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ABSTRACT

The ctability of the flapping motion of a single blade of a helicopter rotor is
examined using the techniques of perturbation theory. The equation of motion studied
is linear, with periodic aerodynamic coefficients due to the forward speed of the rotor.
So'utions are found for four cases: small and large advance ratio and small and large
Lock number. The perturbation techniyaes appropriate to each case are discussed and
illustrated in the course of the analysis. The application of perturbation techniques to .
other problems in rotor dynamics is discussed. It is concluded that perturbation theory
is a powerful mathematical technique which should prove very useful in analyzing some

of the problems of helicopter dynamics.
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SUMMARY

-t

The stability of the flapping motion of 1 single blade of a helicopter rotor is

% examined using the techniques of perturbation theory. The equation of motion studied
" ifw' is linear, with periodic aerodynamic coefficients due to the forward speed of the rotor.

4.

j’} Blade pitch feedback proportional to koth flapping displacement (63) and flapping cate

is include:!. Four cases are considered: small and large advance ratio and small

ﬁ and large Lock number. The perturbation techniques appropriate to each case are

;"2 discussed and illustrated in the course of the analysis. Analytic solutions are obtained

for each case, with primary emphasis on the eigenvalues (that is, root loci) a8 indi-
cators of the system stability and response. The feature of the equation which makes -
perturbation techniques useful is the periodicity of the aerodynamic coefficients.

The applicability of the four cases considered is discussed; the small advance ratio
results in particular are very useful, being valid out to an advance ratio of about 0. 5. "' '
The application of perturbation techniques to problems in rotor dynamics with more
degrees of freedom or better aerodynamic models is discussed. It is concluded that %
perturbation theory is a powerful, and yet not very sophisticated, mathematical tech- 3

nique which should prove very useful in analyzing some of the problems of helicopter

dynamics.

INTRODUCTION

This paper considers the application of perturbation techniquee to helicopter
. rotor dynamics. Perturbation theory has been well developed in recent years, but has

not found much application to rotary wing problems. Classically helicopter engineering

I




has made use of the same perturbation theories that fixed wing engineering has, for

example lifting line theory and engineering beam theory (both require a large blade

aspect ratio). Another classical example is actuator disk theory (a large number of

blades is required). These theories were developed on an intuitive basis however,

and the more rigorous mathematical techniques of perturbation theory have not yet

found widespread use for rotary wings. The classical applications are largely for
aerodynamic problems; the mathematics of these problems can be very complicated

however because the equations involved are highly nonlinear partial differential equa-

tions. The treatment of dynamic problems can be more tractable since only ordinary
differential equations are involved. Problems with constant coefficient linear differ-

ential equations can be solved exactly with well established methods, so for these .
problems the extra effort of perturbation theory may not be justified. On the other

hand for problems with time varying or nonlinear differential equations the only solution
procedure generally applicable is the numerical integration of the equations of motion.
However, purely numerical solutions are not entirely satisfactory for obtaining an
understanding of the physical character of the system, or for formulating general design

rules. Furthermore, an analytic solution for the general case would be difficult to

obtain (if possible at all) and would be so complex as to be hardly better than the

numerical solution. The only systems that can be precticably handled analytically

are those involving linear constant coefficient differential equations. Perturbation }

techniques are available which are methods to study time varying or nonlinear systems ’

such that at each step in the analysis only linear constant coefficient equations must be
handled. Time varying or nonlinear differential equations are characteristic features

of helicopter dynamics and aerodynamics, primarily due to the rotation of the wing.
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Thus the possibilities for the use of perturbation theory in roiary wing problems are

very extensive.

This paper considers the stability of the flapping motion of a single blade of a
helicopter rotor. This is a single degree of freedom, second order system, with
analytic aerodynamic coefficients. The governing equation is linear with time varying

coefficients; it is given below.

B+V28=y[(M8--KR Mg 8+ (Mg - K My 8] (1)
Regions
-(-édréusin lb) i)
M, = (1+ mzb+—-( sin ) ) (ii)
§ Y \gTe ¥ “
1.1
5 + = p Hsind (i)
( .
- ucosw( += usmd)) (1)
M, ={ - /.tcoszb( + -usmd) - (usinw)3) (i1)
8 6 4 /
itcos Y (Eil- + i usin 1!)) (iii)
é-+ % usinyd + i’ (118in d))z (i)
M, =d1s L ginp+ L (usmw) L wsiny* (i)
6 )8 3 12
- (; +5Hsind+ L > (usiny) ?) (i)

J
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where the coefficients have separate definitions in three regions of the disk defined by

Regioa (i) 0<usiny<p
Region (ii) - 1 <psin <0

Region (iii) - u<pgsinyP <-1

This is the homogeneous equation for small perturbations of the flapping motion of
the blade about an equilibrium state; the derivation of this e yjuation may be found in
the literature (Ref. 1). B is the degree of freedom representing the blade flapping
motion perturbation. The equation is nondimensionalized with the rotor speed, so
the time variable is the azimuth angle . V is the rotating natural frequency (non-
dimensionalized with the rotor speed) of the flapping motion, which may be greater
than 1.0 for flapping hinge offset or cantilever root restraint of the blade. ¥ is the
Lock number, defined by ¥ =p acR4/Ib (p is the air density, a the two-dimensional
lift curve slope, c the blade chord, and R the blade radius); Ib is the equivalent mass
of the flapping motion, given by the integral over the span of the square of the mode
shape of the flapping motion weighted by the mass per unit length of the blade; for the
rigid flapping motion of an articulated blade, the mode shape is proportional to the
radial distance from the hinge, and so I}, is just the moment of inertia of the blade
about the flapping hinge. Kp is the flap proportional feedback gain, better known as

tan 6,; K, is the flap rate feedback gain. A feedback law A6 = - KpB - KRB has been

R
used (A0 is the blade pitch changa due to flapping feedback control). g is the roter
advance ratio (forward velocity divided by rotor tip speed). The coefficients M, MB’

and M6 are the aercdynamic forces on the blade, heuce their multiplication by ¥ and

their dependence on U. The three regions for the coetficier.s reflect the influence of

N nwgﬁ T . = - T N B 2 -



-

the reverse flow region of the rotor disk. In region (i) there is normal flow over the
entire blade span; in region (iii) reverse flow over the entire span; and in region (ii)
normal flow outboard of r = - 4 sin Y and reverse flow inboard. Region (iii) is
encountered only if 4 > 1. The aerodynamic coefficients were obtained using a rigid
blade motion, and should properly be changed some to handle a blade with cantilever
root restraint. However the major effects of a cantilever root on the dynamics of the
system are due to the change in v and ¥ (both are increased, V to 1.15 say and ¥ to

about 5/3 the Lock number based on the rigid mode inertial). Since these are free

3

parameters in the analysis this formulation of the problem should give reasonable

results for all rotors.

This equation has been studied nuinerically in recent literature, pririarily in the

e s i S0 ol ), et e
.

context of Floguet theory (Ref. 2), which must be used because the aerodynamic

coefficients are periodic in ¢ if 4 # 0. The equation will be studied in this paper using

the techniques of perturbation theory. The mathematical techniques are not very soph's-
ticated actually; they are rather long, es-ecially when the higher order solutions are
sought; and there are some tricks to be learned, but the standard ones work for most
systems, including this one (Refs. 3 and 4). It is not mauintained that the differential
equation studied is a true model of rotor dynamics; nonlinear serodynamics and coupling
with pitch and lag motions are certainly very important. The purpose of this paper is
not to present a study of true flapping dynamics; rather it is intended to demonstrate
what information can be obtained by the perturbation techniques, and to explore the
methods which are most useful for rotor dynamics, 8o helicopter engineers will be able

to decide whether to use these techniques with more complicated or more realistic
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systems. The dynamic problem considered here is the question of rotor flapping sta-
bility. The stability of the motion is determined by the roots or eigenvalues of the
system (there are two for this second order equation), and so most of the results dis-
cussed will be concerned with the roots. The equation considered is linear; perturba-
tion theory is used because the aerodynamic coefficients are time varying (specifically,
periodic) for forward flight, i.e., when U is greater than zero. A brief discussion of

the characteristic behavior of the eigenvalues of a periodic system is given in Appendix I.

NOMENCLATURE

el
o

Flap proportional feedback gain

Flap rate feedback gain

o

=

3 Aerodynamic moment due to flapping displacement
M-B Aerodynamic moment due to flapping rate
Me Aerodynamic moment due to blade pitch
B Flap motion degree of freedom
Y Blade Lock number
A Eigenvalue or root of the system
7! Rotor advance ratio (forward speed/rotor t‘lp speed)
v

Rotating natural frequency of flap motion (centrifugal and structural stiffening),
nondimensionalized with rotor rotstional speed

$ Rotor azimuth angle, measured from downstream
of) "the order of"

ﬁ Conjugate of a complex number

s "
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LHP Left-hand plane

RHP  Right-hand plane

LHS Left-hand side

RHS  Right-hand side

Re Real part of a complex number

Im Imaginary part of a complex number

ANALYSIS AND DISCUSSION

Introduction to Perturbation Techniques

Fundamental to the use of perturbation techniques i3 the existence of some
parameter which is either very small or very large (how small or how large is deter-
mined during the analysis); for the moment represent the small parameter (or the
inverse of the large parameter) by €, In the preseat problem it is desired to find the
roots of the motion, which means investigating a solution which is uniformly valid over
long time periods. The appropriate perturbation technique is the method of multiple
time scales. This method assumes that the behavior of the system may be investigated

over several time scales, i.e.,
n
b =€y
The time scales wn are all assumed to be the same crder; then for qbl = € the actual

time Y must be of order 6-1, i.e., very large compared to the basic time scale

wo =), Next the dependent variai.i;8 are expanded as a series in ¢,

B=Bo(wo, wl. d’z' ...)+¢81(w0\. dal, ced) it an,

PR Y




where the terias 80, 31, etc. are al! asrumed to be the same o xder, and depeid on all
the time scales now. The requirz2ment that all the Bn be the same order for the long
time scale behavior of the motion is crutial to obtaining the solutioi:: it leads, for certain
values of the free pacameters, to critical regions characterized typically by a reduction
of the stability of the system. The details of this method will be given below in the

context of the trcatment of the rotor flapping equation.

Often an equation of motion is such that in ihe limit € = 0 the order of the differ-

ential equation is reduced. Such problems are called boundary layer problems, since

they are characterized by narrow regions in which the solution changes greatly. The

outer solution may be found by use of a substitution oi the fo.m
b
8 =exp JP pdy

followed by an ¢xpansion of p as a series :n. €:

1
p—znp‘“+“ Pyt Ep +.e

This main solution is uot valid in certain narrow traruition regions or boundary layers.
A basic part of this perturb:ition technique is methods 0 obtain soluticns through tho
transition region, so that it is possible to match one main solution to another on the
other side of the transition region, or to boundary conditions at the base of the boundary
layer. Again, details of the method will be given in the context of the solution of the

flapping equation. F

For the flapping equation there are two parameters which may be used for per-

turbation quantities: the advance ratio 4 and the Lock number ¥, Then there arc

g, R T
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four cases to he considered: small and large U, and small and large ¥. The flapping
natural frequency V is also a parameter in the problem, but it varies little and further-
more always has a value at or slightly above unity (i.e., is neither small nor large).

Each of these four cases will be examined in turn in the following sections.

The Small 4 Case

For the amall U case (to 0(#2)) it is possible to ignore the reverse flow region,
and the aerodynamic coefficients in region (i) can be used for all . The eguation of

motion is then (considering the case KR = 0 first):
.e Z Z . .
B +< s ' o u.smtb)ﬂ
2 Y Y Y ais o Y wsing?)] 8 -
+ {v + ucosdJ(G + 2 ysmw) + KP<8 + 3 usinyd + 2 (4 siny) )] B=0 2)

The small parameter is the advance ratio J; the perturbation technique to be used is

the method of multiple time scales. The solution will be ¢xamined to 0(#2).

Hover

For the hover case, i.e., the limit 4= 0, the equation reduces to

§+§B+ (u2+KP§)B=0

An =

which is a constant coefficient equation now. The roots are obtained from

x2+§x+(u2+xp.§)=o

A o &
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as

, 2
v frre
A=-Lovi u2+81<p S 3)
(and its conjugate).
Expansion in g

Using the method of multiple time scales, the behavior of the equation is examined

for § of order 1, #-1, “-2’ et: . ; that is, let
by =¥
b, =B
_ .2
9y =B
Next expand B as a series in |, with each term depending on all the time scales abn:
B =BO(¢0, wl’ 4’2’ -") +”’B1(¢0: 'bl' °-') +...

The time derivative now becomes

So that the ordinary differential equation (Eq. 2) now becoines a partial differential
equation. Furthermore, the two remaining parameters in the equation, v and 7%,

are also expanded as series in u:
V=v_+uv, + uzv +...
0 1 2 °

_ 2
YV WY HH Yyt
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(This is done because it is the characteristic of a system with periodic coefficients

that for certain values of vo and ¥ 0 there are stability degradation regions described

by boundaries in Ul and ‘yl, or v2 and ‘)’2, etc.).

Now B8,d/dy, v, and ¥ have all been expanded as series in 4. These expansions
are substituted in the differential equation. It is assumed that all the coefficients in the
expansion are of the same order; thus tbo, z.bl, abz, etc. must all be of order 1; and
BO’ Bl, 82, etc. must all be of the same order for the behavior over all the time scales .

wn (how large is arbitrary since the equation is linear in 8, although if 8 is too large

P T

the equation of motion may not be valid). The equation of motion will then contain terms

of order 1, u, u.2, etc. ; all the terms of like order are collected and separately equated ‘;;-

g

to zero, to give the equation that starts the analysis at each oxrder. %

Cyee [

»

Order 1 Results

2;;::" v

To order 1 the equation is pY
70 4 }3‘

32 3 2 0 7

R MEN <"o *Kp 8)'80 ‘ @ g

3 0 kS

0 X5

!

h4

The solution of this equation is §
y %

= o%0 5) ¥

By =Re (B0, ¥y, ...) € 0%0)] ® 2

where the root Xo is given by

%o

or

f\ﬂx:;§\.- 0 . e
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and its conjugate. Since 8 0 depends on all the time scales, BO = .30(4’0, d)l, eed)s
Eq. 4 is a partial differential equation, and only determines the behavior of 80 as a

function of d)o. Thus the quantity 801 still depends on ¥ X zbz, etc.

The order 1 equation is identical with that obtained for 4 =0, i.e., the hover
limit, and indeed A 0 is exactly the hover root (to order 1). The variation of these
roots with ¥ for v =1 and several KP is shown in Fig. 1 (the 4 =0 loci). The com-
plex portion of the root locus is a circular arc, with center on the real axis at A = -K_,
and radius of Juz + KP2. The corresponding ¥ for a point on the complex portion of
the ¥ locus may be obtained from the real part of A since Re A = - ¥/16 (no dependence
on V or KP). For ¥ = 0 the locus is at A =iv (there is no effect of KP since there
are no aerodynamic terms if ¥ =0). For KP >0, ImA increases as ¥ increases from

+ i/ vz + KP2 (the peak

occurs just over the center of the circle so the frequency is given by the circle radius).

zero; a peak in Im X is reached at ¥/16 = KP where A = - KP
For Kp <0, Im A decreases immediately as ¥ increases from zero. The locus inter-
cepts the real axis at ¥/16 = Kp +«/;2T132, where A = - Ky + 2+ KP2 . Then as
¥ ~ ®, the roots remain on the real axis, one going to A = - « and the other to A = - KP
(the center of the circle). Thus one branch of the ¥ locus crosses into the RHP if

KP < 0; the crossover point occurs for y/16 = - v2/2Kp; at this ¥ the other branch
isat A= vz/lip (which is less than zero since Kp <0). When the solution is examined
to higher crder in i (as below), special problems occur when the frequency of the hover
root is at or near a multiple of #/rev. The order 1 root crossés Im X =% for

y/16 = Ky +~A/2 + Kp2 - 1/4. The locus will cross Im A = 1 for ¥/16 = Ko P+ sz -1

Since v 21 there can be only one crossing of ImA =1 or # by the locus (except when

v =1, in which case the locus star: aiIm A =1 for ¥ =0).

