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=._, ABSTRACT

The _t_bility of the flapping motion of a single blade of a helicopter rotor is

examined using the techniques of perturbation theory. The equation of motion studied

is linear, with periodic aerodynamic coefficients due to the forward speed of the rotor.

_'utions are found for four cases: small _u-_dlarge advance ratio and small and large

" Lock number. The perturbation techniqaes appropriate to each case are discussed and

illustrated in the course of the analysis. The application of perturbation techniques to

other problems in rotor dynamics is discussed. It is concluded that perturbation theory i •

is a powerful mathematical technique which should prove very useful in analyzing some

of the problems of helicopter dynamics.
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SUMStARY

The stabilityoftheflappingmotion of a singlebladeofa helicopterrotoris

examined using the techniques of perturbation theory. The equation of motion studied

' _ is linear, with periodic aerodynamic coefficients due to the forward speed of the rotor.

!_) Blade pitch feedback proportional to both flapping displacement (53) and flapping cate
y_

:_ isincluded Four cases are considered:small and largeadvance ratioand small

_._.; and largeLock number. The perturbationtechniquesappropriatetoeach case are

discussed and illustrated in the course of the analysis. Analytic solutions are obtained

for each case, with primary emphasis on the eigenvalues (that is, root loci) as indi-

cators of thesystem stabilityand response. The featureof the equationwhich makes -.

perturbation techniques useful is the periodicity of the aerodynamic coefficients.

The applicability of the four cases considered is discussed; the small advance ratio

resultsinparticularare very useful,beingvalidoutto an advance ratioof about0.5. / •

The application of perturbation techniques to problems in rotor dynamics with more
7

degrees of freedom or better aerodynamic models is discussed. It is concluded thatf

perturbation theory is a powerful, and yet not very sophisticated, mathematical tech- '_

nique which should prove very useful in analyzing some of the problems of helicopter I
dynamics.

INTRODUCTION

This paper considers the application of perturbation techniquee to helicopter

rotor dynamics. Perturbation theory has been well developed in recent years, but has

i
not found much application to rotary wing problems. Classically helloopter engineering
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has made use of the same nerturbation theories that fixed wing engineering has, for

example lifting line theory and engineerin_ beam theory (both require a large blade

aspect ratio). Another classical example is actuator disk theory (a large number of

blades is required). These theories were developed on an intuitive basis however,
/

and the more rigorous mathematical techniques of perturbation theory have not yet

found widespread use for rotary wings. The classical applications are largely for

aerodynamic problems; the mathematics of these problems can be very complicated

however because the equations involved are highly nonlinear partial differential equa-

tions. The treatment of dynamic problems can be more tractable since only ordinary

differential equations are involved. Problems with constant coefficient linear differ-

ential equations can be solved exactly with well established methods, so for these ,

problems the extra effort of perturbation theory may not be justified. On the other

hand for problems with time varying or nonlinear differential equations the only solution

procedure generally applicable is the numerical integration of the equations of motion.

However, purely numerical solutions are not entirely satisfactory for obtaining an

understanding of the physical character of the system, or for formulating general design

rules. Furthermore, an analytic solution for the general case would be difficult to

obtain (if possible at all) and would be so complex as to be hardly better than the

numerical solution. The only systems that can be pr$,cticably handled analytically

are those involving linear constant coefficient differential equations. Perturbation

techniques are available which are methods to study time varying or nonlinear systems

such that at each step in the analysis only linear constant coefficient equations must be

handled. Time varying or nonlinear differential equations are characteristic features

of helicopter dynamics and aerodynamics, primarily due to the rotation of the wing.
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Thus the possibilities for the use of perturbation theory in rotary wing problems are

very extensive.

This paper considers the stability of the flapping motion of a single blade of a

' helicopter rotor. Thi:_ i_ a single degree of freedom, sccond order system, with

analytic aerodynamic coefficients. The governing equation is linear with time varying

coefficients; it is given below.

_'+b'28=T _(Ms-K R Mo) t}+ (M8-Kp Me) 8] (I)

Regions

1

1 1 1 )IVI_= -(_ + _ p_sin $ + _-_ (_sin_) 4 (ii)

1 1

+ _ Dsin $ (iii)

t 1

M8 - #cos@( 1 1 1= _ + _ Dsin_b- _ (Dsin@)3) (ii)

I _b) (iii)_tcos @(1+ _'.sin

1 1 1

_+ :_Dsin_b �_(:_sin$)2 (i)

. Me 1+ I 1 I='8 ,_!Isin$+ _ (bLsin$)2 - _-_(Dsin@)4 (ii)

1 1 1 ) (iii)_ _ + _ _ sin $ + "_(_sin $)2
' <

1973005279-007



-4-

where the coefficients have separate definitions in three regions of the disk defined by

Region (i) 0"<_sin$<

Region (ii) - l<_sin$<0

, Region (iii) - _< bL_in $ < - 1

This is the homogeneous equation for small perturbations of the flapping motion of

the blade about an equilibrium state ; the derivation of this e tuation may be found in

the iiterature (Ref. 1). B is the degree of freedom representing the. blade flapping

motion perturbation. The equation is nondimensionalized with the rotor speed, so

the time variable is the azimuth angle _b. v is the rotating natural frequency (non-

dimensionalized with the rotor speed) of the flapping motion, which may be greater

a

than 1.0 for flapping hinge offset or cantilever root restraint of the blade. _ is the

number, defined by T = P acR4/Ib (P is the air density, a the two-dimensional
Lock

lift curve slope, c the blade chord, and R the blade radius); Ib is the equivalent mass

of Lhe flapping motion, given by the integral over the span of the square of the mode

' shape of the flapping motion weighted by the mass per unit length of the blade; for the

rigid flapping motion of an articulated b_ade, the mode shape is proportional to the

radial _listance from the hinge, and so Ib is just the moment of inertia of the blade

about the flapping hinge. K is the flap proportional feedback gain, better known as
P

tan 53; KR is the flap rate feedback gain. A feedback law A0 = - Kpj5 - KR_} has been

used (AO is the blade pitch change due to flapping feedback control). _ is the rotar

advance ratio (forward velocity aivided by rotor tip speed). The coefficients M_, Mff

and Me are the aerGxtynamic forces on the blade, he.ce their multiplication by y and

their dependence on/_. The, three regions for the coefficier.$ reflect the influence of

1973005279-008



the reverse flow region of the rotor disk. In region (i) there is normal flow over the

entire blade span; in region (iii)reverse flow over the entire span; and in region (ii)

normal flow outboard of r = -/_ sin _ and reverse flow inboard. Region (iii) is

encountered only if /_ > 1. The aerodynamic coefficients were obtained using a rigid
I

, . blade motion, and should properly be changed some to handle a blade with cantilever

root restraint. However the major effects of a cantilever root on the dynamics of the
/

system are due to the change in v and 7 (both are increased, v to 1.15 say and Y to

about 5/3 the Lock number based on the rigid mode inertial). Since these are free "

parameters in the analysis this formulation of the problem should give reasonable

results for all rotors.

• This equation has been studied numerically in recent literature, priL_arily in the :_ ,,
i

• context of Floquet theory (Ref. 2), which must be used because the aerodynamic

coefficients are periodic in $ if /__ 0. The equation will be studied in this paper using

the techniques of perturbation theory. The mathematical techniques are not very soph_s -

ticated actually; they are rather long, especially when the higher order solutions are

sought; and there are some tricks to be learned, but the standard ones work for most

systems, including this one (Refs. 3 and 4). It is not maintained that the differential

equation studied is a true model of rotor dynamics; nonlinear aerodynamics and coupling

with pitch and lag motions are certainly very important. The purpose of this paper is

not to present a study of true flapping dynamics; rather it is intended to demonItrate

"" what information can be obtained by the perturbation techniques, and to explore the

° methods which are most useful for rotor dynamics, so helicopter engineers will be able

to decide whether to use these techniques with more complicated or more realistic
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systems. The dynamic problem considered here is the auestion of rotor flapping sta-

! 'bility. The stability of the motion is determined by the roots or eigenvalues of the

i system (there are two for this second order equation), and so most of the results dis-, cussed will be concerned with the roots. The equation considered is linear; perturba-

tion theory is used because the aerodynamic coefficients are time varying (specifically,

periodic) for forward flight, I.e., when _ is greater than zero. A brief discussion of

the characteristic behavior of the etgenvalues of a periodic system is given in Appendix I.

, NOMENCLATURE

Kp Flap proportional feedback gain
I

KR Flap rate feedback gain ",

MB Aerodynamic moment due to flapping displacement " •
.'b,

Mb Aerodynamic moment due to flapping rate

Me Aerodynamic moment due to blade pitch

B Flap motion degree of freedom

t Y Blade Lock number

t ), Etgenvalue or root of the system

Rotor advance ratio (forward speed/rotor tip speed)

V Rotating Datural frequency of flap motion (centrifugal and structural stiffening),

noadimensionalized with rotor rotational speed
P

Rotor azimuth a_le, measured from downstream

i o() "theorder c_' *

( ) Conjugateof a complexnumber

"_' h_ _ _ ,
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LHP Left-hand plane

RHP Right-hand plane

LttS Left-hand side.

, RHS Right-hand side

Re Real part of a complex numbec

Im Imaginary part of a complex number

ANALYSIS AND DISCUSSION

Introduction to Perturbat:ton Techniques

Fundamental to the use of perturbation techniques i_ the existence of some

parameter which is either very small or very large (how small or how large is deter-t

mined during the analysis); for the moment represent the small parameter (or the -.,

, inverse of the large parameter) by (. In the present problem it is desired to find the

roots of the motion, which means investigating a solution which is uniformly valid over

! long time periods. The appropriate perturbation technique is the method of multiple

time scales. This method assumes thatthe behaviorofthe system may be investigated

i over several time scales, i.e.,

Sn = ¢n$

The time scales Sn are all assumed to be the same order; then for $1 = ¢$ the actual

time $ must be of order (-1, i.e., very large compared to the basic time scale

! $0 = $" Next the dependent variai4,_s are expanded as a series in c,

! B 80($0 $1 $2 B1($0 $1! = , , , ...)+¢ ,, , ...)_...
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where the temas 80, 81, etc. are all assumed to be the same o :der, and depehd on all

the time scales now. The requir3ment that all the B be the same order for the longn

time scale behavior of the motion is crutial "coobtaining the solutior; it leads, for certain

valu¢.s of the free parameters, to critical regions characterized typically by a reduction
J

of the stability of the system. The details of this method will be given below in the

context of the t_vatment of the rotor flapping equation.

Often an equation of motion is such that in the limit ( = 0 the order of the differ-

ential equation is reduced. Such problems are called boundary layer problems, since

they are characterized by narrow regions in wbieh the solution changes greatly. The

outer solution may be found hy use of a substitution o_ the fo=m

exp _$= pd_b

followed by an _xpansion of p as a aeries ;_ ¢: .,.

1
p ='-'_p n + .. .pO+¢Pl+...

(

This main soluti,_nis,,otvalidincertainnarrow trar._,itionregionsor boundary layers.

A basicpartofthisuerturb_tiontechniqueismethods _ obtainsolutionsthroughtho _'

transition region, so that it is pos,,ible to match one mah_ solution to another on the

,tg

othersideofthetransitionregion,or to boundary conditionsatthe base oftheboundary

layer. Again, details of the method will be giwm in the context of the solution of the

flapping equation. _

• .
For the flapping equation there are two parameters which may be used for ver-

i turbation quantities: the advance ratio _ and the L(,_k number _. Then there ar_ I

1973005279-012
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four cases to be considered: small and large bt, and small and large 7. The flapping

nat_tral frequency tJ is also a parameter in the problem, but it varies tittle and further-

mo,_e always has a value at or _lightly above unity (i. e., is neither small nor large).

Each of these four cases will be examined in turn in the fo!lowing sections.
J

The Small # Case

For the small bt case (to 0(_2)) it is possible to ignore the reverse fl')w region,

and the aerodynamic coefficients in region (i) can be used for all _b. The equation of

motion is then (considering the case KR = 0 first):

i • + ,_ sin

+ u2 + btcos_b _ + i"sin + Kp _ + _.sin* + _'_simb) B = 0 (2)$
i

c The small parameter is the advance ratio /a; the perturbation technique to be used is

'_ the method of multiple time scales. The solution will be examined to 0_2).

! Hover
!
i

i For thehover case, i.e.,thelimit/_= O, theequationreducesto

i . which is a constantcoefficientequationnow. rhe rootsare obtainedfrom

i

_ • )2 +8_-)'+(I_2+Kp_) -0 ;]

1973005279-013
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aN

= - - (3)

i (and its conjugate).

i

•_ Expansion ini

Using the method of multiple time scales, the behavior of the equation is examined

-1 -2
for ¢ of order 1, /_ /_ et_ ; that is, let

"_ _0=_

t

Next expand _ as a series in /_, with each term depending on all the time scales Cn:

B = 80(¢O, ¢1' ¢2' "'" ) +/'t_1(¢0' ¢1' "'" ) +""

The time derivative now becomes i:

1So that the ordinary differential equation (Eq. 2) now becomes a partial differential

i equation. Furthermore, the two remaining parameters in the equation, v and 7,

are also expanded as series in, }

V=Vo+ + +... ,I

7 = 70 +/471 +/4272 + •..

973005279-0 4
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(This is done because it is the characteristic of a system with periodic coefficients

that for certain values of u0 and T0 there are stability degradation regions described

by boundaries in u 1 and T1, or v2 and T2, etc. ).

' _ Now /], d/d_, y, and T have all been expanded as series in /_. These expansions

are substituted in the differential equation. It is assumed that all the coefficients in the

expansion are of the same order; thus _0' _Jl' _b2' etc. must all be of order 1; and

B0, B1, B2, etc. must all be of the same order for the behavior over all the time scales ,

, _bn (how large is arbitrary since the equation is linear in 8, although if 8 is too large :

the equation of motion may not be valid). The equation of motion will then cont_n terms

2 _.r

• of order 1, /_, /_ etc. ; all the terms of like order are collected and separately equated .__2 '

_: to zero, to give the equation that startsthe analysis at each order. _'

Order 1 Results : _..

To order 1 the equation is ,_-- ,_:.

,_02 80 +'_-_ B0 + P02 + Kp 80 ffi0 (4) _':_2

The solution of this equation is

Bo - ae [.So_(_r _2' "") ex°_°] (5)

where the root )'0 is given by

,o" Xo2+_ ^o+(_o+Kp - o

• li or

,020, ,o(,_o/')'0 ffi" 1"6+ + Kp _-"\16/ (6)

t

1973005279-015
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"2

T

_ and its conjugate. Since B depends on all the time scales, _0 = 80(_0' _1 .... )'

; Eq. 4 is a partial differential equation, and only determines the behavior of as a

function of _0" Thus the quantity B01 still depends on _b1, _2' etc.

