigated is presented as a
function of chamber pressure (figure 2-117).

The RDT&E, TFU and program costs were determined for each of the stages
sized. The costs were computed with a computer routine^ developed specifi-
cally for upper stages, which determines costs from cost estimating relation-
ships. W The resulting RDT&E, TFU and program costs are depicted for
various stage sizes in figures 2-118, 2-ll9j and 2-120, respectively.

The 20-stage program costs shown in figure 2-120 include only the
RDT&E, investment, and upper stage propellant costs. Other costs which are
normally included in operations have hot been included (see subsection
2.5.1).

2*5.4 Variations in.Stage Size, and Cost

The differences in stage size and cost for each of the three stages
(1,000; 20,000 and 50,000-pourid payload capabilities) were determined for
various percent reductions in e ngine weight. The resultsj depicted in
figures 2-121 through 2-135, show the reductions in stage size and cost
•which accompany decreases in engine weight.

The reductions in stage weight and length, which result from reduction
in engine weight, are presented in figures 2-121 and 2-222, respectively,
for a 12,000 to 13,OOO-^pound stage having a 1000-pound payload capability.

The RDT&E, TFU and program cost savings estimated for these 12-13,000
pound presented as a function of percent reduction in engine weight, in
figures 2-123, 2-124 and 2-125, respectively. These data are presented
for several different combinations of engine chamber pressures and area
ratios. The costs associated with developing the lighter engines' are not
reflected in these data0

Similar data are presented for two differently sized stages in figures
2-126 through 2-135. Data for a 51-55,000-pound stage (20,000-pound payload
capability) are presented in figures 2-126 through 2-130; and fbr a stage
having a payload capability of 50,000-pounds (109-119,000-pound stages) in
figures 2-131 through 2-135.
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The data indicates that regardless of stage size, only extremely small
savings in stage weight, length and cost can be obtained through the
reduction of engine weight.

2.5.5 Conclusions Concerning Reductions in Engine Weight

Although no analyses were conducted to determine the technology break-
even points, the conclusion that reduction of engine weight would not be
attractive from the stand point of cost savings is quite obvious. The
reasons were twofold. First, the stage RDT&E cost savings that are realized
through engine weight reductions are minimal at best. And second, the
smaller stage size associated with the lighter engines will not yield a
large savings in shuttle transportation costs. This last fact is obvious
when the 1000-pound and 3-inch variations (maximum) in stage size obtained
through engine weight reduction are compared to the 2,200+-pound and 120-inch
differences found during the analysis of moderate chamber pressure increases
(section 2.4). In addition, it is doubtful whether any overriding consider-
ations (i.e., the requirement for mass ratio improvement by weight reduction
in order to perform a necessary mission) can be found where the return on
technology investment would not be higher if the funds were invested in
other areas to correct the problem.
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iiSSk f :iî  STAGE WEIGHT 51000 - 55000 LBT
fttjirf :;'::"!? MIXTURE RATIO 6.0:1 f

2.0

1.0

0

rT i .liL.i:ii:

e= 100, PC = 500

10 20

REDUCTION^ IN ENGINE WEIGHT (PERCENT)
Figure 2-127. Reduction iiTstage Length~(51-55,000-LB Stage)

2-167



</>

1.1

1.0

0.9

o

5 °-
z
Q

0.7

00
O 0.6
u

Q
at.

0.5

P
Z
> 0.4
CO

0.3

0.2

0.1

0

RETURN SYNCHRONOUS MISSION •: r|
PAYLOAD 20000 LBt;"T
CONFIGURATION 401211
STAGE WEIGHT
MIXTURE RATIO

51000-55000LB
6.0:1

10 20
REDUCTION I N ENGINE WEIGHT ( P E R C E N T )

Figure 2-128. Estimated Savings in RDT&E Costs (51-55K Stage)

30

2-168



CO

o
Q

CO

Z
O

CO
I—
CO

o
U

oo

COo
Z
>
CO

Q

CO

0.04

0.03*

0.02

0.01

Ji33lLl:IirzE
•rk-lli r-;; 4-—--4-~ H—j-rH

; RETURN SYNCHRONOUS MISSION \
I i PAYLOAD 20000 LB i .;

} "r : CONFIGURATION 40121 ~;~!"7:
STAGE WEIGHT 51000-55000 L

" T" i" '

0' 10 20

REDUCTION IN ENGINE WEIGHT (PERCENT)

Figure 2-129. Estimated Savings in TFU Costs (51-55,000-LB Stage)

30

2-169



4.0

CO

3
_J
o
Q

z
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Section 3

TASK 5 - WORK ORDER 5., RELATIVE GAINS

OBTAINABLE THROUGH IMPROVED MASS FRACTION

3.1 GENERAL

As a result of the analyses of the effects of moderate increases in cham- .
her pressure and engine weight reductions (subsections 2.4 and 2.5) conducted
as part of Work Order 1, it was decided to replace Work Order 2 with an
additional task assignment. The purpose of this task, Work Order 5, was to
study the relative importance of other means of improving a stage's mass
fraction. This was accomplished by varying different parameters, such as the
prime structure weight, miscellaneous subsystem weights, thermal conductivity
of tank insulation, etc., and determining the corresponding stage sizes and
costs. The break-even costs associated with developing the technology
required to obtain the various mass fraction improvements, including the effect
of stage size on shuttle transportation costs, were also determined.

The results obtained in this study are discussed in the remainder of this
section.

3.2 DATA AND ASSUMPTIONS

Throughout this study, certain constraints, guidelines and pertinent de-
sign data were used, and are summarized in this section. Table 3-1 gives the
design constraints used and table 3-2 presents the prime structure data used
in computing the shell and thrust structure weights. Table 3-3 summarizes the
assumed tankage design data, including pertinent thermal protection data. The
weights assumed for the astrionics systems and other miscellaneous subsystems
are given in table 3-4. These weights reflect the miscellaneous subsystem
philosophy recently being considered in an in-house MSFC Space Tug study (7)•

The stage geometry selected as the baseline for this analysis was the
40121 configuration which has a large single hydrogen tank with ellipsoidal
domes, and four small oxygen tanks with hemispherical bulkheads, suspended
below the thrust cone. This stage geometry was selected instead of the
tandem tank configuration because a shorter stage appears to be more advan-
tageous for use in the shuttle's cargo bay.

The parametric oxygen-hydrogen engine system performance, weight and
geometry data used in this study, were obtained from Rocketdyne for use in
the "LOX/Hydrogen Engine Technology for Advanced Missions" study, contract
NAS7-790. These data cover engines utilizing topping, expander and gas
generator cycles. The data for the topping and expander cycles included
thrust levels ranging from 15,000 to 120,000 pounds, area ratios from 100 to
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Table 3-1. Summary of Stage Design Constraints

Mission

Maximum Stage Diameter (In.)

Shell - Tank Spacing (in.)

Tank - Tank Spacing (In.)

Engine - Tank Spacing Factor (Chamber)

Engine - Tank Spacing Factor (Exit)

Engine - Booster Spacing (In.)

