LIQUID AND GASEOUS OXYGEN SAFETY REVIEW

FINAL REPORT

Vol. I

JUNE 1972

A. LAPIN
AIR PRODUCTS AND CHEMICALS, INC.
ALLENTOWN, PENNSYLVANIA 18105

Prepared for
AEROSPACE SAFETY RESEARCH AND DATA INSTITUTE
LEWIS RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CLEVELAND, OHIO 44135

Under
NASA Contract NAS3—15083
Paul M. Ordin, Program Manager
LIQUID AND GASEOUS
OXYGEN SAFETY REVIEW

Final Report
Volume I of Four Volumes

June 1972

A. Lapin
Air Products and Chemicals, Inc.
Allentown, Pennsylvania 18105

Prepared for
Aerospace Safety Research and Data Institute
Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio 44135

Under
NASA Contract NAS3-15083
Paul M. Ordin, Program Manager
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>I</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>I</td>
<td>ii</td>
</tr>
<tr>
<td>Introduction</td>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>Organization of Report</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>Recommendations for Research and Development</td>
<td>I</td>
<td>7</td>
</tr>
<tr>
<td>Index to Liquid and Gaseous Oxygen Safety Review Forms</td>
<td>I</td>
<td>11</td>
</tr>
<tr>
<td>Liquid and Gaseous Oxygen Safety Review Forms IAla-1 to V-4</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>General Index</td>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>
| References:
 Doc. # 99000001 to 99000160 | II |
 Doc. # 99000161 to 99000320 | III |
 Doc. # 99000321 to 99000601 | IV |
ACKNOWLEDGMENTS

This investigation was initiated by Mr. I. Irving Pinkel, Director Aerospace Safety Research and Data Institute, NASA - Lewis Research Center, Cleveland, Ohio. The work was performed by Air Products and Chemicals, Inc., Allentown, Pennsylvania, under Contract No. NAS3-15083. Dr. A. Lapin was the Project Manager for Air Products and Chemicals, Inc. and Mr. P. M. Ordin was Program Manager for the Lewis Research Center.

This report is the result of the joint effort of a corporate wide team: a steering committee comprising Mr. W. L. Ball and Drs. A. Lapin and C. McKinley and about 15 additional senior personnel representing different departments and divisions. The efforts of Mrs. A. M. Powell and Miss S. L. Price in the preparation of the General Index, and of Mrs. K. F. Quay in the typing and preparation of the final report are appreciated. Special acknowledgment is made of the very significant contributions of Mssrs. I. Iverson, F. K. Kitson, H. H. Master, and W. W. Schmoyer.

The continual review and constructive criticism of Mssrs. P. M. Ordin, and G. Mandel, NASA - Lewis, and of Mr. W. L. Ball and Dr. C. McKinley, Air Products and Chemicals, Inc. are gratefully acknowledged.
A thorough and detailed study of Air Products and Chemicals, Inc. and Air Products Ltd. practices in the design and use of equipment in oxygen service, was performed. The report includes Liquid and Gaseous Oxygen Safety Review information covering: Material Compatibility, Operational Hazards, Maintenance Programs, Systems Emergencies, and Accident/Incident Investigations and Reports, and a set of references. Areas requiring further research and development for systems involving exposure to oxygen environment have been identified. An index to the Liquid and Gaseous Safety Review Data Forms and a General Index have been included to allow for easy retrieval of the reported information.
INTRODUCTION

The NASA Aerospace Safety Research and Data Institute (ASRDI) is responsible for providing NASA and its contractors with technical information and consultation on safety problems. To assist in this effort, a thorough and detailed study of Air Products and Chemicals, Inc. (APCI) and Air Products Ltd. (APL) practices in the design and use of equipment in oxygen service, has been performed in accordance with the terms of NASA Contract NAS3-15083.

The purpose of this study was to provide ASRDI with some of the industrial information needed for their oxygen safety review program which has the following objectives:

1. Providing early recommendations to improve NASA's oxygen handling by comparing NASA and contractor oxygen systems design, inspection, operation, maintenance and emergency procedures with those practiced in industry, universities and other government establishments. These systems include those used on space vehicles, aircraft, test and service facilities, surface vehicles, and disposal systems.

2. Assessing the vulnerability of NASA and contractor oxygen equipment to failure from a variety of sources so that hazards may be defined and remedial measures formulated.

3. Filling gaps in knowledge on oxygen handling through analysis and research in order to provide a better data base for the design of oxygen system and associated safety equipment, and for the formulation of meaningful tests, inspections, and emergency procedures.

4. Issuing criteria and standards on all aspects of oxygen handling and disposal.

5. Providing insight into the key processes that control the performance of oxygen systems and their components as an aid to design and operation, particularly under off-design or emergency conditions.

Specific questions concerning oxygen safety were included in the contract in the form of an Oxygen Safety Review Data Form and Check List. These provided guidelines as to the type of information desired and included a format for identifying referenced documents. A brief summary of each main heading of the NASA Safety Review Check List includes the following:

I. Material Compatibility

A. List of materials used or contained in liquid and gaseous oxygen systems.
The materials used in oxygen systems, whether in direct contact with oxygen, or exposed to oxygen-rich air as a result of leaks or accidents are individually considered under this heading. Methods and tests used to evaluate the compatibility of the materials in an oxygen environment are described. References are listed whenever applicable. Allowable oxygen environments are specified for each one of the materials listed.

B. Compatibility Checks

The compatibility considerations of materials in the oxygen systems are discussed and information on how the areas of possible concern in oxygen systems are handled is provided. Design criteria, cleaning procedures and quality control methods are covered in detail.

II. Operational Hazards

Guidelines, codes, regulations and special procedures used in the design, installation, fabrication, testing and operations for protection against hazards involved with production, transportation, storage and system handling of oxygen are presented with a list of related references.

III. Maintenance Programs

The company practices employed in the oxygen systems maintenance programs to minimize both accident probabilities and consequences of accidents and/or incidents are described. Appropriate sections of the Operations Department and Industrial Gas Division Operating Manuals are discussed.

IV. Systems Emergencies

The practices employed to handle emergencies are spelled out in some detail. Training, warning, and protection of personnel and equipment are discussed.

V. Accident/Incident Investigations and Reports

A review is made of accidents involving oxygen which occurred in the industry in general, and in the company in particular. Accident reports are presented whenever available.

An Air Products and Chemicals, Inc. steering Committee consisting of:

W. L. Ball Corporate Safety Director
A. Lepin Project Manager
C. McKinley Cryogenic Systems Division - R&D Director
reviewed the information generated by a task force of 15 senior engineers and supervisory personnel who have been instrumental in shaping the company safety policies throughout the years and who represented the following Divisions and Departments of the Company:

Air Products Limited

Corporate Safety Department

Cryogenic Systems Division:
- Central Design Engineering Department
- Electro-Machinery Department
- Operations Department
- Project Engineering Department
- Research and Development Department

Industrial Gas Division
- Engineering Department

Industrial Products Division
- Quality Control Department

Metallurgical Services Division
- Gas Equipment Department

This review was supplemented by interviews, discussions, and visits to several APCI and APL air separation plants and manufacturing facilities both in the U.S. and Europe. This information was then summarized and used in the preparation of the Oxygen Safety Review Forms. In most instances, an individual Form was used to cover the practices of one department, thus resulting in some duplication when two different departments reported on the same type of activity. For example, both APCI and APL's cleaning procedures and practices are separately covered in Forms IBlc-1 and IBlc-2 respectively. In general there was no attempt to identify differences existing between the practices of the different departments, since this was not within the scope of the program.

It should be noted that the Air Products material covers an experience period of over 15 years, therefore some contradictions may exist between new and old documents in particular if they originated in different departments. Where such differences exist through evolutionary changes in practice, the latest Air Products document is controlling.

It is interesting to note that while the Corporate and Divisional Safety Criteria are generally followed throughout the company, local conditions sometimes require special treatment as determined by local managers. For example, the Plant Manager at the Nettingen Plant in Germany, instituted a system of valve locks and keys to insure that liquid oxygen is delivered to liquid oxygen tankers only, thus eliminating the possibility of loading the wrong product in the liquid tanker. Differences in procedures between plants are also necessitated by the fact that in some areas the truck drivers are APCI employees, while in others they belong to other organizations under contract to APCI. In addition some plants service only APCI tankers while
others service APCI tankers and others as well. Similarly some customer installations require different or additional precautions as determined by the specifics of the locations, usage, etc. Safety Criteria in these cases are determined by the Departments involved in conjunction with the Safety Department.

It seems that assuring safety in a large organization in which a large number of special local conditions require modifications to the general safety criteria, could best be achieved by the following two-phase approach:

1. Criteria Establishment

Safety criteria and philosophy are established by the Safety Department with strong technical support from the Research and Development Department. These criteria will identify material compatibility, design concepts, contaminant types and levels acceptable to specific applications, systems evaluations, and other significant factors.

2. Criteria Implementation

Implementation of safety criteria is the responsibility of all levels of supervision and all personnel. This is achieved by education and training in such a way, that safety implementation becomes second nature. The objective is clear understanding of general philosophy and criteria, so that implementation of safety is achieved, and that changes necessary to accommodate specific local conditions can be made by knowledgeable personnel without endangering the desired goals.
ORGANIZATION OF REPORT

The report consists of the following parts:

1. Recommendations for Research and Development

2. Index to Liquid and Gaseous Safety Review Data Forms

 This index lists the Review Data Forms in numerical sequence. It identifies each form by number, title, date and number of pages.

3. Liquid and Gaseous Oxygen Safety Review Data Forms

 This part of the report closely follows the NASA Oxygen Safety Review Check List and Review Data Form (Attachments I and II of NASA Contract No. NAS3-15083). In fact the forms numbering system corresponds to the NASA Documents numbering system. Thus, Form IA2a-7 is the 7th APCI Form with information requested in paragraph IA2a of the NASA Review Check List which relates to the Material Compatibility of Sealants and Threading Compounds. The organization of the form itself is in close conformity with the suggested NASA Review Data Form. The APCI Data Review Form includes only those sections of the NASA Form which apply to the particular subject.

4. General Index

 The General Index covers all Documents referred to in the Data Review Forms, the Data Review Forms themselves, and an additional number of documents related to the subject of oxygen, oxygen handling and safety. The General Index consists of five sections:

 a. Numerical Section: All documents are listed in numerical sequence, starting from 9900000010. (The 9th digit, which is always a zero, except in one case 99000261A, should be ignored).

 b. Authors Section: All documents are listed alphabetically by each one of the authors.

 c. Corporate Titles Section: All documents are reported alphabetically by the name of the Corporation or Institution which originated the document. For example, a paper authored by a member of Lehigh University, will appear under Lehigh University. Similarly, the reports by C. F. Key of NASA will appear with the NASA grouping.

 d. Subjects Section: All documents are listed alphabetically by each one of the main words of the document title, and by key words which were added, whenever desirable.

 e. Source Section: All documents are listed in alphabetical order in accordance to their source identification such as AIChE-CEP-TECH-MANUAL for an American Institute of Chemical Engineer publication or DMIC-MEMO-163, for the Battelle Memorial Institute Report identified as Publication DMIC-MEMO-163.
The General Index arrangement thus allows information retrieval from several bases. For example, a lubricant covered by this study, can be found under L, with all other lubricants, or by looking up its specific name, such as Krytox. All documents referring to this item will be identified and could then be found in the Reference Section of the report, by looking up the Document Numbers.

5. References

This section contains all documents included in the General Index, in a numerical sequence. The APCI documents are reproduced in full and are released for general distribution and availability with the exception of the following documents which are not released and are not available for general distribution:

99000234
99000247
99000258
99000308
99000388
99000389
99000392
99000393
99000394
99000395
99000421

Only one page is included in the Reference Section for each non APCI document, with sufficient information to provide full identification and retrieval.

A number of additional documents have been included in this section even though they were not referred to in the Review Forms. These documents are related to oxygen safety and could be of interest to the reader. Some of them are listed below:

APCI Documents #9900007 and 99000017 provide the properties of gaseous and liquid oxygen.

APCI Documents #99000060 through 99000065 and 99000069 describe Research and Development work performed in the early 60's.

APCI Documents #99000306, 99000312 and 99000313 cover recent work using the O₂ Index as one factor in determining acceptability of materials for oxygen service.

APCI Document #99000340 briefly describes APCI procedure for the determination of material compatibility with oxygen.

APCI Document #99000595 is an APCI report on the experimental burning of metals in oxygen atmosphere and includes an appendix containing the abstracts of 43 papers on the ignition of metals.
RECOMMENDATIONS FOR RESEARCH AND DEVELOPMENT

In order to determine acceptance of materials for oxygen service and the safety of the system itself, it is essential to have material properties and criteria for acceptability as follows:

1. **Material Properties as a Function of Oxygen Concentration and Pressure**

 Some or all of the following information is required to evaluate a material for oxygen service.

 a. Material identification
 b. Ignition temperature
 c. Ignition energy
 d. Oxygen index
 e. Calorimetric heat values
 f. Adsorption capacity for oxygen
 g. Autoignition temperature
 h. High pressure compatibility
 i. Behavior under impact conditions

 Literature should be carefully reviewed so that available information is evaluated and used. Laboratory work may be needed to supplement available information.

2. **Systems Behavior**

 In any industrial hazard situation, the amount of ignition energy to ignite a material in oxygen or oxygen rich environment is importantly related to the material and intensity of the energy input. It is also related in an extremely important fashion to the entire system. The dynamics of the ignition process is also a function of the entire system. It is therefore necessary to carefully examine and evaluate each individual component as
well as the subsystems and total system for behavior in an oxygen atmosphere as a function of oxygen concentration, pressure, and temperature.

3. Criteria for Acceptability

Criteria will have to be established for the acceptability of materials in oxygen service based on the material properties and examination of the system or subsystem, in which the materials are used. These criteria should be based on the following:

a. Acceptance of materials per se.
b. Limits on the quantity of materials in the specific system being examined.
c. Level and type of allowable contamination for the application.
d. Limits of temperature, pressure and oxygen concentrations.
e. Inspection and quality control procedures.

Review of the available information regarding oxygen compatibility of materials indicates that additional information in the following areas may be required for the complete safety evaluation of a specific system.

1. Material Properties

Material properties needed for oxygen compatibility evaluation are usually available in the technical literature. However, this information is sparse or lacking completely in the case of new materials and for high pressure (3,000-10,000 psi) applications. In these instances, it will be necessary to acquire the needed properties by experimental determination.

2. Significant Testing

A number of tests are being used to determine material compatibility in the presence of oxygen. However, these tests are usually not closely related to the main characteristics of the system in which these materials are used. For example, impact testing is a widely used criterion for material acceptance, even when impact is not a factor of the specific application under consideration. The amount of energy needed to ignite a material is importantly related to the material itself, its physical dimensions, to the character and intensity of the energy input, and in an extremely important fashion to the entire system. For example, massive metal sections clearly ignite less readily than do powders, wires, ribbons, and small sections. Therefore it is essential to devise appropriate tests which incorporate the potential hazards of the system, such as sparks, friction, or gas compression and the correct size of the test specimen. The results of these tests will be significant and will provide a more dependable basis for material selection for the contemplated service.

3. Effect of Contaminants on the Materials Suitability

In general, the bulk of the work in the area of oxygen compatibility is performed with meticulously clean materials. Contaminants are studied by themselves, independently of the materials that they would contaminate.
It is believed that some materials may be more detrimentally affected than others by the presence of contaminants. It is therefore necessary to consider the complete system in order to determine the possible sources, types and quantities of contaminants, so that appropriate testing conditions may be determined. These tests will help establish tolerable contamination levels for the system.

4. System Testing

Complete systems should be carefully examined to determine their oxygen compatibility. Even if each individual component is acceptable on its own, synergistic effects may render an assembly of these components unacceptable. Therefore, systems and subsystems may have to be tested before a decision can be made regarding oxygen suitability. The effect of contamination in this particular case is extremely important since reactions or chain reactions may be triggered by contamination with a resulting ignition and combustion of materials which would not otherwise have been ignited.

5. Criteria for Compatibility

Present criteria for oxygen compatibility are often based on one or two types of tests even when they are not closely related to the intended applications. It is recommended that the information obtained from new research programs be used to reexamine the present criteria to determine their validity. These programs should also provide the basis for new criteria which will integrate all available factors related to the compatibility of materials and to the system itself such as: oxygen phase, concentration, temperature and pressure, materials properties, systems characteristics, potential hazards and degree of exposure to life and equipment in case of a failure. It is envisioned that an all inclusive "System Compatibility Index" or "System Safety Factor" could be developed by applying an empirical coefficient to each pertinent factor, which would apply to all types of oxygen systems: high or low pressure applications, liquid or gas phase environment, simple or complex. This "System Compatibility Index" or "System Safety Factor" will provide a numerical system which will indicate the degree of safety of the system being examined and will enable sound comparisons between competing schemes.

The research and development programs that are needed to provide the required information for a complete safety evaluation of systems involving oxygen, should consist of a number of limited scope parts dealing with specific systems and/or subsystems. In general each part of the program should provide answers to the following questions for the system being studied:

1. Assessment of realistic hazards as opposed to laboratory hazards.
2. Criteria for cleaning and frequency of solvent washing.
3. Effect of rust and foreign particles in the oxygen streams of the system.
4. Maximum allowable level of contamination.

5. Relation between allowable level of contaminants and cleanliness requirements.

6. Frequency of equipment inspection.

7. Criteria for lubricant selection for air and oxygen service, if applicable.

8. Criteria for compatibility, in terms of quantity of materials, system pressure and temperature, and exposure.

It is recommended that all information presently available and being developed as a result of new research and development programs be readily retrievable.
INDEX

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA FORMS

I. Material Compatibility

<table>
<thead>
<tr>
<th>Lubricants</th>
<th>IAla-1</th>
<th>February 21, 1972</th>
<th>1 page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kryptox 143 AA Oil (duPont)</td>
<td>IAla-2</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Halocarbon 11-21E, Halocarbon</td>
<td>IAla-3</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Products Corporation</td>
<td>IAla-4</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Halocarbon 11-14E, Halocarbon</td>
<td>IAla-5</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Products Corporation</td>
<td>IAla-6</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Halocarbon 6-25 Wax, Halocarbon</td>
<td>IAla-7</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Products Corporation</td>
<td>IAla-8</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Krytox 143 AB Oil (duPont)</td>
<td>IAla-9</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Krytox 143 AC oil (duPont)</td>
<td>IAla-10</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Krytox 143 AZ oil (duPont)</td>
<td>IAla-11</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Fluorolube, FS 5, Hooker Chemical</td>
<td>IAla-12</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Molylube "N" Bel-Ray Co., Farmingdale, New Jersey</td>
<td>IAla-13</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Moly Lube No. 99, Moly Lube Products, Glen Cove, New York</td>
<td>IAla-14</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Fluoro-glide, Chemplast Inc.</td>
<td>IAla-15</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Krytox 143 AD oil (duPont)</td>
<td>IAla-16</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Voltalef 3A (Kingsley and Keith Limited, United Kingdom)</td>
<td>IAla-17</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Esso Beacon 325</td>
<td>IAla-18</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Formblin Y04 (Montecatini - Edison)</td>
<td>IAla-19</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
</tbody>
</table>

Sealants & Threading Compounds

<table>
<thead>
<tr>
<th>Sealants</th>
<th>I2a-1</th>
<th>February 21, 1972</th>
<th>1 page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permatex #1516</td>
<td>I2a-2</td>
<td>February 21, 1972</td>
<td>2 pages</td>
</tr>
<tr>
<td>Teflon Tape -- Permacel</td>
<td>I2a-3</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>T-Film, Eco Manufacturing Co.</td>
<td>I2a-4</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Putti-Rope, National Greenhouse Co.</td>
<td>I2a-5</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>Molylube "N" Bel-Ray Co., Farmingdale, New Jersey</td>
<td>I2a-6</td>
<td>February 21, 1972</td>
<td>2 pages</td>
</tr>
<tr>
<td>Crosslite Fluorocarbon Tape</td>
<td>I2a-7</td>
<td>February 21, 1972</td>
<td>2 pages</td>
</tr>
<tr>
<td>Damco Tape</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sealants & Threading Compounds (Continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA2a-8</td>
<td>Sanden Tape</td>
<td>February 21, 1972</td>
<td>2 pages</td>
</tr>
<tr>
<td>IA2a-9</td>
<td>Crane Packing Company Tape</td>
<td>February 21, 1972</td>
<td>2 pages</td>
</tr>
<tr>
<td>IA2a-10</td>
<td>Oxomat</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA2a-11</td>
<td>3M Fluorocarbon Tape</td>
<td>February 21, 1972</td>
<td>2 pages</td>
</tr>
<tr>
<td>IA2a-12</td>
<td>Sodium Silicate and China Clay Paste</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
</tbody>
</table>

Thermal & Electrical Insulations

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA3a-1</td>
<td>Foamglas (cellular glass) Insulation, Pittsburgh-Corning Corp.</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA3a-2</td>
<td>Transite, Johns-Manville</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA3a-3</td>
<td>Glass Wool</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA3a-4</td>
<td>Mineral Wool</td>
<td>February 21, 1972</td>
<td>2 pages</td>
</tr>
<tr>
<td>IA3a-5</td>
<td>Perlite</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA3a-6</td>
<td>Milfoam -- Milfoam Corporation</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA3a-7</td>
<td>National Gypsum Blue - National Gypsum Corporation</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
</tbody>
</table>