The order 1 equation is identical with that obtained for _ = O, i.e., the hover- _

limit, and indeed )'0 is exactly the hover root (to order 1). The variation of these

} roots with _ for v = 1 and several Kp is shown in Fig. 1 (the /_ = 0 loci). The corn-#

} plex portion of the root locus is a circular arc, with center on the real axis at ), = - Kp,

Kp 2._ and radius of Jp2 + The corresponding T for a point on the complex portion of ,

the _ locus may be obtained from the real part of X since Re }, = - _/16 (no dependence

! on u or Kp). For T = 0 the locus is at ), = iv (there is no effect of Kp since there

are no aerodynamic terms if y = 0). For Kp > 0, Ira), increases as _ increases from "

! zero; a peak in Imk is reached at T/16 = Kp where ), = - Kp + Jy2 + Kp2 (the peak _

occurs just over the center of the circle so the frequency is given by the circle radius). ,

For Kp < 0, Im }, decreases immediately as _' increases from zero. The locus inter-

cepts the real axis at 7/16 = Kp + _v 2 + Kp 2, where ), = - Kp + jW 2 + Kp 2 . Then as

-" _. the roots remain on the real axis, one going to k = - _ and the other to ), = - Kp i

(the center of the circle). Thus one branch of the _ locus crosses into the RHP if

Kp < 0; the crossover point occurs for _/16 = - y2/2Kp; at this y the other branch _i

_ is at ), = v2/Kp (which is less than zero since Kp < 0). When the solution is examined

! to higher order in /_ (as below), special problems occur when the frequency of the hover

root is at or near a multiple of _/rev. The order 1 root crosses Imk = _ for

{ ' T/16=Kp+J_2 /4.Thelocuswillcrosslmk=lfor_/16=Kp+JV2+Kp2-1. "

Since V a I there can be only one crossing of Im k = 1 or _ by the locus (except when

p = i, in which case the locus star_ _t Im k - I for _ = 0). _

_'_ _ ........ --_"e"_ "_'_ _.......... ,_ --:•---r-----,---_.- . ................... T ,_, , _,_,,_ae,,•

1973005279-016
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The root loci for fixed y and varying v or Kp would be somewhat simpler than

the y loci. What is being varied is the natural frequency of the system, a_ =,//_2 + Kp _- _n 8

for (k complex, 1_,1= Wn-') For the complex portions of the loci, Re _ = - 7/16 is fixed, _

so the locus would be a vertical line in the LHP. For y2 + Kp (7/8) = = the locus would

!_ be at Im X = ¢o; for y2 + Kp (_/8) = (7/16) 2 the locus would intercept the real axis, i.e., :

would I)e at Im X = 0. For smaller y2 + Kp (7/8) the locus would have two branches

on the real axis. For v 2+KP(7/8) =-_ the locus ,: ould be at X=:_. The locus "

would go through the origin, crossing into the RHP, at v2 + Kp (7/8) = 0 (the other i

: branch would be at ), = - (7/8)); since V -'-1 this can occur only for Kp = -(8/T)V 2 -<-8/Y,

_ i.e., for sufficiently negative Kp.

} The preceding paragraphs have diacussed the behavior of the hover root loci,

i.e. the /_ =0 roots. For /_ #0, X has the same form as the hover roots, but in _ "
' O

,_ terms of _0 and v0; so it is not the entire rest but rather only the order 1 part of it. i

{ Thus for example, if Im "%0is exactly at a multiple of _y'rev for some # this only

implies that the hover root is nea.__.Lrthat point; the hover root, based on y = Y0 +/a Y1 + "'"

and y=v 0+/av 1+... must be a small distance (0(_) if _1 and Yl are not zero)

away from k 0, which is based on _0 and Y0 only. The order _, _2 etc. parts of

the roots for N # 0 will be obtained in the analysis below.

Order /_Results

' The order /a terms in the differential equation are (dropping the common factori
¢

: of /_):-

1973005279-017
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where A1 is a complex constant (which really depends on _1' _2' etc.). The solution

to this equation is

i _1 = Re 11 3/0 % ek0'$0 +

; 2x0i !

where 811 ek0 _b0 is the homogeneous solution. The particular solution for 8 1 has a

term proportional to AII_0 ekO_O; compare this with the solution for BO:

B1 (constant)Al_b 0 eX0_b0
= = - -,(constant)Al_0 •

_00 (constant) e k0_0

Then B1 will become arbitrarily large compared to B0 if _0 is large enough, which

violates the assumption that B0 and 8 1 are of the same order for all %. The only _ ",

_ way such a term in B1 can be avoided as if it is required that A 1 be zero. Recall _

however that the equation for B1 is really a partial differential equation, and A 1 has

terms like _B01/_b 1 and _01" Thus setting A 1 = 0 gives a differential equation for

' i B01 in terms of _1' the solution of which carries the solution for B0 out to time

I scales of the order of _-1. In general, the forcing terms on the RHS of the equation

i come from the homogeneous solutions for the lower orders of the B expansion. It is

I the nature of the perturbation expansion (not of the particular equation being studied)

, that to each order the equation for Bn always has the same homogeneous solution (in

this case e)'O¢O). Thus the equation for Bn is being forced by its own homogeneous

solution, which gives rise to solutions of the form _b0 times the homogeneous solution

" (_0 e)'O_O here), unless the coefficient of the homogeneous solution is set to zero. It

is a fundamental feature of the method of multiple time scales that setting this

V
Ig.
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coefficient to zero gives another differential equation, which may be used to find the

i behavior of _n-1 to the next time scale.The method of multiple time scales, as outlined aboce and described in more

"i detail in the literature (Ref. 3), involves then the following steps.

"I_ a) Expand t], d/da!_, and all parameters as series in /_.

i b) Obtain the partial differential equation for order /_n; write it as an ordinary
differential equation for 8n in terms of _b0; substitute the solutions obtained for

81, B2, ..., 8n_ 1 into the RHS.

c) Find in the forcing terms the coefficient of the homogeneous solution; this _

coefficient is called the secular term. Set the secular term to zero, thereby obtaining

a differential equation for Bn_ 1 in terms of _1" This is done in order that the solution

be uniformly valid for all time. Usually it is the behavior of the solution to longer ...."

time scales (e. g., _0(_0, _1 )) that is of interest, rather than the higher order cor-

rections to the solution (e. g., BI($0), which is an order D correction to 80). So it is

really the differential equation resulting from the secular term that is sought.

For higher orders, 0(D2) and above, the solution procedure is a bit more involved

(there are then secular terms in the secular terms), but this is best explained by

example.

#

Returning now to the flap equation to order /_ (Eq. 8), the secular term (the

coefficient of e )'0_0) is, if )_0 _ l _ )'0:

_0+ + _0 + 2uOUl+ 8 BO1

1973005279-020
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p.

or

to order _. Thus to order . the root remains the hover root; there is no effect of

advance ratio or of the periodic coefficients. This is the case for most y and v, the

exception being when y and p are near YO and v0 such that v_^ _ i = )'0"

If _0 + i = X0 then the periodic coefficients contribute to the secular term;

_0 + 1 - _'0 means that YO and _0 are such that

Im X0 = _t

or ;

i u0_ �Kp_-I_•_ 8 4 ,

t

I

1973005279-021
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- So this case occurs when the hover root has a frequency near _/rev. (Note that

O_ - i = )'0 is not possible because )'0 has been defined to have positive imaginary it

part. ) The 0(1) root in this case is !

70 i i
i

- X0 = ---+- i

:- 16 2

The secular term is now

x0 _ ( 2_o_1+ T Ao+ + 8Ol

'(1-_'- "Yo 'o P)Bo+ xo+_+_ z 1-o i
!

,J

or
i

',\. ___CZBo I+ 0 70 YO -
_1 - _- Zp - _" /301 = 0 112)

where

[ , c,0,)]=_ +i_i 1 2YOU1r =-'_+ - _-\_'_ - K

The 801 term arises due to the psriodlc coefficients. The solution to the equation

(see Appendix II) depends on the quantity
t

[ I I 41i " 2Vo_'1s \._e"K -(_/,,.4,tl+ - 113)

l
• ..2)_#-

"I973005279-022
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._ Now ff > 0, has terms with time behavior like

'_ -(rdr ± i D)_I - _ _ ± i D#_
I e -- e

'__ and then 80 has terms like

Y--_±i, (_+ _D.)
le_.0¢0 - 16_" _0 =e ;

F :,

the damping is unchanged by the additional 3ecular terms, and there is an 0(/_) change ',

[ in the frequency. If D2 < 0, _01 has terms like

e-(ar *#D)$1 _-±# ¢

! so B0 has terms like _

i there ia an 0(_1 change in the damping (both more and less stablel, while the frequencyremains fixed at _/rev. D2 - 0 must give the boundary l_,tween the two types of

I behavior. Consider next the interpretation of the quantity D. Constant D2 implies,

for a given _0' V0' and Kp, that _1 is a constant, i.e.,

, "°" .K:]i " " = *_g/
i ,

i = _ lconatant) 1141
|

i This equation represents a straight line of V versus _ with a slope of

_U1 _'0/16 - Kp

f,
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Compare this with the slope of the line represented by

'ImX 0= 2+Kp__ _161 2:

_v 0 70/16 - Kp

yo/16 - Vo

1

Thus the lines given by D2 = constant are parallel to the line given by Im )'0 = 2"

(these can be considered lines of u as a function of 7). Furthermore, in this case

1
71 and u1 give an 0(#) perturbation from 70 and u0' which are such that Im )'0 = 2 ;

thus it follows, since a given value of D2 gives two lines of Ul versus 71, that

D2 = constant represents two lines an 0_) distance either side of and parallel to the

1 are of particular interest, fl_'st the boundalT D2 = 0, _, line Im )_0 = _" Two values of D2

and second the maximum possible negative value of D2. The latter is given by

c_. =0, i.e.,

71 (70 _

1

This llne runs through vI = Yl = 0 and has the same slope as the Im )`0 =_ llne there;

thus this llne simply represents, to 0(/_), the Im )`0 = 1_ line, and it is sufficient to use

= -. 2

i the point U1 71 0 for the minimum D . Return now to the solution for _0 in terms
• 2>

of D; it has the characteristics expected of a periodic system (see Appendix I). D 0

and very large implies vI and 71 very large, which means a root far from Im)` = 1.

. As D2 decreases, Re), remains at the basic value (-7/16) but there is an 0(_) change "

_ in the frequency, until at D2 = 0 the frequency has reached exactly Im k = 1. Th_ '

boundary D = 0 occurs for nonzero values of U1 and 71, and so the root has reached
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= the Im k --12 line while the hover root is still an 0(_) distance away. For D2 < 0,

_i the frequency remains fixed at _/rev while there is an 0(D) change in the damping,

_. both positive and negative. This type. of change in the stability of the system is char-

_' acteristic if periodic systems; indeed it appears here due to the terms in the secular

)
_. equation that come from the periodic coefficients in the equation of motion; it is not

! seen in the behavior of the basic root to 0O_). There is a critical region, bounded by

)

D2 = 0, inside which the change in the damping occurs. In many problems with periodic

coefficients, the system is unstable inside such a region; in this case however there is _.

i the basic (hover) damping, represented by Re k = - T/16, which is large and stable. __
The change in the damping is _/_D, which is 0(D) compared to the basic damping, so _:

_, the critical region is a region of stability degradation rather than of instability. With

1

this discussion as a guide, the solution of the flapping equation near Imk 0 = _ will be

considered in more detail.

The boundary of the critical region is given by D2 = 0, or

K,)"'0/ .z,)
1

The firstterm on the RHS mal_esthelineparallelto Im )tO= 2' _ the second term

gives the width of the region; the critical region Is a narrow band, of width 00_), about

1 !I,:
Im _0 ffi2' Outside the critical/_ion there is an 00_) change in t_requency while

the real part of the root is unchanged from the hover value. Inside, _e frequency is

fixed at _/rev while there is an 00_) change in the damping. The maximum stability

change occurs at the center of the critical r,_gion, where D2 has its maximum negative

value, i.e., at v 1 ffiF1 ffi 0. The root there is

._._ 2 16 max

]973005279-025
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So the 2 _aximuni _tability degradation (and enhancer, lc,'_i_ is

a_ = _,',6 :-__ -"_-:'_e+_Kp (17)
max

I

" which is an Otu) small reduction; the system remains stable because of the large hover

damping. In general the root is given by

k--k 0+_r-iD D (18)

where for fixed V (i. e., V1 = 0) have

\16/ 4 "_ g -_24/ +(_- 4 K

Let AT/16 = D0'l/16), so T = V0 + AT; recall T0 is given by the requirement
1

Im )_0= 2; T must be such that _T is 01_1 sm'_ll, I.e., T must be such that the hover

locus is an _(_) distance from Im ), = 1 Then2"

The critical region L_undary is crossed when the quantity under the _luare root sign

: is zero, that is when

I

i' /_ "/Zcorner "_ 1191
i

J _
1
1
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for a fixed 7 (i.e., for the _ locus), or when

.' - 16 = (2o) ::
corner _ K •

I
t I

.i
! for a fixed _ (i. e., for :he y lo_as). Then the root locus is given by

•161 2_tt_- - (#/Pcorne _2 (21)

or

),= .Z. l (2_4.4)d/1(Z Kp)2J(_ly/A_corner)2, - 16 +_- 1II + - 4 - 1 (22)

t i

i The (- I) in the last term of ). becomes (il) for # > Pcorner or 47 < AYcorner.
iFor Kp = 0 thePe expressions simplify to

I Pcorner = 16 2_ _

16 oi:er

and

o

i
Furthermore, for _ << _corner or Ay >> ATcorner, i.e., far outside the critical

region, the expression for the root becomes
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16

which is just an 0(_) expansion of the hover root when Im k is near _Jrev. Finally,

the solution for _01' with D2 > 0, is
/

e

[- (_('0 TO )YOi) ] e -iD'_) ' _

with _. and D given above; a similar expression may be obtained for the case '_
1

D2 < 0 (see Appendix II).

These results have been used to plot the root loci for varying /_ and y ; the :,

results obtained so far are valid for small /_. Figure 1 shows typical root loci for i ..

- varying y, with /_= 0 and /_ = 0.1. The behavior of the hover loci {p = 0) has been i

described ,above. The hover loci cross ImP. = _t for y = 37.7, 13.9, and 5.2 for !

i
_ Kp = 1, 0, and -1 respectively; for usual rotors then the Imk = _t critical region is _.

! likely to be encountered only if Kp _ 0. The point D on the hover locus (Kp = 1, in]

Fig. 1) is where the locus crosses Imk= _. As y increases, since this point is at

the center of ;he critical region (AT/16 = 0) it receives the maximum stability change,

a: d so is pulled out to the point B. In terms of the y locus, as y increases and the

hover locus nears Imk= _, the root has an 0(#) change in the frequency, pulling the

locus toward Imk = _. When the locus crosses into the critical region the frequency

has just reached _/rev, and the root locus is at the point A. For still larger _ the

]973005279-028
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5:-

frequency remains fixed while the real part of one root decreases and that of the other

increases. When 7 reaches the value for wh,_.chthe hover root has a frequency of

i. _/rev, the locus is at the center of the critical region; there the roots have their maxi-
, mum stability change (which is 0(_) so the locus is at the point B. As 7 increases

_ more, the locus moves toward the other boundary of the critical region. The locus

_ reaches that boundary at the point C, and for still larger 7 the frequency is no longer#

_ fixed at __/rev; rather the real part of the root is the same as the hover value, while

i there is an 0(g) change in the frequency which decreases in size as 7 increases. When

_7/16 is no longer 0(D), the locus is again identical (to 0(D)) to the hover locus.

_ g
Figure 2 shows typical root loci for several 9/ and varying _. The circle the ._

locus starts from is the 7 locus for hover _ = O) and the appropriate Kp: The 7 for _

each locus may be found from ReX at /_ = 0, since for the hover root ReX -- - y/16.

As # increases from zero, for the roots near Im k = _ there is an 0(_) change in the

frequency pulling the root toward Im k = _, while the damping remains fixed at the hover _

value. The locus reaches Im k = _, i.e., crosses the boundary of the critical region,

! when # = #e°rner" F°r larger #' the frequency remain_ fixed at _/rev while °ne l°cus imoves to the left (increased stability) and the other to the right (decreases stability}.

Again, this is the characteristic behavior of roots of a system with periodic coefficients.

