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ABSTRACT

A general method of generating optimal trajectories between an
initial and a final position of an n degree of freedom manipulator arm
with-.nonlinear equations of motion is proposed. The method is based on
the assumption that the time history of each of the coordinates can be
expanded in a series of simple time functions. By searching over the
coefficients of the terms in the expansion, trajectories which minimize
the value of a given cost function can be obtained.

The method has been applied to a planar three degree of freedom
arm. The coordinates of the arm are the three joint angles. Two types
of trajectories have been assumed. These are such that the time history
for each joint angle is:

1. a series expansion of polynomials,

2. a series expansion of periodic functions.

Two integral type cost functions have been used:

1. the integral of the kinetic energy of the arm,

2. the integral of the magnitude of the joint torques.

The optimal values of the coefficients in the series expansion
show a distinct pattern. For a particular combination of type of
trajectory and cost function the optimal values of the coefficients have
been approximated by rather simple functions. This results in suboptimal
values of the coefficients, but they can be obtained without performing an
on-line search. The difference between the optimal and suboptimal value
of the cost function is of the order of 8%.

Thesis Supervisor: Daniel E. Whitney
Title : Associate Professor of Mechanical Engineering
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CHAPTER 1

INTRODUCTION AND PROBLEM STATEMENT

The design and control of mechanical manipulators which perform

functions similar to those of the human has been the subject of many

recent studies. A particular area of interest in these studies is the

supervisory controlled manipulator. In supervisory control the operator

specifies task subgoals to a remote computer which in turn executes

pieces of the task through direct command of the manipulator supported

by local control loops. Visual sensors enable the operator to monitor

the execution of the task. This technique is well-suited for a

manipulator in outer space .or other remote locations where the distance

between the operator and the arm causes a significant time delay in the

communication. Supervisory control can be applied equally well to

performance of complex non-routine manipulation tasks as the routine

execution of repetitive operations. Often it is required that a task

is executed optimally in the sense that a particular cost function, for

instance time or the expenditure of energy is minimized.

The dynamic equations of motion of a manipulator arm are non-

linear and would require nonlinear control techniques to minimize a

given cost function. These techniques may require a considerable amount

of computer storage and real time computation. Townsend [1] investi-

gated the possibility of controlling a nonlinear arm with feedback

control computed for the linearized arm motion equations. The non-

linear equations of the arm are linearized about a certain desired motion.



It is assumed that the deviations of the actual motion from the desired

motion are small so that linear control laws can be used to let the

arm follow the desired motion. Townsend used two types of linear

system controls: a regulator and a variable gain tracking technique. If

the desired motion must be optimal the problem of how to generate the

optimal motion strategies arises. This thesis describes a possible

solution to this problem for a particular class of tasks, namely moving

a manipulator arm from one position to another.

If the manipulator arm has n degrees of freedom the position

of the arm with n general coordinates x.,....,x is described by a

vector 21 *-n the coordinate space. The motion of the arm between an

initial position ac. = fxn» x fl and. a final position

Xe = [x,~ x ,] is described by a trajectory in the coordinate space

between x. and x,. . The motion is optimal if the value of the cost

function is minimum along the trajectory.
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CHAPTER 2

METHOD OF GENERATING OPTIMAL .TRAJECTORIES

In this chapter a method of generating the optimal trajectory

between an initial and a final position of a n degree of freedom

mechanical arm is described.

-2.1 General Approach

The method is based on the assumption that the .time history of

each of the elements of the position vector x, (k =. 1, ..., n) between

x. . and .x. , can be expanded in a series of simple time functions.

Ak + akOfO(t) + aklfl(t) + ak2f2(t)

+ ..... + a. f (t)
km m

(2.1)

where a,.,(fc = 0,...,m) are coefficients independent of time and A, is

constant. If fn(t) ..... ,f (t) are given time functions x, is only

a function of the coefficients a,, ..... ,a, . The cost function Jkl' 'km

which must be minimized along the trajectory between the initial and

final position of the arm is generally a function of x. , its derivatives

x, and x, , and the task performance time T . J takes the general

form:
T

J = / L(x, x, x)dt (2.2)
o
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Substituting the functions for x, , x, and x. in the expression for J ,

J can be written as a function of the parameters a^aCk = 1» •••»!»;

£ » 0 ...... m) and the performance time T . For a given T , J is only

a function of the a's . So:

J - J(a) (2.3)

where a is the matrix of the parameters a, »(k •= l,...,n; i = 0,...,m).

By this procedure the problem of finding the optimal trajectory

has been reduced to a parameter optimization problem, i.e. finding the

values of the parameters a.* for which the value of the cost function

J(a) is minimum.

To obtain the optimal values of the parameters, one can follow

different procedures which can be divided into two main categories:

a. analytical method,

b . numerical methods .

The two methods are discussed briefly in the following sections.

2.2 Analytical Method

If there are no constraints on the possible values of the

parameters a, « and the function J(a) has first and second partial

derivatives everywhere, necessary conditions for a minimum are:

I9ai
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where a. is the i-th element of £ with i » in + k and:

> 0 (2.5)— '

32J
which means that the matrix whose components are ~ — x — must

3ai8aj
be positive semidef inite. Equation (2.4) will give as many equations as

there are unknown parameters. The advantage of the analytical method

is that it gives all the possible solutions. However, in practice

this method can present problems if the function J(a) is complicated.

2.3 Numerical Methods

There are various numerical methods available. Bryson and Ho

[2], Bekey [3], Sage and Melsa [4] give a survey and a description of

several of these methods. In general they are based on the following

principle. Make an initial guess for the values of the parameters and

supply these values as part of the input to a computer program. The

program changes the values of the parameters according to a certain

algorithm" until it has found a set of values for the parameters which

minimizes the value of the cost function. The particular numerical

method one uses depends on the behavior of the function J(a) as a

function of its argument a_ . A disadvantage of these numerical methods

is that , if J(a) has several local minima, only one local minimum is

found, depending on the initial guess for the values of the a's. This

local minimum is not necessarily the global minimum. The numerical

methods are very suitable for the cases that J(a) is a complicated

function.
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CHAPTER 3

GENERATION OF OPTIMAL TRAJECTORIES

FOR A PARTICULAR MANIPULATOR ARM

The generation of optimal trajectories as described in Chapter

2 has been applied to a planar three degree of freedom mechanical arm.