]

-
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The root loci for fixed ¥y and varying v or KP would be somewhat simpler than

WV aik L

the ¥ loci. What is being varied is the natural frequency of the system, w =V P8

for (A complex, N = wn). For the complex portions of the loci, Re A = - ¥/16 is fixed,
so the locus would be a vertical line in the LHP. For u2 + KP (Y/8) = = the locus would
be at Im A =5 for V2 + KP (y/8) = ()’/16)2 the locus would intercept the real axis, i.'e. ,
would he :;t Im X =0. For smaller V2 + KP (v/8) the locus would have two branches

on the real axis. For v° + KP (¥/8) = - = the locus »ould be at A = +w. The locus
would go through the origin, crossing into the RHP, at vz + KP (y/8) = 0 (the other

branch would be at A = - (¥/8)); since v =1 this can occur only for KP = -(8/‘)’)1/2 < -8/v,

i.e., for sufficiently negative Kp.

The preceding paragraphs have discussea the behavior of the hover root loci,
i.e., the 4 =0 roots. For u #0, ,\0 has the same form as the hover roots, but in
terms of )'0 and UO; 80 it is not the entire rooct but rather only the order 1 part of it.
Thus for example, if Im )‘0 is exactly at a multiple of %/rev for somé K, this only
implies that the hover root is near that point; the hover root, based on Y= ‘yo + uyl + ...
and v = VO + U vl + ... must be a small distance (0(u) if ‘yl and vl are not zero)

away from )LO, which is based on 70 and v_ only. The order W, “2' etc. parts of

0
the roots for K #0 will be obtained in the analysis below.

Order U4 Results

The order M terms in the differential equation are (dropping the common factor

of M):

Lo S Y
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2 y ¥
| 0.9 2 9
2Bt W 31+<"0 *Kp 3 /B

3, 0

2 Y Y, ¥
o Yoa (1% 2
IRETETS Bo* 3 M, Bo+<s "% S‘“‘”o)alpo 8

Yo Y1 Y0
+ 4VOU1+6_COS¢)O+?KP+—3—KPSHI¢O 80 (7)

This equation will be regarded as an ordinary differential equation for B 1 in terms of

P 0 The behavior of the RHS as a function of ¥ 0 is obtained by substituting the solution

for BO; this gives:

[ yo\3B.. [y y
: 0 01 1 1
-l(z )Lo+ 8> a{bl +<8 AO+2UOUI+ 3 KP>801

Y Y i "iwo> Y (iwo 'W’o)
0y L0, J(e0-e O OjeO+e 0 Ao¥o
+<6 **3 KP>< 2 Bor1* % 2 Bo1|°

(=]

Y Y g 'iwo> Yo [0, ~Wo\_ |
_2_ _0_ e - e 5 __Q_ e +e Xo(bo
+<6 %*3 KP>< 2 Pnts\ 2 Jfoff

Thi< i to be considered an ordinary differential equation for Bl of the form

32 Y Y

0 9o 2 0 Aolbo
- | ————— — ov— — = "l'.n;
aw281+8 a4’081+<u0 +KP8>81 Ale

0
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where A1 is a complex constant (which really depends on ¢ X z,bz, etc.). The solution

to this equation is

A
——L—d) exoz'bo+...
Yo 0
2A 4—
0 8

B = Re Bll e)\OlbO -

1

where B8 11 e)\olbo is the homogeneous solution. The particular solution for Bl has a

term proportional to Alwo eloibo; compare this with the solution for 80:

B (constant)AldJ 0 ekowO
= Py = (consta.nt)All,b0
0 (constant)e 0%0

—

)

Then Bl will become arbitrarily large compared to BO if wo is large enough, which

violates the assumption that BO and 8_ are of the same order for all {bo. The only

1
way such a term in 8 1 can be avoided as if it is required that A1 be zero. Recall
however that the equation for 81 is really a partial differential equation, and A1 has
terms like 6801/ albl and Bo X Thus setting A1 = ( gives a diff :rential equation for
Bo 1 in terms of zbl, the solution of which carries the solution for BO out to time
scales of the order of u-l. In general, the forcing terms on the RHS of the equation
come from the homogeneous solutions for the lower orders of the 8 expansion. It is
the nature of the perturbation expansion (not of the particular equation being studied)
that to each order the equation for B8 n always has the same homogeneous solution (in
this case ekowo). Thus the equation for Bn is being forced by its own homogeneous
solution, which gives rise to solutions of the form (bo times the homogeneous soluvtion

(dlo eho'b0 here), unless the coefficient of the homogeneous solution i8 set to zero. It

is a fundamental feature of the method of multiple time scales that setting this

b PES W 2 F YAn -
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coefficient to zero gives another differential equation, which may be used to find the

VR Rl IR SR AW e - E

behavior of Bn—l to the next time scale.

The method of multiple time scales, as outlined above and described in more

detail in the literature (Ref. 3), involves then the following steps.

a) Expand 8, d/di#, and all parameters as series in M.

b) Obtain the partial differential equation for order p.n; write it as an ordinary ]

differential equation for Bn in terms of lbo; substitute the solutions obtained for

81, Bz, cees Bn-l into the RHS.

¢) Find in the forcing terms the coefficient of the homogeneous solution; this a -

b o

coefficient is called the secular term. Set the secular term to zero, thereby obtaining \

a differential equation for 8

-1 in terms of 4)1. This is done in order that the solution . .

be uniformly valid for all time. Usually it is the behavior of the solution to longer

time scales (e.g., Bo(lbo. lbl)) that is of interest, rather than the higher order cor- L

rections to the solution (e.g., Bl(wo), which is an order i correction to 80). So it is

really the differential equation resulting from the secular term that is sought.

For higher orders, 0(#2) and above, the solution procedure is a bit more involved
(there are then secular terms in the secular terms), but this is best explained by

example.

Returning now to the flap equation to order i (Eq. 8), the secular term (the

coefficient of e"O‘bO) is, if 'Xo £1 4 Ay : X .

2)« +‘y0 o—h‘-;w- 71 x +2vu +—
3, Kp )80y =

e e D\ —— e e i es e o= - e e ety =% ——e o m———— o
-~ e\, T »
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or

28
o =
™, A By =0 ©)

where

" %
\ =--§-(A0+Kp)+2uov1=-E(AO+KP)-UOUL
1 Y iImA
22+ 0
0 8

The solution of this equation is BOI = Re(Boz(wz. . )e'\llpl); then the solution for 8 is

8 =Re (802«02- .yerobot "1“’1) + O(4) (10)
The root is
2
= S A 2 Y (X
A=dy+BA =-15 1“/" *Kp s <16) 11

to order p. Thus to order i the root remains the hover root; there is no effect of
advance ratio or of the periodic coefficients. This is the case for moat ¥ and v, the

exception being when ¥ and ¥ are near 70 and vo such that 'io 2{= )\0.

if 'io +i= )\o then the periodic coefficients contribute to the secular term;

lo +i= Ao means that 70 and v, are such that

Im 10 =g
or

v, [y
2 0.(9) . 1
Yo *Kp 3 <1e "%

"y




S
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So this case occurs when the hover root has a frequency near %/rev. (Note that

)LO -i= XO is not possible because >‘0 has been defined to have positive imaginary

part.) The 0(1) root in this case is

___0.,1
=16tz
The secular term is now
v \38 Y Y
0 _01 1 1
+ = + +=
2>‘0 8 aw < X 2v0v1 8 KP> 801

Yo _ Y, ¥ -
<—°x Ly -QKP>B =0

121 0" 12 " 6i 01
or
2
38 <7 y y >
o1 o %o 0.}z _
%, . " %1*\792 "5 Kp 24 /80170 (12)
where

Yy 1%
A= Q +ia1=-?6;+i 2V0v1 8 IG-KP

The 301 term arises due to the periodic coefficients. The solution to the equation

(see Appendix II) depends on the quantity
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Now if D2 >0, B 01 has terms with time behavior like

K74
-((yr:tiD)lbl ) e- ﬁ'&biiD#lb

]

e

and then 80 has terms like

Ay "G bEie@+mD)
B.e00=¢ ;
01
the damping is unchanged by the additional 3ecular terms, and there is an 0(i) change

in the frequency. If I)‘2 <, 301 has terms like

WY, ;
-(art#D)Abl:e-ﬁiﬂ ¥ L

e

80 ﬁo has terms like

A L
Bo1 ex°¢’0=e( lsﬁ‘mﬁwzib ,

1

there ic an O(4) change in the damping (both more and less stable), while the frequency

remains fixed at #/rev. .02 = 0 must give the boundary hetween the two types of

Rt AR R TR A BT G, S

behavior. Consider next the interpretation of the quantity D. Constant D2 implies,

for a given 70’ vo. and Kp. that «, is a constant, i.e.,

i
RRT .0 B A TR
Yo"1 "8 \16 " P 24 8 -
= & (constant) (14)

This equation represents a straight line of v versus ¥ with a slope of

aul _ 70/16 - xp
37'1/ 18 Yo

e o a— “""f‘\’% o < 1 PR - —a s -  romny Ak a7 » - m e ——— g
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Compare this with the slope of the line represented by

5
y oy
_/2 _0_(_0) 1,
Im Ay =VVy" +Kp 5 -\1g 2 *

auo 70/16 -Kp

aryo/ 16 v

0
. . 2 1
Thus the lines given by D = constant are parallel to the line given by Im XO =5

(these can be considered lines of v as a function of y), Furthermore, in this case

71 and v_ give an 0(4) perturbation from ‘yo and v, which are such that Im Xo =%;

1 0’

thus it follows, since a given value of D2 gives two lines of v, versus ‘yl, that

1

2 - constant represents two lines an 0(4) distance either side of and parallel to the

line Im AO =§. Two values of D2 are of particular interest, first the boundary D2 =0,

and second the maximum possible negative value of Dz. The latter is given by
, =0, i.e.,
i
Y, (Y
Nl _ )
VY178 (16 Kp/ =0

1
1 03 line there;

thus this line simply represents, to 0(4), the Im XO = % line, and it is sufficient to use

This line runs through vl =y_ =0 and has the same slope as the Im A

the point vl =y 1 0 for the minimum Dz. Return now to the solution for Bo in terms
of D; it has the characteristics expected of a periodic system (see Appendix I). D2 >0

and very large implies v, and 71 very large, which means a root far from Im A = l.

1 2
As p? decreases, ReA remains at the basic value (- ¥/16) but there is an 0(4) change
in the frequency, until at D2 = 0 the frequency has reached exactly Im A = -;- The

1 and ‘yl. and so the root has reached

et g\ x’% - T pTTTTT T T ey S e - = v— e -

boundary D2 = 0 occurs for nonzero values of v
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7
w0

.Azwf’t‘;

the Im A =:;' line while the hover root is still an 0(4) distance away. For D2 <0,

- u’

the frequency remains fixed at %#/rev while there is an 0(4) change in the damping,

both positive and negative. This type of change in the stability of the system is char-

e MR 1AV e AT

acteristic if periodic systems; indeed it appears here due to the terms in the secular

~

i

equation that come from the periodic coefficients in the equation of motion; it is not

seen in the behavior of the basic root to 0(4). There is a critical region, bounded by

D2 = 0, inside which the change in the damping occurs. In many problems with periodic ?

SEPP  ie aa

coefficients, the system is unstable inside such a region; in this case however there is

; the basic (hover) damping, represented by Re A = - ¥/16, which is large and stable.

-
Lime it YN o

The change in the damping is £uD, which is 0(i) compared to the basic damping, so

the critical region is a region of stability degradation rather than of instability. With

this discussion as a guide, the solution of the flapping equation near Im A 0 =% will be

considered in more detail.

The boundary of the critical region is given by D2 =0, or

(70 "1 % / ("o )2
Zuouf'ﬁ'xp —8—*52 1+ T'mp (15)
The first term on the RHS makes the line parallel to Im A_ = 1 and the second term

G L L DR T MO SR
2

0 2’ £
gives the width of the region; the critical region is a narrow band, of width 0(u4), about

\ \
Im A, = -;' Outside the critical x'iﬂion there is an O(4) change in ttg}g],frequency while
the real part of the root is unchanged fi:om the hover value. Inside, the frequency is

fixed at #/rev while there is an 0(4) change in the damping. The maximum stability

. change occurs at the center of the critical rogion, where D2 has its maximum negative
value, i.e., at vl =71 = 0. The root there is
i ¥
2 _
. r\.ﬁ% - T T T e 16- - max — T e S vore——y ] WA e g e
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So the 1 _aximuni stakility degradation (and enhancer:ie <} 8

D a}l- '1 +(x 417 \“:;’;
(BM)) :-“ nax =u =4 8N AAZ _:’2" + 4K_° 17)
e Rex ¥/16 gHvY -3 ptihp (
max

which is an O(u) small reduction; the systcm remains stable because of the large hover

damping. In general the root is given by

A=Ao+ar-iun

where for fixed v (i.e., l.i1 = 0) have

oG -ne) G e ]

Let Ay/16 = #0'1/16). 80 Y=Y+ AY; recall %,

(18)

is given by the requirement

Im Xo = %; ¥ must be such that Ay is O(4) small, i.e., ¥ must be such that the hover

locus is an u(u) distance from Im A =%. Then

2 2 2 5
et )
A= -6tz ) Nis-%p) ~H2a) [P\s-*p

The critical region Loundary is crossed when the quantity under the square root sign

is zero, that is when

A_zzy__xp)

- 16 \16
corner Y_

'44;1"(%-4&?)

T

e = e e S

’

(18)

B+ s o manrm—————
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for a fixed ¥ (i.e., fcr the 4 locus), or when

[ 2
“.Z_ 1+(}-+4K)

Ay P, ,
= (20)
16 16 corner 2(1' Kp)

for afixed W (i.e., for the ¥ locus). Then the root locus is given by

A=--L+_i_~-1(‘-"‘1) 2% -k )/1 /p \2 @)

cornek

or

A=-toyl -w( )«/1+(z 4Kp) Jay/y (22)

16 corner 1
- \
The (-1i) in the last term of A becomes (1) for u > “corner or Ay < Aycorner' %
For Kp = 0 thess expressions simplify to %
é;
i
“ = é-z i r
corner 16 2y é
Ay 2 i
16 “H3
corner
and
X Lo AN 2
16+2 ( ) “/1 o‘/“corner
N - 'Z' - - 1‘ » 2 -
A 16 + 2 1y 12 v /(Ay/ A7¢osmer) 1
Furthermore, for u << y or Ay > Ay » l.e., far outside the critical

corner corner

region, the expression for the root becomes

St s e gt ‘%. . N— - - e > _ - ‘ .
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which is just an O(4) expansion of the hover root when ImA is near #/rev. Finally,

the solution for B__, with D2 >0, is

01
8!
“Te [ Yo Y y
16 16 .(_o £ Yol .
T \02(“’2"') - DI 12(16'2Kp) T 24 )] D1
[ Y. Y Y .
B A0(0 \_Z0.)| -iD¥
+Boz(qb2...)'h ai+D+1(12(16-2KP/ 241)]e (23)

.

with ai and D givén above; a similar expression may be obtained for the case

D? < 0 (see Appendix II).

These results have been used to plot the root loci for varying ¢ and ¥ ; the
results obtained so far are valid for small 4. Figure 1 shows typical root loci for
varying ¥, with =0 and 4 =0.1. The behavior of the hover loci (4 = 0) has been
described above. The hover loci cross ImA =4 for ¥ =37.7, 18.9, and 5.2 for
KP =1, 0, and -1 respectively; for usual rotors then the ImA = 4 critical region is
likely to be encountered only if KP £0. The point D on the hover locus (KP =1, in
Fig. 1) is where the locus crosses ImA = #. As 7 increases, since this point is at
the center of “he critical region (Ay/16 = 0) it receives the maximum stability change,
a: 4 so is pulled out to the point B. In terms of the ¥ locus, as ¥ increases and the
hover locus nears ImA = %, the root has an 0(4) change in the frequency, pulling the

locus toward ImX\ =%, When the locus crosses into the critical region the frequency

has just reached #/rev, and the root locus is at the point A. For still larger ¥ the

-

T



Y

*

s
Py

gt L O E G

LS
e

-25-

frequency remains fixed while the real part of one root decreases and that of the other

increases. When ¥ reaches the value for which the hover root has a frequency of

3

#/rev, the locus is at the center of the critical region; there the roots have their maxi-

o

mum stability change (which is 0(u4\) so the locus is at the point B. As ¥ increases
more, the locus moves toward the other boundary of the critical region. The locus
reaches that boundary at the point C, and for still larger ¥y the frequency is no longer
fixed at 3/rev; rather the real part of the root is the same as the hover value, while
there is an O(M) change in the frequency which decreases in size as ¥ increases.

When
Avy/16 is no longer 0(4), the locus is again identical (to 0(4)) to the hover lccus.

Figure 2 shows typical root loci for several ¥ and varying M. The circle the

» ~ RN R
TP gt A P TR A TR e

b T

locue starts from is the ¥ locus for hover (4 = 0) and the appropriate KP. The Yy for

each locus may be found from Re) at f =0, since for the hover root ReX = - ¥/16.