Order p2 Result s

• In order to find the roots to 0(_2), it is first necessary to complete the 0(#)

solution. After the secular terms have been removed, the equation for B1 becomes,

for Imk 0 _ _:
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2 7 0 YO

_ + __ b__. B1 + (v0 2 +_'KP) ¢1
b_b02 1 8 b_O

7 o

= - _- ¢01 ((k0 + 2Kp) sin _)0 + cos $0 ) e )`050 + conjugate (24)

The solution of this is

¢1 = Re [¢11 ($1)e)'0@0 +_¢01 (A1 sin _)0 + A2 cos _0)e)`0_0] J (25)

where

i

k0 + 2Kp - 2i Im )`0 1 "r ()'0 + 2Kp) 2i Im )`0

A1 - ),0)2 ' A2 ffi ),0)21- (2Ira 1 (2Ira- _.

or recallingthat¢01 = ¢02 e),l_bl'the solutionso far is i "

[ ,o ]",_ ¢1 = Re ¢11(_)1) e k0$0 + -_- ¢02 (_2) (A1 sin _b0 + A2 cos _0 ) e )`1_1 e)`0_0 (26)
t

The order N2 terms in the equation of motion are (dropping the common factor

' _ of _2):
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52 70 5 + Kp f_2

: - 2 _b0_)_bI ¢1 + --_ B1 + + -- sin _b0 _ f_l{ 8 _i 6 _o
J

i + YOYl + -_-cos _b0 + Kp _- + Kp ,_- sin$0 _I

+_o +2 _o'r--_o +V+v_n_o °o
_bl2 5_boa_b2 b$'2

+ + "_-sin_0 _0
?

+ + 2YOU2 + cos _b0 + _ sin2_b+ Kp T + T sin_b0 + T (sin _0 _ "

[(2 T0_ 5Bll !_, = Xo+8/_1 i

I ,oo)l]o,0ol
+'-'o+_-:oo_+(':+(r r +

_02

2%v2,-_ oo_ .i_2*0+ Yl + _0 '+ _-

_I _0

+ Kp(_-_ + -_-sin$0 + -_.-(sin$0)2)),02 ekl$1 e)'0$0

,o[(,,,,o• + "_-B02 _'1+'_-+ "_-sine0)(0-0A1- A2)sin$0+ (k0A2 +A1) cos$0)
i

�O.Oo 'Ä2¨,A1 . , "_=sin_b (AlSln_0+A2co_b0 eXl¢lek0$0

ate _.......
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Considering now Im )'0 _ 1 (already have assumed Im )'0 _ ½)' the secular term is

__Bll_ )'1 _I = _ 2 i Im )`0 E0 e )`l_bl (28)
\ _l_1 ['_l_2 + )`2 +

#

where )'2 is the 01_t2) term in an expansion of the hover root, i.e..

)CO+ti)`l +"2)`2 - "_16+Iq/y2+KP8 _- 16 +0(It3)

t

Regarding this is an ordinary differential equation for Ell in terms of $1' the RHS is a +

constant times the homogeneous solution. In order that the solution be uniformly valid,

i.e._ , that Ell be no more singular than E01, the secular term of _this equation must

also be set to zero. _he result is a differential equation for E02 in terms of _2' which ; ,,

will give the root to 0(bt2): i

_E02 (_ _0 (7)2)`0A1 (7; 1) > !- _+ _+(_r + 7 +x_ _/_.,,_o__o_:° <_> i
"1' i

Thus the root is i

)` = X0 + bt)`l 2

= Xhover + hi21 ,V02" _" KP +:_K_'_2 + _/0 1
k

4Im_t 0 (1' (2ImX0)2) KpI'6i'_0/

To order _t2 this result is

# .z.;2 (1.it _8 _" icr,,+() t) 8• x:-_+i +<_+_ xr" _s _ _2_ _ _3o_
i " " Kp •

_a'' "
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Thus to order #2 the roots for most _/0 and Y0 (away from Im k = _ or 1 that is) are

just the hover roots with an 0(# 2 ) change in the frequency. There are two effects of

# ; the first corrects the term _/8 Kp in the hover frequency to properly account for

, the average of KpM 8, i.e., multiplies this term by the factor (1 + #2). The second

" ; effect, that in the last term of the frequency, is entirely due to the periodic aerodynamic
i

coefficients; this is the first effect of the periodic coefficients seen in the mlalysis,

: except for the critical regions near Imk = _. Typical root loci for varying #, con-

structed from Eq. 30, are shown in Fig. 2. These are the loci that are not near

Im k = _ or 1; the freque._cy cha_ge is small even at # = 0.5. Equation 30 may also

be used for the branches of the root loci on the real axis when the quautity under the

, . square root sign is negative (i. e., for _, large enough). There are two real roots then,

I the (+i) in the frequency becoming (_1). A point on the locus of special interest is where
i

c,ne branch of the locus on the real axis crosses into the RHP, i.e., becomes unstable ,,

-- (see Fig. 1). The criterion for this divergence boundary is that k ffi0, or

2 2 - 8_ Kp + 4Kp 2

, To order #2 this becomes (since _/8 Kp must be an 0(_ 2) distance from 2)

16 + 4 '

. _ e,__. N
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_ cr

=_u2 + 2 16 16 + y--
(I+/2) 8_Kp 9 _2 (31)

16 +_

I

The effect of /_ on the RtlS (due to the periodic coefficients) dominates that on the LHS
w

: (due to the average of KpM_ for all values of 7 and y. Thus the critical value of

negative Kp, beyond which the locus lies in the LHP, is actually increased by increas-

, ing _. The criterion from the hover case is conservative then; this is the opposite of

, the conclusion that would have been reached from a consideration of the averaged

[ ":

coefficients only.

If _0 + 2 i = k 0 then the periodic coefficients contribute to the secular term; '

: _0 + 2 i = 7,0 means that v0 and 70 are such that

Im kO =1 I

i or !

Thus there will be an 0_ 2) critical region where the hover root is near Im ). = 1 The

0(1) root in this case is

70
x0 = i

J

J
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a= The secular term for the equation for /302 is then

11 ,o ,o1
o-o-1/1,o

, Kp/T0_2 ] -

i The first term on the RHS is the same as the RHS of Eq. 28 (with Im X0 = 1). Unless

k 1 is real, so that _1 ffikl' the secular equation for _02 will therefore be exactly the __!

I same as above (Eq. 29). Recalling that _
. _

'1 '11.'0 ) :_"

_'1 = - G (_'0i+ImKp)_.0- p01_l = ""_T1+ i _'_ _Im+ KP_0+ lj0vl :{"

Im k 1 = 0 requires

"i ,_(,0_2U0Ul-T'_ Kp)=0

{

I This is recognized as a line of constant Im k; since it goes through Pl = _1 "O, it is

i Just the Im _. - 1 line to 0(_), and It is to only the case
therefore sufficient commider

I_I = _I = 0 (So)'I = 0 also). Then the secular term in Eq. 32 is

-

i _,_ _,o_ _,

+ - +iKpsi_+i -3 i6+_jp+ 2=0 1831

=--- 0.. -_......... _ "_ ....... _...... _ . - ........ _ _ -,-T _ ,.._..
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The solution depends on

D2 _'0 _2 _02 - "_-Kp + 4Kp 2 _0= _-_ _-_o_ + i_ -_P

- +_-_:- >K + - - 2K _34_

The behavior of the solution near the critical region is similar to that near Im _'0 = ½"

The boundary is given by D2 = 0, which gives a narrow band, of width 0(D 2) here (as

opposed to 00_) for the Im _'0 = _ case), about Imk = 1. Outside the critical region

(D2 > 0), the damping is the same as the hover root mid there is an 0(D 2) change in the

frequency; at the boundary of the critical region the frequency reaches 1/rev. Inside

(D2 Oq_2) , ,,the critical region < 0) the frequency is fixed at 1/rev while there is an
J

change in the damping, with one root becoming less stable and the other more.

- The boundary of the _rltical region (D2 = 0) is
4

_'0 i

, This is a line parallel to Imk = 1. The terms on the LHS give a line parallel to

Imk 0 = 1; the first two terms on the RHS give the correction required due to the 00_ 2)

change in the frequency found above (Eq. 31), so the line is parallel to Im k - 1 for the

basic root to 00_2). The last term on the RHS gives the width of the critical region; so

the critical region is an 00_ 2) band around Im k - 1.
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r'-

_ D2'
The maximum stability change occurs for the maximum negative value of

i.e., at

i

-K "_ V0U2 U02- 8_KP+4KP 2 70} - =- _ + Kp _ (36)
J

¢ 0_ 2)which is just where Im _, = 1 for the basic root (the hover root plus the correction

_ to the frequency). At this point the root is
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Let (A),/16)= _t2 _'2,/16),so ),= Y0 + AT; recall/0 isgivenby the requirement

Im )'0= 1;_ must be such that A7'/16 is 0_ 2) small, i.e.,_'must be such thatthe

hover locusis an 0_ 2) distancefrom Imk = 1. Then

.. _2 D)2=\16\16- - C2)2

where

(T0_2 2 Y0 4Kp2 >
- -_- Kp + T 0 !

C1 = -\ 6 / 12 + Kp -_

,oc,o,)']'C2 =_'2 + 9 \16 - "9"X'_- 2K . "l

The critical region boundary is cros_ied when (_2 D)2 = 0, that is when

2 2 16 x 16 - K 2 2

=/_corner = C1 iC 2 =/_1 ' _2 (40)

for the _ locus, or when

16 16 y,., 16 ' 16
; . _'_ - Kp

I •

I Kp)_( _ 2//_12)(1 _2//_22) '

for the y locus. Then the root locus is given by

).= - + i - iklel_,le" 1 - (42) |

• i
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I
i or

i X= - _'+f-J16 2 JC 21 - C2 2 vf(A_/A_I - 1)(A_/A_ 2 - 1) (43)
t

, i The (-1) in the last term in X becomes 1_:1) inside the critical region. These results

have been used to plot in Figs. 1 and 2 typical root loci near Im X = I for varying _'

and /_.

Flap Rate Feedback

The use of flap rate feedback, KR = 0, does not change the behavior of the 4

solution qualitatively. The hover root becomes

' _'0 ffi"_0 (1 �KR) + 1 2 + T Kp "L 16 (1 + KR (44)

and there are c,:ltical regions about Im )'0 "_ and 1 again. The critical region boundaries i

- and s_ablllty degradation depend cm KR now. It is necessary that KR > -I for the hover

root to be stable, but KR > 0 will be the usual case anyway.
!
4

- p Plane

The results of the small u analysis may be usod to plot lines of constant Re _, and
t

Im _. on the T -/_ plane. Typical results are shown in Figs. 3, 4, and 5 for I_ = 1.0

and Kp = 0, 0. 1, and -0. I reape_dvely. The critical reginnm appear in the T-/_ plane

as regions in which Im k Is coutsnt (_/rev or 1/rev); they are indicated in the figurem

by the circled values of lm _. (the region where Im k - 0 is where there are two real

roots, not a critical region). Then flguru a,"e interpreted as follows. A horizontal

line 15 a line of constmnt _, and eo am _ varies it gives the corresponding value og Re _.

i.
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and Imk as a _ root locus does. Similarly a vertical line is a constant /_ line, and

so gives k as a function of y just as a y root locus does. For example, consider a

horizontal line in Fig. 3 (Kp = 0) _Ath y = 8, i.e., 7/16 = 0.5. As _ increases, the

line rein _ains parallel to the Re k = constant linos so Re k remains fixed at the hover
?

value. The Im k = _ region comes closer to the horizontal line as /_ increases, which

means that Im k moves toward _/rev. Eventually the constant y line crosses into the

Im ), = _ region; then Imk is fixed at _/rev while for each point in the region there are

two values of Re k, giving the damping for the two branches (one more and one less

stable than the hover root). This behavior is just that seen already in the /_ loci

(Fig. 2). Figures 3, 4, and 5 may be compared with similar ones in Ref. 2, which

were col, structed from numerical calculations; on the basis of this comparison, the ,

2) analytic results are quite accurate up to _ ffi0. 5 or so. There is some discrep-

ancy between the results for the Im k = I region however, particularly with K_p = -0. i, _.

_ although the change in scale (Ref. 2, shows results out to _ = 2.5) exaggerate the differ-

ence. For p exactly 1 the analytic results indicate no Imk = 1 critical region if

< 0 (for _0 = 1, Eq. 35 shows that the critical region at T0/16 = 0 has zero width

unless Kp = 0); but only a slightly larger I,, (for example v = 1.01) is necessary to get

a sizable critical region with Kp = -0.1 (see Fig. 5). The analytic results show the
!

v = 1 case is a very sensitive one for small y, and it is unlikely that a numerical ealcula-

_ tion would treat the case accurately, 0[ course an actual rotor will always have p at
|

least slightly greater than 1, so the numerical calculations would be reliable then;

furthermore, the discrepancy may almo be an indication that tor very small y the

analytic results are act valid out to as large a p as they are for more retmoaabls y. [

t
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In any case this discussion illustrates the kinds of problems that r._ay be hidden in a

purely numerical solution; '_.heycan only be found and studied by _nalyti -_procedures

(which at least tell where to look for problems).

I

Reductz" s to MathieuWs Equation

The equation for rotor flapping stability may be studie.] by con_,erting it to

Mathieuts equation; Matbieu's equation is an equation of the form

d2 +(a_2qcos2z)y=0
dz 2

It is the classic example of a differential equation with periodic coefficients, msd the

functions s_tlsfying zt (the purely periodic ones are called Mathieu functions) have been

well studied and documented. To transform the flapping equation to Mathieuls equation

it is first necessary to remove the _ term; flus is done by the sube_tution .r

_=ye i
t

This is equivalent to separating out the hover damping from the solution. Then the {

classic instability regions of Mathleuls e_uation (for certain values of a verRus q) are

just the crlt/cal regions without the large (stabill_.,Ing) hover damping. To get the flap-

' ping equaUon in tt-e requi,'ed form it is also necessary however to noglect all O_ 2)

terms; when this is done one obtains (with Kp ffiKR = O)

i .

IW
i
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and

2z -- _ +tan -1Z
8

Thus using Mathieu's equation implies only an O(D) analysis. There are of course

classical techniques for handling the more general equation with periodic coefficients,

of the form

d2y + f(2z) y =0
dz 2

which is called Hill's equation; f(t) is a general periodic function with period T = 2_.

These techniques could be used to study the flapping equation, to all orders in /_.

However these general techniques are all unsatisfactory in that they tend to obscure the

physics of the system being studied, both because some transformation is necessary to

arrive at the required form of the equation, and because using standard solutions or

formal calculation techniques means the great amotmt of information gained in the process

of deriving the solution is lost. Furthermore, the classic treatments have only con-

sidered a singledegree offreedom system, so thatthey are notimmediately applicable

to more general problems.

The Small 7"Case _!,'j

i Consider for the small )_ case the flapping equation with both proportional and :_

_ rate feedback. Now /a is arbitrary, so the general equation is considered, of the form
¢

_+ Y2 _=T F.(M_ - KRM0) _ + (M_- KpM_ _] (45)
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where the aerodynamic coefficients are functions of D and _b (periodic in $), and

include the effect of the reverse flow region (see Eq. 1). The small parameter is the

Lock number 7. The perturbation technique to be used is the method of multiple time

, scales. The solution will be examined primarily to 0(7).

: Zero Lock Number

In the absence of aerodynamic forces, i.e., the limit 7 = O, the solution is

=Re eiV)

so the roots are

_' X = i V (46)

,_ and its conjugate; i.e., the solution is an undamped oscillation at the rotating natural

, frequency of the flap motion. With no aerodyna_dcs, there is of course no effect of /_.L

This result for the root agrees with the low lz result for 7 = 0 (see Fig. 1).

x,

Expansion in _' :_

i Using the method of multiple times scales, write :,:

: '

•• __.,_
o

,._:_

_ ,

, o t .-....... T .----_--_.:.:.-'_':-_.:_'_,,..""_. ",
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and then expand f3 and _o/cp_bas series in y:

= _0 ($0' $1' "'" ) +'7 B1 (_0' _1 .... ) +""

Also expand the free parameter v as a series:

U = UO+'Y Ul + ...