3.1 Description of the Manipulator Arm

The arm consists of two rigid straight links with lengths JL

and £. connected to a fixed reference frame and to each other by

moveable joints. As shown in Fig. 3.1 the joint with the fixed frame

is considered as a double hinge with two degrees of freedom; the joint

between the two links is a hinge with one degree of freedom. The mass

of the arm is lumped as two point masses m1 and m« at the ends of

the links. The point masses have no rotational moment of inertia about

the axis of the associated links. This lumping of masses simplifies'

the mathematics but does not affect the generality of the results.

The following joint angles have been chosen as coordinates of

the arm (see also Fig. 3.2):

1. the angle V, between the plane through the two links

and a fixed plane through axis 1,

2. the angle 6? between link 1 and a line in the plane of

the arm perpendicular to axis 1,

3. the relative angle 0_ between link 1 and link 2.
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nxis 1

Figure 3.2. Coordinates of the-manipulator arm.

The arrows in Fig.- 3.2 indicate the positive direction of rotation.

This coordinate system is convenient both mathematically and physically

for manipulators with torque drive at the joints.

The position of the manipulator arm is described by a vector Q_

with elements 6 , 6_, and 9_ . This §_ corresponds to x^ used

in Chapter 2.

3.2 Trajectories

Trajectories can be categorized depending on the type of functions

f0(t)(i « 0,...,m) used in the expansion of the functions 6, (k = 1,2,3):
X* K.

9k = Ak + 3kOfO(t) + aklfl(t) + 3k2f2(t) akmfm(t)

(3.1)



For the purpose of this study two types of trajectories have been

assumed.

Type 1:

The function for each joint angle 0, (k = 1,2,3) between

t = 0 and t = T is a series expansion of polynomials.

f0(t) = : t (3.2a)

f (t) = ~ t(T-t) (3.2b)
T

f (t) - t( - t)(T - t) (3.2c)
T

Only the first three terms of the series have been taken into account,

so m = 2.

For t < 0 and t > T the value of 9 is equal to the function

value at t=0 and t=T respectively. Figure 3.3. shows a plot of the

functions fp(t) and their first and second derivatives.

From the end conditions at t=0 and t=T , i.e.

6k(0) = 9ki (3.3a)

ek(T) = ekf (3.3b)

follows:

and

Ak ' 9ki

= ekf - eki (3'5)
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The coefficients a,. and a, , are the ones to be chosen optimally.,. , »

The expression for each 6, becomes:

9ki + (9kf * 6kl> ? + akl

-t)

(3.6)

This rather simple function does not provide a smooth start up and slow

down of the manipulator arm because of the impulse singularities in the

second derivatives.

Type 2:

The function for each joint angle 9 (k = 1,2,3) is a series
tC

expansion of periodic functions of the following form:

fo(t) = ? (t - sin (3.7a)

| (t - ̂  sin 2wt) , 0 <_ t <_ |

2 - ! <t - 4r sin 2u)t) , | < t < T
(3.7b)

f2(t)

(t - sin

2 - (t ' sin 4u)t) • C- (3'7c)

(t ' sln • T - t - T
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where u> = 2ir/T . Also in this expansion only the first three terms

have been taken into account.

The functions f p ( t ) and their derivatives are plotted in

Fig. 3.4. From the conditions (3.3) follows:

Ak - 6k. (3.4)

and

akO = 9kf -9ki (3'5)

• ••

As 9t and 6 are zero at t=0 and t=T this type of trajectory
K. K

will give a smooth start up and slow down of the arm.

3.3 Cost Functions

Two cost functions have been used to optimize the trajectory

between the initial and final position of the arm. Both cost functions

are integral type functions.

Cost Function 1:

The integral between t=0 and t=T of the kinetic energy of the

manipulator arm:

T
J = J KE dt (3.8)

o

where KE = kinetic energy of the arm at time t .

For the particular arm studied here the expression for the

kinetic energy of the arm at time t is:

KE =

(3.9)
+ 2 m _ J L £ _ cos 0_ cos(6, + 9,)}

212 L 2 J CONT'D.
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m2)£l + m2 ̂ 2 + 2m2 COS

(3.9)

cos

This expression is derived in Appendix IA.

Cost Function 2:

The integral between t^O and t«T of the sum of the magnitude

of the joint torques:

T 3
J - ./ I |uk| dt

where u, . = external torque .applied at the

-k-th axis of rotation.

This cost function is closely related to the energy consumed,

From the dynamic equations of motion:

= u + c

follows:

where

(3.10)

u = T £ - c (3.12)

u^ = [u1 , u_, u_] , the vector representing

the external torques.

T T T '
11 12 13

T T T
21 22 23

T T T
31 32 33

, the matrix representing

the moments of inertia.
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For the arm studied here

T = T = T = T = f)
12 X13 21 *31 '

c_ = [c.., Cj, c_] , the vector representing

the torques due to the reaction forces

to centripetal and coriolis forces.

The equations for the elements of 11 become:

Ul = Tll 91 " Cl (3.13a)

U2 = T22 62 * T23 93 ~ C2 (3.13b)

U3 ' T32 6'2 +
 T33 6'3 '

 C3 (3'13c)

The expressions for the elements of TT and c_ are given in Appendix IB.

A computer program which generates the equations of. motion for a manipu-

lator arm of a given configuration was available.

In both cost functions the influence of gravity has been omitted

for two reasons. First, the position of a manipulator arm with respect

to gravity will differ from case to case. For any particular case it

will not be difficult to incorporate the influence of gravity in the

cost function. Second, if a manipulator is used in outer space the

influence of gravity is absent.

3.4 Computer Programs

Using the trajectories and cost functions described in the

previous sections three combinations of cost function and type of

trajectory are possible.



Combination I:
T

Minimizing J = / KE dt assuming trajectories of Type 1
o

(9 is a series expansion of polynomials).
K

Combination II:
T

Minimizing J = / KE dt assuming trajectories of Type 2
o

(6 is a series expansion of periodic functions).
IX

Combination III:

T 3
. Minimizing J » J £ |u. | dt. assuming trajectories of Type 2.

o k-1 k

T 3
. A combination of J = / £ |u, | dt with trajectories of Type 1

o k-1 k • ..
is not possible. The joint torques "k(k

 = 1/2,3) are functions of 9 .

For the trajectories of Type 1 8 is infinite at t=0 and t-T.

To obtain the optimal values of the parameters a.(i-1,...,6)

for a particular initial and final position of the arm a fortran coded

computer program has been written for each combination of trajectory and

cost function. The programs consist of:

1. main program,

2. numerical search routine,

3. subroutine to compute the value

of the cost function J(â ).

