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CALCULATION OF HEAT TRANSFER ON SHUTTLE TYPE CONFIGURATIONS
INCLUDING THE EFFECTS OF VARIABLE ENTROPY AT BOUNDARY LAYER EDGE
by Fred R. DeJarnette
North Carolina State University

October, 1972
SUMMARY

A relatively simplé method 1s presented for including the effect of
variable entropy at the boquary—layer.edge in a heat transfer method devel-
oped previously. For each inviscid surface streamline an approximate shock—
wave shape is calculated using a modified form of Maslen's method for invis-
cid axisymmetric flows. . The entropy for the streamline at the edge of the
boundary layer is determined by equating the mass flux through the shock
wave to that inside the boundary layer. Approximations used in this tech-
nique allow the heating rates along each inviscid surface streamline to. be.
calculated independent of the other streamlines,

The. shock standoff distances computed by the present method are found,
to compare well with those computed by Maslen's asymmetric method. Heating
rates are presented for blunted circular and elliptical cones and a typical
space shuttle orbiter at angles of attack. Variable entropy effects are
found to increase heating rates downs;ream of the nose significantly higher
than those computed using normal-shock entropy,and turbulent heating rates
increased more than laminar rates. Effects of Reynolds number and angles

of attack are also shown.



INTRODUCTION

A relatively simple method was developed in Refefence 1 to calculate
laminar, transitional and turbulent heating rates.on arbitrary blunt-nosed
three-dimensional bddies at angle of attack in hypersonic flow. Inviscid
surface streamlines were calculated from Edle%'s equation using a prescribed
pressure distribution. Heating'rates were determined along a streamline by
applying the axisymmetric analog (small cross-flow gpproximation) for three-
dimensional bounda:y layers tolsolutions of the axis&mmetric boundary-layer
eqhations, In this aéproximation?the distance along a streamline is inter-
preted as the distance along an equivalent axisymmetric body, and the scale-
factor (or metfic coefficient) for the surface coofdinafe normal to the |
streamline (which is a measure of the streamline divergence) is interpreted'
as the radius of the eéuivalent axisymmetric body; - Thus, each inviscid sur-
face streamline corresponds to a different equivalent. body of revdlutionlﬁt
zero incidence, In Reference 2 this method was shown to yield accufate
laminar heating rates on blunted circular and elliptical cones, and a typi-
cal delta-wing space shuttle orbiter at angle of attack.

In the méthod discussed'ébOQe the properties at the e&ge of the bounda-
ry layer were détermiﬁgd from the su;face preséure and the entropy aft of a.
normgl shock wave.(typical blqnt;bédy‘assumpcion) for an ideal gas or equi-
llibrium:aif, While thié assumption is valid in the nose region of a very
blunt bodies, its accuracy decreases as the ratio of distanceAfrom the stag-
nation:point to nose radius increases, As the boundary layer along the sur-
face grows, more and more mass is entrained into the‘bou;dary layef and it

is therefore possible for the boundary layer to swallow the entropy layer.

2



This means that the streamlines which passed tﬂrough the nearly normal por-
tion of the bow shock wave are now inside the boundary layer. Although the
pressure at the edge of the boundary layer is still nearly the same as that
on the surface, the entropy of the streamline at the edge of the boundéry
layer can be quite different from the normal-shock entropy. As a result,
the corresponding heating rate is generally higher than that calculated us-
ing the normal-shock entropy.

This report devel&fs an approximate method to include var;able éntropy
at the edge of the boundary layer In the method of References 1 and 2 f§r
calcglating heating rates. Modifications needed to combine this addition
with the computer program given in Reference 5 are also described. Resuits
are presented for hypersonic flow over blﬁnte& clrcular and ellipﬁical cones

and a typical space-shuttle orbiter at angle of attack,

SYMBOLS

a,13)58,,34 coefficients for geometry of space shuttle orbiter, see eq.

(76)
B. ratio cof body principal radii of curvature, R, /R . .
T,b'"11,b -
B ratio of shock principal radii of curvature, ET/EII
c parameter used in eq. (18)
c' dC/dB
A}
D constant defined by eq. (59).
é;,é§5éﬁ unit vectors in. shock-oriented coordinate system, eqs. (2),

(10), and (11)
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Re/ft

.reference enthalpy, 2,119 x 108'ft2/secA

"wall enthalpy, ftz/sec-

unit vectors in wind-oriented Cartesian coordinate system
constant defined by eq., (60)

body radius, ft,

1 - sin2 T

scale factor in B-direction on body, ft,.
scale factor in,E—direction on shock, ft,
scale factor in £ direction on shock, ds = ﬁé dE, ft.

heat transfer coefficient, Btu/ftz-sec-°R
2 -
2

_ 2 2
enthalpy aft of normal shock, ft"/sec
enthalpy parameter defined by eq. (46), ft?/sec2
form factor 6*/6m

stagnation enthalpy, ft2/sec2

body length, ft,

Mach number _

distance normal -to a streamline, ft,

straight line coordinate normal to shock wave and toward body,
ft,

pressure, lb/ft2

pressure parameter defined by eq. (45), 1b/ft2

heat-transfer rate at wall, Btu/ftz-—sec°

distanqe normal to B = éonstant lines on shgck, da = h d§, ft,
radius; ft.

freestream Reynolds number per foot



Re N ' freestream Reynolds number based on nose radius
3

nose radius, ft.

=

T b’Rll b body principal radii of curvature at stagnation point, ft.
3 4

ﬁ position vector, ft.

R shock radius of curvature along B = constant line, see eq.
(&3), ft.

ET'ill . shock principal radii of curvature at stagnation lipe, ft.

S distance along inviscid surface streamline, ft,

s distance along B = constant line on shock, ft.

T temperature, °R

5,5,5 velocity components in E, E, and 8 directions, respectiveiy,
ft/sec

v velocity magnitude, ft/sec

v velocity vector, ft/sec

We weighting function

: x;y,z body~oriented coordinate system, see Fig. 14

X,¥,2 Cartesian coordinates in wind-oriented coordinatg'system,with;
origin at.the stégnation line of shock wave (see Fig,vl) ‘

x* ' distance defined by eq. (77), ft.

xi. ' distan;e'from nose to beginning of body segment, ft.

g8 body céordinate normal to inviscid surface stfeamline

B shock coordinate normal to Z lines

Y o ratio of specific heats
shock-wave angle, see eq. (3)

-1l
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Subscripts:

body angle relative to Vx, see eq. (B13)’

boundary-layer thickness, ft,

 boundary-layer displacement.thickness, ft.

transformed displacement thickness, ft.

shock standoff distance at stagnation line, ft,
parameter defiﬁed by eq. (25), ft,

momentum thickness, ft.

transformed momentum thickness, ft.

wall enthalpy ratio, hw/Hs

= ?/Ysh

exponent defined by eq. (54)

coordinate along shock surface

mass density, slug/ft3

angle measured on shock wave, see eq. (4) and Fig. 2
body circumferential angle with. 9 = 0 in windward plane of\
symmetry | |

shock circumferential angle, ¢ = tan-l (z/y)

.second. stream function, see eq. (7)

- first stream function, see eq. (7), slugs/sec

body

boundary layer
edge of boundary layer

laminar



s stagnation point

sh at shock wave
\
turb turbulent
w wall
- - -2 =
£ . evaluated at X= =€ /(ZRT)

2 aft of normal shock

0 freestream conditions



ANALYSIS

Any highly accurate methed which accounts for variable entropy at the
edge of the boundary layer would require a complete solution to the three-
dimensional inviscid flow field. Such a technique, however, would destroy
the simplicity and:shert computational time that are characteristics of the
computer program of Reference 3. Therefore, an approximate, but reasonably.
accurate, variable entropy method 1s developed here which is consistent with
the other approximations involved in Reference 2. |

In order to determine the entropy at the edge of the Eoundary layer, thé
position where the edge streamline passed through the shock wave must be
determined. Then the slobe of the shock wave at this position is all that
is needed to calculate the entropy of that streamline. Therefore, a complete
knowledge of the inviscid flow field is not needed.