Order 1 Results

To order 1 the equation is

_2 '

-- J30+ Y02 _0 = 0 (47)
a¢o2

The solution of this equation is

_ _0 =Re 1 ...) e

the roots are

)'0 = i u0 (48) _

' _

and its conjugate. This solution is of course Just the _ = 0 limit. _
t

: Order _ Results

i The order _, terms in the differential equation give (dropping the common factor t
i: t

of y): Ii
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o 2
o 2

20l +vO _1=-2 _O-2VOVl_O

°

I

_01 iPO_bO

= - 2iV 0 _-_-1e

+ [-2UOUl+(ME-KRM_ iUo+(MB-KpM_] f301eivO_bO

+ conjugate (49)

" Now expand the aerodynamic coefficients as complex Fourier series:
f

' E n in__:_' ME = MEeL

C

where

" 2_

l--J" e-in*
$/ M_ = 21t0 ME ¢p_ :_

_ and similarly for M_ and Mo. ,

} If -u 0 + n _ u0, t.e., u0 ¢ n/'2 for any integer n (t. e., Im _'0 not equal to a \s

multiple of {_/rev), then the secular term has no contributions from any harmonics of _;_

_._
the aerodyhamic coefficients except the zeroth harmonic (the average over the azimuth); i'_:

setting the secular term to zero gives .a

+ iUl _ _ 0 _0_, B@1 _ - KRM + M - KpM _01 = 0 (50) _
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The solution of this equation is

f i /0 00)]
_01 = EO2(_b2... ) e (51)

I

- and the solution for _ is

{ }=Re802e%_ _ +o(v) (52)

The roots are

t

and its conjugate. Before proceeding further, it is noted that for the particular aero-

dynamic coefficients considered here many of the harmonics are zero. ActuM calcula-

tion of tbe harmonics or symmetry arguments can demonstrate that

_, lc 2s 3.c
!: M_=M_ =M E =... =0.{

}i 0 ls 2c

_,_: ME =M E =M E =... =0 153)

t

!_ lc 2s M3C = 0 '
_ Me =Me = e =''"

'_ 0
_i (the superscripts relate to a cosine/sine Fourier series). Using the fact that MB = O,
_,_,

,_: and alsothatto Off)y = y0 + 7y I, the rootbecomes i

¢

_7_ 0 _
i k ffi M - +, 1 + 154) )

_"_ "_.... ........ t¢% ...... t ......... =" :_"" *"
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-- Flap rate feedback only effects (to 00')) the damping; the real part of ), may be written

L

[
0 0

The ratio -M_/M 8 determines the relative effect of KR; this ratio is shown in Fig. 6

_ as a function of g. This parameter is a positive number, which varies little with _

(from 1 at _ = 0 to _ at _ = _, with most of the change below _ -- 1). The negative

0 0

ofthisratiogivesa criticalK R, sinceitis necessarythatK R > K R = M_/M 0• crit

in order thatthe system be stablefor small y. K R > -_ insuresstabilityfor all

(to 0(_) and with V0 # n/2); for very small _ the criterion is KR > -1, which agrees .-

_i withtheresultfrom thehover root(Eq. 44). For K R = 0 the rootis "

,:. x=- SM +iu + 8M (a5)
-e-

j:

_: The aerodynamic coefficients (-8M and (8M are always positive; they have the

;,, vMue 1 for N -- 0 and are asymptotic to 8/3_ N and 16/3_' _ respectively for large _; _

ii" these coefficients are shown in Fig. 7. To order the root is _

),=-1_66+iu 1+16- _" (I+

00 21,; which agrees with the Off) expansion of the small g results for ). (to but with _:,:

_: Im A0 / _ or 1). !)

The root loci for varying _ and varying _ are shown in Fi_I. 8 for Kp = I,

i"!_i KR = 0, and u = I; the locus for Kp = -I is obtained by reflecting this locus about the

"'_'_f._, ................ _ F _ .-_-- ......... ._ ._ ,._-"_r-_, ....
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Im ), = v line. The locus for Kp = O is difficult to plot since Im )_= v for all T and /_

(to order 7); it may be visualized by projecting the Kp = I loci onto the line Im k = v.

These loci should be compared with the small _ portions of the curves in Fig. l, which

are for small /g. In Fig. 8, the _ locus for a given /g starts out at )k = i v always, andl

is a straight line with slope

Im _ Kp I
0 0

Re ), Y _ M_/M 0

which varies from -Kp/V to -2Kp/Y for D from 0 to _. The step size on the _' locus,

for a unit change in _'/16, is

M �8M,

which varies from

+ 25 8 _1 4 (Kp/Y) 2

for D from 0 to I to ® respectively, The D locus for a given _ starts out vertically

from the _ = 0 line, and is asymptotic to the _ = ® line, with the step size on the locus

for a unit change in D increasing as D increases. For reasonable D the locus does

not vary much from the small _ results. An 0('t) analysis can only obtain the slope of
?

the _/ locus at _/= 0, so the locus is a straight llne, as found above; to find the curva- _

ture effect it is necessary to go to order _,2. The significance of the curvature (00_2))

may be judged from a comparison of the _' locI of Fig. 8 (all _, small _,) and Fig. 1 i

(small _, all _/); on this basis the small _ results should be limited to _/16 = 0.2 !

• t
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or less. On the basis of neglect of the curvature effects _lone the results might be

accepted to higher _,, but the 0_) results will also be limited by the effects of the
\

critical region, which will be examined next.

,. The discussion of the 0(_) analysis has so far only been concerned with the basic

roots, meaning the roots away from the influence of a critical region. In this problem,

the criterion for being away from a critical region is that v 0 _ n/2 for any integer n;

this may be written v _ (n/2) + 0_), i.e., the rotating natural frequency may not be a

distance of order 0(y) from (n/2)/rev. Since V is aLnost always just slightly above

1/rev (V = 1.2 ",vould be very large for a rotor; it would require very stiff blades and

thus also mean high blade loads) this criterion is seldom fulfilled, and the critical regions

may be expected to dominate the root loci behavior for small _. Furthermore, if Kp

} is large enough positive or negative, the basic locus will also cross Im X = 3/2 or
_v!\ ,
_ for _/16 still small (see Fig. 8), so these critical regions may affect the loci even if

i the Im X = 1 region does not.
L

If - v0 �n= v0 for some integer n, then the higher harmonics of the aerodynamic 'i

coefficients contribute to the secular equation, and there arise critical regions with _

behavior of the root loci similar to that encountered already in the small N case. The _,

criterion -V 0+n=v 0 means u0=n/2, i.e., V =_0+Tvl +''" is 0(T) froma

multiple of _/rev; the only cases likely to be encounteref for rotors are v 0 = _, 1, and

3/2 (n = 1, 2, and 3). Only the case KR = 0 will be _ :_idered for now, and use will _

also be made of the fact that M_ = 0. Setting the seculm term in Eq. 49 to zero gives _

then
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, KpM)
+ _'M]}+ M -KpM BO1 =0 (56)

I

where recall that Mn is the nth harmonic in the complex Fourier series expansion of

the aerodynamic coefficient, and n is here given by n = 2_0. For this equation

= _ 1 n _ Kpl_ e _0D2 +-- M 21M_ -i (57)

1 2Uo (2Uo)

Recall that for the aerodynam_.c coefficients considered here, either the cosine or sine

term for each harmonic is zero (Eq. 53), so this parameter may be written

Kp M0_2 _ 1 n 2

For n odd, M_-iYol_ =_._ _ -v 0 M O=-_M 0 ; for n even,

n M_ i/'ns nc) _ ncMB - iV 0 = - _LM_ + v0M _ and = t M0 • The boundary of the critical region

is given by D2 ffi0; outside the region (I)2 > 0) the real part of ), remains at the basic

• root value 0'/2 M ) while there is an 00") change in the frequency; inside (D2 < 0) i

! there is an 00_) change (both positive and negative) in the real part of ), while the fre- !

i D2 (2YOtlI Kp _ '; quency remains fixed at (n/2)/rev. Constant means + M = constant, or

; _..._V= -Kp 0 I

i _" _ Ul = 2U0 M0 I,

i '1
i
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" Compare this with the slope of the basic root (Eq. 55) when Im ), = constant:

K

Imk=v-t Z--p 0
2 V MO = constant

I_ SO

bY -Kp 0

_ly= 0 - 2v 0 MS

So the ccitical region is a narrow band, of width 0(y), around Im )k = (n/2)/rev. The

boundary (D2= 0) is

: -Kp_ 0 2_0 _/_I_ 12 Kp21 el 2": :_"e _ - i_oM_ (,_)

The maximum stability change occurs at the center of the critical region:

•- Kp 0 _:_

Yl = - 2V0 MO .

which iswhere the basicrootwould cross Im ),= v0 = n/2; therethe rootis ',_,

)k=iVo+ M _YDmax i_;_':

7:6:'

Inside the critical region the frequency is fixed at v 0 = n/2 whim there is an 0('/) change _

in the damping. The damping of the basic root is itself Off) however, so In contrast to :_i_the small /_ease, thecriticalregioncan here leadto actualinstability,not Juststability

i
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degradation. In general the roct is given by
i[

).=iy 0+ M_ +iyD (62)

, Let AV=yPI, so Y=y0 +Av=n/2+Ay and v must be such that Av is 0(7) small,

i.e., an 0('/) distance from (n/2)/rev. Then

Z 0
), = i YO + 2 ME

t 2

+i

- \zu0 - i +Y0 _ Kp2,Mo, / (63)

Far outsidethecriticalregionthisresultapproachesthe basicroot(Eq. 55);however

forthesmall y case itisdifficulttogetfar away from allcriticalregions,since

1_ which isnotvery small. The criticalregioniscrossedIAPI = Iv- n/21 isat most 4'

when y D = 0, i.e.,when

2Y0Av

7 = 7c°rner ffi 0 _M_ 2 n 2 =71'72 (64)

So the _ locus is given by

), = iV0 + M + iAy4_l -T/T1)(1 -y/V2) (65) _.i.

Inside the critical region the (+ i) in the last term in ), becomes 1_ 1). The /a locus is it

best found from Eq. 63 directly, since the harmonics of the aerodynamic coefficients i

are rather complex functions of _.

_,,._, ......... t ---"_-_,,_-..... ." .. .... 7 __'L_. "'
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The _ loci show the behavior characteristic of periodic systems, apd familiar

from the discussion of the loci for small 1_. For small 1_, Re k is fixed at the basic

root value while the frequency moves toward (n/2)/rev. For v near 1 and small 7,

,_ the locus moves toward Imk=l for small Kp, toward Imk=3/2 for Kp= 1 or so,

! and toward Im k = _ for Kp = 1 or so. For some i_ the locus crosses the boundary of

the critical region; at this point the frequency has reached (n/2)/rev. For larger 1_

Im k remains at n/2 while the effect of the critical region is to decrease the stability

of one root and increase that of the other. The maximum stability change occurs at the

center of the critical region. The center is reached when (see Eq. 60)

n Kp Y--Ala - la - _+- - n-_ 16 18M (66)

! The aerodynamic coefficien_ (SM is a positive number greater than 1 and monotonically

increasing with N; it is shown in Fig. 7. If Kn ¢ 0, this criterion will always be satisfied _

for some 7/16, so the 7 locus always reaches the center (just as the 7 locus for small

, /_ always goes through the center -- see Fig. I; however in this case the value of 7/16

required may be outside the range of validity of the solution if Kp is too small). For _
i

the _ locus, again if Kp _ 0, the center will be reached for some _ provided AU has i

the same sign as -Kp, and IAvl > [Kpi/(n/2) 7/16. However, if Kp = 0 the center is i

never reached for either the 7 or /_ loci unless AV--0, i.e., v is exactly n/2; in !

that case the locus ls always at the center, since the frequency of the basic Ictus is fixed

at V = n/2 then. This discussion has Just been a more quantitative examination of the

criterion that the center of the critical region Is reached when the basic root would have

crossed lm k = n/2; it is illustrated graphically in Fig. 8 for Kp - 1 and n/2 = 3/2.
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As such, the criterion is limited by the fact only an 0(7) analysis has been used; the

curvature of the root loci due to 0(72) effects can be quite important, particularly for

small Kp. For example, for Kp = 0 the basic locus has a slope of zero to 0(7), i.e.,

, Im X is equal to g for all _' and #, and in general for sm_ll Kp the 0(72) change in

the frequency will be more important than the 0(7) change. An 0(72 ) analysis would

change significantly the conclur.ions about whether the center of the critical region is

reached under certain conditions; for example, Fig. 1 indicates that with v s!_htly

greater than 1 the _ locus (for small #) would never cross Im _ = 3/2 for Kp = 1

while it would always cross Im _ = 1 for Kp = 0, just the opposite of the conclusions

indicated by the 00') results (Fig. 8). In any case, since the maximum stability

change occurs at the center of the critical region, it is useful to examine it as a worst

possible case, which may perhaps be approached but never reached fe.r certain values

ofl_.

Returning now to the behavior of the # locus, the maximum change in the damp-

in_gfrom the value of the basic root Is (Eq. 61)

The contribution from the basic root damping, _/2) H_, is always rA_ative 7); i
/J

as for the small # case it is 0_), but here that means the basic damping is small. In

fact it is the same order as the critical region contribution, so the destabilized root i
t

: 1
0 may be actually unstable, rather than just a small perturbation from the basic damping i

as for the small _ case. The behavior of the locus depends on the relaUve effects of

i
'!
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0

ME and the nth harmonics of the aerodynamm coefficients under the square root in

Eq. 67. For mr, st eases the critical region effect dominates, so that as _ increases

it eventua!iy reaches a critical value, at " hich point (for the case of the maximum sta-

bility change) one root crosses into .... RHP, i.e., becomes unstable. From Eq. 67,
I

it follows that increasing (Kp) 2 (Kp either positive or negative) always increases the

effect of the critical regions, which means decreasing the critical- _ for which the ro_,t

becomes unstable° Thus the critical N is _ function of Kp, for each of the critical

regions; this function may be found from Eq. 67 by setting Re k = 0 1the requirement

for crossing the Im k axis). Si:me the aerodynamic coefficients are rather complex

functions of /_, it is more convenient to find the critical [KpI as a function of u:

: This may be regarded as a maximum IKp[ for a given _; for large IKp _J_elocus is

'., in the RHP at that /_. These boundaries of Kp! versus _ are shown in Fig. 9 for

Im), near _, 1, and 3/2. With the exception of roots near Im ), = _ (which requires

Kp < 0 since U is :'ear 1) with _. above C. 5 cr so, Fig. 9 shows the criterion on IKpI

_ is not very stringent; a value for IKp[ of 2.0 for example is quite large, correspond- :_

ing to t53] = 63.a degrees. Figure 9 shows also that _mar Im), = 1 the roots are always _/

stable, regardless of p, ff [Kpl< _/2:, the Iocl may _ expected to be near Im ), = I :_

for zero or small lI_pl. In terms of the _ locus, this means that as /_ increases the t_,

locus does not cross into the RHP. Just after the locus crosses the critical region

__

boundary, the effect of the critical region is seen and one branch moves to the right and __
L -

_ . o.
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the other to the left (as do the loci in Fig. 2). As D increases further however, the

damping of the basic root (which is always stable, and increases with /_) eventually

domia_-,'.es the effect of the critical region, and the root which was becoming less stable

turns around before reaching the RHP. So for larger _ both branches of the locus willI

be moving to _h_ i_/_, i.e., becoming more stable as _ increases. For the root loci

near Im= _ or 3/2, the effect of the critical region remains dominant, and so one root

e_entually crosses into the RHP as D is increased. The critical D is considerably

lower for Im= ½ than for Im _, = 3/2. This points out an undesirable feature of negative

pi*.ch flap coupling, Kp < 0: not so much that it reduces the critical D, bu¢ rather that

it moves the basic root nearer to Imk = _.