Engine Gimbal Angle (Degrees)

Thrust - To - Weight Ratio

Axial Acceleration (G's)

Lateral Acceleration (G's)

Payload Density (Lb/Ft3)

Inert Weight Contingency Factor (%)

.Single Stage
Synchronous

6.0

,6*0

4.0

0,8

0.0

3.0

0.25

1.00

0.05

25.0
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Table 3-2. Summary of Structural Design Data

Material

Density (lb/ft3)

Material Strength (psi)

Tension

Compression

Modulus of Elasticity (psi)

Safety Factors

Tension

Compression

Monocoque-to-Complex Structure
Weight Ratio

Spider Beam Multiplication Factor

Aluminum

183.0

67,000 '

46,000

107

1.25

1.00

*

N/A

Aluminum

183.0

67,000

46,000

107

1.25

1.00

*

N/A

* A function of diameter and limit load; see appendix C,
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Table 3r3e Summary of Tankage Design Data

Tankage
Material
Density (lb/ft3)
Allowable Stress (psi)
Factor of Safety
Minimum Skin Gauge (In.)
Land Factors (Bulkheads)
Land Factors (Cylindrical Section)

Synchronous

Aluminum
183.0

60,000
1-10
0.025
P40
Q.05

Thermal Protection
Initial Fuel/Oxidizer Temperature (PR)
Initial Fuel/Oxidizer Pressure (psi)
External Insulation Temperature (9R)
Insulation Density (lb/ft3)
Insulation Thermal Conductivity (Btu/Hr-Ft^PR)

36.0/162.6
15. p/15.0

.450.0/470.0
4.5
*

Meteoroid Protection
Probability of no Punctures
Nominal Mission Altitude (n.m.)
Shield Material
Material Density (lb/ft3)
Material Yield Stress (psi)
Minimum Skin Gauges (In.)

N/A
N/A
N/A
N/A
N/A
N/A

Miscellaneous
Minimum Fuel/Oxidizer Ullage Volume (%)
Residual Fuel/Oxidizer Fraction (7»)
Feedline Flow Velocity (fps)
Tank Support Factor

5.0/5.0
2.0/2.0
20.0

* A function of temperature and thickness; see appendix C
£ Dependent upon configuration; see appendix C«
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Table 3-4. Miscellaneous Subsystem Weights (MSFC TUG)

System

Electric Distribution

Electric Power
Power Systems
Fuel Cell Reactants

Communication/Instrumentation
Communications
Data Management
Ins trumentat ion

Guidance, Navigation, and Control
Guidance, etc.
Rendezvous and Docking Radar

Hydraulic/Pneumatic
Purge
Umbilical
Tug/Orbiter Service

Propellant Utilization

Miscellaneous
Destruct System
Docking Adapter
Subsystem Mounts
Orbiter Interface
Payload Interface

TOTAL

Weight

200 Ib

300

295

210

145

35

715

1900 Ib
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400, and mixture ratios of 5-0, 6.0 and 7^0. Data were.supplied for chamber
pressures of 500 to 1000 psi, and 1000 to 3000 psi, fo.r the expander and
topping cycles, respectively. The gas generator cycle data covered lower
thrust engines (5,000 to 15,000 Ib) and chamber pressures of 800 and 1000 psi
These parametric engine data were published in appendix B of the final report
for the study cited above.

(1)

In computing the break-even costs associated with the various improve-
ments in technology, it was necessary to assess the implications which changes'
in stage length would have on shuttle transportation costs. The variations in
shuttle payload capability (stage plus extra cargo) were determined from the
shuttle cargo bay criteria depicted in table 3-5.

Table 3-5. Shuttle Cargo Bay Criteria

Cargo Bay Length

Cargo Bay Diameter

Maximum Allowable Cargo Diameter

Maximum Allowable Cargo Volume

Maximum Allowable Cargo Weight

60.0 ft

15,0 ft

14.5 ft

99Q8 ft3

65,000 Ib

The density of the extra payloads used in this analysis was computed on
the basis of maximum allowable shuttle cargo weight and carbp bay volume.
This density, .6.56 Ib/ft , is slightly greater than the average density of
approximately seventy shuttle paylpads considered in a recent study.^ ' Both
of these densities are considerably larger than the density (2 lb/'ft ) which
would be required to fill the remainder of the cargo bay not occupied by the
stage, while maintaining the maximum cargo weight limitation of the shuttle.
This results from the large 64,000-pound stages being considered in this
particular analysis. However, if small 10-15,000^pound stages were being
considered, the density of the extra cargo required to fill remaining cargo
bay area would be approximately 10 Ib/ft^.

3.3 MISSION PROFILE

The mission profile selected for this analysis was the round-trip transfer
of a payload between a low-inclination, low-altitude earth (parking) orbit and
a synchronous orbit. This mission would require the liquid hydrogen-liquid
oxygen stage to transport a 3000-pound payload from the Ipw^parking orbit to
synchronous orbit and return with the same or a different 3000-pound payload.

The typical profile for this mission is depicted in::figure 3-1. This
involves a Hohmann-type transfer maneuver from low earth orbit to synchronous
altitude, a plane change and circularization at synchronous orbit, a return
Hohmann-type transfer and plane change at synchronous orbit, and circulari-
zation into the original low earth orbit.
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The four velocities used for this mission assumed a Hohmann-type transfer
between a 28 %-degree inclination, 100-nau'tica 1-mile circular orbit and an
equatorial (0-degree inclination) synchronous orbit. The velocities were
corrected to account for the effects of the stage's initial thrust-to-weight
ratio and specific impulse. However, the effect of orbital regression on the
velocity requirements was not considered.

3.4 BASELINE STAGE

The selection of a baseline stage for this analysis was made on the
basis of the maximum shuttle cargo capability (65,000 pounds). Table 3-6
presents a weight statement for the baseline stage which was the largest stage
sized that satisfied the above weight limitation and could still carry a
3000-pound payload on the round-trip synchronous mission. This baseline stage
weighs 64,443 pounds at ignition and has a burn-out weight of 7169 pounds,
and exhibits a propellant fraction of 0.884. Table 3-7 summarizes some of
the more salient features of this stage; while its external profile is illus-
trated in figure 3-2. A detailed cost summary is presented in table 3-8 for
a 20-stage program.

The costs generated during this analysis were based on cost estimating
relationships which are predicated on historical cost data and pertinent
vehicle parameters.^ ' In general, the cost estimating relationships of any
cost element contain coefficients which indicate the technology level and
complexity of that individual element. Table 3-9 presents the baseline
technology levels assumed for the main systems oh the stage and table 3-10
lists the percent learning curves used to compute the investment costs.

As indicated in the cost summary shown in table 3-8; the program cost
data developed during this analysis include only the RDT&E; investment; and
upper stage propellant costs. The program costs presented do not contain the
other cost elements normally included in the operations costs; because they
are mainly launch vehicle and mission model orientated, and for identical
missions and similarly sized upper stages the operational costs are relatively
insensitive to variations in upper stage weight. Hence, any prbgram cost
sensitivities which are determined from the program cost data will be of
sufficient accuracy.