The three parts of the programs are described next.



1. Main Program

The main program reads the input data (lengths and masses of

the arm, initial and final position, performance time, and initial

guess for the values of the coefficients in the expansion), calls the

search routine and prints out the final (optimal) values of the

coefficients and the cost function. The main program is basically the

same for combination I, II and III.

2. Numerical Search Routine

The search routine used in this study is called pattern search.

Pattern search is a direct search routine for minimizing a function

J(a) of several variables a = [a., a., ....]. The argument a is
J. £• ~"~

systematically varied until the minimum of J(a) is obtained. The

pattern search routine determines the sequence of values for a_ ; an

independent subroutine computes the functional values of J(a).

A detailed description of the pattern search routine is given

by Hooke and Jeeves [5].

Figure 3.5 shows a flow diagram of the search procedure as given

by Hooke and Jeeves.

3. Subroutine to Compute the Value of the Cost Function

This subroutine is called by pattern search after each change in

the argument a_ . It simulates the trajectory of a given type for the

value of a_ supplied by pattern search and computes the value of J(aJ

along the trajectory. The integration is carried out with Simpson's

Rule. The number of intervals between t=0 and t*T is twenty. This
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subroutine is different for each of the combinations of trajectory and

cost function.

The programs are listed in Appendix II.
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CHAPTER 4

DESCRIPTION AND RESULTS OF THE PROGRAM RUNS

This chapter gives a description of the program runs made,

possible difficulties in the use of the search routine and an interpreta-

tion of the results of the searches. All runs were made for an arm with

i = £ = 0.3 m and m.^ = m^ = 1 kg.

4.1 Initial and Final Positions

u-i
CO

CD

O

fl
CD

W

O

£. JO t

1.57 <

0.78 <

t *.

> /*

' n

> 1

> s

> t\

> f\

\ 1

' T

i -T

> /
'

% (^

-1.57 -0.78

ANGLE 9,

0.0

(ANGLE Q,

0.78

Figure 4.1. Combinations of initial (final) angles.



- 28 -

The initial and final positions of the arm were chosen in a

certain region in 6-space at discrete points. The dots in Fig. 4.1

indicate the values of 62 and 6_. or 8«f and 6_ . For fixed

values of 6^ and 6. - this will give 256 possible combinations of

initial and final position for each of the combinations I, II and III.

To limit the number of runs a choice was made out of the 256 possible

combinations .

For most runs 0, . « -0.78 and 0,f =0.78 (angles in radians)

were chosen. For combination III a number of runs were made with different

values for 6. . and 0., while keeping 02., 02f, 0-. and 6- constant.

4.2 Results of the Searches

The results of the individual searches for 8... «= -0.78 and

0-- =0.78 are given in Appendices III A, B and C. The following

observations can be made concerning the results for combinations I,

II and III.

I. For all combinations of 6. and 6,. the values of— i —i

a!2* a22 and a32 ar" zero* When both 92i = ®2f

and 6_. » 0,f the value of a... is zero too.

II. When 021 • 02£ and 6_. = 0__ the optimal values of

a,,, a^i' a22 and a<)2 are zero* ^e optimal value of

a. 2 lies between 0.11 and 0.18.

III. As for I the optimal values of a.2, a22 and a_2 are

zero or very small in all cases, and a., is zero when

both 021 » 02f and 931 - 03f .



For the special cases that both 6_ = 6 and 9 - 0 the

optimal values of the parameters a-., and a_- for the three combinations

of trajectory and cost function are plotted as functions of 02. = 0_, = 0.

and 63i = 83f - 63 in Figs. 4.2, 4.3 and 4.4.

The results of the searches for combination III with varying

6. and 0̂  are listed in Appendix III D. The optimal values of

a21' a22 an(* a32 are zero *n *H cases. The optimal values of a. - ,

a21' a31 anc* •*(§) are Pl°ttet* as function of 0,, - 0.. in Figs. 4.5,

4.6 and 4.7.

Each search gives only a local optimum. Therefore one can not

be sure that the optimum found is a global optimum. However by starting

the search in a proper point based on physical considerations one can

increase the probability that the global optimum will be found. An

example of choosing a wrong starting point is given next.

For combination III with 0, = [-0.78, -0.78, 1.57] and

6, = [0.78, -0.78, 1.57] the initial values of the a's were chosen all

equal to zero. This resulted in a set of optimal values for the a's

of [0.0, 0.0, 0.27, 0.0, 0.0, 0.0] and a value of the cost function J

of 0.935. Starting the search at [0.0, -0.168, 0.492, 0.0, 0.0, 0.0]

resulted in a set of optimal values for the a's of [0.0, -0.219, -0.626,

0.0, 0.0, 0.0] and a value of the cost function J of 0.630 which is

much less than in the other case. The new starting point was the result

of an interpolation between the results for the other combinations of

0_ and 0_ (see Fig. 4.4). This example indicates that the choice of
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the starting point for the search can be very important. Therefore,

the starting points have been chosen carefully in accordance with the

physics of the problem.

4.3 Some Examples of Optimal Trajectories

In Fig. 4.8 and 4.9 two examples of how the functions for 8-,

9_ and 6 will look like for different combinations of trajectory

type and cost functions, using the optimal values of the coefficients

in the series expansion. The Roman numbers in the figures indicate the

combination of trajectory and cost function as mentioned in Section 3.4.
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CHAPTER 5

GENERALIZATION OF THE RESULTS

This chapter discusses a method of generalizing the results of

the individual searches for specific combinations of trajectory and

cost function. This method will lead to suboptiraal values of the

coefficients a,p . However, these values can be obtained by on-line

computation in a short time. It .is not necessary anymore to perform

an on-line search..

The method is worked out for combination III where
T 3

J = / I lui,l dt and tne trajectories are of Type 2.
, - K

o k31!

The values of 9- and 9 are - 0.78 and 0.78 respectively.

For combination III the optimal values of A, «» a_? and a,_

are zero or at least very small. Therefore the suboptimal values of

these parameters have been chosen zero for all combinations of 9_. and

9,. . To obtain general expressions for determining the values of

a,.. , a_n and a01 four categories of combinations of 9. and 9- have
11 2.1 Jl —1 —t

been considered separately. The assumptions made and the results

obtained for each of the categories are described in the following

sections.

5.1 9U = -0.78, 6lf = 0.78, 9^ = 92f and 93i = 63£ .

For this case the optimal values of a .. are zero. The optimal

values of a.̂ -. and a., are plotted in Fig. 4.4.
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It is assumed that for each value of 8 the values of a...

and a_ as functions of 8_ can be approximated by parabolic

functions of the form:

a21 = P(62 ~ a)2 + b (5>

a31 = q(92 ~ c) + d (5>2)

Using a linear regression technique the best fitting parabolas through

the four values of a,-, and a,, for a constant 8_ were determined.

The formula used for this purpose is derived in Appendix IV. This

gives four expressions for a_. of the form (5.1) and four for a_1

of the form (5.2). Consideration of the values of p, a, b, q, c and d as

functions of 8_ indicated that a good approximation for a,b,q,c

and d as a function of 8. is a straight line and for p as a function

of 8_ is a parabola. Fitting the curves through the points the

following expressions were obtained:

p = 0.4936 - 0.3079 83 + 0.0504 83 (5.3)

a - -0.3929 - 0.2002 83 (5.4)

b - -0.6628 + 0.2619 83 (5.5)

q = -0.9985 + 0.3903 83 (5.6)

c = -0.3370 - 0.1106 83 (5.7)

d = 1.5442 - 0.5772 83 (5.8)
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Substituting (5.3) through (5.8) in Eqs. (5.1) and (5.2) a2 and

a. can be written as functions of 9 = 92. = 9 and 9 = 9- =» 9 ,

In Figure 5.1 the functions for a_. and a,. have been plotted

for four values of 9_ . For comparison the optimal values of a?1

and a_1 obtained from the searches have been plotted too.

The value of the cost function J(a) has been computed for

the suboptimal values of the parameters and for all parameters equal to

zero. This showed that on the average the difference between the sub-

optimal value and the optimal value of J(a) is 7.4% of the optimal

value. The difference between the value of J(a_) for all a's equal to

zero.and the optimal value is 27.5% of the optimal value.

5.2 QI± = - 0.78, 9lf = 0.78, 92± » 92f and 93i * 93f

For this category the expressions for a21 and a,, mentioned

in 5.1 have been used to determine the suboptimal values of a... and

a- as follows. Setting 9 = 9 = 9,, and 9. = 9. in Eqs. (5.1)
.jj. ' £̂ 1̂ i.1 .j J X

through (5.8) gives certain values for a_. and a,. , say a' and

a' . Setting 92 = 92 = 9 and 93 = 93f the values of a2- and

a_1 are a" and a,, . Using the following expressions a reasonable

fit to the data for 9-. = 9_, and 9_. J 9,, was obtained.

an = min{a21, a^} (5.9)

, a'̂ } -f r|a31 - â | (5.10)

where

r = 1.3(92 + 0.4)
4 + 0.6 (5.11)



For the suboptimal value of parameter a1 the expression

-0.20 sgn{2 cos 92i + cos(92i +

(5.12)

- 2 cos 92f - cos(92f + 93f)>

gave satisfactory results.

5.3 9U = -0.78, 9lf = 0.78, 92± t 92f and 93i = 93f .

For this .category the suboptimal values for a~. and a_, were

obtained from (again using Eqs. (5.1) through (5.8)):

a-, = min{all a., for 9_ = 9-, = 9^^

(5.13)

(5.14)

and 92 between 9 and 9 }

maxCall .^ for 93 = 93± = 83f

and 92 between 9_ and 9_f}

The value for a..- followed from (5.12).

5.4 6U = -0.78, 9lf - 0.78, 921 ̂  62f and

Satisfactory values for the cost function J(â ) were obtained

by choosing for the values of a_. and a_j (using (5.1) through

(5.8)):

a?1 = rainfall a_. for

9_ between 9 and 6_, and
L ^ 2t (5.15)

9_ between 9 and 9_f }



a,. = maxiall a,.. for

0_, between 6_. and 6_ and

8 between 8 and 6) (5-16)

The value of a. . was chosen from E'q. (5.12).

For the categories described in Sections 5.2, 5.3 and 5.4 the

values of the cost function J(fi) for all a's equal to zero are on

the average 70%: bigger than the optimal values. For the suboptimal

values of the ars the difference between the values of JCfO and the

optimal values was on the average 10%. This justifies the use of

suboptimal values for the parameters a. - very well.

5.5 Flow Diagram for Determining the Suboptimal Values of the

Coefficients in the Series Expansion

The results of the previous sections can be summarized in a

flow diagrm as presented in Fig. 5.2. The flow diagram is for the

cases that ^\±'
ta -0.78, 6 = 0.78, 6 and &2 between -1.57 and

0.78, and 0 and 0~f between 2.36 and 0 . The flow diagram is

easy to transform into a computer program.

The generalization as described in this chapter can also be

done for each of the combinations I and II. The main problem will be

finding a function which fits the data for the cases that 0_. = 0»f

and 0 - 0 .
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_ 47 -

CHAPTER 6

CONCLUSIONS

The proposed method of generating optimal trajectories worked

successfully for a three degree of freedom mechanical arm. However,

the method is general and it can be expected that it is also applicable

to more complicated arm models.

The consistency of the results with the physical understanding

of the problem indicates that the pattern search routine was suitable

for this problem.

The results of the searches indicate that only the first two

terms of the series expansion are important, except for joint angle 6-

in combination II where the third term has a significant influence on

the shape of the function for , 6, •
T

The optimal value of the cost function J = / KE dt for
o

combination I is lower than for combination II. From this it can be

concluded that in order to minimize the integral of the kinetic energy

a series expansion of polynomials is more suitable than a series

expansion of periodic functions. To minimize the integral of the

torque magnitude only the series expansion of periodic functions is

applicable.

In the special cases that 6,,. = 92f and 6_. = 8-,. the optimal

values of the parameters a-, and a_ showed a certain pattern,

especially for combination HI. For this combination the values of
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a«- and a,., could be summarized by paraboloid functions with

6~, «= 62f = 9 - and 6_. = 0_, = 6~ as independent variables (see

Fig. 5.1). The values of a-, and a... obtained in this way are

suboptimal. The difference between the suboptimal and the optimal value

of the cost function is on the average 7.4%. From the suboptimal

values of a_. and a_. in the case that 6. = Q. and 6_. » 6_,

the suboptimal values of a?1 and a_. in the other cases of

combination III could be derived quite easily. The suboptimal value of

the cost function in these cases is on the average 10% bigger than the

optimal value, which is satisfactory.

Using the algorithm for the suboptimal values the coefficients

in the series expansion can be obtained on-line without search. This

saves a significant amount of real time computation.
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APPENDIX I

A. Derivation of the expression for the kinetic energy of the arm.

For a system of two point masses, what the arm essentially

is, the kinetic energy is:

KE - | mlV
2 + | m2v

2 (I.I)

where v1 and v~ are the velocities of the masses m1 and nu-

Furthermore ( see figure I.I ):

2 2 2^ I ^" / T " 1 \v, = v, _ + v,Q (1.2)1 19X 192

where v1Q = component of v, due to rotation about axis 1,
i

VIQ = component of v, due to rotation about axis 2.

2 2 2 2
V9 = V90 + V90 + V90 + 2V90 V9ft COSOt C1-^)z /o^ /y^ "^ 2 3

where VOQ = component of v9 due to rotation about axis 1,
291 l

vot. = component of v» due to rotation about axis 2,
™2

v9Q = component of v_ due to rotation about axis 3,

a = angle between v_fl and v_fl .

The expressions for the components of v1 and v9 are:

V10 = 2-1Q1cos92 (1.4)

4- «,_cos(e0+e_)}e1 (i.s)Z z J 1

V29 = *1 "*' £2 + 2£
1

i2cos93 62
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•

V29 = *293

Substituting (1.2) through (1.8) in (I.I) gives the

following expression for the kinetic energy:

K E - m i t 2

7 ">

+ 2/8.* + 12 + 2 i £ c o s 6 9 ) l e c o s a ] (1.9).

Substituting:

£2 +«. cos9
cosa - — (I. 10)

+ 9? + ZSL

in Eqn. (1.9) and changing the order of the terms results in:

KE

+ 2 m £ £ c o s 9 } ] (3.9)
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B. Expressions for the elements of T and c in Eqn. (3.13)

-I- |ro2H2cos2(02+03) + 2m2£1£2cos02cos(02+03) (1. 11)

C2

"2

C
3

(1.12)

T23 = ^^ + m
2

£i£2cos63 (1-13)

T 3 2 = T 2 3 (1.14)

T33

Cl "

(1.16)

(1.17)

} (1.18)
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APPENDIX II

FORTRAN CODED COMPUTER PROGRAMS
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C ----- PAIN PROGRAM

c ----- pcR CCMPLTING THE OPTIMAL VALUES OF THE COEFFICIENTS
C ----- IN THE SERIES EXPANSION
C ----- TCRC IS THE SUBROUTINE FOR COMPUTING THE COST FUNCTION

C ----- TCINT IS THE VALUE OF THF COST FUNCTION

REAL Ll,L2,Ml,M2
EXTERNAL TOR.Q
D l P E f v S I O P v B A { 9 )
CCPPCN TFIN,F4,F«i,F6,T9, ANG1 I , ANG IF. ANG2 I , ANG2F,

1ANG3I.AMG3F
C ------ READ IN»bT D A T «

READ(5,2C)TFrN,L l ,L2,PUM2
2G - FCRI*AT(F15

REAC(5- ,37»M
37 F C R P A T U U

READ t5 ,?>J f
(121

F G R K A T ( V IOPTIMAL PARAMETERS FC<? WIN INT TORQUE' )
WRIT§ (6 ,25 )
F C R P A T f / , * TFIM.LI»L?»KI.K2'»/)
HRlTE(6»261TFINt

tLI,L2,Ml,«2

38 F C R M A T t / , * DELW= ',F15.6,« DLI^ If*-» , E15.6,/ )

F3=L1*L2

C ----- READ INITIAL AND F J N « L POST I ON OF T«E ARM
h RE AD ( 5 , I C I ANG1 T, ANG2 T , ANG3 I , AN'G IF, A^!G2F, ANG3F

1C FCRVAT(EI5.6>
C ------ READ INITIAL GUESS FOR THE PARAMETERS

Sr lC) ( 8 A ( I), -1=1,61

35 FCRKATt/,' *** INITIAL AND FINAL ANGLES1,/)
WR I T c C6 , 36 ) ANGt I » ANG2 I , ANG3I t ANG IF, "\NG2F, ANG3F

36 FCRPAT( 3El5.6/3E15.6,/t
OEL=EELriV
CALL P A T S H ( 8A ,TG I Nl , N , DEL ,DLN IN, TORG J
W R I T E ( 6 , 4 0 )

A C F C R V A T t / , 1 F INAL RESULTS*, / )
HRI.TEt6.r50) { BA ( I ) ,1=1,6)

5C FCRI«MT(6tl5.6)
WRITt(6,60) TOINT

6£ FCRC«AT(F15.6)



- 55 -

7C

IF ( I S C S E T . E Q . M ) GO TO 70
N C S E T = N
GC TC 6
CCMIMJE
END
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SUBROUTINE PATSH(PS IrSSI,N,DEL,CLMIN,MR[T4)
C PSI IS THE CURRENT BASEPT
C THT IS THE PREVIOUS BASEPT
C PHI IS THE TRIAL PT
C S IS THE OBJECTIVE FCT
C

DIMENSION PSK9), PHH9), THT<9), E"S(9)
WRITL:(6,603)

6C3 FCRMATC CURRENT POINT, OBJ FCT AND STEPSIZE1)
ALFA=1.02

C EVALUATE AT LIMIT BASEPT
1C CALL *RIT4(PSI,SSI)

C START AT BASEPT
ICO S=SSI

DC 1C1 r = l,N
1C1 PHI(I)=PSI(I)

ICALL=1
WRITE(6,599)

599 FCRMAT( « ***• )
WRITE(6,600) (PSI(J),J=1,N)
WRITE(6,601) S, DEL

C f^AKfr EXPLORATORY MOVES
GO TO 150

C IS PREStNT VALUE ) BASEPT VALUE
160 IF(S.LT.SSI) GO TO 200

GC TC 300
C SET NEW HASEPT
2CO SSI=S

DC 2C1 I=1,N
THT(I|. = PSI(II
PSK I) = PHIU)

C ^AKE PATTERN MOVE
2C1 PHI(1)=PHI(I)+ALFA*(PHI(I)-THT(I))

CALL PRIT4(PHIfSPI )
S = SPI
WRITE(6,599)
WRITt(6,599)
WRITE(6,600) ( PHI(l), 1=1,N)

6CO PCRKAT(8E15.6)
WRITt(6,601) S°I, DEL

601 FORPATI2E15.6)
ICALL=2

C FAKE EXPL KGVES
GO TC 150

C IS PRESENT VALUE ) BASEPT VALUE
260 IF(S.LT.SSI) GO TC 20C

GC TC IOC
300 IF(DEL.LT. DLMIN) RETURN

DEL=CEL/2.
GC TC 100
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C NAK6 EXPL PCVES
150 DC 18C K=1,N

EPS(K)=.C5*PHI(K)
IF(EPSU) .EQ. 0.) EPS(K)=.05
PHKK)=PHI(K)+FPS(K)*CEL
CALL NRITMPHI »SPI )

155 IF(SPI.LT.S) GO TC 179
PHI (K)=PHI(K)-?.*EPS(K)*DEL
CALL HRI'T4(PH.I,SPI)

165 IF(SPI.LT.S) OR TC 179
PHI (K)=PHI(K) + EPS(K)*CEL
GC TC 180

179 S=SPI
180 CONTINUE

-GC TC (160,260),ICALL
END
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SUBRCUTINE KNET( BA, KE INT )
C ------ FCR COMPUTING THE INTEGRAL OF THE KTNETIC ENERGY
C ----- WITH TRAJECTORIES OF TYPE I
C ----- (SERIES EXPANSION OF POLYNOMIALS)

REAL PALl,MAL2,MAL4,KE(21 ) ,KFINT
DIMENSION BA(9)
COKNCN TFIN,F4»F5,F6, T9, ANG1 I , ANG IF, ANG2 I , ANG2F,
IANG3I, ANG3F
81=6A(1)
B2=BA(2J
B3=BA(3)
B4=BA(4)
B5=BA(5)
B6=BA(6)
TF2=TFIN**2

C ----- COMPUTE K INETIC ENERGY AT EACH INTERVAL POINT
DC 2COO J=lt21
T=TFIN* ( FLOAT( J)-I. )/20.
ANG2 = ANG2H-T*( &NG2F-ANG2 I ) /T F IN+4.*R2*T* < TF IN-T ) /TF2

ANG3=ANG3I+T*( ANG 3F-ANG3 I) /T F IN+A .*R3*T* « TF IN-T ) /TF2
ANG3-ANG3+64.*P6*T*(TFIN/2.-T)*(TFIM-T)/(3.*TF2*TFIN)
VELI=(ANGIF-ANG1I ) /TF IN+4. *B1* ( TF IN- 2 .*T ) /TF2
VELL=VEL1+6A.*R4*(0.5*TF2-3.*TFIN*T*3.*T**2) /
1(3.*TF2*TFIN)
VEL2=(ANG2F-AN^2I )/TF IN+A. *B2* ( TF IN-2.*T ) /TF 2
VEL2=VEL2+64.*R5*(0.5*TF2-3.*TFIN*T+3.*T**2)/
l(3.*TF2*TFIN)
VEL3=(ANG3F-ANG3I ) /TF IN+4. *B3* ( TFIN-2.*T ) /TF2
VEL3=VEL3*64.*B6*(0.5*TF2-3.*TFIN*T+3.*T**2)/
1(3.*TF2*TFIN)

C ----- SUN CF ANGLES
FAC1-ANG2+ANG3

C ----- SINES ANC COSINES
CCSi=COS(ANG2)
CCS2=CCS(A\G3)
CCS4=COS(FACl)

C ----- COMBINE TERMS

G6=F6*COS2
C O C P L T E 2*KINETIC ENFRGY
MALl=Gl*CCSl**?+T9*COS4**2+2.*F6*CnSl*COS4

M A L A = 2 . * ( T 9 + G 6 )
KE(J )=VEL1* *2 *MAL1*VFL2* *2 *MAL2+VEL^* *2 *T9+

1VEL2*VEL3*NAL^
2COO CONTINUE
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C CCKPITE INTEGRAL OF KINETIC ENFRGY
KEII\T = KE (1)+4.*KE(2)+KE(21 )
DC 2050 L=2,10

2050 KEINr=KEINT+2.*KE(2*L-l)+4.*KE(2*L
KEIM=(TFTN/60.)*K£iNT/2.
RETUKN'
END •
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SUBROUTINE KINFT (BA,KEINT)
C ----- FCR COMPUTING THE INTEGRAL OF THE KINETIC ENERGY
C ----- WITH TRAJECTORIES CF TYPE 2
C ----- (SERIES EXPANSION CF PERIODIC FUNCTIONS)

REAL fALl,MAL2,tfAL4,KE(21),KElNT
DIMENSION BA(9)
CCWCN TFIN,F4,F5,F6,T9,ANG1I,ANG1F,ANG2I, ANG2F,
1ANG3I,ANG3F
TCl=EA(l)*2.
TC2=GA<2)*2.
TC3=eA(3)*2.
TC5=EA<5)*2.
TC6=EA(6)*2.

FC5=EA(5)*4.
FC6=eA(6)*A.
01^ = 6. 28319/TFIN

C ----- CCPPLTE KINETIC ENERGY AT EACH INTERVAL POINT
DC 2COO J=l,2l
T=TFIN*(FIOAT( J)-l. )/20.
Of T = CI»'*T
TCKT=2.*CVT

SCNT=SIN(CMT)

STOKT=2.*SOMT*COMT
CTGNT=1.-2.*SQWT**2

CFCMT=1.-2.*STOMT**2
PCNE=(T-SOMT/0")/TFIN
QCNE=(L.-COMT) /TFIN .
PTkO(T-STCMT/TOM)/TFIN
QTWO={1.-CTOMT)/TFIN
PFCU=(T-SFOMT/FOM)/TFIN
QFCU=(1.-CFOMT )/TFIN
FIRST APPROXIMATION T BETWEEN 0 AND TF1N
ANG2=ANG2IV( ANG2F-ANG2I )*PCNE
ANG3 = ANG3I + ( ANH3F-ANG3 I ) *PONE
VELl=(ANGlF-ANniI )*QGKE
VEL2=(ANG2F-ANG2I )*QONE
VEL3=(ANG3F-ANG3I )*GONE
IFIT-TFIN/2. ) 200,200,300
SECOND APPRCXI VATION T BETWEEN 0 AMD TFIN/2

200 ANG2=ANG2+TC2*PTWG
ANG3=ANG3+TC3*PTWO
VEL1=VEL1+TC1*OTWC

VEL3=VEL3+TC3*QTWG
IF(T-TFINM.) 600,600,700
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C ----- SECOND AP P R O X I M A T I O N T BETWEEN TFIM/2 AND TFIN
300 ANG2=ANG2+TC2-TC2*PTWC

ANG3=ANG3+TC3-TC3*PTWO
VEL1=VEL 1-TC1*QTWC
VEL2=VEL2-TC2*CTWC
VEL3=VEL3-TC3*QTWG
IF(T-.75*TFIN) 700f70Ct8CO

C ----- THIRD APPROXIMATION T BETWEEN 0 AND TFIN/4
600 ANG2=ANG2+FC5*PFOU

ANG3=ANG3+FC6*PFOU
VEL1 = VELH-FC4*QFUU
VEL2=VEL2+FC5*CFOU
VEL3=VEL3+FC6*QFCU
GO TC 10CO

C ----- THIRD A P P R O X I M A T I O N T BETWEEN TFINM AND 3*TF IN /A
700 ANG2=ANG2+TC5-FC5*PFOU

ANG3=ANG3+TC6-PC6*PFOU
VEL l=VEL l -FCA*CFOU
VEL2=VEL2-FC5*GFOU
VEL3=VEL3-FC6*OFOU
GC TC 1000

C ----- THIRD APPROXIMATION T BETWEEN 3*TFTN/4 ANC TFIN
800 ANG2=ANG2-FC5+FO^*PFQU

ANG3=ANG3-FC6+FC6*PFOU
VEL1=VEL1*FC4*CFOU
VEL2=VfcL2+FC5*QFOU
VEL3 = VEL3-»-FC6*GFOU

C ---- :-SUM OF ANGLES
ICOO FAC1=ANG2+ANG3

C --- --SINES ANC COSINtS
COS1=COS (ANG2)
CCS2=CCS(ANG3)
CCS4=CCS(FAC1)

C — : --- :CC*BI.NE TERMS

G6=F6*COS2
COMPUTE 2*KINETIC ENERGY

MAL2=G1+T9+2. *G6
M A L 4 = 2 . * ( T 9 - « - G 6 )
KE( J)=VEL1**2*MAL1+VEL2**2*MAL?+VEL^**2*T94
1VEL2*VEL3*MAL4

2COO CONTINUE
----- OCMPLTE INTEGRAL OF KINFTIC ENFRGY

KEINT=KE (1)+4.*KE(2)+KE(21 )
DC 2C50 L=2,10

2C50 KEINT = KEINT-i-2.*KE(2*L-l)+4.*Kfc{2*L )
KEINT=(TFIN/60. )*K£INf/2.
RETURN
END
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SUBROUTINE TORC (BA.TCINT)
C ----- FCR COMPUTING THE INTEGRAL OF THE SUM OF THE
C ----- ABS. VALUES OF THE JOINT TORQUES
C ----- WITH TRAJECTORIES OF TYPE 2
C ----- (SERIES EXPANSION OH PERIODIC FUNCTIONS)

DIMENSION BA(9),AU(21)
COMMCN TFIN,F4,F5,F6,T9tANGlI,ANGlF,ANG2I,ANG2F,
1ANG3I.ANG3F
TC1=BA<1 )*2.
TC2=BA(2)*2.
TC3=6A(3)*2.
TC5=EA(5)*2.
TC6=EA(6)*2.

FC5=EA<5)*4.
FC6=BA(6)*A.
OM=6.28319/TFIN

CCMPLTE JOINT TORQUES AT EACH INTERVAL POINT
DC 2COO J=l,21
T=TFIN*(FLCAT( J )-!.)/ 20.
OMT=CM*T
TCMT=2.*CMT

S O N T = S I N ( C M T )
C O M T = C O S ( C M T )
STCMT=2 . *SCMT*COMT
CTONT=1.-2.*SOMT**2

CFOMT=1. -2 . *STOMT**2

QCNE=(1.-CCN!T)/TFIN
RCNE=CM*SCMT/TFIN
PTWC=(T-STGMT/TOM)/TFIN

P F C U = ( T - S F O M T / F O M ) / T F I N
O F C U = ( l . - C F O V T ) / T F I N
R F C U = F O V * S F O M T / T F I N
F I R S T A P P R O X I M A T I O N T B E T W E c ? ^ G ANP TFIN
ANG2 = ANG2I-K AN^2F-AMG2I )*PONE
A N G 3 = A N G 3 I + ( A N G 3 F - A N G 3 I )*PONE
VEL1=(ANG1F-ANG1I ) *QONE
V E L 2 = ( A N G 2 F - A N G 2 I ) *QONE
V E L 3 = ( A N G 3 F - A N G 3 I )*QPNE
ACC1=(ANGIF-ANGH ) *RONE
ACC2MANG2F-ANG2I

IF IT-TFIN/2. ) 200,200,300
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c ----- SECOND APPROXIMATION T BETWEEN C AMD TFIN/2
200 ANG2=ANG2+TC2*°rWG

ANG3=ANG3+TC3*PTWC
VEL1=VEL1+TC1*QTWO
VEL2=VEL2+TC2*CTWC
VEL3=VEL3+TC3*CTWC
ACC1=ACC1+TC1*RTWC
ACC2-ACC2+TC2*RTWC
ACC3=ACC3+TC3*RTWC
IFtT-TFINM.) 600,600,700

C ----- SECOND APPROXIMATION T BETWEEN TFIN/2 AND TFIN
300 ANG2=ANG2+TC2-TC2*PTWC

ANG3=ANG3+TC3-TC3*PTWC
VELl=VELl-TCl*CTwO
VEL2=VEL2-TC2*QTWC
VEL3=VEL3-TC3*OIWO
ACC1=ACC1-TC1*RTWO
ACC2=ACC2-TC2*RTWC
ACC3=ACC3-TC3*RTWC
I.F(T-.75*TFIN) 700,700,800

C ----- THIRD APPROXIMATION T BETWEEN 0 AN^ TFIN/4
600 ANG2=ANG2+FC5*PFOU

ANG3=ANG3+FC6*PFOU
VELl=V.EH*FC4*CFOU
VEL2=VEL2+FC5*OFOU
VEL3=VEL3+FC6*QFOU

ACC2=ACC2+FC5*RFOU

GC TC 1000
THIRD A P P R O X I M A T I O N T B E T W E E N TF IN /A AND 3*TFINM

700 ANG2=ANG2+TC5-FC5*PFOU
ANG3=ANG3+TC6-FC6*PFOU
VEL1=VEL1-FC4*CFOU
VEL2=VEL2-FC5*OFOU
VEL3=VEL3-FC6*QFOU
ACC1=ACC1-FC4*RFOU
ACC2=ACC2-FC5*RFOU
ACC3=ACC3-FC6*RFOU
GC TC 10CO
THIRD APPROXIMATION T BETWEEN 3*TFTNM ANC TFIN

800 ANG2 = ANG2-FC5-»-FC'>*PFOU
ANG3=ANG3-FC6+FC6*PFCU
VEL1=VEL1+F04*QFOU
VEL2=VEL2+FC5*CFOU
VEL3=VEL3+FC6*QFOU
ACCl = ACCUFCA*RFOU
ACC2=ACC2+FC5*RFGU
ACC3=ACC3+FC6*PFOU
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C ----- SUP CF A N G L E S
1COO F A C 1 = A N G 2 + A N G 3

F A C 2 = 2 . * F A C 1
F A C 3 ^ 2 . * A N G 2
F A C 4 = A N G 3 + F A C 3

C ----- S INES ANC COSINES
S I N 2 = S I N ( A N G 3 )
C C S 1 = C O S ( A N G 2 )
C C 5 2 = C C S ( A N G 3 )
SIN3 = S I<NMFAC3)

S T N 5 = S I N ( F A C 2 )
S I M 6 = S I N < F A C A )
CCS3=CCS ( F A C 3 )

CCS5=CCS(FAC2)
COP BINE TFRMS
G1=F4+F5
G2=T9*SIN5
G3 = F6*SIi\6
G4=F6*COSl
G5=F6*SIN2
G6=F6*COS2

GCMPUTE FRCDUCTS CF V E L O C I T I E S
Vl=.5*VELI**2
V?=VtL2**2
V3=VEL3**2
VA=VEL1*VEL2
V5=VEL1*VEL3
V6=VEL2*VEL3
CGfPUTE C-TERMS

C2 = -V1*G8-KV3>.?.*V6)*G5
C3=-V1*G7-V2*G5
COMPUTE T-TERM*;
T6=T9>G6

*G'6*G1

T1 = .5*(G1*CL+CGS3)*T9*'(1+COS5) ) + 2
C ----- CCKPLTE JCINT TORQUES

UI=Tl*ACCl-Cl
U2-T5*ACC2+T6*ACC3-C2
U3-T8*ACC2-»-Tq*ACC3-C3

C ------ CCNPUTE SUV CF ABS. VALUES OF JOINT TORQUES
AU( J)=A8S(U1 )+ABS(U2)+A6S(U3)

2 GOO CCNTINUE
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1 COMPUTE INTEGRAL OF A6S. JOINT TORQUES
TCINT=AU(1)+4.*AU(2)+AU{21)
DO 2C50 L=2,10

2050 TCINT=TOINT+2.*AU(2*L-1)+4.*AU(2*L)
TCINT=(TFIN/60.)*TO INT
RETURN
END
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APPENDIX III

RESULTS OF THE SEARCHES

Optimal values of the coefficients in the

series expansion and the cost function J(a)
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Ô
CO
•
o

ôo
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ĈM
m•
o

o\
CM
CO
•
o
1

CM
r*»
t-H

di

vO
CO
•

CM

r.

"̂
1-1

OO
f*s»
•
o
i

00
f~-

o

00
r*-
0

1

r̂H
a\
o

3
o
•
o

cr>
o
o
•
o
1

o

om
*

o

o
CM
m
•

o
i

m
o
CM

O

vO
CO

<
CM

OO

ô
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ĈO
-*
rH

O

O

\o
0

o

rH
m
CM
•

rH

f̂̂
f̂ .

•

O
1

o

00

o

00

o

oo

o

co

o1

l̂O
*

rH

m̂
rH
1

ON
CO
rH

rH

o

o

0

co
-a-
•

rH

ps-
m

• in
o

o

00

o

co

o

oo

o

oo

o
i

o
CM

rH

O
CM

rH
1

m
SO
CO

O

o

o

0

CO
CM
o
•

rH

CM
CO

•

o
1

o

oo

o

oo

o

CO

o
1

oo

o
1

00

,

o

00

f-•
o1

ON
CM
m
o

o

0

o

m
sO
r-H
•
O

rH
ON
O

0
1

O

oo

o

00

o

oo

0
1

00

o
1

o
*

o

o
-a-
o
i

o

o

o

o

0

o

o

OO

o

00

0

CO

o
1

00

o
1

o

0

rH
-a-
o
rH

o

o

ON

o
* •

o1

,3.
o
ON
*

o

o
ON
CM
*

o1

o

in

in

O

f-*.
i/"̂
*

rH

în
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ĈO
o
01

o

in

r-m

o

o
-a-
o

o
*̂•

o1

o

o

o

o

0

o

o

m

C-.
in

o

o

o

•H
m
o
rH

O

0

-fro
o
»

o

0o
CO
. . •

rH

sj-
O

•

0

o

*̂•

o1

oo

o

oo

o

in

i

00

o
1

m̂•
rH

m̂•
rH
1

CO
CO
ON

O

o

o

o
rH
o
•

O

CO
sf
rH
•

rH

OO

«n•
o
i

r-
r-.
CO•
O

00

o

oo

o

m

i

CO

o
1

o
CM

rH

0
CM
*

rH
1

CO

03

O

O

O

O

ĈM
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APPENDIX IV

DERIVATION OF THE LINEAR REGRESSION FORMULA

If the result of an experiment is a number of data points

( x1 , y. ),...,( x.., yN ) and the model for the experiment is

assumed:

y = c_ + c-x + c_x + .... + ex

one can write the following N equations for the estimates of

the y's:

c2 + + c xK«4 i^ • • • • ' V-__A —

(IV.1)

= C

or in matrix form:

where

J. 1 • • • • • "
K

(IV.2)

(IV.3)

K

i » • t j.
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The error between the actual y_ and the estimate of it

i is:

£ = £ - Xc (IV.4)

The squared error becomes:

6*6 = ( z - Xc )
T( i - Xc ) (IV.5)

The c^ that will minimize the squared error is c^ , the least square

estimate of £ , and follows from the necessary condition for

a minimum squared error:

T

~~- 0 (IV.6)3£
or:

- 2LTZ + xTxc - o (iv.7)

So that:

c = [ XTX I'Vy (IV.8)
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