Flap Rate Feedback

The use of flap rate feedback, KR _ 0, results in no qualitative changes in the

behavior of the loci. K is however a useful design parameter; it may be used forR

example to rals_the critical D or ]Kpl°

Evaluation of the Order _ Results

Numerical calculations were made of the D root loci for moderate and small

values of _. On the basis of a compariscn of the numerical and analytic results, it

is concluded that the small V analysis to order 0(7) is useful only for truly small 7,
i

e.g., 7 = 2 or 3 (_/16 = 0.2 or so). Problems are encountered with both the basic

roots and the effects :_f ,*he critical region. The basic root to order )' neglects the _

curvature of the _ locus, which is especially important for zero or small Kp, since i

0(72) ithen the change of Im _, for small _ is due more to terms than to the 00 _} term.

: I
....... ,[-.- v - - -
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For example, a '_ locus based on the Off) analysis would start out (_ = 0) at the

wrong point, the error being tke difference between the circle giving the exact 7 locus

at _ = 0 and a line tangent to +i_ecircle at 7 = 0 (see Figs. 2 and 8). The damping of

the basic root is 0(7) always, no matter what order the analysis is carried to; e.g.,
I

the 0O_2) results give Re k = - 7/16 for all y. But while the basic damping is 0(7),

Lhe contribution te the damping due to the critical region will have terms that are 0(72).

Thus for large enough 7 the conclusions in the discussion above of the effects of the

critical region on the D root loci will not be valid, since they depend on the basic and

critical region damping being of the same order in 7. In particalar, the behavior of

the locus in which the root being destabilized by the critical region turns around and

_ becomes more stable due to the eventual dominance of the basic damping is not possible
_ ",

0(72__: except for very small 7, for which . effects are in fact negligible. Indeed, it was

_ found in the numerical calculations that with 7 = 6 (7/16 = 0.375, i.e., not very small),

:_ v near 1, and Kp zero or small so the root is near 1/rev, that the /_ Iocus does not

: turn around but rather eventually crosses into the RHP. The stability boundaries given
P,

in Fig. 9 are only valid then for truly small values of 7/16.

' Order 7 Results

_o To carry the solution to order 7", it is first necessary to finish the order 7 ,:

i solution. Considering only the case KR = 0 and Y0 _ n/2 for any n (t. e., the basic

_' root), removal of the secular term from the equation for _1 leaves _'_"_'i:

_ _2 + n)

i!" -- _I + B1 ffi PO M_ e

+ oonJugaSe (69)

.... _ ,,. r-" _ " ' '
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The solution of this equation is

_o*o Mi_0 �4_ %%+"]
_l=Rel_ll(_b 1...)e -f]01 n_0 n2 + 2v 0 n e (70)

I
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The secular term is, since v 0 i_ n/2:

)`l_l 5fl02 + 2

_---- _ ki]911 = _2iY 0 5_ 2

its secular term is

'- Regarding this as a differential equation for Ell in terms of _)1'

5fl02 (75)
----- - )'2 f102 = 0
_$2

with solution
k2@2 (76)

flo2- flo3%'" ")e

where
y

i k2 = - 2 i Y0

r ' 2Yo _- "_00 Kp M0 - 2y 0

Thus the basic root, to 0if2), is

)` = k0 +V)` 1+ T2 k2
t

= 2 2Y 0

2 X .o.i_M?)+ - "_ 2
2 i_j_.rOY2 vo_PM0 \2y0 _2Y 0

(Kp/v)z
= + i Y + KpM0" 8v2 \ _ ..... T = ..... _ - ----_

• ___._ ---'_--__ .. •
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As reported above, there is no 0(72) change in Re k, and the 0(72) change in the fre-

quency is dominant for small Kp, indeed for Kp = 0 the only change in the frequency

is 00'2). To order D this root is

/- ),=_.Z_+iv I+:L--P _ 1 1 (
2 1 _ +_ y/J16 16 y 2u2

which checks with the expansion to 0(V 2) of the root from the small /_ analysis (the

hover root for 00_)).

2
The order 7 results would significantly alter the plots of the basic root loci

shown in Fig. 8. Extending the results for the critical region to 00 ,2` would be much

more involved because of the greater complexity of the solution for fl01(_bl) when

U = n/2.
0

The Large _/Case

For the larg_ 7 case, consider the general equation of motion, of the form:

_j'+ 2 fl=y [(M_ - KRM{_ _ + (Mfl- KpMO fl] (78) :

The small parameter in this case is the inverse of the Lock number. For 7 very large,

the aerodynamics dominate the system. For ), = ® the inertia and centrifugal spring _

terms (the LHS of Eq. 78) are negligible, leaving a first order system which does not +_

_, depend on y, namely

i!: (M_ _ + fl ffi0 (79)

- KRMs) (Mfl- KpM e)

'r-_ .... _-_" t .'_ -__ _'_ '"2............ 27 ..... 2_...... _ __---__.. ....
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Reduction of the order of the equation of motion when the small parameter (1/7) is set

equal to zero is a characteristic of a boundary layer type of problem. The solution of

the reduced equation is valid over most of the range in $. As a first order equation

however, its solution can involve only one free constant; thus it is not possible to start
I

the solution from the two general initial conditions allowed for the original second order

system. Furthermore, at certain points the solution of the reduced equation will exhibit

singular behavior, indicating that the assumptions used to derive it must be reexamined.

In general, there must be narrow regions in which the higher time derivatives are very

large, so that inside the region the inertia terms are of the same order as the aero-

dynamic terms and may not ;_eneglected (other simplifications of the equation of motion

are often possible though). L° such a narrow region is used to connect a solution of the

reduced equation to two initial conditions it is called a boundary layer; if it is used to

co_mect a solution of the reduced equation to another such solution on the other side of

\ the layer, it is called a transition region. The solution of the reduced equation is called a

, the main solution. More general terminology is inner and outer regions, and inner and

outer solutions. Because the procedure for connecting the solutions in the inner and

N

, outer regions is central to the analysis of boundary layer problems, the entire analysis _

' technique has been named the method of matched asymptotic expansions; the name _

; properly refers to the process of connecting the inner and outer solutions but is usually !_

} used to include the entire analysis. Many techniques may be used to find the main solu- i_

tions. Usually the technique used is a direct expansion of the dependent variable (_) "_!_

i: as a series in the small parameter (1/_). This technique is not satisfactory for the

i present problem because it does not yield a solution which is uniformly valid for all
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(which is required in order to find the roots); details of the application of this technique

to problems are given in Ref. 3. It is also possible to use the method of multiple time

scales to find the main solution. This technique is not entirely satisfactory either how-

ever, since the equation obtained to lowest order is just the reduced equation given by

setting 1/7 = 0 (Eq. 79). Since this is a first order equation, the solution gives only

one root, which to lowest order (i. e., for _ = =) is independent of _. The reduction of

the order of the equation means that one of the roots goes to -= as 7 goes to = ; i.e.,

the solution corresponding to this root is exponentially small compared with the solution

of the reduced equation. There is no way that the method of multiple time scales (as

described here anyway) can find this root. The perturbation technique useful for finding

both solutions in the outer regions is the use of a substitution of the form B = exp y$ pd '_,

followed by an expansion of p(_) as a series in the small parameter.

The large _ case is a boundary layer type of problem, which means that in general

there will be several outer regions around the azimuth with a separate expression obtained

for the solution in each region. Thus it will not in general be possible to find a single

solution, uniformly valid for all _b, from which the eigenvalues of the system may be

found by inspection, as was possible for the case of small _ or small :y. Instead it i

will be necessary to use the general techniques of the analysis of a system with periodic I

coefficients (as outlined in Appendix I). This entails obtaining the solution for one

• revolution of the rotor (one period), in pieces ff necessary, each piece valid in a

inner or outer region. First the main solutions must be obtained in theparticular

outer regions, but here it is necessary to find both main solutions rather than just the

ii solution of the reduced equation. Next the method of matched asymptotic expansions is
! I

\
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used to connect the main solutions across the transition regions, or across boundary

layers to initial or final conditions• Finally with the solution constructed over a corn-

plete period, the results of Floquet theory (see Appendix I) may be used to find the

eigenvalues of the system from the initial and final values of the solution.
I

Expansion in T

Consider first the equation with KR = 0; write

= exp _b P d_b (80)

and

1

P =?P-1 +P0 +TPl + "'"

SO

t

= p exp pd_

),

Substituting these expressions for _, _, and B into the equation of motion, and collect-

ing all terms of like order in 7 _ives (exp J'_ pdl_ is a common factor in the entire

equation, so drops out; the common factor of 7 n has also been dropped from the follow- _
)

ing equations):

0(72):p2_l=M_ P-I "_

Off): 2P-1 P0 + P-1 = M_ Po + M_ - KpM 8 (811 ::_'

2 V2 M_Pli, 0(I): PO + 2P-I Pl + I_0 + =

etc. !•

\
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The order T2 equation gives P-1 = 0 or P-1 = M_, which give the two main

solutions.

First Solution

'_ Tlle order y2 equation gives P-1 -- 0 so to order "/ find

M_ - KpM e

PO M_

and to order 1

_0 �_0_ "'_ M_ )
Pl = M_ - M_

Then the solution for _ is

_bMi8 - XpM 0

d_b

= _1 exp M_

- KpMF - KpMe-_2 )I
V2_(M_ 'i +(M_ M_ ,,,' -2

1 M_ d_b+ O_ (82

+_ M_

where BI is a constant.
I

Second Solution

The order y_ equation gives P-I = M_ so to order _ find \

M_- KpM e - (M_)"
Po =

'_rr_ --._-.e--,.,j_- + + --- ' 2' .... _"

..,. 'r""
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Then noting that

- (- Mi)--

'- the solution for _ is

IT * $ M_ - KpM e ]
I -- d_b+ 0(}'-1) (83)

wh_re 82 is a constant.

Eigenvalues --

From the continual appearance of M_ in the denominator, it is evident that a ,,

transition region occurs where M_ = 0. This criterion means a transition region

occurs where the damping goe_ through zero. Alternatively, ff M_ is near zero, the

_ _ term in the reduced equation (Eq. 79) is much smaller than the _ term, which implies

that the inertia (_ terms must be included in order to obtain a differential equation with

all terms of the same order; that is, there must be a transition region about the point A

where M_ = 0. As it happens however, M_ ($, #) is a negative quantity which never

2-1/3) _
reaches zero; in fact, 8M_ < - (1 - = -0.206 and even that value is never reached _

unless # > 0. 795; for # = 0, 8M_ = -1 for all $. Thus for the case considered _
:%

(KR = 0), the main solutions are uniformly valid over the whole azimuth, and it is not _i_

necessary to deal with transition regions and boundary layers to find the complete _

solution. }_
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With the solution over all $, Floquet theory may now be used to find the eigen-

values. Consider the first solution, to order 1.

Mfl - KpM 8- d_
' 0 M_
- _=_1 e

This may be written

2_

o Mh
a = a1 e (84)

where

M8 - KpM0 d_ 1 2,r M_ - KpM 0 d,_ "

0 0

Using the fact that the aerodynamic coefficients Mff M_, and M e are poriodic, it may

be established that f is also periodic in _. Now Floquet theory states that the solution,

to a differential equation with periodic coefficients may be written in the form

= B1 eMb u(¢) (85)

where _1 is a constant, ), is the etgenvalue, and u(_) is a periodic function (see

Appendix I). Comparison of Equ. 84 and 85 shows that the elgenvalues must be

f _d_ i

w
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This result may be easily extended for both solutions to any order in _ . Then the

two main solutions give two roots:

' 1 [2fl MB - KpM0

, xz---_j M-_----d_
- 0

2_ 2_

11 11 M_ -KPMO -.)'2= )__ M_ d_ + '2-_ M/} d_ + 00 ''1)
0 0

!i The symmetry of M_ and M_ means that ......

211' ,_

• 'd_=O .-

_ 0 _
_ a

i With this relation, the roots simplifyto

2_

IO MO
_ kl " - KP 2_ -M--'_d'* _.

2Zr /MB" KpMo¥ /M'0" KpMo_2 i

i I _-I_l +l.-L-,-r-_'l ,_

| _i +7_1 1 M_ d_+00" -_) (86)
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and

27 2Tt

1 I M_d$+Kp 1 I MOk2 = _'_ 2"_ - M'-'_-d$ + O(v-l) 187)
0 0

I

Thus there are two real roots, one 0.2) approaching -_ as _ increases to ®

(M_ is negative), the other 0,1) approaching a constant; )`1 is the root from the reduced

equation. This behavior of the T root loci is expected from the small /_ results; Fig. 1

shows that for large enough T the locus is on the real axis, i.e., there are two real

roots, one approaching -co and the other -Kp for _/-, =. To lowest order )'1 doe_ _ot

depend on y, because it represents the balance ef the aerodynamic damping and the

aerodynamic sprin_, only. The value of ).I/(-Kp) for varying #, and T = _, is shown

in Fig. 10; the movement shown takes place entirely on the real axis in the )' r_ane.

As for the small _ case (Fig. 1) the root is on the real axis, in the LHP if Kp > 0

and in the RHP -- unstable -- ff Kp < 0. The value of )'l/(-Kp) vari2s from 1 to 7/8

for _ = 0 to =, with most of the change between _ = 0.5 and _ = 1;, thus there is little

variation of the root with /_(to 0(1)). The size of the 00 _-1) ter,.a in )'1 is indicated by

the result for # = 0, which is easily obtained (since the aerodynamic cvefficients are

constant then) as

._L.1 1_2+Kp 2
"" Kp- /16 ; + °(v-2)

This result agrees with an O0_'I) expansion of the hover root fr ,m the small analyals.

| _ To lowest order )'2 Is:
2f

fJ%.r
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The aerodynamic coefficient -8M_ is given in Fig. 7. For _t < 1 it has the value

-SM_ = l + _4/8; for large _t it is asymptotic to 8/3?t D. This root becomes increas-

ingly nega_2;'e as y increases, m_d also as At i:_creases. The order 1 term in k2

is the negati--8 of the lowest order' (also 0(1)) term in k2; thus the behavior of this
t

term is _2so given by Fig. 10.

Flap Rate Feedback

When KR = 0, there are no transition regions because M_ < 0 al_'ays. With flap

rate feedback, KR _ 0, the same expressions for the main solutions are obtained except

that M_ is replaced by M_ - KRM0. The aerodynamic coefficient -(M_- KRMe) "-

can become negative over reginns of the disk for certain combirations of $t and KR;

:_ i.e., there may be negative damping over part of the azimuth range. When such regions

_ of negative damping exist it means there must be transition regions about the points

where the damping goes through zero. The main solutions obtained above are valid still

in the outer regions, but in each region there are two constants, which must be matched

through the inner region to the two constants of the next main solution.

The criterion for the existence of transition regions is that th_re be negative damp- _

, ing on some portion of the disk, i.e., -(M_ - KRM _ < O. M_ is always negative; M{) ;
%

is usually positive, but may be negative on the retreating side for large enough /z ._.

i (_ > 0. 641). If KR is too large positive, the negative values of M0 on the retreating !_

side eventually dominate M_ aa /_ Is increased, so there will be negative damping on

." the retreating aide; if KR is too large negative, KRM 8 eventually domlnatem M_ on _

the advancing aide and there will be negative damping there if _ is large enough. _:=;_,

n
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Quantitati:re values of maxinmm and minimum KR as aft, nction of # are given in

Fig. 11. For the cases with negative damping there will be transition regions (of

0(7-2/3)) near where M_ - KRM 8 = 0, which greatly complicates the analysis.
width

For these cases it is also expected that there will be other problems, including mate-
]

rial computation problems, physical control problems, and large flapping amplitudus.

