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Introduction

The process of exploring for oil and gas is rich in uncertainties.

Any attempt to forecast returns to investment in exploration must take

them into account in a systematic way. By this we mean that inferences

about the important uncertain quantities characterizing the exploration

process should be based on a mathematical model whose parameters may be

estimated from observable data in a coherent: way. At the root of any

useful model of the exploration process, then, is a set of assumptions

that delineate in clear unambiguous terms the probability law governing

the manner in which observable data is generated.

Our first objective is to construct a model of the exploration,

process that allows us to test empirically the hypothesis that-at an

early stage in the exploration of a basin, the process behaves like

sampling without replacement. The model we posit is parsimonious --

based on a small number of assumptions and indexed by only five parameters.

The set of assumptions on which it is built reflects at least two qualitative

assertions often made by oilmen: the "big ones" tend to be found first and

the size distribution of fields is highly skewed. We may use it to

compute answers to two questions of paramount importance in designing

exploration strategy:

(1) How does the probability that a wildcat well will find a

reservoir change (if at all!) as the history of a basin unfolds?

(2) What is the probability that a yet-to-be-drilled wildcat well

· ,,; .will find a reservoir of a given size or greater at a given

point in the development of a basin?.



-2-

Our second objective is to posit a reasonable model of the snatial

distribution of petroleum reservoirs that conforms to a number of empirically

observed facts about such distributions, but does not possess three

unrealistic attributes that characterize models of spatial occurrence

appearing in the literature: dependence of the model on arbitrary

subdivision of a basin into units of subspace, the assumption of spatial

homogeneity of the stochastic process operating within each such unit as

well as across units, and conceptualization of a reservoir as a Point

(in the plane) rather than as an object with positive area. (See Uhler

and Bradley [1970], Allais [1957], Engel [1957).)

The first model we pose differs significantly from those postulated

by Arps and Roberts [1956], and by Kaufman [1963]. It accounts for the

impact of exploration technology on the probability of discovering a new

reservoir in an explicit and intuitively meaningful way. And it is

structured so that inferences about parameters not known with certainty

may be made in accordance with well understood statistical principles. In

particular, the assumption that the probability of discovering a reservoir

is proportional to its size strongly biases any "usual" estimator when.

the sample size is small, so we develop methods for coping with this

complicating feature of the data-generating process. -

Our spatial model has not yet been subjected to empirical

validation. However, its structure is sufficiently flexible to warrant

the conjecture that it will in fact prove to be a reasonable characterization

of a process that can by visual inspection be seen to be spatially inhomo-

geneous; i.e., fields tend to cluster rather than to be spread evenly
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throughout a basin, Under the direction of one of the authors, Golovin

[l970] has programmed versions of this model and done computational

exploration of some of-its features. .We shall draw heavily on his work

in our discussion.

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'



I. A Model of the Discovery Process

Nomenclature 

The technology available for identifying.potential oil-and/or-

gas-bearing structures is not perfect. We shall assume that if this

technology is applied to the entire areal extent of a generic basin it

will delineate M distinguishable prospects. We label them 1,2,...'M and

call h = [1,2,...,M3 the label set for the population of prospects in

this basin. Each prospect either is or isn't a field; by "field" we mean

a hydrocarbon-bearing reservoir or a collection of contiguous reservoirs.

(Precision in defining what we mean by a "field" is not important at

this juncture.) If it is a field, the field has many characteristics of

interest; momentarily, we focus on only one -- its areal extent.

Let

1 if the ith prospect is a field
- -- x = :

-,~ "0 otherwise

and define

Ai = areal extent of ith prospect.

Then (xiAi ) for iC£1 is a characteristic of the ith population

element. We do not know M - {(xi'Ai) iFi£ with certainty prior to

beginning exploration of the basin. One of our objectives is to make

inferences about eM as prospects are delineated and fields discovered.'

