Design of Automata, Theory of Cubical Complexes with Applications to Diagnosis.

J.P. Roth

IBM Thomas J. Watson Research Center
International Business Machines Corporation

SALVEX PAPER

Automata and Logics
Concept of Maintenance des
collective International

https://ntrs.nasa.gov/search.jsp?R=19730005474 2019-02-11T13:17:08+00:00Z
DESIGN OF AUTOMATA
THEORY OF CUBICAL COMPLEXES WITH APPLICATIONS
TO DIAGNOSIS AND ALGORITHMIC DESCRIPTION

by

J. Paul Roth

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

ABSTRACT: This investigation has been concerned with the following
problems: (1) methods for development of logic design together with
algorithms such that it is possible by means of these algorithms to
compute a test for any failure in the logic design, if such a test exists;
it is also concerned with developing algorithms and heuristics for the
purpose of minimizing the computation for tests. (2) A method of design
of logic for ultra LSI (Large Scale Integration) which seems to make
LSI technologically feasible (failures may exist on the chip with correct
operations still taking place). This method of design, called the Universal
Function Schema, allows for instant Engineering Changes EC's as well
as for complete functional changes in milliseconds of time. In addition
this scheme provides a "universal card" which solves the so-called "stocking
problem" as well as reduces the cost of production. (One must pay the
penalty of about a 10 times increase in circuit count). (3) It has been
discovered that the so-called quantum calculus can be extended to render
it possible: 1) to describe the functional behavior of a mechanism component-
by-component and 2) to compute tests for failures, in the mechanism,
using the Diagnosis algorithm. In view of the large amount of extant
electro-mechanical gear, this result may be of basic importance. (4)
One of the original motivations for this investigation was the development
of an algorithm for the multi-output 2-level minimization problem. A
program MIN 360 (its new name) has been written for this algorithm. MIN 360
has options of mode (exact minimum or various approximations), cost function,
cost bound, etc., providing flexibility. MIN 360 has been applied to
some of the Jet Propulsion Laboratory's problems; its solutions seem
already to have been incorporated into some of JPL's hardware.

This work has been sponsored in part by the Jet Propulsion Laboratory,
California Institute of Technology with the support, under Contract
NAS 7-100, of the National Aeronautics and Space Administration.

EC 3814 (#17297)
April 11, 1972
Computer Sciences
Mathematics

Section 1. Diagnosable Design Form and the D-algorithm

If one designs random asynchronous logic and attempts to develop
tests for failures in this logic design, one is doomed to failure if
the circuit is at all large. The reason for this is as follows: The
D-algorithm (as with all the others of which we know) when confronted
with asynchronous cyclic designs attempts to cut certain feedback loops
in an adroit manner, so that the cuts appear to be the natural places
in which to insert unit delays for all the cuts. One then generates
tests for this simplified model of the original circuit, simplified
in the sense of its timing behavior. Does the test for failure in the
model also represent a test in the original more realistic design?
In order to find out, one runs simulators which locate races and hazards.
If the test, which in general is a sequence of patterns to the primary
inputs of the circuit, has a race then it must be discarded and another
attempt to compute a test for another failure. As the size of the
circuit increases the frequency with which a "potential test" harbors
races increases. The method of design, called Diagnosable Design Form,
described in this section, is a procedure for the the design of logic
in which it possible to realize any function; furthermore, one can
prove that the D-algorithm (extended to these sequential circuits) will
always compute a test for a failure if such exists.

System/360 model 40 and the system/370 Model 195 both used
almost exclusively diagnosable design form.
Diagnosable Design Form may be described with reference to the figure below. The basic configuration consists of a bank of latches - call them registers - R_1 which are gated at time T_1. This R_1 feeds acyclic logic L_1 (hence combinational logic) which is followed by a bank of registers R_2 gated at time T_2. Feedback is allowed from R_2 to R_1. R_2 in turn is followed by a section of acyclic logic L_2, followed by registers R_3 gated at time T_3 with feedback allowed from R_3 to R_2 or R_1. The difference $T_2 - T_1$ is chosen large enough so that all changes in the acyclic logic have taken place from T_1 gating R_1 before T_2 is activated etc. Thus all races hazards are, by design, eliminated.