The situation may be compared with stall flutter of a rotor in hover or forward flight,

where a limit cycle oscillation is reached with the negative pitch damping in stall

balanced by the positive damping below stall, resulting in high amplitude pitch motions

and large control loads. Thus while a region of negative damping does not necessarily

mean there is a flapping instability, it does mean that there are many problems --

analytical, computational, and physical -- so requiring -(M_ - KRM _ > 0 is a reason-

able design criterion. This criterion provides a maximum and minimum KR for a

given D. The limits of KR from this rule are much easier to obtain than actual stability

boundaries; and Fig. 11 shows that although conservative, it is not a serious restriction

for b_ less than 1 or 2. For large # it is a serious limitation (for large D,

KR _ 2/3D (1 + 7/12#) and KR -_ - 2/3D (1 - 7/12D)), indicating that Me
max sin

(blade pitch) is not very good for flapping rate feedback then. Time varying KR might

work better but it would have to be programmed with D probably. Although the deriva-

tion of this rule ha_ been based on the. large y case, the criterion of no negative damp-

,! ing has nothing to do with y, and so should be a reasonable criterion for all 7, Indeed, _.

the criterion KR > -1 for D = 0 is the same as from the small # case, where it is a

true stability criterion, and valid for all y.

1973005279-070



\

-67-

The Large # Cas__..._e

For the large # case the general flapping equation of motion, as given in Eq. 1,

' is used; the small parameter in this case is the inverse of the advance ratio, For #

I

_ : very large, the aerodynamics again dominate the system. When # goes to infinity,

the B and _ terms are arbitrarily large compared with the _° term because of the

influence of g in the aerodynamic coefficients. Thus this problem is also of boundary

layer type, and the solution is sought as for the large y case in terms of outer solutions

and transition reg"cns. When KR _ 0, the aerodynamic damping, KRMo, is the same

: order in # as the aerodynamic spring term, MB - KpM0, (namely 0(#2), see Eq. 1),

so setting 1/# to zero reduces the order of the system. The reduced equation gives

,: one main solution, and the other will be exponentially smaller (or larger). When

;,:-

_: KR = 0 however, the aerodynamic damping, M_, is of 0(_) while the aerodynamic&"

_i: spring, M_ - Kpbl 0 is 0{D2) (Eq. I),so inorder to obtainan equationfortheouter

_ solution with the proper ordering of terms it _s necessary to include the inertia term '

_; (¢) even in the equation for the outer region. That is, for # -- ® the aerodynamic )

spring must be balanced by the inertial force_% which leads to an equation of the form ::_

*o :

B+#c +#2Z ¢=0 188)

} ?,;
The solution of this equation is either a rapid stnusoidal oscillation with frequency of ...._

_: 0{D), or a sum of exponentials with time constants of 0_-I), depending on whether _¢'::_

" the aerodynamic spring is negative or positive (the criterion is a bit more complicated _i!-i¢_L

_- really, but that statement will do for the present discussion). Now the aerodynamic

spring changes sign in the middle of the advancing side and again in the middle of the ,Ji

,,,r._= ........ ,r*.._;_- :. t....... _ .... " ' -': "_: .......

B _
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retreating side, and at each point there is a transition region (of width 0(_-2/3)) across

which the solutions must be matched. There are also transition regions (of width

0(_-2/3)) between the advancing and retreating sides of the disk (i. e., around _b= 0 and

180°), through which the main solutions must be matched. Thus in contrast with theI

large 7 case, for large /_ it is not possible to find an outer solution uniformly valid

for all $. Rather it is necessary to go througl: the entire procedure of matching the

main solutions through the transition regions and by that process construct a solution

over one rotor revolution. Then the results of Floquet theory (Appendix I) may be used

to obtain the eigenvalues from the initial and final values of the solution. The procedure

for finding the main solutions will again be based on a substitution of the form

f] = exp _b pd _bwith p now expanded as a series in /_-1 The matching techniques of

the method of matched asymptotic expansions will be illustrated in the treatment of the

transition regions. The procedures required here are reasonsbly straight forward, but

in general the matching techniques can be quite complicated, particularly when solutions

are sought to higher order. The reader is directed to Ref. 3 for more details of the

method of matched asymptotic expansions.

In regions (1) and (iii) of the rotor disk the differential equation has the form

_'+y2_=_r7 +_sln +K R +_Dsin$+_(_sln_b)

+ cos¢ +7.sin +Kp 09) "i

e

: where r is a constant with the value +1 in region (t) and -1 in region (iii). Recall _.

.; from the discussion of Eq. 1 that region (t) is the advancing side of the disk, where the i
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blade has normal flow over its entire span, and region (iii) is the range of $ on the

retreath_g side where the blade has reverse flow over its entire span. As N -' _,

region (iii) occupies nearly all the retreating side, with the exception of 0_ -1) bands

near _ = 180 ° and _ = 360 °. In Eq. 89, _t appears in the aerodynamic coefficientsI

nearly always in the combination g sin_; any assumptions made about the order of terms

based on the order of tt will be violated then if sin_b is small enough; this is the origin

of the transition regions near _ = 0 and 180 °. When KR = 0, there are also transition

regions in the middle of the advancing and retreating sides around the point where the

aerodynamic spring goes through zero. These regions arise in the analysis because the

aerodynamic spring being zero or very small will again violate the assumptions made

about the order of the terms; physically they arise because there must be a transition

, between the solutions on either side since they have very different behavior, namely

sinusoidal oscillation and exponential decay or growth. If KR _ O, such transition

regions are not required; only the transition regions between tb _vancing and retreat-

i ing sides are needed. The case with KR = 0 will be examined ftrb_. •

Expansion in _ _

Consider the outer regions, where /_ sin_b is of order /_ and all time derivatives _

: of _ are of the same order; this means the regions (i) and (iil), away from the boundaries

near _ = 0 and 180 °. The equation of motion in the outer region Is then Eq. 89 with

_ KR = 0. For KR = 0, the analysis is simplified if first the 0_) aerGdynamic damping _ ,

is removed from the equation of motion (which is of the form of Eq. 88 to the lowe_t '_

_ order); this is accomplished by the following substitution i

- e y (901
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With this substitution, Eq. 89 for KR = 0 becomes

y=-r y -r_y _ 12Dsin

' +_COSS +_Nsin +Kp +_Nsin$ 4 (Dsin_b) (91)

Then the main solutions are found by use of the substitution

y exp fS- p d S (92}

-1
with p expanded in a series in /_ :

1

P =/zP-1 +Po +_ Pl + "'"

Main Solutions

Substitutingfor y and collectingterms oflikeorder, theequationof motion gives

!

0(D): l__l %D�Ø�lPor_ -r7(-9_66 ]sinS[+ 1 1 S)= - 8 P-1 _-{ cosS + _Kpsin

From the order p2 equation, one obtains:

The solution for _ has a factor of the form exp _ P 1d S; the double sign in P-1 gives ,_- i

the two main solutions. When the quantity under the square root is positive, P-1 is real _;

and thereresultsmain solutionswithexponentialdecay or growth (withtime constants

, - - - -" • --........,,'W'_.,_,_,___,.......

_=.
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of 0(_-1)); and when the quantity under the square root is negative, P-1 is imaginary

and there results main solutions with sinusoidal oscillatory behavior (with frequency

of O(D)). When the quantity under the square root is zero. there is a transition region.

, On the advancing side (region (i)). P-1 is zero at

-1 1

_btl _ (94)
= tan _36 Kp

and on the retreating side (region (iii)). P-1 is zero at

-1 1

So there is a high frequency oscillation on the rear of the disk. exponential solutions on

• the front, and transition regions between the two types of behavior. P-1 is also zero

t wheu sin_b = 0, i.e., at _b= 0 or 180", so transition regions will also be required near _"

the edges of regions (i) and (iiI). In _ldition there is region (ii), which for large N is

, " an order /a-1 small band on the retreating side near _b= 0 and 180"; in connecting the

main solution from the advancing side to the retreating side it is necessary to go through

this region as well as through the transition regions. In general, whenever P-1 is :

small the aasuml_tions made about the order of the terms in obtaining Eq. 92 are violated, ,:

.2.
: so the main solution can no longer be valid there• This criterion gives the four transi-

t -_LI

tion regions. _:

The order _ equation gives _:_.,

; _b_l.r8_P_l_r,(_9_6.,sln,,+ 1 1 ,) i

ir P0 = _'_ cos _b+ _ Kp sin _i_
i, 2P-1
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from which, using the relation

P-I

, one obtains

+- _ Isin_l+::cos++:_psin+1

POd_ =-:_P-I! - rfi_b- r d_bP-1

With the above expressions for P-1 and P0' the solution for B (to 0(1) in p) is

obtained by using the substitutions for B and y, i.e., Eqs. 90 and 92. There are main

solutions in four regions, which will be called quadrants (although they are not really

so, since Stl and $t3 are not equal to 90° and 270°). Each quadrant Js bounded by

transition regions; the ranges of the four quadrants and the main solution valid in each

are as follows.
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3rd quadrant: y < $ < i_t3

-_o_+_ __i_ _ _++, _t=e 5 °

° ° °1+ c6 e 13 _s (98)

4th quadrant: I_t3 < _ < 211

_tfe-/i 1_22c°s _b+ 1"_6l_ (-f) -1/4 C7 +i C8) ei 4 v/-:'f dl_ + _b4_d -.

' jugate] (99) '

i + con

where

f =Zlsin¢l(_lsin_1-cos_- Kpsin_)
i ;

¢,

7 g = 2 cos _ + 7 Kp sin I - IsinI

, and C1, C2, ..., C8 are constants. The matching procedures will result in ;onnection .i

formulas through the transition regions, which will give the two constants of one main _,

" solution in terms of the two constants of the main solution on the other side of the
4'

; transition region. In addition, the constants will be matched to arbitrary initial condl- :_

tions at a certain point on the disk. The quantities I_1, !_2, I_3, and I_4 in Eqs. 96 to 99[

are also constants, which must be in the appropriate quadrant; they are not free

!,
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constants since a change in them must be accompanied by a change in the value of the

C's. These angles may be given any value convenient to the analysis; it is most con-

venient here to leave them arbitrary since they will drop out of the final result anyway.

I

Transition Regions

Consider the trar.sition region near _bt (meani-g _btl in region (i) or St3 in

region (iii)). This transition region has a width of 0(D-2/3). The reader is directed

to Refs. 3 and 4 for illustrations of methods for finding the proper width of a transition

region or boundary layer. The technique involves assuming d$ = 0(D-n); then B is of

-2n
order D , and similarly the order of all terms in the equation of motion may be

found in terms of n. The exponent n is determined from the criteria that the resulting

equation, to lowest order in D, must a) include the highest time derivative (_) and

b) must produce solutions capable of being matched to the outer solutions. It also helps

to know what to expect of certain types of problems; for example, a width of 0(_ "2/3)

is typical of transition regions for equations of the form of Eq. 88.

Assuming d$ = 0(D-2/3), Eq. 91 becoxms to lowest order (0(D4/3)):

--"y ($ - _bt) $'_bt (100)
Y

where _

t

rt

=r4

t
g'7_ _. .... "¢i

t
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Alternatively, write z = (r (y/t) 2)1/3($ _ Ot), substitute for $ in the differential

equation for y, and then obtain to lowest order the equation

d-_2" z y = 0 (101)
dz

/

This equation is a standard form, the solutions of which are called Airy function. There

are two independent solutions, denoted Ai(z) and Bi(z). These functions may be written

in terms of Bessel functions; however, the general behavior of the solution in the transi-

tion region is not of interest here. Rather the solution in the transition region is only

to be used to find a connection formula between the neighboring main solutions. For

this purpose all that is required is the behavior of the solution for very large z.

Writing the solution of Eq. 101 as

y = 2v/_-a Ai(z) +J_'b Bi(z)
,,.'"

where a and b are constants, then the behavior for large z is:

_ -1/4 _ e_)_. z'_: y"_z (ae +b _

z-'- : y-,,I zl -t e +conjuga _,

where ,,L

= 9.i,.18/2 /9. .....
Y,

r ,

The matching procedure consists of finding the limit of the outer solution as _::

. _b-,_t' and the limit of the Inner solution as z -* J:®, and requLring that the two limits

i,
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have identical behavior. This criterion gives the constants in the inner region in terms

of the constants in the outer region. The matching procedure is considerably more

complex if higher order solutions are involved. Consider first matching from the first

quadrant to the second quadrant, through the transition region at @= @tl. The outerI

solution in the first quadrant is given in Eq. 96. As _ -* Stl,

=?t/_r-_3 ]$- _tl3/2

so the main solution for _b-_St 1 is •

(/_?t f_bt g _
Youter I'Z. _ _t){ -1/4 _1 _bl-.. - (C l+iC2) e e

+ conjugate

To the inner solution, the outer region in the first quadrant appears as the limit

z -_ -=, and in this limit

I

(4_D2) ,-1/4/b + a) -i4Yinner'* -1/12 1¢ - $_,1 k_" i e ff e-I_3_-1¢-¢_t13/2_

+ conjugate

{Ycuter ) _ = (Yi_ner) z gives ,_
Then requiring = _bt = -®

_t /:'{de -a¢ 1 ¢,_d - i-
i _¢1 _)1/6 4b(C1 + iC 2) e " e (_+ ia) (102)

"_": " ,',_._..,W_ t -=..-. - - _ _. I _ ' :._.,.. ....
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Similarly, thc main solution in the second quadrant (Eq. 97) becomes, for _ _ _t

v,J'"ad,- ]" +V 3

Youter 3 e

' - 3 )

o*tg .El,
-/_ ySt vq'd* + J¢ _d* -*tl 3/

+ C4 e '2 2

and the inner solution becomes, for z -*

a _1' -*tl 3/2 2/Yinner-" (_ 17)-1/12 I*- *t1-1/4 e- "3 +b ell_3d_-[*- *tl 3/

and the matching criterion givesl

, g

: II dtrd¢ - _ de _:'

< C3 e ¢2 ¢2 =(4_-_/e b ,

_. (103) !.:

, -li 4'_'d¢ + "_d¢ :

: c4 e *2 ¢2 =\4_/[Y-_1/0a ;;

Next combining the results of matching between the first quadrant and the inner _olution :_'

• (Eq. 102), and between the inner solution and the second quadrant (Eq. 1031, gives the _4

i connection formula between the flret and _eccnd quadrants:

n,... i-" ........ | t'- ...... = --- 2 " #" ........ _ _ "- _ -"

] 97:3005279-08 ]
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(C 1 + i C2) = e - e

' + i C4 e _2 (104)

Similarly, the matching procedure on the retreating side around _t3 gives the connection

formula between the third and fourth quadrants.

+ _) __- f_CTd_ _tg d_j-

?'±d -. - --
(C7 + iC8)e \ $4 J$4 v/_ = e i4 C6 e $3 $3/'/

/_J"_bt¢c_d_b+ J 3"_d_-iC 5e _3 (105)

Now consider the transition regions near $ = 0 or 180"• The main solutions indi-

" cate that there must be transition regions at the edges of regions (i) and (iii), but there

is als,, ,-,_gion (ii) in between regions (i) mid (iii). The extent of the three regions is

defined by (see Eq. 1):

reg._on (i) ," sin ¢ > 0 _

region (U) - I < _ sin _ < 0 i
l

reglo_ (Ill) _ sin _b< - 1

: i
i The transition region has a width of order /z-2/3; thus region (ill, which has a width t
i " 1

| _ of only order _-I, lies entirely within the transition region. Region (ill appears then i

; i

't .

___,,- .............. _ _-- ,,=., - / _ _ ---_ _.-
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- as an interior region which has no effect on the solution to lowest order. This means it

is not necessary to use the more complicated aerodynamic coefficients of region (ii).