3.5 ENGINE PARAMETERS

Because the baseline mission arid stage selected for this study differed
from those used in analyses of moderate chamber pressure and engine weight
conducted under Work Order 1, it was necessary to reevaliiate the influence
of chamber pressure and engine weight. The results of these two analyses,
and an analysis of the effect of the engine nozzle expansion ratio are pre-
sented in the remainder of this subsection.

3.5.1 The Effect of Chamber -Pressure

The influence of moderate increases in chamber pressure (750 to 3000 psi)
is depicted in figures 3-3 through 3-10. Variations in stage size are pre-
sented in figures 3-3, 3-4 and 3-5, which show the changes in stage weight,
length and volume, respectively. These data show that although an average
change in stage xveight results from increased chamber pressure, a large
variation in stage length is obtained. This is mainly due to the decreases
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ô—I
Q£
LU
N

Q 4> "o

x -8 -io 8 -S

o

§
^_^

CO

LU

^~

>-
to

Q
LU
LU
LL.

to
Q£

O

O
T

H
E

R
(T

A
N

K
 

S
U

P
P

E
T

E
O

R
O

ID
 S

H
IE

LD

CM

0 Os S3
Ft xj*
CN CN <n

LU
oo

o
c H

O LU
„) "2 z
^J oa

V
e
n
te

d
F

in
a
l 

U
l

S
ta

rt
u
p
/

E
S

S
U

R
IZ

A
TI

O
N

oc.
Q.

IX
OO
^*

•t CO
CN S3

<S
U

LA
TI

O
N

FU
E

L 
T

A
N

K
O

X
ID

IZ
E

R
 

T
A

N
K

^_

CN

T
O

T
A

L 
LO

A
D

S3

^O

R
O

P
U

LS
IO

N

CL

O •—
CM

V
e
n
te

d
 •

R
e
si

d
u
a
l

in —oo o
CO CO

to
to
LU

Q

E
N

G
IN

E
O

T
H

E
R

 I
N

E
R

T
(R

C
S

,I

0

i—

S 
P

R
O

P
E

LL
A

N
-

u
a:

8
o

S
TR

IO
N

IC
S

in
oo
00
IO

^ 0rx
CM
IX
IO

FA
L 

F
LU

ID
S

C
O

N
S

U
M

E
D

V
E

N
T

E
D

o
h-

m
oo

c/>
l_

5
LU •
* .

IS
C

E
LL

A
N

E
O

U
S

 F
IX

E
D

CN
OO
"O

R
E

S
ID

U
A

L
g
>o

O
N

T
IN

G
E

N
C

Y
((

3 
7.

5 
%

)

u

o* co ix
S3 -si- CO
— ^ oo
IX -̂ h OO

O

Z

i- 2
x: i—
o o

I LLJ a5
0 * u_

* < 3

o J " d— i LU
Z < £L
Q£ ^™ f~^
13 O a:
CO 1- Q.

3-9



CD :
bO
cfl-
4-1
CO :

0)

zl
CD
CO
CO

0)
J3
W i

$4
O .

^ ^
^>ntw

CO

s
COQ

a-
•H
CO

Q

.
r^ '
i |

CO

0)
r-l

CO.
B

•«*• NO O CN O O O
O CN T
o CN ^rco oo rv

CO O O r- CO O O
NO O IO IT)
" O O IT)

CO VO CO

CN NO O •— — O O
O IT) •—
O ON rN
CO IO CN

^~

i

— "«fr O CN CO O O
— O CN FN.

O CN CN
CO OO OO

CM

i/i
-CL
**"

5?
CO

00 ' ^^
CN IS, — , CU

<^ I/). a> o
i </> ^*^v o U

« n~ ? »•
Ijj v-/ J2 ^ f-
CO 1 — — CU ^

5 *" ' — >\/5'

C
O

A
S

T
 A

N
D

 
B

U
R

N
 N

U
C

O
A

S
T

 T
IM

E
 

(h
o

u
rs

 )
P

A
Y

L
O

A
D

 
( 

Ib
 )

V
E

L
O

C
IT

Y
 I

N
C

R
E

M
E

N
T

P
R

O
P

E
L

L
A

N
T

 B
U

R
N

E
D

F
U

E
L 

V
E

N
T

fl
n

c
l.

 
P

re
ss

/
O

X
ID

. 
V

E
N

T
d

n
c
l.

P
re

s
:
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Table 3-9. Technology Level of Systems

Area Technology Level and Technique *

Structures
Shell
Thrust Structure
Tankage
Meteoroid Shield
Tank Supports
Propellant Feedlines

SOA - Aluminum Sheet Stringer
SOA - Aluminum Sheet Stringer
SOA - Aluminum Monocoque
SOA - Aluminum Monocoque
ADV - Composite
SOA - Aluminum

Propulsion
Main Engines
Reaction Control Thrusters

New, advance, reuseable LH2/LOX
SOA - Monopropellant

Miscellaneous Subsystems
Electrical Power and Distribution
Electrical
Communication
Instrumentation
Guidance, Navigation and Control
Hydraulic/Pneumatic
Propellant Utilization
Destruct

Adaptation of existing
hardware to a new unmanned,
reuseable upper stage

SOA - State-of-the-art Technology
ADV - Advanced Technology

Table 3-10. Investment Learning Curves

System

Structures

Propulsion

Miscellaneous Subsystems

Assembly & Checkout

Learning Curve

90%

95%

90%

90%
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in engine length. This fact becomes important in the case of a volume-
limiting payload being launched with the stage in the shuttle's cargo bay.

The effect of increased chamber pressure on RDT&E, TFU and program costs
is depicted in figures 3-6, 3-7 and 3-8, respectively. The savings presented
in these figures do not reflect the cost of the technology required to obtain
the higher chamber pressures.

In order to evaluate the influence of both decreases in stage weight and
length due to higher chamber pressures, it was necessary to determine the
number of shuttle launches needed before the additional extra cargo gained in
each launch of a stage (because of lighter, smaller stages) would equal the
equivalent payload of a single shuttle launch without a stage.

The results, which show the number of stage launches required to save
one shuttle flight, are presented in figure 3-9. These data are representative
of a weight-limited case. That is, although the total shuttle cargo weight is
65,000 pounds (stage plus extra payload), the extra payload does not completely
fill the bay volume not occupied by the stage. For the large stage being
considered in this analysis, this case is more realistic than the volume-
limited case.

The launch cost savings were computed from data on the number of stage
launches required to save one shuttle flight, and used in conjunction with the
stage savings data (figures 3-6 and 3-8) to determine the technology break-
even points.

The break-even technology investment costs (technology costs = total
savings) for programs having various numbers of stages are depicted in
figure 3-10. These data are presented in a slightly different form then
previously shown in the analysis of moderate chamber pressure increases
(subsection 2.4), so that a comparison of the relative merits of the various
technologies can be made.

3.5.2 The Effect of Engine Weight

A set of data, similar to that prepared for chamber pressure, which
indicates the influence of engine weight reduction on stage size and cost,
is presented in figures 3-11 through 3-18.