Plastics, Elastomers, and Adhesives

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA4a-1</td>
<td>RTV-60, Silicone Rubber Compound with SS-4004 silicone primer, G. E. Thermolite-12 curing catalyst</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA4a-2</td>
<td>Keene Binder</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA4a-3</td>
<td>Kel-F 81</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA4a-4</td>
<td>Nylon</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA4a-5</td>
<td>Neoprene</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA4a-6</td>
<td>Viton A, duPont</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA4a-7</td>
<td>Nylon 66' (I.C.I. Limited, U.K.)</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
</tbody>
</table>

Gaskets and Packings

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA5a-1</td>
<td>Graphite Impregnated Asbestos Packing</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA5a-2</td>
<td>TFE-GF-Green, Melrath Gaskets Co.</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA5a-3</td>
<td>Vallegreen, Valley Forge Gasket Co.</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA5a-4</td>
<td>Fluorogreen E-600, John Dore Co.</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA5a-5</td>
<td>Melrath 150 -- sheet asbestos gasket material, Melrath Gasket Co.</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA5a-6</td>
<td>KM226 Sheet asbestos gasket material, Nicolet Industries Inc.</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA5a-7</td>
<td>Garlock 900, sheet asbestos gasket material, Garlock Mfg. Co.</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA5a-8</td>
<td>Vulcanized Red Fibre Gaskets</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IA5a-9</td>
<td>KM246 sheet asbestos gasket material Nicolet Industries</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
</tbody>
</table>
Gaskets and Packings (Continued)

IA5a-10	Teflon, duPont	February 21, 1972	2 pages
IA5a-11	Viton A, duPont	February 21, 1972	1 page
IA5a-12	Sindanyo. CS 51 Asbestos and Cement Boards. Natural untreated finish (Turners Asbestos Cement Co. Ltd. United Kingdom).	February 21, 1972	1 page
IA5a-13	Klingerit 661 (Richard Klinger Limited United Kingdom).	February 21, 1972	1 page
IA5a-14	Tygarflor cementable PTFE tapes (Tygadure Limited, United Kingdom)	February 21, 1972	1 page

Metals, Alloys, Solders, and Surface Treatments

IA6a-1	Tarset - Pittsburgh Chemical Co.	February 21, 1972	1 page
IA6a-2	Sealfas Mastic #31-97, Benjamin Foster Company	February 21, 1972	1 page
IA6a-3	Plasite, No. 7122H, Wisconsin Protective Coating Company	February 21, 1972	1 page
IA6a-4	Copper Pipe ASTM B42	February 21, 1972	1 page
IA6a-5	Copper tube ASTM B75	February 21, 1972	2 pages
IA6a-6	Red Brass Pipe ASTM B43	February 21, 1972	1 page
IA6a-7	Aluminum ASTM B211 2024-T4	February 21, 1972	2 pages
IA6a-8	Aluminum, ASTM B210 3003	February 21, 1972	2 pages
IA6a-9	Aluminum ASTM B209 5083-0	February 21, 1972	2 pages
IA6a-10	Aluminum, ASTM B210 6061-T6	February 21, 1972	2 pages
IA6a-11	Aluminum ASTM B241 6061-T6	February 21, 1972	2 pages
IA6a-12	Aluminum ASTM B247 6061-T6	February 21, 1972	2 pages
IA6a-13	Aluminum B361 WP6061-T6	February 21, 1972	2 pages
IA6a-14	Carbon Steel - (Oxygen Service)	February 21, 1972	3 pages
IA6a-15	Stainless Steel ASTM A312 TP304	February 21, 1972	2 pages
IA6a-16	Stainless Steel ASTM A240 304	February 21, 1972	2 pages
IA6a-17	Stainless Steel ASTM A403 WP304 and A403 WP304L	February 21, 1972	2 pages
IA6a-18	Stainless Steel ASTM A320 B8304	February 21, 1972	2 pages
IA6a-19	Stainless Steel ASTM A194 B7321	February 21, 1972	2 pages
IA6a-20	Stainless Steels, Type 416 Cadmium Plated	February 21, 1972	1 page
IA6a-21	Stainless Steel ASTM A182 F 304 and ASTM A182 F316	February 21, 1972	2 pages
IA6a-22	Stainless Steel, type 304, unidentified as to ASTM spec.	February 21, 1972	2 pages
IA6a-23	Copper-Silicon ASTM B98GrB	February 21, 1972	2 pages
IA6a-24	Free Machining Brass	February 21, 1972	2 pages
IA6a-25	Beryllium Copper	February 21, 1972	2 pages
IA6a-26	Stainless Steel ASTM A269 304	February 21, 1972	2 pages
IA6a-27	Bronze ASTM B61 or B62	February 21, 1972	2 pages
IA6a-28	Brass sheet or plate, ASTM B36	February 21, 1972	2 pages
IA6a-29	Monel, ASTM B164	February 21, 1972	2 pages
IA6a-30	Stainless Steel ASTM A351 Gr CF8	February 21, 1972	2 pages
Metals, Alloys, Solders, and Surface Treatments (Continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA6a-31</td>
<td>Stainless, 9% Nickel Steel, ASTM A353GB</td>
<td>February 21, 1972</td>
<td>2</td>
</tr>
<tr>
<td>IA6a-32</td>
<td>Copper Tube ASTM B88</td>
<td>February 21, 1972</td>
<td>1</td>
</tr>
<tr>
<td>IA6a-33</td>
<td>Carbon Steel - (Non Oxygen Service with possible exposure to oxygen).</td>
<td>February 21, 1972</td>
<td>3</td>
</tr>
<tr>
<td>IA6a-34</td>
<td>Spheroidal graphite Iron (Continental standard GGG 38)</td>
<td>February 21, 1972</td>
<td>1</td>
</tr>
<tr>
<td>IA6a-35</td>
<td>Silver</td>
<td>February 21, 1972</td>
<td>1</td>
</tr>
<tr>
<td>IA6a-36</td>
<td>Novonox Stainless Steel Alloy</td>
<td>February 21, 1972</td>
<td>1</td>
</tr>
<tr>
<td>IA6a-37</td>
<td>Muntz Metal 60/40 Type, Composition: Cu 58-61%, Zn 38.5-42%, Pb 0.35-0.9%</td>
<td>February 21, 1972</td>
<td>1</td>
</tr>
<tr>
<td>IA6a-38</td>
<td>Alpha Brass Tube Type TCL 100 or DTD 5019 (Tungum Company Limited, U.K.)</td>
<td>February 21, 1972</td>
<td>1</td>
</tr>
</tbody>
</table>

Chemicals, Solvents, and Miscellaneous

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA7a-1</td>
<td>1,1,1, dichlorothane</td>
<td>February 21, 1972</td>
<td>1</td>
</tr>
<tr>
<td>IA7a-2</td>
<td>1,1,1, Trichloroethane</td>
<td>February 21, 1972</td>
<td>1</td>
</tr>
<tr>
<td>IA7a-3</td>
<td>Chloroform</td>
<td>February 21, 1972</td>
<td>1</td>
</tr>
<tr>
<td>IA7a-4</td>
<td>Carbon Tetrachloride</td>
<td>February 21, 1972</td>
<td>1</td>
</tr>
<tr>
<td>IA7a-5</td>
<td>Trichloroethylene</td>
<td>February 21, 1972</td>
<td>1</td>
</tr>
<tr>
<td>IA7a-6</td>
<td>Methylene Chloride</td>
<td>February 21, 1972</td>
<td>1</td>
</tr>
</tbody>
</table>

Compatibility Checks

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBlc-1</td>
<td>Fire Compatibility</td>
<td>February 21, 1972</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Cleaning Procedures - APCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBlc-2</td>
<td>Fire Compatibility</td>
<td>February 21, 1972</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cleaning Procedures - APL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBld(1)-1</td>
<td>Fire Compatibility</td>
<td>September 9, 1971</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Quality Control, Fire Hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBld(2)-1</td>
<td>Fire Compatibility</td>
<td>September 9, 1971</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Quality Control - APCI, Programs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBld(2)-2</td>
<td>Fire Compatibility</td>
<td>February 21, 1972</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Quality Control - APL, Programs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB2-1</td>
<td>Structural Materials Compatibility Effects of Oxygen Diffusion</td>
<td>February 10, 1972</td>
<td>2</td>
</tr>
<tr>
<td>IB2a-1</td>
<td>Structural Materials Compatibility Relationship of Material Strength to Maximum Stress Over the Working Temperature Range</td>
<td>September 2, 1971</td>
<td>2</td>
</tr>
<tr>
<td>IB2c-1</td>
<td>Structural Materials Compatibility Notch Sensitivity</td>
<td>September 2, 1971</td>
<td>1</td>
</tr>
</tbody>
</table>
Compatibility Checks (Continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB2d-1</td>
<td>Structural Materials Compatibility Fabrication and Welding</td>
<td>October 28, 1971</td>
<td>1</td>
</tr>
<tr>
<td>IB2e(2)-1</td>
<td>Structural Materials Compatibility Materials and Parts Suitability Controls</td>
<td>September 2, 1971</td>
<td>1</td>
</tr>
<tr>
<td>FI</td>
<td>Vendor Procedures on Purchased Equipment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Operational Hazards

Overpressure

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA-1</td>
<td>Overpressure</td>
<td>February 18, 1972</td>
<td>2</td>
</tr>
<tr>
<td>IIA4-1</td>
<td>Integrity of Insulation</td>
<td>December 30, 1971</td>
<td>1</td>
</tr>
<tr>
<td>IIA4-2</td>
<td>Integrity of Insulation</td>
<td>December 30, 1971</td>
<td>1</td>
</tr>
<tr>
<td>IIA4-2</td>
<td>Field Fabricated, flat bottom LOX Storage Tanks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disposal of Vented Gases

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIB-1</td>
<td>Company Practices</td>
<td>November 1, 1971</td>
<td>5</td>
</tr>
<tr>
<td>IIB1-1</td>
<td>Cleanliness of Disposal System (compatibility with oxidizer)</td>
<td>February 12, 1972</td>
<td>2</td>
</tr>
<tr>
<td>IIB1-2</td>
<td>Cleanliness of Oxygen Piping</td>
<td>February 19, 1972</td>
<td>1</td>
</tr>
<tr>
<td>IIB4-1</td>
<td>Procedural Arrangements</td>
<td>February 19, 1972</td>
<td>1</td>
</tr>
</tbody>
</table>

Coupling to Other Systems

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIC1-1</td>
<td>Isolation Arrangements (leakage)</td>
<td>December 22, 1971</td>
<td>1</td>
</tr>
<tr>
<td>IIC2-1</td>
<td>Temperature Isolation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spills and Leakage

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IID-1</td>
<td>Spills and Leakage - General</td>
<td>September 3, 1971</td>
<td>2</td>
</tr>
<tr>
<td>IID1-1</td>
<td>Drainage and Ultimate Disposal Arrangements</td>
<td>August 22, 1971</td>
<td>2</td>
</tr>
<tr>
<td>IID2-1</td>
<td>Separation of Incompatible Materials and Ignition Sources in Disposal Systems</td>
<td>August 22, 1971</td>
<td>1</td>
</tr>
<tr>
<td>IID3-1</td>
<td>Environmental Warnings and Escape Systems</td>
<td>August 22, 1971</td>
<td>1</td>
</tr>
<tr>
<td>IID4-1</td>
<td>Detection: Quantity and Response Time Limits</td>
<td>August 22, 1971</td>
<td>1</td>
</tr>
</tbody>
</table>
Contaminants Accumulation

| IIE-1 | Procedures for Solvent Evaporation Technique, and for Extraction of Ether Soluble Material & Oil Content Determination | July 21, 1971 | 1 page |

Oxygen Transfer

IIF1-1	Production to Storage, Storage to System, Storage to Transport, Transport to System	December 22, 1971	1 page
IIF1-2	Production, Storage to System, Storage to Transport, Transport to System Loading and Unloading Procedures for Liquid Oxygen Transfer	August 22, 1971	1 page
IIF1-3	Systems - Field Fabricated Cryogenic Liquid Storage Tanks	February 3, 1972	1 page
IIF1-4	Systems - APL Oxygen Transfer Methods Typical Installations, and Operations Department Overhaul Procedures for Liquid Pumps.	February 21, 1972	1 page
IIF2-1	Pipeline Transportation - List of Standards	February 8, 1972	2 pages
IIF2-2	Pipeline Transportation - APL Oxygen Pipeline Design Concepts and Criteria	February 21, 1972	1 page
IIF2a-1	Road, Railroad, Barge, and Pipeline Transportation Pressure Relief	August 22, 1971	1 page
IIF2b-1	Road, Railroad, Barge, and Pipeline Transportation Contamination Control	September 3, 1971	1 page
IIF2c-1	Road, Railroad, Barge and Pipeline Transportation Oxygen Dispersal From Vents and Lines	August 22, 1971	1 page
IIF2d-1	Road, Railroad, Barge and Pipeline Transportation Vehicle Accident Procedures	August 22, 1971	1 page
IIF2e-1	Road, Railroad, Barge and Pipeline Transportation Vibration and Controlled Sloshing Malfunctions and Failures	August 22, 1971	1 page
IIF3-1	Malfunctions and Failures	November 12, 1971	1 page
IIF3-2	Malfunctions and Failures APCI Incidents Involving Oxygen Transfer Equipment or Instrumentation	February 4, 1972	2 pages
IIF3-3	Malfunctions and Failures Incidents which Occurred with Other Oxygen Equipment	February 3, 1972	2 pages
Oxygen Transfer (Continued)

<table>
<thead>
<tr>
<th>Document Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIF3-4</td>
<td>Equipment Malfunctions and Failures Compressors and Pumps</td>
<td>January 23, 1972</td>
<td>15 pages</td>
</tr>
<tr>
<td>IIF3a-1</td>
<td>Equipment Malfunctions and Failures Gas Pressure Regulators</td>
<td>December 10, 1971</td>
<td>3 pages</td>
</tr>
<tr>
<td>IIF3a(3)-1</td>
<td>Malfunctions and Failures Equipment Valves</td>
<td>December 30, 1971</td>
<td>1 page</td>
</tr>
<tr>
<td>IIF3b-1</td>
<td>Malfunctions and Failures Geisering, Excessive Vibrations, Shock (Thermal and Pressure), Line Surges</td>
<td>February 18, 1972</td>
<td>1 page</td>
</tr>
<tr>
<td>IIF3c-1</td>
<td>Malfunction and Failures Insulation System deterioration due to Vibrations</td>
<td>December 30, 1971</td>
<td>1 page</td>
</tr>
</tbody>
</table>

Fires and Explosions

<table>
<thead>
<tr>
<th>Document Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIG-1</td>
<td>Methods to Contain or Restrict Combustible Mixtures</td>
<td>November 1, 1971</td>
<td>6 pages</td>
</tr>
</tbody>
</table>

III. Maintenance Program

System Check and Inspection; Where, Why, and How

<table>
<thead>
<tr>
<th>Document Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIIA1-1</td>
<td>Structure</td>
<td>September 12, 1971</td>
<td>1 page</td>
</tr>
<tr>
<td>IIIA2-1</td>
<td>Leaks</td>
<td>September 12, 1971</td>
<td>1 page</td>
</tr>
<tr>
<td>IIIA3-1</td>
<td>System Instrumentation and Controls</td>
<td>September 12, 1971</td>
<td>1 page</td>
</tr>
<tr>
<td>IIIA4-1</td>
<td>Insulation</td>
<td>September 12, 1971</td>
<td>1 page</td>
</tr>
<tr>
<td>IIIA5-1</td>
<td>General Considerations of the "aging" System</td>
<td>August 22, 1971</td>
<td>1 page</td>
</tr>
<tr>
<td>IIIA5-2</td>
<td>Preventive Maintenance Program</td>
<td>September 12, 1971</td>
<td>5 pages</td>
</tr>
</tbody>
</table>

Cleaning Procedures

<table>
<thead>
<tr>
<th>Document Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIIB-1</td>
<td>Safe Cleaning Procedures for Filters Traps, and Instruments</td>
<td>November 1, 1971</td>
<td>2 pages</td>
</tr>
</tbody>
</table>

Pressure Testing

<table>
<thead>
<tr>
<th>Document Code</th>
<th>Description</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIIC-1</td>
<td>Steps Followed in Pressure Testing</td>
<td>September 12, 1971</td>
<td>3 pages</td>
</tr>
</tbody>
</table>

IV. System Emergencies

General

<table>
<thead>
<tr>
<th>IV-1</th>
<th>APCI Emergency Procedures</th>
<th>December 23, 1971</th>
<th>1 page</th>
</tr>
</thead>
</table>

Safety Training and Area Placarding

<table>
<thead>
<tr>
<th>IVA-1</th>
<th>Safety Training Area Placarding</th>
<th>November 5, 1971</th>
<th>4 pages</th>
</tr>
</thead>
</table>

Warning Devices

<table>
<thead>
<tr>
<th>IVE-1</th>
<th>Warning Devices for Oxygen Systems - General Applications</th>
<th>November 12, 1971</th>
<th>5 pages</th>
</tr>
</thead>
</table>

Protection

<table>
<thead>
<tr>
<th>IVC1-1</th>
<th>Personnel Protection & Equipment</th>
<th>January 13, 1972</th>
<th>6 pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVC2-1</td>
<td>Buildings and Adjacent Systems Protection</td>
<td>January 10, 1972</td>
<td>4 pages</td>
</tr>
</tbody>
</table>

Hazards Protection

<table>
<thead>
<tr>
<th>IVE-1</th>
<th>General Precautions</th>
<th>November 8, 1971</th>
<th>2 pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVE-2</td>
<td>APL Bulletins and Reports on Various Problems Related to Oxygen Safety</td>
<td>February 21, 1972</td>
<td>1 page</td>
</tr>
</tbody>
</table>

V. Accident/Incident Investigation and Report

<table>
<thead>
<tr>
<th>V-1</th>
<th>Accidents Involving Spills and Leakate</th>
<th>August 22, 1971</th>
<th>1 page</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-2</td>
<td>Accidents Involving Oxygen Equipment and Systems which caused injury to personnel or damage to equipment and property are listed.</td>
<td>February 4, 1972</td>
<td>26 pages</td>
</tr>
<tr>
<td>V-3</td>
<td>APL Safety Bulletins and APL Safety Departments Reports related to Accidents Involving Oxygen</td>
<td>February 21, 1972</td>
<td>2 pages</td>
</tr>
<tr>
<td>V-4</td>
<td>APCI Documents List covering safety Precautions, Accidents, and Near Misses Involving Oxygen or Air Air Separation Plants</td>
<td>May 12, 1972</td>
<td>2 pages</td>
</tr>
</tbody>
</table>
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Krytox 143 AA oil (duPont)

 a. Specific Oxygen Environment

 Normal exposure is to air, but may be exposed to gaseous or liquid oxygen at ambient temperature to -297°F and atmospheric pressure in the event of a process leak.

 (1) Company Practices

 (a) Motor Bearing lubrication for liquid oxygen pump assemblies.

B. Information Sources

1. Company Practices

 b. Company Operating Experience.

 Was on a trial basis for replacement of Halocarbon lubricants which do not appear to have the lubricity and mechanical properties necessary for our application. However its performance was unacceptable.

 c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Halocarbon 11-21E, Halocarbon Products Corporation

 a. Specific Oxygen Environment

 Normal exposure is to air, but may be exposed to gaseous or liquid oxygen at ambient temperature to -297°F and atmospheric pressure in the event of a process leak.

 (1) Company Practices

 (a) High pressure reciprocating pumps. Lubricant is not in direct oxygen contact, but in drive train of pump where the possibility of intimate contact exists.

 (b) As the hydraulic fluid in diaphragm compressors in oxygen service.

 (c) Not to be used with aluminum, magnesium, or their alloys under conditions of high torque or shear.

B. Information Sources

1. Company Practices

 c. Based on Research and Development of Others

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Halocarbon 11-14E, Halocarbon Products Corporation

 a. Specific Oxygen Environment

 Normal exposure is to air, but may be exposed to gaseous or liquid oxygen at ambient temperature to -297°F and atmospheric pressure in the event of a process leak.

 (1) Company Practices

 (a) Centrifugal liquid oxygen pump drive trains bearings where intimate contact is possible.

 (b) Vertically mounted multi-stage centrifugal liquid oxygen pump drive motor bearings

 (c) Not to be used with aluminum, magnesium, or their alloys under conditions of high torque or shear.

B. Information Sources

1. Company Practices

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Halocarbon 6-25 Wax, Halocarbon Products Corporation

 a. Specific Oxygen Environment

 Ambient temp. to 160°F up to 1500 psig gaseous oxygen

 (1) Company Practices

 (a) Protective coating of oxygen compressor spare parts and compressor components during storage. Coating is not removed prior to using equipment.

 (b) Not to be used with aluminum, magnesium, or their alloys under conditions of high torque or shear.

B. Information Sources

1. Company Practices

 e. Other

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Kel F-90 grease, Minnesota Mining & Manufacturing Co.

 a. Specific Oxygen Environment

 Gaseous Oxygen, ambient temp, pressures to 3000 psi.

 (1) Company Practices

 (a) Laboratory glassware, analyzers, and testing apparatus in contact with gaseous oxygen.

 (b) Some lubricant function in valves in gaseous oxygen service.

 (c) "O" ring and diaphragm lubricant in oxygen regulators

 (d) Not to be used with aluminum, magnesium, or their alloys under conditions of high torque or shear.