In particular we wish to know which element' of have x = 1, since the

ith prospect is by definition a field if and only if x.= 1.

At the outset of exploration, the exploration process will

generate only a small subset of potential prospects in the basin, say
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n < M of them with population labels i ,..,i And only a subset ofn

k < n of these prospects will have been drilled. Hence a samole of

size n is an ordered sequence of n of the population elements,

(il,.,in ) with iR£T.. fori= 1,2,...,n, together with an ordered

n-tuple of observed characteristics; e.g.,

jin) (Xi Ai )9 Ai 2 'Ai 3 ' (xi 'Ai ) ,...,(x Ai
1 1 i2 i3 i414 U x

There will be no loss in generality in the context. of the model we deal

with here if we relabel those prospects that have been drilled in the

order in which they were drilled and re-order as follows:

[(il ) (1) x A(1) ( x) ,, (x ( k)) Ai2 Am3 )]
n 2 3.

In fact our model will allow us to ignore the ordering of areas A. of
1.
.3

prospects that have been generated at a given point in time but not

drilled, so we define a sample as:

~k [(il" ",in); (x( 1), (x(k) A(k)); 

where it is understood that the element. {A.. is the set of areas of
3

undrilled prospects generated by the exploration process at the instant 

when the (k+l)st well is to be drilled; r is l x ( t) , the number of

fields found by the first k wells. We shall use H as shorthand
n,k

for a complete description of a sample when no ambiguity will arise.

In order to describe the assumptions on which our model is

based, we need the following array of notational ammunition:

1. A summary of symbols is given at the end of the paper in Table 1.

- i of: - -
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IN = ~iI iSl and xi = l ,the label set of fields in the

basin, . .

SN = E Ai, the total. area of N fields in the basin, 

iIN

'M
RM = iE= Ai, the btal area of M prosDects in the basin,

Jk = tI x(t)= 1 for t=1,2,,,,k3 , the label set of successful
wells among the first k wells drilled,

Jk = t '.|x(t)= 0 for t=-1,2,...,k3 , the label set of un-

successful wells among the first k wells drilled,

sk = A(t), the total area of fields discovered by the
tEJktek

first k wells, and

Uk = , the total area of prospects drilled by the first
t=l

k wells.

The Data-Generatinm Model

We shall assume that the process generating observable data

has the following properties: -

l. Constant Technology

Given SN and R and conditional on observing a sample

HrHr k yielding statistics stand Uk, 

p (k+l) 1 Hrk) = Uk :k
RN- uk 

,This assumption -says that the probability that the (k+l)st
' well will

discover a field.changes in a "hypergeometric-like" fashion with changes
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in sk and uk. The ratio SN/ does not depend on either sk or uk and is

a rough measure of-technological efficiency, hence the label "constant

technology".

2, Probabilistic Prooortionality

Given EAi | igtE and xi= l} and conditional on

observing Hr and x(k+l)= i, the probability that the (k+l)
s
t well

n,k

discovers a field of areal extent A is

' nk 0 otherwise,.

Assumptions 1 and 2 formalize the idea that the probability

of discovering a field of area extent A is proportional to A, for given

:~~~

~iand SN ,

kA uif AC Ai x.=l and i } Jk

,~~~~~~ =

p(.(k+l)=A rx(k+l)l1 Hnk) o=hn . 0 otherwise.

Both assumptions ignore the information content of the statistic yAi 3
J

the set ar of a reaets A. of prospects generated prior to drilling the

(k+l)s t well but as yet undrilled, and exploit only the information generated

by the outcome of drilling the first k wells. In order to explit all

inomain nHr*information in nk ' we would have to build a model of the process

generating prospects as well as of one generating discoveries. We have

chosen to suppress this complicating feature in our preliminary investigation.

r,~~~~~~,

3. Probability Law of FAi l i£ IN3

Ail i Z IN] is a set of mutually independent identically

distributed random variables, each characterized by a density f(')
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Likelihood Function