These data show that stage size and cost are less sensitive to re-
ductions in engine weight than to increased chamber pressure, because large
reductions in engine weight decrease the total inert weight of the stage only
slightly, while not improving the engine's performance. Because the vari-
ations in stage weight and cost are small, the break-even technology invest-
ment costs are less than those found for the chamber pressures.

3.5.3 The Effect of Nozzle Area Ratio

Although the effect of engine nozzle expansion ratio was not originally
intended to be analyzed, toward the end of the study it was decided to investi-
gate its influence. Because the baseline stage had an area ratio of 400:1,
it was necessary to define a new reference stage in order to obtain positive
.trends. A new stage having the same 3000-pound round-trip payload capability,
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but with a higher chamber pressure (3000 psi) and a lower area ratio (200:1),
was selected for the new baseline for this analysis. Table 3-11 presents the
more pertinent data for this reference stage.

The results of the area ratio analysis are presented in figures 3-19
through 3-26. The technology break-even costs shown in figure 3-26 are only
slightly less than those obtained for increases in chamber pressure. The
reason for this is the lower cost savings obtained and not the fact that the
stages become longer as the engine nozzle expansion ratio is increased, as
shown in figure 3-20. This increase in stage length is due entirely to the
longer engines resulting from the higher area ratios, and not the height of
the stage (the distance from the gimbal point to the stage-payload interface),
which decreases. As discussed in subsection 3.2, the change in stage length
becomes important only when small stages are being considered for use with
the shuttle.

3.6 MISCELLANEOUS SUBSYSTEM WEIGHT

An analysis was undertaken to determine the influence of miscellaneous
subsystem weights (that is: fixed inert weights, such as astrionics, etc.)
on stage size and cost. The results of this analysis are presented in figures
3-27 through 3-34.

These data were based on equal percent reductions in all the miscellaneous
subsystem weights. Because of the limited duration of this study, no attempt
was made to determine the driving subsystem, or the effects of individual
subsystems.

The variations in stage size are illustrated in figures 3-27, 3-28 and
3-29, which show the effect of subsystem weight on stage weight, length and
volume, respectively. As would be expected because of the large amount of
fixed inert weight (1900 pounds) assumed, these figures indicate that stage
weight is quite sensitive to subsystem weight.

The effect of decreased subsystem weight on RDT&E, TFU and program costs
is depicted in figures 3-30, 3-31 and 3-32, respectively. These data indicate
that substantial cost savings might be realized through the reduction of sub-
system weight . However, because the cost savings presented in these figures
do not include the cost required to develop the lighter weight technology
(RDT&E), nor the higher investment cost associated with lighter systems
(such as using integrated circuits instead of transistors in the electronic
systems), the actual savings will be less than indicated.

However, the data do give a true indication of the savings which might
be obtained through the elimination of components, such as redundant valves,
a secondary transponder, etc.

The number of stage launches required to save a single shuttle flight
and the br.eak-even technology investment costs (technology costs = total
savings), are presented in figures 3-33 and 3-34, respectively. Figure 3-34
shows that substantial investments can be made in order to reduce the
subsystem weights a slight amount, and still break even.
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Table 3-11. Baseline Stage Data for Area Ratio Analysis

. PAYLOAD (UP/ DOWN )

TOTAL STAGE WEIGHT

INERT STAGE WEIGHT
STRUCTURE, TANKS, ETC.
METEOROID PROTECTION
THERMAL PROTECTION
PROPULSION
MISCELLANEOUS SUBSYSTEMS
CONTINGENCY

FLUIDS INVENTORY
IMPULSE PROPELLANT
NON-IMPULSE PROPELLANT

- VENTED
RESIDUAL

ENGINE CHARACTERISTICS
THRUST
SPECIFIC IMPULSE
AREA RATIO
CHAMBER PRESSURE
MIXTURE RATIO

*COST DATA ( $M )
RDT&E
FIRST UNIT
PROGRAM ( 20 STAGES )

3K / 3K

64254

(5454)
2304

0
188
566

1900
496

(58800)
56892

328
0

1580

16814
467.6
200: 1
3000

6.0:1

683.861
17.659

1032.894

*Does not include technology and normal operations
cost, but includes propellant costs,
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3.7 TANK INSULATION THERMAL CONDUCTIVITY

The influence of the propellant tank insulation thermal conductivity on
stage size and cost was also analyzed, and the corresponding break-even
technology costs determined. The results which are presented in figures 3-35
through 3-42 show that both improved thermal insulation and reduced engine
•weight have about the same effect on stage size and cost. Although the weight
of the insulation is about half that of the engine, slightly greater savings
are obtained through improved insulation properties. The reason for this is
that the thermal conductivity not only influences the thickness of insulation
required, but also the propellant tank design pressure, and to a certain
extent, the tank's ullage volume. These, together with the propellant load,
determine the tank size and weight. In addition, the thermal conductivity of
insulation can also have an effect on the pressurant requirements, which
determine the weight of the pressurization system. Hence, the thermal con-
ductivity of the tank insulation affects other systems whose total weights
exceed that of the engine.

3.8 PRIME STRUCTURE WEIGHT

The last analysis conducted as part of this task assignment was the
determination of the effect of new materials, e.g., the use of honeycomb or
composite instead of aluminum sheet stringer, for the prime structure
components. The only portions of the structure considered in this analysis
were the load carry shell (which surrounds the single hydrogen tank) and the
thrust cone. Other areas, namely the tank supports, propellant feedlines,
etc., were not considered. The influence of prime structure weight on stage
size and cost was established by sizing stages with prime structures which
weighed various percents of the baseline aluminum sheet/stringer weight.
Costs were determined for the resized stages, taking into account the costs
of the respective technologies. An analysis was then undertaken to determine
the structural weight reduction which might be obtained through the use of
aluminum'honeycomb and an advanced composite material. The results of these
analyses are presented in figures 3-43 through 3-49.

'.:.'... The effect of prime structure on stage s:ize is presented in figures 3-43,
3-44, and 3-45, which show the variation of stage weight, length and volume,
respectively. The range of weight reduction which might be expected, is
indicated in each of these figures for both the honeycomb and the composite.
Figure 3-43 shows that structural weight reductions of 10 to 15 percent and
25 to 35 percent can be expected over the aluminum sheet/stringer for honey-
comb and composites, respectively. These correspond to decreases in stage
weights of 800 to 1200 pounds and 2100 to 2800 pounds, respectively.

The effect on stage length and volume, as depicted in figures 3-44 and
3-45, is considerably less than what might be achieved through increased
chamber pressure.

The effect of new structural materials on RDT&E, TFU and program costs,
is illustrated in figures 3-46 through 3-49. In each of these figures, the
cost variations for reductions in aluminum sheet/stringer structure weights
have been shown together with a range of costs savings for both the honeycomb
and the composite. Because these cost data include the new technology costs
which are difficult to determine, a range of costs has been presented for the
regions of weight reduction which are applicable to honeycomb and composite
structures.
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The RDT&E savings data, depicted in figure 3-46, show that a cost deficit
would be incurred if either honeycomb or composite were used in place of the
aluminum. The data also indicate that substantial weight reductions would be
needed before a net savings could be incurred.