 (e) No longer manufactured. Will be replaced by Halocarbon 25-5S grease — Refer IAla-6

B. Information Sources

 1. Company Practices

 a. Company Research

 c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

 a. Specific Oxygen Environment
 Gaseous Oxygen, ambient temp., pressures to 3000 psi
 (1) Company Practices
 (a) Laboratory glasswear, analyzers, and testing apparatus in contact with gaseous oxygen.
 (b) Some lubricant functions in valves in gaseous oxygen service.
 (c) "O" ring and diaphragm lubricant in oxygen regulators.
 (d) Not to be used with aluminum, magnesium, or their alloys under conditions of high torque or shear.

B. Information Sources

1. Company Practices
 c. Based on Research and Development of Others.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Fluorolube, FS, Hooker Chemical

 a. Specific Oxygen Environment

 Gaseous oxygen service, ambient temperature to -297°F pressures to 3000 psig

 (1) Company Practices

 (a) Internal threaded devices in Air Separation Plant distillation columns.

 (b) On teflon tape on some NPT screwed connections to improve the lubricity of the system for better seal.

 (c) Bonnet and stem threads and other valve parts exposed to oxygen service.

 (d) Not to be used with aluminum, magnesium, or their alloys under conditions of high torque or shear.

B. Information Sources

1. Company Practices

 a. Company Research

 b. Company Operating Experience.

 Chlorotrifluoroethylene Family of lubricants are permitted to be used where lubricants are needed in contact with oxygen. Each application is reviewed.

 c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Krytox 143 AB oil (duPont)

 a. Specific Oxygen Environment

 Normal exposure is to air, but may be exposed to gaseous or liquid oxygen at ambient temperature to -297°F and atmospheric pressure in the event of a process leak.

 (1) Company Practices

 (a) Motor Bearing lubrication for liquid oxygen pump assemblies.

B. Information Sources

1. Company Practices

 b. Company Operating Experience.

 Was on a trial basis for replacement of Halocarbon lubricants which do not appear to have the lubricity and mechanical properties necessary for our application. However its performance was unacceptable.

 c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Krytox 143 AC oil (duPont)

a. Specific Oxygen Environment

 Normal exposure is to air, but may be exposed to gaseous or liquid oxygen at ambient temperature to -297°F and atmospheric pressure in the event of a process leak.

 (1) Company Practices

 (a) Motor Bearing lubrication for liquid oxygen pump assemblies.

B. Information Sources

1. Company Practices

 b. Company Operating Experience.

 Was on a trial basis for replacement of Halocarbon lubricants which do not appear to have the lubricity and mechanical properties necessary for our application. However its performance was unacceptable.

 c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Krytox 143 AZ oil (duPont)

a. Specific Oxygen Environment

 Normal exposure is to air, but may be exposed to gaseous or liquid oxygen at ambient temperature to -297°F and atmospheric pressure in the event of a process leak.

 (1) Company Practices

 (a) Motor Bearing lubrication for liquid oxygen pump assemblies.

B. Information Sources

1. Company Practices

 b. Company Operating Experience.

 Was on a trial basis for replacement of Halocarbon lubricants which do not appear to have the lubricity and mechanical properties necessary for our application. However its performance was unacceptable.

 c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Fluorolube, FS 5, Hooker Chemical
 a. Specific Oxygen Environment
 Gaseous oxygen service ambient temperature to -297°F, pressures to 3000 psig
 (1) Company Practices
 (a) Transmitters and liquid level gauges in oxygen service

B. Information Sources

1. Company Practices
 a. Company Research

 b. Company Operating Experience.

 Chlorotrifluoroethylene Family of lubricants are permitted to be used where lubricants are needed in contact with oxygen. Each application is reviewed.

 c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Molylube "N" Bel-Ray Co., Farmingdale, N. J.

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperatures to
 -297°F pressures to 3000 psig.

 (1) Company Practices

 (a) Used in small capacity liquid oxygen recipro-
 cating pumps to correct a seizure problem be-
 tween stainless and aluminum thread joints.

 (b) Used as thread lubricant on oxygen regulators

B. Information Sources

1. Company Practices

 a. Company Research

 (1) Brophy, M., R&D Tests of Oxygen Compatibility,
 R&D Notebook #130, p. 16 & 17, Feb. 11, 1963,
 (Doc. #99000120).

 (2) Foster, R. H., APCI Safety, Hazards, and Explosion
 Testing -- Epon H-60, Polycel 440R, and Styrofoam,
 Lubricants, Moly Spray Kote, and Dri Lube, APCI MAR
 87-0-8821, April 1962 (Doc. #99000068).

 (3) Walde, R. A., APCI Flammability and Explosion Hazards,
 Oxygen Pressure Gauge TWF Wool, Spintex 305, Molykote
 Type Z and Type X-15, APCI MAR 87-0-8822, March 1963
 (Doc. #99000071).

 b. Company Operating Experience.

 (1) Schmoyer, W. W., "Regulator Thread Sealant,"

 c. Based on Research & Development of Others.

 (1) Key, C. F., NASA-GCMSFC, "Compatibility of Materials
 with Liquid Oxygen, IV," NASA TM X-53773, p. 14,
 August 23, 1968, (Doc. #99000126).
I. Material Compatibility

A. Lubricants

1. Moly Lube No. 99, Moly Lube Products, Glen Cove, N.Y.
 a. Specific Oxygen Environment

 Exposure is to air at ambient temperature and atmospheric pressure excepting in cases of leaks in process system then the exposure is to gaseous and liquid oxygen, ambient temperature to -297°F, atmospheric pressure

 (1) Company Practices

 (a) Used as a lubricant for some screw threads on bolts and studs as an aid to disassembly of parts. Usually not in oxygen product stream.

B. Information Sources

1. Company Practices

 a. Company Research

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Fluoro-glide, Chemplast Inc.
 a. Specific Oxygen Environment
 Gaseous oxygen, ambient temperature, pressures to 250 psig.
 (1) Company Practices
 (a) Used as an alternate lubricant to fluorolubes when required for oxygen control and distribution system valve stems under conditions which warrant the use of a lubricant.

B. Information Sources

1. Company Practices
 a. Company Research
 (1) Yoder, L., Analytical Report on Flammability in 100% gaseous oxygen, 61-262, April 11, 1961, (Doc #99000139).
 c. Based on Research and Development of Others
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Krytox 143 AD oil (duPont)

 a. Specific Oxygen Environment

 Normal exposure is to air, but may be exposed to gaseous or liquid oxygen at ambient temperature to -297°F and atmospheric pressure in the event of a process leak.

 (1) Company Practices

 (a) Motor Bearing lubrication for liquid oxygen pump assemblies.

B. Information Sources

1. Company Practices

 b. Company Operating Experience.

 Was on a trial basis for replacement of Halocarbon lubricants which do not appear to have the lubricity and mechanical properties necessary for our application. However its performance was unacceptable.

 c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Voltalef 3A (Kingsley and Keith Limited, U.K.)
 a. Specific Oxygen Environment

 Normal exposure is to air at ambient temperature, but may be exposed to gaseous or liquid oxygen, at ambient temperature to -297°F and atmospheric pressure in the event of a process leak.

 (1) Company Practices (APL)

 (a) Centrifugal liquid oxygen pump drive trains bearings where intimate contact is possible.

 (b) Vertically mounted multi-stage centrifugal liquid oxygen pump drive motor bearings.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Esso Beacon 325

a. Specific Oxygen Environment

Normal exposure is to air at ambient temperature, but may be exposed to gaseous or liquid oxygen, at ambient temperature to -297°F and atmospheric pressure in the event of a process leak.

(1) Company Practices (APL)

(a) Oxygen Pump motor bearings (Byron Jackson).

(b) Cryostar direct drive pump motor bearings.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Lubricants

1. Formblin Y04 (Montecatini - Edison)

a. Specific Oxygen Environment

Normal exposure is to air at ambient temperature, but may be exposed to gaseous or liquid oxygen, at ambient temperature to \(-297^{\circ}\)F and atmospheric pressure in the event of a process leak.

(1) Company Practices (APL)

(a) This lubricant at present is being tested on a LIN pump for its lubrication properties prior to use on Centrifugal liquid oxygen pump gear box.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Sealants & Threading Compounds

1. Permatex #1516

a. Specific Oxygen Environment

Gaseous Oxygen, Ambient Temperature to 160°F, pressure to 4500 psig.

(1) Company Practices

(a) Centrifugal oxygen compressor, as a gasket material on the case halves of centrifugal oxygen compressors. Used in conjunction with GE RTV 60 Silicone rubber applied to the bearing portion of the case halves.

B. Information Sources

1. Company Practices

a. Company Research

b. Company Operating Experience

(1) Satisfactory experience as a gasket material on the case halves of centrifugal oxygen compressors. Used in conjunction with GE RTV 60 Silicone rubber applied to the bearing portion of the case halves.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Sealants & Threading Compounds

1. Teflon Tape -- Permacel

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to -297°F, vacuum to 3000 psi pressures.

 (1) Company Practices

 (a) All National Pipe Thread (NPT) screwed connections used in oxygen service.

 (b) APCI Design Engineering Standard 570.5.1 Nov. 1960 (Doc. #99000118).

 (c) APCI Safety Standard 609.1, June 1964 (Doc. #99000051).

 (d) APCI Safety Gram No. 27, Lubricants and Thread Components for Oxygen Systems, March 22, 1963 (Doc. #99000009).

B. Information Sources

1. Company Practices

 a. Company Research.

 Material tests performed by R&D on Permacel #412 Tape in 1959, no reactions in LOX bomb tests and no ignition in open flame. Mechanical performance tests at the same time indicated good acceptance for threaded joints and led to issuance of Design Engineering Standard 570.5.1 in November 1960 and Safety Standard 609.1 in June 1964. Further testing in 1936, 1964, and 1965 in a 2000 psig oxygen bomb indicated some reactions occurred. No reactions occurred when tape was thoroughly solvent cleaned prior to testing. Later solvent washings were analyzed to be hydrocarbon contaminated to an extent of 0.34 and 2.68 mg/sq. ft. of tape. Most popular brand names of tape have been tested with results similar to above tests.

 (2) Yoder, L., Analytical Report on % Hydrocarbon Contaminant, 61-3, Jan. 16, 1961 (Doc. #99000016).
(3) Walde, R. A., "Gaseous Oxygen Compatibility of Crosslite Fluorocarbon Tape" July 30, 1963 (Doc. #99000113). Permacel Tape was compared to Crosslite Tape and 3M Fluorocarbon Tape.

b. Company Operating Experience.

No reactions have occurred between oxygen and teflon tape in actual operating experience. The space occupied by the teflon tape in threaded connections reduces the exposure and thereby minimizes the potential for reaction.

c. Based on Research and Development of Others.

NASA publications regarding Compatibility of Materials with Liquid Oxygen is used as a guide for selection of teflon tape, other teflon products, and other inert materials of similar formulation.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Sealants & Threading Compounds

1. T-Film, Eco Mfgr. Co.

a. Specific Oxygen Environment

Gaseous and liquid oxygen, ambient temperature to -297°F, vacuum to 3000 psi pressure.

(1) Company Practices

(a) On all pipe threads. Limited use, as the principal sealant is teflon tape. Used only in special applications where teflon tape has caused assembly problems. Specifically, for threaded connections in oxygen regulator assembly.

B. Information Sources

1. Company Practices

a. Company Research

(3) Kitson, F. K., "Assembly of Oxygen Regulators" November 30, 1961. (Doc. #99000110)

b. Company Operating Experience

Experience satisfactory, but limited.

c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Sealants & Threading Compounds

1. Putti-Rope, National Greenhouse Co.

 a. Specific Oxygen Environment

 Exposure is normally to an inert or air atmosphere excepting when a leak in process system causes oxygen enrichment. Exposure under these conditions is gaseous or liquid oxygen. Ambient temperature to -297°F, atmospheric pressure.

 (1) Company Practices

 (a) Panel sealant on cold box closures.

 (b) Safety standard 609.1, June 1964, (Doc. #99000051).

B. Information Sources

1. Company Practices

 a. Company Research

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Sealants & Threading Compounds

1. Molylube "N" Bel-Ray Co., Farmingdale, N. J.
 a. Specific Oxygen Environment

 Gaseous oxygen, ambient temperature, pressures to 3000 psig.

 (1) Company Practices

 (a) Approved substitute for teflon tape on oxygen regulators where plating has reduced thread joint clearance making assembly difficult when using teflon tape.

B. Information Sources

1. Company Practices

 a. Company Research

 (1) Bronny, M., R&D Oxygen compatibility Test -- R&D Notebook #130, p. 16, 17, Feb. 11, 1963, (Doc. #99000120)

 b. Company Operating Experience.

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Sealants & Threading Compounds

1. Crosslite Fluorocarbon Tape

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to -297°F, vacuum to 3000 psi pressures.

 (1) Company Practices

 (a) All National Pipe Thread (NPT) screwed connections used in oxygen service.

 (b) APCI Design Engineering Standard 570.5.1 Nov. 1960 (Doc. #99000118).

 (c) APCI Safety Standard 609.1, June 1964 (Doc. #99000051).

B. Information Sources

1. Company Practices

 a. Company Research.

 Material tests performed by R&D on Permacel #412 Tape in 1959, no reactions in LOX bomb tests and no ignition in open flame. Mechanical performance tests at the same time indicated good acceptance for threaded joints and led to issuance of Design Engineering Standard 570.5.1 in November 1960 and Safety Standard 609.1 in June 1964. Further testing in 1936, 1964, and 1965 in a 2000 psig oxygen bomb indicated some reactions occurred. No reactions occurred when tape was thoroughly solvent cleaned prior to testing. Later solvent washings were analyzed to be hydrocarbon contaminated to an extend of 0.34 and 2.68 mg/sq. ft. of tape. Most popular brand names of tape have been tested with results similar to above tests.

 (1) Walde, R. A., "Gaseous Oxygen Compatibility of Crosslite Fluorocarbon Tape" July 30, 1963 (Doc. #99000113). Permacel Tape was compared to Crosslite Tape and 3M Fluorocarbon Tape.
b. Company Operating Experience.

No reactions have occurred between oxygen and teflon tape in actual operating experience. The space occupied by the teflon tape in threaded connections reduces the exposure and thereby minimizes the potential for reaction.

c. Based on Research and Development of Others.

NASA publications regarding Compatibility of Materials with Liquid Oxygen is used as a guide for selection of teflon tape, other teflon products, and other inert materials of similar formulation.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Sealants & Threading Compounds

1. Damco Tape

a. Specific Oxygen Environment

Gaseous and liquid oxygen, ambient temperature to -297°F, vacuum to 3000 psi pressures.

(1) Company Practices

(a) All National Pipe Thread (NPT) screwed connections used in oxygen service.

(b) APCI Design Engineering Standard 570.5.1 Nov. 1960 (Doc. #99000118).

(c) APCI Safety Standard 609.1, June 1964 (Doc. #99000051).

B. Information Sources

1. Company Practices

a. Company Research.

Material tests performed by R&D on Permacel #412 Tape in 1959, no reactions in LOX bomb tests and no ignition in open flame. Mechanical performance tests at the same time indicated good acceptance for threaded joints and led to issuance of Design Engineering Standard 570.5.1 in November 1960 and Safety Standard 609.1 in June 1964. Further testing in 1964, and 1965 in a 2000 psig oxygen bomb indicated some reactions occurred. No reactions occurred when tape was thoroughly solvent cleaned prior to testing. Later solvent washings were analyzed to be hydrocarbon contaminated to an extend of 0.34 and 2.68 mg/sq. ft. of tape. Most popular brand names of tape have been tested with results similar to above tests.

b. Company Operating Experience.

No reactions have occurred between oxygen and teflon tape in actual operating experience. The space occupied by the teflon tape in threaded connections reduces the exposure and thereby minimizes the potential for reaction.

c. Based on Research and Development of Others.

NASA publications regarding Compatibility of Materials with Liquid Oxygen is used as a guide for selection of teflon tape, other teflon products, and other inert materials of similar formulation.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Sealants & Threading Compounds

1. Sanden Tape

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to -297°F, vacuum to 3000 psi pressures.

 (1) Company Practices

 (a) All National Pipe Thread (NPT) screwed connections used in oxygen service.

 (b) APCI Design Engineering Standard 570.5.1 Nov. 1960 (Doc. #99000118).

 (c) APCI Safety Standard 609.1, June 1964 (Doc. #99000051).

B. Information Sources

1. Company Practices

 a. Company Research.

 Material tests performed by R&D on Permacel #412 Tape in 1959, no reactions in LOX bomb tests and no ignition in open flame. Mechanical performance tests at the same time indicated good acceptance for threaded joints and led to issuance of Design Engineering Standard 570.5.1 in November 1960 and Safety Standard 609.1 in June 1964. Further testing in 1936, 1964, and 1965 in a 2000 psig oxygen bomb indicated some reactions occurred. No reactions occurred when tape was thoroughly solvent cleaned prior to testing. Later solvent washings were analyzed to be hydrocarbon contaminated to an extent of 0.34 and 2.68 mg/sq. ft. of tape. Most popular brand names of tape have been tested with results similar to above tests.

b. Company Operating Experience.

No reactions have occurred between oxygen and teflon tape in actual operating experience. The space occupied by the teflon tape in threaded connections reduces the exposure and thereby minimizes the potential for reaction.

c. Based on Research and Development of Others.

NASA publications regarding Compatibility of Materials with Liquid Oxygen is used as a guide for selection of teflon tape, other teflon products, and other inert materials of similar formulation.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Sealants & Threading Compounds

1. Crane Packing Co. Tape

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to -297°F, vacuum to 3000 psi pressures.

 (1) Company Practices

 (a) All National Pipe Thread (NPT) screwed connections used in oxygen service.

 (b) APCI Design Engineering Standard 570.5.1 Nov. 1960 (Doc. #99000118).

 (c) APCI Safety Standard 609.1, June 1964 (Doc. #99000051).

B. Information Sources

 1. Company Practices

 a. Company Research.

 Material tests performed by R&D on Permacel #412 Tape in 1959, no reactions in LOX bomb tests and no ignition in open flame. Mechanical performance tests at the same time indicated good acceptance for threaded joints and led to issuance of Design Engineering Standard 570.5.1 in November 1960 and Safety Standard 609.1 in June 1964. Further testing in 1936, 1964, and 1965 in a 2000 psig oxygen bomb indicated some reactions occurred. No reactions occurred when tape was thoroughly solvent cleaned prior to testing. Later solvent washings were analyzed to be hydrocarbon contaminated to an extent of 0.34 and 2.68 mg/sq. ft. of tape. Most popular brand names of tape have been tested with results similar to above tests.

b. Company Operating Experience.

No reactions have occurred between oxygen and teflon tape in actual operating experience. The space occupied by the teflon tape in threaded connections reduces the exposure and thereby minimizes the potential for reaction.

c. Based on Research and Development of Others.

NASA publications regarding Compatibility of Materials with Liquid Oxygen is used as a guide for selection of teflon tape, other teflon products, and other inert materials of similar formulation.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Sealants & Threading Compounds

1. Oxomat
 a. Specific Oxygen Environment

 Gaseous oxygen, ambient temperature, pressures to 3000 psig.

 (1) Company Practices

 (a) Used as an alternate thread sealant in applications where teflon tape is not satisfactory. Approval from Safety Dept. is required in each specific application.

B. Information Sources

1. Company Practices

 a. Company Research

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Sealants & Threading Compounds

1. 3M Fluorocarbon Tape

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to -297°F, vacuum to 3000 psi pressures.

 (1) Company Practices

 (a) All National Pipe Thread (NPT) screwed connections used in oxygen service.

 (b) APCI Design Engineering Standard 570.5.1 Nov. 1960 (Doc. #99000118).

 (c) APCI Safety Standard 609.1, June 1964 (Doc. #99000051).

B. Information Sources

1. Company Practices

 a. Company Research.

 Material tests performed by R&D on Permacel #412 Tape in 1959, no reactions in LOX bomb tests and no ignition in open flame. Mechanical performance tests at the same time indicated good acceptance for threaded joints and led to issuance of Design Engineering Standard 570.5.1 in November 1960 and Safety Standard 609.1 in June 1964. Further testing in 1936, 1964, and 1965 in a 2000 psig oxygen bomb indicated some reactions occurred. No reactions occurred when tape was thoroughly solvent cleaned prior to testing. Later solvent washings were analyzed to be hydrocarbon contaminated to an extent of 0.34 and 2.68 mg/sq. ft. of tape. Most popular brand names of tape have been tested with results similar to above tests.
b. Company Operating Experience.

No reactions have occurred between oxygen and teflon tape in actual operating experience. The space occupied by the teflon tape in threaded connections reduces the exposure and thereby minimizes the potential for reaction.

c. Based on Research and Development of Others.

NASA publications regarding Compatibility of Materials with Liquid Oxygen is used as a guide for selection of teflon tape, other teflon products, and other inert materials of similar formulation.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Sealants and Threading Compounds

1. Sodium Silicate and China Clay Paste
 a. Specific Oxygen Environment
 Liquid and gaseous oxygen -300°F to +320°F, pressures up to 600 PSIG.

 (1) Company Practices
 (a) Horizontal split seals on oxygen turbo compressor (G.H.H. Design).

 (b) Valve bonnets.

 (c) Valve seat threads.

