
F A NASA SOTHE sYSTEIATIC EVOLUTION,/

Auoistet . Arlinqton, aA'

G, ArCi~ngton, Va. ~Unclas
Aeprod uc ed 0 9 3/08 16411

Reproduced byNATIONAL TECHIA
INFORMATIONSEVC

US Department of Commerce

Springfield VA. 221

THE SYSTEMATIC EVOLUTION OF A

NASA SOFTWARE TECHNOLOGY

APPENDIX C TO

TECHNICAL REPORT
1958-100-TR-004

By

M. P. DEREGT
JOHN E. DULFER

Submitted to:

NASA Headquarters

Under

Contract No. NASW-2285

*.4

August 24, 1972

Ak
AUERBACH

Q -

AUERBACH Associates, Inc.
1501 Wilson Boulevard

Arlington, Virginia
22209

I

f

The Systematic Evolution of a NASA Software Technology

Appendix C

TABLE OF CONTENTS

TITLE

SECTION 1. SUMMARY

PURPOSE
BENEFITS
SCOPE
SUMMARY OF REMAINING SECTIONS

Section 2. Background
Section 3. Software Technology
Section 4. Statement of the Problem . .
Section 5. Description of the Program .
Section 6. A Specimen Technology Group

SECTION 2. BACKGROUND

THE ORIGIN OF COMPUTER PROGRAMS
THE EVOLUTION OF COMPUTER OPERATING SOFTWARE

Discrete Program Execution . . .
Job Stream Concept
Operating System Concept
Multiprogramming Concept
Communications Capability Added
Interactive Operating Systems .
Symbiont Systems

COMPUTER BASED AIDS
APPLICATIONS PROGRAMS
SOFTWARE SYSTEMS
THE PROBLEM

SECTION 3. SOFTWARE TECHNOLOGY

DESIGN AND IMPLEMENTATION

Properties of Good Program Design
Conceptual Design
Design - Implementation Phase
Formal Proofs of Correctness

ORGANIZATION AND MANAGEMENT

i

PARAGRAPH

1.1
1.2
1.3
1.4

PAG E

1.4.1
1.4.2
1.4.3
1.4.4
1.4.5

2.1
2.2

1
2
2
3

4
4
4
4
5

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7

6
8

2.3
2.4
2.5
2.6

8
9

10
10
11
11
13

14
15
15
16

3.2

3.2.1
3.2.2
3.2.3
3.2.4

3.3

19

20
21
24
28

30

AUERBACH

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

.

.

.

.

.

.

.

.

.

.

.0.

TABLE OF CONTENTS (CONTINUED)

TITLE

SECTION 4. STATEMENT OF THE PROBLEM

BASIC CAUSES 32

Lack of Theory 32

Lack of System Description Languages 33

Test of Correctness Impossible 34
Programmer Psychology 34

Changing Understanding of the Problem 35

PRACTICAL DIFFICULTIES IN SYSTEM DEVELOPMENT 35

Partitioning the Design Structure
Postponing or Evading Design Effort
Precipitate Coding
The Organization Imprints the Design

The Communications Burden
Programmer Training and Selection
Industrial Versus University Software Development

CHARACTERISTIC PROGRAMMING DEFICIENCIES

Schedule and Cost Difficulties
Performance
Inflexibility
Errors

36
36
37
37
38
38
39

40

..... .. 40

..... .. 41

..... .. 42

.... . 43

SECTION 5. DESCRIPTION OF THE PROGRAM

INTRODUCTION
DEFINITION OF TERMS AND PHRASES
GOALS AND OBJECTIVES

Goals .
Objectives

THE BASIC REQUIREMENTS FOR THE ORGANIZATION AND
OPERATION OF THE PROGRAM
THE ORGANIZATION AND OPERATION OF THE

PROPOSED PROGRAM

The Participating Groups

The Cycles
The Phases and the Actions and Interactions
of the Three Groups

ii

·. . 50
. . · 57
· . . 62

· . . 63
· . . 63

. . . 65

· . . 67

68
71

-. . . 72

A
AUERBACH

PARAGRAPH PAGE

4.1

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5

4.2

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7

4.3

4.3.1
4.3.2
4.3.3
4.3.4

5.1
5.2
5.3

5.3.1
5.3.2

5.4

5.5

5.5.1
5.5.2
5.5.3

· . . .

! . . .

TABLE OF CONTENTS (CoNTINUED)

TITLE

SECTION 6. A SPECIMEN TECHNOLOGY GROUP

PURPOSE AND MISSION OF THE TECHNOLOGY GROUP .

NASA Headquarters Management
NASA Center Management
NASA Client Management
The Technology Group's Management

THE ORGANIZATION AND OPERATION OF THE
TECHNOLOGY GROUP

Size and Composition
Staff Qualifications and Job Description .
Initial Role of the Technology Group . . .
Products

THE PRODUCTS OF THE TECHNOLOGY GROUP

Industrial Standards
Representation and Languages
Software Production Techniques
Performance Measurement

iii

PARAGRAPH

6.1

6.1.1
6.1.2
6.1.3
6.1.4

PAGE

6.2

6.2.1
6.2.2
6.2.3
6.2.4

78

79
79
80
82

6.3

6.3.1
6.3.2
6.3.3
6.3.4

83

83
85
89
90

91

91
96
98

100

AUERBACH

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . .

. . . .

. . . .

SECTION 1. SUMMARY

1.1 PURPOSE

This document describes a long-range program whose ultimate purpose

is to make possible the production of software in NASA within predictable

schedule and budget constraints and with major characteristics - such as

size, run-time, and correctness - predictable within reasonable tolerances.

As part of the program a pilot NASA computer center will be chosen to

apply software development and management techniques systematically and

determine a set which is effective. The techniques will be developed by

a Technology Group, which will guide the pilot project and be responsible

for its success. The application of the technology will involve a sequence

of NASA programming tasks graduated from simpler ones at first to complex

systems in late phases of the project. The evaluation of the technology

will be made by monitoring the operation of the software at the users'

installations. In this way a coherent discipline for software design,

production maintenance and management will be evolved.

A
AUERB.CH

1.2 BENEFITS

The potential benefits include the ability of management to under-

stand and control the plans, activities, budgets and products of its

software development group, major increases in the quality and quantity of

software delivered at a given cost, and in the control of software quality,

expressed in terms both of responsiveness to the users' expressed needs

and in the correctness and other characteristics of the software itself.

These benefits, obtained and tested at the participating center's software

group, may be propagated throughout NASA by exporting the resulting tech-

nology to other NASA computer installations and adapting it to the operations

peculiar to each one.

Scarcely a programming activity in NASA exists which will not be

a beneficiary of this program. For example, NASA general purpose and

mission oriented computer installations which must provide high reliability

service to their users (which is especially important for real-time systems)

will benefit from a systematic application of techniques designed to enhance

system reliability. They will also benefit from the critical review, evalu-

ation and development of techniques for the design of complex systems. A

standardized set of design and design verification techniques which provide

for enhanced system effectiveness will eventually drastically reduce the

cost of system development and maintenance.

1.3 SCOPE

The Program will be of an evolutionary nature, as indicated by its

title. It is seen as a series of cycles, each beginning with the selection

of a programming job. The first cycle will involve a relatively straight-

forward application program, so that the working together of the three

groups - technology, software, and user - can be developed. Each cycle after

the first will involve a program appreciably larger and more complex than

the previous. In each case, the program to be produced will be one actually

required by a user. In this way, problems of great size and complexity will

be approached gradually, the magnitude of the increments being limited as

decided by the Technology and Software Groups.

2 A

Each cycle consists of three phases, The first, a Research and

Development Phase, is for the Technology Group to analyze the results of

previous cycles, incorporate indicated changes and improvements in the

software technology and in the documents, manuals, papers, procedures, and

standards, and to train the Software Group personnel in the changes and

improvements.

The second phase will be a Software Design and Fabrication Phase,

in which the Software Group, using the improved technology, produces the

software selected for the current cycle. In the third and last phase, the

User Group incorporates the new software into its operation. Communication

is maintained between all three groups during all phases.

Selection of programs for new cycles can continue until the NASA

software community is satisfied that a usable software technology exists.

At some point, the scope of the program could be expanded to include micro-

programming, and at a still later point, hardware, so that an overall

Computer System Technology can evolve.

Typical of the facilities which will be developed and/or applied

are the following: languages to express user requirements, languages and

graphics to express computer program design, documentation aids and

standards, structured programming and topdown programming, computer based

aids such as debugging tools and standard application modules.

The first cycle takes place over a period of 18 months. The

Technology Group is seen as a four man team initially. The funding for

this group should be provided by NASA Headquarters. In this way the long-

range plans and policies of NASA will be able to influence directly the

development of the software technology responsive to NASA needs. The size

of the software and user groups, which are funded by their respective centers,

is at present undetermined, being subject to later determination based on

the nature of the particular application selected.

1.4 SUMMARY OF REMAINING SECTIONS

A
AUERSACH

1.4.1 Section 2. Background

The basic problems of programming are introduced: lack of theory,

lack of languages to describe user problems and the structure of programs,

lack of an engineering discipline. These problems are assumed to exist in

NASA, for the purpose of the program description in following sections.

The remedy is a project modeled after a mature engineering technology -

computer hardware production, for example - which supplies the coherent

engineering approach lacking in current software production activities, and

transforms them into a NASA Software Technology.

1.4.2 Section 3. Software Technology

Recently developed techniques needed in the design and development

of software, such as structured programming, chief programmer teams, and

proofs of correctness are reviewed.

1.4.3 Section 4. Statement of the Problem

The problem tree is set forth in three parts: basic or root

causes, practical difficulties (the stem of the tree), and characteristic

programming deficiencies (the branches). The latter are those evident to

the external observer of a programming activity which is in difficulty,

namely, schedule and cost problems, poorly performing computer programs,

inflexible (unmaintainable, inextensible) programs and errors.

1.4.4 Section 5. Description of the Program

The problems of, and the lack of an engineering approach to

software development have been noted at international symposia on software

engineering. No sustained effort dedicated to the solution of the problems

or the development of a software engineering approach, however, has been

undertaken. The program recommended for NASA is such a sustained, dedicated

effort. Its objective will be to develop a software technology, consisting

of languages, procedures, models, organizations, documentation, specifica-

tions, job descriptions, plans, and standards. For example, a satisfactory

4 A
AUERBACH

means to represent the structure of programs prevents the exercise of

spatial perception, an innate human ability, in the detection of programs

not responsive to users' needs or impossible to produce, and in the detec-

tion of structural anomalies. Such anomalies are not revealed by flow

charts, which describe processes rather than structures.

The program is designed to correct such deficiencies in language.

The resulting ability to represent quite complex software structures rather

than merely processes will permit greatly improved communications between

the successive steps of software development. Consequently, division of

development responsibilities can be made and well-defined professional and

technician specialties can emerge, permitting improved control over cost

and quality by meaningful inspection of stages of production. One such

division of responsibilities is that between design and fabrication, common

in other technical industries but absent in the software industry.

These differences between development of software and traditional

engineering having been pointed out, terms are defined and software engin-

eers' job positions are described. The goals and objectives of the program

are stated, and finally the organization and operation of the Technology,

Software, and User Groups are described.

1.4.5 Section 6. A Specimen Technology Group

The Software Group and its associated User Groups already exist;

the Technology Group must be created. Section 6 provides guidance on how

this might be done. The purpose and mission of the Technology Group is

examined in more detail, relative to the NASA management groups sponsoring

the program. The organization and operation of the group is discussed,

also in some detail, including its size and composition, the qualifications

of the staff, and job descriptions.

The products of the group are described in some detail.

Forms of communication are the physical products. Included will be

primarily internal technical memoranda, papers for professional journals,

5 A
AUERBACH

articles for trade journals, perhaps books. Also included will be oral

presentations such as seminars, symposia, and training programs.

However, the principal topic of this section concerns the subject

matter of these communications. Specific examples of products discussed

are: industrial standards, representation and languages, software produc-

tion techniques, and performance standards.

Implicit throughout the report

the Technology Group and all segments of

ially with the Software and User Groups.

of effective communication, and that, of

product of the Technology Group.

5a

is the close interaction between

the computer community and espec-

Such interaction is the foundation

course, is the most important

AAUERBAC~H

SECTION 2. BACKGROUND

2.1 THE ORIGIN OF COMPUTER PROGRAMS

The first electronic computer, the ENIAC, was built during

World War II at the Moore School of Engineering at the University of

Pennsylvania to produce mathematical tables required for the firing of

projectiles. These tables required numerical integration of differential

equations -- hence the name ENIAC (Electronic Numerical Integrator and

Calculator). The machine was completed in 1946 after three years of

work and was a success. Whereas a single trajectory had taken about

twenty hours to compute using a desk calculator, ENIAC could complete

the computation in thirty seconds.

To prepare ENIAC for a calculation, it was necessary to set up

all the connections manually beforehand for the transmission of data

among units. Each unit had to be wired to recognize when it was to start

and which operation it was to perform. The sequence of processing was

determined by the input and output signals between units. All of the

units operated synchronously with each other. Hence, it was possible

6

AUERBACI4

for several of them to operate simultaneously. Under this system it was

a day's work to set up the equipment. Checking the wiring for accuracy,

an arduous task, accounted for much of this time.

John Von Neumann, a child prodigy born in 1903 and one of the

greatest mathematicians of the twentieth century, contributed the major

theoretical advance in computer design, the stored program. Based on a

study of the logical design of computing machines, he saw the need for

numerous loop sequences in scientific and engineering computation and

saw that a new technique was required to carry out these computations by

machine. This led to the suggestion of storing instructions in a machine

in the same manner as data, which would enable machine commands to be

manipulated by arithmetic and logical operations. In this way a machine

would have the ability to change or modify its instructions. In 1947

Von Neumann suggested a method for converting the ENIAC into a stored

program machine.

As proposed by Von Neumann, the operation carried out by each

ENIAC unit was fixed by permanent wiring and each unit placed under a

central control. Codes were stored in memory for the actuation of the

necessary operations. The sequence of commands necessary for solving a

problem was given to the machine in the form of a list of coded instruc-

tions stored in the memory. The central control system was designed to

obtain and execute commands in the same order in which they were stored.

Special instructions enabled the machine to perform branching and looping

by modifying the sequence in which instructions were obtained from memory.

These methods have since become basic to all data processing machines.

Thus, ENIAC was a prototype of all later equipment not only in being the

first electronic computer but also the first stored program machine in

operation.

All of ENIAC's 18,000 vacuum tubes had to be operating for the

machine to function. The task of tracing down a malfunctioning vacuum

tube, however, is straightforward compared to that of determining the

source of a malfunction in the stored program. Tubes operate independ-

ently of each other, and if necessary each can be tested. Programs,

7AuA£RBACH

however, are subject to subtle interdependencies among their parts; and,

in addition, no objective test of their "correctness" is possible. A

measure of the complexity of programs is afforded by the degree to which

their various parts are cross-coupled,or by their interconnectivity.

Since the days of the ENIAC, programs have become ever more complex. Let

us trace the history of this growth.

2.2 THE EVOLUTION OF COMPUTER OPERATING SOFTWARE

In early computing installations, the method of operation was,

simply, one task at a time in sequence. Typically, a single program was

loaded into the computer and run to completion. Only then was a second

program physically loaded and run -- a sequential, discrete program

execution concept.

2.2.1 Discrete Program Execution

A primary disadvantage to the sequential execution philosophy

was inefficient use of equipment. Generally, programs which made great

demands on the internal data processing capacity of the system required

input/output devices only infrequently during processing. Conversely,

those programs which required the input/output system much of the time

frequently permitted the data processing elements of the system to idle

at a fraction of capacity.

However, inefficient equipment usage was not the only drawback

to discrete program execution. Each time a person wanted to run a program,

he had to perform the same tedious steps. He prepared his program in a

form suitable for the computer, described his run requirements and expected

behavior, waited in turn for machine time (usually programs were processed

in the order submitted), allowed time for solution, and finally, awaited

the return of his results.

The total elapsed time to complete all these steps exploded to

many hours and often days. One source of delay was the operator, who had

8

AAUERBAH

to read the operating instructions associated with each job and determine

that the requirements of the program were met. Another source was the

occurrence of errors. An error might be a machine failure, a mistake by

the programmer, or a blunder by the operator himself. In any case, the

operator usually did not have adequate information about the problem to

correct the error, or he needed time to search for a solution. It became

obvious that the computer should be given some of the responsibility for

managing and controlling its own facilities.

2.2.2 Job Stream Concept

In order to increase the efficiency of computer systems, computing

centers began to require that the programmers write their programs and

operating instructions in a uniform format. At the computing site there

was also standardization. Programs to be executed were all submitted in

the same way and were batched for processing, the data for these batched

programs was entered from a standard input device, and the results of

the programs were directed to a standard output device. The computing

center could now begin one problem program (job) and go right on to a

second and a third without physical interruption. A system program was

devised to monitor the transition from one job to the next in the batch.

Standardization and the job-to-job transition monitor (the job stream

monitor) reduced dependence on the operator and introduced the concept

of batch processing procedures through job stream processing.

Still further efforts to increase equipment utilization led to

greater use of the computer itself to perform clerical and error-recovery

tasks that had been required of the system operator. This program, de-

voted to internal regulation and control over the total operation of the

computing system, became known as the operating system. Increasingly,

the operating system supplanted certain operator functions and improved

equipment utilization. The function of the system operator changed from

essential intermediary to assistant to the computer.

9

AU[RBCH

2.2.3 Operating System Concept

An operating system, then, is a software unit which makes the

decisions that previously were left to an operator. In addition to pro-

viding standard responses to error conditions (both in programs and in

the equipment itself), the operating system must also allocate and control

the resources of the computer: input/output devices, memory, time, and

all other components comprising a modern computing installation. Further,

the operating system must keep accounting records for each resource allo-

cated to each program.

2.2.4 Multiprogramming Concept

Despite the improvements that operating systems make in efficient

equipment management, a given program still did not occupy all the equip-

ment at all times; usually one program loaded the input/output system

fully while another was limited by the internal data processing unit.

A way of loading all the equipment to its maximum was still needed.

In any large computing center there are usually different types

of programs requiring varied system resources. Under the control of an

expanded operating system, several programs can be loaded at once. One

program is started; then the operating system surveys the other problem

programs resident in the computer to see if any can make use of the

remaining available equipment resources. The operating system continually

examines each available program in an attempt to keep all parts of the

system totally employed. Such control and manipulation of several differ-

ent programs in the system is called multiprogramming. The multiprogram-

ming operating system was designed to make the most effective use of all

equipment under any given situation. Although turnaround time was reduced

slightly, there was still no direct communication between the computer

system and the programmer -- or the nonprogrammer, such as the scientist

or engineer.