Our only remaining task is to show that the D-algorithm slightly modified may be easily adapted to computing tests (a deterministic test) for a given testable failure F_1. In the first place, it may be noted that the obvious place to cut the feedback loops is from one bank of registers to another, thus there is no complicated choice which must be made.

It was stated that it could be guaranteed that the D-algorithm would compute a "deterministic" test for a given failure if one existed. By deterministic is meant that the tests, in general of sequences of input patterns, do not depend upon the signal in the feedback loops (state variables) at the time of application of the tests. One would have also to compute "D-sequences" and "singular cube sequences" for the latches, a trivial one-shot computation, and make sure that only such tests were used in the generation of a test.
The D-algorith for the DOF will be termed DALGS.

Section 2. Heuristics for DALG

The computation for a "covering" ensemble for tests for very large circuits (say the order of 10,000 devices) become significant. The following two heuristics are offered with the purpose of reducing the computation. The first step in the procedure to compute an ensemble of tests to detect any failure of a given category in a logic design is to select a failure out of this given category. The first heuristic is a method for making such a selection. The procedure starts as follows: a failure for a primary input for the circuit is first chosen (we do not have a criterion for selecting among the primary input failures).

One then uses the D-algorithm (or some variant or equivalent thereof) to compute a test for this failure. One then uses TESTDETECT to ascertain all failures detected by this test (in general a sequence of input patterns).

One would wish to maximize the number of failures detected by a given test for this tends towards minimizing the total number of tests computed and hence minimizing the total computation. Thinking of the D-algorithm in terms of the D-chains developed in generating the tests, for a failure originating in the primary input (a PDCF) this chain drives through the entire logic and it can be shown that any line on this D-chain will be tested in one mode or another by this particular test being generated; for this choice the D-chain tends to be as large as possible since it is generated for a primary input. Next one selects some primary input failure not yet tested if such exists, and repeats the same procedure. If no such primary input failure untested by the tests computed to date exists, one next selects a device fed by primary inputs and goes through the same procedure etc., until an ensemble of tests has been computed which covers all failures of the category agreed upon in advance.

It is estimated that the number of tests required by this mode of computation as opposed to the "counter strategy" of starting with the primary output failures and proceeding backwards to the primary input failures would be about 1 to 2.

The second strategy is a simple one which in complicated control circuits might be extremely helpful. For some of these circuits a sequence of reset input patterns is originally applied in order to render the design into a known and desired state. The strategy followed is thus to first apply the sequence of reset inputs which is known, and then to derive the D-chain emanating from the failing device in the usual way: this imposes a constraint on the development of the D-chain. It is likely that the D-algorithm even with this constraint will compute a test if it exists for the failure. Indeed it may be that it is necessary to apply the reset input sequence before one is able to get a test; the D-algorithm would not know this in advance and thus might take a great deal of time in generating the test if indeed it had enough computation time so to do. It is expected that this short-cut will substantially speed up computation time. The exact algorithm would then be followed.
Section 3. Cyclic TESTDETECT

In the computation of an ensemble of tests to detect any failure of a given category in a logic design the procedure is usually as follows:
(1) select a failure from a given category of failures and compute a test for it (e.g. by the D-algorithm) (2) use a simulator to determine all failures of the given category which are detected by this test.

This procedure is continued until a test ensemble has been obtained which detects all the prescribed failures (or one has reached a certain modicum of completeness or "coverage", say 85%).

The bulk of computation time is in the simulation, perhaps by a ratio of at least 100 to 1.

TESTDETECT was developed as a "1-pass" simulator to determine all failures detected by a given test. It was designed originally for acyclic (combinational) logic. It had not been seen how to generalize TESTDETECT to the general cyclic circuit case. A study of the Diagnosable Design Form, however, shows that if the logic design is clocked by a clock having at least two phases then it is rather simple to extend TESTDETECT to cover DDF-logic.

In order to describe cyclic TESTDETECT we will first review how it works for acyclic logic. Assume that we have a test consisting of a single wave of patterns applied to the primary inputs of the circuit.

First one computes the signal on each line (device) in the logic design. Let us now look at the primary output. If a given output has a "0" assigned to it for this input pattern, then clearly it is tested for stuck-at-1. Likewise if it has a 1, then it is tested for stuck-at-0. Assume that a given primary output is a 2-input OR with inputs 1 and 0 respectively. It is clear that the line with input 1 is tested for stuck-at-0 whereas the input with value 0 will not be tested by this input pattern. We proceed in this way from the primary outputs ascertaining whether or not the line (device) is detected in its failure by this test, passing through the entire circuit to the primary input. This is thus a 1-pass-type of simulator. TESTDETECT for the acyclic case has been programmed in APL and run extensively. (Roth, Bouricius & Schneider, 1967)

TESTDETECT takes the order of n steps for a piece of logic having n devices. A simulator requires n^2 steps: for each failure one must determine the signal on each line of the circuit; n failures multiplied by n devices equals n^2.

Now we will outline the procedure for the case of the cyclic circuit and use the figure 2 as an illustration. Initially we assume that all lines have a signal which is unknown - let this condition be represented by the symbol x. In the case of cyclic logic the test will in general be a sequence. Assume that we apply the first input pattern to the primary inputs with all other lines being x. In general,
some lines will be determined immediately by this primary input pattern. On the other hand there will be some for which this is not the case, for example, suppose that a given line is the output of an OR with two inputs, one having the value x and other, the value 0. Figure 2 shows a cyclic circuit (the registers required for DDF are omitted for simplicity). Figure 3 shows cyclic TESTDETECT operating for the first input pattern t₁. Figure 4 shows it for the second t₂.

The general procedure is as follows:

1. The resulting signal 1 or 0, on each line if determined by t₁ is computed; if not determined, it is assigned to value x. Clearly the input pattern can test no line assigned x.

2. One then reasons backwards from the primary Output lines (here only line 10): if the test pattern causes a signal a, a = 0 or 1, on the PO line, then clearly this line is tested for the failure stuck-at-a.

3. Having determined failure detection for the PO lines, we next examine the lines feeding PO blocks (lines). If the PO block is an OR or NOR then it is tested only if the signals on all other inputs to the block is 0; if an AND or a NAND, then all other lines feeding the block must be 1. If such a line is testable then it is tested for a signal a on l₁.

4. This procedure is pushed level by level. If a line fans out to more than one block then one must, as with cyclic TESTDETECT, proceed forward from the line to the point(s) of reconvergence. Nevertheless the process is very rapid.

5. Having made the determination for the signals 1, 0 or x which the first input pattern causes, plus the ensemble of failures detected by t₁, one similarly applies the second input pattern t₂ to determine, together with the signals established on the feedback loops by t₁, the signals induced on the lines, together with as above, the failure detected by t₂-preceeded-by-t₁.

6. One continues similarly through the entire given sequence of test patterns, t₁, t₂, ..., to determine all failures detected by this test.
Fig 2 CYCLIC TESTDETECT - example

All devices AIs, AND-INVERTS

Fig 3 CYCLIC TESTDETECT - example.

First input pattern

\[
\begin{align*}
1 & \quad 2u & \quad 3u \\
0 & \quad 4 & \quad u \\
\end{align*}
\]

All devices AIs, AND-INVERT

u means untested
D means tested stuck-at-0
\(\overline{D}\) means tested stuck-at-1
Fig 4 CYCLIC TESTDETECT Values assumed by second input pattern

u means untested
D means tested for stuck at 0