B. Information Sources

1. Company Practices (APL)

 b. Used in the above duties for several years without incident.

 c. Based on Research and Development of Others
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Thermal & Electrical Insulations

1. Foamglas (cellular glass) Insulation, Pittsburgh-Corning Corp.
 a. Specific Oxygen Environment

 Normal exposure is to air, but may be exposed to gaseous or liquid oxygen at ambient temperatures \(-297^\circ F\) and atmospheric pressure in the event of process leak. Also exposure may be to liquid air in the event of insulation-breakdown.

 (1) Company Practices

 (a) Thermal insulation for oxygen transmission lines.

 (b) Thermal insulation for any line operating at cryogenic temperatures below the liquefaction temperature of air.

 (c) APCI Safety Standard 609.1, page 5, June 1964, (Doc. 99000051).

 (d) APL Engineering Specification N.05, Rev. 0, January 2, 1970 (Doc. #99000381).

B. Information Sources

1. Company Practices

 a. Company Research

 (1) Yoder, L., Analytical Report on Flammability in 100% gaseous oxygen, 61-34 to 61-40 and 61-42, February 3, 1961, (Doc. #99000130).

 c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Thermal & Electrical Insulations

1. Transite, Johns-Manville

 a. Specific Oxygen Environment

 Normal exposure is to inert or air atmosphere excepting when a leak in process system causes oxygen enrichment. Exposure under these conditions is gaseous or liquid oxygen, ambient temperature to -297°F, atmospheric pressure.

 (1) Company Practices

 (a) Cold box vessel supports needed for shipping and not as structural supports. A replacement for wooden supports.

 (b) APCI Safety Standard 609.1, page 5, June 1964. (Doc. #99000051).

B. Information Sources

1. Company Practices

 a. Company Research

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Thermal & Electrical Insulations

1. Glass Wool

 s. Specific Oxygen Environment
 Normal exposure is to inert or air atmosphere excepting when a leak in process system causes oxygen enrichment. Exposure under these conditions is gaseous or liquid oxygen, ambient temp. to -297°F, atmospheric pressure.

(1) Company Practices

 (a) Thermal insulation in cold boxes.

 (c) APCI Safety Standard 609.1, p. 4, June 1964. (Doc. #99000051).

 (d) Batch analysis for oil content required on every shipment per QCL 103L. (Doc. #99000131). Maximum allowed oil contamination is 3.5 lbs. per ton of glass wool.

B. Information Sources

1. Company Practices

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Thermal & Electrical Insulations

1. Mineral Wool

 a. Specific Oxygen Environment

 Normal exposure is to inert or air atmosphere excepting when a leak in process system causes oxygen enrichment. Exposure under these conditions is gaseous or liquid oxygen, ambient temp. to -297°F and atmospheric pressure.

 (1) Company Practices

 (a) Thermal Insulation for cold boxes.

 (b) APCI Safety Standard 609.1, p. 4, June 1964 (Doc. #99000051).

 (c) APCI Design Engineering Standard 581.2, June 26, 1969, (Doc. #99000040).

 (d) Batch analysis for oil content required on every shipment of Rockwool per QCL 103L. (Doc. #99000131). Maximum allowable oil contamination is 3.5 lbs. per ton of mineral wool.

 (e) APL Engineering Specification N.02, Rev. 0, January 2, 1970 (Doc. #99000380).

B. Information Sources

1. Company Practices

 a. Company Research

 (1) Himmelberger, F. "Quality Control of Rockwool" November 6, 1959. (Doc. #99000145).

 (2) Bassler, E. "Production of Rockwool - Bethlehem Steel Company," November 12, 1959, (Doc. #99000147).
c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Thermal & Electrical Insulations

1. Perlite

a. Specific Oxygen Environment

Normal exposure is to inert or air atmosphere excepting where a leak in process system causes oxygen enrichment. Exposure under these conditions is gaseous or liquid oxygen, ambient temp. to -297°F and atmospheric pressure.

(1) Company Practices

(a) Thermal insulation for cold boxes.

(c) APCI Safety Standard 609.1, p. 4, June 1964. (Doc. #99000051).

(d) APL Engineering Specification N.01, Rev. 0, January 2, 1970 (Doc. #99000379).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Thermal & Electrical Insulations

1. Milfoam -- Milfoam Corporation

 a. Specific Oxygen Environment

 Normal exposure is to air, but may be exposed to
gaseous or liquid oxygen at ambient temperatures
to -297°F and atmospheric pressure in the event of
a process leak. Also, exposure may be to liquid
air in the event of insulation breakdown.

 (1) Company Practices

 (a) Thermal insulation for oxygen transmission
 lines as an alternate material for Foamglas
 under conditions where Foamglas is used 5
 feet on either side of a leak potential
 joint (flange, valve, etc.)

 (b) APCI memorandum, Kitson, F. K., Insulation
 Materials for Cryogenic Systems, November 1,
 1968 (Doc. #99000292).

B. Information Sources

1. Company Practices

 a. Company Research

 (1) APCI memorandum, Schmauch, G., Flammability Tests
 on Insulation, October 24, 1968 (Doc. #99000293).
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Thermal & Electrical Insulations

1. National Gypsum Blue - National Gypsum Corporation

a. Specific Oxygen Environment

Normal exposure is to air, but may be exposed to gaseous or liquid oxygen at ambient temperatures to \(-297^\circ F\) and atmospheric pressure in the event of a process leak. Also, exposure may be to liquid air in the event of insulation breakdown.

(1) Company Practices

(a) Thermal insulation for oxygen transmission lines as an alternate material for Foamglas under conditions where Foamglas is used 5 feet on either side of a leak potential joint (flange, valve, etc.) with the balance of the insulation as National Gypsum Blue.

(b) APCI memorandum, Kitson, F. K., Insulation Materials for Cryogenic Systems, November 1, 1968 (Doc. #99000292).

B. Information Sources

1. Company Practices

a. Company Research

(1) APCI memorandum, Schmauch, G., Flammability Tests on Insulation, October 24, 1968 (Doc. #99000293).
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Plastics, Elastomers, and Adhesives

1. RTV-60, Silicone Rubber Compound with SS-4004 silicone primer, G. E. Thermolite-12 curing catalyst.

a. Specific Oxygen Environment

Gaseous oxygen, ambient temperature, atmospheric pressure to 450 psig.

(1) Company Practices

(a) Centrifugal Oxygen Compressors. Used only at the bearing area of centrifugal oxygen compressor case halves where there is a continuous exposure to oxygen leaks through labyrinth seals.

B. Information Sources

1. Company Practices

a. Company Research

(1) Brophy, M., R&D High Pressure Oxygen Compatibility Test. R&D Notebook #111, p. 149, Jan. 1963, (Doc. #99000137). Ignition was obtained only with the sample in direct contact with the ignition wire at 100 and 2000 psi.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Plastics, Elastomers, and Adhesives

1. Keene Binder

 a. Specific Oxygen Environment

 No direct exposure to gaseous or liquid oxygen exists in normal use excepting where leakage from process system is possible or breaks in the insulation permit liquefaction of air on cold surfaces then the exposure is to gaseous and liquid oxygen at \(-297^\circ F\) and atmospheric pressure or oxygen enriched gaseous or liquid air at temperatures below \(-297^\circ F\) and atmospheric pressure.

 (1) Company Practices

 (a) An inorganic cement type binder used as an adhesive for sealing joints between cellular glass foam line insulating material.

 (b) APCI Safety Standard 609.1, page 5, June 1964, (Doc. #99000051).

B. Information Sources

1. Company Practices

 a. Company Research

 It is believed that this material was tested for flammability, however no test records could be found.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Plastics, Elastomers, and Adhesives

1. Kel-F 81

a. Specific Oxygen Environment

Gaseous oxygen ambient temperature pressures to 3000 psig.

(1) Company Practices

(a) Regulator seats

(b) Selected cylinder valve seats

B. Information Sources

1. Company Practices

a. Company Research

(1) Walde, R. A., "Kel-F High Pressure Oxygen Compatibility," May 17, 1963, (Doc. #99000132). The Kel-F in these tests was shredded giving results which were not in agreement with results of other testing agencies.

b. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Plastics, Elastomers, and Adhesives

1. Nylon

 a. Specific Oxygen Environment

 Gaseous oxygen, ambient temperature, pressures to 3000 psig.

 (1) Company Practices

 Nylon is not entirely compatible in oxygen service, gaseous and liquid. However successful performance history with relatively few failures in the past 25 years is the reason why nylon continues to be used in high pressure oxygen service to 3000 psig as cylinder valve seats and regulator seats.

 (a) H.P. regulator seats

 (b) Oxygen cylinder valve seats

B. Information Sources

1. Company Practices

 a. Company Research

b. Company Operating Experience.

 Nylon is not entirely compatible in oxygen service, gaseous and liquid. However successful performance history with relatively few failures in the past 25 years is the reason why nylon continues to be used in high pressure oxygen service to 3000 psig as cylinder valve seats and regulator seats.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Plastics, Elastomers, and Adhesives

1. Neoprene

a. Specific Oxygen Environment

Gaseous oxygen, ambient temperature, pressures to 3000 psig.

(1) Company Practices.

Neoprene is not entirely compatible in oxygen service, however satisfactory performance over last 25 years permits neoprene to remain in low pressure oxygen service. Its principal use is in oxygen regulators where the exposure is to normally less than 50 psig oxygen.

(a) Regulator safety valve stem seats

(b) Regulator diaphragms with neoprene molded on brass parts.

(c) "O" rings

(d) High pressure seats in two stage regulators.

B. Information Sources

1. Company Practices

b. Company Operating Experience.

(1) Neoprene is not entirely compatible in oxygen service, however satisfactory performance over last 25 years permits neoprene to remain in low pressure oxygen service. Its principal use is in oxygen regulators where the exposure is to normally less than 50 psig oxygen.

c. Based on Research & Development of Others.

I. Material Compatibility

A. Plastics, Elastomers, and Adhesives

1. Viton A, duPont

 a. Specific Oxygen Environment

 Gaseous oxygen ambient temperature to 160°F, pressures to 250 psig.

 (1) Company Practices

 (a) Soft seating faces of butterfly valves in oxygen compressor systems.

B. Information Sources

1. Company Practices

 a. Company Research

 (3) Nissler, K. H., Demag KA-27-IV/KA-4-IV Oxygen Compressor Viton A (Black), Viton E-60 (Green), Demag Letter to APCI, August 11, 1971 (Doc. #99000305).

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Plastic, Elastomers and Adhesives

 a. Specific Oxygen Environment

 Gaseous oxygen, ambient temperature, pressures up to 3000 psig.

 (1) Company Practices (APL)

 (a) H.P. Regulator Seats

 (b) Oxygen Cylinder Valve Seats
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packings

1. Graphite Impregnated Asbestos Packing.
 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to
 -297°F, atmospheric pressure to 3000 psig.

 (1) Company Practices

 (a) Packing for high pressure reciprocating
 liquid oxygen pumps

 (b) Stem packing for various valves in oxygen
 service.

B. Information Sources

1. Company Practices
 a. Company Research

 (1) Ball, W.L., "Combustible Contaminant Content in
 Graphite Impregnated Asbestos Packing." Sept. 30,
 1960., (Doc. #99000144).
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packings

1. TFE-GF-Green, Melrath Gaskets Co.
 a. Specific Oxygen Environment
 Liquid oxygen -297°F. Pressures to 250 psig.
 (1) Company Practices
 (a) Gaskets in LOX transfer hose connections

B. Information Sources

1. Company Practices
 a. Company Research
 Material glowed and charred but did not burst into flame.

 b. Company Operating Experience.
 (1) This material similar to Fluorogreen E-600.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packings

1. Vallegreen, Valley Forge Gasket Co.
 a. Specific Oxygen Environment
 Liquid oxygen, -297°F, pressures to 250 psig.

 (1) Company Practices
 (a) Gaskets in LOX transfer hose connections

B. Information Sources

1. Company Practices
 a. Company Research
 Material glowed and charred but did not burst into flame.

 b. Company Operating Experience.
 (1) This material similar to Fluorogreen E-600.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packings

1. Fluorogreen E-600, John Dore Company

 a. Specific Oxygen Environment

 Liquid Oxygen, -297°F, Pressures to 250 psig.

 (1) Company Practices

 (a) Gaskets in LOX transfer hose connections.

B. Information Sources

1. Company Practices

 a. Company Research

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packings

1. Melrath 150 -- sheet asbestos gasket material, Melrath Gasket Co.
 a. Specific Oxygen Environment
 Gaseous and liquid oxygen ambient temperature to -297°F, Pressures to 250 psig.
 (1) Company Practices
 (a) Flange gasket connections on oxygen vaporizers

B. Information Sources

1. Company Practices
 a. Company Research
 b. Company Operating Experience.
 As an alternate for Garlock 900.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packings

1. KM226 Sheet asbestos gasket material, Nicolet Industries Inc.

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen ambient temperature to -297°F
 Pressures to 250 psig.

 (1) Company Practices

 (a) Flange gasket connections on oxygen vaporizers.

B. Information Sources

1. Company Practices

 a. Company Research

 b. Company Operating Experience.

 As an alternate for Garlock 900.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packings

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, 160°F to -297°F, pressures to 600 psig.

 (1) Company Practices

 (a) Most flange gaskets in air separation plants
 and in oxygen lines.

B. Information Sources

1. Company Practices

 a. Company Research

 (3) Nissler, K. H., Demag KA-27-IV/KA-4-IV Oxygen Compressor Viton A (Black), Viton E-60 (Green), Demag Letter to APCI, August 11, 1971 (Doc. #99000305).

 b. Company Operating Experiences.

 The gasket is not completely compatible with oxygen, however, 25 years of incident free successful service warrants its use in low risk applications.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packings

1. Vulcanized Red Fibre Gaskets

 a. Specific Oxygen Environment

 Exposure is to air at ambient temperature and atmospheric pressure excepting if leak in system develops, then exposure is to gaseous oxygen at ambient temperature and atmospheric pressure.

 (1) Company Practices

 (a) Oxygen cylinder valve part not exposed to oxygen except on failure of system.

B. Information Sources

1. Company Practices

 a. Company Research

 Limited to hydrocarbon analysis for hazard evaluation.

 (1) Moysan, S. R., Analytical Report on Qualitative and Quantitative Oil Analysis, 63-1662, 63-1663, November 6, 1963, (Doc. #99000143).
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packings

1. KI246 sheet asbestos gasket material - Nicolet Industries
 a. Specific Oxygen Environment
 Gaseous and liquid oxygen ambient temperature to -297°F, pressures to 250 psig.
 (1) Company Practices
 (a) Flange gasket connections on oxygen vaporizers

B. Information Sources

1. Company Practices
 a. Company Research

 b. Company Operating Experience.
 As an alternate for Garlock 900.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packings

1. Teflon, duPont

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, 100°F to -297°F, pressures to 3000 psig.

 (1) Company Practices

 (a) Oxygen cylinder valve and manifold shut-off valve stem packing.

 (b) Stem packing in various valves in oxygen production compression, distribution, and control systems.

 (c) APL Engineering Specification L.14, Rev. 0, July 8, 1969 (Doc. #99000377).

B. Information Sources

1. Company Practices

 a. Company Research

 The evaluation of teflon tape applies to packing material as well.

 (3) Walde, R. A., "Gaseous Oxygen Compatibility of Crosslite Fluorocarbon Tape" July 30, 1963, (Doc. #99000113). Permacel Tape was compared to Crosslite Tape and 3M Fluorocarbon Tape.
(4) Geist, J. M., Controlled Kinetics Experimentation --
Teflon Hose, APCI MAR 87-0-8820, May 1960
(Doc. #99000057).

(5) Geist, J. M., Controlled Kinetics Experiments --
Teflon Hoses, Supported by Braided Stainless Steel
Housing, and Rubber Hoses, Plasite No 7122H, APCI
MAR 87-0-8820, June 1960, (Doc. #99000058).

c. Based on Research & Development of Others.

(1) Key, C. F. and W. A. Riehl, NASA-GCMSFC, "Compati-
bility of Materials with Liquid Oxygen,"
MTP-P&VE-M-63-14, p. 54, December 4, 1963,
(Doc. #99000128).
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packings

1. Viton A, duPont

a. Specific Oxygen Environment

Gaseous oxygen, ambient temperature to 160°F, pressures to 250 psig.

(1) Company Practices

(a) Flange gaskets for piping systems

(b) "0" ring packings for valves

B. Information Sources

1. Company Practices

a. Company Research

(3) Nissler, K. H., Demag KA-27-IV/KA-4-IV Oxygen Compressor Viton A (Black), Viton E-60 (Green), Demag Letter to APCI, August 11, 1971 (Doc. #99000305).

c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packing

 a. Specific Oxygen Environment

 Normal exposure is to air or nitrogen, but may be exposed to gaseous or liquid oxygen at ambient temperature to -297°F and atmospheric pressure in the event of a process leak.

 (1) Company Practices (APL)

 (a) Cold Pipe Support Insulating and Packing material.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packing

1. Klingerit 661 (Richard Klinger Limited U.K.)

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen systems, 160°F to -297°F and pressures up to 600 psig.

 (1) Company Practices (APL)

 (a) All flange gaskets in air separation plants and in oxygen lines
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Gaskets and Packing

1. Tygaflor cementable PTFE tapes (Tygadure Limited U.K.).

 a. Specific Oxygen Environment

 Normal exposure is to air, but may be exposed to gaseous or liquid oxygen at ambient temperature to -297°F and atmospheric pressure in the event of a process leak.

 (1) Company Practices (APL).

 (a) APL have used these tapes to provide a low friction joint between two metallic faces of a penetration plate so that pipe stresses could be minimized.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Tarset - Pittsburgh Chemical Co.

 a. Specific Oxygen Environment

 Exposure is to air excepting where leakage from system occurs. Exposure is then to gaseous oxygen at ambient temperature and atmospheric pressure.

 (1) Company Practices

 (a) Underground transmission line coating.

 (b) APCI Safety Standard 609,1, p. 3, June 1964, (Doc. #99000051).

 (c) This is an alternate coating material to Plasite.

B. Information Sources

1. Company Practices

 a. Company Research

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Salfas Mastic #31-97, Benjamin Foster Co.
 a. Specific Oxygen Environment

 Exposure is to air excepting where leakage from process system occurs. Exposure then is to gaseous or liquid oxygen, ambient temperature to -297°F, and atmospheric pressure.

 (1) Company Practices

 (a) A sealant for thermal insulation on product transmission lines operating at a temperature below the liquefaction temp. of air.

 (b) APCI Safety Standard 609.1, p. 5, June 1964, (Doc. #99000051).

B. Information Sources

1. Company Practices
 a. Company Research

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

a. Specific Oxygen Environment

 Exposure is to air excepting where leakage from process system occurs. Exposure then is to gaseous or liquid oxygen, ambient temperature to -297°F, and atmospheric pressure.

 (1) Company Practices

 (a) Underground transmission line coating.

 (b) Above ground insulated transmission line coating.

 (c) APCI Safety Standards 609.1, p. 3, June 1964, (Doc. #99000051).

B. Information Sources

1. Company Practices

 a. Company Research

 (2) Geist, J. M., Controlled Kinetics Experiments -- Teflon Hoses, Supported by Braided Stainless Steel Housing, and Rubber Hoses, Plasite No. 7122H, APCI MAR 87-0-8820, June 1960, (Doc. #99000058).
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Copper Pipe ASTM B42

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to -297°F, pressure to 3000 psig

 (1) Company Practices

 (a) Various components of oxygen plant piping systems, and instrument systems.

 (b) Design Engineering Standard 574.1, p. 3, May 1962, (Doc. #99000161).

B. Information Sources

1. Company Practices

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Copper tube ASTM B75

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to -297°F, pressures to 2300 psig.

 (1) Company Practices

 (a) Interconnecting pipe systems in oxygen plants

 (b) Design Engineering Standard 574.1, May 1962, (Doc. #99000161).

 (c) Design Engineering Standard 574.2, Jan. 1964, (Doc. #99000162).

 (d) Design Engineering Standard 574.10, Jan. 1964, (Doc. #99000163).

 (e) Design Engineering Standard 574.50, Nov. 1968, (Doc. #99000164).

 (f) Design Engineering Standard 574.51, Nov. 1968, (Doc. #99000165).

 (g) Design Engineering Standard 574.52, April 1967, (Doc. #99000166).

 (h) Design Engineering Standard 574.54, Jan. 1964, (Doc. #99000167).

B. Information Sources

 1. Company Practices

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Red Brass Pipe ASTM B43

 a. Specific Oxygen Environment

 Gaseous oxygen, ambient temperature, pressures to 3000 psig.

 (1) Company Practices

 (a) Piping headers for gaseous oxygen filling and discharging cylinder manifolds.

B. Information Sources

 1. Company Practices

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Aluminum ASTM B211 2024-T4

 a. Specific Oxygen Environment

 Exposure is to air excepting where leakage from process system occurs. Exposure then is to gaseous or liquid oxygen, ambient temperature to -297°F, and atmospheric pressure.

 (1) Company Practices

 (a) Flange bolting and studs.

 (b) Design Engineering Standard 571.2, Nov. 1967, (Doc. #99000156).

 (c) Design Engineering Standard 571.3, Nov. 1967, (Doc. #99000157).

 (d) Design Engineering Standard 571.4, Nov. 1967, (Doc. #99000158).

 (e) The references listed below in most tests for compatibility list aluminum without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 c. Based on Research & Development of Others.

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Aluminum, ASTM B 210 3003
 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to -297°F, pressures to 900 psig.