10

AAUERBACH

Communications Capability Added

As multiprogramming operating systems were being developed,

the capabilities of computing systems were being extended by adding a

communications facility. There are three principal applications which

communications devices support.

* Rapid and varied data gathering. Many different device types
can be attached to a computer so that it can receive or
transmit data. Typically, these might be voice-grade units,
graphic displays, telemetry equipment, remote card readers,
and even remote processors.

* Message switching. One station can initiate a message and
send it to any other station(s) in the network.

* Inquiry/response of data retrieval. A collection of data
files (data base) is searched for a datum; or conversely,
the data base is altered by new information coming from
some remote point.

All three applications share the common feature of situating

the processor at a central site and, through communications channels,

sending information to or receiving information from remote locations.

Herein, the computer is used less for calculation and more for data

handling during the communication process, for if used solely for calcu-

lation it would need few external communications.

2.2.6 Interactive Operating Systems

The obvious affinity of multiprogramming systems and communi-

cations equipment led logically to the next step of operating system

development: interactive systems.

The interactive operating system differs functionally from the

multiprogramming operating system in the control of multiple user tasks

within the same relative time frame. Whereas multiprogramming allows two

or more users access to a computer but discriminates between their core

resident time through a priority scheme, an interactive system provides

each individual terminal user equal opportunity to contend for use of

the system.

1 1 AU^

2.2.5

I

The inquiry/response system is a rudimentary interactive system;

a query can be entered at a remote terminal and transmitted to the computer

to elicit a response. However, the inquiry/response system does not

permit the inquirer to do more than request information from a single

collection of data or to send new information for inclusion into such a

data base.

Under an interactive operating system, the terminal user is

no longer restricted to a single data base, but can create new data

bases, write programs, or alter existing programs. In fact, the user of

an interactive system has available at his terminal all of the capabilities

of the complete computing system and facility.

There is an added difference between interactive and conventional

systems. Unlike earlier input/output devices, the interactive terminal

can be programmed to respond. If the user makes a mistake, he will be so

advised immediately, and may be prompted to provide corrections. He may

ask for explanations of the various features that he wants.

Most important, the user can get information, answers, or reports

in minutes instead of hours. With present-day equipment, operating speeds

within the computer are so fast that each user at his own terminal does

not realize that any other terminal is in use. The ordinary reaction time

of man is so much longer than the computer's processing time that the

system seems to respond immediately.

There are obvious advantages to the interactive philosophy.

One former deficiency inherent in previous systems was that of inadequate

turnaround time. With an interactive system, however, turnaround time

is principally a function of the processing time to compute the answer.

If the user request can be calculated quickly, it will be turned around

quickly; if the request begins a long computation, the result will turn

around when the computation is completed.

12

AU&H

Another benefit of the interactive system is that the user is

directing and communicating to the computer conveniently. The user operates

his own terminal device, does his own programming, and receives his own

results as they are computed.

However, an exclusively interactive operating system had certain

limitations in computing power and programming language flexibility, while

the computer still possessed the untapped capability to run background

programs concurrently with interactive tasks. Background programs do not

interact with any terminal device although they may be initiated from a

terminal. They are the conventional batch programs that had been run

under the multiprogramming or job stream operating systems, or formerly

even without operating systems.

This observation led to the development of symbiont operating

systems, which support both interactive conversational jobs and background

batch jobs simultaneously.

2.2.7 Symbiont Systems

A symbiont system combines with its interactive capabilities the

complete and concurrent facility to support a broad range of production/

batch tasks. Whatever resources are not occupied by interactive requests

are given over to processing typical production jobs that are now per-

formed under an exclusively batch or multiprogramming operating system.

Conventional production tasks are those that can be submitted to the

computing center on a given day, but whose solutions are not required

immediately. Often these tasks require a relatively long time for

solution but need no interactive operation. Such programs are payroll,

inventory, billing, and sales analysis runs.

Under symbiont operation, interactive terminal users are gener-

ally treated equally as they contend for system resources. The emphasis

13

Au&

when executing background programs along with terminal processing can

be determined and balanced by the individual computing installation.

Hence, a particular installation can control the allocation of resources

between terminals and background programs dynamically and according to

immediate needs; it is even possible to exclude one or the other.

2.3 COMPUTER BASED AIDS

Programs for the earliest machines had to be written in the

machine's own language. The vocabulary consisted of a set of commands,

each invoking a particular machine function and represented by a string

of digits 6f some definite length. This language, of course, was very

awkward for programmers to use, because they are accustomed to dealing

with words and diagrams. While computer operating software was evolving,

a number of computer-based aids were being developed to ease communica-

tions between the programmer and the central processor, relieving the

former of the tedium of translating his thoughts into machine language.

The means for doing this are known as assemblers, at the lowest level,

and compilers, for high-level languages. Assemblers are language trans-

lation programs that convert symbolic source language into numeric machine

language, usually with a one-to-one correspondence. The source language

translated by an assembler is called the assembly language and is highly

dependent on the computer's instruction set. A compiler also translates

source code into machine language, but each written statement in the

compiler language is translated into several machine instructions. Gener-

ally, the term "programming language" is employed to specify the source

language translated by compilers.

Language translators, together with other computer-based aids

and the operating system constitute what is known as system software, or

the collection of programs the programmer may reasonably expect to find

resident on his computer for use in developing applications programs.

Other aids include mathematical routines (e.g., for evaluating a sign

function); generalized input/output routines; programs to manipulate

data, such as a sort routine; programs to assist in the diagnosis of

14 AH

machine malfunctions and program errors; and even systems of programs to

manage data, called data management systems. As the magnetic storage

immediately accessible to the computer's processing unit is too small to

contain it all, the system software generally is located on secondary

storage. When commanded to do so, the operating system transfers

the required system programs to central storage for use. This service

the programmer invokes by inserting the prescribed instructions in his

program at the point where the systems program is required.

2.4 APPLICATIONS PROGRAMS

These are the programs required actually to perform a job for

some user. Unlike the systems programs,which can be shared among all

users, applications programs are tailored to their specific purpose. This

may be a business function, such as accounting; a library function,such as

the storage and retrieval of textual information; scientific calculations,

which are characterized by numerical evaluation of mathematical formulae;

or communications and other non-numeric data processing,which require

the manipulation of individual bits of information. Applications programs

also are stored on auxiliary storage and brought into core as needed.

2.5 SOFTWARE SYSTEMS

By a system we mean that mechanism capable of all the functions

implied by its external interface. A software system is a collection of

programs just sufficient to discharge such system functions and would

include programs of all the foregoing types; that is, computer operating

programs, computer based aids, and applications programs. For example,

the Apollo software system includes all of the applications programs

necessary to process communications, drive displays, compute trajectories,

etc., as well as the IBM operating system supplied with the Apollo

computers, and the various utility programs required for maintenance and

improvement.

Two points should be made about software systems. The first is

that they can get very large and very complex. The basic IBM operating

15 AHi
AUERBACH

system, DOS/360, is a commonly cited example of a large and complex program.

It required as much investment to develop as the system/360 hardware itself,

amounting to many thousand man-years and resulting in a program running to

several million instructions in length. The Apollo software system is of

similar magnitude, probably costing somewhat more because of the need for

absolute dependability.

The second point is that the determination of the users'

requirements is an essential first step in designing a data processing

system. Following this, the system, comprising hardware and software

components, is postulated so as to satisfy these requirements. If the

system is both feasible and in some sense efficient, detailed design work

proceeds. The term software technology as used in this appendix is meant

to include both the requirements definition and design phases of infor-

mation system building. One of the processes which will come in for

careful scrutiny and discussion in later sections of this work is defin-

ing and expressing users' requirements. While this may stretch the notion

embodied in the term software, its inclusion is deliberate and indeed

necessary in order to focus on deficiencies in the software building

process.

2.6 THE PROBLEM

Computer programs from the very first have been subject to

errors -- missteps in coding, perpetrated by the programmer and not found

until after the results of the program's operation are examined and seen

to be in error. Errors may be obvious or elusive, but in either case they

have to be diagnosed after the fact, for the computer proceeds at such a

pace as to make concurrent diagnosis out of the question. The human

tendency of programmers to err is with us in undiminished form today as

it was twenty-five years ago.

Programmers seem to be unable to estimate the size or the

difficulty of writing a program which they have never attempted before.

This becomes highly undesirable in large programming projects, requiring

dozens or even hundreds of programmers, which therefore have a tendency

16

AUERBACH

to miss their scheduled target dates and costs by wide margins. Unfortun-

ately the miss is usually in the direction of an overrun, a fact attributed

to inefficiencies due to the large organizations required and a source of

discomfiture to project managers.

In the words of one observer:

These problems are symptomatic of the lack of an adequate
basis in the methodology, technology, and theory of information
systems and/or a lack of disciplined application of the method-
ology and technology we do possess. We are cursed with the
problem of the large, complex system -- problems of dimension-
ality and scale -- for which there is neither an adequate science
nor an adequate engineering discipline.

The problem has been compounded by laying too much stress
on what poses for efficiency as a design criterion; namely, speed
of computation, in terms of the number of machine instructions
executed. This is well understood, we can measure it, and it
has become the accepted measure of computational efficiency.

Unfortunately, in information systems this type of effic-
iency is often bought at too high a price: namely, lack of
structural modularity. More stress should be placed on struc-
tural modularity and the utilization of predeveloped, pretested,
multipurpose elements, as well as tolerance to abnormal traffic
and error conditions as measures of system effectiveness.

Too often trial and error is the practiced methodology to
match an information processing system to the need. The
heuristic approach is still the rule rather than the exception
in a computer systems design.

In defining the information system requirements, fre-
quently the real problem is not clearly known or, even worse,
is incorrectly defined. As a result good solutions are formu-
lated to wrong problems. System specifications may propagate
incorrect problem definitions that are biased by the designer's
experience so that they will reflect the limitations and errors
of other systems. Empirical solutions are frequently "force-
fits" and inefficient solutions to the problem. 1

The existence of problems has been recognized outside the

United States. In 1968 and 1969, conferences were convened in Europe

by the NATO Science Committee to define the problems better and try to

find solutions, for which a special term, software engineering, was coined.

17

AAUERBACH

In the meantime, although software development deficiencies are getting a

lion's share of the attention, a great majority of programs have been

running satisfactorily on comtemporary computers. Numerous examples of

very complex operating systems are functioning satisfactorily, and there is

a growing inventory of checked out, debugged, and functional programs for

almost any purpose one can name. Spectacular troubles with software

still can arise when a novel program or a programming system of very

large size is attempted. A criterion for the external success of a soft-

ware development project, as measured by its remaining on-time and within

budget, seems to be: obtaining the services of program design personnel

who have successfully completed a similar system. Naturally, this criter-

ion cannot be met by programming projects to extend the state of the art.

Currently, these projects seem to be chiefly large-scale computer control

systems such as an airline reservation system, an anti-ballistic missile

defense system, or possibly the system required to support the NASA

Space Shuttle.

18

AAERMACH

SECTION 3. SOFTWARE TECHNOLOGY

3.1 The term Technology usually means the systematic application in

an industrial setting of a discipline, usually based on a science. In

this section we shall be writing about the means for producing software

outside of the research laboratory, for short term or protracted use.

Such a broad subject has to be narrowed, in a document of this extent,

and therefore we will limit ourselves to a discussion of design and

programming methods, and organization and management. Even in this

narrowed context, space and time force further refinement of the topic.

Where appropriate, the discussion will be confined to aspects of these

topics which are undergoing or have potential for improvement.

3.2 DESIGN AND IMPLEMENTATION

In most industrial processes design and production are separate.

Different skills and different plant facilities are required. In the

development of computer programs,design and production, or coding, cannot

be separated. As in an art such as sculpture or prose composition, the

medium of design thought and the substance of which the final product is

made are identical. In designing a computer program the medium is a

19A

AUERAH

programming language. The fine points of the design can't really be

thought out until an attempt is made to implement them in computer code

of one level or another. Coding the program in turn affects the design;

for example, it sometimes invalidates design assumptions of what can be

implene;:tteiL. Thus, the design process is tantamount to coding the program.

The industrial practice of programming must recognize different

skill levels. Master designers can't write every line of code for a

large system, nor can junior programmers execute major design decisions.

So, industrial programming is more like medieval guild practice, in which

small groups - six or seven programmers - are needed to insure sufficient

communication between the junior and senior members. Large programs are

produced by many such teams. Relatively poor results have been experienced

in very large programming groups where this communication was not possible.

The word design is used both as a verb, to design, and as a

noun referring to the structure or other properties of the program. A

few techniques for both types of design will be discussed for example,

modular design (a design structure) and structured programming (a design

method). The procedure termed top-down coding is an implementation

technique necessary, because of the intermixing of implementation with

design responsibilities, to avoid design difficulties.

3.2.1 Properties of Good Program Design

Having distinguished between software design methods and design

structures, we will simply write design at times notwithstanding the

ambiguity, thus: a good design should be efficient both in the use of

machine resources and of designer effort.

A good design has the following properties. It should be correct.

It should be segmentable, or modular, so that parts of the program can be

replaced, in restricted central storage, by other parts automatically.

It should be robust, to survive unexpected data or processing loads or

20 A,
AUER8ACH

unforeseen error conditions. A good program should also be extendable

if it is to have a long service life. While efficiency and correctness

are probably the most important properties of a good program, recent

developments in program design concentrate on the idea of correctness.

3.2.2 Conceptual Design

There are two phases of design. In the initial, or conceptual,

phase an overall design of the program system is developed in flow chart

or block diagram form. Usually, the conceptual phase includes an

elaboration of the design level by level in increasingly greater detail

until the entire block structure of the program has been defined. Then

there follows a coding phase in which the details of the blocks are filled

in in machine executable instructions.

A traditional approach to conceptual design has been to break

the program system into modules. Each module discharges a single function

or a group of related tasks and has the property that relatively little

data crosses its boundary. The essence of this approach is subdividing

the program into entities of some kind, requiring a minimum

of input and output data. The need for modules has two historical causes.

First, as programs got larger, it was necessary to divide the work among

a number of programmers. Second, the impossibility of debugging a large,

monolithic section of code suggested splitting it into more or less self-

contained modules which permitted debugging. System software available

in the past may also have contributed to the requirement for the modules'

"clean" interfaces. Operating systems imposed low limits on the number

of parameters which can be passed to a module, thus giving rise to the

tradition for a clean interface, meaning a relative paucity of data flow-

ing across this boundary.

An even older tradition, and one that goes beyond the computer

programming field, is for top-down conceptual design. This is a procedure

for transforming a computer program specification into code by systematic

21 A
AIJERBACH

steps. The first step is the system block diagram; it represents, at a high

level of abstraction, the computer program which will ultimately result.

The system at the top level is next fully defined to comprise a set of

modules, which are assumed to exist. The sequencing conditions and data

structures for these modules are also fully defined. Each module is then

defined in terms of its submodules and the procedure repeated level by

level until ultimate primitives are defined. Only at this point are the

primitives and modules actually implemented in executable code. A dis-

advantage in this approach is that the program for any given component

may be difficult to implement because of its interfacing data structures

or because its submodules may be awkward to use.

Surprisingly little has been written on the subject of designing

computer programs, aside from works on the above mentioned classical
1

methods. The conclusions of one author, summarized below from an article

intended to illustrate the principles which should be taught in a program

design course, are:

* Program construction consists of a sequence of refinement
steps. Refinement of the description of program and data
structures should proceed in parallel.

* A notation which is natural to the problem at hand should be
used as long as possible before switching to a programming
language. The latter should then exhibit basic features and
structuring principles natural to the machine (author cites
FORTRAN as outstanding for this purpose).

* Students must be taught to be conscious of the decisions
involved in program design, to reject solutions, to weigh the
various aspects of design alternatives, and to revoke earlier
decisions if necessary.

* Careful programming is not a trivial subject.

From this and other writings it is impossible to descry a body of design

theory and practice to guide the software designer.

The most outstanding author on the subject of computer program

design is Professor E. W. Dijkstra of Technological University Eindhoven,

22 A
AUERBACH

The Netherlands. In connection with his development of a multi-program-

ming system in the mid 60's, Professor Dijkstra developed a concern for

the matter of correctness in real time operating systems. This concern

apparently lead him to exercise great care in the construction of THE,

the Multi-programming system whose design he discusses at some length in

reference 2. The essence of the difficulty apparently solved by Professor

Dijkstra was the probabilistic and intermittent conflict of two sources

of interrupts - the real time clock and the storage drum. His solution

involved a partitioning of the design into modules exclusively occupied

by an interrup source and between which the possibility of conflict was

reduced to a limited set-of possibilities. These possibilities were

exhaustively exercised by the test procedure used by Professor Dijkstra.

The design was evidently successful, but apart from recounting his exper-

iences in developing the design, Professor Dijkstra has only a single

conclusion to leave for the benefit of other designers: "It seems to be

the designer's responsibility to construct his mechanism in such a way

. . . that at each stage of the testing procedure the number of relevant

test cases will be so small that he can try them all and that what is

being tested will be so perspicuous that he will not have overlooked any

situation."

3
Again, Professor Dijkstra in another paper has described the

use of semaphores in solving the real time interaction of two modules.

While the semaphore is a useful invention (we don't know whether it should

be attributed to Dijkstra or a predecessor) for designers of real time

systems, it is his sole contribution to the art of design, in the reference.

As Dijkstra himself recalls, the final version of the design came "straight

out of the magician's hat," that is, directions necessary to retrace the

path traversed by Dijkstra in arriving at his ultimate design are, in

spite of his rather elegant exposition, apparently incommunicable.

Professor Dijkstra describes a design principle which seems to

be of fundamental significance to program extendability:

23 A
AUER8.ACH

Any large program will exist during its life-time in a
multitude of different versions, so that in composing
a large program we are not so much concerned with a
single program but with a whole family of related pro-
grams, containing alternative programs for the same
job and/or similar programs for similar jobs. A
program, therefore, should be conceived and understood
as a member of a family; it should be so structured
out of components that various members of this family,
sharing components, do not only share the correctness
demonstration of the shared components but also of
the shared substructure.4

Insofar as these excerpts are indicative of the existence of a systematic

design practice, one may conclude that it is largely an uncharted, some-

what personal and inchoate process.