A similar trend is indicated for the investment costs, which are shown
for the first unit in figure 3-47. In this instance, the crossrpver points
occur at an even larger percent of weight reduction -than was found in the
case of RDT&E costs.

Because of the large difference between the reductions in prime structure
weight required to break even in RDT&E and investment (TFU) costs, the cross-
over points for program cost savings will be dependent on the number of stages
in the program. This is illustrated in figures 3-48 and 3-49, which show the
savings estimated for a single-stage and a 20-stage program, respectively.
For example, in order to break even with honeycomb, a 32 to 50 percent re-
duction in prime structure weight would be required in a single-stage program;
while better than a 60 percent reduction would be required if a composite were
used.

Although the weight savings obtained through the use of these new materi-
als is too small to overcome their high costs, net savings might be obtained
through the use of these new materials. For instance, it might be possible
tq use an existing engine if the stage's inert weight were reduced slightly.
This would eliminate the high development costs associated with a brand new
engine, and would probably more than make up the cost deficits associated with
the advanced materials.

3.9 RELATIVE GAINS

A comparison of the five methods of improving a stage's mass fraction is
depicted in table 3-12. This table shows the necessary improvements required
in each discipline in order to recover the cost of developing the associated
technology. The break-even technologies are presented for three different
technology investment costs, and two different sizing programs.

For example, if $5 million were to be invested in technolpgy development
fo,r a single-stage program, then in order to realize a net savings, either
the chamber pressure would have to be. increased to at least 1620, ps,i, or the
engine weight would have to be reduced by 40 percent, Likewise, the break-
even point for the engine nozzle expansion ratio would be 3;10:1. In the case
of t.he propellant tank insulation thermal conductivity, the conductivity would
have, to be reduced an infinite percent before a $5-mission technology invest-
ment; could be recovered. Thus,,, it would be impossible to obtain a net return
on a. $5-million investment to improve the insulation's thermal conductivity.

The technology break-even points presented in table 3-12' indicate that
the two areas in which the max.imum return can be obtained are: 1) increases
in engine nozzle expansion ratio; and 2) reduction of miscellaneous subsystem
we.ights. The areas, excluding new structural materials, which offer the least
return are reductions in engine weight and insulation thermal conductivity.

3.10 CONCLUSIONS CONCERNING MASS FRACTION IMPROVEMENT

Table 3-13 summarizes the effects of the six methods of improving the
s.tage's mass fraction.

3-62



+ 2.I-;

to

o
Q

u_
O
v>z
o

oo
too

to

COo
Z
>
CO

Q

-161

-181

l iK i f i l i r i i r-1- T / r -rr> i K i /-* r- rv"?1T*" i ' t: • ̂

•^i^rr-f
iiifLillilii-]-'^ : - ' i 1 "

jALUMlNUM SHEET/ STRINGER Ik

HONEYCOMB i

^
-20ik

rr—'t •r-r:-;--r-^1r

~^--j—-;i---

tirfT

SYNCHRONOUS MISSION
>_ _ I! STAGE PAY LOAD 3000 LB'

;i r ^CONFIGURATION 40121"
I""' :-":il-.

;STAGE WEIGHT 61000-65000 LB
"•;i=AREA RATIO
:?!;MIXTURE RATIO

•#=-

400:1
6.«0:1

,,^\ ;_._

..I-:-
i -rrT

0; 10 20 30 40 50 60

REDUCTION IN PRIME STRUCTURE WEIGHT ( P E R C E N T )

Figure 3-47. Variation of First-Unit Cost Due to Structural Weight

3-63



+20

+10

0

-20

^30

-40

-50

-60

-70

-80

. • - : : ' • ' • • • v i ; - • J • • . • • : • • {

T'ln""" tv.:~ rfp~':t"'itnrT''""[:'"' "TTJ"*:;••: •)

ALUMINUM SHEET/STRINGER:: '

ALUMINUM ;
HONEYCOMB! i

COMPOSITE

;H SYNCHRONOUS MISSION
F STAGE PAY LOAD 3000 LB

40121
61000-65000 LB

/^CONFIGURATION
STAGE WEIGHT
AREA RATIO

i MIXTURE RATIO

10 20 30 40 50

REDUCTION IN PRIME STRUCTURE WEIGHT (PERCENT)

60

Figure 3-48. Variation in Single-stage Program Cost Due to Structural
Weight

3-64



+100

CO

o
Q

00z
o

5
5
o
o
LU

O

o
CN

<

O
LI-

GOo
z

to

Q
LU

t—

|

to

ALUMINUM SHEET/ STRINGER

SYNCHRONOUS MISSION
STAGE PAY LOAD 3000 LB
CONFIGURATION 40121
STAGE WEIGHT 61000-65000 LB

jiAREA RATIO 400:1
•^MIXTURE RATIO 6.0:1

-400
10, 20 30 40 50

REDUCTION IN PRIME STRUCTURE WEIGHT (PERCENT)

Figure 3-49. Variation in 20-Stage Program Cost due to
Structural Weight

3-65



ca
4J
ti

aa)

(UM
pq
0)

•H
4J
n)

I
CO

•8
H

4-1

«-" '>cd *i""i
C 4-1
V4 0
Q) 3

H "tf
O
0

e
4-> 4-1
in J3
>, bO
to 1-1
,0 cu

Cfl

O
Cfl -r-l
CD 4J

33

(U 4J

•rl 60
bO-r4
C 0)w ;s

»-i I-l
0) 3

"6 w
td a)
O p i

0]

0 JC
bO

• -H
O i-H

bO C
O (U

•-* 6
0 4J
a 01
X cu
CJ >
Q) C
H M

e-s
in
CM

CM
1

b•
r-i
i

i-i••
s
CM

+

g*2
00

1

O
o
CT>

r-l

B-S
mf^
.

o
i

CN
•

O
1

r-l
• •

vb
o
CM

+

g^g
CO
i

0
00
[>

o
CM

.3<o-

Oo

b
•

^"
1

t-1
• •

oi-i
CO
+

B-2
0

1

O
CM
vO
. |

i-l

B~2
0

.
s f̂

1

b
•

CM
1

rH
*•

vO
CO
CM

+

gs°

vO
i-H
|

oin
Oi

o
CM

s
</)-

8

b•
oo
i

8

8

g

i— i

B-2
in
i

CM

1

b•
.̂ j"
i

* •
CM
oo
CM

+

B-S
r-4
CO

O
oo
CM

+

CD
CM

§
i-i
</5-

3*66



do

CO
CO

co
CU
00
cd
4J
co
cu

CU

o
cu
3

i

CU

cd
H

d
o
••-i
CO
3
r-t

CJ
d
o
0

cd
CU
r4

^

t

t

r*%
r-l
d
o
4-1
d
cd
4-1

o
Pu
S
i-i
_£.