 (1) Company Practices

 (b) Coiled aluminum instrument tubing, 3/8" O.D. x .035" wall, ASTM 3003-O.

 (c) Design Engineering Standard 571.50, Nov. 1968, (Doc. #99000159).

 (d) Design Engineering Standard 571.51, Nov. 1968, (Doc. #99000160).

 (e) The references listed below in most tests for compatibility list aluminum without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Aluminum ASTM B209 5083-0

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to \(-297^\circ F\),
 pressures to 150 psig.

 (1) Company Practices

 (a) Plant piping sizes \(\frac{1}{4}"\) through 36"

 (b) Fittings for pipe sizes \(\frac{1}{4}"\) through 36"

 (c) Design Engineering Standard 571.2, Oct. 1965,
 (Doc. #99000155).

 (d) Design Engineering Standard 571.3, Nov. 1967,
 (Doc. #99000156).

 (e) The references listed below in most tests for
 compatibility list aluminum without identifying
 ASTM number or grades. However, we interpret
 the references as being applicable to the var-
 ious ASTM numbers and grades as a class.

 B. Information Sources

 1. Company Practices

 c. Based on Research & Development of Others.

 (1) Key, C. F. and W. A. Riehl, NASA-GCMSFC, "Compati-
 bility of Materials with Liquid Oxygen," MTP-P&VE-M-63-14,
 p. 66, 67, December 4, 1963,
 (Doc. #99000128).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Aluminum, ASTM B210 6061-T6

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to -297°F, pressures to 900 psig.

 (1) Company Practices

 (a) Instrument tubing 3/8" O.D. x .065" wall is mandatory for analyzer taps.

 (b) Design Engineering Standard 571.50, Nov. 1968, (Doc. #99000159).

 (c) Design Engineering Standard 571.51, Nov. 1968, (Doc. #99000160).

 (d) The references listed below in most tests for compatibility list aluminum without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Aluminum ASTM B241 6061-T6

 a. Specific Oxygen Environment

 Gas and liquid oxygen, ambient temperature to -297°F, pressures to 300 psi.

 (1) Company Practices

 (a) Piping systems to 12" diameter

 (b) Design Engineering Standard 571.3, November 1967, (Doc. #99000157).

 (c) Design Engineering Standard 571.4, November 1967, (Doc. #99000158).

 (d) The references listed below in most tests for compatibility list aluminum without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Aluminum ASTM B247 6061-T6

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to -297°F, pressures to 3000 psig.

 (1) Company Practices

 (a) Anodized body, bonnet, and backcaps of regulators to 3000 psig.

 (b) Forged flanges for interconnecting plant aluminum piping to 300 psig.

 (c) Forged fittings for interconnecting plant aluminum piping to 300 psig.

 (d) Design Engineering Standard 571.2, November 1967, (Doc. #99000156).

 (e) Design Engineering Standard 571.3, November 1967, (Doc. #99000157).

 (f) Design Engineering Standard 571.4, November 1967, (Doc. #99000158).

 (g) The references listed below in most tests for compatibility list aluminum without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Aluminum B361 WP6061-T6

a. Specific Oxygen Environment

Gaseous and liquid oxygen, ambient temperature to -297°F, pressures to 300 psig

(1) Company Practices

(a) Wrought butt weld fittings to 12 in. pipe size for plant piping systems.

(b) Design Engineering Standard 571.3, November 1967, (Doc. #99000157).

(c) Design Engineering Standard 571.4, November 1967, (Doc. #99000158).

(d) The references listed below for most tests for compatibility list aluminum without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Carbon Steel - (Oxygen Service)

a. Specific Oxygen Environment

Gaseous oxygen, -20°F to 100°F, pressures to about 3000 psig.

(1) Company Practices

(b) Fittings for transmission lines using ASTM A105Gr2 and A234 WPB or WPA material

(c) Gaseous oxygen cylinders of D.O.T. specified steels at pressures to 3000 psig and temperatures of -20°F to 130°F.

(d) Safety relief valve springs in cold gas service at ambient temperatures down to -320°F and pressures to 160 psig.

(g) Design Engineering Standard 578.10.3, June 1962, (Doc. #99000170).

(h) Design Engineering Standard 578.10.4, Jan. 1964, (Doc. #99000171).

(i) Design Engineering Standard 578.10.5, Jan. 1964, (Doc. #99000172).

(j) Design Engineering Standard 578.10.6, June 1962, (Doc. #99000173).

(1) Design Engineering Standard 578.60.4, Sept. 1969 (Doc. #99000031).

(m) Design Engineering Standard 578.60.5, Sept. 1969, (Doc. #99000032).

(n) Design Engineering Standard 578.60.6, Sept. 1969, (Doc. #99000033).

(o) The references listed below in most tests for compatibility list steel or steel alloys without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 a. Company Research

 (1) Foster, R. H., "Cold Test of 1/2" Safety Valve with Carbon Steel Spring, W.O. #10-7071, Project 00-5-3246-51.12" Technical Memorandum No. 79, April 27, 1965, (Doc. #99000185).

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Stainless Steel ASTM A312 TP304

 a. Specific Oxygen Environment

 Gaseous and Liquid Oxygen, ambient temperature to $-297^\circ F$
 pressures to 3000 psig.

 (1) Company Practices

 (a) Piping systems at oxygen compressors as dictated by conditions of installation

 (b) Instrument piping above 1500 psig

 (c) Lubricating oil piping in bearing areas of centrifugal oxygen compressors. Exposure is to air excepting where leakage from system occurs.

 (d) Design Engineering Standard 578.30.1, May 1962, (Doc. #99000174).

 (g) Design Engineering Standard 578.30.4, January 1964, (Doc. #99000177).

 (i) Design Engineering Standard 578.30.6, January 1964, (Doc. #99000179).

 (j) Design Engineering Standard 578.30.8, January 1964, (Doc. #99000180).

(m) The references listed below in most tests for compatibility list stainless steel without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

a. Company Research

(1) Bailey, B., "Ignition Limits of Some Stainless Steels in an Oxygen Atmosphere." Project 00-7-3480-51.00, APCI Technical Memorandum No. 114, (Doc. #99000188).

b. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Stainless Steel ASTM A240 304

a. Specific Oxygen Environment

Gaseous and liquid oxygen, ambient temperature to -297°F pressures to 3000 psig

(1) Company Practices

(a) Inner vessel of cryogenic storage tanks, highway tankers and railroad tankers.

(b) Structural support members of internal components of air separation plant cold boxes. Exposure is to air or inert gas excepting where leaks in system occur.

(c) Medium pressure liquid oxygen dewars.

(d) The references listed below in most tests for compatibility list stainless steel without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

a. Company Research

(1) Bailey, B., "Ignition Limits of Some Stainless Steels in an Oxygen Atmosphere." Project 00-7-3480-51.00, APCI Technical Memorandum No. 114, (Doc. #99000188).

b. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility
 A. Metals, alloys, solders, and surface treatments
 1. Stainless Steel ASTM A403 WP304 and A403 WP304L.
 a. Specific Oxygen Environment
 Gaseous and liquid oxygen, ambient temperature to -297°F, pressures to 3000 psig
 (1) Company Practices
 (a) Wrought stainless fittings for piping systems.
 (b) Design Engineering Standard 578.30.1, May 1962, (Doc. #99000174).
 (c) Design Engineering Standard 578.30.2, November 1967, (Doc. #99000175).
 (e) Design Engineering Standard 578.30.4, January 1964, (Doc. #99000177).
 (g) Design Engineering Standard 578.30.6, January 1964, (Doc. #99000179).
 (h) Design Engineering Standard 578.30.8, January 1964, (Doc. #99000180).
 (k) The references listed below in most tests for compatibility list stainless steel without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.
B. Information Sources

1. Company Practices

a. Company Research

(1) Bailey, B., "Ignition Limits of Some Stainless Steels in an Oxygen Atmosphere." Project 00-7-3480-51.00, APCI Technical Memorandum No. 114, (Doc. #99000188).

(2) Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Stainless steel ASTM A320 B8304

 a. Specific Oxygen Environment

 Exposure is to air excepting where leakage from system occurs. Exposure then is to gaseous or liquid oxygen, ambient temperature to -297°F, and atmospheric pressure.

 (1) Company Practices

 (a) Bolting and studs used with forged flanges in piping systems for liquid and gaseous oxygen.

 (b) Design Engineering Standard 578.30.1, May 1962, (Doc. #99000174).

 (c) Design Engineering Standard 578.30.2, November 1967, (Doc. #99000175).

 (e) Design Engineering Standard 578.30.4, January 1964, (Doc. #99000177).

 (g) Design Engineering Standard 578.30.6, January 1964, (Doc. #99000179).

 (h) Design Engineering Standard 578.30.8, January 1964, (Doc. #99000180).

 (k) The references listed below in most tests for compatibility list stainless steel without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.
B. Information Sources

1. Company Practices

a. Company Research

(1) Bailey, B., "Ignition Limits of Some Stainless Steels in an Oxygen Atmosphere." Project 00-7-3480-51.00, APCI Technical Memorandum No. 114, (Doc. #99000188).

c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Stainless Steel ASTM A194 8T321

a. Specific Oxygen Environment

(1) Company Practices

(a) Flange nuts in piping systems for liquid and gaseous oxygen.

(b) Design Engineering Standard 578.30.1, May 1962, (Doc. #99000174).

(c) Design Engineering Standard 578.30.2, November 1967, (Doc. #99000175).

(e) Design Engineering Standard 578.30.4, January 1964, (Doc. #99000177).

(g) Design Engineering Standard 578.30.6, January 1964, (Doc. #99000179).

(h) Design Engineering Standard 578.30.8, January 1964, (Doc. #99000180).

(k) The references listed below in most tests for compatibility list stainless steel without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.
B. Information Sources

1. Company Practices

a. Company Research

(1) Bailey, B., "Ignition Limits of Some Stainless Steels in an Oxygen Atmosphere." Project 00-7-3480-51.00, APCI Technical Memorandum No. 114, (Doc. #99000188).

c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Stainless steels, type 416 cadmium plated

a. Specific Oxygen Environment

Gaseous oxygen, ambient temperature, pressure to 3000 psig.

(1) Company Practices

(a) Oxygen cylinder valve stem tang.

(b) The references listed below in most tests for compatibility list stainless steel without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

a. Company Research

(1) Bailey, B., "Ignition Limits of Some Stainless Steels in an Oxygen Atmosphere." Project 00-7-3480-51.00, APCI Technical Memorandum No. 114, (Doc. #99000188).

2. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Stainless Steel ASTM A182 F 304 and ASTM A182 F 316

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to -297°F, pressures to 3000 psig.

 (1) Company Practices

 (a) Forged fittings for piping systems.

 (b) Tube adaptors in instrument piping service

 (c) Design Engineering Standard 578.30.1, May 1962, (Doc. #99000174).

 (f) Design Engineering Standard 578.30.4, January 1964, (Doc. #99000177).

 (g) Design Engineering Standard 578.30.5, January 1964, (Doc. #99000178).

 (h) Design Engineering Standard 578.30.6, January 1964, (Doc. #99000179).

 (i) Design Engineering Standard 578.30.8, January 1964, (Doc. #99000180).

 (l) The references listed below in most tests for compatibility list stainless steel without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.
B. Information Sources

1. Company Practices

 a. Company Research

 (1) Bailey, B., "Ignition Limits of Some Stainless Steels in an Oxygen Atmosphere." Project 00-7-3480-51.00, APCI Technical Memorandum No. 114, (Doc. #99000188).

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Stainless Steel, type 304, unidentified as to ASTM spec.

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to \(-297^\circ F\), pressures to 3000 psig.

 (1) Company Practices

 (a) Sintered filters, high pressure oxygen regulators

 (b) Springs, nozzles, stems, pins, and seat retainers in oxygen regulators.

 (c) Shafts, rods, and specific parts for reciprocating and centrifugal oxygen pumps and compressors.

 (d) Forged and cast stainless steel valve bodies

 (e) Forged, cast, and machined stainless steel valve trim.

 (f) Bourdon tubes in special gauges.

 (g) Design Engineering Standard 578.60.1, p. 2, April 1971, (Doc. #99000028).

 (k) The references listed below in most tests for compatibility list stainless steel without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.
B. Information Sources

1. Company Practices

a. Company Research

(1) Bailey, B., "Ignition Limits of Some Stainless Steels in an Oxygen Atmosphere." Project 00-7-3480-51.00, APCI Technical Memorandum No. 114, (Doc. #99000186).

b. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Copper-Silicon ASTM B98GrB

 a. Specific Oxygen Environment

 Exposure is to air excepting where leakage from system occurs. Exposure then is to gaseous or liquid oxygen, ambient temperature to -297°F, and atmospheric pressure.

 (1) Company Practices

 (a) As bonnet bolts, studs, and nuts for various valve bodies or assemblies.

 (b) The references listed below in most tests for compatibility list metals without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 b. Company Operating Experience

 (1) Acceptable material through years of successful service.

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Free Machining Brass

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to
 -297°F, pressures to 3000 psig.

 (1) Company Practices

 (a) Regulator inlet, outlet, gages, and misc. parts.

 (b) Oxygen Cyl. valve parts - packing nut, stem
 body, stem pin, plug, safety nut, handwheel
 nut. Some parts exposed to oxygen only when
 leak in systems occur.

 (c) Valve trim.

 (d) The references listed below in most tests for
 compatibility list metals without identifying
 ASTM number or grades. However, we interpret
 the references as being applicable to the var-
 ious ASTM numbers and grades as a class.

B. Information Sources

 1. Company Practices

 b. Company Operating Experience

 (1) Accepted material through years of successful
 service.

 c. Based on Research & Development of Others.

 (1) Key, C. F. and W. A. Riehl, NASA-GCMSFC, "Compati-
 bility of Materials with Liquid Oxygen," MTP-P&WE-M-63-14,
 December 4, 1963, (Doc. #9900018).

 (2) Key, C. F. and W. A. Riehl, NASA-GCMSFC, "Compati-
 bility of Materials with Liquid Oxygen," NASA
 TM X-085, August 1964, (Doc. #99000127).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Beryllium Copper

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to -297°F, pressures to 3600 psig

 (1) Company Practices

 (a) Bourdon tubes in pressure gauges above 800 psig.

 (b) Rupture discs in oxygen cylinder valves.

 (c) Inlet and outlet valves on some reciprocating liquid oxygen pumps.

 (e) The references listed below in most tests for compatibility list metals without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Stainless Steel ASTM A269 304

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to \(-297^\circ F\)
 pressures to 3000 psig.

 (1) Company Practices

 (a) Tubing in storage vessel piping systems.

 (b) The references listed below in most tests for
 compatibility list stainless steel without
 identifying ASTM number or grades. However,
 we interpret the references as being applicable
 to the various ASTM numbers and grades as a
 class.

B. Information Sources

1. Company Practices

 a. Company Research

 (1) Bailey, B., "Ignition Limits of Some Stainless
 Steels in an Oxygen Atmosphere," Project
 00-7-3480-51.00, APCI Technical Memorandum No. 114,
 (Doc. #99000188).

 c. Based on Research & Development of Others.

 (1) Key, C. F. and W. A. Riehl, NASA-GCMSFC, "Compati-
 bility of Materials with Liquid Oxygen,
 MTP-P&VE-M-63-14, p. 69, 70, December 4, 1963,
 (Doc. #99000128).

 (2) Jackson, J. D., W. K. Boyd, and P. D. Miller, Defense
 Metals Information Center, Battelle Memorial
 Institute, "Reactivity of Metals with Liquid and
 Gaseous Oxygen," DMIC Memorandum 163, p. 23,
 January 15, 1963, (Doc. #99000153).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Bronze ASTM B61 or B62

a. Specific Oxygen Environment

Gaseous and liquid oxygen, ambient temperature to -297°F, pressures to 3000 psig.

(1) Company Practices

(a) Valve bodies and valve trim for pipe line, oxygen compressor, and air separation plants.

(b) Sintered bronze filters in regulator inlet connections.

(c) Design Engineering Standard 579.3, Jan. 1963, (Doc. #99000183). (Specification for various valves used in systems)

(d) The references listed below in most tests for compatibility list metals without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Brass sheet or plate, ASTM B36

 a. Specific Oxygen Environment

 Gaseous oxygen, ambient temperatures, pressures to 1500 psig.

 (1) Company Practices

 (a) Impingement plates in carbon steel oxygen transmission lines where flow is into the side of a fabricated tee in lines larger than 6" in diameter.

 (b) Design Engineering Standard 578.60.3, Note 3, September 1969, (Doc. #99000030).

 (c) The references listed below in most tests for compatibility list metals without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Monel, ASTM B164

 a. Specific Oxygen Environment

 Gaseous or liquid oxygen, ambient temperature to \(-279^\circ F\), pressures to 3000 psig.

 (1) Company Practices

 (a) Tees used in carbon steel oxygen lines up to 6" in diameter where the flow is into the side port.

 (b) Piping downstream of some pressure control valves in critical velocity areas.

 (c) Valve forgings in critical velocity areas of oxygen transmission systems.

 (d) Reciprocating liquid oxygen pump rods.

 (e) Suction strainers for oxygen compressors.

 (f) Valve trim in critical velocity areas of oxygen transmission lines.

 (g) Design Engineering Standard 578,60,3, Note 3,

 (h) The references listed below in most tests for compatibility list metals without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Stainless Steel ASTM A351 Gr CP8

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, ambient temperature to -297°F, pressures to 1500 psig.

 (1) Company Practices

 (a) Cast stainless steel valve bodies and valve trim in specified applications in oxygen systems.

 (b) Design Engineering Standard 579.3, Jan. 1963, (Doc. #99000183). (Specification for various valves used in systems.)

 (c) The references listed below in most tests for compatibility list stainless steel without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 a. Company Research

 (1) Bailey, B., "Ignition Limits of Some Stainless Steels in an Oxygen Atmosphere." Project 00-7-3480-51.00, APCI Technical Memorandum No. 114, (Doc. #99000118).

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Stainless, 9% Nickel Steel, ASTM A353GB

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen ambient temperature to -297°F, pressures to 250 psig.

 (1) Company Practices

 (a) Inner vessel of cryogenic liquid storage containers.

 (b) The references listed below in most tests for compatibility list stainless steel without identifying ASTM number or grades. However, we interpret the references as being applicable to the various ASTM numbers and grades as a class.

B. Information Sources

1. Company Practices

 a. Company Research

 (1) Bailey, R., "Ignition Limits of Some Stainless Steels in an Oxygen Atmosphere." Project 00-7-3480-51.00, APCI Technical Memorandum No. 114, (Doc. #99000188).

 c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Copper Tube ASTM B88

a. Specific Oxygen Environment

Gaseous and liquid oxygen, ambient Temperature to -297°F, pressures to 900 psig.

(1) Company Practices

(a) Interconnecting pipe systems in oxygen plants

(b) Design Engineering Standard 574.1, May 1962, (Doc. #99000161).

(c) Design Engineering Standard 574.2, Jan. 1964, (Doc. #99000162).

(d) Design Engineering Standard 574.10, Jan. 1964, (Doc. #99000163).

(e) Design Engineering Standard 574.50, Nov. 1968 (Doc. #99000164).

(f) Design Engineering Standard 574.51, Nov. 1968 (Doc. #99000165).

B. Information Sources

1. Company Practices

c. Based on Research & Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Carbon Steel - (Non Oxygen Service with possible exposure to oxygen).

a. Specific Oxygen Environment

Exposure is to air excepting where leakage from system occurs. Exposure is then to gaseous oxygen at ambient temperature and atmospheric pressure.

(1) Company Practices

(a) Flanges of ASTM A181 Gr 1 material in transmission and piping systems

(b) Studs of ASTM A193 Gr B7 or A307GrB material

(c) Nuts of ASTM A194 GrH material

(d) Oxygen regulator adjusting springs and spring buttons.

(e) Outer shells of storage tanks and highway tankers of ASTM A7 material

(f) Design Engineering Standard 578.10.2, October 1966, (Doc. #99000169).

(g) Design Engineering Standard 578.10.3, June 1962, (Doc. #99000170).

(h) Design Engineering Standard 578.10.4, January 1964, (Doc. #99000171).

(i) Design Engineering Standard 578.10.5, January 1964, (Doc. #99000172).

(j) Design Engineering Standard 578.10.6, June 1962, (Doc. #99000173).

(k) Design Engineering Standard 578.10.9, June 1962 (Doc. #99000184).

(m) Design Engineering Standard 578.60.4,
September 1969, (Doc. #99000031).

(n) Design Engineering Standard 578.60.5,
September 1969, (Doc. #99000032).

(o) Design Engineering Standard 578.60.6,
September 1969, (Doc. #99000033).

(p) The references listed below in most tests for
compatibility list steel or steel alloys without
identifying ASTM number or grade. However,
we interpret the references as being applicable
to the various ASTM numbers and grades as a
class.

B. Information Sources

1. Company Practices

 a. Company Research

 (1) Foster, R. H., "Cold Test of 1/2" Safety Valve
 with Carbon Steel Spring, W.O. #10-7071, Project
 00-5-3246-51.12" Technical Memorandum No. 79,
 April 27, 1965, (Doc. #99000185).

 (2) Kehat, E., "Burning of Steel Pipes in a Flowing
 Oxygen Stream." April 17, 1961, (Doc. #99000187).

 (3) Bailey, E., "Ignition Limits of Carbon Steel in
 Oxygen-Nitrogen Atmospheres", IW0 LB-0043, APCI
 Technical Memorandum No. 112, May 8, 1968,
 (Doc. #99000187).