3.2.3 Design - Implementation Phase

Once the conceptual design is complete, the process of implement-

ation - of writing the program in some computer language - can begin.

Programming has been viewed from the first (as it is today) as the formu-

lation of appropriate instructions to "get everything done," the major

problem being not to forget anything. Hence, the earliest implementation

procedure was to code the first instruction, then the next, and so on until

the program was complete. It must have soon become apparent that a large

program written in this way lacks form, and having no structural features

to support the development of a conceptual model in the mind of the

hapless reader, it thus eludes his comprehension.

In the early days of programming, little thought was given to

the effect of a program's structure on its communicability. Certainly

computers don't "care" what the structure of their program is and can

execute programs of arbitrary structure, if they are free of logical

errors. However, computer programs cannot be certified as error-free

either by testing or by algorithmic proof, and the burden of discovering

their errors is the programmer's alone.

24A

AERAUCH

Perhaps an early approach to program correctness would have

been the following. The correctness of a single statement can be judged

by inspection; similarly the correctness of the following statement can

be so judged. Hence by mathematical induction the entire program - which

consists of a sequence of statements - can be inspected for correctness,

one statement at a time. The existence of errors from the very earliest

programs should have exposed the fallacy of this reasoning, which is that

the correctness of a given statement depends in many cases on the context

of statements which preceded it. The very length of programs permits a

context far in excess of human ability to recall, and therefore proving

the correctness of an individual statement requires feats of association

and recall beyond the ability of any programmer.

The question then arises, "How can this context be supplied

in a form concise enough to be within the retentive and perceptive

powers of an individual, so that a program's correctness can be evaluated

by inspection?" The first record of an answer to this question (although

he claims the answer had been known for years) is in a 1968 communication

from Professor Dijkstra. In this he pointed out the GO TO statement (or

arbitrary jump instruction) as a prime source of complexity which makes

the written version of computer programs difficult to follow and under-

stand. His explanation:

. . . our intellectual powers are rather geared to
master static relations . . . Our powers to visualize
processes evolving in time are relatively poorly
developed . . . We should do (as wise programmers aware
of our limitations) our utmost to shorten the conceptual
gap between the static program and the dynamic process,
to make the correspondence between the program (spread
out in text space) and the process (spread out in time)
as trivial as possible.

Dijkstra asserts that human intellect has no difficulty

following a sequence, starting at the beginning and advancing one step

25 A
MJJERBAl:H

at a time until finished. He argues that if the sequence is a computer

program limited to executable statements (either conditioned or un-

conditioned) and repetitive clauses (viz. "DO loops"), then a pointer

to the step under consideration uniquely indentifies the progress through

the program. The pointer corresponds to the human notion of "where we

are" in the program; amenability to its use is the necessary condition

for any program to be humanly comprehensible. If GO TO statements are

allowed, no simple index will show how much of the program has been

executed. Noting that the GO TO statement has been shown by Bohm and
6

Jacopini to be logically superfluous, Dijkstra concludes it should be

avoided and that whatever statements are used, the resulting program

should be indexable by simple, "programmer-independent" coordinates to

be comprehensible.

Dr. H. D. Mills of the IBM Federal Systems Division further
7

develops Dijkstra's contribution to the comprehensibility of written

programs. Continuing the injunction against arbitrary control jumps

occasioned by GO TO statements, he permits a limited set of basic control

structures, such as IF-THEN-ELSE statements, DO loops, CASE statements,

DECISION tables, etc. The result is a program which can be read sequentially,

although practical programs would be much too long to do this comfortably.

Dr. Mills deals with the problem of length by setting bounds

on the maximum length of a program segment - normally one page. What

constitutes a segment Dr. Mills leaves to the programmers sense of pro-

portion with the following words of advice:

Imagine a hundred page PL/1 program written in GO TO -
free code . . . begin a process, which we can repeat
over and over until we get the whole program defined.
This process is to formulate a one-page skeleton program
which represents that hundred page program. We do this
by selecting some of the most important lines of code in

26 A
AUER8MCH

the original program and then filling in what lies between
those lines by names. Each new name will refer to a
new segment to be stored in a library and called by a
macro facility. In this way, we produce a program
segment with something under 50 lines, so that it will
fit on one page. This program segment will be a mixture
of control statements and macro calls with possibly a
few initializing, file, or assignment statements as well.

The programmer must use a sense of proportion and
importance in identifying what is the forest and what
are the trees out of this hundred page program.8

The matter of control paths linking the segments (pages) is

handled carefully. First, it is clear from the preceding quotation that

the segments form a hierarchy: each except the topmost "belongs to"

some other segment one level more senior and, together with a group of

peer segments, comprises that common parent. Then, control is allowed

to enter a segment at the top only, and to exit from the bottom only.

These two conditions guarantee that a segment can be read from top to

bottom, and that any internal exits will be to an immediately subordinate

segment, which will return control without detour. The reader can

merely note the internal exit/return for later analysis; such a check-

point makes it possible for him (Mills claims) to comprehend the entire

segment.

Mills assumes traditional approaches such as modularity, the

use of clean interfaces and top-down design to the conceptual design of

programs. For implementation, he insists on a departure from tradition -

to something called top-down programming. This practice, which avoids

difficulties with simultaneous interfaces (Mills likens them to a

theoretically uncomputable class of functions), is described as follows:

programs can be coded in such a way that every
interface is defined initially and uniquely in the
coding process itself, and referred to thereafter only
in its previously coded form.

27 AH

In practical application, this . . . leads to "top-down"
programming where code is generated in an execution
precedence form. In this case, programmers write job
control code first, then linkage editor code, then source
code. The opposite (and typical implementation pro-
cedure) is "bottom up" programming, where source modules
are written and unit tested to begin with, and later
integrated into subsystems and, finally, systems. This
latter integration process, in fact, tests the proposed
solutions of simultaneous interface problems generated
by lower level programming; and the problems of system
integration and debugging arise from imperfections of
these proposed solutions.9

Advantages claimed for the structured/top-down programming

technique advanced by Dr. Mills are error-free code (or nearly so), and

a program which can be well documented and effectively maintained. There

has been but a single known application of the techniques. This was in

the successful completion of a system for the morgue of the New York Times

in spite of a severe curtailment of the schedule. The effect of Mills'

programming conventions is obscured in that application however, by a

novel organization of the work force, originated by Mills, which helped

to accelerate the implementation. The results of this application will

be discussed presently.

'3.2.4 Formal Proofs of Correctness

Most of the foregoing discussion has been devoted to techniques

concerned with computer program correctness. This bias accurately re-

flects reality, where program faults enjoy a major share of attention

as the most disfiguring blemish on the programming profession's record

of accomplishment. Structured programming, the principal new technique,

aims at making the program comprehensible to a human reader, for veri-

fication. Human comprehension must be employed, because no computer-

based technique operates well enough to do the job. However, there is

active research on developing suitable proofs which can be mechanized,

and some progress is being made.

28 A
AiJERBACH

Current research centers around proving the correctness of

programmer-supplied annotations ("assertions") about key checkpoints

throughout the program, and in particular at the end. The historic

derivation of the notion of assertions is interesting and worth re-

counting. In the earliest approach to proofs of correctness, a

computation was viewed as transforming the memory contents from some

initial state through a succession of intermediate states to the

final (and presumably the desired) one. Efforts to prove that each

state implies its successor, however, were unsuccessful.

Then Naur
1 0

suggested preserving a record in symbolic form

of the operations on each memory word, or variable. At any point in

the program each variable could be evaluated from its then-current

history of operations and compared with its value just arrived at

by the program., This approach was restricted to key variables and

applied only at strategic locations within the program, to make it

less cumbersome. The resulting annotations scattered throughout the

program were called assertions and had to be provided by the pro-

grammer, in the absence of algorithms to derive them.

After Floyd
1 1

showed how existing computer-generated

proofs of statements in predicate calculus could be used to prove

the correctness of a sequence of assertions, London began

applying these techniques to programs of some size. Although the

computer-generated proofs are crude, they were successfully used to

prove the correctness of some programs which were operational, and

not written simply to demonstrate the technique. The largest of

1 2these contains 433 Algol instructions and performs interval arith-

metic on the Burroughs B5500.

Although a few computer-based aids for using the techniques

described above have been developed, the assertions must still be

supplied by the programmer, constituting a great burden, and the

techniques fail on programs of greater complexity. Because of these

29 4
AUERBACH

®

limitations, automatic proof methods in their present form can contribute

little to the production of programs for operational use. Liskov and

Towster suggest that applying automatic proof methods to structured

programs may accelerate the development of improved methods, because of

the simpler structure of such programs. Therefore it is still a good

idea to keep abreast of research in automatic program proving, as

results of practical significance to programming of an industrial

character may be produced at any time.

3.3 ORGANIZATION AND MANAGEMENT

Much has been written about organizing for the production of

computer software. Large projects especially have been the subject of

intensive effort to find the best organization for pursuing these projects.

Definitive contributions in this area have been made under contract to

the Department of Defense, whose procedures for the administration of

large software projects currently embody these original contributions. 4

There is a likelihood, however, in large organizations that most of the

experienced, senior programmers will be assigned to management jobs. As

a result, the programs which are written are the work of the less experi-

enced, while the more experienced programmers cannot apply their software

skills to the job at hand. A large organization also requires much in

the way of interpersonnel communication among its programmers. Exchange

of information in this process is hindered by the lack of standards for

program descriptions, making the communication channel a noisy one at

best.

These two difficulties are addressed by an organization termed

chief programmer teams, originated principally by Dr. H. D. Mills of

IBM. The chief programmer teams concept assembles a team of specialists

around a highly qualified senior programmer, comprising a group not

unlike a surgical team. The senior programmer himself devises the

nucleus of the system that is being programmed and assigns the remainder

of the programming to his assistants. In this way his skills can be

brought to bear directly on the design and coding of the programming system

30 A
AUERBAH

being developed. The team concept also relieves programmers of clerical

duties, such as key-punching and report writing, which are transferred

to a librarian. The librarian, who maintains all system documentation in

a current state, alone is permitted to communicate with the computer. This

she does for the programmers. To make this possible, only a few standard

computer functions are used, which a secretary can be taught in a couple

of weeks to invoke as required. The library also serves as a medium of

communication for programmers, who consult it for definitions of inter-

faces, program operating details, etc. It also constitutes ready-made

documentation for the system. For writing code, the team employs the

structured and top down programming techniques developed by Dr. Mills.

The chief programmer team concept has been put into practice
15by IBM in the development of a system for the New York Times. During

the course of approximately a year, this rather complex system was completed

by a staff of eight programmers producing at above average levels. Few

errors were found in the resulting system, and it was concluded that the

combination of the team concept with structured and top down programming

techniques was responsible for approximately doubling the productivity

of the programmers.

These promising results are qualified by'the author, who notes

that application of the team concept to large scale systems, though

feasible, has yet to be tried. Further, chief programmers of the caliber

required are scarce, because they must have the qualities of a manager

and at the same time be able to make significant technical contributions.

In fact, all the personnel on the New York Times project were unusually

high qualified. This appears to be a requirement for successful appli-

cation of the chief programmer team concept to software developments of

moderate or greater difficulty.

31 RAH

SECTION 4. STATEMENT OF THE PROBLEM

4.1 BASIC CAUSES

The existence of problems in the construction of programs has

been alluded to in previous sections. In this section we will discuss

characteristic programming deficiencies in terms of the root causes.

First let us see what these causes are.

4.1.1 Lack of Theory

Unlike the physical sciences, computation is a practice largely

unaided by formal, mathematically expressed relations. This lack hinders

the design of computing processes, by depriving the designer of the

means to trade off one parameter for another, while predicting the be-

havior of the computation process. The lack extends to an expression

for the efficiency of the computation, with the consequence that it is

impossible to distinguish except in a rough way between processes of

lesser and greater efficiency. More important, there is no algorithm

which when followed assures that the efficiency of a process will be

increased. A result is the observed 20 to 1 variability in the efficiency.

32 A
AUERRAC

of code produced by different programmers: lack of the algorithm prevents

their convergence on equivalent processes of comparable size and speed,

or even in comparable periods of time.

4.1.2 Lack of System Description Languages

Apart from informal languages, which arise more or less on an

ad hoc basis, there is no reasonably concise and unambiguous language

in general use to convey the meaning of computation processes among

humans. Natural language, flow charts, and higher level programming

languages are frequently used, but their use involves the possibility of

misunderstanding.

Natural language is the medium generally used for communication

with the user about his requirements. In such language, the danger of

misunderstanding is great. Numerous examples of information systems

which failed to answer the needs for which they were designed can be

cited as proof of the need for a less ambiguous communications medium.

Language also has an effect on the thought processes of those

who use it, and the particular design language employed by a computer

systems engineer will influence the character of the design he produces.

Dijkstra has roundly denounced FORTRAN as being inimical to constructive
1design thought. It has been shown that a design team must first agree

on a common language suited to its project before it can progress with

the design.2 Designers may use any agreed-upon subset of language,

perhaps augmented by flow charts, for communication among themselves,

but with the possibility of lacunae.

If a programming language is used to communicate design in-

structions to the coders, it may be sufficiently rigorous to prevent

misunderstanding of the program which is to be produced.

33 [
Au&

4.1.3 Test of Correctness Impossible

A computing process can be viewed as a succession of machine

states dictated by the input data. It has been shown that the number

of possible input sequences, and hence the number of possible states,

is so great that it would take tens or even hundreds of human life

spans to demonstrate them all on a computer of practicable speed. While

it is possible to test the logic flow of a program in finite time, de-

monstrating the correspondence of the output to that required is what

would take impossibly long. This obstacle constitutes a gulf separating

the design of computation processes from that of physical entities: no

formal check can be made of the correctness of a design. Designers

must use informal methods, at least until algorithms for formal proof are

perfected. Currently, human intelligence is the only means available to

check the correctness of programs. Programs must be concisely expressed

(limited to one page or so as we have seen in Mills' structured

programming) to remain within the limits of human understanding.

4.1.4 Programmer Psychology

This is not so much a lack as a characteristic of the program-

ming process, which influences design structure. The psychology of

programming teams has been little studied: we only know that it appears

to be less amenable to conventional methods of organization and manage-

ment than other developmental activities.

Programming and more especially systems design, is acknow-

ledged to be a creative activity and attracts creative people.

However, the lesser aspects of programming (the production of "dull"

sections of code) do not appeal to the creative sense. In consequence,

design functions tend to be distributed among all the programmers on

the project as compensation for purely production coding, with resulting

34 AJ

lack of control over the design process. The lack of restraints on

designers' inventiveness, such as a deadline or firm system goals, has

been known to cause programming project failure.

Second, programmers identify with the code they produce, to

the extent that errors in code tend to be glossed over by its inventor.

Once the programmer's ego is divorced from his code, the errors become

highly visible, and in fact "egoless programming" is a term which describes

the practice of critical review of code by the programmer's peers.

4.1.5 Changing Understanding of the Problem

When a detailed information processing solution is applied to

an incompletely understood problem, the resulting system is in for a

lengthy period of development. This consists of solution by successive

approximation in a series of iterations of the initial system design.

In each, the designer learns more about the problem, asymptotically

approaching the state of being adequately informed; several cycles of

system redesign later, the solution is satisfactory. This process has

been noted in management information systems where the problems are

seldom understood by the prospective system owners; it was observed in

the construction of early compilers, and probably has been with us from

the beginning.

4.2 PRACTICAL DIFFICULTIES IN SYSTEM DEVELOPMENT

SAGE is regarded as the first large scale complex programming

system; a thousand people were involved in its development. Based on a

prototype system developed at MIT, the full size system should have

required a reasonable number of people and time, but more effort - orders

of magnitude more in fact - were needed. Various specialists were

35 AC

required at all levels of the program. All of these specialists required

managers, themselves at a variety of levels. The managers required help,

both admistrative and technical in nature. As schedules tended to slip

or difficulties be recognized, more people were hired which required

more management (and more communication). This cycle continued for

several years until many hundreds of people were involved in the program-

ming effort. The program, considered by most people to be a landmark

as well as one of the few successes in large scale system programming,

nevertheless was delivered later than originally planned and with some-

what less capability. When asked what he would do differently if he had

to do a system like SAGE again, the manager of SAGE development said,

after some reflection, that he would hire twelve good people to do the

whole job. Outside of that he couldn't think of much else that he would

have done differently.4

4.2.1 Partitioning the Design Structure

The fact that SAGE was one of the largest programming efforts of

all time doesn't mean that smaller programs are immune from similar diffi-

culties. The use of conventional methods of organizing groups of people

engaged in a development and production effort militates against a success-

ful design, even of medium scale systems. As has already been mentioned,

the design should flow through one head; that is, it should be comprehended

by one designer in order that its correctness might be perceived. Hence

the problem of how to partition the design such that many independent

design groups can work on it simultaneously, arises in the development of

any program which exceeds the ability of a single man to design.

4.2.2 Postponing or Evading Design Effort

Design also has been characterized as a series of decisions.

Many thousands of decisions are taken in the design of an average system.

These have to be based on knowledge: of the details of the rest

of the design, of the problem which the system is being built to

36 A
AUCABAC

solve, etc. Such knowledge takes time to acquire, and sufficient time

is not always allowed in the large system development, because of schedule

pressures.

4.2.3 Precipitate Coding

The pressure of a schedule and awareness that a great deal of

coding has to be done has caused managers to commence work on coding

just to get started on a job which is obviously huge. When combined

with an organizational philosophy which puts coders at the bottom of

the management structure, this hasty commencement of coding throughout

the system leads to design difficulties. We recall that even at the

coder level some design latitude is allowed as a compensation for the

dullness of mere coding. Hence the process of design is commenced

throughout the system at the very bottom level by the coders before the

design has been properly thought out. A classical bottom-up design

emerges, leading to difficulty in integrating the resulting components

into a system, but its most serious drawback is that the resulting system

design itself may be influenced by the existence of modules already

coded.

4.2.4 The Organization Imprints the Design

It has been found that the organizational structure can also

influence the structure of the emerging design in a large scale develop-

ment. One of the men who participated in the development of OS 360

recalls that at the beginning of design work, a group was formed within

the development organization for each of the functions considered to be

important in the original design. When after a few months it was found

that there were additional important functions, there was apparently no

5way that additional groups could be fit into the design organization.