It also means that the appearance of #4 terms in the aerodynamic coefficients is

" deceptive, since these do not appear except in region (ii), in which region (# sin _)n
t4

:. is of 0(1) or smaller for all n. The true order in # is given by the aerodynamic

" 02)coefficients in regions (i) aI_l (iii), and these are of at most, as expected of
/

- aerodynamic forces.

- The proper matching procedure is to find the solutions in the transition regions

; at the edges of regions (i) and (itl); in addition, the solution is found In the Interior region
t

:_ including region (il) and the neighboring parts of regions (i) and (ill) where # sin

is of 0(1). Then the matching proce_ proceeds from the main solution in region (1),
?

to the transition region at the edge of region (i), tc the Interior region, to the second

_" transition region In the edge of region (ii), and finally to the main solution in region (ill);

by this process the connection formula between regions (1) and (fill is established. With

1))the substitution x = # sin _ (x is assumed to be of 0(I) so O_b= 0(#- the equation of

motion for the intprior region is found to be, to lowest order (0 )):

t
s _

_ 0 (106) _'

' dx 2 ._

the solution of whleh is

: where B1 and _2 are eonstante. Thus matching through the interior region is Just a ,

,: matter of matching the displacement and 8lope of the neighboring transition ]:egions.

.........,._. -_ I - -- .........

= _ ,,,
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q

To the transition region (of width 0(tz-2/3)) the interior region appears 0(_ -1/3) small;

then in terms of the transition region variabl¢ z -1/3= x, tl,_ matching process is to

be c_rried out at the limit z -, 0.

2/3 00Z2/3)With the substitution z = sin _ (which implies an region around

= 0 or 180°), the equation of motion for regions (i) and (iii) (Eq. 89) becomes, to

lowest order in _ (0(_4/3)):

d2_ 4"4_ Izl B = 0 (107)
dz 2

The plus sign applies on the back of the disk and the minus sign on the front. In terms

of the variable z, the ad _,_cing side is given by z > 0; and the retreating side by

z < 0; on f i4 sr _ region (ii) appears as a negligibly small (0(_-1/3)) area at z = 0.

I Consider the back of the disk, i.e., from the fourth to the first quadrant. The

diffe_-ential equation for the transition region is (Eq. 107)

!

+ Izl B= 0
dz

The solution again involves Airy functions, _d may be written

': [., .,E( .] 07,

_ where a, b, a*, and b* are constants. Matching the displacement and slope at

z = 0 gives a* =_ b and b* = :i/_/3, so
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=_/3 b Ai 1/3 + _ Bi z < 0\

The asymptotic behavior of the solution in the transition region is _hen

,_ z o:

Z -_-_: /_" 1/3 ' _ 2 _/3 / el 4 ei_ * conjng

3/2
where _ =_/7/3 z , note that the solution has oscillatory behavior, which is the

proper behavior for matching the main solutions on the rear of the disk. Now the main

solution in the fourth quadrant (Eq. 99) becomes, as 1_-, 2_

_outer _, e 12 16 (4_ -2/3 [z,)-l/4

7 + i..,8) e + conjuga '

and the main solution in the first quadrant (Eq. 96) becomes, as @=, 0 ..

5 :',_

"1"_2+ _'6 2_' -2/3 )-1/4 :':iii':i:

, 1 + 1C2) _1 _1 + conjugat _:-_,_"
i
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Then the matching process, requiring (Bouter)$=2_ r = (flinner)z=__ in the fourth quadrant

and (f_inner)z=¢_ = (_outer)$= 0 in the first quadrant, gives the connection formula:

ei J"_d_- J" d
' _ (C l + i C2) _bl _1 eD 6_- _ 4.

i 2 _d_+24_d
=2 (C7+iC8) e _b4

- i d'-Td$+ _ _d$ I

- i (C7 - i Ca) e ¢4 _b4 / (108)

m

Finally consider the front of the disk, i.e., from the second to the third quadrant.

The differential equal, )n is (Eq. 107):

d_2- Z Izl ,8= 0 (109)
dz

, ' The solution is

,:) z>o

=,Ai(_(z)1/3) (_(z)_/3)_)2; + b* Bi z < 0

Matching the displacement and slope at z = 0 gives a* = ¢r3 b and b* = a//3, so

_l:_b,_t,-t_-) +_B_ .< o
i

"-x_
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The asymptotic behavior of this solution is

, 7.-.-_: B .._ az b +
/

where _ =/7/3 IZl3/2; this solution has the exponential behavior required for matching

on the front of the disk. The main solution in the second quadrant (Eq. 97) becomes,

as _-D_

_outer ._ e-/_ 1_22- 1_663_ (4__-2/3 iz_ -1/4

-

' [C _ _ g -'_ lzl3/2
3 e _2 _2 3

_, -/_ ,/'i'd _b+

+ C4 e 2

_outer ) ffi(_inner)z=o, gives :Matching this to the inner solution, i.e., requiring ( ___

c3e 2 e _4.] _ ,._:

It V (110) _a

_ -_ - 3s 1 1/e _
c4_ 2 . - _ b _,i_

i i;}_
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The main solution in the third quadrant (Eq. 98) becomes, as $ --

Bouter -, e it (4Z#-2/3 izO-1/4
*4

g 312

5 e _3

t1' g ¢_ 3/l
+c 6 e _3 _3

Matching this to the inner solution, i.e., requiring (Binner)z=.= = (_outer)_b___qf gives

C5e _3 3_ d_ e # 1_2+ 1._6_. 1/-Z.._l/6 a

?T T? "

Then combining Eq. 110 and l_q. 111 gives the connection formulae:

e = -_-C5 e

-/4 J_d$+y d_b -/4 - 4fr = 2 $3 ¢3
C4e _P2 e _C6e

' I
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The derivation of the connection formulae across the four transition regions completes

the constructior, of the solution around the disk. It is also necessary however to start

and finish the solution with initial and final values of B and _ at some point. It is most

convenient to start and finish the solution at _) = y; this is the middle of the interior

region, where it is easier to match the two constants in the solution to arbitrary values

of _ and _ than at any other point on the disk (to lowest order, the solution to Eq. 106

in the interior region is linear in x, so the two constants are easily related to _ and

_). In terms of the transition region, the slope and magnitude of the solution are to be

matched to B and _ at z = 0. Now the solution of Eq. 109 becomes, for small z

: B_d 1 (a +¢_b)+(4_]/3 d2 (-a+¢_ b) z

:_ from which

_ B (_')= dI (a+ 4'3b)

!i B (_) = d2 (a -/3 b)

_ or

i_I _._ __(._/_) -1/3 "2a- dl + d2

(113) _"

_ 2_ b _ _.__ . _(#) 1/3 _::
_ d1 d2

, where d 1 and d2 are constants assoctatea with the Airy functions (d 1 -_ 0. 355, _

( d_.-_ 0.259). Then for lni_.ial condttl_L, Eq. 111 relating C5 and C6 to a and b

l _ gives the main solution in the third quadrant in terms of initial values of ¢(?D and _).
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For ending the solution, Eq. 110 relating C3 and C4 to a and b gives the final values

of B(y) and _ (?T) in terms of the main solution in the second quadrant.

Eigenvalues

I

With the solution in each of the four outer regions, and the connection formulas

between them, the complete solution may be constructed over one rotor revolution.

Floquet theory for a single degree of freedom, second order equation (see Appendix I)

shows that the eigenvalues are given by the quadratic equation

where

_p=_(_+r) due to _(_)=1, B(tr)=0

_p=_(_ �Œ�dueto _(_)=1, _(lr)=0

_R = _(y + T) aue to B(lt) = 0, _(_) = 1

_R = _(tr + T) due to _(_) = 0, _(y) = 1

and T is the period of the system (T = 2_ here).

Combining the connection formulae (Eq. 104, 105, 108, and 112) and the initial

i and final value formulae (Eqs. ii0, iii. and 113) results in the following expression _

: for _f and at _b= _ + T in terms of and at _ = _: 5

1
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/

=e e d2\4 1 /

' 2_ e F3 +e 41]

where

_tl i_tl g-_-_ d,
0 0

@

tl RI 1116)

; "_t3! d,
: F3- _ 3/_d,+3 /__: # #

2# 2# g
d,_y a --

" _t *t
t

_P"' ., from Eq. 115 and substituting into Eq. 114, thereObtaining

_ ,.,. _,h following equation for the etgenvalues: ,_i_'
.esults (after some manipuL_ion,---e :_

'.a'_.
k2_ + - 2b _ + + 1 /;
e C!

where :::,._

• b=_|4e coslF 1 +F 4)'c°slF 1 F4 i!_

+_e cos (F 1 18+c°slF I F4 ._
- _t

-._ .... - " 3005279 091' .... 197



r- -88-

So b is a bmction of #, T, and Kp. The solution for the roots is then

._L.4. 1 -1

-#6_ _cosh b+ni forb> 1

6_ffff 1 -1, k = /_ • i _-_ cos b + ni for -1 < b < 1 (119)

" c°sh-1Ib[+7 +ni forb< -1

where n is some integer. This result shows the typical behavior of the roots of

periodic systems. For b < 1 the damping is fixed at -/_ (_'/6v) with a change due to

b in the frequency; for b > 1 the frequency is fixed at n/rev with a positive and nega-

tive change due to b in the damping; for b < -1 the frequency is fixed at n _/rev with
]

a positive and negative change in the damping. The critical region boundaries are

given by b = 1 and b = -1.

The general character of the critical regions and instability boundaries in the

-# plane, as obtained from the solution of Eq. 11"/, is sketched in Fig. 12. Because
t

# is large, it happens that Ibl is much greater than 1 almost always, so the critical

regions dominate the behavior of the roots. Because of the cosine terms in b, the

sign of b changes regularly; b must o_ course go through zero then, but it does so

very quickly, so there is only a very narrow band between the Im k = n/rev and the

n + _/rev regions in which lb[< I. When lbl< i, the real part of k is -p ('//6#), +_.
Im

i.e., the root is stable for all /_ and V ; thus there must always be a band of stability _

surrounding the transition from n/rev to n _/rev. These characteristics are illus- _;_

: trated in Fig. 12. The locus between tL_,critical regions has a rather fine structure ,

which would be difficult to obtain numerically. A root locus for varying /_ or
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(a vertical or horizontal section in Fig. 12) in the vicinity of a critical region boundary

would in quick succession mov8 from the RHP (unstable) to the LHP (stable) with fre-

quency fixed at n/rev, rapidly move from Im k = n/roy to Im 1 ---n + _/rev in the

, RHP with damping given by -/_ (_/6y) (which would be nearly constant because the

critical region boundaries are so close) and then moves from the LHP into the RHP

with frequency fixed at n + _/rev.

Figure 12 shows that for a given /_ the system is stable for a large enough 7.

Positive Kp is stabilizing, tending to decrease the size of the instability regions;

negative Kp is destabilizing in thJ s sense• The rotating natural frequency of the flap

motion, y, does not enter the high D case to order P0 (the aerodynamic spring

dominates the centrifugal spring until order pl); this is consistent with the fact that

the critical regions dominate the high behavior, so the frequency of the motion is fixed

at a multiple 5f _ytrev.
f

A comparison of these analytical results with the results of numerical calculations

; indicates that the high _ solution is good down to _ = 2.5 or so. Thus numerical calcu-

lations are required to Join the loc! from D = 0.5 to 2.5 say (for 7 neither small nor

large). The behavior theoretically predicted for the locus at large D (in particular the

rapid movements between Imk = n/rev and n+_rev, and perhaps -- for V not too

large -- between the RHP and the LHP) actually does show up in the numerical calcula-

+ions of the stability (above D = 3.0 say); such behavior of a numerical solution might

be questioned without the perturbation solution to provide a guide to what to expect. It

i
is unfortunate that the boundary of the instability region for _'/16 of order 1 is first
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encountered at moderate _ (around D = 2.25 for small Kp; see Fig. 12) and so cannot

be obtained by perturbation techniques (to the order explored anyway). Because of the

small time constant in ;he main solutions (0(_-1)) and the four transition regions (of

, width 0(_-2/3)), a numerical calculation of the roots for truly large would be difficult;

the perturbation theory handles these singular problems analytically, and the calcttla-

tions that remain are nonsingular, short, and simple.

Flap Rate Feedback

The use _. llap rate feedback (KR _ 0) changes the sclution for large D funda-

mentally, because the aerodynamic damping (-KRM _ is then the same order as tb*

aerodynamic spring (Ms-KpM_. 2he derivation of the main solutions is simpler

then, and only the transition regions near $ = 0 and 180" are required. The main

solutions are obtained using the substitution

expS p

with p expanded as a series in D:

2 1

P--/_ P 2+/_p_l+P0+_Pl+...

Making this substitution in Eq. 89, the terms of like order in give

0_4): P 2 =-rT Ri{sin_)2p-2

: 0{/_3): 2P_2P_l = - r T sin _, + P-2 + KR i (Sin $)2 P-1
L g

0(D2): p_l+2P 2p_+p2--rT (I+KR) P_2+_sin, +KR)P. 1_, .-

, , ]_ + K R _"(sin ,)2P0 �4"sin * (00.* sin *)
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0_): 2P_lP0+2P_2Pl+_)_l--'-rY (l+KR) P_l+_sin_ +Z P0

+ K R _ (sin,)2Pl + cos _ + _ Kp sin

, The first solution is given by P-2 = 0. Then the order #3 equation gives also

= 0, and the order #2 equation gives
P-1

1

P0 = " K--R(cot_ + Kp)

or

The order # equation gives

_ 3__( 1 1_ cos# 2Kp 1
_ 3KR2 sin _b

_. or

L

'hen the solution for _ is
7

k_ae- - ---- 1+_ +or.-s)" _) lb; 2_ _.ln _b3KR KR (12 "

. _ " B1 (sin ,1 (tan _ e " i

A,,
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where B1 ;s a constant. This is the _olution of the reduced equation, and so is indepvnd-

ent of _ to this order, i.e., is the result of a balance of aerodynamic damping and

aerodynamic spring terms only. The solution is not valid when sin _b is too small;

and it is exponentially growing (unstable, at le,.st in the outer region) if Kp/K R < 0.
I

The second solution is given by P-2 = - r ('//4) KR (sin _)2 or

1

The order _3 equation gives

P-1 = - r 6Z (1 + 2KR) sin _b

or

Y_P-1 d_ = r 6_ (1 + 2KR) cos

2
and the order /_ equdtion gives

1 - 2KR Kp

PO=- r 8_(I+KR )+ K; c°t * + _ R

or

P0d_ . KR _nsint+ -r 11+K R t

Then the solution fcr _ is _

_'I _ - _ (sin ,) exp - r _ KK (?, - sin 2_) - _-8 (1 + 2KR) _os, -.

!_ + 2 (I .]" + KR * + 0(P "11 1121)
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where _2 is a constant. This solution does involve _', i.e., it involves the inertia

terms in the equation of motion; this solution is also not valid when sin ¢ is too smvll.

There are transition regions between the advancing and retreating sides, near
I

_/_= 0 and 180". As for the lr = 0 case, region (il) is an iuterior region lying entirely
-o

within the 00_ -2/3) transition region; the solution is rnatehed through thiz interior

region again by matching me -lisplacement and slope of the transition region solutions

at z = 0. With the substitution z = 2/3 sin _, the equation of motion in the transition

region becomes, to loweqt order in # (0(#4/3))

dz 2

where the plus sign applies on the back of the disk and the minus sign on _he front.

It can be shown that the solutions of this ,. :luatlon will have t_._ 9roper asymptotic

, behavior for matching to the two main solutions. Unfortunately the ,_olution of this

equation is not available in terms of classical functions. The behavior ol the solutions

._ for large and small z would have to be found, probabl.v largely by numezlcal metho_g,

before the matching procedure could be ca. •ied out.
?

g

|
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_ ApPlicability of the Four Cases .i:

This section will consider the ranges of/_ and Y over which the four ._

cases investigated above are useful. Perturbation theory is based on the

, ex#ansion of q,antities in terms of a very small or very large parameter.