 (4) Kehat, E., APCI Safety, Hazards and Explosion Testing
 Ucon Type Lubricants, Steel Pipes, APCI MAR 87-0-8820,
 April, 1961, (Doc. #99000059).

 c. Based on Research & Development of Others.

 (1) Key, C. F. and W. A. Riehl, NASA-GCMSFC, "Compati-
 bility of Materials with Liquid Oxygen," MTP-P&VE-M-63-14,
 p. 69, 70, December 4, 1963, (Doc. #99000128).

 (2) Jackson, J. D., W. K. Boyd, and P. D. Miller, Defense
 Metals Information Center, Battelle Memorial
 Institute, "Reactivity of Metals with Liquid and
 Gaseous Oxygen," DMIC Memorandum 163, p. 23,
 January 15, 1963, (Doc. #99000152).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility
 A. Metals, alloys, solders, and surface treatments
 1. Spheroidal graphite Iron (Continental standard GGG 38).
 a. Specific Oxygen Environment
 Gaseous oxygen, ambient to 320°F, pressure up to 600 PSIG
 (1) Company Practices (APL)
 (a) High Pressure casing for O₂ Turbo Compressors.
 (b) Cylinder heads and jackets for High Pressure O₂ Reciprocating Compressors.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Silver

 a. Specific Oxygen Environment

 Gaseous oxygen, ambient to 320°F pressures up to 600 PSIG.

 (1) Company Practices (APL)

 (a) Oxygen turbo compressor labyrinths.
I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Novonox Stainless steel alloy
 To DIN (German National Standards), Composition:
 5% Cr, 17% Ni, 4% Cu, Niobium Stabilizer, balance Fe.

 a. Specific Oxygen Environment

 Gaseous oxygen, ambient to 320°F, pressures up to
 600 PSIG.

 (1) Company Practices (APL)

 (a) Oxygen turbo - compressor Impellers.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Muntz Metal 60/40 Type, Composition: Cu 58 - 61%, Zn 38.5 - 42%, Pb 0.35 - 0.9%

 a. Specific Oxygen Environment

 Gaseous oxygen, ambient to 320°F pressures up to 600 PSIG.

 (1) Company Practices (APL)

 (a) Oxygen Turbo compressor
 Cooler tube plates
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Metals, alloys, solders, and surface treatments

1. Alpha brass tube Type TCL 100 or DTD 5019
 (Tungum Company Limited U.K.).
 Composition: Copper 86%, Alum. 1.2%, Nickel 1.4%
 Silicon 1.3%, Iron 0.25%, Lead .05%, Tin 0.1%,
 Manganese 0.1%. Total other impurities 0.5%, Zinc
 Remainder.

 a. Specific Oxygen Environment

 Gaseous and liquid oxygen, 100°F to -297°F, pressures
 up to 3000 PSIG.

 (1) Company Practices (APL)

 (a) Oxygen manifold piping

 (b) Oxygen bottling facilities

 (c) Small standard plant cold box piping
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Chemicals, solvents, and miscellaneous

1. 1,1,1, dichloroethane

 a. Specific Oxygen Environment

 None. Exposure may be to gaseous or liquid oxygen, ambient temperature to -297°F, pressures to 300 psig if solvent is not completely removed from equipment or parts before introducing to oxygen service.

 (1) Company Practices

 (a) Solvent agent for hydrocarbon decontamination of small parts used in oxygen systems.

B. Information Sources

1. Company Practices

 a. Company Research

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Chemicals, solvents, and miscellaneous

1. 1,1,1-Trichloroethane

 a. Specific Oxygen Environment

 None. Exposure may be to gaseous or liquid oxygen, ambient temperature to -297°F, pressures to 3000 psi if solvent is not completely removed from equipment or parts before introducing to oxygen service.

 (1) Company Practices

 (a) Solvent agent for hydrocarbon decontamination of small parts used in oxygen systems.

 (b) Safety Standard 609.1, page 2, June 1964, (Doc. #990000051).

B. Information Sources

1. Company Practices

 a. Company Practices

 c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Chemicals, solvents, and miscellaneous

1. Chloroform

a. Specific Oxygen Environment

None. Exposure may be to gaseous or liquid oxygen, ambient temperature to -297°F, pressures to 300 psi if solvent is not completely removed from equipment or parts before introducing to oxygen service.

(1) Company Practices

(a) Solvent agent acceptable for hydrocarbon decontamination of small parts used in oxygen systems.

(b) Laboratory applications

B. Information Sources.

1. Company Practices

a. Company Research

c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Chemicals, solvents, and miscellaneous

1. Carbon Tetrachloride

a. Specific Oxygen Environment

None. Exposure may be to gaseous oxygen ambient temperature, and atmospheric pressure if solvent is not completely removed from equipment or parts before introducing to oxygen service.

(1) Company Practices

(a) Use of carbon tetrachloride prohibited in all areas of activity excepting as authorized in certain laboratory applications.

(b) Safety Gram No. 68, Carbon Tetrachloride, Feb. 21, 1969, (Doc. #99000106).

B. Information Sources

1. Company Practices

a. Company Research

c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Chemicals, solvents, and miscellaneous

1. Trichloroethylene

a. Specific Oxygen Environment

None. Exposure may be to gaseous or liquid oxygen, ambient temperature to -297°F, pressures to 3000 psig if solvent is not completely removed from equipment or parts before introducing to oxygen service.

(1) Company Practices

(a) Solvent agent for hydrocarbon decontamination of small parts used in oxygen systems.

(b) Safety Standard 609.1, page 2, June 1964. (Doc. # 99000051).

B. Information Sources.

1. Company Practices

a. Company Research

c. Based on Research and Development of Others.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

A. Chemicals, solvents, and miscellaneous

1. Methylene Chloride

 a. Specific Oxygen Environment

 None. Exposure may be to gaseous or liquid oxygen, ambient temperature to -297°F, pressures to 3000 psi if solvent is not completely removed for equipment or parts before introducing to oxygen service.

 (1) Company Practices

 (a) Air Separation plant wash-out solvent

 (b) Solvent agent for decontamination of small parts used in oxygen systems.

 (c) Safety Standard 609.1, page 2, June 1964, (Doc. #99000051).

B. Information Sources

1. Company Practices

 a. Company Research

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

B. Compatibility Check

1. Fire Compatibility

 c. Cleaning Procedures

In the cleaning of commercial cryogenic systems, the primary task is to remove those contaminants (such as oil and grease) which create a hazardous condition when oxygen is present. A secondary consideration is the removal of those contaminants which might interfere with operation. Examples of this latter category are particles of grit which can interfere with valve closure, and water which can plug up equipment as it freezes.

Before a system is put in service, a cleaning step takes place in the blowing out of all lines, valves, and packing glands. Heated, dry oil-free air or nitrogen is used for blowing out. To be dry oil-free air, it has to go through a drier and have a dew point of -40°F. Nitrogen is preferred. Despite all reasonable precautions during original cleaning and fabrication, it is surprising to observe the amount of foreign material which is blown out in this manner.

After equipment has been in operation, periodic cleaning is necessary only if it becomes contaminated with a fuel. Normally, this does not occur, but if inspections or evidence of contamination indicate fuel to be present in an oxygen system, prompt cleaning of operating equipment is mandatory. Industrial frequency of inspection, and cleaning of operating equipment varies from annually to never, if there is no specific cause for suspecting contamination.

I Cleaning Procedures

A. Company Practices

1. Initial installation-Construction

 a. Carbon steel pipe 3" and larger

 (1) Sand blast to remove rust, varnish and mill scale and other foreign matter.

 (2) Immerse in a solution to provide an alkaline activated coating to the surface of the work to act as a temporary rust inhibitor.
b. Carbon steel pipe 2 1/2" and smaller

(1) Immerse in a hot solution with a stripper additive to remove varnish and initiate action on rust and scale.

(2) Remove pipe – thoroughly rinse with water.

(3) Immerse again in a hot solution to assure complete removal of rust and scale.

(4) Remove pipe from cleaning solution and rinse with water.

(5) Immerse in a solution to provide an alkaline activated coating to the surface of the work to act as a temporary rust inhibitor.

c. Carbon steel pipelines

(1) Pipe must be supplied with no interior varnish.

(2) Temporary spool pieces and cleaning stations are used to permit specified in place cleaning and inspection.

(3) The interior of all pipe is sand blast cleaned in place by the Klean Kote Inc. method (Kleane Kote Inc. P.O. Box 588, LaPorte, Texas).

(4) The pipe is blown out with dry, oil free air or nitrogen after it is blast cleaned.

d. Aluminum, stainless steel, and copper pipe

(1) Immerse in the proper hot solution and allow to soak in solution for a period of time required for complete removal of soils and contaminants.

(2) Rinse in water using a high velocity stream.

e. Fabricated pipe spools after cleaning shall be capped. Pipelines after cleaning are kept under slight positive nitrogen pressure.

2. Existing Installation-Operations

a. Frequency of cleaning is depending on the following:

(1) Periodic inspections when normal preventive
maintenance is scheduled.

(2) Product sample analysis indicating contaminants.

(3) Normal schedule as determined from past experience.

(4) Abnormal operating conditions, such as, high pressure drops, valve seat leakage, etc.

b. Types of Cleaning

(1) Flushing normally used on complex piping circuits. This method is considered the most practical way to clean a cryogenic piping system that has previously been in service.

The piping prior to using the flushing method must be checked to insure that all low points have suitable drains. The high points need vents to completely fill circuits. Double block and bleed valves are necessary where solution could enter an undesirable circuit.

It is first necessary to warm a system prior to flushing. This is done by blowing the system out using 110°F to 150°F nitrogen or dry oil-free air until the insulation and piping are warm, and then use 90°F nitrogen or dry oil-free air to insure that the whole system is not warmer than 90°F. Normally all relief valves and instrument lines are removed and valves are installed to control flow.

Flushing will require a suitable pump for introducing and recirculating the cleaning solution. Although experience has proven that recirculation is not entirely necessary, it is preferred. If it is not possible to recirculate the solution, it is necessary to allow the solution to remain in the system for one hour. The solution when drained, will be replaced with fresh solvent if appreciably discolored, and reintroduced in the system for another soak. When using the soak or recirculating procedure, it must be kept in mind that all circuits must be
completely filled with solution.

Air Products and Chemicals uses methylene chloride for flushing solution. Samples are used to determine the magnitude of contamination. Samples of unused and used solution are gathered for comparison analysis. The quantity of solution introduced along with the quantity that is drained must be recorded to get an indication of how much solution is left in the system. Then other means such as pressurization are used to remove the remaining solution. The total contamination level is based on the sample analysis and the quantity of solution introduced in the system.

The circuits are again blown out after the cleaning solution has been drained. When methylene chloride is used, the circuits are heated to 150°F and held at this temperature for approximately four hours.

(2) Immersion for small items that are easily accessible.

This method is commonly used as a quick job site emergency method, such as when small parts of a valve are replaced while the system is temporarily shut down. This cleaning usually only requires a clean bucket and a source of nitrogen or dry oil-free air for blowing parts dry.

Methylene chloride or trichlorethylene are the types of cleaning solutions APCI most commonly used for quick cleaning of small parts.

The immersion method is also used extensively for cleaning pipe fittings during initial construction phase. This type of cleaning uses one of the many types of detergent solutions. The type of detergent solution is dependent on the metal to be cleaned.

(3) Spraying or swabbing of large vessels that can be entered.

Surfaces may be sprayed with cleaning solution
applied by pressure spray nozzles. This method is used for cleaning tanks when convenient access is available.

Spraying and swabbing is used at times to clean pipes, fittings, and certain parts.

The spraying and swabbing cleaning method can use a chlorinated solvent or a detergent solution depending on the type of metal as well as the size of the area to be cleaned.

(4) Vacuuming used to clean out loose particles prior to a more thorough cleaning.

(5) Blow-out - most commonly used method when dry oil-free air or nitrogen is available.

Vacuuming and Blow-out method discussion.

Vacuum cleaning loose particles, introduced during fabrication, is used when ready access to the surface is possible.

Inaccessible surfaces on systems and/or circuits may be blown free of solid particles. Sufficient velocity and volume shall be provided to accomplish thorough removal of loose particles from both the system and its outlets. Blow-out using nitrogen or dry oil-free air is done prior to most cleaning procedures. It is also used after cleaning with solutions to remove all traces of solvents or detergents that could not be drained. In most blow-outs, the nitrogen or air is heated to about 10-50°F above the boiling point of the cleaning solution, to assist in complete derime of system.

(6) Vapor cleaning - this is a commercial method requiring special equipment.

Small items may be cleaned in commercial vapor cleaning equipment. Assemblies which contain removable parts shall be disassembled for vapor cleaning.

This type of cleaning is used commonly by suppliers of parts for oxygen compressors, pumps, valves, etc. This cleaning procedure will supply APCI AAA standard cleanliness. (1,2)
c. Degree of cleanliness

(1) APCI Class AA cleanliness (3,4) is for fixed surfaces that come in contact with pure oxygen. It will meet the following requirements.

(a) Visual examination of the direct surface under strong white light shall indicate: no moisture, slag, organic material, or other foreign material, and essentially no corrosion products.

(b) Particulate matter will not exceed 1000 microns and will amount to less than 10 particles between 500 and 1000 microns.

(c) Black light examination shall indicate no hydrocarbon fluorescence. Isolated particles of lint may be acceptable.

(d) A wipe test, shall show no appreciable discoloration and no evidence of oily residue.

(2) Class AAA cleanliness (1,2) is for movable parts such as valves, pumps, etc. that come in direct contact with pure oxygen. Requirements are the same as for Class AA with the following additions:

(a) Particulate contamination will be limited to 500 microns with not more than 25 particles between 175 and 500 microns.

(b) Isolated particles of lint detected by black light must be removed with nitrogen or dry oil-free air.

3. Types of Cleaning Solution

a. Detergents:

(1) Soil and Oil Removal:

(a) Ferrous metals (including stainless steel, invar, and nine-nickel)

#77 Oakite
J.S.T.C. Johar
#4 Johar (low foaming)
(b) **Aluminum and Aluminum Alloys**

#77 Oakite
J.S.T.C. Johar
#4 Johar

(2) **Rust and Scale Removal**

(a) **Ferrous Metals**

#32 Oakite (Hydrochloric base)
Oakite Rust Stripper (Removes paint and varnish)
#13 Johar

(b) **All Metals**

#31 Oakite (removes oxides and fluxes)
#23 Johar

(3) **Deoxidizer and Brightener**

(a) **Aluminum and Copper**

#34M Oakite (Chromic base)
#22 Johar

(4) **Rust Retardant**

(a) **All Metals**

Rinsite (also prevents water spotting)

(5) **Corrosion Stain Removal**

(a) **Aluminum and Aluminum Alloys**

#160 Oakite (etching material) rinses freely
#21 Johar

Detergent solutions shall not be employed to clean a surface which, through use, will contact oxygen rich atmospheres, unless the cleaned surface can definitely be determined as free of all cleaning solution after rinse.

b. **Chlorinated Solvents**

(1) Removal of oil, grease, fats, waxes, tar, rubber, sulfur, and resins.
(a) **All Metals**

Trichlorethylene (conforming to Federal specifications 0-1-634A, Type II, and Military Specification MIL-T-7003)

Methylene Chloride (technical grade)

It removes grease, oil solvent residue, lubricating compounds. In addition, its solvent activity permits quick stripping of paint and lacquer films, including latex and the new tough epoxy resin materials.

Equipment cleaned with chlorinated solvents shall be purged with clean, dry air or nitrogen. The purge shall continue until the exhaust can be determined free of solvent vapors when tested with Halogen gas detection equipment.

When ordering, specify inhibited grades of solvent to prevent acidic action on metals where water or water vapors are present. Also, specify that the solvent is for metal cleaning of equipment in oxygen service and that the maximum residue permitted on evaporation is only 0.001% by weight. When drums of solvent are ordered, it is good to specify that all be from the same lot number. This will permit easier and more accurate sampling.

II **APCI Experiences and Analysis of Cleaning**

A. **LOX Tanks**

1. **Case 1 - Date 1959**

Tanks inspected and cleaned after 1-1/2 years of operation. Two tanks were cleaned at this
facility. Tank No. 1 had three pounds of dust containing 2.8% by weight of hydrocarbons which ignited in oxygen at 598°F. Tank No. 2 contained 1-1/2 pounds of dust. Small globules of contaminants outlined a liquid level. These tanks have inlet and outlet nozzles on the same end. Tank capacity is 27,000 gallons.

2. **Case 2 - Date 1960**

Tanks inspected and cleaned after three years of service. Five gallons of dust were removed, but no definite traces of hydrocarbons were found. No lab analysis is available. Tank capacity is 27,000 gallons with inlet and outlet nozzles on the same end.

3. **Case 3 - Date 1960**

Tanks inspected and cleaned after two years of service. Three pints of dust were removed. Dust residue was found on all surfaces. Fluorescence under black light in form of rings at liquid levels. (Cases 1, 2, 3 from memo dated 1/24/63 from H. H. Master to J. M. Norwood(5)).

4. **Case 4 - Date 1963**

Tanks inspected and cleaned after 3-1/2 years of service. The tank was washed down with solvent. Analysis of the solvent used indicated a total of 2.125 grams of hydrocarbons which, averaged out on the complete tank surface, would have been about .7 milligrams of hydrocarbons per square foot. This tank is not of the flow-through type and it is cylindrical. Tank capacity is 28,000 gallons. (Memo dated June 26, 1970 from H. H. Master to W. L. Ball (6)).

5. **Case 5 - Date 1964**

Tanks cleaned after three years of service. The surface of the tank was clean with no visible traces of oil or other hydrocarbons. However, six pounds of extremely fine silica gel were removed from the tank. The analysis of the silica gel indicated 0.6% by weight to be hydrocarbons. This calculates to 0.04 pounds of
hydrocarbons in the tank. This tank was fed by anyone of six plants at one time or other. The tank capacity is 27,000 gallons and is of the cylindrical type. This tank prior to inspection and cleaning was what is called a dead-ended tank, that is, with the inlet and outlet nozzles being on the same end of the tank. Piping was changed to make it a flow-through tank. (Memo dated 3/11/64 from A. L. Hatley to R. S. Ray (7)).

The tanks listed are all filled from air separation units. All cases other than case 4, are filled from high pressure cycle plants using expansion engine in series with turbo expanders. Case 4 is fed from a split cycle plant. The time tanks were put in service is known, but the throughput of the tank is not known and cannot be estimated because all these locations have more than one tank. A tank in service for one year could have had more throughput than one is service two years.

There are no firm cleaning schedules for liquid tanks. The air separation units are defrosted and blown out on a three year schedule. Should the defrost indicate an unusually high contamination, tank cleaning would be mandatory.

B. Liquid Oxygen Pumps

1. Case 1

 Inspected and cleaned after 15,000 hours of operation. Contaminants: 1.29 gr. Pump showed some dust and no visible oil.

2. Case 2

 Inspected and cleaned after 2,250 hours of operation. Contaminants: 1.90 gr. Pump showed some dust and no visible oil.
3. **Case 3**

Inspected and cleaned after an estimated 2,000 hours. Contaminants: 11.1 gr. Pump was black lighted with negative results. No traces of dust reported.

4. **Case 4**

Inspected and cleaned after 3,100 hours of operation. Contaminants: 3.17 gr. Pump showed some dust and no visible oil.

5. **Case 5**

Inspected and cleaned after 2,191 hours of operation. Contaminants: 0.34 gr. Pump showed some dust and no visible oil.

In all cases the contaminants were usually assumed to be the same as the lubricant used in the air compressor.

The above mentioned pumps take suction from air separation units. The suction to the pumps has a 100 mesh screen. Cleaning frequencies depend on the type of cycle of the air separation unit as well as past history. Frequencies range from 24 months to 36 months. In newer plants with cleaner cycles (using centrifugal compressors), cleaning is done only if contamination is suspected.

C. **Miscellaneous Equipment**

Liquid oxygen dump tanks, disposal vaporizers, product vaporizers, and vent stacks are cleaned on a five year maximum interval cycle.