The conclusion of course is that the design which emerged didn't give
6

proper emphasis to the added functions. Conway shows that this effect

37 xAJ&

is general, in that a software design structure will always pretty much

conform to the structure of the organization which designed it. If this

effect:is unavoidable, the conclusion to be drawn is that serious thought

should be given to establishing a final design structure before organizing

to build it. Our impression, however, is that this is not generally done.

4.2.5 The Communications Burdon

Communication in a large organization is also difficult. As

Conway remarks, the number of communications paths are approximately

half the square of the number of persons in the organization. If the

design is fragmented by an early commencement of coding and by the dif-

fusion of design responsibilities all the way down to the ultimate coders,

then the maze of paths becomes an insuperable obstacle to the flow of

necessary design information. As a result, the designers tend to make

their modules self-sufficient, which tendency implies overdesign and a

consequent surfeit of code in the system.

4.2.6 Programmer Training and Selection

Software design principles are largely untaught in courses

for programmers, or elsewhere. The burden of what is taught is how to use

a programming language, with the implication that design ability is

conferred with mastery of the language and consists simply of employing

it correctly. It is generally acknowledged that programmer aptitude tests

distinguish not between poor and good prospective programmers, but more

nearly how these programmers will do in training or how easily they will

learn programming. Although college degrees have been required for

38

programmer recruits, no correlation has been shown between the quality of

programs produced and the amount of such education received, except in

scientific programming which requires a knowledge of advanced mathematics.

It has been acknowledged that the identifying chatacteristics of potentially

good programmers have not yet been isolated.

4.2.7 Industrial Versus University Software Development

As was indicated, the prototype SAGE system was well designed,

and there was every indication that its development could be repeated on

a transcontinental scale with little loss in efficiency. The prototype

was developed by a small, presumably highly intelligent group in a labora-

tory of one of the country's best engineering schools. Similarly, elegantly

designed systems have been put together in academic computer centers in

this country and abroad. These systems are probably little documented and

lapse into disuse when their originators depart, but this doesn't alter

the fact that well designed complex systems are frequently produced in

academic circles. The difficulty seems to be in equaling these achieve-

ments in the industrial practice of programming, where large size introduces

severe management and organization problems. A dearth of effective com-

munication between academic and engineering information systems designers

has been observed; bridging this gap may solve some of the problems noted.

The striking difference between these two groups is in the level of

education and the continuity of the constituent personnel; both character-

istics are greater in academic development.

39 AH

CHARACTERISTIC PROGRAMMING DEFICIENCIES

To the question, "what effects of the foregoing causes do

software systems characteristically exhibit?" the answer is, Slipped

schedules and/or cost overruns, performance short falls, errors or bugs,

and difficulty in revising and maintaining programs. This is not to say

that software systems invariably exhibit these deficiencies. Some of

course do not, but if we were to summarize the typical errors that have

been reported over the past ten years or so it appears that they would

fall without exception into one of these four categories.

4.3.1 Schedule and Cost Difficulties

There are numerous stories of system development cost estimates

that missed their marks by factors of two or three, and a factor of ten

is not unknown. There are also examples of competent professional

programmers' estimating the same job and differing by over 100%. Not

all estimates are bad. Small well-defined assembly line programming

jobs can be estimated closely by a competent and experienced estimator.

On the other hand, estimates of mammoth computer program system develop-

ments - projects requiring hundreds of man years, thousands of computer

hours, and millions of dollars - take on more of the character of a

wild guess than of something resembling scientific prediction.

Most bad guesses fall short of actuality rather than overestimating

the effort required. It is not uncommon for an estimator to go through

his calculation and then add a contingency factor of 25, 50 or even a

hundred percent. He is in effect saying that lots more is going to

happen that he doesn't know about, so he estimates the rest as a percent-

age of what he does know something about. This points to a fundamental

difficulty in the estimation of system development, which is that we don't

understand what has to be estimated well enough to make accurate estimates.

40 AH

4.3

It is relatively easy to estimate the amount of effort required to produce

a set of programs - for example, program specifications, flow charting,

coding, unit testing and so on. Even on these straight forward programs,

cost and/schedule overruns are not unknown. These are due to the unknown

character of the program design process. There are no work standards,

by means of which the amount of work to be done can be transformed

into the amount of programming effort required. Again, there is the

problem of variability in the productivity of programmers which tends to

throw estimates off.

Ancillary activities required in the production of a large

system tend to be overlooked in estimating. These are system tests,

data conversion, support functions such as documentation, test develop-

ment, planning and controlling the development, hardware tests and so on.

The larger the system the relatively greater importance these functions

take on. In a large system development each task is dependent upon and

influenced by many other tasks. What to a given programmer is a relatively

simple process becomes in the large system development one of intimidating

complexity.

The cost of large software developments is considered by some

to be too high. For example the cost of support software for the Appolo

project is estimated at a billion and a half dollars. Another system,

OS 360, cost as much to develop as the System 360 hardware itself, or

about ½ billion dollars. However, the absence of any standard against

which to measure software development costs prevents an objective

assessment of them. We can only point to inefficiencies in a particular

development and speculate on what the costs would have been without

them.

4.3.2 Performance

A program can fail to meet specified performance in terms of

41 EAH

speed of computation, amount of central storage required, specified

mappings between input and output data, and operations desired by the

user. Obstacles to meeting the last two performance specifications

have been discussed previously; they account for the major part of the

effort in demonstrating that a program meets its functional requirements.

However, occasionally it also happens that a program exceeds the amount

of core storage available in the target machine or performs much too

slowly to be of use. The usual remedy for excessive storage requirements

is an expansion of core resources of the machine or a dispersal of parts

of the program onto auxiliary storage. In this way the failure of the

program to meet storage specifications, bought at the price of additional

investment in storage resources, is overcome. A slow program, however,

usually cannot be fixed by increasing machine power, in which case it

has to be redesigned. This process can range all the way from tuning

to redesign-from-scratch; the relevant trade off is between operating

speed and development time or cost.

4.3.3 Inflexibility

This term refers to a property of programs which makes them

difficult to maintain or to modify. When it occurs, it is caused either

by a lack of documentation or by the structure of the program. Writing

documentation is, like producing mere code, considered a dull job

by programmers. They prefer the more creative activity of design.

As a result, documentation is frequently ignored or slighted. Then

when it comes time to revise the program because of a change of input

conditions or of machine, most often the persons who developed the

program are employed elsewhere. The written description of the program

is the only means of conveying an understanding of its structure to the

programmers charged with maintaining it. When this documentation is

deficient, the maintenance job is made correspondingly more difficult.

42 A

Even though a program be fully described by its documentation,

it may resist change. For one thing, if program modules are highly

interconnected, changes can ramify through them, and the task of under-

standing and controlling all the effects of even a superficial change

can become horrendous.

Highly inventive or individualistic code can defy or discourage

precise documentation. This type of program has an erratic logic flow

which is hard to follow, reuses existing sections of code which "just

happen" to do something that is required, contains many patches, etc.

Another faulty programming practice is the building of dependencies

which are not required by the problem specifications. Thus a given

module may be so constructed that it relies on register values remaining

unchanged, or on a specific sequence of modules being executed, or on

a specific sequence of fields in a table. A given module may be more

restrictive than the problem specifications in its assumptions regarding

the range of values in a field, the upper limit on the size of a

table or the volume of input. Such practices produce a fragile

program which collapses under the stress of more varied input data or

attempted modifications. These and similar practices elude such documen-

tation as accompanies the program. The program will be employed while

it works, but attempts at major repairs are foredoomed to failure because

of its fragility.

4.3.4 Errors.

Program errors, whose effects are probably the most widely

denounced of the computer's artifacts, stem from a mismatch between

the programmer's circumspection and the computer's. When doing anything

for the first time, a human being, lacking the ability to forsee many

consequences of his actions, makes an initial attempt and waits for re-

sults on which to base a new attempt. When this method of working is

applied to computer programming, the computer can be depended upon to

43 £A

reveal a few mistakes to the programmer. The remainder are left as an

exercise for the programmer or the unwary user to identify and cure.

The symptoms may be a program loop, intermittent garbling of the out-

put, or a complete collapse of the program; more rarely the computer

will simply halt. While debugging tools such as traces and core dumps

are available to assist in finding the cause of errors, diagnosis at

present requires the application of human intelligence and cannot be

performed by the computer.

The debugging process is one of tracing backwards in time from

the observed difficulty to its origin by tracking the occurrences of un-

reasonable outputs in the record of a computation process. Since millions

of computations, the results of which may be overlaid in the same section

of core, can be completed in the time it takes a human observer to recog-

nize difficulty, the cause may be obliterated. If not, the masses of

data produced between the cause and the first observance of difficulty

have to be reviewed by the programmer. This takes time, and hence de-

bugging is a slow process.

Not all bugs can be eliminated in a large system. For example

OS 360 had at last count a standing collection of 2,000 bugs.8 Existing

bugs in a program are simply avoided by programming around them until

they can be corrected, an expedient that works well once the bugs have

been discovered. OS 360's constant quota of errors indicates that they

are being found as quickly as they are being eliminated, implying a

rather large reserve of unlocated and unsuspected bugs. Commenting on

the essentially infinite period of time required to locate all bugs,

Turski9 has proposed adoption of less than 100% as an error-free criterion

for programs. Unfortunately, this will remain an unquantifiable notion

while the total number of bugs is unknown.

We adopt a taxonomy of bugs which classifies them according

to the point at which they are found in the life cycle of a program.

44 ^AAUERSAOI4

The main divisions of the resulting entomology are among intra-module,

inter-module, data-caused, and in-service bugs.

* Intra-module. Bugs which occur during system develop-
ment can be of a low level type which are discovered
during the testing of modules. Among these are the
array overwrite, the "off-by-one" group (off-by-one in
indexing, off-by-one in shifting), and the operation
irregularity bugs, introduced by computer arithmetic
of only finite precision. Use of a higher level
language for coding modules may prevent some of these
bugs, but such languages invariably deprive the pro-
grammer of certain machine operations and their use
should be foregone in novel or difficult programs.

* Inter-module. The inter-module bug shows up during
initial tests of the joint operation of a group of
modules which have been designed, coded, and tested
independently. The key difficulty is in achieving an
interface among several of the modules. Each module
places constraints on the variables which must cross
the interface. As the modules have been designed in-
dependently, the constraints may conflict, leading to
redesign work in one or many of the modules until
the interface is achieved.

* Data-caused Errors. We have assumed that, up to this
point, modules are tested individually and in com-
binations in the absence of any input data. That is,
the logical paths in the program have been tested,
but the algorithms themselves have not. Data driven
bugs of particular interest are those in a real-time
system which are caused by particular combinations of
timing and data and hence are intermittent. Such bugs
are difficult to eradicate because of their unpre-
dictable occurrence. In the sense that the variable,
time, is a data input, data driven bugs include time-
simultaneous (and hence, conflicting) claims for com-
puter resources by various processes. Dijkstra has
revealed some of the difficulties of the intellectual
process necessary to prevent conflicts of this sort
in a note on the design of THE,a multi-programming
system.

* In-service Errors. After the designers of a system
have reasonably assured themselves that the system is
error free, it invariably happens that further bugs are

45 R
AUERBACH

found once the system has been turned over to the
users. In effect, the many diverse and perhaps un-
anticipated uses of the system continue to disclose
the existence of bugs. The larger the system, the
longer this process goes on.

The manner of using a system can actually contribute
to errors or reveal unsuspected difficulties inherent
in the design. This fact is sometimes perceived by
users as program "fatigue". The problem of program
fatigue may be explored from four points of view:
residual data (noise), saturation, entropy (disorder),
and equipment strain. We shall assume that our tired
program is not suffering from errors of program design or
of implementation. This exclusion is done to better
isolate the problem of fatigue from other categories
causative of program performance deterioration.

- Residual data (noise). At program startup, data
sets are initialized to values which are highly
relevant to current system operation. As time
goes on, some of these data sets may lose some
of their relevancy. Entries may be retained in
program directories which index data sets no longer
in use; queues for devices, communication channels,
etc., may contain entries whose timeliness is past.
These conditions may reflect themselves in sluggish
system performance. An example of residual data
may occur in an information system or inventory
system where reports cease for one reason or
another, but the inventory item is retained in
the active file anyway.

- Saturation. Programs, if driven long enough and
hard enough, will saturate. Variable length tables
achieve their limits, queues fill up, and counters
overflow. It is common to design a program to
run near its saturation point, in the interest of
achieving maximum use of the computer. On the
other hand, such design carries with it the re-
requirement to recognize saturation when it occurs
and to handle it, usually by regulating the load.
Measures normally taken are to throttle input and
eliminate low priority tasks, etc. during the
stress period. When the delay or even delete
measures taken areinadequate, the result may be

46 Au

a breakdown in performance. Often the breakdown
is temporary, with the result that the need to
correct the problem is overlooked.

- Entropy. A parallel to a law of thermodynamics
suggests that in time a system runs down, loses
information, and increases its noise. Certainly
weakly designed systems do exhibit increasing
entropy effects. The following are common causes
of increasing entropy in computer systems:

(1) Error Propagation. Programs are subject to
propagated error - error which is passed
from its originator program unit to and
through a sequence of other program units.
The problem is particularly keen in programs
operating within closed (feedback) loops.
Unless the propagation errors are sufficiently
damped, they may grow out of control with
time.

(2) Disorder. Programs often depend for good
performance upon a favorable arrangement of
data in storage. Quite often, the program
design does nothing overt to guarantee that
favorable arrangement, set up at program
initiation, will more or less be retained
throughout the course of program execution.
When over the course of time the data evolves
into an unfavorable arrangement, the program
performance may suffer. A familiar example
occurs when data is stored on a moving arm
disk over a large number of bands. Initially,
the data is located on the first few bands,
and data access delays due to arm movement
are small. Later in time, the data spreads
randomly over many bands, with the result
that average disk data access time becomes
long.

(3) Priorities. Programs that depend upon a
priority structure may slow down or degrade
when priority differentiation breaks down.
Priority breakdown may occur when program
activities of the same priority cluster in
time. In dynamic priority systems, normally
low priority program activities may be up-
graded for one reason or another, causing
the troublesome clusters.

47 H

(4) Iatrogenic errors. These are introduced un-
knowingly by the maintenance programmer while
making needed corrections. An increase in
the incidence of program errors and of activity
to repair them results. When the iatrogenic
errors respond to comparatively minor repair,
the effect tends to be self-dampening.

48 AQ
AUERSAOH

SECTION 5. DESCRIPTION OF THE PROGRAM

Those attending the international software engineering confer-

ences raised many problems, aired many opinions, and presented many

excellent ideas for solutions to some of the problems. However, these

opinions and ideas, many of which had actually been successfully applied,

had been generated as means to specific and generally limited ends. The

primary goal for virtually all of these attendees is that of producing

software to perform, in a reliable manner, the functions intended by them

or their clients. The problems attendant on such production and their

solution are therefore, by definition, of secondary importance. This

implies a lack of comprehensive, systematic and sustained efforts to solve

the overall problems that beset the software-producing industry; and upon

closer examination of the industry, such effort is indeed missing.

The proposed program is specifically advanced to fill this gap;

its sole objective is to provide graphic and verbal languages, procedures,

constructs, models, organizations, documentation, specifications, job

descriptions, test plans and various kinds of standards. That such an

effort is needed is attested to by both the title and existence of the

49. A
AUERBACH

Software Engineering Symposia. They comprise a recognition by the leaders

in the industry that an engineering-like approach is essential to the

vigorous growth of the software industry. At the same time, the difficulty

of achieving such an approach, because of the nature of the end-product,

is also recognized. Thus, the proposed program.

A program of relatively complex structure, sustained duration,

and evolutionary nature, in which the exact nature of the final products

cannot be determined, can best be kept on-track by laying out its goals

and objectives. The program's status at any point, and the thrust of its

current activities, can be compared with the stated goals and objectives,

to assure that the program is still on the track. A suggested set of such

goals and objectives is provided in a later section. In another section,

we shall define some of the words and phrases used. In still later sec-

tions, the requirements of the program will be outlined. The organization

and its composition will be presented. The long-range program plan will

be explained, and the functions, operations, and interactions of the several

participants will be developed.

5.1 INTRODUCTION

The ultimate purpose of the proposed program is to make possible

the production of software in NASA within predictable schedule and budget

constraints, with major characteristics of the product - size, run time,

correctness - predictable within reasonable tolerances. At the moment,

such predictability is confined to relatively small programs; the delivery

time and budgets of large, complex programs can be off by an order of

magnitude or more, while the performance of the product can be deficient

in important ways. The situation has been called a crisis by many who

should know; it is getting worse rather than better.

This situation is in sharp contrast to that on the computer

hardware side. By definition, industries for stored-program computers

--software and hardware--were conceived and born simultaneously

50

and have evolved concurrently. However, in computer hardware, costs have

dropped by as much as several orders of magnitude, speeds have increased,

size, capicity, and complexity have increased substantially, and reliability

has increased in spite of the foregoing facts. Predictability of hardware

costs, schedules, and of hardware characteristics has kept pace with the

maturing of the hardware industry. Many extremely useful standards have

been firmly established at many system levels, and have been widely adopted.

Part of the reason for this contrast can be attributed to the

nature of the product. This part of the reason is non-trivial, but so

is the other part: the basic approach used by the producers in each case.

In the case of hardware products, the producers from the beginning

included the engineers for design on the one hand and the electronics and

components industry for fabrication on the other. The end product is a

tangible artifact, generally (but not necessarily) produced in large

quantities. Separate designs are required for prototypes and for quantity

production.

In the case of software, the essence of the end product is not

tangible. The product is a stored program, which consists of the status

of a multitude of (generally bi-stable state) storage devices. This pro-

duct, the software, in combination with the corresponding hardware product,

a computer (program, memory, I/O), provide the user with an operational com-

bination capable of doing (presumably) useful things when the "start" button

is depressed. The producers of this product were not engineers, but in the

beginning were mathematicians, and somewhat later, accountants, and still

later, specially trained personnel at increasingly lower levels of general

intelligence, aptitude and competence. Thus, the producers of software have

come, since the beginning, from many diverse backgrounds, with a wide diver-

sity of approaches to the task of producing software. This diversity still

exists.