4J
00
d

i— 1 0)
Cd r-l
d

•|H CU
00 00
v» cs
Cd 4-1
S co
<u d
P -1-1

cd
CU

CO CO
oo cd
d cu co

•r4 M CU
> CJ tO
cd cu cd

CO Q 4-1

4J 00
(U d r-l
^ *i-l r—l

4J Cd
r-l rH Q
cd 3 co
4J CO
o cu d
H Pi 0

cu
(-1
3
CO
CO
CU

p_l

J_)

<u
rQa
cd
0

d
•r)

CU
CO
cd
cu
CJ
d
M

Cfl
60
d

ĉd
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Section 4

TASK 2 - WORK ORDER 6.,

FUTURE PROPULSION CONCEPTS

4.1 GENERAL

At the present time, NASA has identified seven concepts which may be
categorized as new horizons:

a. Atomic Hydrogen

b. Metallic Hydrogen

c» Metastable Activated Molecules

d. Compounds of Activated Helium

e. Activated Oxygen

f. Laser-Energized Fluids

g. Planet Atmosphere Reactions

The purpose of this task assignment was; 1) to estimate what propellant
mass fraction might be associated with these concepts; and 2) to illustrate,
quantitatively, what these concepts might mean in terms of reduced stage sizes
and attainable velocities.

The following excerpts, taken from the "Progress Report on New Horizons
for Propulsion", (9) briefly describe these new propulsion technologies:

a. Atomic Hydrogen

"The energy of recombination of atomic hydrogen to form molecular
hydrogen is approximately 52 kilocalories per gram (kcal/gm). The
energy could heat the resulting molecular hydrogen to about 4000
degrees Kelvin, producing a calculated specific impulse of about
1700 seconds on expansion. The method of production and stabiliza-
tion of atomic hydrogen is to pass molecular hydrogen through a
discharge tube causing the dissociation, and trapping the atomic
hydrogen on a cold surface in the presence of a magnetic field of
70 to 100 kilogaus. The magnetic field theoretically should align
the spin of the electrons in the atomic hydrogen in the same .direct-
ion, thus preventing their recombination to form molecular hydrogen."
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b; Me ta11ic., Hydrogen

"Hydrogen will concert to a close-packed, Body-centered, cubic
structure under extreme pressures, on the 'order of 1 megabar.
In this condition, it is metallic and stores a large amount "of
energy; about 52 kcal/gm. Theoretically, it will be miptastab'le
at ordinary pressure; if so, the metallic hydrogen cbiild be used
in the form of a slurry in liquid hydrogen, similar to slush'
hydrogen how coming into practice. On prppier "ignition"' the
metallic hydrogen would revert to normal nydrbgenj releasing its
energy and giving about 1700 seconds of specific Impulses

"Metallic hydrogen has never been isolated; although some workers
claim that it has existed for a very short time in dynamic pres-
sure apparatus, that is, in explosive -initiated experiments'*

"it. should be mentioned that metallic hydrogen is p'redicted tb be
a super-conductor, arid there is a possibility that it willvretain
super-conductivity at a relatively high temperaturei Thfe higfi-
pressure work to make it should have valuable outgrowth in solid-
state physics and material properties;"

c, Metastable Activated Molecules

, - . . ' . - • _ • • • • . . f -•• .- •• ̂  ^. v - . •

These are atoms or molecules which have been energized by electronic
excitation i such as niicrowave discharge i In this cbnditicmi which
is called the triplet state; they contain large amounts of energy
which cannot be released by radiation, but must tie feleased by recbm-
biriatiori or reaction's Tne elements of interest are heliumj which
would contain 456.5 kilocalories per molecule (lI4 kcal/gm) iri the
excited state, neon and argon.

"The activated material might b'i used pure or iri combination with
a hydrogen or helium carrier. The specific impulie computed for
pure He* is about 2800 seconds; for Ne* 1100 seconds; for Ar* 700
secondsi Excited neon is computed to haVe a half life of several
years at 5 degrees K; active bxygen, discussed below, has a half
life of several weeks at liquid air temperatures (minus 185 degrees
C)."

d. Compounds of Activated. Helium

"It may be possible to stabilize the activated species by the
formation of compounds with other, normal speciesi Helium is
usually considered to be a nonreactive element, but a nuriiber of
workers have found it iri compounds with elenients such as mercury,
iodine, sulfur, iron; platinum and paladium. There is also a basis
for believing that activated helium may form weak combinations with
normal helium.

"This molecule has been observed spectiroscopically, arid the data
lead to a calculated specific impulse of 1920 seconds under condi-
tions of expansion from 1,000 psi to 14.7 psi. Helides of lithium
or hydrogen are also worthy of investigation."
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e. Activated Oxygen

"Oxygen may be vibrationally excited to a high-energy state, and
theoretically should be stable at liquid air temperature for a few
weeks. While the energy availability does not approach that of
helium, the possible use of activated oxygen to supplement existing
hydrogen/oxygen propulsion systems is of considerable interest.
The liquid hydrogen/liquid oxygen combination is estimated to have
a specific impulse of 525 seconds on expansion from 1,000 psi to 1
atmosphere, which corresponds to 650 seconds under space conditions.
This performance would be very beneficial for a single-stage orbit-
to-orbit reusable tug where the velocity increment of approximately
28,000 feet per second means very high payoff from the increase in
specific impulse.

"LeRC and JPL have only recently become aware of this concept of
activated species, rather than atomic hydrogen as a potential
propellant. Both LeRC and JPL are reviewing literature and making
in-house surveys in order to define an appropriate course of action.
A cursory search was conducted through recent aerospace abstracts and
a good number of references to recent research in activated mole-
cules were found, not surprising in view of the growth of laser
science and technology in the last decade. For example, E. Muschlitz,
University of Florida, published a paper in Science, February 1968,
on metestable atoms and molecules, showing that helium has a number
of metastable states with very high energy; i.e., 19 to 20 electron
volts, equivalent to about 460 Kcal/atom. The lifetime of one of
these species, is stated to be very long. Neon and argon also have
long-lived metastable states, with energy about 370 Kcal/atom (Ne)
and 265 Kcal/atom (Ar).

"In sum, the use of activated metastable species for propulsion
appears to be a concept with potential for large performance gains
over the best normal propellants; viz., more than an order of magni-
tude in energy content, and four-fold increase in specific impulse.
The research to establish such new capability will benefit greatly
from laser research, because this also involves understanding of
activated states."

f. Laser-Energized Fluids

"The essence of this technique is the use of the energy in laser
beams to heat a working fluid to yield thrust. The basic virtue of
this energy source is that it is not limited by the energy available
in the chemical bond, and it need not be located on the vehicle.
The working fluid can be brought to a condition whereby it can pro-
duce extremely high thrust per unit mass. Further, lasers can
react with solids to produce plasmas with very high expansion velo-
cities, i.e., 107 centimeters per second. These offer the possibility
for momentum exchange to produce thrust by a mode different from the
expansion of a heated working gas. In this mode, the selection of
the working substance would not be circumscribed by the need for
isentropic expansion of gases; thus solids, such as lithium hydride,
as well as liquids or gases could be considered for propulsive
elements.
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"One concept of laser-powered propulsion is beaming the laser
from a fixed station, which could be on earth or on a satellite,
to a vehicle. The energy is absorbed in a working fluid, typically-1'
hydrogen, and converted into internal energy.1 The specific impulse
computed for this combination is limited by the heat transfer to
the nozzle and combustion chamber walls, and, of course, by the
power for the laser source. Some engineering studies have indicated
that material temperatures can be maintained on the order of 5000
degrees R, with the corresponding maximum specific impulse 'pn the
order of 2500 seconds. If techniques for producing materials with
high reflectivity can be perfected, wall temperatures as low as :
2000 degrees R may be maintained, with specific impulses of approxi-
mately 5000 seconds. '

"Water and methane have been considered for propellants. -These
will be dissociated and will produce specific impulses of 1250 and
1600 seconds, respectively, when the maximum temperature gives a
2500-second hydrogen specific impulse. The advantage from use of
other propellants woyld be reduced volume due to their greater
density.