For axisymmetric inviscid flows, Maslen (Ref. 4) developed a simple in-
verse method based on a von Mises transformation coupled with a simple -
approximate lntegral of the lateral momentum equation. Results for several
examples were found to compare favorably with those of more exact methods.
In particular, the shape of the shock wave and surface pressure distribution
(except near the stagnation point) were shown to be very accurate. This
method was extended to asymmetric flows in Reference 5; however, only re-
sults for the stagnation region of blunt bodies and conical flows were
presented in that report. The technique discussed therein for solving the
general three-dimensional inviscid flow field is much more complicated than
the method developed for axisymmetric flows (Ref. 4). The method described

below represents an extension of the axisymmetric Maslen method to general
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three-dimensional flows; however, it is much simplier than Maslen's asymmet-
ric method (Ref. 5). The stagnation region will be considered first, since

the results can be compared with Maslen's numerical results.
Stagnation Region

As noted by Maslen (Ref. 4), the approximations employed in his method
are not strictly valid in the stagnation region; however, for axisymmetric
'fiows it was found to give a reasonably accurate value for the shock stand-
off distance. For asymmetric flows the requirement is more severe because
'in:addition to a reasonable sfandoff distance, results should be indépendent

of the direction from which the stagnation line is approached. Maslen's
asymmetric solution (Ref. 5) yielded different standoff distances for dif-
ferént directions of approaching the stagnation liné° The solution obtained
below yields a unique value for the shock standoff distance.

For the stagnation reglon, it is convenient to use wind-oriented
Caftesian coérdinates §, §, z whose origin is located at the normal position
on the shock wave with x in the direction of 5@ (see Fig. 1). Following
Maslen, the shape of the shock wave near the gtagnation line is represented

by an elliptic paraboloid’

_ =2 22
X = —L—- e -_— (1)
2Ry 2RT

where the x, y plane is a plane of symmetry. This equation represents the
shock wave by a portion of an ellipsoid for x small since the equation is
an ellipse in y and z for x = constant. At the origin, the shock radius

of curvature is ill in the Xx,.y plane and R. in the X, z plane.
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The unit.(outer) normal to the shock surface is illustrated in Fig. 2

and 1s given by the relation

- 92 -
1+ (5 + &
Ry Ry

L)
'51
<
NI

173 2

The slope of the shock wave with respect to the free-stream velocity (shock-

wave angle) islvf, and it is determined from the relation

2 - = 21-1/2

-H—V“—o“—u __L 2 :
stn Fo- g e gge 14 (D) + &) J (3)

Ry Rn

In an x = constant plane, the angle o 1is defined by

tan 0 = %-% (4
By
where
B = il_ (5)
Ry,

is the ratio of the shock principal radii of curvature at the stagnationv

line. .Using eqs. (3) and (45, eq. (2) can also be written as

- - A

&_ = -sin T é; 4+ coe I (cos o é; + sin ¢ e~

~/

(6)

Z

The angles I and o are illustrated in Fig. 2.
The continuity equation for general three-dimensional flows is auto-
matically satisfied by introducing a pair of stream functions ¥ and ¢

- such that
- pV = V¥ x V¢ )

10



For the special case of axisymmetric flow the second stream function ¢ is
identically the circumferential angle ¢ (where tan ¢ = 5/;), and hence ¢ =
constant planes are ¢ = constant planes. Streamlines are formed by the
intersection of Y = constant with ¢ = constant surfaces.

For general three-dimensional flows it is assumed here that inside the
shock layer the surface ¢ = constant contains generatoré which are sfraight
lines normal to the éhock wave, and at the shock wave the velocity vector
given by the shock relations lies in the ¢ = constant surface. Thus the
¢ = constant surface has the corréct shape and slope at the éhock wave, but
it is not constrained to satisfy all the flow field equations ipside the
shock layer. For conical flows, this was shown in Reference 5 to be a good
approximation except near the body surface. It is believea that this in-
accuracy near the body surface has only a small effect on thé shape of the
shock wave itself. It should be noted that for the applicétions herein it
is the shape of the:shock wave that must be reasonably accurate, not the
flow field properties inside the shock léyer.

Define a three-dimensional shock-oriented coordinate system £, E, n
where £ and B8 are coordinates along the shock surface with .§ = Qsh’ and
n 1is the straight line normal distance inward from the shock wave. With"

é; and éE unit vectors in the directions of ¢ and B, vrespectively,"

the velocity vector becomes

- A
Veu e+ v e

- = + w eé (8)

Since the velocity vector lies in the ¢ = constant surface and B ¢, then

w0 and

11



Vegé-+va- C9)

At the shock wave, é;, é;, and éE are mutually perpendicular; hence, the

direction of és which makes w = 0 at the shock is obtained from the shock

relations as

l\_ = - ;\_ - el t\_ + — A— .
e = cos T ez + s8in T (cos o ey sin o ez} (10)
and thus
- = 6- x é- = - gin 0 &~ + cos 0 &- - (11)
B 8 n y z

These results may also be obtained from eqs. (37) and (38) in Reference 1

bby setting 6 =0 in those equations.- The curve n = o, B - constant on.
the shock w;ve represents the ;ocus'of points whose tangent‘ié the velocity
component pgrallel fb the shﬁck ﬁave. Thése cﬁrves on the'shock éurface are-
the same as the simplified streamlines discussed in keferencesji and- 2,

except there the lines were on the body surface instead of the shock wave.

From eqs. (7) and (10) it follows that

pus=-22 (12)
h on .
and
oy = 2= | (13)
h b, oF

where dS = Es df is the differential arc length along the"g coordinate,
da = h df 1s the differential arc length albng the B coordinate; and
Hs and h are the scale factors or metric coefficients corresponding to

the £ and B coordinates, respectively.
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Comparing eqs (12) and (13) with those for axisymmetric flows (Ref. é),
it is observed that the results here are similar if h replaces the axisym—
.me§ric body radius and dS = Es dE is the distance.along the axisymmetric
boayo Thus, the assumptions.made here. are somewhat like an axisymmetric
alanogue for the invisicd flow field,

The value of the first stream function V¥ oﬁ the shock wave represents
the mass flux (per unit B) entering the shock layer. The mass flux per unit
area is pwV°° sin T and the differential of surface area on the shock is

hdg Es dEo Hence the mass flux per unit B is

y = ( pmV' sin T hh 4t v (14)
Jo ;ao

For the special case of axisymmetric flow, h = LI sin-T Es dE = dr and

hence the familiar result

2

Tsh_= oV, rsh/2

is obtained., The shock standoff distance can be.obtained by integrating
qu‘(lz). However, before this integration can be performed, a number of
subsidiary relations are needed, and these relations are developed below,
| Following the technique used in Reference 1 and 2, equations (10) and

(11) are used to obtain the transformation operators

%}-2:-= cos T 2:-+ sin T [cos o 2: + sin o 2: (15)
R of 3% 3y Y
s
and '
%—3: = - sing E: + cos ¢ E: (16)
h 98 9y 3z

13



The line B = constant on the shock wave follows from Eq. (15) as

Sl tangell (17).
3¢
which integrates to
P eiy (18)
Note that the parameter C is a function of § (on the shock wave) .
Equation (18) can be differentiated to give
8L (19)
oy C"
and
L e 20) -
9z C’z

where C' = —

Using equs. (19) and (20) above, substitute B into the operator of Eq.