1. **Case 1 - 1964**

A LOX vaporizer was cleaned after 15 months of service during which a total of 542,486 SCF oxygen was vaporized. The flushing with recirculation method was used. The cleaning solution was methylene chloride. The hydrocarbon contamination analysis showed 0.1056 grams. The contamination accumulating in the vaporizer is negligible as was expected. (Memo from F. K. Kitson to J. J. Mittleman July 1964 (8)).
(1) APCI Class AAA Cleanliness Requirements
APCI Quality Control Layout No. QCL 107F, July 1, 1971
(Doc. #99000082)

(2) APCI Requirements for Vendor Class AAA Cleaning
APCI Quality Control Layout No. QCL 117F, July 1, 1971
(Doc. #99000086)

(3) APCI Class AA Cleanliness Requirements
APCI Quality Control Layout No. QCL 106F, July 1, 1971
(Doc. #99000081)

(4) APCI Requirements for Vendor Class AA Cleaning
APCI Quality Control Layout No. QCL 116F, July 1, 1971
(Doc. #99000085)

(5) Master, H. H., Storage Tank Cleaning
APCI Memo, January 24, 1963 (Doc. #99000089)

(6) Master, H. H., LOX Tanks
APCI Memo, June 26, 1970 (Doc. #99000091)

(7) Hatley, A. L., Cleaning LOX Storage Tank No. 6 - Santa Susana
APCI Memo, March 11, 1964 (Doc. #99000090)

(8) Kitson, F. K., Washout Analysis of Sun Oil Company's LOX Tank Vaporizer
APCI Memo, July 9, 1964 (Doc. #99000092)

(9) APCI Cleaning Requirements for Air Plant Equipment
APCI Quality Control Layout No. QCL 101F, July 1, 1971
(Doc. #99000077)

(10) APCI Cleaning Requirements for Bourdon Tube Type Gages Used for Oxygen Service
APCI Quality Control Layout No. QCL 102F, July 1, 1971
(Doc. #99000078)

(11) APCI Approved Cleaning Agents and Associated Equipment and Supplies
APCI Quality Control Layout No. QCL 103F, December 14, 1965
(Doc. #99000285)

(12) APCI Class A Cleanliness Requirements
APCI Quality Control Layout No. QCL 105F, July 1, 1971
(Doc. #99000080)

(13) APCI Requirements for Vendor Class A Cleaning
APCI Quality Control Layout No. QCL 115F, July 1, 1971
(Doc. #99000084)
(14) Pennsalt Chemicals Corporation, Cleaning of Liquefied Gas Processing Equipment
Pennsalt Technical Bulletin, February 3, 1960 (Doc. #99000093)

(15) Kitson, F. K., Cleaning For Oxygen Service
APCI Memo, August 5, 1963 (Doc. #99000094)

(16) APCI Cleaning and Inspection, Materials for Oxygen Service
APCI Safety Standards 608.1, October 1965 (Doc. #99000050)

(17) APCI Cleaning and Inspection for Equipment in Air Plants and in Oxygen Service
APCI Plant Operations Manual, Section 1.08, April 4, 1967 (Doc. #99000095)

(18) APCI Piping, Valve Procurement and Cleaning Procedure
APCI Design Engineering Standard 579.5, August 12, 1960 (Doc. #99000036)

(19) Bassler, E. J., Cleaning for Oxygen Service
APCI, January 1960 (Doc. #99000096)

(20) Master, H. H., Air Separation Plant Contamination, History, Sampling and Analysis
APCI Plant Managers' Safety Meeting, Creighton, Pa., February 28 and March 20, 1968 (Doc. #99000097)

(21) APCI Exchanger, Plant, and Plant Equipment Solvent Washout Frequencies
APCI Plant Operations Manual Section 5.07, July 15, 1970 (Doc. #99000098)

(22) APCI Plant Solvent Washout, General
APCI Plant Operations Manual Section 1.05, February 20, 1967 (Doc. #99000099)

(23) APCI Byron-Jackson Oxygen Pump Washout Procedure for Analytical Purposes
APCI Plant Operations Manual Section 1.07, July 7, 1970 (Doc. #99000286)

(24) APCI Cleaning
APCI Construction Specification 230.15, page 8, September 16, 1969 (Doc. #99000101)

(25) APCI Cleaning of Carbon Steel Pipe and Fittings; Cleaning Aluminum Pipe, Fittings, Parts and Fabrications; Cleaning Stainless Steel and Copper Pipe, Fittings, Parts and Fabrications; Description of Cleaning Mediums; Inspection of Decontaminated Components; and Pickling of Carbon Steel Pipe and Fittings
APCI Construction Specifications 200.16.1.7 to 200.17.4, Pages 14-20, February 3, 1967 (Doc. #99000102)
(26) Coulson, K. J., and I. Everson, Fire Hazards When Vapor Cleaning With Trichlorethylene (T.C.E.)
APL - Safety Department Information Sheet No. 38,
February 10, 1971 (Doc. #99000105)

(27) Schmoyer, W. W., Carbon Tetrachloride
APCI Safety-Gram No. 68, February 21, 1969 (Doc. #99000106)

(28) Kehat, E., Detonation Tests of Oil From Aliquippa Pump Suction Filter Defrost and of Methylene Chloride
APCI Memo, December 11, 1961 (Doc. #99000107)

(29) Smith, H., APCI Solvent and Cleaners—Deviations—Cleaning for Oxygen Service
APCI Safety Standard 629.0.10, June 19, 1961
(Doc. #99000054)

(30) Himmelberger, F., Notes on Liquid Oxygen Contaminants
Missile Program, APCI, January 6, 1958 (Doc. #99000108)
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

B. Compatibility Check

1. Fire Compatibility

 The cleaning procedures followed by APL are essentially the same as the ones followed by APCI. These procedures and related ones are covered in the following documents:

(3) APL, General Procedure for Decontamination of Static Tank and Road Vehicle Assemblies for O2 Service, APL Quality Control Procedure No. Q.10, Rev. 0, (Doc. #99000399).

(4) APL, Manufacturing Quality Procedure for Degreasing of Pipework, APL Quality Control Procedure No. Q.11, Rev. 0, (Doc. #99000400).

(5) APL, Manufacturing Quality Procedure for Internal Cleaning of Aluminum Tankers and Static Tanks for Oxygen Service, APL Quality Control Procedure No. Q.12, Rev. 0, (Doc. #99000401).

(6) APL, Manufacturing Quality Procedure for Internal Cleaning of 9% Nickel and Hi-Proof Stainless Static Tanks for Oxygen Service, APL Quality Control Procedure No. Q.13, Rev. 0, (Doc. #99000402).

(7) APL, Aloclene 100 and Applied Chemicals 5.57, APL, February 5, 1972, (Doc. #99000403).
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

B. Compatibility Checks

1. Fire Compatibility

d. Quality Control

(1) Fire Hazards

(a) procedures

(b) specification

Machining and fabrication controls to reduce ignition and fire hazards involve primarily the cleaning of accessible and inaccessible surfaces prior to or after assembly.

Machined parts constituting rotating or moving pieces are cleaned (after machining) of sulfurized machining lubricants in accord with APCI Class AAA Cleanliness Requirements, Quality Control Layout, QCL107F, Jul 1971 (Doc. #99000082).

Fixed machinery parts are cleaned in a similar manner under slightly less stringent inspection conditions to APCI Class AA Cleanliness Requirements, Quality Control Layout, QCL106F, July 1971 (Doc. #99000061).

Fabrication poses problems on inherent cleanliness in areas such as a) backup strips, b) angle stiffeners, c) cleaning of vessels prior to final closure of the inner vessels, d) brazed aluminum assemblies, e) brazed copper assemblies.

Prior to insertion of weld ring type backup strips in an aluminum or stainless steel piping assembly, the surfaces of both the backing ring and the adjacent pipe are power sanded to a clean bright finish.

Angle stiffeners whose flat edges bear against the plate are fully fillet welded on both sides so that the facing surfaces are completely encased and never see the product fluid or gas.
Prior to final closure of vessels without manway openings the internals of the vessels are washed with an acceptable solvent and examined to either:

a) APCI Class B Cleanliness Requirements, Quality Control Layout, QCL104F, July 1971 (Doc. #99000079),

or b) APCI Class A Cleanliness Requirements, Quality Control Layout, QCL105F, July 1971 (Doc. #99000080),

dependent on the final product, and as indicated in:

APCI Cleaning Requirements for Air Plant Equipment, Quality Control Layout, QCL101F, July 1971 (Doc. #99000077).
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

B. Compatibility Checks

1. Fire Compatibility
d. Quality Control - APCI

(2) Programs
(a) policies
(b) practices

APCI Quality Manual determines cleanliness requirements for all phases of manufacture and for all purchased material and equipment. These requirements are self-explanatory and are covered by the following documents:

(1) APCI Cleaning Requirements for Air Plant Equipment, Quality Control Layout, QCL101F, July 1971 (Doc. #99000077).

(2) APCI Cleaning Requirements for Bourdon Tube Type Gages Used for Oxygen Service, Quality Control Layout, QCL102F, July 1971 (Doc. #99000078).

(3) APCI Class B cleanliness Requirements, Quality Control Layout, QCL104F, July 1971 (Doc. #99000079).

(4) APCI Class A Cleanliness Requirements, Quality Control Layout, QCL105F, July 1971 (Doc. #99000080).

(5) APCI Class AA Cleanliness Requirements, Quality Control Layout, QCL106F, July 1971 (Doc. #99000081).

(6) APCI Class AAA Cleanliness Requirements, Quality Control Layout, QCL107F, July 1971 (Doc. #99000082).

(7) APCI Requirements for Vendor Class B Cleaning, Quality Control Layout, QCL114F, July 1971 (Doc. #99000083).

(8) APCI Requirements for Vendor Class A Cleaning, Quality Control Layout, QCL115F, July 1971 (Doc. #99000084).

(9) APCI Requirements for Vendor Class AA Cleaning, Quality Control Layout, QCL116F, July 1971 (Doc. #99000085).
(10) APCI Requirements for Vendor Class AAA Cleaning, Quality Control Layout, QCL117F, July 1971 (Doc. #99000086).

(11) APCI Brazed Aluminum Heat Exchanger Cleaning Requirements, Quality Control Layout, QCL119F, July 1971 (Doc. #99000087).

It should be noted that the brazed aluminum heat exchanger cleaning is performed to remove flux, in particular, and contaminants, in general, in order to protect against corrosion, as well as against ignition and fire hazard.

The following references are of interest in relation to cleaning requirements for oxygen service:

(1) APCI Requirements for Vendor Class B Cleaning, Quality Control Layout, QCL114F, July 1971 (Doc. #99000083).

(2) APCI Requirements for Vendor Class A Cleaning, Quality Control Layout, QCL115F, July 1971 (Doc. #99000084).

(3) APCI Requirements for Vendor Class AA Cleaning, Quality Control Layout, QCL116F, July 1971 (Doc. #99000085).

(4) APCI Requirements for Vendor Class AAA Cleaning, Quality Control Layout, QCL117F, July 1971 (Doc. #99000086).

(5) APCI Requirements for IPD Specified Paint Systems, Quality Control Layout, QCL120F, July 1971 (Doc. #99000088).

(10) Lapin, A., Discussion with Mr. E. Lucas-IPD Inspection, Regarding APCI Cleanliness Requirements, APCI Memo, July 22, 1971 (Doc. #99000221).
(11) Lapin, A., Telephone Conversation with Mr. William McCormick regarding Requirements for Vendor Class AA and Class AAA Cleaning, APCI Memo, July 22, 1971 (Doc. #99000222).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Materials Compatibility

B. Compatibility Check

1. Fire Compatibility
d. Quality Control - APL

(2) Programs

(a) Policies

(b) Practices

The following references represent APL practices relative to cleanliness and quality control requirements for equipment used in oxygen service:

(1) APL, Acceptance Test for Class B Cleanliness, APL Engineering Specification A.01, Rev. 0, May 12, 1969, (Doc. #99000360).

(2) APL, Acceptance Test for Class A Cleanliness (High Purity Clean), APL Engineering Specification A.02, Rev. 0, May 12, 1969, (Doc. #99000361).

(3) APL, Acceptance Test for Class AA Cleanliness (Oxygen Clean), APL Engineering Specification A.03, Rev. 0, April 1, 1971, (Doc. #99000362).

(9) APL, Brazed Core Extended Surface Heat Exchangers, APL Engineering Specification E.02, Rev. 4, June 28, 1970, (Doc. #99000368).

(10) APL, Shell & Tube Type Cooler, Other Than for O₂ Service (APL Plants), APL Engineering Specification E.04, Rev. 1, June 1, 1971, (Doc. #99000369).

(11) APL, Shell & Tube Type Coolers for O₂ Service, APL Engineering Specification E.05, Rev. 1, June 1, 1971, (Doc. #99000370).

(12) APL, Centrifugal Cryogenic Pumps, APL Engineering Specification E.03, Rev. 0, April 1, 1971, (Doc. #99000371).

(15) APL, Relief Valves, Warm Gas Service, -20°F +100°F, APL Engineering Specification J.18, Rev. 0, June 18, 1969, (Doc. #99000374).

(19) APL, Cryogenic Liquid Hose Couplings for Use in the U.K., APL Engineering Standard LS.08, Rev. 0, October 21, 1969, (Doc. #99000378).

(20) APL, Expanded Perlite, APL Engineering Specification N.01, Rev. 0, January 1, 1970, (Doc. #99000379).

(22) APL, Insulation - Preformed Cellular Glass Section for Pipelines, APL Engineering Specification N.05, Rev. 0, October 1, 1970, (Doc. #99000381).
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

B. Compatibility Checks

2. Structural Materials Compatibility

APCI experience with oxygen service has been with both metallic materials, and non metallics for gaskets and packing.

a. (1) Chemical reactions and alloy modifications due to oxygen diffusion are not known to affect material strength, and therefore are not a factor considered in the selection of metallic materials for oxygen service.

(2) Material composition is not a factor, but both mechanical and thermal properties are. The change in mechanical and thermal properties with temperature are considered.

(3) Metallurgical changes such as embrittlement at lower temperatures is a factor with all construction materials. However, this is due to the low temperatures produced by cryogens, with no special consideration for oxygen.

(4) Coatings and claddings are not factors considered for oxygen service because there is no need for them.

(5) Exposure to secondary reagents is not a factor for oxygen service because of a low probability of being exposed to them.

b. Structures and support systems are designed to safely accomodate the dimensional changes produced by temperature differences between ambient to low temperature operation. This is generally accomplished by providing flexibility between structures to minimize interaction forces.

c. Notch-sensitivity is a factor in material selection, and is indicated by tests on a notched tensile specimen or by means of a notched-impact specimen. The latter is in general use and is required by the ASME Pressure Vessel Codes (1,2). The notch in the impact specimen represents the stress raiser which may be present in the as-built structure, or developed during subsequent operation. Operating experience indicates that
code rules governing design, material examination, and weld acceptance standards have been sufficient to minimize failures due notch sensitivity.

d. Fabrication and welding is carried out in accordance with the ASME Pressure Vessel code (1,2) rules with satisfactory results. Inspection meets the National Board requirements (3).

e. Materials and parts suitability controls are carried out in accordance with the ASME Pressure Vessel Code rules with satisfactory results.

f. Composite materials have not been used for pressure carrying parts for oxygen service.

g. As indicated earlier, APCI has had experience with non-metallic valve inserts and butterfly and ball valve seats and seals. Kel-F Teflon, and glass-filled Teflon have been satisfactory, particularly for tight shut-off conditions. APCI's Design Engineering Standard 578.60.1 (4) on oxygen piping should give APCI's current practices. This should be an excellent document for describing somewhat completely materials and conceptual requirements. Also the CGA's Oxygen Pipeline Subcommittee rough draft of March 30, 1971, "Assembly of Industrial Practices Used For Gaseous Oxygen Transmission and Distribution" (5), should be a fine reference document.

h. References

(1) American Society of Mechanical Engineers, Pressure Vessel Division, ASME Boiler and Pressure Vessel Code Section VIII, 1971 (Doc. #99000210).

(3) National Board Inspection Code, A manual for boiler and pressure vessel inspectors, The National Board of Boiler and Pressure Vessel Inspectors, Columbus, Ohio, 1968 (Doc. #99000212).

(4) APCI, Oxygen Piping, APCI Design Engineering Standard 578.60.1, April 24, 1972 (Doc. #99000028).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

B. Compatibility Check

2. Structural Materials Compatibility

a. Relationship of Material Strength to Maximum Stress Over the Working Temperature Range as Affected by:

(1) Chemical reactions and alloy modifications due to oxygen diffusion,

and

(2) Materials composition and property changes

No consideration is given to the effect of chemical reactions and possible alloy modifications due to oxygen diffusion. Testing of copper tubing and lead-tin solders after ten years of intermittent cryogenic service have given no indication of deterioration of material properties. Stainless steels and aluminum alloy which form inner cryogenic vessels of insulated systems have shown no appreciable deterioration of vacuum after eight-ten years of service and it is felt that appreciable diffusion would be evident in this period of time. It is not considered, on this basis, that significant changes in properties take place in the above alloys. Thermal cycling of highly strain hardened stainless steel under experimental conditions has been found to produce transformation of up to 15% of the normally austenitic structure to martensite.

However, no service failures have occurred which can be attributed to these factors.

(3) Metallurgical changes such as embrittlement

No known failures have occurred by any suspected embrittlement phenomenon thought to be associated with oxygen diffusion.

(4) Effects of coatings and claddings

While some fear existed in the early 9% nickel steel vessels that dissimilar weld metal and reinforcement pad material would provide dangerously different expansion coefficients, results of several years' service tend to indicate otherwise. The inconel type filler metals in use as weld metal for the 9% nickel steels have taken part in no field type failures. Similarly, clad material would appear to offer no great disadvantage, providing the properties of both the cladding and the material being clad were compatible with the temperature of operation.
Experimental and service history has been obtained with the Aluminum-Stainless Steel roll bonded transition piece, and the Aluminum-Copper-Stainless Steel brazed transition piece, and the Aluminum-Copper-Stainless Steel brazed transition pieces. Under modest loads, no degradation of bond takes place, even after several hundred cycles from ambient to cryogenic conditions. Similarly, the silver welded alum-stainless steel transition has shown exceptionally good resistance to stresses imposed by cycling.

(5) Compatibility losses through exposure to secondary reagents which are natural to systems or introduced by accidents.

Failures of materials in rich or lean gaseous oxygen service is typified by "wet atmospheres" with traces of chlorides. Upon condensation in the system, an accumulation of chlorides can occur which may seriously affect stainless steels, and the brasses commonly used for condenser tubing, and could cause failure usually by a stress corrosion mechanism. The same conditions on aluminum alloys results in a rather general corrosion pattern.

Improper materials selection or improper protection of materials on the water side of heat exchangers produces galvanic couples which results in premature failures of shells, baffles, etc.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

B. Compatibility Checks

2. Structural Materials Compatibility

c. Notch sensitivity of materials over temperature range of use as affected by:

(1) Thermal Fatigue

No specific information.

(2) Allowable defect size (fabrication or material fault)

(3) Allowable crack growth and rate of crack growth

Allowable defect sizes, where measured, have been in accord with ASME Code, Sec. VIII, Para. UW-51, (Doc. #99000210) and its associated porosity standard. No failures have occurred which are attributable to residual defects of this size. Investigations regarding allowable crack growth and rate of crack growth have been non-existent except for some preliminary studies referred to below which show growth of cracks in an aluminum alloy at ambient temperatures under cyclic loads:

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

 B. Compatibility Checks

 2. Structural Materials Compatibility

 d. Fabrication and Welding (Include guide to material and weld defect repairs).

 Material and welding defect repairs are required when defects are more serious than those allowable in ASME Code, Section VIII, Para. UW-51 or UW-52 (Doc. #99000210), (whichever is applicable).

 In all cases, the defect is removed by grinding (using aluminum oxide or silicon carbide wheels, high speed burrs, or a file) and the area in question is examined by either a dye penetrant or radiographic technique to insure removal of the defect prior to rewelding. Even with visual and dye penetrant techniques, however, defect recognition and removal sometimes escapes the operator and repetitive repair welding of the same area is required. In these instances the aluminum alloys tend to over-age, or segregate, and hot cracking of the adjacent parent material can take place. A cure for this condition is sometimes a local annealing or solution treating operation. By the same token, 9% nickel steel impact properties can be seriously affected by repetitive welding operations in a localized area. Stainless Steels are remarkably free of any of the above troubles.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

I. Material Compatibility

B. Compatibility Checks

 2. Structural Materials Compatibility

 e. Materials and parts suitability controls

(2) Vendor procedures on purchased equipment

Vendor procedures for fabrication are similar to APCI in that the code and cleaning requirements, where imposed, regulate fabrication.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

A. Overpressure

1. Safety relief valves are installed in accordance to APCI Piping Group Memo #19 (1).

2. Thermal relief valves are always installed in any section of cold piping which lies between two valves.

3. Low point drains are generally provided to minimize trapped liquids.

4. Refer to Review Forms IIA4-1 and IIA4-2.

5. Structural loads on venting systems are determined as per APCI Piping Group Memo #19 (1).

6. Piping is designed to ANSI B31.3 "Petroleum Refinery Piping" (2) or ANSI B31.5 "Refrigeration Piping" (3) to guard against failure from overpressure. For a treatise on failures due to defects see: THIELSCH, HELMUT "Defects and Failures in Pressure Vessels and Piping" (4) Reinhold.

7. Velocities in gaseous oxygen systems are limited to a maximum of 200 feet per second. Surges on pressure waves should be avoided and the piping system designed for what is considered an economical pressure drop.

Flow of liquid should be controlled so there is not a great rate of change in velocities in the system to minimize pressure surges (commonly known as water hammer). Refer to bibliography on Water Hammer (5), for additional information.

B. Cited References

1. APCI, Safety Relief Valves, Location and Piping Design Considerations, APCI Piping Group Memo #19, November 3, 1966 (Doc. #99000346).

C. Additional References

6. APCI, Instrumentation -- Special Requirements for Safety and Relief Valves, APCI Design Engineering Standard 537.9, July 1965 (Doc. #99000024).

7. APCI, Piping -- Extended Bonnet Valve Code, APCI Design Engineering Standard 579.1, April 1963 (Doc. #99000035).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

A. Overpressure

4. Integrity of Insulation

I. Shop Fabricated LOX Storage Tanks

These tanks are of double wall construction with the annular space filled with Perlite insulation and evacuated to 10 microns pressure. The integrity of the insulation is not affected by the internal pressure of the inner tank except in the case of failure or leakage of the inner tank. To prevent overpressuring of the inner tank, pressure relieving devices are installed using the following design criteria.