The difference in the nature of the product then, is that in the

case of hardware, the steps beyond the development of an explicit verbal

and graphical description (preliminary design) by engineers include:

51E A

1. Fabrication of a prototype (or model)

2. Development of a production design

3. Fabrication of a multiplicity of identical copies of the
tangible product.

In the case of software, the steps byond the development of an

explicit verbal and graphical description (source language program) include:

1. Converting the program to machine-readable form (human
operation)

2. Translating the human language (source program) to computer
language (object program)

3. Loading the program into computer memory (at which time it
becomes the final end-product, the stored program, ready
to do its job in combination with the hardware and any
executive software).

In both instances, tests are performed to establish that struc-

ture and performance of the interim and end products are in accordance

with sponsor requirements. The difference in the nature of the tests is

a reflection of the difference in the nature of the product. In the case

of hardware, the product can be - and is - tested in two inherently dif-

ferent ways: (1) thestructure and physical characteristics of the end

product are tested against the engineer's description of the product to

assure that the fabrication is in complete agreement with the design and

that the engineer's intentions are realized; (2) the operation and func-

tioning of the end product is tested within the context of the user's

total operation to demonstrate that the design as realized in the fabrica-

tion is completely responsive to his expectations and that it "fits" within

his operation.

In the case of software, the end product has no physical charac-

teristics of its own- only those of its container - a storage medium.

Roughly, this storage medium has the same relationship to a program that

a computer room or shelter has to a central processing unit.

52 4
AUERBACH

For all practical purposes, this end product, the stored program,

is generally considered to be identical to the source-language program

prepared by the programmer. Thus, the equivalent of the design/fabrication

comparison, a structural test, cannot be performed. Substituted is a

functional test or series of tests to demonstrate that the program will

perform as intended within an environment, hardware and software, that

approaches increasingly closely the user's total operation.

This lack of the equivalent of a structural test is a very

important deficiency, as far as the production of a properly-functioning

end-product is concerned. It is important because the deficiency denies

the use of intuition, experience and physical perception to detect struc-

tural anomalies that are responsible for product malfunctions. The sig-

nificance of this deficiency can be grasped by considering the difference

between a road map and verbal directions as a guide to get from "here to

there." In the absence of a map, the only sure way to test the correct-

ness of the directions is to follow them exactly. If the directions are

not correct, there is no obvious way of correcting an error. If it is

correct, there is still no obvious way of establishing other and perhaps

better routes. On the other hand, with a map all possible ways are evi-

dent; topological anomalies are instantly detected, and it can be checked,

point by point, for physical inaccuracies. When it is structurally

accurate, any set of correct directions can be drawn from the map, with

positive assurance that all of them will get the traveler "from here to

there," and an optimum way can be determined. If some roads are known

to be blocked, alternative routes can be used.

The importance of this deficiency in testing software is based

on the difference between the enormous amount of information in a graphic

representation, which can be perceived visually and effectively processed

in parallel at very high speed, and the relatively small amount of informa-

tion in a verbal representation. The written material must be read; that

is, acquired serially, stored in human memory in small groups, and inter-

preted and integrated with previously read and stored information, all at

relatively low speed.. This difference is epitomized by the graphic

53 A
AUERBACH

representation of "impossible objects" of Figure 1: how long would it take

to establish beyond reasonable doubt that the verbal equivalents of these

very real two-dimensional "structures" represented three-dimensional non-

structures? And what levels of education and intelligence would it take?

FIGURE 1. IMPOSSIBLE OBJECTS*

The reason that a traditional engineering approach was not taken

to software fabrication is thus quite clear: a means of representing the

structure of a complex computer program was, and still is, an elusive

matter. However, the importance of such a structural representation to

achieve program correctness also became quite clear as computers and

memories and peripherals and programs became increasingly larger and more

complex. Thus, the need for an engineering approach to software construc-

tion became increasingly evident to the leaders in the field, stimulating

the international Software Engineering Conferences. 1, 2

These conferences were primarily concerned with the problem of

software production, with the primary objective being the exchange of

opinion and individual approaches and attempts at solution of those pro-

blems. The conferences did not have as an objective any systematic

attempt at solution of the problems. The attendees--some fifty or sixty

persons of international reputation in the software field--were engaged

primarily in the production of software, and not in the solving of

software production problems. These were addressed only as necessary

to achieve the specific ends of each participant.

*Due to Richard Gregory, Cambridge University, and reprinted from
The Observer, London.

54 £A
AUERWACH

Thus, while the Software Engineering Conferences did much to

define the basic problems and to point the way to their overall solution,

they did little or nothing to set in motion any systematic or dedicated

effort toward such solution.

The present proposed effort, in effect, picks up where these

conferences left off: the formation of a group dedicated to solve the

problems of software production over an extended period of time. The

planning, launching and execution of such an effort requires both the

resources and the promise of large payoff that apply only to an organiza-

tion of the size and scope of NASA. The autonomous nature of the organi-

zational entities of NASA will assure that the success of such an effort

will depend on its merits rather than on the authority of its sponsor,

NASA Headquarters.

It should be noted at this point that whereas the conferences

were concerned with "Software Engineering," the subject dealt with here

is "Software Technology." Engineering is a design and planning activity;

technology includes the total body of information on which.such activity

depends: standards, languages, techniques, measurements. Also, the con-

ferences referred to the final stage of software development as "produc-

tion: which carries a distinct connotation of quantity production. The

term "fabrication" has been used here to retain the concept of physical

realization based upon an abstract design, while avoiding the notion of

replication or quantity. The idea of hand-crafting one of a kind, so

much an essential aspect of programming, is conveyed by "fabrication"

whereas it is lost in "production." The point here is that "design"

and "fabrication" and "test" are three distinct stages in producing an

end-product which must work -- which must operate to perform some explicit,

planned function. The implication of these three distinct steps is lost

in the term "programming," and the term "engineering" needs to be quali-

fied to correspond: Design Engineering, Production Engineering and Test

Engineering.

55 AuEH

Thus, "Software Design Engineering" can be conceived to cover

interpretation of requirements and creation of a design, but not (in the

tangible world) the actual fabrication of the product. If a structural

representation can ever be successfully developed, then "Software Design

Engineering" will be a meaningful term applied to the activity of a corps

of design specialists, and the realization of this structural/representa-

tion in a stored program ready to work can be considered as the fabrication,

executed by a corresponding corps of fabrication specialists. In such a

technology, the software design engineers will complete the design to per-

form the functions the user requires; production engineers will plan the

flow of work and assembly; and test engineers will specify the test and

test set-ups required to assure that fabrication corresponds to design,

and maintenance engineers will be responsible for maintenance and service.

The design engineers will be responsible for the design being responsive

to user operating needs. The fabrication (ideally) will be accomplished

by software fabricators, who will be responsible (ideally) only to make

the stored program or system of programs responsive to the design.

In this concept, the design engineer, as any engineer, must

make the compromise between the limited resources available and the

highest possible "factor of safety," or reliability, consistent with the

needs of the user. The production engineer need not decide; his only

responsibility is to make sure that the software can be assembled into

the system and that it will pass the tests designed by the test engineer.

If it does that, then whether or not it satisfies the customers require-

ment is not his problem, but the design engineers'.

When that point is reached, we shall have a true software tech-

nology, It is the purpose of this proposed effort to try to establish

such a software technology. To this end, a dedicated, sustained develop-

ment effort is proposed: dedicated in the sense that the technology

group will not be responsible for other missions, such as programming;

sustained in the sense that the technology will be tested by a software

group on successively more complex programs, and that the using groups

will be monitored in the operation of the completed programs-. Feedback

from the software and user groups will be used to modify the technology.

56 A
ALERBACH

DEFINITION OF TERMS AND PHRASES

The general approach taken in setting up the proposed program is

that of the most recent authoritative group--the International Software

Engineering Symposia at Garmisch, Germany in October of 1968 and its

follow-up at Rome, Italy in October of 1969. This approach is implied by

the title, which is that producing and maintaining software is an industry

rather than one of the humanities. It would be in order to use as a model

the computer hardware industry, especially since the trade-off that has

always existed between hardware and software implies that the industries

of producing hardware and software ought to cooperate much more closely

than they have been. The terms that we will define here are thus drawn

from both industry in general and programming in particular. We provide

them to preclude misinterpretation and misunderstanding. In most cases,

we have avoided the use of jargon, preferring to use ordinary words with

explicit and specialized meanings that are consistent with generic

meanings.

In the previous section, we defined Software Technology in terms

of its major component parts: Software Design, Software Fabrication,

Software Test and Software Maintenance; each of these parts included an

engineering specialty.

In this section, the relationships of Software Technology with

Computer Technology and Computer Science will be briefly developed. These

latter two terms are only a few of the many used rather loosely to

describe various aspects of the practice and theory of computer and

information systems.

Computer Technology, in this document, will be an extension of

Software Technology to the areas of hardware and microprogramming read-

only memories (ROMs), or firmware. Thus, specialties corresponding to

design, fabrication, test and maintenance stages may be defined for firm-

ware; they are already well-defined for hardware. As the use of micro-

programming increases, a system design effort will more and more be

AUERBACH

5.2

concerned with trade-offs between hardware, firmware and software, and the

need for a definitive structural representation of the whole system com-

prising these three will become increasingly evident. This system design

effort, and the specialties needed for it and overall system assembly,

System test and system maintenance, will be accomplished by Computer

System Engineers. Software Design Engineers will pick up where the

Computer System Engineers leave off -- by designing the software modules

defined in system-level specifications to lower levels of detail (still

in structural terms) as routines, subroutines and programs.

The relationship between Science and Technology is the same as

that between theory and practice. Thus, we look for Computer System and

Software Design Engineers to make maximum use, for practical ends, of what

the theorists in Academe develop in their research. Where theory and

explicit knowledge are inadequate, then, like engineers' in any field, they

will have to substitute empirical knowledge.

The chances are good that the technology group will be able to

identify some areas where theory and research are needed. Such requirements

can be defined and explained in detail; in this way, applied research in

Computer Science may be engendered. The theory produced as a result of

these effects will be available for experimental applications to practical

problems; where such experimentation succeeds, the theory will become

practice and a part of Software Technology.

On the practical side, the technology group will be able to

identify areas where engineering-type standards might profitably be estab-

lished; preliminary ideas on such standards may be described and lead to

a definitive study and formation of an industry committee. When refined

and approved by an authoritive industry group, such standards can be

issued formally, and become part of Software Technology. The foregoing

relationships are shown in Figure 2. The relationship between the three

groups and NASA management, illustrated in Figure 2, is discussed in

Section 6.1.

58 A
AUERBACH

to 0
0 .,.4
,4 44
0 ,
0 '0

o 0.
a) FL,

H O54 44
E 0
4o

0 orl

U)

'-4

H
E-4
>4
U)

0

C-

0

0
.,, oo

U) 0

Li
0 0

I
0

C-,

X
¢
ri

ct
E]l

Z4
P4
Pw

-Ic

¢

U)

Eg

I I
I I

11. II I

I I

I I

I 1

4 J''0

*4-C 0

oU

4-J ch~~~~~~~~~~~~~~~~~~~~-

4-J

* 0H

~

o

o .~

0

0 cd (4- E

~~~~~-4 4- '.

u ~ -4 0 .

:J ~ ~ ~ ~ ~ ~ L 4J 

0'0 m 4-)
-Li 0

Ui) Q0r

440

4-i~~~~~

* *-* E 
.Z 44J

0

44 0
CU I

-4 s4 A

44 .0 0 AUERBACH



The definitions that follow have the primary purpose of clarifying

subsequent discussion. It should be recognized that formal definitions

and job descriptions will be an important part of the results of the pro-

posed program. In that light, the following may be viewed as representa-

tive of the kinds of things to be expected. Definitions of jobs, and

position descriptions are also presented in Section 6.

1. Computer Science. A department of systematized knowledge
having stored-program computers, computer programs, storage
and peripheral devices, computer languages and their relation-
ships and operations as objects of study. The object of a
computer scientist is to increase his own and human knowledge
of computer structure and operation and to improve thereon.

2. Computer Technology. The totality of the means employed for
producing stored-program computers, computer programs,
storage and peripheral devices and combinations of the same
necessary for application to human needs. Practitioners of
Computer Technology will keep up with the work of Computer
Scientists, and apply the results to produce computer products,
including hardware and software.

Computer Systems Technology comprises Hardware Technology and
Software Technology.

3. Software Technology. The means for producing computer soft-
ware and firmware, exclusive of the storage media used to
store the programs and microprograms.

Software Technology includes the means employed for producing
Software Designs, performing Software Fabrications, executing
Software Tests, performing Software Maintenance. Each of
these activities has an aspect of Engineering associated with
it. These are: Software Design Engineering, Production
Engineering, Test Engineering and Maintenance Engineering.

4. Software Design. The act of converting a user's requirements
for an automated operation to a design for the structure of
his input data and a design for the mechanism (program,
computer system software, storage and peripherals) to trans-
form the input data into the required output data.

5. Software Fabrication. This is the art of transforming the
structural design of the program, including the structure of
the data base and input data, and the program components and
their hierarchical inter-relationships, into detail source
language code, and assembling these routines with standard
and previously tested built-to-order modules into increasingly
higher levels of assemblies in accordance with the structural
design.

60



6. Software Test. The act of testing software. Software tests
are of two kinds: (1) hierarchical tests of modules, to
assure proper relationships and functioning of the internal
structure and interfaces of the module or assembly, including
entry to and return from subroutines; and (2) sequential
tests of modules to assure proper interaction and sequencing
between modules at the same structural level and their inter-
faces, linkages, and parameter and data passing. Tests may
involve use of simulation or emulation of certain hardware or
software system components, preparation of data base, and
data inputs.

7. Software Maintenance. The action required to find and correct
software errors found after installation of software at the
user's site. It may be established that "Software Maintenance"
is rather inseparable from Computer System Maintenance for

8. Preliminary Software Design. The collection of documents,
graphical and verbal, used by the software design engineer to
represent the user's requirements, the structure of his
(existing or planned) data base, data input forms or mechan-
isms, the operation that he wants to automate (flowchart
showing data sets) including actions of operating personnel.
Will include a preliminary graphical and verbal description
of the structure of the data base, the hardware, system soft-
ware, and software envisioned to do the user's operation,
and a flow chart of the proposed user's operations showing
actions and steps of operating personnel using proposed system
and the data base. (Conceptual Design or Base line Configur-
ation.) Flow charts describe user operations, not computer
operations.

61 A



5.3 GOALS AND OBJECTIVES

A program of the sort proposed is a natural for NASA, because of

its size, mission and organization. It takes a large organization to have

a sufficiently great vested interest in such general and long-range goals

as those proposed for this program. A small organization simply cannot

afford to take a global or long-range view; satisfying immediate needs is

all it can afford, and generally this is sufficient. Such a situation applies

to most of the parent organizations of the attendees of the Software Engin-

eering Symposia.

The mission of NASA involves a truly incredible array of computing

powar, from the smallest computer to the very largest complex, from the

slowest processor and memory to the fastest, and from the most accessible

to the most remote. It also involves an unprecedented array of applications.

Altogether, there is little in hardware, software, or application that is

not represented in a significant way in NASA centers or by NASA users.

The organization of NASA is uniquely appropriate in that the source

and mechanism for the special funding and subsidies that may be required

exist, and at the same time the autonomy of individual centers and users

is such that the program can proceed with a maximum of freedom and virtually

no bias or explicit technical direction from the top. There is enough

variation in software development practice that objective criticism can be

expected. The fact that it is a government organization, at the same time

a user of enormous size and influence, and one with clearly no vested

interest in specific hardware or software producers is also significant.

The goals and objectives of such a large and diverse organization

will be sufficiently global and general that no effort need be made to

keep it from having a uniquely NASA flavor. Conversely, there will be no

difficulty in interpreting goals and objectives stated in general terms to

specific NASA or center interests. Thus, the goals and objectives that

follow are general.

62 R
AUERBACH



5.3.1 Goals

The long range goals of the proposed program, that is, of the

Software Technology it is designed to establish, are as follows:

i. To fulfill the user's requirements and expectations in the end
product with respect to usability, usefulness, cost and time;

2. To produce an end product satisfying goal 1 and having
predictable characteristics such as modularity, size, run-time,
response time, numerical resolution, and correctness;

3. To produce an end product which makes measurably efficient
use of available resources both in the process of its produc-
tion and in its structure and operation; and

4. To establish quantifiable parameters for describing the
properties of computer software and firmware, develop means for
measuring the value of these parameters in specific instances,
and develop procedures for applying these techniques in assuring
goals 1, 2, and 3.

These qualitative and general statements of intent can be broken

down into more detailed objectives. These are defined in the next section.

5.3.2 Objectives

The objectives stated below start with the perspective of an

entire computer system, and then consider hardware and software individu-

ally. Actually, the program in the very long run includes a gradual expan-

sion of scope to include firmware and hardware. It could, of course,

include data transmission and communications at some point and to some extent

and depth best determined by those involved in the program.

Additional objectives could be defined. More detailed objectives

touching on explicit design, fabrication, and test procedures could,

for example, be added. Those listed below will be sufficient for the

present purpose.

63 A
AIJERBACH



1. The user will be able to describe his functional, procedural
and data problems to a computer systems engineer who will
express them explicitly and rigorously in documentation
comprehensible to the user or his agent.

2. The computer systems engineer will be able to translate
the functional, procedural and data aspects of the user's
problem into structural terms using standard verbal and
graphical languages and appropriate measurements.

3. An arbitrarily selected computer systems engineer of
established reputation and competence will be able to
review the planned structure of the proposed computer
system, hardware, software and firmware, and certify its
structural integrity; and examine the functional, pro-
cedural, and data descriptions, and certify that the
planned structure and data sources will be adequate to
accomplish the required functions and procedures. (Verify
preliminary design.)

4. Computer Design Engineers of various specialties (hardware,
software, firmware) at successively lower levels will be
able to generate designs and/or specifications to corres-
pondingly lower levels of detail, using standard "parts"
wherever possible.

5. Computer Engineers and Technicians of various categories
and levels will be able to schedule, fabricate and test
individual modules, and assemble and test them in succes-
sively higher levels of structural and functional assemblies.
(This applies separately and collectively to hardware,
software, and firmware.)

6. It will be possible to include in the designs and specifi-
cations at all levels any values of various numerical
parameters: for each component part, the manhours and
elapsed time to design, fabricate and test; and for each
testable component, performance measurements that can be
traced back through the structural hierarchy to the
user's requirement: execute time, response time, propagate
time, throughput for various defined initial load conditions.

7. The product at any stage of completion (including designs
and specifications) can be measured and meaningfully compared
quantitatively with the requirements and design parameters
of higher levels.

8. It will be possible to establish procedures for checking
and approving components and assemblies at all stages of
design and fabrication; the object will be to permit
establishing responsibility and accountability for deficiencies
or errors.

64 A



9. The establishment of positions of defined responsibility and
defined procedures and standards will make it possible to
establish well-structured general and special organizations
capable of exerting effective management control upon
projects and upon their funding and scheduling.

The way in which the program is organized to achieve these

objectives will be discussed in the succeeding sections.

5.4 THE BASIC REQUIREMENTS FOR THE ORGANIZATION AND OPERATION OF
THE PROGRAM

In the preceeding section we examined the characteristics of

NASA that made it particularly suited to undertake a program of the sort

proposed. One of these characteristics was that of its lack of vested

interest in hardware or software or methods; that is, its objectivity.

It is important that this objectivity be preserved in the

program itself. For that reason, the group charged with the basic mission

of developing the technology will be dedicated to that end; it will be

a completely separate group, not responsible itself for turning out soft-

ware designs. Now the program cannot really be objective if it fails to

take into consideration the effect of its work. Thus, it is necessary to

do much more than simply develop a technology comprising the planning of

an organization to design and fabricate software, together with functional

descriptions of its staff members, and descriptions of procedures,

languages, graphics, documents, etc. The plan must be tested: a software

development group must be formed and set into action to build some real

software in response to a real problem; the initial technology will be

modified as a result of this experience.

The user, too, must be taken into consideration at all stages

of system development. In addition, the software group that will be

responsible for applying the technology to produce real software whould

not be depended upon to judge the quality of its product, the software.

65 A
AIJERBACII



This function will be performed by those uniquely equipped for it--the users.

Thus, the responsibilities for developing the technology, for applying it,

and for judging its results are separated. In this way, maximum objectivity

will be assured in those areas where it counts.

Finally, provision is made for the program to evolve the tech-

nology by imposing software problems of increasing difficulty, complexity

and diversity. Each of these will comprise an iteration or cycle consisting

of three basic phases. The output of each cycle will serve as input to

the next cycle. This output will comprise all of the technology documents:

organization; job descriptions; procedures; languages for requirements,

preliminary design, specifications, test plans; standards for interfaces

(engineering standards), "parts" or subroutines (product and component

standards), graphics (language standards), production (quality standards),

group and individual performance (process standards); estimating methods,

documentation, etc. These are discussed more fully in Section 6.2 and 6.3.

The underlying philosophy is that the Technology Group will

employ both scientific and engineering methods to "design" and "build,"

over an extended period of time and in an evolutionary fashion, an organ-

ization--a Software Group--whose function it is to design, fabricate, and

test and maintain computer software and firmware.

The approach will be to use industrial and engineering practice

of a mature industry as a model; for example, the intimately related and

historically contemporaneous computer hardware industry.

The specific model for the Technology Group might well be an

organization that designs, fabricates, tests and maintains prototype

hardware. Software is intrinsically different from hardware: there is

no software industrial activity analogous to quantity hardware production.

(Replication of tapes and cards is trivial and not analogous.) Conse-

quently, there is no software engineering activity analogous to the

design of a production unit based upon prototype and suited to quantity

66



production. It is for this reason that we suggest design and fabrication

of a hardware prototype as a model for the program rather than design

and fabrication of a mass produced item. It is also the reason that we

use the words "fabricate" and "fabrication" rather than the words "produce"

and "production."

This approach -- that software development is analogous to the

design and fabrication of a hardware prototype -- can be used to examine

the psychology and approach to their work of system analysts, program-

mers, computer software scientists and engineers -- whatever they may call

themselves. We recommend it, at least as a take-off point for the program.

In the next section we shall examine more closely the organi-

zation and operations of the proposed program.

5.5 THE ORGANIZATION AND OPERATION OF THE PROPOSED PROGRAM

The basic requirements for the program are (1) that it provide

not only for developing the technology, but for applying, testing, and

evaluating the results as well; (2) that the responsibilities for develop-

ment, application and evaluation be assigned to separate groups; and (3)

that the development be evolutionary, that is, that the technology be

applied to successively larger and more complex problems, and modified

and improved after each application. There is further the longer-range

desirability of merging the software technology with that of computer

hardware, computer systems, communications systems, and information

systems.

67 AC
AUERBACm



The responsibilities for development and application of the

technology and of evaluation of the results will be assigned to three

separate groups which we shall call, respectively, the Technology Group,

the Software Group, and the User Group. These will be discussed in more

detail in the next section.

Each of the succession of applications of the technology will

be called a cycle. A new software development problem will be undertaken

in each cycle, the nature of which will be determined at the conclusion

of the preceding cycle. Each cycle will be divided into three major

phases: Phase A, in which the Technology Group will amend or modify the

technology as a result of the previous cycle, and select a specific

software development project from among those coming up to test the new

version of the technology; Phase B, in which the Software Group applies

the new version of the technology and develops the software package

selected by the Technology Group; and Phase C, in which the User Group

will operate with the new software which will have been developed for them.

These phases are discussed in more detail in the next section.

5.5.1 The Participating Groups

Although the three participating groups will be separate and

will probably even lie within separate higher-level organizations, it is

essential that they cooperate fully and coordinate on pretty much a

continuous basis. This is shown in Figure 5-3. Aside from the fact that

both relative independence and a community of interest between the three

groups can exist at the same time (because of the overall NASA sponsor-

ship), little can be said at this time about formal organization. It is

possible, however, to say something about the general nature of each

group.

The Technology Group. We suggest that this group be sponsored

and funded directly by NASA Headquarters. In this way, the long range

plans and policies of NASA will be able to influence directly the develop-

ment of a software technology responsive to NASA needs. The initial

68 A
AUERBACH



0 0 ~ -j ;0II ~~~~~~A) * ,4 -H 4-4 0 Wii~~~~ (1 4-J ~ 

0 a)w o 0 Cfl o

0 ~ ~ ir. ) Cu
·4 a) Cu s-Io5-I 'J '

"

~ 0

> 14-4 44 C-4 4.,-4

a)~~~~~~ 0

0 u

o oC/ 4- .u o

0 ~~~~~~~~~~~~0)

____>_ 0

qJi 0 a P4~C

0J 4d o (1 
co0 co

PJ 0

0 o . a

0 $4 0~~~~~~~~~~~~~~~~~ -4 co 

Cu -H s-H 0 

(D 0 qC 0

o q-4 4-0 PQ5.1 4-
o "o t.o 0)

U) -a) 14 Cu -,44 4-J P LH a) -1-4 ~ ~ ~ ~ ~ ~ ~ ~ ~ a a a

0 a) 0 ;-Q g H 0En ~ (1 a) En wJ C s4 4-i

;J 4 0 . i -, -,.
l 0 · 0 C

a w P -H 0) 49i P. E
P U) 0 Cu P- C) Cu ) Q ,

r. Cd u
Cu J4 4-4 Z -4

Cd ~ ~ ~ ~ ~ ~ - 0 Cu
a) 4IV a) a 5

412 0 4

w~~~~~~~~~~ Cu( 0 f4 .a
U -4 4-j I 

0 a) 12 Cuo C#) -r)
a) H ~~~~~~~~~~~~~~~~~~~~~~~U 

Cd ~ ~~~~~0 0.a)
.,4 u 4i CL P~~~~~~~~~~~~~~~~~~~5- 

~~~ Cu *H 0 S-I~~~~~~~~~~~~~~~~~~~~~0 ,

0 4-' Cu 4-' 0 a) 0~~~~~~~~~~~~~~~~~~~~~~.4 - r-

C~~~~ a) -- a) 0 Cu 0~~~~~~~~~~~~~~0

o 0 5-' Cu I~~~~~~~~~~~~~~~~-,

a) 0 J 4-i 0 a)

~~~~~ - 04-4 5-i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 C 

a 4) 04 a) 0 a))
* 4-4 I l (#20..

0 0 P9CA
co C3, -4 -4~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~JEBC

! (42

m ,U S-I 0Cu 0 4i bO
I * 0.. o

;~ ~ ~~~0

5I (Y) a) Cu 0-4

0 a) V X

04. o0- a) rn 0. ) u

Cu .,4 ., 0 x E
> 0 O la

w td S4 UW t

O m o v d -1



group should be limited to four or five very senior people. In later

stages of the program, the group might be augmented with people drawn

from the Software Group and the User Groups. Such additions would bring

directly to bear the personal experiences of those on the receiving end

of the new software technology. Also, in later stages, as the group

turns increasing attention to microprogramming and hardware, people

experienced in the application of these areas should be considered.

The Software Group. The Software Group will be selected from

one of possibly several operating within the NASA center which will have

indicated its interest in participating in the program. The Technology

Group, formed first, will make it one of its first tasks to determine the

desirable characteristics of such a group. Center personnel can then be

interviewed for their interest and opinions. There is little doubt that

the project will attract unusual attention, and that there will be great

interest on the part of existing software organizations to participate

in the project and play a creative role. The Software Group will be

sponsored and funded in the normal way by its Center; however, extra

funding from NASA headquarters to support certain experimental or risk

aspects of the program might be in order. It is possible that initially

a separate Experimental Software Engineering section should be established

to work on the program, rather than try to reorganize an entire software

group. As the emerging technology proves itself, the size of the exper-

imental group can be increased at the expense of the established group

until the desirability of complete cutover to the new approach is apparent.

The User Groups. If the initial Software Group is an integral

part of an existing software shop within a Center, user groups will

comprise the normal clientele of that Center and that shop. The desirable

characteristics of the participating Center might well include the nature

of its mission, clientele, problems, and organization. Thus, the user

groups would use their normal funds to secure their normal software

services. Consideration for some extra funding, made available from

NASA Headquarters through the Center by means of extra services or manpower

70 A
AUERBACN



of its software shop, might be given to expand or modify software problems

slightly to make them more appropriate vehicles for program objectives. It

will be desirable that the mechanisms for such supporting funding be

already established.

There is, of course, no reason that the experimental group

should not undertake more than one problem at a time, provided that one and

only one problem at a time be undertaken of an untried size and complexity.

It would be in order for the Software Group to undertake programs of a

size and nature that it has demonstrated it--and the new technology--can

handle. However, the same careful follow-up and feedback through the

software design, fabrication, test, operation and maintenance stages

should be observed by all groups. It is to support those activities that

extra funding might be arranged for the software and cooperating user

groups.

5.5.2 The Cycles

There is little that can be said at this time on the nature of

the software projects that will comprise the succession of application

cycles of the evolving technology. Certainly, the first project should

be a fairly straightforward application, either scientific or business,

well within the capability of the present technology. Later cycles should

undertake the kind of development project whose size and complexity have

been well beyond the ability of the present technology to cope with in a

straightforward fashion. It is up to the Technology Group to set its own

pace; the responses of the Software and User Groups can be used to determine

how well they are doing and how fast they should go.

It is also clear that the sequence should involve, in order:

applications for which computer hardware, operating system software and

proven source languages and translation software already exists; higher

level software, such as file management and report generating software;

still higher levels, such as data and data base management systems and

multi-programmed and multi-processor operating systems. Within each such

71 A
AUERBACH



category of complexity, there should be a natural progression of size.

To an extent best determined as a result of experience and

success in the program, the scope can be expanded to cover microprogramming

and hardware--that is, merging software and hardware technologies. Still

more complex undertakings could then include building translators for

higher level languages, including not only software but microprograms and

perhaps some hardware specifications. At some period the Technology

Group would start to look more like a Computer Applied Research Group

investigating the relationships between hardware, firmware and software

structures. At that point, its contributions to the technology would

in fact, be that ascribed to Computer Science, as defined earlier--

that is, research for the sake of knowledge, rather than for the sake

of direct application. The burden of developing the technology in these

final cycles would then shift from the Technology Group back to all of the

software groups that, hopefully, will be applying various versions and

interpretations -- that is, to the software industry.

5.5.3 The Phases and the Actions and Interactions of the Three Groups

Although the projects for the cycles will be different, the

phases within each cycle, and the activities of each group in each such

phase, will remain very much the same. The phases are as follows:

* Phase A. Technology Research and Development

* Phase B. Software Design and Fabrication

* Phase C. Software Operation and Maintenance.

The relationship between the groups and the phases are shown

in Figure 5-4. The nature of each phase and the activities of the three

groups in each Phase are given below.

Phase A. Research and Development (R&D Phase). In this phase, the

activities of the Technology Group will dominate. This group will examine

the chronic problems of software development and will conduct research

72 A
AUERBCH



it4

V) I t

4. hz e
I;

t
V

A I

I. 
e 

Or

11

73

73

N

k-

I,
-Ix

Q

lN

-4
t ,'d

t ,--,4
t ( I



on software development methods, techniques, approaches, organizations, etc.

that have been advanced to solve the problems. It will then develop an

overall approach to the solution of these problems, comprising descriptions

of an organization for designing, fabricating and testing software (and

firmware), descriptions of the staff positions in the organization,

procedures, techniques languages and graphics, standards and estimating

methods. It will then assist in the organization and staffing of the

Software Group, and cooperate with this group in selecting a user and his

problem as its first or next effort. It will also establish tentative

communications with the User Group so that it can obtain independent and

objective information from both Software and User Groups on their respec-

tive problems and experience.

The Software Group will refine its internal organization during

this phase and make preparations for using the revisions to the technology

being developed by the Technology Group. It will interact with the

Technology Group all during this phase by giving its reactions and opinions

to the additions and modifications to the technology being planned by the

Technology Group. It will also cooperate closely with the Technology

Group in selecting a specific software development task fromamong those

being presented to it by its users.

When an application has been selected, the sponsoring User Group

will establish working relations with the Technology Group, and become

familiar with the kind of information desired as feedback. Examples are

the effectiveness of its communications with the Software Group, the

latter's responsiveness to and comprehension of its needs, its ability to

read and interpret preliminary designs and specifications, its reaction

to various functional performance and acceptance tests, and finally, its

reaction to the effectiveness of the software product itself and associated

documentation, training, maintenance, and so on.

Phase B. Software Design and Fabrication (D&F Phase). The

Computer Group dominates in this phase, in which it will work with the

User Group in explicitly and unambiguously defining the problem,

74 A
AUERBACH



establishing user constraints (time, cost, environment, operating and

using personnel and specifications), developing a preliminary design for

approval by the user, and the subsequent detail design, fabrication and

test of the system.

The User Group will work with the Software Group to develop

the requirements and preliminary design, and again in monitoring per-

formance and acceptance tests on the major assemblies and completed system.

The Technology Group will observe and coordinate with the Soft-

ware Group for deficiencies or weaknesses in the organizational structure,

job functions, languages, etc. as the development work proceeds. It

will not in general be concerned with assessing the quality of the product;

rather, it will be concerned with such matters as lack of communication or

understanding, schedule delays and slippages, missed estimates on man-

hours, interface or system integration (assembly of parts) problems and

the like. It will also coordinate with the User Group to obtain its

reactions and opinions on the responsiveness of the Systems Group to its

needs and its opinion of tests on major assemblies and subsystems.

Phase C. Software Operation and Maintenance Phase (The O&M Phase).

In this phase, the activities of the User Group will dominate. The software

developed by the Software Group will have been delivered in this phase, and

its operation and maintenance will have begun.

It is assumed that the user will make his own arrangements for

operation and maintenance, and that adequate documentation for this pur-

pose will be prepared by the Software Group, accompanied by training of

operating and maintenance personnel. However, it is also assumed that the

Software Group, as part of its contract, will be responsible for some

post-installation warranty service.

There will therefore be some communications between the User and

Software Group during this phase. As a matter of fact, there probably

75



ought to be arrangements for failure reporting for an extended period after

installation--enough time for failures to settle down to a "steady state."

There will also be communication, for about the same "extended period"

mentioned above, between the User and the Technology Groups. Such contin-

uous cooperation and communication during this phase is most important.

The Software Group will be interested in user feedback to modify its design

to minimize warranty costs and customer maintenance; the Technology Group

will be interested in user feedback to see how well the user anticipated

his own needs and wants, how well he expressed them to the Software Group,

how well the design engineers translated these to structure, and how

well the fabricators within the Software Group were able to follow the

design, how usable the software was by the user's operating personnel, and

how useful the system was for the user's top management. This feedback

will be used by the Technology Group to recommend changes to the organi-

zation, procedures, etc. of the Software Group for another cycle and

another problem.

76 A



SECTION 6. A SPECIMEN TECHNOLOGY GROUP

Of the three groups that are proposed as participants in the

program, only the Technology Group would have to be started "from scratch."

For that reason, this section is presented as a more detailed description

of what such a group might look like, do, and produce. It is written to

serve as an example for management at NASA Headquarters, at NASA Centers,

and at NASA client laboratories. It is addressed, in particular, to the

person or persons designated to organize and operate such a group.

In thus addressing such management personnel, we do not presume

to prescribe formally the organization and operation of a proposed new

group; rather, we offer as a straw-man, or point of departure, the descrip-

tion of an organization that will be suitable for achieving the goals and

objectives stated in Section 5.3, with the cooperation of already-organized

and operating software and user groups. To the extent that a sponsoring

organization modifies those goals and objectives, and to the extent made

necessary by the structure and operating procedures of a specific Program-

ming Group and User Group, this description should be changed.

ERBACHAUENBCH



In the succeeding paragraphs we shall address the benefits that

should accrue to management as a result of the activities of the proposed

group, its organization and operation, and its composition and products.

6.1 PURPOSE AND MISSION OF THE TECHNOLOGY GROUP

A detailed statement of the goals and objectives of the overall

program, in which the Technology Group is slated to play the leading role,

is given in Section 5.3. Because the roles of the Programming Group and

the User Groups are essentially unaffected by the program, it is basically

the purpose and mission of the Technology Group, and of the sponsoring

parties, to achieve those goals and objectives. These goals and objec-

tives, modified as deemed necessary by the sponsors, are therefore of

fundamental importance. The plans made by the Technology Group's leader-

ship, its actions taken over a period of time, and the products it will

produce are all supposed to contribute to meeting those objectives. The

effectiveness of the group at any given point in time can be realistically

assessed only relative to those objectives; they comprise fundamental

guidance and the basis for effectiveness evaluation.

Although the specific and detailed goals and objectives can be

modified, there are a few so basic to software development that they must

be included in the purpose and mission of the Technology Group. These

can be phrased to apply specifically to the NASA groups that would be

intimately involved in sponsoring the proposed program. There are three

such sponsoring groups, each corresponding to a participating group.

Without being specific, the three sponsoring groups and their corresponding

program groups will be identified as follows:

NASA Headquarters - Technology Group

NASA Center - Software Group

NASA Clients - User Groups

78 AERH



The purpose and mission of the Technology Group with respect to each of

these sponsoring groups will be briefly stated. They will be consistent

with the goals and objectives of Section 5.3, but will be oriented specifi-

cally to the Technology Group rather than the entire program, and to the

needs of several kinds of NASA management rather than NASA as a whole.

6.1.1 NASA Headquarters Management

The case for NASA Headquarters' retaining sponsorship of the

Technology Group is directly tied to the Group's mission with respect to

NASA Headquarters. That mission is essentially to promote the development,

adoption and use of standards in such a way that greatly enhanced efficiency

results in hardware and software procurement, maintenance and utilization

without impairing the flexibility and autonomy of the various NASA centers

and clients. Such a mission is best accomplished by a single Technology

Group, even if the Group may eventually be split into several physical

locations. A single sponsorship and administration will inhibit the

formation of independent "Technology Groups," which would be more likely

to develop and push competing standards than to promote the development

of a single set of uniform standards.

In executing this mission, the Technology Group would provide,

in the long run, a clearing house for the practices and products of all

the Centers and their Software Groups. It would also act as a communi-

cation central, or interface, between the many and diverse groups. Thus,

by proper organization, funding and sponsorship, the Technology Group will

be in a position to promote increased cooperation in the computer activities

of the various centers, without impairing or even suggesting an impairment

of their automony. The net, long range result will be making each NASA

dollar spent on computing matters do much-.more work. This is essentially

the Computer Group's mission with respect to NASA Headquarters.

6.1.2 NASA Center Management

The matter of making a dollar do more work is of course a fairly

universal mission, and it applies as well to NASA Centers as to NASA

ERACHALJERBACH



Headquarters. It was brought out explicitly, however, to emphasize the

fact that the proposed program is intended to provide NASA-wide benefits,

and not just a high-status and high-visibility project and increased support

for the particular Center sponsoring the Programming and User Groups.

The purpose and mission of the Technology Group with respect to

NASA Center Management areas follows:

* to provide general management with effective and mutually
comprehensible means of communication with software
development management;

* to provide general management with effective and usable
means of controlling a software development group's charter,
budget, and products;

* to provide general management with effective and profession-
ally acceptable means of measuring and comparing the perform-
ance of its software development groups with respect to the
quality and quantity of product delivered.

These expressions of purpose and mission address a general and

chronic problem of general management with respect to its computer organi-

zation. The essence of this aspect of the Technology Group's purpose and

mission is therefore to remove software production completely from the

atmosphere of pure research, and bring it firmly into the world of industry,

production schedules, and cost accounting.

6.1.3 NASA Client Management

The primary goals and objectives stated in Section 5.3 apply

explicitly to the users, with respect to whose needs the software industry

has faltered, causing the present crisis. Saving money is always worthwhile,

and exercising effective management over a production process is desirable,

but neither is of critical importance if the end customer is happy. With

respect to software, this is far from the case. The ultimate mission of

the Technology Group, then, is to develop a technology that will be at

least as satisfactory to software purchasers as, say, the computer hardware

80 A



technology is to hardware purchasers. By a satisfactory technology we mean

one with the ability to express 'needs and constraints so that they can be

compared meaningfully and credibly with the suppliers' expression of

capabilities and costs.

Stated explicitly, the purpose and mission of the Technology

Group with respect to NASA Client groups are:

* to provide the user with the means for describing
his functional, procedural and data problems to a
computer systems engineer

• to provide the computer system engineer with the
means for expressing these functional, procedural
and data needs explicitly and rigorously in docu-
mentation comprehensible to the user or his agent

* to make such documentation legally and logically
meaningful as a performance specification and
preliminary design. To provide the user with the means
for testing software and comparing the results of
the test meaningfully with the contractual descriptive
documentation

* to assure that the languages and standards developed
to express requirements, legal descriptions, and
tests are compatible and will permit impartial third
parties to determine contractual deficiencies.

One of the more important characteristics of software is its

correctness. This property, not yet defined in a standard way, is one of

the most difficult to predict in undeveloped software, and it is almost

as difficult to measure in completed, "de-bugged" and delivered software.

This shortcoming of the software industry, traced backwards through the

software development cycle, is responsible for (or is the result of) most

of the other faults that might justifiably by attributed to the industry.

It is our belief, expressed implicitly throughout this report,

and explicitly in several places, that the root cause of this situation

is that software development has been considered almost synonomous with

"programming." That this is not the case is now quite evident; the remedy,

81 A
AUERBACH



however, is not so evident. This program is predicated on the assumption

that there is no simple remedy; that the remedy will have to evolve rather

than be prescribed; that such an evolution must be (or at least can be)

directed; and that such direction must come from a group not itself engaged

in developing or using software.

Thus, the Technology Group is responsible most of all to the NASA

Client Management; yet its dealings with that management are minimal. In

fact, they will consist largely of judging the Technology Group's effective-

ness with respect to its function and mission as viewed by NASA Client

Management.

Achievement of the Technology Group's purpose as far as NASA

Client Management is concerned, therefore, is indicated by affirmative

answers to the questions, "are you satisfied that software suppliers under-

stand and can respond to your requirements?" and "are you satisfied with

their products, costs, and services?" To the extent that the answers at

the end of successive program cycles indicate increasing satisfaction,

the Technology Group is fulfilling its purpose and mission. The manner

and degree of dissatisfaction will provide feedback and guidance to the

Technology Group for the succeeding cycle.

6.1.4 The Technology Group's Management

In the preceding three sections we have discussed the purpose

and mission of the Technology Group as viewed by each of the three spon-

soring groups. These views will of course do much to drive the Technology

Group's sponsorship, charter, organization, activities and products. The

management of the Technology Group will in a sense be responsible to each

of those three groups, since each has a stake in its operation.

In addition to these responsibilities, the group has a larger

purpose with respect to the Computer Scientific community, and to the

Computer Industry at large. This purpose is quite clear: it is to

communicate objectively to these communities, both the positive and

82 A



negative results of its efforts. Beyond such communication, it may assume

the larger mission of posing questions, suggestions, research projects,

and the like, for these communities to pick up and respond to. In this

way, its investigative powers may be multiplied many times, at no extra

cost to the government and to industry. Thus, confirmation of tentative

results may be obtained, trial standards may be tested, and research

projects may be initiated. With the expenditure of relatively little

manpower, enormous leverage will therefore be exerted to coordinate and

give direction to the many efforts that are even now being expended to

develop a software technology.

The essence of the function and mission of the Technology Group

as viewed by its own management is therefore technological communication,

oral and written. Technical competence is always implied, and innovative

ability is clearly needed. The ability to communicate effectively and

succinctly, however, is essential, in both expository and tutorial forms of

presentations.

6.2 THE ORGANIZATION AND OPERATION OF THE TECHNOLOGY GROUP

Given the general goals and objectives relative to the technology

to be developed as stated in Section 5.3, and given the purposes and

missions relative to the NASA sponsors of the program, some reasonable

conclusions can be drawn about the organization and operation of the Tech-

nology Group. These conclusions will be described and discussed in this

section, with expansion of several relatively important topics in later

sections.

6.2.1 Size and Composition

The group initially should be quite small - perhaps four or five

persons. The formal organizational structure at this stage will therefore

.be inconsequential - a leader, three or four innovative, top-level people

having fairly broad systems backgrounds with a concentration in computers

and non trivial programming experience, and one or two support personnel.

83 A
MJERBACH



The group's initial roles and missions will have been determined

in discussions between the sponsors and the designated leader, using this

report as the take-off point. These will establish the qualifications of

the first staff members, as determined by the group's leader. During these

organizational discussions, the projected growth of the group for a one-

year period will also be established, with the corresponding expansion,

if any, of the group's roles and missions. The organization should remain

fairly informal during this growth period, so that ample opportunity is

provided for a natural evolution of working arrangements, reporting and

documentation procedures, and liaison and communications arrangements

with the designated Software and User Groups.

The major point of the lack of formality during the initial

stages of operation is the diplomatic aspects alluded to in the previous

section. About the most important objective is to establish good working

relationships with the other two participating groups. Formality implies

explicit responsibilities; explicit responsibilities imply established

authority and its exercise. It is important that the Software Group acquire

no impression that the Technology Group has any authority over it. Practices

or standards developed by the Technology Group and tried out by the

Software Group should be the result of definition of problems and selection

of which ones to attach - by discussion and negotiation.

Similarly, it is important that the User Group does not develop

an impression that the Technology Group is a complaint bureau.

The organization and composition of the Technology Group at the

end of, say, a year should be determined by the interactions, relationships

and procedures that develop in a natural manner between the people involved.

The formal aspects of organization and procedure, which will most certainly

be required in later stages of the Group's operation, will therefore be

tailored to the characteristics of primarily the Software Group, which is

as it ought to be. The Software Group has a production responsibility

which the program is charged to improve over time; its capability ought not

to be impaired by its having to adapt in a short time to a new situation.

84 EA



Virtually all of the adaptation should be undertaken by the new element -

the Technology Group - which has no vested interest in an existing organ-

izational structure and operating procedure.

6.2.2 Staff Qualifications and Job Descriptions

The most outstanding general qualifications required of each

group member in the initial stages are:

* analysis ("20 questions")

* discrimination (what's important)

* reporting (natural, jargon-free language)

* open-mindedness

* diplomacy

To these must be added technical competence in the areas of system engin-

eering and computer technology, including hardware and software.

The initial group should include top-level System and Computer

Engineers as described below. These people should be selected to have a

mix of backgrounds equivalent to the lower level Production and Test

Engineer's, which implies a strong hardware content. This requirement is

based on the need for a transfer of knowledge and approach to production

from the highly successful computer hardware industry, as advanced in other

parts of this report. Some details of such an approach will be given in

a later section.

Following are some job titles and descriptions which are suit-

able for staffing the group.

Senior Systems Engineer

Performs systems engineering projects and studies involving the

wide application of engineering principles, theories and concepts to the

85 ERACH85 ~~~~~~~~~~~~~~~~~~~~~~~~~AUERBACH.



designs, development, testing and evaluation of systems, sub-systems and

components for complex user requirements and applications. Applies current

state-of-the-art knowledge to areas of specialization. Serves as a tech-

nical staff planning member and consultant on projects; may serve as a

project leader on systems engineering assignments. Should have a strong

background in systems having a digital computer as a major subsystem.

Computer Systems Engineer

Performs systems engineering assignments involving the appli-

cation of substantive computer engineering knowledge to the solution of a

variety of operational problems associated with the design, operation and

maintenance of complex systems. Analyzes, evaluates and recommends designs

involving hardware and software components and subsystems based on operational

analyses and other studies. Develops preliminary designs, specifications,

standards and tests to be used in developing and testing systems. Makes

estimates of cost, size, labor and other resources necessary to complete

design, fabrication, interpretation and test of computer systems, including

hardware and software components.

Software Systems Engineer

Responsible for the design, development, and maintenance of

advanced computer programs and/or program systems to solve complex problems

to meet customer needs. Applies expert knowledge of programming techniques,

languages, translators and of hardware configurations to determine software

requirements. Establishes working parameters and formats, identifies

potential problem areas, insures system flexibility to accommodate future

changes to system or requirements, and identifies and solves hardware/

software interface problems. Performs preliminary design, detailed system

design, program design, software production engineering, test and mainten-

ance. Conducts evaluations of programs or systems including assessing

existing software for potential application, investigating the appropri-

ateness of design change suggestions and verifying that required modifica-

tions have been tested, integrated and documented. Makes estimates of

86 A
AUERBACH



cost, manhours and size of software components, and schedules design,

fabrication, assembly and test.

Software Design Engineer

Consults with System Engineers and with the user, and develops

preliminary or detailed designs for software structure to perform the

user's operations within his constraints (time, money, computer, system

hardware, data base, etc.) Has knowledge of computer system hardware

structures, operation, and logic design as well as of source ans object

languages, machine code, peripheral operations, program libraries, pro-

prietary software. Has significant programming experience in assembly and

higher level languages. Responsible for producing the specifications for

the structure and content of the data base and data input, and for the

structure and components, in functional terms, of the mechanism, including

software and firmware for transforming the data. Lower levels of software

design engineers are responsible for transforming the software functional

specifications to detailed designs.

Production Engineer

Responsible for scheduling the fabrication process and assigning

these tasks to various specialties (shops) for fabrication (coding) or

assembly of subroutines and program components into larger modules or

assemblies. Establishes source languages to be used, and designates the

assemblers, compilers, or cross assemblers and compilers, and machines

upon which test assembly and compiling will be accomplished.

Test Engineer

Designs and develops test plans, test specifications and pro-

cedures to determine the functions, performance, reliability and life

cycle of various components, subsystems and systems. Conducts tests,

analyzes the results and makes recommendations to improve the character-

istics and performance of components and system. Evaluates test procedures

87 A
AUERBACH



to determine that tests conform to plans. Conducts special engineering

studies relating to findings of test and analysis function.

Works with the user and design engineers to develop the speci-

fications or descriptions of the test data, including data base, and data

inputs, test conditions and environment, including simulations and emula-

tions, determines correct output from the test, and the test set-up,

procedures and reporting requirements. Also determines machine and machine

configuration upon which tests will be run. Consults and coordinates with

hardware test engineers as required in developing software for new hardware.

Software Maintenance Engineer

Customer Engineer; the individual that the customer depends on

to get his system running after it has failed or after a malfunction has

been detected. Implies close coordination with all other engineers involved

in building the software and hardware.

Senior Systems Analyst

Develops user requirements relating to the generation, processing

and retrieval of information. Analyzes data processing procedures including

those involving hardware and software and recommends improved methods,

systems, and procedures for increasing operating effectiveness based on

weaknesses, anomalies, redundancies and other undesirable characteristics.

Develops and refines graphical and verbal descriptions of procedures,

processes, data sources, data structures and human functions, operations

and tasks. Specifies in detail the logical, mathematical or physical

operations to be performed by various machines, programs and personnel.

Prepares technical reports, memoranda and instruction manuals relating

to system operations and procedures.

Operations Research Specialist

Performs as an operations research consultant by planning and

conducting studies and programs involving advanced operational analyses,

88 AERCH
AUJERBACH4



techniques, principles and concepts applied to the design, development

and operation of complex systems. Conceives and conducts studies directed

toward achieving optimum operation of all elements in complex man-machine

systems. Provides authoritative direction based on scientific analyses

of the interaction of various system elements such as process hardware and

software, communications, storage, display, and terminal equipment. Initi-

ates studies utilizing and extending knowledge in areas such as mathematical

statistics, queueing theory, system simulation, logistics, linear programming

and operational gaming.

The foregoing descriptions apply, of course, to just those high-

level positions required for staffing the Technology Group. Personnel in

lower levels of system and computer practice, such as programmers, coders,

operators, system analysts, and system engineers do not at the moment

appear even to be required.

The descriptions taken together can be interpreted as applying

to the background, experience and abilities required. Such an interpre-

tation would permit transferring certain capabilities from one job descrip-

tion to another, merging job descriptions, or breaking them apart to some

extent. Also, the job descriptions can be seen to be ideal. Certain of

the sought-for capabilities - for example, estimating time and cost -

represent objectives of the program. Nevertheless, in this example,

people having estimating experience can be found.

These job descriptions, it must be emphasized, are points of

departure. They will have to be modified and tailored to suit the actual

program.

6.2.3 Initial Role of the Technology Group

Considering the discussion of program goals and objectives in

Section 6.3, and the Technology Group function and mission presented in

Section 6.1, this section will be very short. It is included primarily to

emphasize the need in the initial stages for a small, top-level group,

89 AERCH
AUERBACH



each member of which is accustomed to dealing with both technical and

management people in consulting and administrative capacities. The stature,

knowledge, reputation and bearing of each member should be such as to

,inspire respect in the Software and User Groups, obviating explicit

authority.

The role of this initial group will be that advisors and

consultants to both the Software and User Groups. In fact, the problems

of these two groups, as perceived by them, in developing and using software

(respectively), comprise perhaps a better set of initial tasks than an

ideally-defined set derived from a study of the industry at large. Care-

ful analysis of such problems, developed through informal interview,

interaction and discussion, will reveal areas within the goals and object-

ives of the program. Quick solution or assistance in small, irritating

but perhaps superficial problem areas will establish credibility, trust and,

a good rapport much sooner and easier than deeper and more subtle problems.

The initial role, then, will not be that of super-duper computer

hot-shots out to revolutionize the computer industry. It will be that of

competent, high-level computer and system consultants dedicated to improving

the tools and procedures of a software development group, at its option,

and, in the process, generalizing the improvements and publishing the

results (probably jointly with senior and junior Software Group personnel).

6.2.4 Products

The products of the Technology Group will comprise technical

reports, manuals, text-books and presentations, both expository and tutorial.

All legitimate media will be employed, including institutional (NASA) reports,

proceedings and papers in the professional journals, informal articles in

the trade journals, books, and presentations, classes and seminars. As

stated earlier, the essence of the purpose of the group, as viewed by the

group itself, is communication: The promulgation throughout the computing

community of the results of its own and other people's work (with credit).

90 'A
AUERBACH



The subjects of these communications will lie generally within

one of the following topics:

* Industrial standards

* Representation and languages

* Software Production Techniques

* Production Performance Measurement

Each of these will be discussed in more detail in the next section.

6.3 THE PRODUCTS OF THE TECHNOLOGY GROUP

The attempt was not made in this study to establish a taxomony

of topics of investigation for the Technology Group. The four topics

mentioned at the end of the preceding section represent some of the more

obvious deficiencies in the technology presently used by the software

industry, particularly when compared with its fraternal twin industry,

the computer hardware industry. Consequently, it can be expected that

the principal products of the Group will be in these areas. They will be

discussed in more detail in the following paragraphs.

6.3.1 Industrial Standards

An industrial standard is a criterion of measurement, quality,

performance or practice, and may be established in a number of ways. One

way, well known in the computer industry, is simply the adoption, by small

concerns, of certain of the technical specifications of a line of products

of an industrial giant or leader. Other ways include the action of stand-:

ards committees established by the industry in question, custom, consent

or governmental authority. An industrial standard maybe technical, in

which case it usually specifies what and how. It may be an operative

standard, which usually involves human elements, and specifies who, when

and why. An industrial standard may also involve both types. Specific

examples of standards are:

91 AERCH
AUERBACH



* Product standards

* Engineering design standards

* Quality standards

* Procedural standards

In considering the adoption of a standard, the maturity of an

industry, a product or a production technique in that industry is a factor.

Premature adoption of a standard has distinct disadvantages, and failure

to adopt at an appropriate time will also have non-trivial drawbacks.

There are a few basic principles with respect to the establishment

of standards which the Technology Group will find it well to adhere to.

One is that standards are not imposed; they are adopted. The role of the

Technology Group with respect to standards should therefore not be arbi-

traryaction, but arbitration. The general principles are:

* Standards that are adopted at too early a stage of maturity
of an industry, product or procedure are subject to frequent
and possibly continual revision in order to keep pace with
progress in the corresponding technology. This will defeat
the purpose for advancing the standard.

• Standardization tends to inhibit technological progress
and development, and to stabilize conditions at the level of
development at which it occurs. The implication is double-
edged: premature standardization conflicts with orderly
development; delayed standardization impairs stability and
orderliness once reasonable maturity is achieved.

* The need for flexibility and adaptability to change coupled
with the need for, but undesirability of, changing standards
implies that standards should be adopted, but that they should
be as few in number as is consistent with technological
stability.

With these principles in mind, we can explore, breifly, some of

the areas in which standards might be considered in the software industry.

We shall use the breakdown mentioned earlier.

rV

92A



6.3.1.1 Product Standards. These establish the form, size, quality and

performance of a product or series of products that can be considered as

major components or small subsystems. Examples in the field of computer

hardware are medium scale integrated (MSI) circuits, keyboards, batteries

and amplifiers. Standards for some of these particular products have long

been established. Analogous examples in the software industry might include

subroutines for mathematical functions and tables of mathematical functions,

random numbers, chemical and physical properties. Since such tables must

be stored on physical media, product standards could also include the

characteristics of such tables, including table structure, word size,

increments of arguments, argument word size, along with the physical char-

acteristics of the storage medium: tape, number of channels, blocking

factors, access methods. Finally, (in the same example), product standards

might include interpolation routines. In all cases, the point would be

that a program or data set fabricated in accordance with the standard could

be specified for use by a prospective system software engineer in the same

manner that the designer of a miniature electronic calculator can specify

a battery, keyboard, display, MSI circuit and so on, by standard nomenclature.

Product standards obviously benefit the design engineer, since the

existence of standard products allows him almost immediately to make certain

assumptions or estimates concerning structure, measurement, form and cost.

However, in the long run, they benefit the user because they provide a

product that is essentially modular and includes modules that are inter-

changeable, uniform in quality and performance, and probably lower in

cost than hand-tailored equivalent products. In a certain sense, the

proprietary software industry has already started building standard soft-

ware products. At the moment, however, the programs are primarily end

products that perform specific end-user functions. True product standards

are components that perform low-level functions and are used by "original

equipment manufacturers" (proprietary and custom software houses) as com-

ponent parts of their end products. This topic has been discussed in some

detail at the Software Engineering Symposia.

93 
AUERBACH



6.3.1.2 Engineering Design Standards. These are like product standards

in that they represent software components, but at a distinctly lower level.

Examples in the twin field of computer hardware include transistors,

resistors, sockets, connectors, capacitors. Examples in general industry

include screws, nuts, bolts, sockets, wire and fittings of all types; they

tend to involve physical and electrical interfaces. Analogous engineering

design standards for the software industry might include standards for

parameter passing and linkage between programs. As in all standards situ-

ations, the existence of standards does not really restrict; non-standard

design is always a freedom that can be exercised, and there are almost

always an adequate number of alternative standards to choose from.

A specific example of a linkage engineering design standard is

one in which a push-down stack is employed to pass three parameters:

Top word: Identification of calling routine

Second word: Return address

Third word: Location of data pointer list

A second linkage standard might involve passing only one pointer to a

complete parameter list. Additional engineering design standards, both

industry-wide and corporation-local, might apply to program identification

codes and the associated security procedures, system structures and hier-

archies, and data pointer list formats and content. The point, of course,

is that the two standards represented by the above example would not be

the only two linkage and parameter passing standards. The present diffi-

culty is that each corporation, each software shop, and even each program-

mer within a software shop - all use different linkage "standards."

6.3.1.3 Quality Standards. This is an area where much of the present

software crisis is concentrated. Quality of software products is low,

compared with computer hardware products; quality is unpredictable and

cannot be designed for, and quality control is virtually non-existent.

R94 A
AUERBACH



Errors and "bugs" are an accepted way of life; meaningful verification or

checks of programs by third parties are difficult, and few if any software

shops include such second party audit procedures.

Quality is not an absolute property but must be assessed relative

to these considerations (which apply to hardware as well as software

products):

* The end-use of the product is relevant.

* Quality must be expressed in definable and measurable
characteristics of the product.

* Quality is related to the cost of production and the sales
price.

* Maintenance cost is affected by quality.

It is desirable to be able to express degrees and kinds of quality,

and to control quality, not merely to achieve perfect programs, but to

permit some level of imperfection at correspondingly lower cost wherever

such imperfection can be tolerated.

For example, the words "correctness," "robustness," and "reli-

ability" have all been used frequently as descriptors of quality. They

have yet to be authoritatively defined and quantified. In fact, it is

unlikely that rigorous definitions have been advanced; the words are used

generically. Such definitions would be at least starting points.

6.3.1.4 Process Standards. Process standards include standards that

apply to operating methods. Some of these are discussed in the literature

and have to do with documentation standards, utilization policy of computers

and system software, use of source languages and compilers, and verifica-

tion and check-out procedures. These standards include the development of

production standards used in performance measurement: lines of debugged

code per day per coder, storage requirements per line of high-level source

language, and compilation time and check-out time data on a per-line basis.

Such standards not only enhance production and communication between per-

sonnel, but provide the basis for informed estimating and scheduling.

95 AAMJERBACH



6.3.2 Representation and Languages

Graphic, verbal and machine languages and conventions are also

"standards," but are of a special enough nature and purpose to merit a

special category. Of course, software is essentially expressed in terms

of various languages; it is not intended that the Technology Group expend

any effort in developing new source languages. Examples of the particular

kinds of representation and languages to be addressed do include:

* definitions of terms and phrases

* a "requirements" language

* a software structure language

* more formal and useful operational flowcharting conventions

* production scheduling, routing, and assembly forms

* functional and structural specification standards

* representation (symbolic) of hardware/software and
software/software interfaces.

Typical examples of words that need explicit definition and

universal adoption are correctness, robustness, reliability. A more

carefuland authoritative analysis should be made of the kinds of errors

or bugs that occur in software, so that they can be named and their inci-

dence reported and recorded. Such data will help in developing procedures

to reduce errors. The use-of jargon may in this way be reduced, and

communication between computing personnel in various specialties, instal-

lations and parts of the country will be enhanced.

A requirements language is needed to provide for improved

communication between user or user representative and software engineers

and analysts. The object is to assure that statements of requirements

can be set down in explicit and written form by systems or computer

analysts and engineers as the result of an operational process analysis

and interviews with user personnel. The language should permit repre-

sentation of procedural steps, data sets, automatic equipment and operator

96 A
AUERBACH



action and yet be simple enough so that user personnel relatively new to

computer and systems work will have little difficulty verifying the written

expression of their requirements. Some special form of flow charting,

making minimum use of flow charting symbols and virtually no use of highly

specialized notation would seem to be appropriate, accompanied by normal

text to supplement the flowchart boxes and the describe data sets and sources.

Perhaps the greatest need is for a means of representing a software

structure, complete with interconnections (interfaces). The art of repre-

senting processes and procedures is highly developed, although further

development is required even here. In fact, the representations for struc-

ture and process should be complementary; the common element should be

descriptions of data sets and structures. This is the greatest deficiency

in flowcharting; the emphasis is all on process and sequence. Even here,

the data input and output at each step is generally inadequately described,

which is responsible for faulty interface design or planning. Intrinsic

to the nature of the structural language, in fact, is the ability to

represent the connectivity between programs - linkage, parameter passing,

data access and identification (for security purposes). This relates, of

course, to linkage standards. Once such standards exist, they can easily

be graphically represented. Once graphical standards have been adopted,

the nesting of computer programs and components to successively lower levels

of detail can be meaningfully represented. At that point, experience,

intuition, visual perception and the native sense of structural propriety

that human beings possesscan be fully exercised in developing sound

software designs. As in the case of hardware, means of representing

structures at all levels will be needed; at the highest level, to provide

a preliminary design to accompany general specifications as the basis for

user negotiation and contractual arrangement; and at the lower levels, to

provide "blue prints" for fabricating software; coding and assembling

software components into successively higher levels of subassemblies and

assemblies.

Production scheduling, routing, and planning, highly developed

production techniques in the hardware world, are at best still in their

97 EA
AUERBACH



infancy in the software world. In this respect, the software industry is

still in the age of guilds, in which each component of an end product is

hand-crafted with the help of a few apprentices. In today's world of

interchangeability, complexity and sheer size, the job must be broken down

into layers of buildable and testable pieces, each in turn being an assem-

bly of smaller pieces. Clearly, this requires that the design be appro-

priate to the end-product's function and operation, but that it also be

appropriate for building, assembling and testing. In other words, the

procedures used in building and assembling have almost as profound an

effect on design at the lower levels as functions do at the higher levels.

This statement applies, of course, to both structure and the interconnec-

tions of structures at a given level.

There are indications that the nature and function of specifi-

cations is not clearly understood by some software specialists. A speci-

fication is a design. This is, of course, not the case. A design can

exist without a specification, and a specification can, in general, be

not fully representative of a design. In fact, a specification is a

legal document, an adjunct to a contract, that sets forth a verbal descip-

tion of the item to be purchased. Other adjuncts to the contract include

plans, drawings and diagrams to which the specifications may refer. Still

other adjuncts have to do with schedules, testing and performance criteria.

Thus, work is sorely needed to develop standards for specifications that

will complement the representations and languages for requirements, pre-

liminary design, and structure and also consider the nature of the basis

of agreement and reciprocal responsibilities between software purchaser

and software supplier.

6.3.3 Software Production Techniques

These apply to the processes of design and fabrication, rather

than to the techniques or tricks used in programming and coding. Examples

are:

* structured programming

e chief programmer teams

98 A
MJERBACH



* operational assemblies or "builds"

* production engineering

These are relatively new techniques that have been advanced and

successfully tested within recent years. They appear to provide good

techniques to start with, because they have been successful enough to

offer much promise, but yet not so well developed that they can be con-

sidered fool-proof.

One of them, structured programming, treats a computer program,

system of programs, and program components as structures. This is an

approach that merits much more attention and development than it is

receiving. The approach highlights the lack of a structural language -

that is, a method of representing software structures that is as well

developed as the methods of representing hardware structures. Examples of

the latter are logic diagrams, wiring diagrams, block diagrams, exploded

views, isometric diagrams and so on. These are graphical, but are com-

plemented by the meets and bounds. Therefore, additional initial techni-

ques should include the search for or development of sound structural

representations of software and interfaces with hardware and other software.

Another of the foregoing techniques, chief programmer teams,

is organizational in approach rather than technological. However, it is

a consequence of the structured approach and is therefore closely related

to it. If the organizational aspects are stripped from the technique;

what is left is an emphasis on the identification and resolution of inter-

face problems as a part of the design process rather than as a part of the

debugging process, a much greater emphasis on the importance of the design

process as distinct from coding, and the adoption of a certain structural

philosophy or software architecture. This architecture is a specific

example of the structured approach, and involves the estatiishment of

such structural standards as single program entry points, single program

exit points, entries only from and exits to only the next higher program

level (no GO TO's), uniform parameter-passing and linkage conventions, etc.

99 £A
AUERBACH



This also points to the need for an effective, unambiguous and standard

means of communication on software structure and form between design

echelons of the software organization, and between the design and the

fabrication groups.

In general, various techniques will apply to various stages of

software development. The foregoing two techniques apply primarily to

the later stages of design and earlier stages of coding. Techniques

applying to statements of requirements, preliminary design and general

specifications, and to the system assembly, test, operation and maintenance

stages of development and employment should also be sought and modified

or developed. These are discussed in various other paragraphs of this

section.

Other techniques that may be suitable for the initial stages

may be found in the literature (see Section 3). The important thing is

that they be compatible with the Software Group's general organization and

method of operation. The use of techniques that may have substantial

immediate impact on the Software Group should be avoided. It is probable

that some "home-grown" techniques can be picked up, modified and improved.

This should be done wherever possible.

6.3.4 Performance Measurement

The ability to assess the performance of a software producer,

whether an individual or a group, is basic to both the ability to estimate

costs and time, and to exercise corresponding control over the production

process. At the same time, the ability to measure performance will not

of itself provide good production techniques. It will permit responsible

management to measure the difference between alternative techniques and

procedures. This, of course, is the primary motivation for mentioning

performance measurement as one of the more important product categories

of the Technology Group.

100



Performance measurement applies to the management of computer

software production rather than to the operation of computer hardware or

software. However, the quality of product delivered is certainly an

important aspect of performance, and so the measurement of hardware and

software performance must be included. However, in this context, perform-

ance measurement is the measurement of the capacity of a Software Group

to produce working software, together with qualifying measurements of

cost, time, and quality of product. This area is closely related to

the ability of software management to be able to estimate costs, manhours,

manpower skill and level requirements, schedules of software and to exercise

some measure of control over its quality.

Basic to the establishment of such measurements is the establish-

ment of some significant portion of the standards, languages, and software

production techniques discussed earlier. In fact, the topic of perform-

ance measurement is discussed elsewhere in this chapter from other points

of view. The point of view here is that science, technology, industry

and commerce are based on the ability to measure things or phenomena, describe

the results in numerical terms, make comparisons, and make decisions based

on these comparisons. For the software industry to emerge as a stable member

of the industrial family, its products must be describable and measurable

in standardized ways. Predictability of function, performance, cost, size

and other qualities then becomes a characteristic of the industry. This is

what technology is all about, and assisting in the establishment of sound

measurements of performance is perhaps the most important and ultimate job

of the Technology Group.

101



REFERENCES

Section 2

1. I. L. Auerbach, "Need for an Information Systems Theory," an address
before the International Federation for Information Processing,
Amsterdam, Netherlands; AUERBACH Associates, Inc.

Section 3

1. Niklaus Wirth, "Program Development by Stepwise Refinement,"
Communications of the ACM, Volume 14, No. 4, April 1972.

2. Edsger W. Dijkstra, "The Structure of the "THE" Multiprogramming
System," Communications of the ACM, Vol. II, No. 5, May 1968.

3. E. W. Dijkstra, "A Constructive Approach to the Problem of Program
Correctness," BIT 8 (1968), 174-186.

4. E. W. Dijkstra, "Structured Programming," Software Engineering
Techniques, Report on a Conference sponsored by the NATO Science
Committee, ed. J. N. Buxton and B. Randall, October, 1969.

5. E. W. Dijkstra, "Go to Statement Considered Harmful," (Letters to
the Editor) Communications of the ACM, Volume 11, Number 3,
March 1968.

6. Corrado Bohm and Guiseppe Jacopini, Flow diagrams, Turing machines
and languages with only two formation rules. Communications of
the ACM, 9, May 1966, 366-371.

7. H. D. Mills, "Structured Programming," October 1970.

8. Ibid, page 12.

9. Ibid, page 5.

10. P. Naur, "Proof of Algorithms by General Snapshots," BIT 6, 4,
1966, 310-316.

11. R. W. Floyd, "Assigning Meanings to Programs," Proceedings of
Symposia in Applied Mathematics, Vol. XIX, Mathematical Aspects
of Computer Science, American Mathematical Society, Providence,
Rhode Island, 1967, 19-32.

12. D. I. Good and R. L. London, "Interval Arithmetic for the
Burroughs B5500: Four Algol Procedures and Proofs of Their
Correctness," Computer Sciences Technical Report No. 26,
University of Wisconsin, June 1968.

102 A
AUERSACH



REFERENCES

Section 3 - continued

13. B. H. Liskov and E. Towster, "The Proof of Correctness Approach to
Reliable-Systems," The Mitre Corporation, July 1971, p. 10.

14. N. E. Willmorth, "System Programming Management," TM-(L)-2222,
SDC, Santa Monica, California, 1965.

15. F. T. Baker, "Chief Programmer Team Management of Production
Programming."

Section 4

1. E. W. Dijkstra, "Concern for Correctness as a Guiding Principle
for Program Composition," Fourth Generation International Computer
State of the Art Report, 1971, 360.

2. C. A. R. Hoare, "The Use of High Level Languages in Large Program
Construction," Efficient Production of Large Programs, edited by
Barbara Osuchowska, Proceedings of International Workship Jablonna,
August 10-14, 1970, 82.

3. D. B. Mayer and A. W. Stalnaker, "On the Management of Computer
Programming," Auerbach Publishers, Inc., 1970.

4. J. I. Schwartz, "Analyzing Large Scale System Development,"
Software Engineering Techniques, edited by J. N. Buxton and B.
Randell, Report on a Conference Sponsored by the NATO Science
Committee, October 1969, 128.

5. B. Randell, "Efficient Production of Large Programs," edited by
B. Osuchowska, Proceedings of International Workshop Jablonna,
August 10-14, 1970, 116.

6. M. E. Conway, "How do Committees Invent?" DATAMATION, April 1968.

7. J. N. Buxton and B. Randell, eds., Software Engineering Techniques,
Report on a Conference Sponsored by the NATO Science Committee,
October 1969, 7.

8. G. K. Manacher, "Efficient Production of Large Programs," edited
by B. Osuchowska, Proceedings of International Workshop Jablonna,
August 10-14, 1970, 16.

103 A
A£ERBACH



REFERENCES

Section 4 - continued

9. W. M. Turski, "Defining Large Programs," (introduction to the
working session on the same subject) in Efficient Production of
Large Programs, edited by B. Osuchowska, Proceedings of International
Workshop, Jablonna, August 10-14, 1970, 4.

10. E. W. Dijkstra, "The Structure of the 'THE' Multiprogramming System,"
Communications of the ACM, Vol. II, No. 5, May 1968, p. 343.

Section 5

1. J. N. Buxton and B. Randell, eds., Software Engineering Techniques,
Report on a Conference Sponsored by the NATO Science Committee,
October 1969.

2. P. Naur and B. Randell, eds., "Software Engineering," Report on a
conference sponsored by the NATO Science Committee, Garmisch, Germany,
October 1968.

104 £ERH