(16) to obtain

- E' : EE-H'
B APPSR v 2D
[z° + B” 277 /C7]
 Now alohg the shock wa&e (with B = constant);
- = = -2, =2, =212 .
dS = hsdE = [(dx)” + (dy)” + (dz) ]§ (22)

14



1/2 1/2

2R e @R+ iR (23)

ds = (d'z'/E)[E2 + B

Finally, substitute eqs. (4), (21), and (23) into (14) to obtain

y = p VvV (24)
sh 22 (ge1y =°

In a manner similar to that of References 1 and 2, the parameter C(B)
is determined by assigning a value of B to each line on the shock surface

at some point hear the stagnation line (see Fig. 3). This is accomplished

by setting
-2 _ - - :
[} g 2 XE RT (25)
and
¢; 28 (26)
Thus at x = §E eq. (1) gives.
-2 .2 = 3
2le S in B (27)
® sin” B + B cos” B !
and
2 2 =
-2 :
52 = 25- COf 8 — (28)
sin” B + B cos R
Then eq. (24) gives the result (for B = constant)
?Sh > B+l ,
- w = (29)
¥y - -
gh,¢ ZE

15



where

v (sin2 B + 52 cos2 E)Ez v
sh,s = % 7> = 223 Pl (30)
’ (B %+ 1)(sin” B + B cos™ B)
and
B . -2 (B-1y/2
C(R) = &in B € (31)

-

cos B sin2 B+ B c052 B8

With egs. (3), (18), (27), (28) and (31), sin T near the stagnation line can: )

be written as

2B 1/2
_ 82[(2/5:)2 sin2 B + 82 cos2 B (z/z=) ]
sin I' = (1 + = U (32)
(sin” B + B cos B)RT
and using eq. (29) it can also be described as _
aB
2/ (B+1) :"] 1/2
-2 2 = =2 . 2 B+1
- € {s.’m B (\Psh/‘i’sh'—s) + B” cos” B (\Psh/‘ifsh a) ,
sin ' = (1 + ng) R 5
RT (8in” B + B cos” B)
1(33)

The relation for the stagnation line shock standoff distance A follows

from eq. (12) as

1 [ shé_\g 1 J‘l d(“l'/‘l’sh) (36
h’ '

p —
270 (uh/Wsh)

Along the stagnation lines both V¥ and Ws are zero. However, the ratio

h
_ W/Wsh approaches a value in the range 0 < W/Wsh < 1 din the limit as the
stagnation line is approached (?/Wsh = 1 on the shock and W/Wsh =0 on
the body). Also, the ratio Eﬁ/vsh ls indeterminate along the stagnation

line, and care must be exercised in evaluating this indeterminancy. The

velocity component u is obtained from the approximate energy equation used

16



by Maslen (Ref. 4), i.e.

= 2(h, - b)) (35)

where h2 is the static enthalpy aft of normal shock wave and he is the

local static enthalpy. Since he is a function of the pressure and entropy,
a Taylor serles expansion about the position a streamline crosses the shock
wave yields

oh

e 3z = | '
- Sh[p(E.B.W) = P (8,¥)] (36)

h (€,8,%) = b (B,¥) +

For isentropic flow along a streamline, the Bernoulli and energy equations

give

dh :
( e 1 a7

T .
Plsh oy (B)
With p = p(p,he) a Taylor series expansion about the normal shock position

produces

1 S {géllﬁl]z[psh(é,W) - Pyl [gél/ :

G P by, B0 = b1 (38)

]
2

In order to determine he from eq. (36), an expression for the preséure
across the shock layers is needed. The momentum equation normal to a stream-

line is
3p _ oV C(39)

As in Reference 4, the streamlines are assumed to run parallel to the shock-

wave in a B = constant plane; therefore

17



V=au and R =R

Then substituting these results and eq. (12) into eq. (39), the following

results is obtained

3p .

3 (40)

BWIC|
ol

Finally assume u/(hR) is constant across the shock layer and equal to its

value on the shock wave. Then eq. (40) becomes®

u

) h -

Pl (41)
BR

Equation (4l1) integrates to

+

P(E,8,%) = p_, (E,B) —She— - (42)

where

el
[11]
!

(43)

is the shock radius of curvature in E direction. The distinction between

Psh(E,W) and'psh(E,E)'should be noted in the sketch below.

As noted in Ref. 4, the assumptions leading to eq. (41) introduce compen-
sating errors, and the resulting pressure equation is quite accurate-
except near the stagnation line.

18



shock

bedy

Next, define

sin? T =1 - g% (44)
= p. - Ap G (45)
Psh = Py P
h . = h - Ah G (46)
sh 7 72

where near the stagnation line

02 << 1, Ap G2 << Pos Ah G2 << h2

and Ap and Ah depend only on the fluid properties aft of the normal shock
wave and ére obtained from the shock-wave relations for a perfect gas and
equilibrium air in Appendix A. Now, substitute egqs. (36), (37), (38), (42),

(45), and (46) into (35), expanding and neglecting the higher order terﬁs;

19




the following result is obtained

. o Ahp _ u. v
w’(E,8,v) = 222 [cz(e,s> 2o @y v 2SR g %‘->] (47)
) P Ap Rh sh
and hence
B2u’(E,5,%) _ 20p [52&(:;,5) e B@D , YshR1 o, v )]
02 p wl Ap ' 2 = Ap vy oo
lysh' 2 wsh wsh R wsh ~sh

(48)
Expanding eq. (32), neglecting the higher order terms, and comparing

the result with eq. (44); the following relation is obtained

2 28
2o E[GrED sin® B+ B cos” B (2/3)
G (E)B) = __2 2 - - 2 — ) (49>
Ry (sin“ B + B cos” B)
In a similar fashion eq. (33) yields
) [ - 204  _,  , _ | 25/(5%1)}
GZ(E-W , - g {sin” B (wsh/wsh,;) + B” cos” B (wsh/wsh,g)
sh §% (sin2 B+ B c032 B8) ,
(50)

This equation is important because it establishes the functional form for
with V¥, it gives

2/(§+J) 9 -
Sh;g) + B” cos B (Y/v K6 -

ii (sin2 B+ B c032 B8)

GZ(E,Y). Replacing wsh

28/ (B+1)
Ez[sinz B (v/Y

G2(E,¥) = (51)

Using eqs. (21), (23), (24), (32), (49), and (50) the following results
(which are requived to integrate eq. (34)) are obtained in the limit as the

stagnation line is approched.