The likelihood function generated by observation of a sample
r~~~~~~~~~~~~~

Hrnk is, defining uo0 = 0 and So 0 ,

L (N, R,, R SN | Hr k)- n,k)

.k S-t- Nt)
v'inr ( - st-1)x(t) (1 [SN- St-1])l-x(t)

t Rt N Utl RN- .t-lk~l N u t-1 lUt-1

f(( go

t£ Jk E m] f(A( t )
I
|_) (1.1)

·t Jk SN - tl.k~~~~~~~~~~~~~~~~~~~~~~~~~~

x f* N~r (S _ )

where f* N-r is the (N-r)-fold convolution of f with itself. The

appearance of the term f* N-r (SN, Sk) may be explained like this:

the process of generating observations does so in two stages. First,

nature generates N values Ai| i IN] . Then the observables are

generated in a way that depends probabilistically on = E A.

~ N

Consequently, SN is a parameter of the observational process (1 and 2)

and at the same time a statistic from the vantage point of the process

generating field areas (3). If we wish to make inferences about

N, R, e , and SN jointly, then SN appears in both roles.

The likelihood function (1.1) may be rewritten as proportional

to:
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S s
SN- St -:

Tr *1- - ut ut-1
teJNtk 

· A( t)
x Tr - utl ) f(A(t)I& ( )

tE Jk

x r (S - skC I|e)

Approximation of Likelihood-Function

rIn general, working directly with L(N,'R,e,SN Hn k) isXin,k

difficult. However, when N-r is very large we can apply the (equal

components) Central Limit Theorem; i.e., if f has mean m (-w, +c)

and bounded variance i, then as N-r, increases, f Nr becomes more and

more- accurately approximated at each value of its domain by a Normal

2
density fN('I m[N-r], U[N-r]) with mean m[N-r] and variance U [N-r].

Here we are interested in the behavior of L when f is a Lognormal

2
density with parameter e = (p,a2)

1 log
e
x- 1a

..x
.,-,/ - (1.3)

f(x ) e) fL(x ,, ) =2(
O . otherwise.

Combining the Normal approximation suggested above with f as in (1.3),

2that portion of (1.1) involving p and a may be written as proportional to

2.Prvie 2
2. Provided J| A |2d t O 
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f _ re ( i~g-A) 2/a2 _ 12 v/a2-re- 2 , 

. 1 -mEN-r])21UNr(1,4)