"A propulsion system based on the interaction of laser readiation
with a surface was analyzed in detail (AVGO). The propulsive
mechanism involved the production of high temperature plasma with
strong laser absorption. The specific impulse exceeded 1000 seconds.

"It seems feasible to make very low thrust laser-powered systems,
to meet mission requirements such as station keeping or fine-point-
ing attitude control rockets. The source could be a sun-pumped laser
on the satellites, which would produce plasma with a specific impulse
at 1000 seconds or more. The propellant could be a splid such as
carbon, aluminum, teflon, lithium, tungsten, etc."

g. Planet Atmosphere Reactions ,

"The atmosphere of Mars, Venus, and Jupiter will produce high-
energy -reactions with selected propellants. Thus G0.2, the main
constituent of Mars' atmosphere, will react with beryllium to pro-
duce 11 kcal/gm; with boron, 7.5 kcal/gm. The nitrogen in Venus'
atmosphere reacting "with borpn gives 5,8 kcal/gm; with beryllium
5 kcal/gm. These can be compared to one of the most energetic bi-
propellant reactions now available for propulsion: hydrogen fluo-
ride, approximately 3 kcal/gm of combined propellant. The atmo-
sphere of Jupiter is mostly hydrogen and has the potential for
reaction with oxidizers such as oxygen, fluorine or ammonium per-
chlorate.

"These potentialities were studied at JPL beginning in 1965, and
they are continuing to receive attention. It appears that air-
breathing power systems operating in the Martian or Venusian
atmospheres may result in reductions in the mass launch from earth,
in comparison with other chemical power systems. They also may be
competitive with nuclear systems for operating lifetimes of the
order of weeks or less.
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; "JPL is continuing to analyze the potential applications of air-
breathing systems and to rate them against competing rocket, nuclear,
or chemical power systems."

r

The results of the analyses performed under this work order are presented
in the remainder of this subsection.

4.2 PERFORMANCE AND SIZING CARPET PLOTS

In order to show the maximum attainable ideal velocities and various stage
sizing parameters (e.g., PL/WS, Ws) as functions of specific impulse and pro-
pellant'mass fraction; the following carpet plots were prepared:

a. ; Maximum ideal velocities attainable with a single stage
'. (figure 4-1).

b. Maximum ideal velocities attainable with two equal-size
. stages (figure 4-2).

c. Maximum attainable ideal velocities for a 50,000-pound stage
with a 1500-pound payload (figure 4-3).

d. Stage sizing for a round-trip synchronous-orbit mission with the
ratio of payload-to-stage weight as the dependent parameter (figure
4-4) .

e* Stage sizing for a 3000-pound payload round-trip synchronous-orbit
mission, with stage weight as the dependent parameter (figure 4-5).

These charts may be used to show how new propulsion concepts extend the
range which is accessible by means of propulsion (i.e., the velocity plots)
and/or the reduction in stage sizes required to accomplish a given mission—
provided the user is able to estimate the propellant mass fraction associated
with the propulsion concepts. A part of this task was to prepare conceptual
designs to be used in estimating the packaging efficiency for various concepts.
Because of the limited amount of time remaining in the study, only two concepts,
were investigated—metallic hydrogen and activated helium. The activated helium
was selected instead of activated neon or argon because it results in a stage
with a lower mass fraction--i.e., it will give a lower bound on the mass fraction
of stages using activated/metastable species. The reason helium packages with
the least efficiency is because it has the lowest density, the lowest critical
temperature and the lowest heat of vaporization. That is, it requires relatively
large tanks and has a low capacity for absorbing heat; thus requiring more ther-
mal protection.

The activated oxygen/hydrogen system was not examined, although it does
appear to be very attractive. This is because it would be necessary, at this
time, to ,assume that the activative.oxygen would have the same physical pro-
perties as normal oxygen. Thus, it would have a predicted mass fraction the
same as a normal LOX/Hydrogen stage.

4.3 SIZING DATA AND ASSUMPTIONS

Both the metallic hydrogen and the activated helium behave as monopropel-
lants; therefore, the monopropellant option of Chrysler Upper Stage Sizing
Evaluation Routine (CUSSER) was used to estimate the propellant mass fractions
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for stages using the two propellahts. The major assumptions used in pre-
paring the input to the sizing program are given in tables 4-1 and 4-2.

For the metallic hydrogen stage;, the most critical assumption was that
the metallic hydrogen must be slurried in normal hydrogen which would serve
as a vehicle for pumping the fluid into the engine and as a medium for ab-
sorbing heat. The normal hydrogen would also act as working fluid when heated
by the energy released by the reversion of solid metallic hydrogen to normal
hydrogen. The delivered specific impulse would be heavily dependent on the
amount of metallic hydrogen slurried in the normal hydrogen. The stage pro-
pellant mass fraction would also be affected by the ,'slurry fraction^ but not
to the same extent. The mass fractions presented herein are predicted on a
slurry fraction of 50 percent by weight* The density of the propellant was
computed as a weighted average of the density of solid hydrogen (5.41b/ft3)
and the density of liquid hydrogen which is a function of temperature * The
specific heat of the slurry was computed in the same fashion. The other
physical and thennodynamic characteristics were assumed to be those of nor-
mal hydrogen.

For the activated helium propellant, it was necessary to assume that
the activated helium would exhibit the same thermodyriamic and physical proper-
ties as normal helium ---- a dubious assumption at best. This assumption is
hot nearly as important for the short-duration missions as it is.for the long-
duration missions.

The moire important properties are shown in tabl'e 4-3 together with those
of neon and argon. They will serve as a basis for some additional comments
in the next subsection.

Table .4-3. Properties of Helium, Neon and Argon.;. ,.±
Property /Element

Density (@ NBP) - Ib/f t7

Normal Boiling Point - °K

Critical Temperature - °K

Critical Pressure - ATM

Heat of Vaporization (@NBP) -
Btu/lb

Liquid Specific Heat ((3NBP) -
Btu/lb-R

Helium I

7.80

4*215

5*199

2.26

8.51

la?

Neon

78.0

27.09

. 44. 40

26.19

37.0

0.49(?)

Argon

87*39

87.29

150.7

48.0

70. 5(?)