LR
’

As U increases from zero, for the roots near ImA = # there is an 0(i) change in the
frequency pulling the root toward ImX = 4, while the damping remains fixed at the hover

value. The locus reaches ImA = &, i.e., crosses the boundary of the critical region,

L oL

when U = “corner' For larger W, the freguency remains fixed at &/rev while one locus

moves to the left (increased stability) and the other to the right (decreases stability).

Again, this is the characteristic behavior of roots of a system with periodic coefficients.

AR TR

g Order #2 Results

3
4
v‘-;a
3
% .
:
!

In order to find the roots to 0(#2), it is first necessary to complete the 0(u)

solution, After the secular terms have been removed, the eqpation for ﬁl becomes,
for Im Ao o

g i 4 ~ TR
»
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2 y y

3 0.3 2,0

2 P18 ﬁ1+<"0 *3 KP)BI

Y 0

0
—-7—03 (G +2K_) sin §_+ cos § ) e 0%0 4 conjugate 24
=-5 B (@ P 0 0 juga (24)

/

The solution of this is

And yO . Aodo
= 0%0 4 2
'31 Re [511 (Ibl)e +35 301 (A1 sin ‘bo + A2 cos zbo)e ] (25)

where

X0+2KP -2iIm AO 1 ()\0+2KP) 2i Im AO
A= 2 AT 2
1-@Im)) 1-@m)

or recalling that BOI = BOZ eklz‘bl, the solution so far is
- Ay Aodo;
B, = Re [8,,) €171 &0%0]

Y
B =me [B, 0 0. 2 g

5 Poa W) (A, sind + A, cos §) b eAO*"O] (26)

The order ,uz terms in the equation of motion are (dropping the common factor

of #2):

%

[ NP"M“% 7 e T g T Ty ”
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2 y y
3 0.3 2 0
i L AR 3, B +("o +Kp 8)B2
3
0
2y y, ¥
d 0 3 1 7o 3
o B (B R s
W, 1783 "17\8 "6 o/ 3k, “1
Yo Yy %o )
+(2v0v1+—6-cos $y*+Kp5 +Kp 3 sind Bl

2 2 Y Y Y :
- d 0.2 170 )a , ;
+azp ﬁ+23wawﬁs-sawoﬁ (8+63m 54) }

1 &4

+(‘§+Z’lsinl,b>‘l :
8" 6 0/ 3, "0

) ma

Y Y Y, ¥ Y ¢
2 51 20 . 2.0 0. 2) i
+[v1 +2l/0v2+6 cos l,b0+ 5 sm2w+KP(8 +3 smzb0+4 (smzbo) ]BO ;
4
S
==kél .FZQ)EELL ;
0" 8/ 3, ;-
b
§
Y, 7 Y Y, 7
1. % i) (_L 20 0 Ao¥o )
+[(s te ”’o)ko"z"o"l* s ¥ tKpl3 3 S“‘"’o}] /311]"
[ 38, Y Y, Y {
0)_02 2 (1,0 (_.2. L ) 4
+1(2X0+ 8) =, +(A1 +(8 + 5 sm:bo))\l+ 3 + 5 smd)o >\0 :
Y Y
2 1 AT
+u1 +2v002+6 cosw0+ 3 smzd)o
Yo 7 Y
2,1 '] 2 Ad1 Ao¥o -
+KP(8 *3 sin w0+ 2 (sin a,bo) ))BOZ]G e .
‘)’0 ‘)’1 70
+€-Boz (2A1+—-+E-simbo)((x A -A )simb +(>\ A +A1)cosabo)
Y Y Y. Y |
0 ) ] SURNE
(8 A1+2u0v1+6 cosy +KP(8 + 3 siny ))(Alsm‘bo"'AchB%)]e e ;
+ 217
e - conjugate — — s e n R ,,,_..N.,.‘,...,.,_....,( ) S
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Considering now Im )LO # 1 (already have assumed Im XO # %), the secular term is

2 2

Y. (YN A A Y

a0 e (1)
Y e EP VY o PO N e v A mis A vyt s M g
aw 1711 a¢2 2 211mx0 /02

where )tz is the Ol,uz) term in an expansion of the hover root, i.e.,

2
NS COUE N2
Y RN RSV S W, (16) +0(1°)

Regarding this is an ordinary differential equation for B 11 in terms of ¢ K the RHS is a
constant times the homogeneous solution. In order that the solution be uniformly valid,
e., that Bl 1 be no more singular than ﬁ01’ the secular term of this equation must

also be set to zero. 'I;he result is a differential equation for 502 in terms of a,bz, which

will give the root to O(pz):

v Y2 A A Y \2
02 0 (7o) %01 0 . - o
b, +<-)‘2+(K‘P 8 +(6) 2 +KP(6) Al)/(zllm A0)>302—0 &)

Thus the root is

|
!
{
:
i
{

Yy (Vo) A A Y \2
_ 2fy [ ’0 o) 071 ( o) )
A Ao+ux1+u ("2 (KP 3 +(6 5 +Kp 5 Al)/(zilm >‘0

7
.2 v2.2g +4K§_,2 y
_ vl (_o) 0 "8
khover 6

P
4Imk0 (1-(2Imko))

1

— K —— e ——

PlGImX

To order u2 this result is

v -xx +4xp

X=-{3+i v + (1+p )Z (16)2 (1 “28( (30)

y_')f_,, “Zg, 4l

- r“\*‘;%”"‘"’" R T SHEEC e -

» e ——
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Thus to order “2 the roots for most 70 and vo (away from Im X = % or 1 that is) are
just the hover roots with an 0(#2) change in the frequency. There are two effects of

M ; the first corrects the term y/8 KP in the hover frequency to properly account for

the average of KPM o i.e., multiplies this term by the factor (1 + uz). The second
effect, that in the last term of the frequency, is entirely due to the periodic aerodynamic
coefficients; this is the first effect of the periodic coefficients seen in the analysis,
.except for the critical regions near Im A = %. Typical root loci for varying M, con-
structed from Eq. 30, are shown in Fig. 2. These are the loci that are not near

Im X =% or 1; the frequeacy change is small even at 4 = 0.5. Equation 30 may also

be used for the branches of the root loci on the real axis when the quantity under the
square root sign is negative (i.e., for Y large enough). There are two real roots then,
the (+1) in the frequency becoming (+1). A point on the locus of special interest is where

cne branch of the locus on the real axis crosses into the RHP, i.e., becomes unstable

e et

(see Fig. 1). The criterion for this divergeice boundary is that A = 0, or

2

2 _Y
2 ,g K. +4K
Cae@ep )ZK (1-) “2; .. P P

10 (z_) 2 z,%,,_

To order “2 this becomes (since ¥/8 KP must be an 0(u2) distance from -vz)

2 .2

v2+(1+y)zx 2u2;6 162

()

'fE
w't

g
4
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§ P s 2
(y_ +1
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The effect of 4 on the RHS (due to the periodic coefficients) dominates that on the LHS
(due to the average of KPMe) for all values of ¥ and v. Thus the critical value of
négative Kp, beyond which the locus lies in the LHP, is actually increased by increas-
ing 4. The criterion from the hover case is conservative then; this is the opposite of

the conclusion that would have been reached from a consideration of the averaged

coefficients only.

If XO +2i=X 0 then the periodic coefficients contribute to the secular term;

—

AO +2i= )~0 means that vo and 70 are such that D

Im}\0=1

LI

or

e N

N
vEe+K —2-<—9) =1
0o ""P8 \18

Thus there will be an 0(#2) critical region where the hover root isnear ImA ="' The

0(1) root in this case is

Y

0
A=-Tet!
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The secular term for the equation for B 2 is then

2
<Zi J‘1‘311) E%f (')‘2 +(%> '11?("02 oy s 4KP2) -K, 221) 8 |eM¥1

8 P 16 / P02 |®
r _
2 -
y 7) X X > y
o (Yol 1= “- o= .- 0
- —p\ —] — -— - — - —_—
32 <6, 41&““2 2 A 71 AT iAo 16K
2 1
K, (7, X
POy 1 iz R M1
+ i<6 (Al 1A2) Boze

The first term on the RHS is the same as the RHS of Eq. 28 (with Im A_ = 1)

same as above (Eq. 29). Recalling that

"1 161 ( o
B ory v BERes)e
1 iImXo 16 Imko

Im Xl = 0 requires

Y
(. )-
W) -3 \1e ~Kp/™0

This is recognized as a line of constant Im A; since it goes through v_ =y =0, it is

just the Im A = 1 line to O(u), and it is therefore sufficient to consider only the case

vl = 71 =0 (s0 )‘1 = 0 also), Then the secular term in Eq, 32 is

2

?:!2&* [‘ 2(72 Ao+ V¥, +Kp 1;3') "(76_0) ﬁ("oz - ZEQKP"‘KPZ)-KP;%i] Bz

. Unless
)«1 is real, so that Xl = Xl, the secular equation for BOZ will therefore be exactly the

[ _ﬂﬂxp.&u ,—;9- (’—'Q-z +zxp+1)] (33)
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The solution depends on

o2 Y 2 2
D2 = y—O-K\ﬁ-uv Sy o " Fe -K %
16~ "p/ 16 " ¥0” "\6 12 P16

% o (o %[0 )
- {33 W+5\36 - %)) +\Kp -7 76~ %Kp (34)

The behavior of the solution near the critical region is similar to that near Im A 0 =3,
The boundary is given by D2 = (0, which gives a narrow band, of width O(yz) here (as

opposed to 0() for the Im AO =% case), about Im A = 1. Outside the critical region

B am o

(D2 > 0), the damping is the same as the hover root and there is an 0(#2) change in the

frequency; at the boundary of the critical region the frequency reaches 1/rev. Inside i

tbe critical region (D2 < 0) the frequency is fixed at 1/rev while there is an 0(}12)

e famn s rng 36 -

change in the damping, with one root becoming less stable and the other more.

The boundary of the dritical region (D2 =0) is

. Y
2.2 0o 2
y_O_K 7_2_-vv=_(zg "o'st+4Kp+ Yo
16~ P/16 02 \6 12 Kp 16

Y 2 / 2]2
9 (2L XX
*32[ [1+9(16 -ZKP)] +[KP 9\16 2KP)] (35)

This is a line parallel to Im A = 1. The terms on the LHS give a line parallel to
Im Ao = 1; the first two terms on the RHS giva the correction required due to the 0(#2)
change in the frequency found above (Eq. 31), so the line is parallel to Im A = 1 for the

basic root to 0(#2). The last term on the RHS gives the width of the critical region; so

the critical region is an 0(#2) band around ImA = 1,

L S
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2
The maximum stability change occurs for the maximum negative value of D,

i.e., at

2 2 ¥y 2
%oy )2 -V <’-,2> “ 5%t To (36)
16~ "p/16 ~Yo%2 " "\6 12 P16

which is just where Im A = 1 for the basic root (the hover root plus the 0(#2) correction

to the frequency). At this point the root is

2oLy’
A=i 16*“ Dmax

So the maximum stability degradation (and enhancement) is

AX u? KD B /1+ - 2K 2+ K, - 3% - 2x T
(@) o il (- o] + e -3 -2 |

Re Re A %,
16

S htf-a)f o3 T

which is an 0(u2‘, small change; the system remains itable because of the large hover

damping. In general the root is given by

A= Xo 16 iD# (39)

where for fixed v (i.e., "2 = () we have

2 %o 2
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Let (Ay/16) = uz (}‘2/16), so Y=Yy, + Ay; recall ‘o

is given by the requirement

Im AO = 1; ¥ must be such that Ay/16 is 0(#2) small, i.e., ¥ must be such that the

hover locus is an 0(4“) distance from Im X =1, Then
Yy 2
2 2 (Ay(% 2 2 . 2
¢ D) ’(16 (16 KP) H C1) -Gy
where

Y
2 2 0 2

. 2_(7_0) V' -3 Kp + 4K, Yo

6 12 P 16

1
y 2 2.2
C:

23t PGl o T )

9 \16

The critical region boundary is crossed when (uz D)2 =0, that is when

Az(y_ok,x)
2_ 2 _16\16""p 2 2
b2 b,

corner C 1 +C 2

m

for the 4 locus, or when

2
), ()
6 corner Z_(_)_ -K 1 2
. 16 P

for the ¥ locus. Then the root locus is given by

X (BN 2,2, 2, 2
A=-16*! 1(16)(16 Kp)“/“ W8 By)

PSRN -...,..._'4\.3‘“ - - y J— . - v e wm

I el b A e STV s =

(40)
(41)
(“2)
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or
A=- f? i-i uchlz - 022 J@By/8y - 1) Bv/By, - 1) 43)

The (-i) in the last term in A becomes (+1) inside the critical region. These results

have been used to plot in Figs. 1 and 2 typical root loci near Im A = 1 for varying ¥

and M.

Flap Rate Feedback

The use of flap rate feedback, KR = 0, does not change the behavior of the

solution qualitatively. The hover root becomes

2
A =-_(1+KR)““4 +—KP [—-(1+K)] (44)

and there are cvitical regions about Im Xo = ¢ and 1 azain, The critical region boundaries

and stability degradation depend on KR now. It is necessary that l&! > -1 for the hover

root to be stable, but KR > 0 will be the usual case anyway.

Y - j_Plane

The results of the small 4 analysis may be usad to plot lines of constant Re A and
Im A onthe ¥ - 4 plane. Typical results are shown in Figs. 3, 4, and 6 for ¥ = 1.0
and Kp =0, 0.1, and -0, 1 respectively. The critical regions appear in the ¥ -4 plane
as regions in which Im X is constant (§/rev or 1/rev); they are indicated in the figures
by the circled values of Im A (the region where Im A = 0 is where there are two real
roots, not a critical regior;). These figures are interpreted as follows. A horizontal

line iz a line of constant ¥, and so as 4 varies it gives the corresponding value of Re A

- - e

%
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and Im A as a U root locus does. Similarly a vertical line is a constant y line, and
so gives A as a function of ¥ just as a ¥ root locus does. For example, consider a
horizontal line in Fig. 3 (KP = () with ¥ = 8, i.e., ¥/16 =0.5. As p increases, the
line remains parallel to the Re A = constant linss sc Re A remains fixed at the hover
value. The Im A = # region comes closer to the horizontal line as g increases, which
means that Im A moves toward #/rev. Eventually the constant ¥ line crosses into the
Im X = % region; then Im X is fixed at #/rev while for each point in the region there are
two values of Re A, giving the damping for the two branches (one more and one less
stable than the hover root). This behavior is just that seen already in the 4 loci

(Fig. 2). Figures 3, 4, and 5 may be compared with similar ones in Ref. 2, which
were conatructed from nurnerical calculations; on the basis of this comparison, the
0(;12) analytic results are quite accurate up to 4 =0.5 or so. There is some discrep-
ancy between the results for the Im A = 1 region however, particularly with Kp =-0.1,
although the change in scale (Ref. 2, shows results out to 4 = 2.5) exaggerate the differ-
ence. For V exactly 1 the analytic results indicate no Im A = 1 critical region if

KP < 0 (for vy =1, Eq. 35 shows that the critical region at 'yo/ 16 = 0 has zero width
unless Kp = 0); but only a slightly larger v (for example ¥ = 1.01) i8 necessary to get
a sizable critical region with KP = -0, 1 (see Fig. §). The analytic results show the

v =1 case is a very sensitive one for smal! ¥, and it is unlikely that a numerical calcula-
tion would treat the case accurately. Of course an actual roioxr will always have v at
least slightly greater than 1, so the numerical calculations would be reliable then;

furthermore, the discrepancy may also be an indication that ior very small ¥ the

analytic results are not valid out to as large a 44 as they are for inore reasonable ¥.
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In any case this discussion illustrates the kinds of problems that raay be hidden in a

purely numerical solution; they can only be found and stucdied by analyti - procedures

(which at least tell where to look for problems),

Reducti- 1 to Mathieu's Equation

The equation for rotor flapping stability may be studied by converting it to

Mathieu's equation; Mathieu's equation is an equation of the form

2
‘1—'21-&- (a-2qgcos2z)y=0
dz

It is the classic example of a differential equation with periodic coefficients, and the
functions satisfying it (the purely periodic ones are called Mathieu functions) have been

well studied and documented. To transform the flapping equation to Mathieu's equation

it is first necessary to remove the ﬂ term; this is done by the subziitution

-L i 2
Baye TAMLETALL

This is equivalent to separating out the hover damping from the solution. Then the

classic instability regions of Mathieu's equation (for certain values of a versus q) are

just the criticel regions withcut the large (stabilizing) hover damping. To get the flap-

ping equation in tte required form it is also necaessary however to neglect all 00.12)

terms; when this is done one abtains (with K.P = KR = ()

IR
q.-“% 1+(§)2.