20



vin BAGAGELE) _ (B’ 62
70 ) o2y -
sh P

For every position away from the stagnation line, the ratio Wlwsh is unity
on the shock wave and zero on the body. Thus, in the limit as the stagnation

line is approached (z »~ 0),

0¥/, <1

although both ¥ - 0 and Y . =+ 0. The remaining terms app:oaéhzthe-folloﬁ—

, sh
ing limits:
2im 2 G2 (s,w) 2im h 2 (g,e)][zim ( g,¥) ] .
270 2 20 2 70 6% B,y )
sh sh
[ - 2/B+1) P , 2§/'(B+1)]
= G002 gim sin” B (WY, 2 + B cos” B (W/WSh!E) |
piviié 20 2B, o, - 2B/(B+1)
: sin B (W /wsh,e + B” cos .B (Wsh/wsh e)
= (§+.}222 (W\Psh)A (33)
poovoo.RT ’
%§~ for 0 <B <1l
B+l ‘ :
where A= (54)
2 for 1 < B < e

Since Gsh = V_ cos T (from the shock wave relations),
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pim %sh " gim P Ve a(sinF) - tim P Ve (B(sin f)) 3%
20 = - 20 ¥ - z+0 ¥ - =
R Wsh sh ds sh dz B as
[—2 B> EZB]
2 4+ )
- 2im  (B+l) C 1
* 50 22 =7 -8 Sy 2 -2%72 (55
) Rr P {Ez + B z"]’k.+-5~ + & ] -
c? R
(BrL)B for 0<E<l
o, |
= { | (56)
(5L for 1<B<e
Pe
\

"Finally, substituting egs. (48) and (51)-(56) into eq. (34) the follow-

ing equation is obtained for the shock standoff distanée

2 A
A [P Ve Pa 2 1 fh dn
Rp ° e

) (B+1) [1 4 D(1-n) + En
where
y ,
nEg— (58)
sh
( '
P = : _
== 2 for 0<BEz<1
J PoBal . |
D = ) 2 (5?)
°°A = :—-l- for 1<B<w
P B+l
\
and,
2
Py P,V
E= A% 2 ==-1 (60)
v2 0. P
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Expression for —AR—E and —% are given in Appendix A for both an ideal

gas and equilibrium air. For an ideal gas the results from Appendix A are

bp . 2
o Vi y+1
and
af -1

E =

221+ L2 )

In general, eq. (57) cannot be integrated in closed form. However, for
the special case of B=1 (spherical shock at stagnation line) it can be.

integrated to yield the same result given by Maslen in Ref. 4, i.e.

p V2 o 11/2
L[y = 1L (61)
1/2 puo ©
(1 + E) + {1+ 77

which compares well with more exact numerical results and experimental data.

Shock Shape Downstream of. Stagnation Regibn

In reference 1 a method is developed for calculating the inviscidvsur-
face streamlines from a prescribed pressure distribution assuming '"normal
shock" entropy at the edge of the boundary layer. Before the entropy at the
edge of the boundary layer can be calculated, the shock-wave shape associated
with each inviscid surface streamline must be determined. Normally, the
entire shock shape in the subsonic-transonic region would have tb be deterf

mined iteratively. However, it is assumed here that for a given surface

23



pressure distribution the shock shape associated with each inviscid surface
streamline can be calculated independently of the others. This procedure
highly simplifies the calculations and is consistent .with the accuracy of
the assumptions used in Reference 1.

For the region downstream of the stagnation line, it is assumed that
B = B, i.e. a- 8 = constant plane is assumed t6>in£ersect the body surfaée
on a line of B = constant which is an inviscid sﬁrface streamline. With
this assumption, eq. (42) can be applied to the surface to give |

u h(E,B) ¥oh

p, (§\8) = p_, (£,B) - =+—— (63)
b'® sh’ B
Then using eq. (43)
Ysh Wsh o - Ve wsh d(sin T) _ Vo wsh 3(sin T) (64)
5 T h 39S

R h h S

where h is the scale factor for the coordinate B on the body surface and
S is distance along an inviscid surface streamline.

Now substitute eq. (64) inte (63) to obtain

3(sin T) - _ h
3 Py = P V¥ (65)

This equation can be integrated numerically along an inviscid surface stream-
line to determine the value of sin I (where T is the shock angle)

associated with each position. The value of WS for each position can be

h

calculated numerically from eq. (14) in the following form

wsh =p.V, f'sin I hdS = p_V_ J sin I' hdS (66)

o o
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Thus for each position along an inviscid surface streamline the correspond-

ing values of T and ¥, are known. As will be shown below, the value of

I' (shock-wave angle) corresponding to a given value of WS is all that is

h

needed to determine the entropy at the edge of the boundary layer. The sur-

face pressure distribution used in eq. (65) must be modified so that

Py = Py at the stagnation line instead of the stagnation pressure. For a
given surface pressure (pe) distribution which yields P, = stag at the
stagnation line, this can be accomplished by simply using
(p, - 2,7
. 2. o
; = + - —_— 67
Py = Pt (g R T (7

where Py, is the pressure to be used in eq. (65) only.

Entropy at the Edge of the Boundary Layer

The mass flux within the boundary layer along an inviscid surface

streamline is
3 - &%
Pe Ye h dB8 (8 §%)

where peue(é - 6*) is the mass flux per unit width and hdR is the

spacing between.inviscid surface streamlines.
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Theréfore the mass flux per unit B 1is

where & is the boundary layer thickness and 6% 1is the displacement
thickness. Now the streamline at the edge of the boundary layer passed

through the bow shock wave at the -position where

Ysu = Y.L (69)

or,iin other words, where the mass flux (per unit B) inside the boundary
layer is equal to the mass flux (per unit B) entering the shock wave

(see sketch below).

shock wave

_ boundary layer edge
streamline

body

B = constant plane

Then for the value of wsh given by eq. (69), the shock angle T is

- determined by the method developed in the previous section. After T is
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determined, it is a relatively simple matter to calculate the entropy for
that streamline from ‘the shock relatioms.

The procedure described above must generally be performed iteratively
because the properties on -the right side of eq. (68) require both the pres-
sure and entropy at the edge of the boundary layer. Since the entropy is
not known initially, a value of normal sheck entropy (or value for last
station along that surface streamline) could be used to start the itefation.

Convergence is quite fast and generally requires less than four iterations.

Calculation of § - &%

Laminar Boundary Layer

In reference 1 a method was given for calculating the momentum thick-
ness em " based on applying the axisymmetric analogue to Beckwith and
Cohen's Boundary layer results (ref. 8). Following the technique.of
reference 8, it follows that

%
§ - 6*) = 8 (étr B Gtr)
6 g%
. m tr

- X = ‘
8 $ 6 ( (70)
and from Table 1 in‘refereﬁce 8

* *
8. = 4696 and § _ = 1.2168
tr tr

In addition, it is assumed that Str = 5,2//2, corresponding to the factor
5.2 used to define the edge of the boundary layer in the Blasius solution

for a flat plate. Using these results, eq. (70) becomes
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- X =
er the laminar boundary layer-

Turbulent Boundary Layer'

In reference 1 the turbulent boundary layer theory of Reshotko and

Tucker (ref, 9) was used. Following the method of Ref. 9,

8 Gtr
§ - &% = emga— - H) = emcg—- ~ H) (72)
m tr

Then with a 1/7 power law for the transformed incompressible velocity

profile, 1t follows that

Ser (7 + 1)(6 + 2) .
= 7 =

5 0.3
tr

Using this result in eq, (72) the following relation for ¢ - &* is ob-

tained
§ - 6% = em.(10.3;— H) - (73)

for the turbulent boundary layer. The form factor H = 6*/6m is calculated

by the method described in reference 1.

Transition Region

For the transition region, the weighting function w_ used in reference

£

1 is used to give an average value of & - &% as

28



§ - 8% = (1 - wf)5°27 Gm am + w

i em,turB

4 (10,3 - H) (74)

where wf = 0 for laminar and Ve = 1 for turbulent flbws.