.265

For the long duration missions, a 1-year coast was arbitrarily assumed;
i.e., it does not correspond to a specific mission. For both the advance
propulsion concepts, the use of a shadow shield was assumed as well as an
advanced type of tank support which could limit the amount of heat entering
the tank through the supports and plumbing to less than 25 percent of the
total heat leak. Such a tank support would possibly be a non-contact type
employing magnetic bearings to position the tank relative to the rest of the
stage, during the long zero-g*coast.
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4.4 SUMMARY OF RESULTS

Analyses were accomplished using "CUSSER" to predict the propellant
mass fraction of the two propulsion concepts as a function of stage size.
A long-duration mission was considered as well as a direct-injection mission
to identify the effect of meteoroid shielding and thermal control require-
ments. The results, shown in figures 4-6 and 4-7 are presented in the form
of propellant mass fractions plotted as a function of stage weight. Com-
parable LOX/Hydrogen stages are also shown to provide a perspective on the
relative packaging efficiencies. Sample weight statements are given for the
two advanced propulsion concepts in tables 4-4 and 4-5.

The data indicate that for the direct-injection (short coasts) missions,
the stages all have roughly comparable mass fractions which range from a low
of approximately 0.70 upwards, depending on stage size. One of the more
significant uncertainties is the weight of the engines which could be much
heavier than indicated due to the very high combustion temperatures which
would be incurred. However, even a 100 percent increase in engine weight
would not appreciably change the predicted propellant mass fraction.

The predicted propellant mass fractions for the long-duration mission
are much lower than those for the short-duration mission, because the require-
ments for thermal and meteoroid protection are so severe. However, with the
possible exception of the activated helium stage, the predicted mass fractions
are not unreasonable considering the requirements and the small stage sizes.
The helium stage has a poor mass fraction because it requires a very large vent
as a result of its extremely low capacity for absorbing heat (see table 4-<3) .
However, the effective propellant mass fraction would be quite acceptable if
the vent were propulsive, especially at a high specific impulse. Such a stage
could "coast" in a low-thrust mode, with appropriate trajectory shaping, and
switch to a high-thrust mode at the end of the coast.

Although activated neon and argon were not investigated, they could be
more attractive than helium for the long-duration missions. This is because
they can be packaged more efficiently, due to their high densities and much
greater capacity for absorbing heat.

For missions having coasts which are longer than 1 year, the thermal
penalty, will not increase much beyond what is shown in tables 4-4 and 4-5.
This is because the thermal radiation from the sun decreases rapidly as the
stage moves away from the sun so that if a shadow shield is used, the insula-
tion external temperature can be reduced significantly below the 100 degrees R
assumed here.

4.5 RECOMMENDATIONS

The results presented here are preliminary and are based on a limited
amount of data. However, even assuming that the projected specific impulses
and mass fractions are optimistic, the possible gains in terms of reducing
stage sizes and/or extending the range of missions are so great, that Chrysler
strongly recommends that the basic research necessary for developing and under-
standing of these propellants be pursued.
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Table 4-4. Weight Statement Activated Helium Stage

System/Mission

TOTAL STAGE WEIGHT

STRUCTURE

•Tankage
•Insulation
•Tank Supports
•Thrust Structure
•Shell
•Meteoroid Shield
•Shadow Shield

PROPULSION

•Engine
•Feed System
•RCS
•Pressurizatioh (excl.
gases)

ELECTRIC, POWER AND DISTRI-
BUTION AND COMMUNICATIONS

MISCELLANEOUS

CONTINGENCY

PROPELLANT INVENTORY

•Useable
•Residual
•Ullage
•Start/Shut
•Vented

EFFECTIVE PROPELLANT
MASS FRACTION,'*

Short Duration Stage

11,969

783 .

252
45
159
101
226

N/A
N/A

223

125
7
52

39

400

130

112

10,321

10,037
206
75
3
0

X = i84

where

!

T>T ) ( }, . "•( )eAv/eisp-l f » .

/ ' / vent

Long Duration Stage

12,668

246 1,814
535
166
83
224
410
150

114 337
6

190

27

130

130

197

9,720

3^434
194
74
2

6*016

X eff = 0.443 Non
Propulsive
Vent

^eff = 0.745 Pro-
pulsive Vent
(full ISP)

i WProp 1
J wstagelv non-vent
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Table 4-5. Weight Statement Metallic Hydrogen Stage

System /Mission

TOTAL STAGE WEIGHT

STRUCTURE

•Tankage
•Insulation
•Tank Supports
•Thrust Structure
•Shell
•Meteoroid Shield
•Shadow Shield

PROPULSION

•Engine
•Feed System
•RCS
•Pressurization (excl.
gases)

ELECTRIC, POWER AND DISTRI-
BUTION AND COMMUNICATIONS

MISCELLANEOUS

CONTINGENCY

PROPELLANT INVENTORY

•Useable
•Residual
•Ullage
•Start/Shut
•Vented

EFFECTIVE PROPELLANT
MASS FRACTION

Short Duration Stage

15,415

1,244

405
73
206
179
381

N/A
N/A

249

134
22
52

41

400

130

148

13,244

12,933
265
35
11
-0-

= 0.84

Long Duration Stage

20,835

3,606

485
1,095
270
252
582
772
150

801

170
31
546

54

470

130

346

15,482

15,098
310
53
21
-0-

= 0.72

where

, _ I WP"P \

[ wstage J
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Table C - 1. Monocoque to Complex Structure Weight Ratio
for Shell and Interstage

DIAMETER (IN. )

LIMIT LOAD ( LB/IN. )

0.0

753.5

1435.0

1671.4

5175.0

6000.0

120

0.6700

0.6325

0.6000

0.5875

0.4200

0.3800

260

0.5575

0.4900

0.4333

0.4100

0.1050

0.0325

Table C - 2. Tank Support Weight Factors

CONFIGURATION

TANDEM TANK

2 MULTIPLE TANKS

3 MULTIPLE TANKS

4 MULTIPLE TANKS

TRANSTAGE

FACTOR FOR
LARGE TANK

0.0150

0.0150

0.0150

0.0150

0.0100

FACTOR FOR
SMALL TANK

0.0150

0.0100

0.0100

0.0100

0.0100
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Table C - 3. Monocoque to Complex Structure Weight Ratio
for Thrust Cone Type Thrust Structure

LIMIT LOAD ( LB/IN.)

Table C - 4. Monocoque to Complex Structure Weight Ratio
for Spider Beam Type Thrust Structure

DIAMETER ( IN. )

LIMIT LOAD ( LB/IN.)

14,999

21,000

47,000

84,000

110,000

120,000

120

0.4050

0.4210

0.4950

0.5990

0.6700

0.7000

260

0.4520

0.4700

0.5500

0.6625

0.7410

0.7710
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Table C - 5. Thermal Conductivity of Insulation ( Btu / Hr - Ft - °R )

THICKNESS ( IN. )

AVERAGE
TEMPERATURE ( R )

0.01 9.00

40

100

150

250

2.10x 10"5

2.29 x 10-5

2.50x"lO-5

4.60x lO-5

4.20x 10~5

4.60 x 10-5

5.00x 10-5

9.00 x 10"5
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