x2 2 iESN- sk_x(LJN-r3J) e

where

m = exp + 1 2 } ; = m2 [exp a2 - 1] ,

g:= r .logAi , v = E(log A i)2 rg2.
~~~~~~~~~~~~~~~~~~~~~.)2

Maximum Likelihood Estimation

It will be convenient to work with m in place of .' in the sequel

and we shall do so, To find a maximum likelihood estimator (MLE) of

.2
parameters m,a , N, Ry, and SN when the likelihood function is of the

form (1,1) is analytically difficult. We employ the following procedure:3

1. Fix the value of R,.

2. Find an MLE m* (a,N,S,) of m for fixed a, N, and SN .N~~~~~~~~

3. Holding N and SN fixed, substitute m! (a,N,SN) for m in (1.4);

find HLE's of m and 2 by searching (1.4) over a2 (0, co ).

Call this pair [m(N,SN),a2 (N,SN)].

3. In practlce.we have utilized the gradient method developed by
Goldfeld, et al.[19c6] to simultaneously estimate u (or m) and a
conditional upon the pair (N,s). This creates the tableau described
in step 4. It may prove possible to employ this method to simultaneously
estimate all parameter values, thus eliminating.the search procedure of
steps 4-7. Using data on exploratory drilling in Alberta, we have est.i-
mated parameters for several regions. The data support the hypothesis
that the sizes of discoveries tend to decrease over time, but although
the estimates appear reasonable we regard them as too tentative to be
published at this timne.
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4. Repeat step 3 for a large set of values of the ordered pair

(NSN) and tabulate the value of log likelihood for each

(N,SN) at [m,a2] = ·[m(N,SN), 2(NS-N)].

5. Search tabulated values of the log likelihood for an approximate

maximizer (N ' S ,m' (N*,S
~

) given NS.)
Ns , o N ,s N o (1. 1), givenfR

6. Repeat steps 2 through 5 for a set of values of RM.

7. Search log likelihood values for an approximate (joint) MLE

.of all parameters. 
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II. A SDatial Model

By a spatial model of the deposition of petroleum deposits, we

mean a stochastic process generating values of a sequence of random

variables in a way: that jointly simulates the frequency distribution

of areal extent, the geographic location and the shape of these deposits.

The first approaches that pop into one's mind are incorrect; i.e., viewing

the process generating the number of fields per unit area A as a spatially

homogeneous Poisson process is incorrect; randomizing the parameter X(A)

of such a process by assuming that A(A) is a random variable with Gamma

.density (see Uhler and Bradley [1970]) leads to a better approximation,

but still is deficient in the tails -- that is, a negative binomial

distribution doesn't fit well in the right tail. In addition, a compound

Poisson process, or a (randomized) modification of it doesn't really

explain the "clustering close together" that. one observes when examining

a map pinpointing oil and gas fields, already discovered in a well-explored

basin..

The model we propose here is conceptually simple, extremely

flexible and can be easily modified in many ways. -We replace the two

dimensional continuum with the lattice L = {(i,J)ji,j integer] of

ordered pairs of integers and equip it with the simplest of probabilistic

laws of motion, a symmetric random walk. We then define an imbedded

process that lays down a 1 or a O at first {or subsequent) passage of

the random walk through a lattice point. The assumptions we detail

shortly lead to pictures such as that shown in Figure 1 (Golovin [1970],

p .).



- 13 -

ee,,,,oo.o,,,,oooooo,,o.oooo.o.o.o.oo..oooo...ooo ....... °...*...................................

e.e. I., .**.....*e.** .. e.... .... o
' ° ' ' ' ' ' ' e o ° '

. . . .. . .. . .. . .

. ......... :::::.

.. ....................... ...... ....... ...........
................

I ... ... ...

.............. o Figure 1................

o:::o ::~:Z:::::Z~ZZ:Z:::::::Z:ZZ:~oZZ:~~~~~~~~~~~~~~~~~~..o." ::Z::Z:::.... ............~~~~~~~~~~~~~~~~~:~

iii~~iiiiiii~i~i~i~iii!!!i~ii~iiiiii................ .... ::ii

~ .. .:°: ~ : ~:o...:..:..~ ~ Z ~ ...... ..................:-

: :iii~~i~iii~i ............................ :.: ...; ..;..;................:..................
...... ... ... .. ... ... ... ... .. .I. . . .. . . .. . . .. . . .



- 14 -

Distinguishing features of the model used to generate Figure 1

are that reservoirs have positive area, there is a cluster effect, and
.. . '. * .

the frequency histogram of area extents is, aside from a truncation