A. Safety Valves are set at 100% design pressure and sized to relieve the largest of the flows listed below.

1. LOX vaporized due to normal heat leak boil-off.

2. Gas volume equal to maximum filling rate (vent valve assumed closed).

B. Rupture disc set at 120% of design pressure and sized to relieve the largest of the flows listed below minus the safety valve capacity.

1. Vessel exposed to fire with Perlite in the annular space but no vacuum. The amount of LOX vaporized is calculated using the equation in paragraph 4.3.5 in CGA Pamphlet S-1.3 Safety Relief Device Standards, Part 3, Compressed Gas Storage Containers (Doc. #99000315).

2. LOX vaporized due to heat leak assuming vacuum is lost in the annular space. Heat leak will increase up to 350 times that of a tank with the design vacuum in the annular space.

The outer tank is protected by a spring loaded lift plate to relieve overpressures above 2-3 psi in the annular space.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

A. Overpressure

4. Integrity of Insulation

II. Field Fabricated, flat bottom LOX Storage Tanks

These tanks are of double wall construction with the annular space filled with Perlite and purged with nitrogen. The integrity of the insulation system on these tanks are affected in the same way as for the shop fabricated tanks (IIA4-1). The pressure relieving devices for the inner tank are sized using the following design criteria.

A. Pressure - Vacuum relief valves are used to protect the inner tank.

1. The pressure setting is 5 psig and the valve is sized to relieve the largest of the operating conditions listed below.
 a. LOX vaporized due to normal heat leak boil-off plus LOX flashing in tank under filling conditions.
 b. Relief of gas volume equal to maximum filling rate (vent valve assumed closed)

2. The vacuum setting is 1/2 oz. and the valve is sized for a gas volume equal to maximum pump-out rate.

B. Pressure - Vacuum relief valves are used to protect the outer tank.

1. Pressure setting is 2" H2O and valve is sized to relieve the maximum nitrogen purge flow with purge control valve failing wide open or the expansion of the purge gas due to an exterior fire.

2. Vacuum setting is 1" H2O and valve is sized to handle the variations the annular space gas volume due to ambient thermal cycling.
II. Operational Hazards

B. Disposal of Vented Gases

1. Company Practices

 a. Air Plants

Although NASA is not interested in air separation plants in this particular study, our policy of segregating various defrost, disposal and reactivation lines to vent stacks may be applicable to some of their operations. Basically, this is merely an isolation of pure oxygen or oxygen rich vent manifolds and stack from other vents which have or may possibly contain incompatible materials. Refer to APCI Safety Standard 607.1.12, Pages 7 and 8(1).

b. Safety Valves

Safety valve discharges are piped outdoors where such equipment may be in buildings or confined areas. Safety considerations for the vent area are to include adequate ventilation to prevent oxygen concentrations or hazards to personnel. Personnel hazards would include flammability possibilities, cryogenic burns and harmful effects of high velocity gases directed on individuals.

Safety valve discharges can be manifolded and extended to a safe area providing the piping manifold is sized to prevent excessive back pressure on the valves which would effect the relief setting. Cases have been considered on individual basis whereby individual safety valve discharge vents or manifolded systems are tied into the proper defrost, disposal or reactivation stacks (mentioned above) to extend discharges to a safe or safer distance without duplicating long piping runs. All manifold valves must be piped properly, including unions on the discharge piping, so they can be removed for repair, replacement or checks.

Safety discharges must be protected from weather and other possible adverse effects. If discharges are not manifolded, they must have an elbow facing downward (but not in areas frequented by personnel) in the discharge part or have a pipe nipple with the bottom outboard end cut off at a 45° angle.

Further details are in Safety Standard 607.1.12(1) and Design Engineering Standard 578.60.1(2).
c. Product Loading Areas

Operations Department has installed systems in loading areas where gas vented from highway tankers being filled can be a hazard to operators, equipment and in some cases to third parties where the activities are located reasonably close to public thoroughfares, to handle these vented gases. Climatic conditions (little or no wind velocity, high humidity, etc.) can increase the hazards as vapors tend to remain in the area and close to the ground.

These systems consist of a flexible hose attachment on the tanker vent which connects to a manifold piped to a 500-gallon aluminum tank. A vent stack off the top of the tank extends from 20 feet to 30 feet above grade depending on the location and magnitude of the problem. The primary purpose of the 500-gallon tank is to act as a "buffer" in the event a tanker is inadvertently permitted to overflow. Secondary purpose is to use it as a dump tank for off-specification liquid or discarding residual liquid in a tanker that is to be converted to another product.

Some refinements to the system, depending again on the location, overall problem and the fact that the loader may not always be in the immediate area, are:

1. An air blower (generally 1700 CFM) is set on the tank and discharges, at an angle, into the stack so as to act as an eductor. This air serves to dilute the gas concentration and also to heat the vapors to prevent their "dropping" to the ground level. Actuation of the blowers varies according to needs. Where frequent service is required it is kept operating, for all practical purposes, constantly. Others turn it on as necessary. A number of locations have a temperature-actuated switch with a sensing bulb in the stack. The temperature switch is set to the lowest temperature practical below that of expected low for the geographical location.
2. Level switches (usually set at about 5 inches) are piped into the side of the tank, near the bottom, where loaders may leave the immediate area. This switch is set to actuate an alarm to warn the loader that the tanker is over-filled and passing liquid into this tank. The loader would be expected to get back to the loading pad and immediately shut the fill valve. Where the loader may be an appreciable distance away, the switch would also stop the blower to prevent a possible reaction should the liquid reach the blower discharge before the fill valve is shut. Where the tank is used for disposal of liquid, a by-pass switch may be necessary to take this switch out of the blower and alarm circuits during this operation. A red warning shall indicate it is on by-pass and in this case, the loader should not be permitted to leave the area.

3. Most facilities have more than one product loaded at the same site. Separate manifolds are used for each product, but they do tie into a common tank. The separate manifolds are to preclude the possibility of reverse flow of one product into another and is particularly important where oxygen may back into a high-purity nitrogen tanker where 25 ppm or less oxygen is standard. The blower-evacuation system supplements this control in that its operation tends to clear out all vapors and, depending on the number of simultaneous loadings, may effect a slight negative pressure within the tank. Another back up system for cross contamination is a swing check valve where each tanker ties into the manifold system with the flexible hose. These check valves are on all systems.

4. Storage tank vents, relief valve discharge piping, and pump cooldown lines have been tied into these dispersal system tanks where necessary and convenient.
All new facilities are required to have some dispersal system for trailer vents in load areas. Where multiple usage is practical, the above system need not be incorporated. The Wharton plant has a large capacity dump tank for discharging off-specification liquid during startup periods. This doubles as a trailer load system vent. At Lone Star a product vaporizer (cooling water as a vaporizing medium) has a separate coil for dumping liquid from the hydrocarbon and guard adsorbers when they are to be reactivated. The tanker vapor lines are teed into the circuit, pass through the vaporizer, and go to an existing stack.

We are presently in a program for automating loading systems whereby the shutoff valves are actuated by a liquid level switch on the trailer. For these systems, the dispersal tank with the blower and the level switch are a compulsory part of the automation. In addition to providing safe venting conditions, the system provides a backup for the automation. If the fill valve fails to close on the tanker contained circuitry, the overflow operates the dispersal tank switch which in turn interrupts the power to the fail-close automatic valves and also sounds an alarm and shuts off the blower. The "Auto-Load" systems are described in some detail in H. H. Master's memoranda dated March 22, 1971 (4) and April 5, 1971 (5).

In addition to direct safety aspects, the trailer venting system has a direct economic advantage in that it reduces the curb stop and pad deterioration caused by cold gases and liquids. Also, accidental spills have resulted in the necessity for tire replacement numerous times and amounts saved in this respect are not calculable but are known to have been high.

d. Disposal Problems

Problems related to the disposal of cryogenic vapors are covered in APCI Safety - Gram No. 17 (6), H. H. Master's paper subject "Product Vapor Hazards" (7), J. B. Gayle's paper subject "Fire Incident in an Oxygen Cloud" (8), and A. Lapin's paper subject "Oxygen Diffusion in the Atmosphere for Liquid Oxygen Pools" (9, 10).
References

(1) APCI, Air Separation Plant, Piping, Valves and Safety Relief Devices, APCI Safety Standard 607.1.12, October 1962 (Doc. #99000046).

(2) APCI, Oxygen Piping, APCI Design Engineering Standards 578.60.1, April 27, 1971 (Doc. #99000028).

(6) APCI, A Misty Problem, APCI Safety Gram No. 17, August 10, 1962, (Doc. #99000250).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

B. Disposal of Vented Gases

1. Cleanliness of disposal system (compatibility with oxidizer).

Report IIB1-2 covers our approach to this question including conformance to Safety Standard 608.1(1). This standard limits particulate size and quantity to an acceptable value to prevent plugging of operating equipment and to eliminate particle friction as a source of ignition. Additionally, these values are acceptable for most commercial applications involving control valves, orifices, etc.

Materials utilized in disposal and vent systems are limited to corrosion resistant types such as copper, brass, austenitic stainless steel and monel. Objective here is to maintain the cleanliness level originally achieved while utilizing materials suitable for cryogenic temperatures. Design Engineering Standard 578.60.1(2) reflects this philosophy.

2. Proximity of other activities to vents which may be endangered by oxidizers, dilution methods for safe concentrations.

Our basic philosophy is to vent far enough away from personnel areas or operating equipment to permit natural dilution to safe limits. Distances are indicated by following standards:

\[578.60.1(2)\]
\[607.1.12 \text{ (page 9)}(3)\]

Vents from oxygen compressors
Vaporizer vents

Vaporizers are designed to vent cold gas. Vent piping must be directed away from carbon steel components to prevent cooling below -20°F.

Relative locations of vents, drains and defrost stacks are covered by Safety Standards 605.1.3(4), Air Separation Plant Layout.

3. References.

(1) APCI Cleaning and Inspection, Materials, Oxygen Service, APCI Safety Standards 608.1, October 1965 (Doc. #99000050).

(2) APCI Oxygen Piping, APCI Design Engineering Standards 578.60.1, April 24, 1972 (Doc. #99000028).

(4) Ball, W. L., Criteria Air Separation Plant Layout, APCI Safety Standards 603.1.3, January 6, 1961 (Doc. #99000043).
II. Operational Hazards

B. Disposal of Vented Gases

1. Cleanliness

The approach to cleanliness of oxygen piping is covered in detail in APCI Construction Specifications. A typical example would be the APCI Construction Specifications, General Construction and Equipment Erection, Oxygen Compression System, El Segundo, Calif. Section 200.0 to 200.20, Revised November 17, 1969 (Doc. #99000338). Additional requirements are found in APCI, Cleaning and Inspection of Materials in Oxygen Service, APCI Safety Standards 608.1, October 1965 (Doc. #99000050).
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

B. Disposal of Vented Gases

4. Procedural arrangements

APCI criteria for the design of oxygen piping are covered by APCI Design Engineering Standards 578.60.1 for oxygen piping dated April 27, 1971 (Doc. #99000028).
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

C. Coupling to Other Systems

1. Isolation arrangements for keeping oxidizers out of adjacent systems; considerations of operational errors or leaks through valves.

Leakage of oxygen to nitrogen is normally prevented by use of double check valves (Circle Seal series 232B with Viton O-ring seals) located between manual double block valves (ball type with Teflon seals). The chamber between the block valves is vented to the atmosphere through a vent valve and check valve. The check valve is utilized to prevent entrance of contaminants during extended periods when the vent valve is open.

Where nitrogen gas is utilized for purging hydrocarbon systems and the gas originates in a vessel common to the oxygen (distillation column), a special isolation system is utilized to prevent backflow of hydrocarbons into the oxygen column in case nitrogen pressure diminishes below normal levels. Automatic double block valves are utilized with an automatic vent valve between them. Actuation is by loss in pressure or loss of nitrogen purity.

Accidental contamination of oxygen piping and instruments with oil is normally prevented by segregated piping and instrumentation so that oil leakage cannot occur around oxygen containing components.

2. Temperature coupling to adjacent systems; cooling, cold condensate, leakage of cool liquids on adjacent systems.

Basically, we normally employ stainless, aluminum and copper for the portion of systems operating below -20°F and for warmer piping up to an alarm switch set to warn operator of falling temperatures below -5°F. Thereafter, carbon steel is usually utilized unless maintaining cleanliness during construction or during operation is a problem.

Compressors, which are vulnerable to liquid carryover from a liquid source, are protected by a liquid trap in addition to a temperature alarm and shutdown systems.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

D. Spills and Leakage

The general rule is to repair oxygen gas or liquid leaks immediately. If leaks are minor and in a relatively safe area, and it is not practical to fix them immediately they would be fixed at the first opportune moment. For bad leaks in hazardous areas, of course, the leak is to be fixed immediately. Minor leaks where there is a real potential hazard, such as a cracked fitting which could break completely, would be repaired immediately.

No leaks are to be repaired until all pressure in the appropriate circuits has been bled down. When torches or welding are necessary for repairs, circuits must be purged with nitrogen and tested for 21% oxygen or less atmospheres. Also, hot work requires positive blank of source of oxygen. Positive blanks include complete disconnect of line by mechanical means, blank inserted between flanges, or two block valves with a bleed to atmosphere between them. Naturally, all tools and fittings should be cleaned appropriately before use and the area should be cleaned and dried after work has been completed.

Our main area of concern regarding spills is in the load-unload areas. There have been a number of major spills, generally due to truck pulling out before disconnecting the transfer hose. All of the newer facilities have remote operated shutoff valve on storage tank lines in the event there is line breakage. Older plants are under investigation and no decisions have been made in this matter. Presently there are 31 LOX tanks in this load-unload category, 11 of which have remote shut off valves. There have been a number of incidents where drivers have pulled away and torn up our loading area lines. However, all were caught and handled immediately so no major incidents resulted. Generally, the manual valve was closed and damage repaired as necessary. One such recent happening was at a location where they had a remote valve but this was on a LIN system.

The majority of our loading areas have water deluge systems installed, manually actuated, which would serve to vaporize spilled liquid and at least prevent propagation of a fire in the event we had such a problem. Details are in APCI "Deluge System LOX Loading Facility", Safety Standard 630.2.6, Jan. 1964 (Doc. #99000055).
APCI, "Check List, Air Separation Plant, Operation", Safety Standard 610.1.5, February 16, 1961 (Doc. #99000218), has two items on the check list regarding spill hazards. One (Page 10) indicates the loading area pad is to be sloped to permit flow to the least hazardous area. The other (Page 9) questions, "Are there remote operating shutoff valves at locations where large quantities of LOX or liquid hydrogen are stored and failure of a tank would present an extreme hazard?"

APCI, "Air Separation Plant, Cryogenic Liquid Disposal", April 1962 (Doc. #99000047), and APCI, "Vaporizer, Cryogenic Liquid Disposal", Design Engineering Standard 514.6.2, May 26, 1961 (Doc. #99000015), are not directly applicable to spills and leakage but have some details on vaporizers and natural disposal.

We have not environmental warning and escape systems, therefore no detection; quantity and response time limits.

It is company and industry policy to keep all oxygen areas and systems free of incompatible materials and ignition sources.

"Handling of Low Temperature Fluids and High Pressure Oxygen", by F. Himmelberger, presented at the Aeronautical Industries Section Program of the National Safety Congress, Chicago, Ill., October 19, 1959 (Doc. #99000219), has some material on spills. All facilities have this article included in their Safety Manuals.
II. Operational Hazards

D. Spills and Leakage

1. Drainage and Ultimate Disposal Arrangements

a. At production plants the Industrial Gas Division is responsible for the conversion of transport equipment from one service to another (e.g., LOX to LIN) and for disposal of off-purity product. This general category of disposal would be intentional and would be performed in the following manner if the production facility has a vapor collection system. The liquid product would be transferred at a controlled rate into the plant tanker vapor collection system for vaporization and dispersal through a vent stack provided with a blower which safely disperses the vapor into the atmosphere. If a vapor collection system is not provided at the production facility, the liquid product is drained onto a clean gravel area at a controlled rate to avoid producing a large vapor plume and a large area with a high oxygen concentration.

b. Safe venting and control of leakage during transfer of LOX product at consumer sites is achieved by eliminating the possibility of product from contacting combustible materials. It is IGD practice to install bulk oxygen storage systems in accordance with company criteria based on the applicable codes, NFPA #566, "Installation of Bulk Oxygen Systems at Consumer Sites", 1965 edition (Doc. #99000190). This code and Air Products' criteria requires that liquid oxygen be transferred over noncombustible surfaces, thus, any leakage of liquid oxygen or small spillage would be safely vaporized. The noncombustible surfaces referenced above are clean gravel or concrete. Where asphaltec paving or possible hydrocarbon on gravel or on earth are under the transfer hose connections or valving, an aluminum drip-pan is provided during the transfer operation. It has been Air Products' experience that the relatively small quantity of vapor associated with LOX transfer procedures do not pose a problem.
NFPA #566, 1965 edition has been revised in May 1971, in accordance with the "Amendments" to NFPA No. 566, (Doc. #99000191) and will be designated as NFPA #50.

c. Gaseous oxygen storage systems are also covered by NFPA pamphlet #566; however, the problems of leakage are significantly less than with LOX.
II. Operational Hazards

D. Spills and Leakage

2. Separation of Incompatible Materials and Ignition Sources in Disposal Systems

NFPA #566 (Doc. #99000190) lists quantity distance criteria to maintain flammable and combustible storage at a safe distance from the oxygen bulk storage system. Similarly, ignition sources are restricted from the immediate area of the oxygen bulk storage system. It is the intent of the NFPA code to prevent storage of combustible materials and combustible structures at an inadequate distance from the storage system to preclude the exposure of the oxygen storage system to a fire.
II. Operational Hazards

D. Spills and Leakage

3. Environmental Warnings and Escape Systems

Due to the practical maximum storage at consumer sites, perhaps 20,000 gallons of LOX, (average 2,400 gals) there is not a necessity for any specific or general requirements for environmental warnings and escape systems. Each oxygen bulk storage system is placarded with a warning "Oxygen - No Smoking or Open Flames."
II. Operational Hazards

D. Spills and Leakage

4. Detection: Quantity and Response Time Limits

Due to the practical maximum storage of 20,000 gallons of liquid oxygen with the average storage being 2,400 gals, a detection system is not provided at consumer facilities. NFPA pamphlet #566 (Doc. #99000190) requires that storage systems be located in well ventilated areas and places a restriction on the number of fire walls and locations of fire walls that may be used and would restrict ventilation (see Section 5-1-11).
II. Operational Hazards

E. Contaminants Accumulation

The procedures for solvent evaporation technique, and for extraction of ether soluble material and oil content determination are covered in:

Latshaw, D. R., "Oxygen Safety Review Check List", May 4, 1971 (Doc. #99000217)
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

F. Oxygen Transfer

1. Production to storage, storage to system, storage to transport, transport to system.

Liquid production to storage is normally accomplished through gravity feed to low pressure tanks operating at 2-3 psig. Piping material may be austenitic stainless, copper or aluminum. Insulation is by rockwool in ducts for multiple lines or Foamglas for one or two lines. Liquid oxygen or nitrogen may be carried in a common duct. Inclusion of liquid hydrocarbons is not permitted. Small plants often utilize a vacuum jacketed transfer system or a batch transfer system to minimize heat leakage.

Storage to system often requires elevated pressures necessitating the use of centrifugal pumps. Storage to transport also requires pumping equipment due to operating pressures of the storage and the normal elevation of transport tankers. Transport to system is usually accomplished by pressurizing the tanker (to approximately 25 psig) or by on-board pumps for higher pressures.

Safety requirements relative to storage and loading areas are covered by Standard 607.2.1.1(1). Deluge systems are covered by Standard 630.2.6(2).

2. References.

(1) Ball, W. L., Plant Components, Storage, Converter System, and Cryogenic Liquids, APCI Safety Standards 607.2.1.1, April, 1962 (Doc. #99000048).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

F. Oxygen Transfer

II. Operational Hazards

F. Oxygen Transfer

1. Systems

Field Fabricated Cryogenic Liquid Storage Tanks.

APCI procedure for the design and fabrication of large Cryogenic Liquid Storage Tanks is covered in detail in the following references:

1. APCI Standard Specification for a Field Fabricated Cryogenic Liquid Storage Tank (Flat Bottom), APCI No. 99820A, September 15, 1971 (Doc. #99000341).

2. APCI Job Specification 310,000 Gallon Capacity LOX/LIN Storage Tank, APCI No. 71-2775-16.10-1A, September 16, 1971 (Doc. #99000342).

II. Operational Hazards

F. Oxygen Transfer

1. Systems

The following documents describe some of the APL oxygen transfer methods, several typical installations, and the Operations Department overhaul procedures for liquid pumps:

(1) APL, Centrifugal Oxygen Compressor Manual, Hattingen Plant, APL (Doc. #99000410).

(9) APL, Operations Department, Overhaul Procedure, New Malden, APL C 155/9.5 (Doc. #99000418).
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

F. Oxygen Transfer

2. Pipeline Transportation

O₂ pipelines are presently designed in accordance with the following:

g. Title 49. Transportation Part 192 - Transportation of Natural Gas and Other Gas by Pipeline: Minimum Federal Safety Standards -- Establishment of Minimum Standards, Requirements for Central Corrosion, Federal Register, 36, No. 126, June 30, 1971 (Doc. #99000356).

h. Title 49. