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ABSTRACT

A general method of generating optimal trajectories between an
initial and a final position of an n.degree of freedom manipulator arm
with.nonlinear equations of motion is proposed. The method is based on
the .assumption that the time history of each of -the coordinates can be
expanded in a series of simple time functions. By searching over the
coefficients of the terms in the expansion, trajectories which minimize
the value of a given cost function can be obtained.

The method has been applied to a planar three degree of freedom
arm. The coordinates of the arm are the three joint angles. Two types
of trajectories have been assumed. These are such that the time history
for each joint angle is:

1. a series expansion of polynomials,

2. a series expansion of periodic functions.
Two integral type cost functions have been used:

1. the integral of the kinetic energy of the arm,

2. the integral of the magnitude of the joint torques.

The optimal values of the coefficients in the series expansion
show a distinct pattern. For a particular combination of type of
trajectory and cost function the optimal values of the coefficients have
been approximated by rather simple functions. This results in suboptimal
values of the coefficients, but they can be obtained without performing an
on-line search. The difference between the optimal and suboptimal value
of the cost function is of the order of 8%.

Thesis Supervisor: Daniel E. Whitney
Title: Associate Professor of Mechanical Engineering
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CHAPTER 1

INTRODUCTION AND PROBLEM STATLEMENT

The deéign and control of mechanical manipulators which perform
functions similar to those of the human has been the subject of many
recent. studies. A particular area of interest. in these studies is the
supervisory controlled manipulator. In supervisory control the operator
specifies task subgoals to a remote computer which in tufn executes
pieces of the task through direct command of the manipulator supported
by local control loops. Visual sensors enable the operator to monitor
the -execution of the task. This technique is well_suited for a

-manipulator in-outer space .or other remote locations where the.distance
between‘the operator and the:arm.causeé»a=significant time deiay in the
“.communication. Supervisory control can be applied equally well to.
performance of complex noh-rbutine-manipulgtion tasks as the routine
execution of repetitive operations. Often it is reﬁuired‘that a task
is executed optimally in the sense that a particular cost function, for
instance time or the expenditure of energy is minimized.

The dynamic equations of motion of a manipulator arm are non-
linear and would require nonlinear control techniques to minimize a

given cost function. These techniques may require a considerable amant
of computer storage and real time computation. Townsend [l1] investi-
gated the possibility of controlling a nonlinear arm with feedback
control computed for the linearized arm motion equations. The non-

linear equations of the arm are linearized about a certain desired motion.
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It is assumed that the deviations of the actual motion from the desired
motion are small so that linear control laws can be used to let the
arm follow the desired motion. Townsend used two types of linear
system controls: a regulator and a variable gain tracking technique. If
the desired motion must be optimal the problem of how to generate the
optimal motion strategies arises. This thesis describes a possible
solution to this problem for a particular class of tasks, namely moving
a manipulator arm from one position to another.

If the manipulator arm has n degrees of freedom the position
of the arm with n general coordinates XyseoeesX is descfibed by a
vector x 1in the coordinate space. The motion of the arm between an
initial position x

i

e = [xlf”"”xnf] is described by a trajectory in the coordinate space

= [xli'°""xni] and a final position

between Xy and X - The motion is optimal if the value of the cost

function is minimum along the trajectory.
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CHAPTER 2

" METHOD OF GENERATING OPTIMAL TRAJECTORIES

In this chapter a method of generating the optimal trajectory
- . between an initial and a final position of a n degree of freedom

mechanical arm is described.

.2.1 General Approach

The method is based on the assumption that the .time history of
each of the.elements.of.the position vector xk(k'=“1, ..:y n) between

"Xy yq and Xy e can be expanded in a series of :simple time functions.

x = Ak + akofo(t) + aklfl(t) + aszz(t)

(2.1)

+ ieeee t akmfm(t)

where akl(l = 0,...,m) are coefficients independent of time and Ak is
constant. If fo(t),....,fm(t) are given time functions X, is only

a function of the coefficients akl"""akm . The cost function J
which must be minimized along the trajectory between the initial and
final position of the arm is generally a function of X s its derivatives
ik and §k , and the task performance time T . J takes the general
form:

T
J = [ L(x, x, ¥t (2.2)
(o]
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Substituting the functions for Xy ik and ik in the expression for J ,
J can be written as a function of the parameters akl(k = 1,...,0;
£ =0,....,m) and the performance time T . For a given T , J 1is only

a function of the a's . So:
J = J(a) (2.3)

where a 1is the matrix of the parameters akl(k = 1, ...,n; £ =0,...,m).

"~ By this procedure the problem of finding the optimal trajectory
has been reduced to a parameter optimization problem, i.,e. finding the
values of the parameters ayg for which the value of the cost functiqn
J(a) is minimum.

To obtain the optimal values of the parameters, one can follow
different procedures whicﬁ can be divided into two main categories:
a, analytical method,

b. numerical methods.

The two methods are discussed briefly in the following sections.

2.2 Analytical Method

If there are no constraints on the possible values of the
parameters a,, and the function J(a) has first and second partial

derivatives everywhere, necessary conditions for a minimum are:

M =00 (2.4)
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where a is the i-th element of a with i = n + k and:

i
2
s 2 0 (2.5)
i3 '
223
which means that the matrix whose components are 32 3a must
aiaaj

.be positive semidefinite. Equation (2.4) will give as many equations as
there are unknown parameters. The advantage of the analytical method
is that it gives all the possible solutions. However, in practice

this method can present problems if the function J(a) 1s complicated.

2.3 Numerical Methods

There are various numerical methods available. Bryson and Ho
(2], Bekey [3], Sage and Melsa [4] give a survey and a description of
several of these methods. In general they are based on the following
principle. MAke'an initial guess for the values of the parameters and
"supply these values as part of the input to a computer program. The
progrém changes the_values of the parameters according to a certain
algorithm until it has found a set of values for the parameters which
minimizes the value of the cost function. The particular numerical
method one uses depends on the behavior of the function J(a) as a
function of its argument a . A disadvantage of these numerical methods
is that , if J(a) has several local minima, only one local minimum is
found, depending on the initial guess for the values of the a's. This
local minimum is not necessarily thé global minimum. The numerical
methods are very suitable for the cases that J(a) is a complicated

function.
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CHAPTER 3

GENERATION OF OPTIMAL TRAJECTORIES

FOR A PARTICULAR MANIPULATOR ARM

The generation of optimal trajectories as described in Chapter

2 has been applied to a planar three degree of freedom mechanical arm.

3.1 Description of the Manipulator Arm

The arm consists of two rigid straight links with lengths 21
and lé connected to a fixed reference frame and to each other by
moveable joints. As shown in Fig. 3.1 the joint with the fixed frame
is considered as a double hinge with two degrees of freedom; the joint
between the two links is a hinge with one -degree of freedom. The mass
of the arm is lumped as two point masses my and m, at the ends of
. the links. The point masses have no rotational moment of inertia about
the axis of the associated links. This lumping of masses simplifies
the mathematics but does not affect the generality of the results.

The following joint angles have been chosen as coordinates of
the arm (see also Fig. 3.2): |

1., the angle U, Dbetween the plane through the two links

1
and a fixed plane through axis 1,
2. the angle 62 between link 1 and a line in the plane of

the arm perpendicular to axis 1,

3. the relative angle 93 between link 1 and link 2.
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Figure 3.1. Sketch of the manipulator arm.



axis |

Figure 3.2. Coordinates of the:manipulator arm.

The arrows in Fig. 3.2 iﬁdicate the positivé direction of rotation.
This coordinate system is convenient both mathematically and physically
for manipulators with torque drive at the joints.

The position of the manipulator arm is described by a vector 6

with elements 61, 62, and 93 . This 6 corresponds to x used

in Chapter 2.

3.2 Trajectories

Trajectories can be categorized depending on the type of functions

fl(t)(l = 0,...,m) used in the expansion of the functions Gk(k =1,2,3):

6 = A +a

K K kofo(t) + a . f.(t) +a

kit fz(t) + ...+ akmfm(t)

k2
(3.1)



For the purpose of this study two types of trajectories have been

assumed.

Type 1:

The function for each joint angle Gk (k = 1,2,3) between

and t =T

Lo}
(=~}
~
(ad
~
[

Lo}
'd
~
(a4
~r
|

fz(t)

Only the first three

som = 2.

is a series expansion of polynomials.

% t (3.2a)
5 t(T-t) (3.2b)
T

64 T

;3 t(5 = t)(T - 1t) (3.2¢)

terms of the series have been taken into account,

For t <0 and t > T the value of ek is equal to the function

value at t=0 and t=T respectively. Figure 3.3. shows a plot of the

functions fz(t) and their first and second derivatives.

From the end conditions at t=0 and t=T ,

follows:

and

i.e.

Gk(O) = eki (3.3a)

Bk(T) = ka (3.3b)

Ak = eki (3.4)
8., -8 (3.5)
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and a

The coefficients K2

a1

The expression for each ek becomes:

t 4
ek = eki + (6kf - eki) T + an T_2 t(T-t)
64 T
+ a, —T-s' t( 3" t) (T-t)

This rather simple function does not provide a smooth

are the ones to be chosen optimally.

(3.6)

start up and slow

down of the manipulator arm because of the impulsesingularities in the

second derivatives.

Type 2:

The function for each joint angle ka (k = 1,2,

expansion of periodic functions of the following form:

1 1
fo(t) = 3T (t c e sin wt)

2
T (t - Ea-sin 2wt) , 0< ¢t
fl(c) = Az .
Z—T(t~—2;sin2wt),-2—
(4 (¢ - L cin dwe)
T 4w ’
f.(t) = 2—i(t-—si 4wt)
2t T 4 S0 ,
4 1
-4 +'? (t - " sin 4wt) ,

3) 1s a series

(3.7a)

< I
-2
Le<T

T
Of_tiz
%iti%—:r- (3.7¢)
Heecr
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where w = 2n1/T . Also in this expansion only the first three terms
have been taken into account.
The functions fz(t) and their derivatives are plotted in

Fig. 3.4. From the conditions (3.3) follows:

A, = 06 . ' (3.4)
and

As ék and ék are zero at t=0 and t=T this type of trajectory

will give a smooth start up and slow down of the arm.

3.3 Cost Functions

Two cost functions have been used to optimize the trajectory
between the initial and final position of the arm. Both cost functions

. are integral type functions.
Cost Function 1:

The integral between t=0 and t=T of the kinetic energy of the

manipulator arm:

T .
J = [ KE dt (3.8)
(o]

where KE = kinetic energy of the arm at time t .
For the particular arm studied here the expression for the

kinetic energy of the arm at time t dis: '

_ .2 2 2 2 2
KE = 0.5[61{(m1 + mz)l1 cos 62 + mzlz cos (92 + 83)
(3.9)
+ 2 m .2 %, cos O, cos(8, +0.)}
2172 2 23 CONT'D.



.2 2 2
+ 62{(m1 + m2)21 +m, 22 + 2m

*2 2
+ 63{m222
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}

2

2122 cos 63}

(3.9)

° . 2
+ 0, 63{2m2 %5 + m, L%, cos 93}

This expression-is derived. in Appendix IA.

Cost Function 2: -

The integral between t=0 and t=T of the sum of the magnitude

~of the joint torques:

where . u

T
1

o

3

24 lukl dtv_.

k=1

(3.10)

. external torque applied at the

-k=th axis of rotation.-

-This cost function is closely related to the energy .consumed.

From the dynamic equations

T8-=
follows:
u=
where u =
T =

of motion:

u +

T 8

(3.12)

[ul, Uss u3] , the vector representing

the external torques.

the matrix representing

the moments of inertia.
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For the arm studied here

Tjg = Ty3 =Ty =T33 = 0.

c = [cl, Cys c3] , the vector representing
the torques due to the reaction forces
to centripetal and coriolis forces.

The equations for the elements of u become:

u, = Tll 61 - (3.13a)
u, = T22 62 + T23 93 -c, (3.13b)
ﬁ3 = sz 92 + T33 93 - c3 - '(3.l3c)

The expressions for the elements of T and ¢ are given in Appendix IB.
A computer program which generates the equations of motion fbr a manipu-
lator arm of a given configuration was available.

In both cost functions the influence of gravity -has been omitted
. for two reasons. First, the position of a manipulator arm with respect
to gravity wili differ from case to case. For any particular case it
will not be difficult to incorporate the influence of gravity in the
cost function. Second, if a manipulator is used in outer space the
influence of gravity is absent.

3.4 Computer Programs

Using the trajectories and cost functions described in the
previous sections three combinations of cost function and type of

trajectory are possible.



Combination I:
T )
Minimizing J = f KE dt assuming trajectories of Type 1
°
(ek is a series expansion of polynomials).

Combination II:
' T

Minimizing J = f KE dt -assuming trajectories of Type 2
o

(ek‘is a series expansion of periodic functions).
. Combination III:

3
Minimizing J = f Z lukl-dt..assuming-trajectories of Type 2.
o k=1 :

. A combination of J = IT % “Iukl dt with trajectories of Type 1l
is -not possible. The joint tégqhzzl uk(k = 1,2,3).are functions éf ak .
Por the trajectories of Type 1- ék is infinite at t=0 and t=T,
To obtéin the optimal values of the parameters ai(i=l,...,6)

for a pérticular initial and final position of the arm a fortran coded
computer program has been written for each combination of trajectory and
cost funétion. The programs consist of:

1. main progtam;

2. numerical search routine,

3. subroutine to compute the value

of the cost function J(a).

The three parts of the programs are described next.



- 24 -

1. Main Program

The main program reads the input data (lengths and masses of
the arm, initial and final position, performance time, and initial
guess for the values of the coefficients in the expansion), calls the
.search routine and prints out the final (optimal) values of the
coefficients and the cost function. The main program is basically the

 same for combination I, II and III.
2., Numerical Search Routine

The search routine used in fhis study is called pattern search.
Pattern search is a direct search routine for minimizing a fuﬁction
J(a) of several varigbles a= [al, a,, «ee.}. The argument -a is
systematically varied until the minimum of J(a) 1s obtained. The
pattern search routine determines the sequence of values for a ; an
independent subroutine computes the functional values of J(a).

A detailed description of the pattern search routine is given
by Hooke and Jeeves [5].

Figure 3.5 shows a flow diagram of the search procedure as given

by Hooke and Jeeves.

3. Subroutine to Compute the Value of the Cost Function

This subroutine is called by pattern search after each change in
the argument a . It simulates the trajectory of a given type for the
value of a supplied by pattern search And computes the value of J(a)
along the trajectory. The integration is carried out with Simpson's

Rule. The number of intervals between‘t=0 and t=T is twenty. This
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 Figure 3.5a. Descriptive flow diagram of patterm search.
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Figure 3.5b. Descrintive flow diagram for exploratory moves. This

routine is carried out for each coordinate separately.
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subroutine is different for each of the combinations of trajectory and
cost function.

The programs are listed in Appendix II.
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CHAPTER 4

DESCRIPTION AND RESULTS OF THE PROGRAM RUNS

This chapter gives a description of the program runs made,
possible difficulties in the use of the search routine and an.interpreta-

tion of the results of the searches. All runs were made for an arm with

21 = 22 = 0.3 m and m, =m, = 1 kg.
4.1 1Initial and Final Positions
2.36 O O- oO— Fo)
e L
“ 1.57 © O— —0Q— ‘ﬂ)
=
[&]
=1
N
o
(3]
D
= 0.78 © —C0 Q- o]
3
2
0.0 © —O O— O
-1.57 -0.78 0.0 0.78

ANGLE 821 (ANGLE OZf)

Figure 4.1. Combinations of initial (final) angles.
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The initial and final positions of the arm were chosen in a
certain region in O-space at discrete points. The dots in Fig. 4.1
indicate the values of 621 and 631 or 62f and 93f . For fixed
values of 611‘ and elf this will give 256 possible combinations of
initial and final position for each of the combinations I, II and III.
To 1imit the number of runs a choice was made out of the 256 possible
combinations.

For most runs 61i = -0,78 and elf = 0.78 (angles in radians)

wvere cﬁbsen. For combination III a number of runs were made with different

values for 91i and elf while keeping 621, 92f’ 631 and 63f constant.

4.2 Results of the Searches

The results of the individual searches for Bli = -0.78 and

elf = 0,78 are given in Appendices III A, B and C. The following

observations can be made concerning the results for combinations I,
I1 and III.

I. For all combinations of Qi and 9{ the values of

ajos 39y and a,, are zero. When both 921 = ezf

32
and 63i = G3f the value of aj; is zero too.

II. When 6 ) and © e the optimal values of

21 T V2f 31 - V3f

ay> 3370 a22 and a,, are zero. The optimal value of

a, lies between 0.11 and 0.18.

I11. As for I the optimal values of aj,s 35y and 332 are
zero or very small in all cases, and a; is zero when

both 621 = er and 931 = 63f .
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For the special cases that both 621 = 62f and 93i = 63f the

optimal values of the parameters a and a for the three combinations

21 31

of trajectory and cost function are plotted as functions of 621 = ezf = 62

and 931 = 63f = 63 in Figs. 4.2, 4.3 and 4.4.
The results of the searches for combination III1 with varying
611 and elf are listed in Apbendix III D. The optimal values of

and a are zero in all cases. The optimal values of a5y

a1 222 32

ay1s a3 and J(a) are plotted as function of elf ~.61 in Figs. 4.5,

i
4.6 and 4.7,

Each search gives only a local optimum. Therefore one can not
be sure that. the 6ptimum-found is a global optimum. However by starting
the search in a proper point based on physical considerations one can
increase the probability thaf the global obtimum will be found. An
example of choosing a wrong starting point is given next.

For combination IIT with 8, = [-0.78, -0.78, 1.57] and
9{ = [0.78, -0.78, 1.57] the initial values of the a's were chosen all
equal to zero. This resulted in a set of optimal values for the a's
of [0.0, 0.0, 0.27, 0.0, 0.0, 0.0] and a valué of the cost function J
of 0.935. Starting the search at (0.0, -0.168, 0.492, 0.0, 0.0, 0.0]
resulted in a set of optimal values for the a's of [0.0, -0.219, -0.626,
0.0, 0.0, 0.0] and a value of the cost function J of 0.630 which is
much less than in the other case. The new starting point was the result

of an interpolation between the results for the other combinations of

82 and 63 (see Fig. 4.4). This example indicates that the choice of
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the starting point for the search can be very important. Therefore,
the starting points have been chosen carefully in accordance with the

physics of the problem.

4.3 Some Examples of Optimal Trajectories

In Fig. 4.8 and 4.9 two examples of how the functions for 61,

62 and 63 will look like for different combinations of trajectory
type and cost functions, using the optimal values of the coeffiéienté

in the series expansion. The Roman numbers in the figures indicate the

combination of trajectory and cost function as mentioned in Section 3.4.
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CHAPTER 5

GENERALIZATION OF THE RESULTS

This chapter discusses a method of generalizing the results of
the individual searches for specific combinations of trajectory and -
cost function. This method will lead to suboptimal values of the
coefficients a g - However, these values can be obtained by on-line
.;computatioﬁ,in a short time. It is .not necessary anymore to perform
an on-line search.. .

The method is worked out for combination III where

T 3 :
J = f Z |uk| dt and the trajectories are of Type 2.
o k=1

- The values of 911 and elf are - 0.78 and 0.78 respecti#ely.

For combination III ‘the optimal values of 312’ a5, and as,
are zero or at least very small. Therefore the suboptimal valﬁes of
these parameters have been chosen zero for all combinations of Qi and
Qf . To obtain general expressions for determining the values of

all’ 321 and 331

been considered separately. The assumptions made and the results

four categories of combinations of 6, and 6 have
—i —

obtained for each of the categories are described in the following -

sections.

5.1 6,, = -0.78, elf = 0.78, 921 =8

11 and 6., =6, .

2f

For this case the optimal values of a, are zero. The optimal

values of a)n and a; are plotted in Fig. 4.4.
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It is assumed that for each value of 63 the values of 321

and a as functions of 92 can be approximated by parabolic

31

functions of the form:

a

g = PO, - )2 + b (5.1)

a a8, - ) +d (5.2)

31

Using a linear regression technique the best fitting parabolas through

the four values of a were determined.

and a for .a constant
21 3

a
1 “3

The formula used for this purpose is derived in Appendix IV. This
gives four expressions for a5 of the form (5.1) and four for ag;
of the form (5.2). Consideration of the values of p, a, b, q, ¢ and d as

functions of 6 indicated that a good approximation for a,b,q,c

3

and d as a function of 63 is a straight line and for p as a function

of 63 is a parabola. Fitting the curves through the points the

following expressions were obtained:

p = 0.4936 - 0.3079 6, + 0.0504 e§ | ©(5.3)
a = -0.3929 - 0.2002 6, (5.4)
b = -0.6628 + 0.2619 6, (5.5)
q = -0.9985 + 0.3903 6, ) (5.6)
¢ = -0.3370 - 0.1106 8, (5.7)
d = 1.5442 - 0.5772 © (5.8)

3
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Substituting (5.3) through (5.8) in Eqs. (5.1) and (5.2) a and

3; ¢am be written as functions of 62 = 92i = 62f and 83 = 63i = 83f .

In Figure 5.1 the functions for a5 and ay have been plotted

for four values of 63 . For comparison the optimal values of ay

a

and ay obtained from the searches have been plotted too.

The value of the cost function J(a) has been computed for.
the suboptimal values of the parameters and for all parameters equal to
zero. This showed that on the average the difference between the sub-

-

optimal value and the cp:imai value of J(a) 1is 7.47 of the optimal
value. The difference between the value of J(a) for all a's equal to

zero .and the optimal value is 27.5%7 of the optimal value.

5.2 6,.=-0.78, 6, _.=0.78, 6,, =0 and © i $0

1i 1f 21 2f 3 3f
For this categcfy the expressibns for a21' and a31 mentioned
in 5.1 have been used to determine the suboptimal values of 3,y and
ay, as follows. Setting 62 = 921 = ezf and 63 = 931 in Eqs. (5.1)
: 1 ]
through (5.8) gives certain values for as and 331 s say aZl( and
' = = =
az; - Setting 62 621 62f and 63 63f the values of ay and
ay, are agl and agl . Using the following expressions a reasonable
fit to the data for 92i = 92f and 63i # 93f was obtained.
= ] [} .
a, min{a21, a21} | (5.9)
= ' " 1 — aM
aj; min{aal, a31} + r|331 a31l (5.10)
where

ro= 139, + 0.4)% + 0.6 (5.11)
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For the suboptimal value of parameter a the expression

11

ajy = -0.20 sgn{2 cos 621 + cos(e21 + 631)
(5.12)
-2 cos_,B2f - cos(B2f + 03f)}
gave satisfactory results.
5.3 eli = -0.78, elf =.0.78, 62i # 62f and 631 = 63f .
For this category the suboptimal values for. azi and a,, were
obtained from (again using Eqs.. (5.1) through (5.8)):
a,, = min{all a5 for 63 = 63i = 83f
. (5.13)
‘and 6, between 6,  and sz}
ag = max{all a,, for 63'= 631 = 63f
(5.14)
and 62 between 821 and ezf}
The value for a5, followed from (5.12).
5.4 611 = -0.78, elf = 0.78, 821 # sz and 931 # 93f .

Satisfactory values for the cost function J(a) were obtained

by choosing for the values of a and a

21 (using (5.1) through

31
(5.8)):

321 = minfall 321 for

6 between 62

2 and ezf and

i (5.15)

63 between 931 and 93f }
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a31 = max{all 331 for

02 between 621 and sz and

: | o (5.16)
6, between 8, and 63f}

The value of a;, was chosen from Eq. (5.12).

For the categories described in Sections 5.2, 5.3 and 5.4 the
values of the cost function J(a) for all a's equal to zero are on
the average 707 bigger than the optimal values. For the suboptimal
values of the a's the difference between the values of J(a) and the

optimal values was on the average 107. This justifies the use of

suboptimal values for the parameters a,, very well.

5.3 Flow Diagram for Determining the Suboptimal Values of the

Coefficients in the Series Expansion

The results of the previous sections can be summarized in a
flow diagrm as presented in Fig. 5.2. The flow diagram is for the
cages that Bii'a -0.78, elf = 0.78, 921 and er between -1.57 and
0.78, and 631 and 63f between 2.36 and 0 . The flow diagram is
easy to transform into a computer program.

The generalization as described in this chapter can also be
done for each of the combinations I and II. The main problem will be

finding a function which fits the data for the cases that 62i = sz

and 84, =04, .
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CHAPTER 6

CONCLUS IONS

The proposed method of generating optimal trajectories worked
successfully for a three degree of freedom mechanical arm. However,
the method is general and it can be expected that it is alﬁo applicable
to more complicated arm models.,

The consistency of the results with the physical understanding
of the problem indicates that the pattern search routine was suitable
for this problem. |

The results of the searches indicate that only the first two
terms of the seriles expansion are important, except for joint angle 91
in combination II where the third term has a significant influence on
the shape of the function for 91 . .

The optimal value of the cost function J = f KE dt for
6ombination I is lower than for combinatfon II. Froz this it can be
concluded that in order to minimize the integral of the kinetic energy
a series expansion of polynomials 1s more suitable than a series
expansion of periodic functions. To minimize the integral of the
torque magnitude only the series expansion of periodic functions is
applicable.

In the special cases that 60,, = 0 and 63i = 63f the optimal

21 2f

values of the parameters a and a, showed a certain pattern,

1

especially for combination III. For this combination the values of
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a5 and a31 could be summarized by paraboloid functions with

= = ‘ = 0 = 0
62i er 92 and 631 3¢ 3 as independent variables (see
Fig. 5.1). The values of ay, and a31 obtained in this way are

suboptimal. The difference between the suboptimal and the optimal value
of the cost function is on the average 7.4Z. From the suboptimal
values of 3y, and ay in the case that 621 = ezf and 63i = 63f
the suboptimal values of a) and ay in the qther cases of
combination I11 cogld be derived quite easily. The suboptimal value of
the cost function in these caseé is on the average 10Z bigger than the
6ptiﬁa1 value, which is satisfactory.

Using the algorithm for the suboptimal values the coefficients

in the series expansion can be obtained on-line without search. This

saves a significant amount of real time computation.
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APPENDIX I

A. Derivation of the expression for the kinetic energy of the arm.

For a system of two point masses, what the arm essentially

is, the kinetic energy is:

where vy and v

2

are the velocities of the masses my

Furthermore ( see figure I.1 ):

where v19

160

where v
. 291

292

293

a

v

v

The expressions for the components of v

component

component

component
component
component of v

angle between v

of vy due to rotation about

of Vi due to rotation about

N

2
+ 2v
263 292

of v, due to rotation about

2

of v, due to rotation about

2 due to rotation about

20 and v

2 20

3
1

= Zlelcose2

%19,

{Qlcose2 + lzcos(62+63)}61

— .

2 2
/&1 4+ 22 + 22122c0393 6

(1I.1)
and m2.
(1.2)
axis 1,
axis 2.
V,g COSa (1.3)
3
axis 1,
axis 2,
axis 3,
and v2 are:
(1.4)
(1.5)
(1.6)
(1.7)
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Substituting (I.2) through (I.8) in (I.1) gives the

following expression for the kinetic energy:

.1 2.2 2 2.2
KE = zml[llelcos 62 + 2162]

1 2:2
+ Emz[{ﬁlcosﬁz + 22c05(62+63)} 61

7 .2 '2:2
+ /ﬁ; +.22 + 2£l£2cose3 92
2.2
+ 9.263
2 2 l»o »
+ 2/@1 + 22 + 21122c0363 922293cosa]
Substituting:
22V+21cosﬁ3
cosq =
/ﬁz + 22 + 22.2,.cosB I
1 2 172 3

in Eqn. (I.9) and changing the order of the terms results in:

1,°2 2 2, 2 2
KE = 2[91{(m1 + mz)llcos 62 + mzlzcos (92+63)
+ 2m22122cos62cos(62+63)}

"2 2 2
+ 62{(m1 + mz)ﬁ1 + m222 + 2m22122c0363}

~2 2
+ 63{m222}

. 9
+ 6263{2m222 + 2m22122cose3)]

(1.8)

(1.9)

(1.10)

(3.9)
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B. Expressions for the elements of T and ¢ in Eqn. (3.13).

.1 2 1 2 1 2
T11 i(m1 + mz)ll + imzlz + f(ml + m2)21c05262
+ 10 02c0s2(0.46.) + 2m.2.2. cosd. cos(6.+6.) (1.11)
2"2%2 2793 2%1%2€08Y, 2773 .
T, =m 22 + m2? + m 2% + 2m.2. 2. cosd (1.12)
22 1°1 271 T Mp%y 271 72¢08Y, .
T,. = m.82 + m 2. 2. cos® (1.13)
23 © Mty T myRyhycosty .
T2 =Ty o (1.14)
T.. = m 22 (1.15)
33 T M | .
c, = é é {(m, + m )22s1n26 +m zzsinZ(e +9.)
17 U1ftim T MY 2 T WXy Y970,
+ ZmZzlzzsin(e3+zez)}
. » : 2 ‘ ' )
+ 6163{2m22122c086251n(62+63) + m2£2s1n2(62+93)} (I.16)
Y VY 1,2 . -
cy = - 91{§(m1 + m2)2151n262 + §m22231n2(62+63)
+ mzlllzsin(63+262)}
+ éz{m '} lrsine i
3 Mgty %o SINY,
+ 6293{2m22112s1n93} _ .-(1.17)
c, = - éz{lm lzsiAZ(B +68_) + m 2 2 cosf,.sin(6.+6.)}
3 1'2M2%2 A 2%1%2¢98Y; 2773

. - |
- 62{m221£231n63} . (1.18)
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APPENDIX II

FORTRAN CODED COMPUTER PROGRAMS
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C--——- MAIN PRCGRAM
C----- FCK CCMPUTING THE CPTIMAL VALUFS CF THE COEFFICIENTS
C--=-—- IN THE SERIES FEXPANSTCN

C-----TCRC IS THE SURROUTINE FOR COMPUTING THE CCST FUNCTICN
C--—--~ TCINT IS THE VALUE OF THF COST FUNCYICON

REAL Ll,L2,M1,M2
EXTERNAL TORG
DIMENSICA BA(9)
CCFNMEN TFINGF&44F9+F643 T, ANGI I ,ANG1F,ANG2I, bVGZFt
IANG3 I ANG3F
C--—--- REAE INPLY DATA
REAC(S42CITFINSLLyL2,¥1,M2
2C - FCRMAT(E15.6/4E]15.6)
REAC(5,37}IN
37 FERMAT(IL)
REAC (S 1CIDELINL,DLMIEN
REBE (5,5) M
S FCR¥AY (L2}
WRITE(6,4)
4 FCRMAT(*ICPTIMAL PARANMETERS FCR MIN INT TGRQUE')
WRITE(6,425)
25 FCRIMFATI/ ¢ TFINGLESL?2 MLl M2%,/)
WRETE(G6 26 TFIN,LEL2,MLoM2
2¢ FCRMAT(S5EL>15.6)
i WRITE(6433) CELINLCLMIN
38 FCRMAT(/ ,* DELIN= *,F15.69,% F[CLMIN='",F15.6,/])
Fl=t13%2
FZ2=12%%2
F3=L1#%L2
Fa=MNI%F}
FS5=M2%F1L
FE=N2Z%F3
I9=N*F2
NECSET=1
C——-"- READ ENITEAL AND FINAL POSTION OF THE ARM
& REAC({Ss 1 CIANGL T4 ANGZ2 T, QNGalgAerF AMGZF 4 ANG3F
IC FCRMAT(ELS.6)
C——----REAC INFTIAL GUESS FOR THE PARANETE”Q
REACE541C)I(BA(I)s1I=1,61})
WRITE(64+351]
35 FCRMAT(/,* *%% [NITLAL AND FINAL ANRLES', /)
WRITE(6+36)ANGYI s ANG2E,ANG3I 4 ANGLF ¢ ANG2F, ANG3F
3& FCRMAT(3IELS.6/3E15.64/)
DEL=CELIN
CALL PATSH (BA,TOINT N CEL,DLMIN,TORQ)
WRITE(G6,40)
4C FCRVAT(/4' FINAL RESULTS*,/)
WRITE(O6+S0)Y(RBA(L)s[=1,6)
" 5C FCRNMAT(6E15.6)
WRITE(6,60) TOINT
6.C FCRMAT(F15.6})
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I[F (NCSET.EQ.M) GO TO 79
NCSET=NGCSET+1

GC TC 6

CCIHhTINUE

EAD
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SUBRCUTINE PATSH(PSI»SSI.N,DEL,CLMIN,MRIT4)

C PSI IS THEE CURRENT BASEPT
C THY IS TEHE PREVICUS BASEPT
C PHI IS TEE TRIAL PT

S IS THE CBJECTIVE FCT

DIMENSICN PSI(9), PHI(9), THT(9), E"S(9)
WRITE(6,603)

6C3 FCRMAT(! CURRENT POINT, 0OBJ FCT AND STEPSIZE')

ALFA=1.02
C EVALUATE AT INIT BASEPT
1€ CALL MRIT4(PSI,LSSI)
C START AT BASEPT

1CO S=SS1
DC 161 I=1,N

1C1 PHI(1)=PSI(I)
1ICALL=1

4 WRITE(6,5939)

539 FCRMAT( ' *x%x%xt)
WRITE(6,600) (PSI{J)eJ=1,N)
WRITE(6,601) S, DEL

C MAKE EXPLCRATCRY MQOVES
GC TC 150
C IS PRESENT VALUE ) BASEPT VALUE
160 IF{S.LT.SSI) GO TC 2GC

GC TC 30¢C : :
C SET NEW HASEPT
2CO0 SSI=S

DE 2Cl I=l1l,N
THT(I)=PSI(I)
PSI(I)=PEI(I)
C MAKE PATTERN MOVE
2C1 PHI{1)=PHI(I)+ALFA®(PEI(I)-THTI(I))
CALL MRIT&4(PHI,SPI )
S=SPI
WRITE(6,599)
WRITL(64599)
WRITE(64+600) ( PHI(1)y I=1,N)
6C0 FCRMAT(8EL546)
WRITE(6,601) SPI, DEL
6C1 FCRMAT(2E15.6)
ICALL=2
C MAKE EXPL MCVES
GC TC 150
C IS PRESENT VALUE ) BASEPT VALUE
260 1TIF({S.LT.SSI) GO vC 20C
GC TC 10C
3C0 IF(DEL.LT. DLMIN) RETURN
DEL=CEL/2.
GC TC 10¢C
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C NMAKE EXPL MCVES

150

165

179
180

DC 180 K=1,N
EPS(K)=.C5*PHI (K)

IF(EFS{K) .EQ. O.) EPS(K)=.05
PHI(K)=PHI(K)+FPS(K)*CEL

CALL MRIT4(PHI,SPI)
IF(SPI.LT.S) GO TG 179
PHI(K)=PHI(K)=-2.%EPS(K)*DEL
CALL MRIT4(PHI,SPI)
IF(SPI.LT.S) 6N TC 179
PHI(K)=PHI(K)+EPS(K)*CEL

GC TC 180

S=SP1

CCONTINUE

-GC TC (160,260),1CALL
" ENC - _ .
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SUBRCUTINE KNET(BALKEINT)

C-—=—- FCR COMPUTING THE INTEGRAL OF THE KVNETIC ENERGY
C-=mm- WITH TRAJECTCGRIES GF TYPE 1
Ce=m—- (SERIES =XPANSTON GCF POLYNOMIALS)

REAL MAL1,MAL2 yMAL4,KE(21),KEINT
DIMENSICN BA(9)
CCMNMON TFINsF44F59F69T99ANGLIoANGLFyANG21 9 ANG2F,
1ANG31,ANG3F
Bl1=84A(1)
B2=BA(2)
B3=BA(3)
B4=BA(4)
B5=BA(5)
B6=8A(6)
TF2=TFIN**%*2

C-—---CCMPUTE KINETIC ENERGY AT EACH INTERVAL POINT
DC 2C00 J=1,21
T=TFIN*#(FLOAT(J)-1.)/20.
ANG2=ANG2I +T*{ ANG2F-ANG2[)/TFIN+4, *PZ*T*(TF[N—T)/TFZ
ANG2=ANG2+64 . %B5*T*(TFIN/2.—TI*(TFIN-T)/(3.%TF2%TFIN)
ANG3=ANG3I+T%( ANG3F-ANG3I)/TFIN+4 . ¥R3%T*(TFIN-T)/TF2
ANG3=ANG 3464 *RoXT*(TFIN/2.~-T)I*(TFIN-T)/(3*¥TF2%¥TFIN)
VELL1=(ANGLF-ANGLII)/TFIN+4,*¥B1*(TFIN-2.%T)/TF2
VELL=VEL1464.*%R4%(0.5%TF2-3.*TFIN*T+3.%T%%2)/
LI3*TF2%TFIN)
VEL2=(ANG2F-ANG2I)/TFIN+4. %¥B2*(TFIN-2.%T)/TF2
VEL2=VEL2+64.%BS5¥ (0.5%TF2-3.%TFIN¥*T+3 . *T%%x2)/
L{3.%TF2%TFIN)
VEL3=(ANG3F-ANG3I)/TFIN+4 . *¥B3%(TFIN~-2.*T)/TF2
VEL3=VEL3+64.%B6*(0.53TF2-3.*%TFIN*T+3.%T%x%2)/
1(3.%TF2%TFIN)

C—----SUV CF ANGLES
. FACL1=ANGZ2+ANG3
C-mm-- SINES ANC COSINES

CCS1=C0S (ANG2)
CCS2=CCS (ANG1)
CCS4=CCS(FACY)

C--——-- CONBINE TERMS

Gl=F4+F5

G6=F&*CCS2 : 7 -
C———- CCMPLTE 2%KINETIC ENFRGY

MALL=GL*COSL*%24T9*COS4**2+42 . ¥F6*CNS1*COS4
MAL2=Cl+T9+2.%G6
MAL4=2.%(T9+G6)
KE{J)=VELL#*2%MALL+VEL2#*2*MAL2+VEL % %2% TG+
LVELZ2*VEL3*MALSL

2C00 CONTINUE
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C-----CCMPUTE INTEGRAL OF KINETIC ENFRGY
KEINT=KE (1) +4.%KE(2) +KE(21)
DC 2050 L=2,10

2050 KEINT=KEINT+2.#KE(2%L-1)+4 .*KE(2%L)
KEINT=(TFIN/60.)*KEINT/2,
RETURN
END
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SUBRCUTINE KINFT (BAJKEINT)
----- FCR CCMPUTING THE INTEGRAL OF THE XINETIC ENERGY
————— WITH TRAJECTCRIES CF TYPF 2
----- (SERIES EXPANSION CF PERIUCIC FUNCTTONS)
REAL MAL1,MAL2 ,MAL4,KE(21) KEINT
DINEANSICN BA(9)
COMMCN TFINyF44F5,F64T9, ANGL1 I sANGLF,ANG21I,ANG2F,
LANG31,ANG3F
TCl=EBA(1)%2,
TC2=BEA(2)%*2.
TC3=pA(3)%2.
TC5=EA(5)%2.
TC6=BA{6)%2,
FC4=BA(4) %4,
FCS=BA(5)%4.
‘FC6=EA(6)%4,
OM=6.28319/TFIN
TCM=2. %0V
FCN=4. %0V