effect induced by clustering, asymptotically Lognormal.

Basic Definitions and ProDerties

The model is composed of three basic objects: a symmetric

random walk on L, a random process superposed on the path taken by the

random walk, and a stopping rule.,

Let [i,j; t] denote the.position on L of the random walk at

trial t, t = 0,1,2,... and define

if (i,j) has been assigned a one at
some t' < t,

6(i,j) =
0 if (i,j) has been assigned a zero at

some t, < t.

If the random walk has not passed through (i,j) at some t' < t, 6(i,j)

is left undefined. We set 

I(t) = {(i,j)16(i,j) = 1 at trial t3
and

J(t)= t(i,j)16(i,j) = 0 at trial t} ,

and define the state St of the process at trial t as a triplet consisting

of the location [i,j; tJ of the random walk at the end of trial t, the

set I(t), and the set J(t); i.e., St = ([i,j; t], I(t), J(t)). Let ht

be the smallest non-negative integer such that [i,j; t+ht] t I(t)UJ(t); t+ht

is the first trial following trial t at which first passage through an
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an unassigned point occurs, Set t = O, tk hi, k , and define

kon tt.a sequence 9, k = 1,2,..} of mutually independent..
tk

random variables with common probability function

1 , A if J = 0;

P[ =j = (rm)pr( 1-p)m-r if = 2r r =
P~~~. if',r09 9 . n

0 otherwise;

with m a positive integer and o0cpci. The value o Of may be

tk t~k
interpreted as a "chain" of ones that the process will attempt to lay

down on points in the complement of I(t) in L. Upon termination of the

assignment of ones that begins at [i,j; t)k] the random walk continues

with no assignments made until at the (random) trial t+1 = tk hk+l , a

lattice point [i,j; l] ~ I(tk)UJ(tk). A value of

is generated, and the assignment of ones begins anew as described above,

Assignment of ones is governed by the following rules, where we

let N(Eij; tk])= {(i+x, j+y) x = + l, y = + } , the set of nearest neighbors to

[ij; tk] in L.

1. If no element of N([i,j; tk]) is in I(t.k), set 6([i,j; tk]) = 1..

2. If at least one element of N([i,j; t]) is in I(tk), set

6I[i,j; tk]) = 0 and terminate the assignment of ones (from

the "chain" of ones).
tk

3. If 6([i,j; tk]) = 1, let the random walk continue, repeating

step 1 until either: 

* (a) ~ ones have .been assigned to [ij; tk]. [i; tk+ I]}

or
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(b) a position [i,j; tk +],< , is reached for whichk~~~t

at least one element of .J([i,j; tk +.) is in I( )

Then terminate the assignment of ones from the "chain" of f ones.

Clearly, the random time ht = tk+l - tk depends upon the

4
stato S of the process at trial tk. And the number of ones assigned

tk 

to lattice points from the "chain" X t of ones depends in a very

tk
complicated way on S , S tl,...,St , where Q is the first integer

tko tk+l tk+zQ

such that ([i,j; tj+]) = O. In probabilistic parlance, the ruleSfor

generating a value of ht and for the assignment of ones to lattice

points are called stopoinq rules,

4. There is no semantic confusion in using "time" hk+ to denote number

of trials betw..een tk+l- tk and we shall do so.
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Table 1

Summary List of S-:.bols

del of the Discovery Process

th
A surface area of it h reservoir

k number of wildcats drilled, i.e., number of prospects observed

M number. of prospective drilling sites

N number of reservoirs in the basin

r number of successful wildcats

RN total area of M prospects in the basin

sk total (cumulative) area of reservoirs discovered by k wildcats

S total area of N reservoirs in the basinN
2

-e parameter set for the density function of Ai; e = (L,a2)

uk total (cumulative) area of prospects drilled by k wildcats
th

outcome of it h wildcat well (xi= 1, where well is a success,
0 otherwise)

Spatial Model

6(i,j) state of point .(i,j); 0 or 1, where 1 signifies presence of
petroleum

I(t) petroleum areas, set of 1- points, I(t) = [(i,j)I6(i,j) = 1)

J(t) nonpetroleum areas (or unassigned): set of 0- points,
J(t) = (i,j)16(i,j) = 0]

L spatial location: lattice of ordered pairs, L = [(ij)ii,j integer]

N set of nearest neighbor points to point (i,j; t):
N[('9i; tk)3- [(i+x, j+y)lx = 1 9, y = + 1]

chain of ones laid down from point (i,j; tk) subject to
fI prescribed stopping rules

S state of the process at trial t: St- [(ij; t), I(t), J(t)]t 

I. Mo

II. 
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