Method for Calculation

The technique described in this report is coupled with that of feferenpe
1 to calculate the heat transfer rate with variable entropy at thé edge of
the boundary layer. Appendix A describes the method'used-to determine B
and §T on the shock wave at the stagnation line which correspond to the
body shape (B éndeT for the body differ from the dorresponding 4uantitiés
on the shock wave). The changes needed for the computer program listed in
reference 3 to be modified to imclude variable entropy at the edge of the

boundary  layer are given in Appendix C.
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RESULTS AND DISCUSSION

Table 1 shows a comparison of the stagnation line standoff distances
computed by the present method, eq. (57), and Maslen's method (ref. 5).
Maslen obtained different results -depending on the direction that the stag-

- nation line was approached.. Thus the r.ﬁ.s.-value‘is given with the r.m.s."

deviation from that value. This table shows that the present method com-

pares well with Maslen's for the stagnation standoff distance. '
: Figure 4 gives the variation of A/iT with B for M_ =2, 5, and 10. |

As expected, the differences between the M = 5 and 10 results are small.
Blunted 15° Half-Angle Circular Cone

Laminar heating rates were calculated along the windward plane of
symmetry of a spherically blunted (RN = 0.375 in.) 15° half-angle circular
‘cone at M_ = 10.6, a = 20°, and Rem’N = 3,75 x 1045 Since the nose radius
is a significant parameter for variable entropy effects, the Reynolds number
Rem’N is based on the nose radius of the body. - In order to compare the
numerical results with Cleary's tabulated experimental data (Ref. 10), the
free-stream propertieé cofresponding to wind-~tunnel stagnation properties

5 lb/ft2 and~TS = 2000°R were calculated fo be

of Py = 1.728 x 10
p_ = 2.6614 1b/ft%, T_ = 89.971°R, and V_ = 4928.1 ft/sec (M_ = 10.6).
Also, it was determined that a value of Cw B hw/Hs-= 0.251° corresponds to
TW/Ts = 0.2703 Gas imperfections in'the wind-tunnel stagnation properties

were taken Into account in determining the free-stream conditions; however,

the laminar heating rates were calculated using a perfect gas with y = 1.4.
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The experimental heating rates in Ref. 10 are ratioed to the calculated
value of qw,s = 35,94 Btu/ftz—sec in this report.

Figures 5 and 6 compare the calculated ratio of local to stagnation-
point heat-transfer rate along the windward plane of symmetry with. the ex-
perimental data. In each figure numerical results are presented for both
variable entropy and normal-shock entropy along the edge of the boundary
layer. Filgure 5 gives .the heating-rate ratios using inviscid surface
streamlines caiculate& from modified Newtonian pressures. When the vari-
able entropy effect is included, thesé streamlines can differ significantly
from those calcualted'using'norﬁal—shock entropy. Thus, there are-eésené |
tially two factors involved in the variable entropy effects on the heating -
rate ~ ‘one is the scale factor associated with the stream;ines and the
second is the flow-field properties at the edge of the boundary layer. The
"first -factor tends to decrease the heating rate whenxthe scalg factor de-
creases,’whereas-the'second'factorAtends to ‘increase the heating rate whefé
variable entropy effects are significant. 1In Figure 5 the heéting rates
calculated with variable entropy effects are slightly below those calcualted
with normal-shock entropy. Upon examining the numerical results it was.
found that the variable entropy effect reduced the streamline scale factor
h along the windward plane of symmetry which, in turn, reduced the heating-
rates slightly more than the increase in heating-rates due to the variable
entropy effect on the flow-field properties at the edge of the boundary
layer,

Figure 6 shows the ‘calculated heating-rate ratios using the simplified

étreamline‘patterns discussed in Ref. 1. The simplified streamlines depend
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on the body geometry and angle of attack only; hence, variable entropy has
no effect on the geometry of the simplified streamlines-and their .corre-
sponding scale factors. ' As a result, the -variable-entropy effect .increased
the heating-rate ratios in Figure: 6 about-15% higher-than those calculated
using normal-shock entropy:. - The -experimental data fell between the two
theoretical solutions.

The “heating rates for the cases presented in Figures 5 and 6 were
also calculated using tangent wedge and tangent  cone pressures along the
. conical afterbody in 'lieu of that given by .eq:™(67). - However, no discern-
ible-differences could be detected when the results were plotted on

Figures 5 and- 6; and therefore they are not shown.
Blunted  2:1 Elliptical Cone.

~~Laminar heating rates were -also calculated-ona blunted 2:1 ellipti~

4

cal cone-at’. o =15°, 30°, and 60°; ‘M_= 10; and Re , = 2.61 x 10,

s N
8.39 x 104, and 2;02’x*105; "Figure 7 illustrates-the’ geometry of the
model used for the experimental-heat-transfer: data presented in Ref. 11,
The pertinent flow-field properties required as input data for each case
calculated in this report are presented in Table 2,. All lengths and
Reynolds numbers,(Rew’N) are referenced to the nose -radius in the plane 6f
the major axis (RN = 1.0 in,). As noted in Ref. 2, modified Newtonian
pressures are not;accurate enough to give the proper spreading of the

streamlines (and hence the correct scale factor) for this body shape.

Therefore, the simplified-streamlines discussed in Ref. 1, which depend on
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body geometry and angle"of attack only, are used in each case presented
herein.
Figure 8 shows the heating-rate ratio along the windward plane of

symmetry for Re . = 8.39 x 10~4 and a = 15°%, 30%, and 60°.° Downstream of

N
the nose the variable entropy effect increased the heating rate ratio about
10% for o = 15°, 20% for o = 30°, and 30% for o = 60° over that calculated
using normal-shock entropy. These percentages tended to remain constant in
the downstream region. Heating rates calculated with variable entropy
agree much better with the experimental data than those calculated with
normal-shock entropy. The effects' of variable entropy on the heating rates
begin closer to the nose for the larger angles of attack cases.

The effect of Reynolds number on the”laminar heating-rate ratio with
variable entropy is depicted in Figure 9 for the windward plane of symmetry
on the blunted 2:1 elliptical cone.at " a = 30°, Since the boundary layer
thickness increases as the Reynolds number decreases, the effect of vari-
able entropy on the heating rate begins tloser to the nose for the smaller
Revnolds numbers. ' This effect can also be observed in Figure 10 which
shows the variation of the shock angle corresponding to”the position where
the streamline at the edge of the boundary layer crossed the shotk wave.

This shock angle decreases downstream of the nose with the smallest Reynolds
numSer'case decreﬁsing the fastest.” For 'X/RN 2z 10 the shock-wave angle

for all three Reynolds number cases approaches the straight portion of the
shock wave surrounding the conical afterbody in'the windward plane of

symmetry.
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Figures 1l and 12 show the circumfereatial-variation of the heat.
trangfer coefficient-on the blunted:2:1 elliptical-cone at" a = 30° and
60°, respectively, for the-axial positions"ofg,x/Rﬁ”=“4;7*and 9.7. The:
heat . transfer-coefficients calculated with variable-entropy effects.agree
much’closer*with“theﬁexperimentalwdataWthan'those"with‘normal-shock entropy
on .the“windward gurface. - However; verylittle-differeénce was found for the
leevard-region. ~Figure 13 shows” the-tircumferential variation in the.
shockéwavefangle”corresponding“tO'the‘streamiine=at the edge of the bound-
. ary layer'at’ axial stations of x/RN'd”212, 4.7;'and 9,7,  These results
show that the shock angle decreases going-away from the windward plane
(¢=0) , reaches a minimum Qalue;near'"¢'=“100‘3 and then increases as the

leeward plane (¢$=180°) ig approached.
Space Shuttle Orbiter

Figure. l4 shows-a typical space  shuttle~orbiter (without a canopy)

- on’ which computations have been performed. " The-analytical deseription is
similar to that given in Ref: 12; it employs-elliptical-cross-sectional
shapes.with different ellipticity” ratios on windward and~leeward sides.
Cubié‘polynominals'are‘used,tO“define"the"pian”and“thitknESS'discributions.
Based on a length of L= 1-ft., the region-for" x/L < 0.05 1is a spheri-
cally blunted 15° cone whose nose radius isr’RN/L =-0,01512. For

. 0.05 < x/L < 1.0, the body: shape is the zame~as that ian Ref. 12 where the
body radius f(x,9) 1is given by

| e, =12
£(x,9) = y{cosz b+ (y/z)z sin2 $] (75)
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where

y
= a +ax’+a x*z + a x*3 (76)

*
X = X = X

a7n

and the coefficients for the equations above are given in Table 3 for five -

body segments. This description of the body produces continuous body
slopes but discontinuous radii of curvature.

As noted in Ref. 2, since the windward side of this vehicle is. nearly
flat the modified Newtonian pressure distribution-does not give an accurate.
description of the inviscid surface streamlines.  Therefore, the results
presented here calculated the,streamlineS'By the simplified method given
in Ref: 1, which depends only on the body geometry and angle of attack.

The following properties-were used for all the calculations:
P, = 252766'1b/ft2, T, = 87.31°R, V, = 4639.42 ft/sec, (M = 10.13,
Rew’N = 1.5 x 104), ;W = 0.2501, and y = l.4,

"Figure 15 shows the“laminar‘heating-rate'ratio along the windward
plane for a = 15°, 30°, and 60°, The trend here is somewhat similar to
the blunted 2:1 elliptical cone in that the variable entropy effects in-
crease the heating-rate ratio more at the larger angles of attack. Figures
16, 17, and 18 illustrate the circumferential heating-rate ratio at.

x/L ='Q;l; 0.3, and 0.5, respectively. These figures show that the vari-
able entropy effects on the heating are significant on the windward side

but insignificant on the leeward side. ' Figures 17 and 18 also show that
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the heating-rate ratio reaches a maximum.off the windward plane of symmetry
for x/L-= 0.3 and 0.5.

Heating~rate ratios for laminar;, transitional, and turbulent. heating
along the windward plane of symmetry are presented in.Figures 19 (a) & (b) for
o = 15° and 30°, respectively. The transition region was arbitrarily chosen.
to be. 0,55 < x/LxE 0.80, These figures show that variable entropy effects
on the heating aré'much more pronounced in the -turbulent region than the
-1aminar religion, For a = 30°, the increase in the calcul;ted heating—rate:
ratio with variable entropy over that for normal-shock entropy.is about 10%

for the laminar region whereas it is about 50% in the turbulent region.

CONCLUDING REMARKS

A relatively simple:method is presented fqr modifying the heat trans-.
fer method developed in References 1-3 to include the effects of variable
entropy at the -edge of the boundary layer. An approximate shock-wave
shape corresponding to.each inviscid surface streamline is calculated
using a modified form of Maslen's method for inviscid axisymmetric flows
(Ref. 4). The position where the streamline at the edge of the boundary
layef crosses the shock wave is.determined by equating the mass flux pass-
ing through the shock wave to. that.inside the boundary layer., The slope
of the shock wave at that position determines the entropy of.that stream-

line. The approximations used in this technique allow the shock-wave shape
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and surface heating rates corresponding-to each inviscid surface streamline
to be calculated independent of the other streamlines,

The approximate inviscid solution used to generate the shock-wave
shape is based on Maslen's observation that most of the mass flow inside
the shock layer is concentrated near the shock. Hence, it is assumed that
across the shock layer the streamlines are essentially parallel to the
shock and have the same direction as the velocity vector just aft of the
shock wave. This assumption is somewhat like an axisymmetric analog for
the inviscid flow field. Although the approximations involved are inac-
curate near the surface, they appear to have little effect on the shape of
the shock wave -itself., It 1s the shape of the shock wave that is needed
here and not a detailed structure of the flow-field properties across the
shock layer.

The shock standoff distances given by the present method compare well
with those.computed by Maslen's more elaboratg asymmetric method (Ref. 5).
In order to make the computation of the shock.shape downstream of the nose.
a direct.one, an approximate surface pressure distribution (eq. (67)) was
used. This distribution was found to yield accurate shock. shapes for a
sphere, but it has not been checked for other body shapes. If the surface
pressure distribution was not specified, the shock shape solution would
have to be. solved by an 1iterative scheme,

The calculated laminar heating rates on blunted circular and ellip;
tical cones showed that the effects of variable entropy were significant
on the windward side but insignificant on the leeward side. At both

o = 30° and 60° the calculated heating rates on the blunted 2:1 elliptical
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cone were very close to the experimental data with variable.entropy, where-
as the heating rates ﬁith normal-shock entropy were significantly lower
than the experimental results on the windward-side., It was found that
variable entropy effects started nearer the nose. for those cases calculated
at the lower Reynolds number° The percentage increase in laminar heating
rates due to variable entropy effects was . also higher at the larger angles
of attack.

The calculated heating rates on a.typical space shuttle orbiter
showed.ﬁhat,variable entropy effects were significant over a large portion
of windward plane of symmetry. In addition, variable entropy effects in-
creased the calculated turbulent heating rates much more than it -did for
the laminar heating rates. However, comparisons with expérimental tur-
bulent heating rates are.needed to assess the accuracy of the present
method: .

The method presented here requires comparatively small computational
time, A typical case requires only a few seconds per streamline on the

IBM;370/165 computer,
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APPENDIX A

DERIVATION OF Ap AND Ah

The oblique shock-wave relations for an equilibrium or ideal gas -are:

p, V,sin T = Peh VSh (Al)
+ v sin? T = + V sin T V (A2)
Pe Pe © psh peo » 518 sh
\ sin2 T Vih '
b = by (43)
S b.t't't in? T=1- G2 = - 4pG%, h. = h. - Ah G2 (wh
ubstitute sin » psh p2 pG , sh 2 ere

G2 << 1), and eq. (38) into the above equations. Neglecting terms of .order

h{gher than G2, the following results are obtained:

2
Pee Veo )
(. lp, - DI gél"’) (1 - o /p) - 11,
Apz = 72 a(l/ ) . 130/ | Y
., V. 1+ [ p 33:———]2

.and 3 V2 ,

AR P2 P °P °2

== (AS)

e

For the special case of an ideal gas,

. h
Se & S ©(a6)
4
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and

a(1/p) _ -1
ah_ = (YP ) (A8)

Then using the normal shock relations to obtain expressions for Pos Py

and h, and substituting egs. (A6)—(A8)‘into eq. (A4) yields

2
A 2 '
pco Vw

Further, combining eqs. (A5) and (A9) and using eqs. (A6)-(A8) yields the

following result for the ideal gas

ih Py Pa VA ot - 1)
B2 e o 1%z 12 (410)
Vo P OP 2, (1 + 5= )

For equilibrium air, the correlation formulae of Reference 7 are also
used here to be consistent with the approach taken in Ref. l. The  expression

for the reciprocal of the density is (Ref. 7)

L 1= 1047701 - (b /h y+ 6123,
e E
== - (All)
o) . 5 965
7.344 x 10 (E§I7)
where . 8 2 2
h, = 2.119 x 10" ft“/sec (A12)

E

From the above equation the following expressions are obtained

Lop ]2 Pyfy (A_13)
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and | , L6123
2y, (L077(6123) (y/y)

sh
e

2

7565 (14)

h, 7.344 % 10°° c;ﬁg_)
2 X 2117

The normal shock poperties Pys Py and h2 are calculated by the iteérative
technique degcribed in Reference-l. Note that any other equilibrium gaé

model could also be used in lieu of the one described above.
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APPENDIX B

RELATIONSHIP BETWEEN SHOCK AND BODY RADII

OF CURVATURE AT STAGNATION LINE

The expression for A/§T . given by eq. (57) requires the shock radii of
curvature (ﬁT and either B or R1;) to be known at the stagnation line before
the standoff distance A can be calculated. For blunt-nosed bodies, tﬁis
would generally require an iterative solution for the entire subsonic-
transonic region before iT and B could be determined. 'On the other
hand, these quantities can be calculated if a surface presSuré distribution,'
consisgtent with eq. (42), is kﬁown.in the vicinity of the stagnation line.
For the analysis herein, a surface pressure distribution similar to modified

Newtonian pressures is used for calculating the shock wave shape:. This

pressure distribution is

2 = o
Py =,(p2 - p,) sin Pb + P, (B1)

stream velocity (fb = 7/2 at stagnation point). Note that this equation is

where T is the inclination of ‘the body surface with respect to the free-

a modification of modified Newtonian pressures in order to give P, = P, at
the stagnation point, which is required to be consistent with eq. (42).

Equation (42) also gives the surface pressure (by substituting V¥ = 0) as

(B2)

v
-
™I
~r
o+

Equating the right sides of eqs. (Bl) and (B2), there results
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: L2 = = s
(P, = p,) sin” T +p_=p,(&8) -

R h

¥ u 1:(E.'é) 53
Equaﬁion (B3) will give the desired relationship between shock and body. -
radii of curvature; however, the body points (§b, Eb) corresponding to
shock points (y, 2z) must be established first.

Lét' ﬁsh be the poéition vector for a shock point and ib ﬁhe correi:
sponding body podint in ghe wind-oriented coordinate system, as shown in the

skétch below.

N

¥

P 3

Then, with én the unit (outer) normal to the shock wave and A the stand-
off distance, the body point determined byva straight line normal from the

shock wave is

e > ~ .
Rb = Rs - Aen (B4)
Let - _ _ _ ‘ ,
Rb = xb e-}-{ + yb e;, + zb e; , (B5)
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- - . - -
R, =xé& +vy 7 +z & (B6)
Now substitute eqs. (B3), (B6), and (3) into (B4). The result gives
§b =y-AcosT coso - (B7)
Eb =z-AdcosT sin g (B8)
Near the stagnation line, eqs. (4) and (5) give
cos T cos 0 = y/Ry; (B9)
and
cos T sin o = E/iT (B10)
Substitute eqs. (B9) and (B10) into (B7) and (B8) to obtaiﬂ
- - A
Yy © y(l - —) (B11)
R
11 -
- - A
2, ¥ 2(1 - ) (B12)
RT

Now near the stagnation line the body is represented by a portion of an
ellipsoid, in a manner similar to the shock wave. Thereforé, following

the form of eq. (4),

- v, 2 z,  2\~1
sin” I = (14 () + (=) (813)
: N A

11y Reob

and substituting eqs. (Bll) and (B12),
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2 -2 2\-1

-2
sin’ o= L+ =5 - a/R) +=— Q- 2/F) (B14)

Ry Reob

‘Next, substitute eqs. (Bl4), (45), (49), (21), (24), (43) into eq. (B3) to

.obtain

- Rt Fa - ik

(py = Pv|Ll # 5 + 2 , + P,
Rr,b 11y
-2 =32
’ L2, v
=2 =22 ' | :
P 1l s (B15)

2 =222 ~ = 22

T Fr (B+l)[l + 55 +-f:§—]

=2

Expand this equation and neglect all terms of magnitude higher than 2z
and/or §2 . Then the resultant must be independent of z and  y; hence,
the coefficients of z and y must each be zero. Equating the coefficients

‘of 22 in the resulting equation gives

P, = P, A 12
2 7 ||t
Reb - L P Ve R
_5 i 1 (B16)
Ry =
e, Vo, B+l
Similarly, equating the coefficients of y“ gives
{1 _ B2 _é.L.z_ -
52 RTJ P Vg° B+l
— = - (B17)
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where

B = ¢ (B18)

In géneral, eqs,‘(Bl7) and (57) must be solved iteratively to find A/I-iT

and B for a given. value-of° B and Ap/(pwVi)° Then eq. (B16) can be -

used -to calculate- ET for a given RT b Note that for an ideal gas, eq.
. . . »e

(A9) .glves.
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APPENDIX C

DESCRIPTION OF COMPUTER PROGRAM CHANGES

~ This appendix describes the changes necessary to modify the' computer
program listed in Ref. 3 to include the effects of variable entropy at the-
edge of the boundary layer. Changes are required for the MAIN program and
function RUNGE subprogram in-Ref. 3, and two new subroutines SHPROP and&_
SHOFF must be added to the computer program listed in Ref. 3. A description

of the additional input and output parameters is also given below,

Main Program

. The maiﬁlprbgram reads. part of the input data, calculates the initial
data for each streamline on the E-circle around .the stagnation point, and
then- calculates and prints the heating rates and other pertinent data aiqné
each streamline~(iﬁdependently-of.the other streamlines). The program
variables involved with the changes to the main program are listed below,

followed by a listing of the main. program.

B: . ratio of body principal radii of curvature at stagnation point::

BB ratio of shock principal radii-of curvature at-st#gnation line;, E

DOR ratio of shock standoff distance to shock radius of curvature,;
A/iT

F(8) sin T (£,B) for KR = 0

F(9) Wsh for KP =-0

F(10) sin T (£,B) for KP > 0
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F(ll)_ , ysh for KP >0
GBK ‘local..shock angle, T (E,E)
GBL - shock angle where streamline at boundary layer edge crossed the

Ydirgon

“shock, T (8,¥)

(;(c]‘.‘:j,'i):"n @gk'at:positioh L along streamline (slug/sec)

G(27L) © shock angle T (E;B) at position 'L élong'stréamlide

G(3,L) b?]DW (sec/sltg)

HSHK ~ “enthalpy aft-of local‘shock'angle, hsh (ftz/secz)

Kﬂ input parameter; KE = -0 for normal-shock entropy, KE = 2 for

variable entropy

NE- number  of differential equations to integrate minus KE
PB surface pressure for shock solution only, Pb(lb/ftz)
. PSH pressure aft of shock where streamline at boundary layer edge

crossed shock, psh(lb/ftz)
PSHK pressure aft of shock at edge of local ‘shock layer,.psh(lb/ftz)
PSS stream function, V¥ (slug/sec)

RHOSHK density aft of shock at edge of local shock layer, psh(slug/ftB)

RPER body radius of curvature, RT b (fr)
RTB shock radius of curvature, ﬁT (ft)
SPL sine of shock angle where streamline at boundary la&ei.edge

t

crossed shock, sin T (8,Y¥)