"C-----CCMPUTE KINETIC ENERGY AT EACH INTERPVAL PCOINT

DC 2C00 J=1,21
T=TFIN®(FLCAT(J)-1.)/20.
OMT=CM%T
TCMT=2.%CNT
FCMT=4.%CNT
SCNT=SINICMT)
CCMT=CCS(CMT)
STONT=2.#SOMT*COMT
CTCMT=1.-2.%S0MT*%2
SFCNMT=2.#STOMT*CTCMT
CFCOMT=1.-2.%STOMT %%2
PCNE=(T-SCMT/GM)/TFIN
QCNE=(L.-COMT)/TFIN .
PTWC={T-STCMT/TUM)/TFIN
QTWO=(1.-CTOMT)/TFIN
PFCU=(T-SFOMT/FOM)/TFIN
QFCU={1.-CFOMT)/TFIN

----- FIRST APPROXIMATICN T BETWEEN O ANR TFIN
ANG2=ANG2I+(ANG2F-ANG21)*PCNE
ANG3=ANG3T+(ANG3F-ANG3 ) *PONE
VELL=(ANGLF-ANGLI ) *QONE
VEL2=(ANG2F-ANG21 ) *(ONE
VEL3=(ANG3F-ANG3 1) *GONE
IF(T-TFIN/2.) 200,200,300

————— SECCAD APPROXIMATICN T BRETWEEN O AND TFIN/2

200 ANG2=ANGZ+TC2%PTWC '

ANG3=ANG3+TC3%PTWG
VEL1=VEL1+TC1*QTWC
VEL2=VEL2+TC2%OTHG
VEL3=VEL3+TC3%QTHC
IF(T=TFIN/4.) £00,6GN,7CO
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C——----SECCNC APPRCXIMATICN T BETWEEN TFIN/2 AND TFIN
300 ANG2=ANG2+T(C2-TC2%*PTWC
ANG3=ANG3+TC3-TC3I%¥PTWC
VEL1=VELL1-TCL*QTWC
VEL2=VEL2-TC2*0TWC
VEL3=VEL3~-TC3*QTWC
IF(T-.75*TFIN) T700,70QC,8C0
C---—=-THIRL APPRCXIMATICGN T BETWEEN O AND TFIN/4
600 ANG2=ANG2+F(S5*PFQOU
ANG3=ANG3+FC6*PFGU
VELL=VEL1+FC4*QF(QU
VEL2=VELZ24FC5%QF0U
VEL3=VEL3+FC6*QFQU
GC TC 16CO
C-————- THIRD APPRCXIMATICN ~ T BETWEEN TFIN/4 AND 3*%TFIN/4
700 ANG2=ANG2+TC5-FC5%PFOU
. ANG3=ANG3+TC6-FC6%PFCU
VEL1=VEL1-FC4%*CFQU
“VEL2=VEL2-FCS5*GFQOU
VEL3=VEL3-FC6*0FQU
GC TC 1000 -
C-——-- THIRC APPRCXIMATIGON T BFETWEEN 3%TFIN/4 ANC TFIN
800 ANG2=ANG2-FCS+FC5%PFUU
ANG3=ANG3-FC6+FC6*PFOU
VELL1=VEL 1+FC4*QFQOU
VEL2=VEL2+FC5%QFQU
VEL3=VEL3+FCE&X*QF QU

C---=-SUM CF ANGLES
"1C00 FAC1=ANG2+ANG3
- C====-SINES ANLC COSINES

CCS1=COS (ANG2)
CCS2=C0S (ANG3)
CCS4=CCS{FAC1)

- C--==-CCVMBINE TERMS
Gl=F4+4F5
G6=F6%C0S2
C--—=-CCVMPUTE 2*KINETIC ENERGY

MAL1=Gl%COS1*%2+T9*CNS4*%2+2 . *F6*COS1*COS4
MAL2=Gl+T942.%G6
MAL4=2.%(T9+G6) .
KE(J)=VELL*%2%MAL 1 +VEL2# 42 ¢MAL24+VEL 2% %2579+
1IVEL2*VEL 3%MALS
2C00 CCNTINUE
C--m-- CCMPLTE INTEGRAL CF KINFTIC ENFRGY
KEINT=KE (1) +4+*KE (2) +KE(21)
_ DC 2C50 L=2,10
2050 KEINT=KEINT+2.*KE(2%L-1) 44 J%KE(2%L)
KEINT=(TFIN/60.)%KEINT/2.
RETURN
END
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SUBRCUTINE TORG (RA,TCINT)
----- FCR COMPUTING THE INTEGRAL OF THE S!M OF THE
----- ABS. VALUES OF THE JGINT TORQUES
----- WITH TRAJECTCRIES OF TYPE 2
----- (SERIES EXPANSTON CF PERIOCIC FUNCTTONS)

DINEASICA BA(9),AU(21)

COMMON TFINgF&4,F5,F64T9,ANGLT 4 ANGLF,ANG2I,ANG2F,

LANG3I,ANG3F

TCl=BA(1)%2,

TC2=8A(2)%2,

TC3=gA(3)%2.

TC5=BA(5)*2.

TC6=BAl6)*2,

FC4=BA(4) %4,

FCS5=BA(5) %4,

FC6=BA(6)%4,

OM=6.28319/TFIN

TCM=2.%0W

FCM=4. %0V
————— CCMPUTE JCINT TORQUES AT EACH INTERVAL POINT

DC 2C00 J=1,21

T=TFIN*(FLCAT(J)-1.)/20.

OMT=CM*T

TCMT=2.%CMT

FCMT=4.%CNT

SCMT=SIN(CMT)

CCMT=COS (CMT)

STCMT=2.%SCMT*COMT

CTOMT=1.-2.%SOMT%%2

SFOMT=2.#STOMT*CTCOMT

CFOMT=1.-2.%STOMT %%2

PCNE=(T-SCMT/OM) /TFIN

QCNE=(1.~CCMT) /TFIN

RCNE=CM*SCMT/TFIN

PTWC=(T-STCMT/TOM)/TFIN

QTWC=(1.-CTGMT)/TFIN

RTWC=TOM*STOMT/TFIN

PFCU=(T~-SFOMT/FOM)/TFIN

QFCU=(1.~-CFOMT)/TFIN

RFCU=FOM#*SFONMT/TFIN
----- FIRST APPRCXIMATIGN T BETWEEN G ANP TFIN
| - ANG2=ANG2I+(ANG2F-ANG21)#PONE
ANG3=ANG3I+(ANG3F-ANG3)*PGNE
VELL=(ANGLF-ANGLI)*QONE
VEL2=(ANG2F-ANG2T ) #GONKE
VEL3=(ANG3F-ANG3 I ) #QNNE
ACCLl=(ANGLF-ANGLI ) *RCNE
ACC2=(ANG2F-ANG2T ) %RONF
ACC3=(ANG3F-ANG3I ) %RONE
IF(T-TFIN/2.) 200,200,360
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SECCNC APPROXIMATICN T BETWEEN C AMD TFIN/2Z
ANG2=ANG2+TC2%PTWC