In r:any problems however, the results are useful, even quite accurate,

far beyond the limits for which they are theoretically valid. It is these

perturbation solutions, extendable up or down from truly small or large

values of the perturbation parameter, which are of most value. They

may be found only by comparison with exact solutions, usually obtained

by numerical methods, for moderate values of the perturbation parameter. _

Another question about the range of validity of the solutions arises in this
7_

problem because there are two parameters, _ and _' , which are avail- I

- able as perturbation parameters. In the perturbation analysis based on I

, one parameter, say _, 9mall or large, the solution is derived under the

assumption that the other parameter is of order 1, e.g., _ = 0(1). This

raises the question of the validity of the solution when the other parameter

is itself very small or very large. It may happen that the results are

still valid when the other parameter is outside its assumed range, but

this must be checked in each case. The ordering process of perturbation

techniques provides a quantitative framework for making this check. It

is usually quite simple to determine what range the other parameter must

have so that the assumptions made aboutthe order of terms are still valid,

,.m,u,_..,,.._,._, --.,._=.w,._-_%,,q _ .. ........ T---_-.......... -,----- - ......... ,,-
r
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Extending the analysis into ranges of the other parameter where the ordering
/

assumptions were violated is another matter; it of course means an entirely

i new case to be considered and analyzed by perturbation techniques. The _

, ! results of the analytic solutions obtained above were compared with numerical

calculations (performed by the author) of the roots of the flapping equation,

primarily for moderate and small Y over a wide range of _ ; these calcula-

1 ,
.._ns were similar to those re.uorted in Ref. 2.

I •
The small/_ results are good out to _ = 0.5, which is a very useful

range. These results are valid for all T , since the order of _ does not

change the terms retained in the small _ analysis. The large _ results are

valid above/_ = 2.5 or so, which Is also a good range. Here however _

either very small or very large will violate the assumptions made about _

the order of the terms in deriving the large N solutions and so the results

may not be valid in these corners of the 9/-_ plane.

The small and large V results, to the order investigated, are really

useful only for truly small or truly large T, although the results are quite

informative. The small T results are accurate up to T = 2 or 3. The

|
[ limitations of the 0(T) solution, as discussed in the small _ analysis, pre-

vent the accurate use of the solution for moderate or even reasonably small

P

• _ V (_ = 6 say). The large _ results give two real roots, so a.'r, obviously

limited in usefulness. It is unlikely that _ would be large enough to require
i
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this solution. The large _ solution is good down to y/16 = 3 or so, which

_! is actually a very good range in the lerturbation parameter; it just happens
7

that for practical rotors T falls far below this limit. Letting/_ go to zero

, does not change the order of the aerodynamic coefficients (because of the

constant terms) so the results for large and small _' should be good for

all _ of order 1 or smaller. Letting/_ go to infinity does change the order

of terms in the analysis, so both the small T and large T results may be

invalid for very large/_ (above/_ = 10 say).

It would be very desirable to be able to use the small/_ and small )'

results to construct composite root loci which are reasonably accurate for

all values of/_ and )' likely to be encountered in helicopter rotors. The

small/_ results would be used up to about/_ = 0.5; then the small )' results

would be used up to _ = 5 or so. The major obstacle to this is the lack

of an 0(T 2) analysis for the critical regions; the small T analysis presented

here, which was carried only toO('/) in the critical regions, is not adequate

for the accurate construction of loci for any except very small Y.

Possible extensions of the solutions described here include the following:

a) Extend the small _ results to 0(_ 2) for Imk =_, and to 0(_ 3) or

01_ 4) to handle the Im = 3/2 critical region.
,m

b) Extend the small _ results to O(T2) in the critical regions.

l"
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+:

c) Extend the large _ results to 00'-1).

d) Extend the large _t results to 0(_t-_. /'

The most useful would be the 01_ 2) and 0(_ -I) results. A small _] solution

'i- reliable to _/16 =_ or so (which an 0(_ 2 solution should accomplish) could +

be combined with the small _t solution to construct accurate composite

+ 1,Jci. Together these results would then cover most of the range of _t and _ ._

+_ of conventional rotors. The large _l case extended to 0(_I"I) should be able ;i

to predict accurately the first instability boundary of the _t loot, which

occurs at _t = 2 to 2.5. These two cases are however also the ones involving _
r

the most work. ii

APPLICATION OF PERTURBATION TECHNIQUES TO HELICOPTER DYNAMICS i ....

+ lThis section returns to the question of whether perturbation techniques

might be profitably applied to more complicated or more realistic dynamic

systems than the one cor_sidered here. As part of the answer, consider

what these techniques will not do: obviously they can not give results for

cases where there is no parameter that is either small or large, for example

, when ._ = 16 and _ = 1. However, the four cases considered together cover

a good deal of the ranges of _ and Y , and with primarily analytical results.

For ma_ helicopters the small _ case will be quite satisfactory alone.

_ ' What the techu/ques can do also includes:

L,
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;_: a) Since they give analytic solut.%ns they provide more insight into

,2
_._ the problem, as well as specific design criteria for the system; this feature
;?
L,
_L is particularly important for nonlinear or time-varying systems, which

!_ have properties much different from those of constant coefficient, linear

systems.&

i h;, Perturbation methods can find, and handle, cases that are very

sensitive to the parameters, or that are difficult to solve accurately by

! numerical methods.

i c) The methods provide more insight into the rather unusual be-

f havior of the solution of periodic systems, by showing explicitly how thel ',

i periodic _oefficients modify the transient solutions and why they give tile

! root loci their characteristic behavior in the critical regions.i

i d) Finally, even if the techniques are not used to find the complete

t
', solution, it only takes a little work to find out where the problems are

! (e. g., critical regions and transition regions) and what the order of things

is, which information would be of invaluable help in the numerical analysis

t of a system.
_ i_

_ .

The extension to more degrees of freedom or more realistic aero-

t

dynamic coefficients would certainly make the analysis more complicated.
,o

In general however _ study - analytic, cemput_tt_lal, or experimental --
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of a system becomes more complicated as the accuracy of the modelling

of the true system increases, and perturbation techniques are not expected

to be an exception to this rule. Regardless of the system being studied,

the position perturbation techniques occupy between simple linear analysesI

and complex nonlinear numerical calculations makes them a very powerf_fl

tool for providing both exact solutions and increased understanding of

problems in rotor dynamics.

The problems in rotor dynamics to which perturbation techniques

might profitably be applied amount to all those involving nonlinear or

periodic coefficients, and there are many of those. There is some additional
t

work that might be done with the flapping dynamics problem (one degree of

freedom), including for example _ "

a) teetering rotor;

" b) cantilever blade, with correct aerodynamic _oefficients;

c) inclusion of stall and compressibility in the aerodynamics.

The solutions found in this paper might be extended to 0(T 2) for the small 7

case and to 0(_'1) for the large _ case. These extensions might prove

very useful, or only slightly more so than the solutions to the order pre-

sented here; but they should be examined for the simple single degree of

• freedom problem before being considered for more complicated systems.
i
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Even the small/a solution could be taken a little farther -- for example, to

0(/_2) in the Imk =½critical region. Starting with two degrees of freedom,

possible problems in coupled dynamics include

, a) flap d_aamics of a gimballed rotor;

b) pitch/flap dynamics;

c) flap/lag dynamics.

The pitch/flap system is the problem of rotor flutter. The flap/lag system

is particularly rich in possible variations; the problem has periodic co-

effictents if/a > 0 of course, but it _s also nonlinear (even in hover) due

to the inertial coupling of the degrees of freedom. It is moreover very

sensitive to blade root geometry, so that an articulated and a cantilever

blade have quite different dynamic characterlstlcg. Problems in coupled

dynamics with more degrees of freedom include

" a) pitch/flap/lag dynamics (three degrees of freedom);

b) flap dynamics of an N-bladed rotor (N_3) with flapping feedback

control in the fixed system (at least four degrees of freedom).

While for these problems the advance ratio/_ would probably be of most

value as a perturbation parameter, there will likely arise problems where

other parameters are also useful. As long as a reasonable model is

chosen for the system, and as much effort is given to the interpretation

I of the solution as to its derivation, perturbation techniques should prove
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quite useful in providing information about these problems, and many

othersin rotordynamics and aerodynamics.

i This paper has d_,monstratedthe methods ofperturbationtheoryand

" ; has provided examples of the information about dynamic systems which

i may be obtainedusingthem. The techniqueshave proved very useful

for the problem studied. It should not be concluded however that the

techniques presented are all there is to perturbation theory; there are r,_any

more methods that have not been touched on here. Perturbation theory is

I a powerful,andyet notvery sophisticated,mathematicaltechniquewhich

shouldprove very usefulinanalyzingsome oftheproblems ofhelicopter

dynamics.

1973005279-105



)
/

-102-

Appendix I. Eigenvalues of a Periodic System

Consider a generalsystem ofdifferentialequationswith periodic

coefficients;thismay be reduced toa system offirstorder equations,and

l

- may therefore be written (in matrix notation) as

X =

where A(t) is periodic: A(t+T) = A(t). It may be shown that the solution to

thisdifferentialequationcan be obtainedinthe form

=Zl qi(O)e)'l t u_t(t)

_A .1 _k

The _'i are the eigenvalues; the eigenvectors ui are periodic, ut(t + T) = ui(t);

and the numbers qi(0) are constants obtained from the initial conditions.

The theory that shows this is called Floquet theory. The solution in this

form is a direct extension of the normal solution for a constant coefficient

differential equation, which is charac.erized by constant eigenvectors.

The eigenvalues ki may be obtained by the following procedure.

The equation

_= A_

where #(t) is a matrix, is integrated over one period, from t = 0 to t = T,

with initial conditions _(0) = I (the unit matrix). Then if Xci ate the
i

eig_envalues of the matrix

C = t(T)
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_2 roots Xi are given by

or
/

1 inXcx---¥

While the roots _ci (as eigenvalues of a real matrix C) must appear as real

numbers or complex conjugate pairs, the eigenvalues Xi are under no such

restriction. The root loci of periodic systems are thus characterized by

the type of behavior sketched below,

ImX
?

4.
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The horizontalportionsofthe locican onlyappear atIm _ = n/rev or

n + _/rev. Iftheparameter belvgvaried,forexample the advanceratio/_,

is such thatat_ ---0 the system isnotperiodic,thentherootsatpointA

, _re complex coLjugates.As _ increasesthe periodicityofthe system

increases, and the roots start moving toward n/rev (or n + _/rev) lines

remaining complex conjugate pairs though). At some critical _ (the point

Y',on the locus) the loci reach Im;k = n/rev, and then for still larger/_

the frequency remains fixed while the real part of one root _s decreased

and that of the other is increased This behavior should be compared with

that of two roots of a constant coefficient system which start out as complex

conjugates, meet at the real axis, aud then proceed in opposite directions

along the real axis. The existence of periodic coefficients in the equations

of motion generalizes this behavior so that it ca_ occur at any Imk= n/rev

or n +_/rev, not just Imk= O. The property of the solution that allows this

behavior is the fact that the eigenvalues _l(t) are themselves periodic.

For a single degree of freedom, second order system, let xR be the

solution obtained from integrating the equation with initial conditions

_(0) = 1, x(O) = O; and let Xp be the solution with initial conditions _(0) = O,

x(O) ffiO. Then the roots _'e are given by the quaudrztte equation



-105-

Appendix_ H. Solution of the Secular Equation

The method of multiple time scales often leads to an ordinary

differential equation of the form

- + (a+id)/3+ (b+Ic)_=0

where _ is a complex quantity, and the constants a, b, c, and d are real.

Jetting

D2=d 2-(b 2+c 2) =d 2-[(b=|c)[ 2

it may be verified that the solution of the above differential equation is

V2>0: fl - e -a_ [A(d - D + l(b + ic_)e ID_

j •

A(d + D + i{b + ic))e "IDol

where A is a compI_x constant

D2 = _: _ ffi• "a@ [A((6 + iCo + ie))_ + I)

+ B(d + i(b+ ic))]

where A ar_l B are real ccas'_uts

" D_,<0: j3 ffie "a@ [A(d + tD + i(b �i¢))eD_J
i

i " lc))e.l_ ]I +B _d - ID + i(b +

! wlmx_ A and B are real emstan_

' _
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The limiting case b = c = 0 gives D = d so the solution is

= Ae-(a + id)¢

where A is a complex constant
#

The region of decreased stability, i.e., the region where the real part

of the eigenvalue becomes more positive (the critical region), is given by

D2<0. The boundary of the critical region bJ D2 = 0. One root in the critical

region becomes less stable, but the other becomes more stable. Furt_er-

more, inside the critical region (D2<0) there is a change in the real _art

of the root but no change in the imaginary pa_ i.e., the frequency; while

outside the ref_on (D2>0) thell is a change due to D in the frequency, but

no change due to D in the real part. This bel_vior follows that expected

of the tlgenv_lucs of periodic systems (_ee Appendix I). Indeed, D2 is

a measure of the relative effects of the _ and _ terms in the differential

equation; the former usually comes from the constant coefflcfents in the

equation of motion and the latter from the periodic coeflicie_ts. I
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Fig. 1. Root loci for varying _ , based on the small _ results (to order

/_2); V = I and/_ = 0 and O.I "
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Fig. 2. Root loci for varying t_ , based on the small _ results (to order

_2); fixed for each locus (ReX = -y/16 for _ = 0)
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ImX: .99

,, , ,,, • ,,,, _ ' _

I ',

0 .5

, Fig. 3. Lines of constant ImP, and Re_,, based on the small # results

(te order _2); v = I, Kp" 0; -----Imp, ---- Re_,w

circled values of Im_ indicate areas in which ImP, is constant.
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Fig. 4. L[_es of constant Ira), and Re),. based on the small _ results "

(to order _x2); V = 1, Kp = O.1; --.---IMP,, -" -'- "" -" Re),,

circled values of Im), Lndicate areas in which Im_ is constant.
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T6 - !

_35

,. Critical regionfor v = I.OIq(None for =,= I)

0 .5

Fig. 5. Lines of constant ImX and Re_,, based on the small _ results

• (to order _2); _ = 1, Kp = -0.1; ------Im;k, ....

Re_, circled values of Im;_ indicate areas in which ImP, is

" constant.
|
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Fig. 6. The ratio (-M_/M_), which governs the effect of KR and Kp

I for small _. .
t

.!
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• Fig. 7. The averages of the aerodynamic coefficients, which give

the roots for small y. ,
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IoI-L8 I_' or ImX= 3/2

I,_1 '.

21-_," _-"_,_,,,,,,,,,.,..,..,.:...,_,___
" I _ _fj'/'/. Neor ImX = !/2 .... ,.".,..-...

1 ...... __- ...... l .... l t , i_ii,.-'"_.-1
0 I 2 3 4 5

/=

¥_. 9. The Kp vs. _ boundaries for stability in the center of the

•_ critical region, based on the mall Y results (to order 7 1;

' for roots near ImX_=I/_, I, ud 3/2.

! ,

'1
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Fig. l I. Flap rata _db_ required for ml_atlve diun_plng over part of

. the rotor_=_: -p_ - xR_)<o (enter=_o tL_1=_ _ cuo),



Stable__ _

16

-_1 - Unstable '

~25w

Fig. 12. Sketch of the characteristic behavior of the critical region

botmdaries and stability botmdaHea for large/_ ; ----- boundary

of region in which Ira, Is fixed at n/rev or n + _/rev; ....
{

boundary of region in which the real part of ooe root is

positive,i.e.,unstable.
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