P~

e 1/\..% . y T — - e a - - P sy < -

O N T S T

S

T ASe s ICR o w oe

o

AL




-38-

and

2z=¢+tmf1%

Thus using Mathieu's equation implies only an 0{4) analysis. There are of course

- classical techniques for handling the more general equation with periodic coefficients,

of the form

d2
Y if@z)y=0
2

dz
which is called Hill's equation; f(t) is a general periodic function with period T = 2.
These techniques could be used to study the flapping equation, to all orders in u.
However these general techniques are all unsatisfactory in that they tend to obscure the
physics of the system being studied, both because some transformation is necessary to
arrive at the required form of the equation, and because using standard solutions or
formal calculation techniques means the great amourt of information gained in the process
of deriving the solution is lost. Furthermore, the classic treatments have only con-

i sidered a single degree of freedom system, so that they are not immediately applicable

to more general problems. :

The Small ¥ Case

Consider for the small ¥ case the flapping equation with both proportional and

rate feedback. Now W is arbitrary, so the general equation is considered, of the form

B B=y (M, - KpMg) B + (Mg - K M) 6] (45)

B
D
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where the aerodynamic coefficients are functions of 4 and ¢ (periodic in @), and
include the effect of the reverse flow region (see Eq. 1). The small parameter is the
Lock number ¥. The perturbation technique to be used is the method of multiple time

scales. The solution will be examined primarily to 0¢y).

Zero Lock Number

In the absence of aerodynamic forces, i.e., the limit ¥ = 0, the solution is
iv
B=Re (B e")
so the roots are
A=iv (46)

and its conjugate; i.e., the solution is an undamped oscillation at the rotating natural
frequency of the flap motion. With no aerodynamics, there is of course no effect of u.

This result for the root agrees with the low 4 result for ¥y = 0 (see Fig. 1).

Expansion in ¥

Using the method of multiple times scales, write

by =¥ b
4)1 =7
0 ‘
by =Y ) \
e e s f“\a;.&_ ", - ST T e R
g

e - . . - —- B )
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and then expand B and ©/pY as series in ¥:

B=BO (lboi ‘bla "')+‘yBl (4)0’ wl’ "')+'.‘

3 +y 3 +72 ) +
o, " Ve T

d_
dy

Also expand the free parameter V as a series:

=V + +...
v=y +y v,

Order 1 Results

To order 1 the equation is

2
- 28 -

5B, +v, B,=0 @7)
¥y

The solution of this equation is
i Volb O]

By =Re [801 W ¥y -ende

So the roots are

A =iv (48)

and its conjugate. This solution is of course just the ¥ = 0 limit,

S A g G 01

Order Y Results

The order Y terms in the differential equation give (dropping the common factor

of ¥):
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o

2
2 d
B,+v B =-2
d
sz 1 %0 "1 a¢0¢1

Q/

By~ 21 By

38
o
+ (Mg - K Mg == %, + (Mg - K Mo B,

o1

i e
0 a¢1

oYy

ivow0
[ 2v v +(M KRMe) w +(M KPMG)] BOIe

+ conjugate (49)

Now expand the aerodynamic coefficients as complex Fourier series:

M
n=-m
where
an
n 1 P
My="— M
b Io e

8 and MB'

and similarly for M

If ~V, +1n # Vor i.e., Y #1n/2 for any integer n (i.e., Im Ao not equal to a
multible of #/rev), then the secular term has no contributions from any harmonics of

the aerodynamic coefficients except the zeroth harmonic (the average over the azimuth);

setting the secular term to zero gives

38
01 0 o\, i [u0_ 0 _
, + [. iv, - g(Ma - KRMO) + —2% (M‘3 KPMB)] By =0 (50)
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The solution of this equation is

0 oy i [ 0 0
iv +§<M -K M)—'— M,-K M)]w
B <80 re ] B~ "r"Me) "2, (VB RpMe 1 o)
and the solution for B is
0 0\ i 0 0
w w+y[u +'§<M‘ -K M)-——(M -K M)]z,b
8= Re% ¢ B TRTG W\ P8 }+om (52)

The roots are

A=ivo+y[iv1+§(Mg-KRMg) Z—O-(Mg K M(;)]

and its conjugate. Before proceeding further, it is noted that for the particular aero-
dynamic coefficients considered here many of the harmonics are zero. Actual calcula-

tion of the harmonics or symmetry arguments can demonstrate that

M§°=M2-S=M33°=... =0

B B
0 1s 2¢

M,=M, =M, =...=0 53

8=Mg =M (%9)
Ie .28 _,.3c - ,
MB = Me Me eee =0 :
(the superscripts relate to a cosine/sine Fourier series). Using the fact that MO'8 “:‘
and also that to 0(y) v = Vot Ty the root becomes
2(pO . 2
A Z(MB K Mo)+. (14 " KPM6 64) :

(A\‘% e re e - - s erraar e “e oy »
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Flap rate feedback only effects (to 0(y)) the damping; the real part of A may be written
0
M .
By _B

Re = My [1 + KR/< 0)]

The ratio —MOB/ Mg determines the relative effect of KR; this ratio is shown in Fig. 6

as a function of 4. This parameter is a positive number, which varies little with K
(from 1 at 4 =0to % at 4 ==, with most of the change below g =1). The negative

0
of this ratio gives a critical KR, since it is necessary that K_ > K =M.

R "R B

0
/Mg

in order that the system be stable for small ¥. K_ > -% insures stability for all u

R
(to 0(y) and with UO #1n/2); for very small i the criterion is KR > -1, which agrees -

with the result from the hover root (Eq. 44). For K_ =0 the root is

R
x=-3’— -8Mq)+iv 1+LE-P- 8M0 (55) ‘ |
16 B 16 UZ 0 .

The aerodynamic coefficients (-SMg) and (SMg) are always positive; they have the

value 1for U -0 and are asymptotic to 8/37 4 aud 16/37 U respectively for large u; f

these coefficients are shown in Fig. 7. To order “2 the root is “
S A X Kp 2 %
= - 16+1u[1+ —2 (1+u )]

16!1

which agrees with the 0(y) expansion of the small u results for A (to 0(#2), but with

Im Aofé or 1),

oy o ", 3t o ,'.""“ MR
S BT e e

HrAR

A

The root loci for varying ¥ and varying u are shown in Fig. 8 for K,_ =1,

P
KR =0, and v = 1; the locus for KP = -1 is obtained by reflecting this locus about the

‘qh 3
T s e N ‘S%" 7 [ i< T T A T m ey - ‘;g" b
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Im A =V line. The locus for KP = 0 is difficult to plot since Im A = v for all ¥ and W

(to order ¥); it may be visualized by projecting the K_ = 1 loci onto the line Im A = v,

P

These loci should be compared with the small ¥ portions of the curves in Fig. 1, which

, are for small J. In Fig. 8, the ¥ locus for a given U starts out at A =iV always, and

is a straight line with slope

3ImA _ 513 1
dReX v 0,0

which varies from —KP/V to -2Kp/v for g from 0 to ®. The step size on the ¥ locus,

for a unit change in ¥/16, is

/(;Mq)z + (Kp/v)z (8M0>2 ,

B ;]

which varies from

V1+ (Kp/v)2 to %/1 + 29—5 (Kp/v)2 to 3%7-# N1+4 (Kp/v)2

for g from 0 to 1 to ® respectively. The W locus for a given ¥ starts out vertically
from the W = 0 line, and is asymptotic to the 4 = » line, with the step size on the locus
for a unit change in 4 increasing as U increases. For reasonable g the locus does
not vary much from the small 4 results. An 0(y) analysis can only obtain the slope of
the ¥ locus at ¥ =0, so the locus is a straight line, as found above; to find the curva-

ture effect it is necessary to go to order 72. The significance of the curvature (0(‘)'2))

ST SNCARIR 1 <3l i

may be judged from a comparison of the ¥ loci of Fig. 8 (all 4, small ¥) and Fig. 1

{ (small u, all ¥); on this basis the small ¥y results should be limited to ¥/16 = 0.2 :

’ f
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or less. On the basis of neglect of the curvature effects alone the results might be
accepted to higher Yy, but the 0¢y) results will also be limited by the effects of the

critical region, which will be examined next.

The discussion of the 0(y) analysis has so far only been concerned with the basic
roots, meaning the roots away from the influence of a critical region. In this problem,
the criterion for being away from a critical region is that UO #n/2 for any integer n;
this may be written v # (n/2) + 0(y), i.e., the rotating natural frequency may not be a
distance of order 0(y) from (n/2)/rev. Since v is almost always just slightly above
1/rev (V= 1.2 would be very large for a rotor; it would require very stiff blades and
thus also mean high blade loads) this criterion is seldom fulfilled, and the critical regions
may be expected to dominate the root loci behavior for small ¥. Furthermore, if KP
is large enough positive or negative, the basic locus will also cross Im A =3/2 or %
for ¥/16 still small (see Fig. 8), so these critical regions may affect the loci even if

the Im A =1 region does not.

If - UO +n= uo for some integer n, then the higher harmonics of the aerodynamic

coefficients contribute to the secular equation, and there arise critical regions with
behavior of the root loci similar to that encountered already in the small 4 case. The
criterion Y, +n= vo means vo =n/2, i.e., V= Y +'yv1 +... i8 0fy) from a
multiple of #/rev; the only cases likely to be encounteref fox rotors are Vo = #, 1, and
3/2 (n=1, 2, and 3). Only the case KR = 0 will be .-usidered for now, and use will
also be made of the fact that Mg = (. Setting the secular term in Eq. 49 to zero gives

then

aest & fo
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3B
01
aw1*< LT EM g, KMG)BM
n i n n\|l=
+[§ My +%(MB - KPMB)] By =0 (56)

where recall that M is the nth harmonic in the complex Fourier series expansion of

the aerodynamic coefficient, and n is here given by n = 2u0. For this equation

K 2 2

D2=<v1+—pM0> - 2|M K M -iv M“| (57)
=

2v_ 6
Recall that for the aerodynamic coefficients considered here, either the cosine or sine

0

term for each harmonic is zero (Eq. 53), so this parameter may be written

K 2
D2=(v +—3M°> g (|M -iv Mﬁl +Kp, |M| ) (58)

1 2v 2
=

0
8
For n odd, MB-iqug ( 8 VOM;) -

8
; for n even,

[ S [

n
Mg

nc

n ﬂs nc
My - ivoMn 2(M B)and =gM .

b

The boundary of the critical region

is given by D = 0; outside the region (D2 > 0) the real part of A remains at the basic
root value (y/2 M%) while there is an 0(y) change in the frequency; inside (02 <0)
there is an 0(y) change (both positive and negative) in the real part of A while the fre-
quency remains fixed at (n/2)/rev. Constant D2 means (2 + KpMe) = constant, or
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Compare this with the slope of the basic root (Eq. 55) when Im X = constant:

K

Im)\=u+z—-gM0
2 vV

6 = constant

SO

dv P_0
&yy=0 2v 6

So the ccitical region is a narrow band, of width 0(y), around Im X = (n/2)/rev. The

boundary (D2 =0) is

2 2
P.O0 1 / n 2l n|
. P 1 } 9 -
v, 7, MetZUo IMDB iu0M5| +Ky" Mg (59)

The maximum stability change occurs at the center of the critical region:

P
V. =-—M
1 2u0 6

which is where the basic root would cross Im A = uo =n/2; there the root is *1
2 0

= + o & h
A wo 2 Mﬂ 4 Dmax
y/0 1 / 2 21 m2 )

n
= + ® 4 e - o +
v, +2 <Mﬁ ”o IMB woMﬂl K, IMGI 61)

Inside the critical region the frequency is fixed at UO =1n/2 whiie there is an 0¢y) change
in the damping. The damping of the basic root is itself 0(y) however, so in contrast to

the small 4 case, the critical region can here lead to actual instability, not just stability
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degradation. In general the roct is given by
- P4
A w + MB+1'yD (62)

Let Av =Y, S0 V=V + Av=n/2 + Av and v must be such that Av is 0(y) small,

i.e., an 0(y) distance from (n/2)/rev. Then

= PRy
A—w0+2MB
/ KPY 02 _y_z n n2 2 n2
+1 <Av+§; M6> -(2%) <|MB-1UOMB| +XK,, ,M9|> (63)

Far outside the critical region this result approaches the basic root (Eq. 55); however
for the small ¥ case it is difficult to get far away from all critical regions, since
|Av| = |v - n/2| is at most -1-, which is not very small. The critical region is crossed

when ¥y D =0, i.e., when

2v Av
Y= ‘ycorner = ; T/-_:l_—_—-———-—__.-_—————____ = 71’72 (64)
- K Mg+ IMB- iv MBI +KP |M |
So the ¥ locus is given by
A=iv +ZMB 1AV - y/y P -7/7,) (65)

Inside the critical region the (+i) in the last term in A becomes (x1). The X4 locus is
best found from Eq. 63 directly, since the harmonics of the aerodynamic coefficients

are rather complex functions of u.

“(‘\9& . i T e T = o 7 =
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The g loci show the behavior characteristic of periodic systems, ard familiar
from the discussion of the loci for small 4. For small 4, Re A is fixed at the basic
root value while the frequency moves toward (n/2)/rev. For v near 1 and small v,

. the locus moves toward Im A =1 for small Kp, toward Im A =3/2 for K_ =1 or so,

P

and toward Im A = % for Kp =1 or so. For some j the locus crosses the boundary of
the critical region; at this point the frequency has reached (n/2)/rev. For larger y
Im X remains at n/2 while the effect of the critical region is to decrease the stability

of one root and increase that of the other. The maximum stability change occurs at the

center of the critical region. The center is reached when (see Eq. 60)

' n KP Y 0

: Av=yv-—-=-—— 66
P v=v-o n/zm(BMe) (66)
¢ ’ The aerocdynamic coefficien. (SMg) is a positive number greater than 1 and monotonically

; increasing with u; it is shown in Fig. 7. If K, # 0, this criterion will always be satisfied
for some ¥/16, 8o the ¥ locus always reaches the center (just as the ¥ locus for small )
 always goes through the center — see Fig. 1; however in this case the value of ¥/16
required may be outside the range of validity of the solution if KP is too small). For

& the 4 locus, again if K # 0, the center will be reached for some i provided Av has

t the same sign as K,

and |Av|> |KP|/(n/2) 7/16. However, if K, =0 the center is
never reached for either the ¥ or i loci unless Av =0, i.e., V i8 exactly n/2; in
that case the locus is always at the center, since the frequency of the basic lccus is fixed

at V=n/2 then., This discussion has just been a more quantitative examination of the

!
1
%
é

criterion that the center of the critical region is reached when the basic root would have

crossed Im X = n/2; it is illustrated graphically in Fig. 8 for K.p =1 and n/2 = 8/2.
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As such, the criterion is limited by the fact only an 0(y) analysis has been used; the
curvature of the root loci due to 0(’}/2) effects can be quite important, particularly for
small KP. For example, for Kp = 0 the basic locus has a slope of zero to 0(y), i.e.,

Im A is equal to v for all ¥ and i, and in general for sm:ll K_ the 0(‘)’2) change in

P
the frequency will be more important than the 0(y) change. An 0(‘)’2) analysis would
change significantly the conclucions about whether the center of the critical region is
reached under certain conditions; for example, Fig. 1 indicates that with v slightly
greater than 1 the ¥ locus (for small y) would never cross Iin A = 3/2 for KP =1

while it would always cross Im A =1 for K_ =0, just the oprosite of the conclusions

P
indicated by the 0(y) results (Fig. 8). In any case, since the maximum stability
change occurs at the center of the critical region, it is useful to examine it as a worst

possible case, which may perhaps be approached but never reached for certain values

of v,

Returning now to the behavior of the 4 locus, the maximum change in the damp-

ing from the value of the kasic root is (Eq. 61)

Re A =§<M% " :};/lmg - 1u0M’;3|2 + sz |M3|2 > (67)

The contribution from the basic root damping, (r/2) Mg. is always negative (Fig. 7);
as for the small u case it is 0(y), but here that means the basic damping is small, In
fact it is the same order as the critical region contribution, so the destabilized root
may be actually unstable, rather than just a small perturbation from the basic damping

as for the small 4 case. The behavior of the locus depends on the relative effects of
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Mg and the nth harmonics of the aerodynamic coefficients under the square rost in
Eq. 67. For most cases the critical region effect dominates, so that as g increases
it eventually reaches a critical value, at = hich point (for the case of the maximum sta-
bility change) one root crosses intr ... RHP, i.e., becomes unstable. From Eq. 67,
it follows that increasing (Kp)2 (KP either positive or negative) always increases the
effect of the critical regions, which means decreasing the critical g for which the rout

, for each of the critical

becomes unstable. Thus the critical 4 is a function of IKP
regions; this function may be found from Eq. 67 by setting Re A = 0 {the requirement
for crossing the Im A axis). Siuce the aerodynamic coefficients are rathcr complex

functions of u, it is more convenient to find the critical lKPI as a function of u:
0 2 n n 2
Mzl - My -iv M|
_|\o B__0 B
|1<p| = v (68)
M ‘
)

This may be regarded as a maximum lKPI for a given u; for large IKPI the locus is

in the RHP at that 4. These boundaries of IKPI versus g are shown in Fig. 9 for
Im X near #, 1, and 3/2. With the exception of roots near Im A = # (which requires

KP < 0 since V is ear 1) with .. above C.5 or so, Fig. 9 shows the criterion on IKPI

is not very stringent; a value for IK of 2.0 for example is quite large, correspond-

3

ing to ,éal = 03.4 degrees. Figure 9 shows also that near Im A = 1 the roots are always
stable, regardless of y, if lel < \/2; the loci may be expected to be near Im A = 1 ‘ :
for zero or small Ilcpl. In terms of the 4 locus, this means that as 4 increases the ‘w

locus does not cross into the RHP. Just after the locus crosses the critical region

boundary, the effect of the critical region is seen and one branch moves to the right and
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the other to the left (as do the loci in Fig. 2). As W increases further however, the
damping of the basic root (which is always stable, and increases with 4) eventually
domir-tes the effect of the critical region, and the root which was becoming less stable
turns around before reaching the RHP. So for larger & both branches of the locus will
be moving o iue 1en, i.e., becoming more stable as (4 increases. For the root loci
near Im =% or 3/2, the effect of the critical region remains dominant, and so one root
eventually crosses into the RHP as y is increased. The critical g is considerably
lower for Im = % than for Im A = 3/2. This points out an undesirable feature of negative
pitch flap coupling, KP < 0: not so much that it reduces the critical u, but rather that

it moves the basic root nearer to Im A = ﬁ

Flap Rate Feedback

The use of flap rate feedback, KR # 0, results in no qualitative changes in the
behavior of the loci. KR is however a useful design parameter; it may be used for

example to raisc the critical g or 'KP| .

Evaluation of the Order ¥ Results

Numerical calculations were made of the 4 root loci for moderate and small

values of ¥. On the basis of a conpariscn of the numerical and analytic results, it

is concluded that the small Yy analysis to order 0(y) is useful only for truly small ¥,

v

e.g., Y=2or 3 (Y/16 = 0.2 or so). Problems are encounter.d with both the basic

SR I A

P

roots and the effects of the critical region. The basic root to order Y neglects the

curvature of the ¥ iocus, which is especially important for zero or small K_, since

P
then the change of Im A for small ¥ is due more to 0(‘/2) terms than to the 0(y) term.
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For example, a 4 locus based on the 0(y) analysis would start out (4 = 0) at the
wrong point, the error being thLe difference hetween the circle giving the exact ¥ locus
at 4 =0 and a line tangent to *he circle at ¥ = 0 (see Figs. 2 and 8). The damping of
the basic root is 0(y) always, no matter what order the analysis is carried to; e.g.,
the 0(;12) results give Re A = - ¥/16 for all y. But while the basic damping is 0(y),
the contribution tc the damping due to the critical region will have terms that are 0(‘}’2).
Thus for large enough ¥ the conclusions in the discussion above of the effects of ihe
critical region on the u root loci will not be valid, since they depend on ihe basic and
critical region damping being of the same order in . In particular, the behavior of
the locus in which the root being destabilized by the critical region turns around and
becomes more stable due to the eventual dominance of the basic damping is not possible

except for very small ¥, for which 0(‘)’2) effects are in fact negligible. Indeed, it was

g,

found in the numerical calculations that with ¥ =6 (y/16 = 0, 375, i.e., not very small),
- V near 1, and KP zero or small so the root is near 1/rev, that the 4 locus does not

turn around but rather eventually crosses into the RHP. The stability boundaries given >

D iR TS
-

in Fig. 9 are only valid then for truly small values of ¥/16.

be A x e e
a4

Order 72 Results

(2]
To carry the soluticn to order ¥“, it is first necessary to finish the order ¥

<
¥
4
<

P e G

solution. Considering only the case KR =0 and Y #n/2 for any n (i.e., the basic

Y R

root), removal of the secular term from the equation for 61 leaves

e oame et

9 iy (v +n)
; ) 2 5 _ n . n n 0% o
H 2Bty B= 2 (MB Yo+ Mg KPMe)Bm €
Pl 0
E
g + conjugate (69)
¥
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The solution of this equation is

n
ivy M iv + M -K_M. i (v, +n)
P
B =Re(B @..)e "-8 2 £ o 8 8,00 (70)
n#0 n +2v0n
and with
ivy
_ 0"0
Bo = Re(301 e ) (71)
B..=B_ @ Ay \, =iv +]M0+'—KPM0 72
o1 = Pog Woeeede 77, Ay =iV, + 5 Mp+i 2v, (72)

this completes the solution to Y.

£ The order ‘y2 terms in the equation of motion give (dropping the common factor

2
2 2 2 2
) 2 d d 3
X —B +y B:-—ﬁ -2 B -2 B -2VUﬁ
? a4’02 2 70 "2 34’12 07 ", 0 A, 1 011
{
- W, 24 2V V) B, + M,)B. +M; —=+ M;
( o) B+ (Mg=KpMg) By + M 55+ M 53, |
¢ :
lzw +(A v2-avv +Ma))) By ] ¥y
Y1 02 02
;
\ ¢
: [(-2v v, + Mﬁ KM +1y B) 311 2ivy 3. 3%, %
& M3 iv_ + M, - K Mo
Z B 02 B" P9 o0 (-2 1 (v +n) -2,
02 n#0 " +2y)n
Mby | ivgdg
+ M’3 - KPM6 + MB i (vo +n)]e e + conjugate
e 7 .
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The secular term is, since VO #n/2:

2, 1‘1’1 38
. 02 2 2
34’1 -)\ B 21V0 211/0 a“bz +(>\1 +v, +2vv MB 02] (74)

Regarding this as a differential equation for Bl 1 in terms of wl, its secular term is

3B
02 -
3 “’z )‘2 602 0 (75)
with solution
Agdy
302 = 503(¢3. e (76)

where

2 2 0
AT+ -M:
. - 1ty +2v0v2 Mﬁ )\1

2 -2ivy

0
2 02
17 K M;
et ]
2v WoVe =7 KpMg- <2v Me) '(2 )
o 0 0
Thus the basic root, to 0(72), is
A=A +YA +‘)’27L
0 1 2
K
0 P_0
1v0+‘y[iv+ Mb+i 0Me

0 o 20 o
Mb+1u[14-—L2KPMe 2(M5 +(KP/v) M )
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As reported above, there is no 0(72) change in Re A, and the 0(’)/2) change in the fre-

quency is dominant for small KP’ indeed for KP = 0 the only change in the frequency
is 0('}'2). To order p this root is
KP 2 1 KP y
S R [fz] -—[H(T)]

which checks with the expansion to 0(‘)/2) of the root from the small g analysis (the

hover root for 0(u)).

The order 72 results would significantly alter the plots of the basic root loci
shown in Fig. 8. Extending the results for the critical region to 0(72‘ would be much

more involved because of the greater complexity of the solution for BO 1(z,bl) when

Vv =n/2,
0=

The Large ¥ Case

For the large ¥ case, consider the general equation of motion, of the form:

E+ v2ﬁ=‘y[(Mb -KRMe)ﬁ+(MB-KPMe) 8] (78)

The small parameter in this case is the inverse of the Lock number. For ¥ very large,
the aerodynamics dominate the system. For ¥ =« the inertia and centrifugal spring

terms (the LHS of Eq. 78) are negligible, leaving a first order system which does not

depend on ¥, namely

(Mg - K Mo B+ (Mg - K Mg B=0 (79)
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Reduction of the order of the equation of motion when the small parameter (1/Y) is set
equal to zero is a characteristic of a boundary layer type of problem. The solution of
the reduced equation is valid over most of the range in . As a first order equation
however, its solution can involve only one free constant; thus it is not possible to start
the solution from the two general initial conditions allowed for the original second order
system. Furthermore, at certain points the solution of the reduced equation will exhibit
singular behavior, indicating that the assumptions used to derive it must be reexamined.
In general, there must be narrow regions in which the higher time derivatives are very
large, so that inside the region the inertia terms are of the same order as the aero-
dynamic terms and may not he neglected (other simplifications of the equation of motion
are often possible though). L' such a narrow region is used to connect a solution or the

reduced equation to two initial conditions it is called a boundary layer; if it is used to

connect a solution of the reduced equation to another such solution on the other side of

the layer, it is called a trangition region. The solution of the reduced equation is called

the main solution. More general terminology is inner and outer regions, and inner and
outer solutions. Because the procedure for connecting the solutions in thie inner and
outer regions is central to the analysis of boundary layer problems, the entire analysis

technique has been named the method of matched asymptotic expansions; the name

properly refers to the process of connecting the inner and outer solutions, but is usually
used to include the entire analysis. Many techniques may be used to find the main solu-
tions. Usually the technique used is 2 direct expansion of the dependent variable {B)
as a series in the small parameter (1/y). This technique is not satisfactory for the

present problem because it does not yield a solution which is uniformly valid for all ¢

-

£
S
4%
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(which is required in order to find the roots); details of the application of this technique
to problems are given in Ref. 3. It is also possible to use the method of multiple time
scales to find the main solution. This technique is not entirely satisfactory either how-
ever, since the equation obtained to lowest order is just the reduced equation given by
setting 1/y =0 (Eq. 79). Since this is a first order equation, the solution gives only
one root, which to lowest order (i.e., for ¥ =) is independent of . The reduction of
the order of the equation means that one of the roots goes to -~ as ¥ goes to »; i.e.,
the solution corresponding to this root is exponentially small compared with the solution
of the reduced equation. There is no way that the method of multiple time scales (as
described here anyway) can find this root. The perturbation technique useful for finding
both solutions in the outer regions is the use of a substitution of the form B = exp j‘ pd ¥,

followed by an expansion of p(}) as a series in the small parameter.

The large ¥ case is a boundary layer type of problem, which means that in general
there will be several outer regions around the azimuth with a separate expression obtained ~
for the solution in each region. Thus it will not in general be possible to find a single
solution, uniformly valid for all ¢, from which the eigenvalues of the system may be
found by inspection, as was possible for the case of small 4 or small ¥, Instead it
will be necessary to use the general techniques of the analysis of a system with periodic
coefficients (as outlined in Appendix I). This entails obtaining the solution for one
revolution of the rotor (one period), in pieces if necessary, each piece valid in a

particular inner or outer region. First the main solutions must be obtained in the

UK st T R RE LA £ Wk S Y s

v

outer regions, but here it is necessary to find both main solutions rather than just the

solution of the reduced equation. Next the method of matched asymptotic expansions is
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used to connect the main solutions across the transition regions, or across boundary
layers to initial or final conditions. Finally with the solution constructed over a com-
plete period, the results of Floquet theory (see Appendix I) may be used to find the

eigenvalues of the system from the initial and final values of the solution.

Expansion in ¥

Consider first the equation with KR = 0; write
Y
B=exp[ pdd (80)
and
= +p + 1 +
p y p"l po ,y pl LY
80

. )
B=pexp| pdd
=0 +p) expﬁbpdw

Substituting these expressions for B, B, and B into the equation of motion, and collect-
ing all terms of like order in ¥ %ives (exp ‘[‘lp pdyd is a common factor in the entire

equation, so drops out; the common factor of ')/n has also been dropped from the follow-

ing equations):

2 2
0(v): p_, =My

B P
9(y): 2p_1 po + p_1 = MB P, + MB - KPMG (81)
2 .
0(1): P, +2p_1p1+p0+ll2 -Ma P,

etc.
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The order ')’2 equation gives p_ 1= Qorp = Mé’ which give the two main

1

solutions.

First Solution

The order ‘yz equation gives p_1 =0 so to order ¥ find

M,-K_M

___B P86
pO MB
and tc order 1
M,-K M, *+ M_,-K M. 2
. 9 2 _(Mﬁ) +(_ﬁ_u)
p, +p.+V M M.
p. = 0 0 _ B 8
1 MB Mé
Then the solution for B is
wM -KPMe
p=8 emlf LB 0y
B
¥ M,-K M, ,M,-K M, 2
vz_(ﬁ g€>+(ﬁ PG)
+3 5 Vs dy + o¢y~2 82
y MQ p+0y ) (

where ﬁ'l is a constant.

Second Solution “

The order yé equation gives P, = MB so to order Y find
M,-K_M_ - M)
p =B P 8 "8

4] M B
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Then noting that

Y gy 4
exp [-/ —LMB dw]= exp (- fn M) = (M)

the solution for B is

1 ! zbl"lg'KPMG -1
LY v [ Mzau+ [ i, o0 (83)

where B2 is a constant,

Eigenvalues

From the continual appearance of M B in the denominator, it is evident that a
transition region occurs where M B = 0. This criterion means a transition region
occurs where the damping goes through zero. Alternatively, if Mﬁ is near zero, the
é term in the reduced equation (Eq. 79) is much smaller than the B8 term, which implies
that the inertia (B') terms must be included in order to obtain a differential equation with
all terms of the same order; that is, there must be a transition region about the point
where MB = (. As it happens however, M ﬁ (), 4) is a negative quaatity which never
reaches zero; in fact, SMé <-Q1- 2-1/ 3) = -0, 206 and even that value is never reached
unless g > 0.795; for u =0, 8Mé = -1 for ail Y. Thus for the case considered

(KR = (), the main solutions are uniformly valid over the whole azimuth, and it is not

necessary to deal with transition regions an boundary layers to find the complete

solution,
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With the solution over all ¢, Floquet theory may now be used to find the eigen-

values. Consider the first solution, to order 1.

Y ;
-f M3 KPMO &
M.
- 0 B
B=B e
This may be written
27
M,-K_M
ok [ P By
B=Ble 0 B (84)
where
M K M
) = -[—-B—B—edww /—é——ﬁ—"dw

Using the fact that the aerodynamic coefficients M g ﬂ’ and M are periodic, it may
be established that f is also periodic in . Now Floquet theory states that the soluticn

to a differential equation with periodic coefficients may be written in the form

8=, <" u) (85)

where ,81 is a constant, A is the eigenvalue, and u(y) is a periodic function (see

Appendix I). Comparison of Eqs. 84 and 85 shows that the eigenvalues must be

M KM

G i




T e

#
!

I P 3 b R s e s @

-63-

This result may be easily extended for both solutions to any order in ¥ . Then the

two main solutions give two roots:

n
[T
1 2 MB
0
2m ) ) 2
9 (Mﬁ-KPMG) (Mﬁ KPMO)
Ve - rp + e
1L ' B 2
+72" vr dy+0( )
B
0
n n
M,-K. M
e . 1] £ P8 -1 -
Az’yznj MdeH-zﬂj Mﬁ dp+ 0y )
0 0

The symmetry of M 8 and M B means that

217M

q
= ap=0
!\ié

R R T I Y

0

g el e

With this relation, the roots simplily to

1 o Mg
Ala-sz—"] -Médw

L qo+ o005 (86)
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and
2n 2n
M
-yl ‘o 1l 6 -1
Az-'yzﬂj Mme-rKPz"J 'Mé dy +0¢v ) (87)
0 0

Thus there are two real roots, one (Xz) approaching -« as Yy increases to «
M B is negative), the other (Xl) approaching a constant; >‘1 is the root from the reduced
equation. This behavior of the ¥ root loci is expected from the small y results; Fig. 1
shows that for large enough ¥ the locus is on the real axis, i.e., there are two real
roots, one approaching -« and the other -KP for Yy - », To lowest order kl doet .ot
depend on ¥, because it represents the balance of the aerodynamic damping and the
aerodynamic spring only. The value of Al/ (-KP) for varying 4, and ¥ = «, is shown
in Fig. 10; the movement shown takes place entirely on the real axis in the A plane.
As for the small u case (Fig. 1) the root is on the real axis, in the LHP if KP >0
and in the RHP — unstable — if KP < 0. The value of Al/ (-KP) varizs from 1to 7/8
for 4 =0 to », with most of the change between g = 0.5 and p = 1; thus there is little
variation of the root with ji(to 0(1)). The size of the 0y ') terra in A  is indicated by
the result for p =0, which is easily obtained (since the aerodynamiz> cuefficients are

constaat then) as

. v2+Kp2 "
M*-Kp-Te o tWr )

P N

This result agrees with an 00'-1) expansion of the hover root fr .m the small analysis.

To lowest order Az is:

2w
A, -751;;50 Mydd+0(1) =y Mg -'-{3-2 (-am;g)
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0
The aerodynamic coefficient -SMB is given in Fig. 7. For W < 1 it has the value

—BMOB =1+ p4/8; for large W it is asymptotic to 8/3m . This root becomes increas-

ingly negative as 7 increases, and also as i iacreases. The order 1 term in A2

is the negati—e of the lowest order (also 0(1)) term in Xz; thus the behavior of this

term is zlso given by Fig. 10.

Flap Rate Feedback

When KR = 0, there are no transition regions because M ﬁ < 0 always., With flap
rate feedback, KR # 0, the same expressions for the main solutions are obtained except
that M‘3 is replaced by Mﬁ - KRMB' The aerodynamic coefficient -(Mé - KRMB)
can become negative over reginrns of the disk for certain combirations of 4 and KR;
i.e., there may be negative damping over part of the azimuth range. When such regions
of negative damping exist it means there must be transition regions about the poinis
where the damping goes through zero. The main solutions obtained above are valid still
in the outer regione, but in each region there are two constants, which must be matched

thrcugh the inner region to the two constants of the next main golution.

The criterion for the existence of transition regions is that there be negative damp-
ing on some portion of the disk, i.e., —(Mé - KRMO) <0. M& is always negative; M6
is usually positive, but may be negative on the retreating side for large enough u
(4> 0.641). If KR is too large positive, the negacive values of MO on the retreating
side eventually dominate M B as J is increased, so there will be negative damping on
the retreating side; if K‘R is too large negative, KRMG eventually dominates Mp on

the advancing side and there will be negative damping theve if 4 is large enough.
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Quantitative values of maxiraum and minimum KR as a frnction of U are given in

Fig. 11. For the cases with negative damping therc will be transition regions (of

2/

3)) near where M B - KRMO = 0, which greatly complicates the analysis.

For these cases it is also expected that there will be other problems, including mate-

width 0(y

rial computation problems, physical control problems, and large flapping amplitudes.
The situation may be compared with stall flutter of a rotor in hover or forward flight,
where a limit cycle oscillation is reached with the negative pitch damping in stall
balanced by the positive damping below stall, resulting in high amplitude pitch motions
and large control loads. Thus while a region of negative damping does not necessariiy
mean there is a flapping instability, it does mean that there are many problems —
analytical, cor:putational, and physical — so requiring -{M B - KRM e) >0 is a reason-
able design criterion. This criterion provides 2 maximum and minimum KR for a

given u. The limits of KR from this ruie are much easier to obtain than actual stability
boundaries; and Fig. 11 shows that although conservative, it is not a serious restriction

for u less than 1 or 2, For large W it is a serious limitation (for large u,

KR = 2/3u (1 +7/124) and K ¥ -2/3u (1 - 7/124)), indicating that M6
“max min

(blade pitch) is not very good for flapping rate feedback then. Time varying KR might

work better but it would have to be programmed with g4 probably. Although the deriva~
tion of this rule has been based on the large ¥y case, the criterion of no negative damp-
ing has nothing to do with 7, and 8o should be a reasonable criterion for all y. Indeed, i
the criterion KR > -1 for 4 =0 is the same as from the small 4 case, where it is a ;
true stability criterion, and valid for all ¥y. ‘
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The Large 4 Case

For the large § case the general flapping equation of motion, as given in Eq. 1,
is used; the small parameter in this case is the inverse of the advance ratio. For U
very large, the aerodynamics again dominate the system. When g goes to infinity,
the B and B terms are arbitrarily large compared with the 73. term because of the
influence of ¢ in the acrodynamic coefficients. Thus this problem is also of boundary
layer type, and the solution is sought as for the large Y case in terms of outer solutions
and transition re_‘cns. When KR # 0, the aerodvnamic damping, %MB, is the same
order in 4 as the aerodynamic spring term, M 8" KPMG’ (namely 0(#2), see Eq. 1),
so setting 1/u to zero reduces the order of the system. The reduced equation gives
one main solution, and the other will be exponentially smaller (or larger). When
KR =0 however, the aerodynamic damping, M B, is of O(4) while the aerodynamic
spring, M 8 - KPM 6 is 0(#2) (Eq. 1), so in order to obtain an equation for the outer
solution with the proper ordering of terms it {8 necessary to include the inertia term
.

(B) even in the equation for the outer region. That is, for 4 = « the aerodynamic

spring must be balanced by the inertial forcexz, which leads to an equation of the form N

Bruc@) B+ulk@) B=0 (88)

The solution of this equation is either a rapid sinusoidal oscillation with frequency of
0(4), or a sum of exponentials with time constants of O(I.fl), depending on whether
the aerodynamic spring is negative or positive (the criterion is a bit more complicated
really, but that statement will do for the present discussion), Now the aerodynamic

spring changes sign in the middle of the advancing side and again in the middle of the
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/

-2/3
retreating side, and at each point there is a transition region {of width 0(u 2 “)) across

which the solutions must be matched. There are also transition regions (of width
0(/.1-2/3)) between the advancing and retreating sides of the disk (i.e., around ¥ = 0 and
180°), through which the main solutions must be matched. Thus in contrast with the
large ¥ case, for large M it is not possible to find an outer solution uniformly valid

for al! . Rather it is necessary to go througl: the entire procedure of matching the
main solutions through the transition regions and by that process construct a solution
over one rotor revolution. Then the results of Floquet theory (Appendix I) may be used
to obtain the eigenvalues from the initial and final values of the solution. The procedure
for finding the main solutions will again be based on a substitution of the form

B =exp ﬁb pdy with p now expanded as a series in “-1‘ The matching techniques of
the method of mat(;,hed asymptotic expansions will be illustrated in the treatment of the
transition regions. The procedures required here are reasonably straight forward, but
in general the matching techniques can be quite complicated, particularly when solutions

are sought to higher order. The reader is directed to Ref. 3 for more details of the

methoa of matched asymptotic expansions.

In regions (1) and (iii) of the rotor disk the differential equation has the form

B+ P B=-ry [<§+§usin:l> +KR(-;-+§usm¢+;-(u sin¢)2>]ﬁ

+ l:u cos:b<%1'+iusin§b) + KP<%+';-usin¢b +'i‘(# Sin'b)zﬂﬁ (89)

where r is a constant with the value +1 in region (i) and -1 in region (iii). Recall

from the discussion of Eq. 1 that region (i) is the advancing side of the disk, where the
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blade has normal flow over its entire span, and region (iii) is the range of ¥ on the
retreating side where the blade has reverse flow over its entire span. As U - o,
region (iii) occupies nearly all the retreating side, with the exception of 0(/.1_1) bands
near  =180° and ¥ = 360°. In Eq. 89, M appears in the aerodynamic coefficients
nearly always in the combination U siny; any assumptions made about the order of terms
based on the order of 4 will be violated then if siny is small enough; this is the origin
of the transition regions near =0 and 180°. When KR = 0, there are also transition
regions in the middle of the advancing and retreating sides around the point where the
aerodynamic spring goes through zero. These regions arise in the analysis because the
aerodynamic spring being zero or very small will again violate the assumptions made
about the order of the terms; physically they arise because there must be a transition
between the solutions on either side since they have very different behavior, namely
sinusoidal oscillation and exponential decay or growth. I KR # 0, such transition
regions are not required; only the transition regions between tb  vancing and retreat-

ing sides are needed. The case with KR =0 will be examined firsc.

Expansion in 4

Consider the outer regions, where usiny is of order y and all time derivatives

of B are of the same order; this means the regions () and (iii), away from the boundaries

near { =0 and 180°, The equation of motion in the outer region is then Eq. 89 with

KR =0. For KR = 0, the analysis is simplified if first the 0(4) aercdynamic damping

is removed from the equation of motion (which is of the form of Eq. 88 to the lowest
order); this is accomplished by the following substitution

ry 'llzcosgb

B=e y (90)

£o %
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With this substitution, Eq. 89 for KR = 0 hecomes

'y'+u2y-_--r2813; -r‘yy[ Ismw!( + = usmzb)
+#COS{D(M 4usmzb)+Kp(8+3usm§b+ (p.sm{b)z):l (91)

Then the main solutions are found by use of the substitution
Y
y=exp[ pdy (92)
with p expanded in a series in p~

1
+ +— +..l
P=HDP_ DO #pl

Main Solutions

Substituting for y and collecting terms of like order, the equation of motion gives

0(#2): p%l = - E‘I sin:,bl(— -:;%lsimbh cosy + KP sina,b)

O(M): 13_1+2p_1p0=-r78-p_1-r'y(- lsind)l+~1—2cosw+ K smp)

From the order “2 equation, one obtains:

‘t«/zlsinxbl( |sin |- cos P - K sind)) (93)

The solution for 8 has a factor of the form exp u J‘wp_ld ¥; the double sign in P, gives

the two main solutions. When the quantity under the square root is positive, P L is real

and there results main solutions with exponential decay or growth (with time constants

N Wk b T, G

e NRATL . - [ = pe e ke a e e
. b

......
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of O(H-l)); and when the quantity under the square root is negative, P_4 is imaginary
and there results main solutions with sinusoidal oscillatory behavior (with frequency
of O(4)). When the quantity under the square root is zero, there is a transition region.

On the advancing side (region (i)), P_; is zero at

y, =tan  ——— (94)

¥, = tan L —L— (95)

I

So there is a high frequency oscillation on the rear of the disk, exponential solutions on

the front, and transition regions between the two types of behavior. p_ 1 is also zero -

wheu siny =0, i.e., at Y =0 or 180°, so transition regions will also be required near
the edges of regions (i) and (iii). In addition there is region (ii), which for large u is

Vs an order [J-l small band on the retreating side near § = 0 and 180°; in connecting the
main solution from the advancing side to the retreating side it is necessary to go through
this region as well as through the transition regions. In general, whenever p_1 is

small the assumgtions made about the order of the terms in obtaining Eq. 92 are violated,
so the main solution can no longer be valid there. This criterion gives the four transi-

tion regions. %
The order U equation gives

-y -rly _py(-L L 1
i p_l reby ry( 96|sxnw|+¥cosw+3xpsmd)>
2p_1

il - “'*“"’“‘““"‘\;9,&\. ; T T e T T

Py

[ £ Aot e,

AN
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from which, using the relation

p_
J ﬁdw =in|p_|

one obtains

Y Y
- L iny +—1-cosd)+lK
.1 Lx zj TARRAMET, 3
Jpod‘b"zznlp-ll TR p

p siny

ayp
-1

With the above expressions for P_ 1 and p_, the solution for B8 (to 0(1) in p) is

0’
obtained by using the substitutions for B8 and y, i.e., Eqs. 90 and 92. There are main
solutions in four regions, which will be called quadrants (although they are not really
s0, since tbtl and ¥, are not equal to 90° and 270°). Each quadrant js bounded by

3

transition regions; the ranges of the four quadrants and the main solution valid in each

are as follows.

1st quadrant: 0 <Y< 3,

1
e v g
b Xcos - Ly i(ufd) /Tay-[ /‘:{dd’)
B=e '? 16 (—f)'l/ 1 (*tiC)e 1 ¥
+ conjugate (96)

2nd quadrant: qbtl <P<7n

f‘p /Edy fw Eay
2L X m fdy - d
Higcos¥-1g¥ SZIR by &bzﬁ

B=e (

36

’ v g
-pf Aap+] Zzay ©7)
+C, e 4’2 ¥

e e e aepr-werrggry e LR ST
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3rd quadrant: 1< P < d)t

3
fbf ) fw =~y
A Y K fdy+ 7-ttd
Boe 12 coszb+16‘b(f)-1/4 c e Y s
b b g
-u[ Adp-[ “di
+c e Vs ¥g (98)

6

4th quadrant: ¥ <P <27
3

1

Y b o
ifw[ /Edy+] 7 ¥

-uficos¢+-1L6¢ -1/4 v 0
B=e (-f) (C,+iCye 4 4
+ conjugate (99)
where
f =§|sin ab|('§€|sin Y|-cos P - Ky, sin tb)
g =‘;'('llz'cos qb+-;-KP sin Y --;)% |sin abl)
and Cl' Cz, cees C8 are ‘constants. The matching procedures will result in ~onnection

formulas through the transition regions, which will give the two constants of one main
solution in terms of the two constants of the main solution on the other side of the
transition region. In addition, the constants will be matched to arbitrary initial condi-
tions at a certain point on the disk. The quantities tbl. tbz,' lbs. and ¥ 4 in Eqs. 96 to 99

are also constants, which must be in the appropriate quadrant; they are not free
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constants since a change in them must be accompanied by a change in the value of the
C's. These angles may be given any value convenient to the analysis; it is most con-

venient here to leave them arbitrary since they will drop out of the final result anyway.

Transition Regions

Consider the transition region near ;bt (meanirg abtl in region (i) or wts in
region (iii)). This transition region has a width of 0(/.1'2/ 3). The reader is directed
to Refs. 3 and 4 for illustrations of methods for finding the proper width of a transition
region or boundary layer. The technique involves assuming dy = O(M_n); then B is of
order u—zn’ and similarly the order of all terms in the equation of motion may be
found in terms of n. The exponent n is determined from the criteria that the resulting
equation, to lowest order in 4, must a) include the highest time derivative (ﬁ) and

b) must produce solutions capable of being matched to the outer solutions. It also helps

to know what to expect of certain types of problems; for example, a width of 0(/[2/ 3)
is typical of transition regions for equations of the form of Eq. 88. ~
Assuming dy = 0([4-2/3), Eq. 91 beco nes to lowest order (0(,‘44/ 3)): :
. 2 3f :
y=y @®- ) M '&EI (100) :
%b=lbt 5
]
where §
.%l
Y
if.‘ =p2 i
4 .
Py, g
LT T ——‘_(.\n o '.’.'.‘ t A"::;“__ : - N
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1/3

Alternatively, write z = (r (¥/4) uz) W - l,bt), substitute for ¢ in the differential

equation for y, and then obtain to lowest order the equation

2

q—%—zy=0 (101)
dz

This equation is a standard form, the solutions of which are called Airy function. There
are two independent solutions, denoted Ai(z) and Bi(z). These functions may be written
in terms of Bessel functions; however, the general behavior of the solution in the transi-
tion region is not of interest here. Rather the solution in the transition region is only

to be used to find a connection formula between the neighboring main solutions. For

this purpose all that is required is the behavior of the solution for very large z.

Writing the solution of Eq. 101 as
y = 2/ a Ai(z) ++/7 b Bi(z)
where a and b are constants, then the behavior for large z is:

~z_1/4 (a e-c +b ec)

Z" > Yy

”
- ig i
Z = -w Y~z 1/4 [(% - ia) e e + conjugate]

where

£ =§ |z|3/2 =’§iu - wtls/z

The matching procedure consists of finding the limit of the outer solution as

y- zbt, and the limit of the inner solution as z — +», aund requiring that the two limits
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have identical behavior. This criterion gives the constants in the inner region in terms
of the constants in the outer region. The matching procedure is considerably more
complex if higher order solutions are involved. Consider first matching from the first
quadrant to the second quadrant, through the transition region at § = tbtl. The outer

solution in the first quadrant is given in Eq. 96. As { - lbtl,

¥ ¥ b
[ /Tap=[ /Tdp+[ /Tdp
by b b,

b 3/2
=J‘lb ﬁf'%”'""tl
1

so the main solution for § - a,btl is

Y b
NS CURS = X

/Y . 3/2
i==p-v
Iz b~ w)| (C,+iCye Y el 3 P

ouber

+ conjugate

To the inner solutiun, the outer region in the first quadrant appears as the limit

z - -o, and in this limit

t

-17 -1—714) b
2\-1/12 | |
Yinner (% ) / [ - ‘b| 1/4( "’i)

+ conjugace

Then requiring (you ter) v = {b = winner)z - gives

ﬂ

Y
V=i T
(clncz)e( ‘r“’l a- ‘r*" IE dv) (1-)1/ 6 (2+ia) (102)
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Similarly, the main solution in the second quadrant (Eq. 97) becomes, for § - tbt

b b
pI -] Sap e wl [y -,

b ¥
Ry -1/4 2 2
Youter !4@ wt)‘ C3 ©

’ b g
~ul "t [ Ty - wZ - g

by o
+C4e

and the inner solution becomes, for z = «

il

Sy 3/2 Y 3/2
_:sz”"'btl / +be#—31|4’-¢t|

L (Y 2\1/12 -1/4
yinner (4“) I‘b-‘btl ae

and the matching criterion gives

JER-

(103)

Next combining the results of matching between the first quadrant and the inner solution

PO

v,

F, ames,
foe, ST

{Eq. 102), and between the inner solution and the second quadrant (Eq. 103), gives the

AR

ki
2

connection formula between the first and second quadrants:

— “T‘\rx‘ﬁ;.—s\‘ T T T T TR T DT L T T 7z . =TT e e T



& b b b
iézf /:ngb-ft—g/_jd(t) DL IR EURY . ¥
(C1+i02)e ¥ lpl =e 4%03e by 2
P
-p t/?d-gb+j'wt%d¢b
sic e V2 b2 (104)

4

Similarly, the matching procedure on the retreating side around l,bts give s the connection

formula between the third and fourth quadrants.

W ¥ y P
i<uf [T+ t%-f-dd) .z IR P t%dd)
(C, + iCS)e by by =e ? %06 e b3 Y3
) ¥
B t/fdw+f t%dt{l
-ic e ¥3 ¥3 (105)

Now consider the transition regions near ¥ = 0 or 180°. The main solutions indi-
cate that there must be transition regions at the edges of regions (i) and (iii), but there
is als~ reqgion (ii) in between regions (i} and (iii). The extent of the three regions is

defined by (see Eq. 1):

reglon (i) "sind>0
region (if) -1<pusind<o0
regiou (iii) M sinP< -1

/

The transition region has a width of order “-2 3; thus region (ii), which has a width

of only order “-1, lies entirely within the transition region. Region (ii) appears then

S e AR St N RO LR € g vy R et o e
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as an interior region which has no effect on the solution to lowest order. This means it
is not necessary to use the more complicated aerodynamic coefficients of region (ii).

It also means that the appearance of #4 terms in the aerodynamic coefficients is
deceptive, since these do not appear except in region (ii), in which region (M4 sin tb)n

is of 0(1) or smaller for all n, The true order in 4 is given by the aerodynamic

coefficients in regions (i) ar1 (iii), and these are of 0(#2) at most, as expected of

aerodynamic forces.

The proper matching procedure is to find the solutions in the transition regions
at the edges of regions (i) and (iii); in addition, the solution is found in the interior region
including region (ii) and the neighboring parts of regions (i) and (iii) where K sin ¥
is of 0(1). Then the matching process proceeds from the main solution in region (i),
to the transition region at the edge of region (i), tc the interior region, to the second
transition region in the edge of region (ii), and finally to the main solution in region (iii);
by this process the connection formula between regions (i) and (iii) is established. With

the substitution x = 4 sin § (x is assumed to be of 0(1) so & = O(M.l)) the equation of

motion for the interior region is found to be, to lowest order (0(#2)):

2
48, 0 (1086) v

2

dx £

the solution of which is %
B= ﬁl + ﬁz X %

2

%,

where Bl and Bz are constants. Thus matching through the interior region is just a

e

matter of matching the displacement and slope of the neighboring transition regions.
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&

-1
/3)) the interior region appears O(u /3) small;

-2
To the transition region (of width O

then in terms of the transition region variable z = #_1/3 X, tuc matching proeess is to

be carried out at the limit z - 0.

-2
With ike substitution z = #2/3 sin ¢ (which implies an 0(u 3) region around

Y = 0 or 180°), the equation of motion for regions (i) and (iii) (Eq. 89) becomes, to
lowest order in M (0(#4/3)):

2
d—‘g:lleﬂ B=0 (107)
cz 4

[y

The plus sign applies on the back of the disk and the minus sign on the front. In terms

of the variable z, the ad -~ncing side is given by z > 0; and the reireating side by

/

z< 0; ont issr - region (ii) appears as a negligibly small (0(/.1“1 3)) area at z =0,

Consider the back of the disk, i.e., from the fourth to the first quadrant. The

differential equation for the transition region is (Eq. 107)

2

‘!__2_,_2'2' ﬁ=0
2 4

dz

The solution again involves Airy functions, and may be written ‘

a Ai[-(ii)va z} +b Bi [— (i'_)l/3 z] z>0
ax Ai[(il‘)l/a z] +5* Bi [(%)]‘/3 z] z2<0 :

where a, b, a*, and b* are constants. Matching the displacement and slope at

2z = 0 gives a* =4/3 b and b* = aA/3, 80
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%\1/3 ] a . fiy\1/3 ]
B«/_bAl[() +J§B1[(4) z z< 0
The asymptotic behavior of the solution in the trangition region is ihen

Z - B~{__<§ /3 z]-1/4 11_1/2 <—'——b —21 a> 4 C + conjugate

T
. 1— .
Z - - ﬁ~|:(§>1/ 3 lzﬂ "1/4 n-l/ 2 <____a 2_ j; b) e e1C + conjugate

3/2

where £ =~/’)’/’3 z , note that the solution has oscillatory behavior, which is the
proper behavior for matching the main solutions on the rear of the disk. Now the main

solution in the fourth quadrant (Eq. 99) becomes, as - 27

X _ X
8 e (276 2")(}; 23 )1/
outer 4 H 2!
Q: [ W ap+ j‘ ) 12,32
(C7 +ic )e thy 4 + conjugate

and the main solution in the first quadrant (Eq. 96) becomes, as y = 0

i A 4
8 . e" 12 %16 2"( -2/3 )-1/4
TH

z
outer Izl

r uJ’ /Ry - I d&b +1ﬂ1zl 3/2
lfC L HiCe ¥ ‘bl + conjugate

o R
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B ) in the fourth quadrant

h . . . .
Then the matching process, requiring (Bo  ner) g

uter)zb=21r -

in the first quadrant, gives the connection formula:

and (B. ) _=(B

inner’'z=w outer)zb=0

0 0
g
i) /Hdp-] T=dd} ¥ Y
| <“rw I«bm )“6'164"
/§(Cl+102)e 1 1 e
/:fd:b+f 7—-_—f-dzb
Uy

2n
ilpf
=2 (C, +iCy e ¥q
o o o
-iuf f-f'dap-i-f 7-_=f-'d{b
-i(C7-iCS)e by by (108)

Finally consider the front of the disk, i.e., from the second to the third quadrant.

The differential equs'.on is (Eq. 107):

2
8.2 180 (109)
dz

The solution is

a Ai((ﬁ\l/ 3 z) Y Bi((i)l/ 3 z) z> 0

a* Al (—(%)1/ 3 z) +b* Bi (—(f)l/ 3)1) 2<0
Matching the displacement and slope at z = 0 gives a* =/3 b and b* = a//3, so

B=/§bm<-!\%>1/3 z) +-/a-§m (—(ﬁ)‘/?’ z) z2<0
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The asymptotic behavior of this solution is

z- n B ~<(£‘>1/3 :9_1/4 ﬂ-l/z [g' e-c +b ec]

Z = = B~<(§>1/3 lzD-I/4 17—1/2 [/2—§b e-c + %ec]

(2]
where £ =/¥%/3 lz|3/"; this solution has the exponential behavior required for matching

on the front of the disk. The main solution in the second quadrant (Eq. 97) becomes,

as lb -7

2 X
-pL a3y

12 16 -2/3 \-1/4

ﬁouter ~e G # 'ZI)
m m
g

ul Vidp-[ ﬁdkb-gzms/z

Cye b L

m m
-uf /?dw-rj' %dlb+‘-fz-|zt3/2

3
+C4e Y2 Yo

Matching this to the inner solution, i.e., requiring (ﬁo uter) - = (ﬁinner)zm’ gives

W m g
Wl Map-f Jzad

X _XY
-ht -3

) ) 12°18°" _1(y\/6a

Cs @ 2 2 e /1'1\4#) 2
U T g (110)
R NRAL AN ;TR T 2P

ce ¥ by o 12 167 _1/(yd/e,
4 /T\4p

;
i
¥
4
%
%
5
g
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The main solution in the third quadrant (Eq. 98) becomes, as § -7

X 2
B+ =T _ _
8 Lo 1216 (E“ 2/3m> 1/4

outer

,.;F /'dgp+J‘ dd)+“l 2%/

) tb
Cse 3

g
-IJJ /Eap - f dib-/j' 2%/

+Cge b3 kb3

Matching this to the inner solution, i.e., requiring (8, =(B

ives
1nner z=-o outer)z\b:ﬂ’ g

m n g )
p[ Tap+[ —Zdd ”1. Y .

Y3 Yy 16" =L Y \/6 a
Cs @ /Tr<4u> /3
J'ﬂ J'ﬂ (111)
-u] -] = A A
c o ¥ ¥g e“ 12%16° _ 1y 1/6/"
6 JT\4p 2
Then combining Eq. 110 and Fq. 111 gives the connection formulae:
m T g U T g ;
pf VEdb-f Zav _ r_x w[ VTap+[ Fab :
¥ ¥ H6-16%" _/3 ¥ v .
Ce *2 2 e ===C_e '3 3 :
3 2 5 {
U U i Ul ¢
g 1 4
-l Aab+] Fab _y 2 - Aa-[ Zap O
C e ) ‘szf o o 164" -2 A e Y3 ¥g ¢
4 /3’6 ¥

P PR Y
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The derivation of the connection formulae across the four transition regions completes
the construction of the solution around the disk. It is also necessary however to start
and finish the soiution with initial and final values of B and B at some point. It is most
convenient to start and finish the solution at ¢ = m; this is the middle of the interior
region, where it is easier to match the two constants in the solution to arbitrary values
of B and B than at any other point on the disk (to lowest order, the solution to Eq. 106
in the interior region is linear in x, so the two constants are easily related to B and

3 ). In terms of the transition region, the slope and magnitude of the solution are to be

matched to B and B at z = 0. Now the solution of Eq. 109 becomes, for small z

~ Y\L/3
B=d, (a+/§b)+(4)1 d, (-a+/3b) 2

from which
B (m) =d, (a +/3 b)
B (m =(f nz)l/ 3 d, (a-/3b)

or

(113)

where d1 and d2 are constants associatea with the Airy functions (d1 ¥ 0,355,

d9 ¥ 0,259). Then for initial conditiont, Eq. 111 relating 05 and 06 toaand b

gives the main soluticn in the third quadrant in terms of initial values of A(m) and ;9(1r).
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For ending the solution, Eq. 110 relating C3 and C, to a and b gives the final values

4

of B(m) and B(Tr) in terms of the main solution in the second quadrant.

Eigenvalues

With the solution in each of the four outer regions, and the connection formulas
between them, the complete solution may be constructed over one rotor revolution.
Floquet theory for a single degree of freedom, second order equation (see Appendix I)

shows that the eigenvalues are given by the quadratic equation

A2r 2 . x2mr s
€ ) -(Bg+ By e )+ BRBP - BRBP =0 (114)

where
BP = B(m+ T) dueto B(m =1, B(ﬂ) =0
31, = Aé(ﬂ +T) dueto B(m) =1, ,'3(11) =0
By =BT+ T) dueto Bm =0, Am =1

B, =Bm+T) dueto Bm =0, Bm =1
and T is the period of the system (T =27 here).

Combining the connection formulae (Eq. 104, 105, 108, and 112) and the initial
and final value formulae (Eqs. 110, 111. and 113) results in the fcllowing expression

for Bf and ﬁf at Y =7+ T in terms of Bi and éi at Y =

DML IR LR T bl Bl AT B £ T
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B. 3 F iF -iF
1 -
( i i (z 2) 1/3) 3 <2 4 4) (115)
where

Yty % g
F1=ufo /:’fdib-.rolﬁdlb

m m g
F, =4[ ﬁdw-f:bt 7 W

! Y 1 (116)

‘ b b
: F3=uj' 3/‘fdzb+‘]‘t37g.f-d¢\
1r T

2n 27 g
; F4=y.J'wt f:qub-i-'fw T:f-d‘*‘
. 3 b

Obtaining BP. ép. ﬁR. and ﬁR from Eq. 115 and substituting into Eq. 114, there -

.esults (after some manipulation)-the following equation for the eigenvalues:

(e"z" + “%)a - 2b (em" + “§)+ 1 11

where

-(F, rF))
i-e 2 8 [2cos (F1+F4)-cos (FI-F4)]

(F. +F,)
42, 2 3 [Zcos (F, + ¥,) + cos (Fl-F4)]£ (118)
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So b is a function of u, v, and KP. The solution for the roots is then

e :l:'l— cush“1 b + ni

.
“6‘" 2m

=J_'-z- L -1 + ni
A ,.16”5:12"008 b + ni

1
A

where n is some integer.

for -1<b<1

-1 i
4 — + = + 1 < -
cosh |b| ni for b 1

This result shows the typical behavior of the roots of

(119)

periodic systems. For b <1 the damping is fixed at - (y/67) with a change due to

b in the frequency; for b > 1 the frequency is fixed at n/rev with a positive and nega-

tive change due to b in the damping; for b < -1 the frequency is fixed at n #/rev with

a pnsitive and negative change in the damping.

givenby b=1 and b = -1,

The general character of the critical regions and instability boundaries in the

The critical region boundaries are

Y - 4 plane, as obtained from the solution of Eq. 117, is sketched in Fig. 12, Because

i is large, it happens that |b| is much greater than 1 almost always, so the critical

regions dominate the behavior of the roots.

sign of b changes regularly; b must o course go through zero then, but it dues so

very quickly, so there is only a very narrow band between the Im A = n/rev and the

Im A =n + #/rev regions in which |b] < 1. When |b] <1, the real part .of A is -u ¢y/6m),
i.e., the root fs stable for all 4 and ¥; thus there must always be a band of stability

surrounding the transition from n/rev to n %/rev. These characteristics are illus-
trated in Fig. 12. The locus between tkL. critical regions has a rather fine structure

which would be difficult to obtain numerically. A root locus for varying 4 or ¥y

C

= - [P

Because of the cosine terms in b, the
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(a vertical or horizontal section in Fig. 12) in the vicinity of a critical region boundary
would in quick succession move from the RHP (unstable) to the LHP (stable) with fre-
quency fixed at n/rev, rapidly move from Im A =n/rev to Im X =n + #/rev in the
RHP with damping given by ‘- i (y/6m) (which would be nearly constant because the
critical region boundaries are so close) and then moves from the LHP into the RHP

with frequency fixed at n + #/rev.

Figure 12 shows that for a given g the system is stable for a large enough Y.
Positive KP is stabilizing, tending to decrease the gsize of the instability regions;
negative KP is destabilizing in this sense. The rotating natural frequency of the flap
motion, vV, does not enter the high u case to order p0 (the aerodynamic spring
dominates the centrifugal spring until order pl); this is consistent with the fact that
the critical regions dominate the high behavior, so the frequency of the motion is fixed

at a multiple of #/rev.

A comparison of these analytical results with the results of numerical calculations
indicates that the high § solution is good down to 4 = 2.5 or so. Thus numerical calcu-
lations are required to join the loci from @ = 0.5 to 2.5 say (for ¥ neither small nor
large). The behavior theoretically predicted for the locus at large i (in particular the
rapid movements between Irma A = n/rev and n+#/rev, and perhaps — for ¥ not too
large — between the RHP and the LHP) actually does show up in the numerical calcula-
*ions of the stability (above i = 3.0 say); such behavior of a numerical solution might
be questioned without the perturbation solution to provide a guide to what to expect. It

is unfortunate that the boundary of the instability region for ¥/16 of order 1 is first
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encountered at moderate y (around u = 2,25 for small KP; see Fig. 12) and so cannot

be obtained by perturbation techniques (to the order explored anyway). Because of the

small time constant in 'he main solutions (0(;1_1)) and the four transition regions (of

width 0(}1—2/3)), a numerical calculation of the roots for truly large would be difficult;

the perturbation theory handles these singular problems analytically, and the calcula-

tions that remain are nonsingular, short, and simple.

Flap Rate Feedback

The use < . 11ap rate feedback (KR # 0) changes the sclution for large u funda-
mentally, because the aerodynamic dampirg (- KRM 6) is then the same order as tbr
aerodynamic spring (M ,- 8 PMB) The derivation of the main solutions is simpler
then, and only the transition regions near § = 0 and 180° are required. The main

solutions are obtained using the substitution
Y
B=exp [ pdp

with p expanded as a series in y:

2 1
p=H p_2+up_1+p0+up1+...

Making this substitution in Eq. 89, the terms of like order in  give

o)

2 = -
p_z- r')‘[ RU“‘““’) pz]

0(#3)° 2p_2p_1=-r7[lsmd( +KR)I' +KR4(sin'b) p_ ]
ow?: o2 . 1 1
(B): p_1+2p_2po+p_2=-ry 8(1+KR)p += alnd.\ +KB)p .
1 2 1
+an(sinzb) po+zsmeb(coa$+xpaln¢)]

~
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OH): 2p_1p0+2p_2p1+1‘>_1=-r7[ (L+Kp)p_, -smtb< +KR>po
+ l(sin 11))2 1coszl)+ =K_ sind
K4 P, *{s 3P

The first solution is given by P, = 0. Then the order #3 equation gives also

p_1 =0, and the order “2 equation gives
p,=- L (cot p + K_)
07Tk Xp

or

I'bpodwh—‘—znsw-—xz

Kp Xr
The order U equation gives
2 1\ cos¥ 2KP 1
= (l + ) 2t 28 o
KR R/ (sin Ib) 3K
R
or
¥ 2 1\ 1 % b
f p dd)a-'—(1+—>-—-+ In tan
1 3KR KR sin ¥ KR 2

Then the solution for B is

__1___&‘) axp 1 2
Kn

2 (L -2
K : sz " sing 5K (1+KR)+ 0% )

B=8 in®) “e *b az.
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where Bl 18 a constant. This is the solution of the reduced equation, and so is independ-
ent of ¥ to this order, i.e., is the result of a balance of aerodynamic damping and
aerodynamic spring terms only. The solution is not valid when sin  is too small;

and it is exponentially growing (unstable, at le..st in the outer region) if KP/KR < 0.

The second solution is given by P,=-T (r/4) KR (sin 1b)2 or
j&bp d$=-rZK lqb--l-sinmb)
-2 4 R (E 4

The order ua equation gives

p =-r§(1+2KR) sin

-1

or

J.dl

4
p_ldlb re (1+2KR) cos ¥

and the order uz equation gives

1-2K K
R cotw+'}'{2
R R

=-pl
p0 r8(1+l{R)+

or

1-2!&‘
KR

lnslnw-l-[-ls—’—r%(l-l'xn)]"

b
[ pgdb= X,

Then the solution fcr B is

8= nz(amw) exp{-rl-ux (2 - 3in ) - W3 (1 + 2K) vos ¥

K
+2(1+ Kn”’] + —é 0+ o(p"l)} (121)
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where B2 is a constant. This solution does involve ¥, i.e., it invelves the inertia

terms in the equation of motion; this solution is also not valid when sin ¢ is too smzll.

There are transition regions between the advancing and retreating sides, aear

i =0 and 180°, As for the K =0 case, region (ii) is an interior region lying entirely
/

within the O(I.L-2 3) transition region; the solution is matched through thiz interior

region again by matching ine displacement and slope of the transition region solutions

at z = 0. With the substitution z = i/ ° sin ¢, the equation of motion in the transition
reg.on becomes, to lowest order in y (0(“4/ 3»
ﬁé*z' K zg-g-t-ﬁ:o (122
dz2 4 z| R dz )

where the plus sign applies on the back of the disk and the minus sign on the front.

It can be shown that the solutions of this ~ quation will have tks proper asymptotic
behavior for matching to the two main golutions. Unfortunately the solution of this
equation is not available in terms of classical functions. The behavior of the solutions
for large and small z would have to be found, probably largely by numerical methods,

before the matching procedure could be ca. - ied out.
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Applicability of the Four Cases

This section will consider the ranges of 4 and ¥ over which the four
cases investigated above are useful. Perturbation theory is based on the
eryansion of quantities in terms of a very small or very large parameter.
In rrany problems however, the results are useful, even quite accurate,
far beyond the limits for which they are theoretically valid. It is these
perturbation solutions, extendable up or down from truly small or large
values of the perturbation parameter, which are of most value. They
may be found only by comparison with exact solutions, usually obtained
by numerical methods, for moderate values of the perturbation parameter.
Another question about the range of validity of the solutions arises in this
problem because there are two parameters, & and ¥ , which are avail-
able as perturbation parameters. In the perturbation analysis based on
one parameter, say ¥ small or large, the solution is derived under the
assumption that the other parameter is of order 1, e.g., 4 = 0(1). This
raises the question of the validity of the solution when the other parameter
is itself very small or very large. It may happen that the results are
still valid when the other parameter is outside its assumed r@@, but
this must be checked in each case. The ordering process of perturbation
techniques provides a quantitative framework for making this check. It
is usuglly quite simple to determine what range the other parameter must

have so that the assumptions made about the order of terms are still valid,
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Extending the analysis into ranges of the other parameter where the ordering
assumptions were violated is another matter; it of course means an entirely
new case to be considered and analyzed by perturbation techniques. The
results of the analytic solutions obtained above were compared with numerical
calculations (performed by the author) of the roots Jf the flapping equation,
primarily for moderate and small ¥ , over a wide range of § ; these calcula-

tions were similar to those reported in Ref. 2.

The small 4 results are good out to 4 = 0.5, which is a very useful
range. These results are valid for all ¥ , since the order of ¥ does not
change the terms ietained in the small 4 analysis. The large 4 results are
valid above W = 2.5 or so, which is also a good range. Here however ¥
either very small or very large will violate the assumptioris made about
the order of the terms in deriving the large p solutions and so the results

may not be valid in these corners of the Y -4 plane.

The small and large ¥ results, to the order investigated, are really
useful only for truly small or truly large ¥ , although the results are quite
informative. The small ¥ results are accurate upto ¥ =2 or 3. The
limitations of the 0(Y) solution, as discussed in the small ¥ analysis, pre-
vent the accurate use of the solution for moderate or even reasonably small
Y (Y = 6 say). The large ¥ results give two real roots, so =< obviously

limited in usefulness. It is unlikely that ¥ would be large enough to require
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this solution. The large ¥ solution is good down to ¥/16 = 3 or so, which

is actually a very good range in the perturbation parameter; it just happens

that for practical rotors ¥ falls far below this limit. Letting 4 go to zero

does not change the order of the aerodynamic coefficients (because of the

constant terms) so the results for large and small ¥ should be good for

all 4 of order 1 or smaller., Letting 4 go to infinity does change the order

of terms in the analysis, so both the small ¥ and large ¥ results may be

invalid for very large 4 (above g = 10 say).

It would be very desirable to be able to use the small 4 and small ¥
results to construct composite root loci which are reasonably accurate for
all values of 4 and ¥ likely to be encountered in helicopter rotors. The
small 4 results would be used up to about 4 = 0.5; then the small ¥ results
would be used up to & = 5 or so. The major obstacle to this is the lack
of an 0(72) analysis for the critical regions; the small ¥ analysis presented

here, which was carried only to0(Y) in the critical regions, is not adequate

for the accurate construction of loci for any except very small ¥,

Possible extensions of the solutions described here include the following:

a) Extend the small 4 results to 0(#2) for ImA =§, and to 0(#3) or

0(u4) to handle the Im = 3/2 critical region.

b) Extend the small ¥ results to 0(72) in the critical regions.
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¢) Extend the large ¥ results to 0()’_1).
d) Extend the large g results to O(u-l).

The most useful would be the 0(y 2) and O(p.—l) results. A small ¥ solution
reliable to ¥/16 =% or so (which an 0(‘)’2 solution should accomplish) could

be combined witk the small § solution to construct accurate composite

loci. Together these results would then cover most of the range of 4 and 7
of conventional rotors. The large u case extended to O(p—l) should be able
to predict accurately the first instability boundary of the g lori, which
occurs at 4 =2 to 2.5. These two cases are however also the ones involving

the most work.

APPLICATION OF PERTURBATION TECHNIQUES TO HELICOPTER DYNAMICS

This section returns to the question of whether perturbation techniques
might be profitably applied to more complicated or more realistic dynamic
systems than the one considered here. As part of the answer, consider
what these techniques will not do: obviously they can not give results for
cases where there is no parameter that is either small or large, for example
when Y = 16 and 4 = 1. However, the four cases considered together cover
a good deal of the ranges of 4 and ¥ , and with primarily analytical results.
For many helicopters the small u case will be quite satisfactory alone.

What the techniques can do also includes:
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a) Since they give analytic solut’.ns they provide more insight into
the problem, as well as specific design criteria for the system; this feature
is particularly important for nonlinear or time-varying systems, which

have properties much different from those of constant coefficient, linear

systems.

b: Perturbation methods can find, and handle, cases that are very

sensitive to the parameters, or that are difficult to solve accurately by

numerical methods.

¢) The methods provide more insight into the rather unusual be-
havior of the solution of periodic systems, by showing explicitly how the
periodic coefficients modify the transient solutions and why they give tue

root loci their characterisiic behavior in the critical regions.

d) Finally, even if the techniques are not used to find the complete
solution, it only takes a little work to find out where the problems are
(e.g., critical regions and transition regions) and what the order of things

is, which information would be of invaluable help in the numerical analysis

of a system.

The extension to more degrees of freedom or more realistic aero- * |

dynamic coefficients would certainly make the analysis more complicated. ‘

In general however any study — analytic, computational, or experimental —
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of a system becomes more complicated as the accuracy of the modelling
of the true system increases, and perturbation techniques are not expected
to be an exception to this rule. Regardless of the system being studied,
the position perturbation techniques occupy between simple linear analyses
and complex nonlinear numerical calculations makes them a very powerful
tool for providing both exact solutions and increased understanding of

problems in rotor dynamics.

The problems in rotor dynamics to which perturbation techniques
might profitably be applied amount to all those involving nonlinear or
periodic coefficients, and there are many of those. There is some additional
work that might be done with the flapping dynamics problem (one degree of o,

freedom), including for example

a) teetering rotor; ! )
b) cantilever blade, with correct aerodynamic coefficients; i

c¢) inclusion of stall and compressibility in the serodynamics,

The solutions found in this paper might be extended to 0(¥) for the small ¥
case and to O(p'l) for the large 4 case. These extensions might prove

very useful, or only slightly more so than the solutions to the order pre- ‘ ‘
sented here; but they should be examined for the simple single degree of

freedom problem before being considered for more complicated systems.
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Even the small 4 solution could be taken a little farther — for example, to
o(u 2) in the ImA =% critical region. Starting with two degrees of freedom,

possible problems in coupled dynamics include

/ a) flap gynamics of a gimballed rotor;
b) pitch/flap dynamics;

¢) flap/lag dynamics.

The pitch/flap system is the problem of rotor flutter. The flap/lag system

{ is particularly rich in possible variations; the problem has periodic co-

efficients if 4 > 0 of course, but it ‘s also nonlinear (even in hover) due

to the inertial coupling of the degrees of freedom. It is moreover very

sensitive to blade root geometry, so that an articulated and a cantilever

blade have quite different dynamic characteristics. Problems in coupled .

dynamics with more degrees of freedom include

a) pitch/flap/lag dynamics (three degrees of freedom);
b) flap dynamics of an N-bladed rotor (N23) with flapping feedback

control in the fixed system (at least four degrees of freedom).

While for these problems the advance ratio 4 would probably be of most

R

value as a perturbation parameter, there will likely arise problems where
other parameters are also useful. As long as a reasonable model is
chosen for the system, and as much effort is given to the interpretation

of the solution as to its derivation, perturbation techniques should prove

£
PR Y | o - ¥ e o v L A




-101-

quite useful in providing information about these problems, and many

others in rotor aynamics and aerodynamics.

This paper has demonstrated the methods of perturbation theory and
has provided examples of the information about dynamic systems which
may be obtained using them. The techniques have proved very useful
for the problem studied. It should not be concluded however that the
techniques presented are all there is to perturbation theory; there are raany
more methods that have not been touched on here. Perturbation theory is
a powerful, and yet not very sophisticated, mathematical technique which
should prove very useful in analyzing some of the problems of helicopter

dynamics.
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Appendix I. Eigenvalues of a Periodic System

Consider a general system of differential equations with periodic
coefficients; this may be reduced to a system of first order equations, and

o~ ' may therefore be written (in matrix notation) as

%= A%

where A(t) is periodic: A(t+T) = A(t). It may be shown that the solution to

this differential equation can be obtained in the form

X() =Z; 4,(0) Mt ﬁ‘i(t)

The A ; are the eigenvalues; the eigenvectors 'ﬁ;

A A
are periodic, ui(t +T) = ui(t);
and the numbers qi(O) are constants obtained from the initial conditions.
The theory that shows this is called Floquet theory. The solution in this pe

form is a direct extension of the normal solution for a constant coefficient

differential equation, which is charac.erized by constant eigenvectors.

The eigenvalues A{ may be obtained by the following procedure.

¢
H
3
4
s
i
i

The equation

P=AQ

where ¢(t) is a matrix, i8 integrated over one period, fromt=0tot=T,
with initial conditions ¢(0) =1 (the unit matrix). Then if Aoy Bre the

eigenvalues of the matrix
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th2 roots A; are given by

or
=4
A= Tln?\c

While the roots Aot (as eigenvalues of a rv-al matrix C) must appear as real
numbers or complex conjugate pairs, the eigenvalues A ; are under no such

restriction. The root loci of periodic systems are thus characterized by

the type of behavior sketched below,

Imx

A
B] n/rev

- Re)

-—-——j + -ntrev

- - SR -
—— *‘ e - T F asi




-104-

The horizontal portions of the loci can only appear at ImA= n/rev or

n+ #/rev. If the parameter being varied, for example the advance ratio u ,
is such that at 4 = 0 the system is not periodic, then the roots at point A
are complex corjugates. As y increases the periodicity of the system
increases, and the roots start moving toward n/rev (or n +#% /rev) lines
remaining complex conjugate pairs though). At some critical g4 (the point
1* on the locus) the loci reach ImA = n/rev, and then for still larger u

the frequency remains fixed while the real part of one root is decreased

and that of the other is increased This Lehavior should be compared with
that of two roots of a constant coefficient system which start out as complex
conjugates, meet at the real axis, and then proceed in opposite directions
along the real axis. The existence of periodic coefficients in the equations

of motion generalizes this behavior so that it caa occur at any ImA = n/rev

or n +#%/rev, not just ImA = 0, The property of the solution that allows this

behavior is the fact that the eigenvalues i\‘(t) are themselves periodic.

For a single degree of freedom, second order system, letl Xg be the
solution obtained from integrating the equation with initial conditions
x(0) = 1, x(0) = 0; and let xp be the solution with initial conditions x(0) = 0,

x(0) = 0. Then the roots Ac are given by the quandratic equation

AG - [ip(T) + Xp(D) * ¢ + Xp(T) Xp(T) = X (T) Xp(T) = 0

»;
PN 5 " —— - o

R DS s et o0 © S

S e




P

Appendix JI. Solution of the Secular Equation

~-106~

The method of multiple time scales often leads to an ordinary

differential equation of the form

where B 18 a complex quantity, and the constants a, b, ¢, and d are real.

letting

D™>0:;

= {:

N R
‘r‘q%m‘m e

2

%%+(a+id)ﬁ*(b+ic)§=0

=d? -+ ¢hy = d® - | @ = 10

p=Vo?|

it may be verified that the solution of the above differential equation is

B - e'“w [Ad-D +ip+ m)e‘w

+ A+ D+1ih + ic))e'mw1

where A {8 a complex constant

B=e [A(a+ i+ i0))¥ + 1)
+ B(d + i(b + 10))}
where A ard B are real constants

B =0 [A@+iD+i( + ic))ew

+Bid-1D+ib+ ic))e'w)

where A and B are real constants
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The limiting case b = ¢ = 0 gives D = d so the solution is
B=ae®" iy
where A 18 a complex constant

The region of decreased stability, i.e., the region where the real part
of the eigenvalue hecomes more positive (the critical region), is given by
D2<0. The boundary of the critical region is D2 = 0. One root in the critical

region becomes less stable, but the other becomes more stable. Further-

more, inside the critical region (D2<0) there is a change in the real nart

of the root but no change in the imaginary part, i.e., the frequency; while
outside the refion (D2>0) there is a change due to D in the freque.cy, but

no change due to D in the real part. This behavior follows that expected

of the cigenvalues of periodic systems (ree Appendix I), Indeed, D2 is

a measure of the relative effects of the B and B terms in the differential

equation; the former usually comes from the constant coefficients in the

equation of motion and the latter from the periodic coefiiciets.

|
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Fig. 12. Sketch of the characteristic behavior of the critical region
boundaries and stability boundaries for large 4 ; = boundary
of region in which Im. is fixed at n/rev or n + $/reV; o= == = =
boundary of region in which the real part of one root is
positive, i.n., unstable.
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