ANG3=ANG 34 TC3%PTWG

VELL1=VEL1+TCL*QTWG

VEL2=VEL2+TC2*%CTHC

VEL3=VEL 3+ TC3%CTWC

ACC1l=ACCL+TC1%RTWC

ACC2=ACC2+TC2%*RTNC

ACC3=ACC3+TC3#RTHE

IF(T-TFIN/4.) 600,600,760

SECCAD APPROXIMATICN T BETWEEN TFIN/2 AND TFIN
ANG2=ANG24TC2-TC2#PTWC

ANG3=ANG3+TC3-TC3#PTWC

VELL=VEL1-TC1*QTWC

VEL2=VEL2-TC2%*QTWC

VEL3=VEL3-TC3*0TNWC

ACCLl=ACC1-TCL1%RTWC

ACC2=ACC2-TC2%QTHC

ACC3=ACC3-TC3%RIWC

LE(T-.75%TFIN) 700,70C,800 -

THIRD APPROXIMATICN T BETWEEN O ANP TFIN/4
ANG2=ANG2+EC5%*PEQU ‘
ANG3=ANG3+FC6%*PFGU

VELL=VEL1+FC4*CFOU

VEL2=VEL2+FC5*0F0U

VEL3=VEL3+FC6*QFOU

ACC1=ACC1+FC4*RFOU

ACC2=ACCZ+FC5*RFGU

ACC3=ACC34+FCO6*REOU

GC TC 10CO

THIRG APPROXIMATICN T BETWEEN TFIN/& AND 3%TFIN/4
ANG2=ANG24TC5~FC5*PFOL. o
ANG3=ANG 3+TC6~FC&*PFOU :
VELL1=VEL1-FC4%*0FOU

VEL2=VEL2-FC5%QFO0U

VEL3=VEL3-FC6*QFQU

ACC1=ACC1-FC4*RFOU

ACC2=ACC2-FC5%RFUU

ACC3=ACC3-FC6*RFUU

GC TC 10CO

THIRC APPRCXIMATICN T BETWEEN 3*TFIN/4 ANC TFIN
ANG2=ANG2-FCS5+FC5#PFOU

ANG3=ANG3-FC6+FC6*PFOU

VELL1=VEL 14FC4%QFOU

VEL2=VEL24FC5%CFQOU

VEL3=VEL3+FC6%GFQU

ACCL=ACC1+FC4*RFOU

ACC2=ACC2+FCS5*RFOU

ACC3=ACC3+FC6%*RFQU
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C-=——- SUM CF ANGLES
1C00 FAC1=ANG2+ANG?3
FAC2=2.%FAC]
FAC3=2.*%ANG2
FAC4=ANG3+FAC3
C--—-- SINES ANC COSINES
SIN2=SIN(ANG3)
CCS1=COS (ANG2)"
CCS2=C0S (ANG3)
SIN3=SIN(FAC3Y
SIN4=SIN(FACLY)
SINS=SIN(FAC2)
SIN6=SIN(FAC4)
CCS3=CCS (FAC3)
CCS4=CCS (FACK)
CCS5=CCS(FAC2)
C---—--CCVMBINE TERMS
Gl=F4+F5
G2=T9*SINS
G3=F6*SIN6.
G4=F&6*C0S1L
GS=F6%SIN2
G6=F6%C0S2
GT=2.%G4*%SING+G2
G8=G1*STIN3+G2+42.%G3
C——=——=CCMPUTE FPRCODUCTS CF VELOCITIES
Vi=.S*¥VELI%*%2
V2=VEL2%%2
V3=VEL3I%¥%2
V4=VELI*VEL2
VS=VELL#*VEL3
V6=VELZ2*VEL3
C--——- CCMPUTE C-TERMS
Cl=V4%G8+V5%(G7
C2==VE*G584 (V342 ,*V6)%(S
C3==-V1%GT1-V2*GS
C-——--CCMPUTE T-TERMS
T6=T9+G6
T5=T7942.%G6+G1
T8=T6
Tl=oS5%(GLEX(14CCS3)+TI¥(14C0OSS5) )1 +42.%n4%C0S4
C--———- CCMPUTE JCINT TORGUES
Ul=Ti*xACCl-C1l
U2=T5*ACC2+T6*ACLC3-C2
U3=T8*ACC2+T9%ALCC3-C3
C---——-CCMPUTE SUM CF ABS. VALUES OF JOINT TORQUES’
AU(J)I=ABS(UL)+ABS(U2)+ABS(U3)
2000 CCNTINUE
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----- CCMPUTE INTEGRAL CF ABS. JOINT TORQUES
TCINT=AU(1l)+4,%AU(2)+AU(21)
DC 2G50 L=2,10

2050 TOINT=TOINT+2.*AU(2*%L-1)+4.%AU(2%L)
TCINT=(TFIN/60)*TOINT
RETURN
END
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APPENDIX IIl

RESULTS OF THE SEARCHES

Optimal values of the coefficients in the

series expansion and the cost function J(a)
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' APPENDIX IV

DERIVATION OF THE LINEAR REGRESSION FORMULA

If the result of an experiment is a number of data points
( X515 ¥p ) AP ¢ Xy Yy ) and the model for the experiment is

assumed:

2 - K .
y = co + clx + c, X + .. + CeX (Iv.1)

one can write the following' N- equations for the estimates of

the y's:

0 171 271 K™1
(1Iv.2)
?N = ¢, + 1%y + C, Xy + ...+ CxXy
or in matrix form:
§=Xc (1v.3)
where 91= [ v,, ¥ v, ]
> 1’ Yorreeer Yy
_ ]
1 x1 ..... x1
x= .
K
1 Xy e xn
T
E_- [ c1) czn ey CK]
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The error between the actual y and the estimate of it

y is:
e=y- Xc (1IV.4)

. The squared error becomes:

efe= (3-%)"(y-Xe) - av.s)

The ¢ that will miniﬁizeAthe»squared error is ¢ , the least square
estimate of ¢ , and follows from the necessary condition for

a minimum squared error:

T
dee . :
aE =0 (1v.6)
- or:
- Xy + XXe = 0 | aw.n
So.that:
T -1.T

(1v.8)
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