) 8
Y(I) f F(I) DS, where.I = 1, 2, ..., NR
o
YB y
ZB z
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The listing of the main program and the changes in function RUNGE are
listed on the fo;lowing pages. A ;ine drawn through a statement indicaﬁes
that -statement in the original .program should be deletéd. A rectangle
drawn around.statements indicates that these.are new statements to be added

to the program.
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Subroutine SHPROP

This subroutine calculates the fluid properties aft of an oblique
shock wave for a perfect gas or equilibrium air. A call .to subroutine

SHPROP has the form
CALL SHPROP (SG, PSH, RHOSH, HSH, KG)

where the arguments .are

SG sine of the shock angle.(sin T)

PSH pressure aft of shock, psh (1b/ft2)

RHOSH density aft of shock, Pgh (slug/ft3)

HSH enthalpy aft of shock, hsh (ftz/aecz)

KG indicator variable; KG = 0 for perfect gas, KG = 1 for equilibrium
air

Ochér program variables are defined in Ref. 3. A listing of .subroutine -

SHPROP appears on the following page.
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Subroutine SHOFF

This suubroutine calculates the shock standoff distance at the stag-
nation line and also the shock principal radii of curvature from the body
radii of curvature at the stagnation point. A call to subroutine SHOFF

has the form N
CALL SHOFF-( B, RPER, P2, RHO2, H2, BB, RIB, DOR, KG)
wherevthe arguments are

B ratio of body principal radii of curvature

RPER Ry y (body radius of curvature)
’

P2 - pressure aft of normal shock, P, (lb/ftz)

RHOZ density aft of normal shock, Py (slug/fts)

H2 enthalpy aft of normal shock, h2 (ftz/secz)

BB ratio of shock principal .radii of curvature, B

RTB shock radius of curvature, ﬁT

DOR ratio of shock standoff distance to shock radius of curvature, A/]-EiT

KG indicator variable; KG = 0 for perfect gas; KG = 1 for equilibrium
cair |

Other program variables are:

DHRP Py Ah/dp

DP Ap/(pwvi)

DRP in:(a(l/p)/Bp)z
DRE e V2(3(2/p)/oh ),
ROR PeulPy
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E E (see eq. (A 10))

EMIN freestream Mach number, M

A listing of subroutine SHOFF appears on the the following pages. .

{
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Description of New Input Parameter

Only one additional input .parameter is required, KE. The read state-
ment, near the beginning of the main program, corresponding to format
statement number 900 reads KE, where KE = 0 for normal~shock entropy and

KE = 2 for variable -entropy. These are the only allowable values for KE.

Description of New Output‘Parametersi

Near the beginning of the output from the program, the parameter KE,
P2 (p,), RHO2 (p,), H2 (h,), B, BB (®, RPER (Kr,b)’ RTB (iiT), DOR ('A/RT),"
and NO, OF ITER (number of iterations for calculating the shock .standoff
distance) are printed. In addition, the following 8 parameters are printed
for each position along a streamline:
"~ GBK local shock angle, T (E,B)
GBL ’ shock ‘angle where streamline at boundary layer edge crossed the

shock, T (B,¥)

PSH pressure aft.of shock angle GBL, Pen (§,W)(lb/ft2)

PSHK. pressure aft of local shock angle GBK; Pgp (E,E)(lb/ftz)
PB . -  surface pressure for shock solution oﬁly, Py (lb/ftz)

PE surface pressure for calcplating heating rates, Pe (lb/ftz)

PSS (SHK) stream function at edge of shock.layer, wsh (slug/seg)
PSS stream function at position where streamline at boundary layer

edge crossed the shock, ¥, (slug/sec)
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TABLE 1. STAGNATION LINE STANDOFF DISTANCE COMPARED WITH‘MASEEN'S RESULTS

pz/p°° B A/gT By Maslen's Method A/ﬁ& (Present,Métth)
(Ref. 5)

6 2 : .06669 * ,001169 . 06530

20 2 .02462 ¥ ,000328 . 02462

50 2 .01098 T , 0001195 . 01090

200 2 .003046 T ,00002968 .903622
6 1 .1+0.0 . 1010

6 2 .06669 ;001169 -~ .06530
6 3 .05008 * ,001610 04795
6 5 L03349 * 001963 . 03104

NOTE: 1) : For all Calculations y = 1.4, but the normal shock density

ratio is assumed to be separately varied as shown.

_ . ' — .
2) The B used herein is greater than Maslen's B; B BMaslen + 1,
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TABLE 2. bATA FOR BLUNTED 2:1 ELLIPTICAL CONE CASES

p (1b/in®) T_(°R) M_ p (b/Et%) T (°R)
1) . 200 1660 10.04 0.6395 81.20
2) 750 1800 10,13 2.2766 87.31
3) 2000 © 1900 10.19 5.9184 92,00

:Vm‘(ft/’sec) Rem/ft » Re N ¥ %,

P PO Jub —— ——
1) 4434.40 .313 x 10° 2.61 x 10” 1.4 27354
2)  4639.42 1,007 x 10° 8.39 x 10” 1.4 .25010
3)  4790.61 2.42 x 10° 2,02 x 10° 1.4 234670
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TABLE 3.

BODY SHAPE FOR SPACE SHUTTLE ORBITER WITHOUT CANOPY,

LENGTH L = 1.0 FT,

Coefficients ay for

y, Windward
Segment x) a a; ' a, ’ a,
1 .05 .025 .26795 -4,0678 30,1760
2 .10 .032 . 08749 - 14499 . 68725
3 .30 .037 .010 0 0
4 .50 035 .010 0 0
> .70 .033 .010 0 0
' vy, Leeward
- |Segment X, a ay a, ia3
1 .05 .025 .26795 0 0
2 .10 . 0384 .26795 .12770 -.88725
3 .30 . 090 .21256 -.22505 -.4385
4 .50 .120 . 06993 -.0366 -.31525
5 .70 .130 01746 .02121 -, 07952
i{ Side
. Fegment xl ao_ a1 _ azb a3
1 .05 .025 .26795 ~1.0446 1.7120
2 .10 .036 117633 - .3383 . 90825
3 .30 . 065 150 0 0
4 .50 .095 ;150 - .02935 .77175
5 .70 130 .23078 13697 ~1.7605
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shock wave
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$ = constant surface
with shock wave
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“d 1t

Cross section of shock surface

at ¥ = 22/(2§T)

Figure 3. Method for assigning values to coordinate

8 near stagnation line.
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Figure 4. Three-~dimensional shock standoff distance, y = 1.4,
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\ p - Where streamline at
N\ boundary layer edge
\ N crossed shock
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' \
70° | \
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Figure 10. Shock-wave angle distribution on blunted 2:1

" elliptical cone, a = 30°, M_ = 10.
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O experiment, AEDC-TDR-64-19
variable entropy

— — — — normal-shock entropy

1072 — _
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107> ' L ' <k | |
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Figure 11, Circumferential heat-transfer distribution on a blunted

' 2:1 elliptical conme, o = 30°, M_ = 10, Re_ = 8.39 x 104
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Figure 14, Typical space shuttle orbiter without.canopy.
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laminar- A transition turbulent

"~ variable entropy

-
-3 — — — — normal~shock entropy
. laminar | transition| turbulent
. C——t
2 \
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0 N i 1 1 il
02 b .6 .8 1.0
x/L
(b) .o = 30°
Figure 19. Laminar, transitional, and turbulent heat-transfer distribution
on typical space shuttle orbiter, M_= 10, Re = 1.5 x 104.
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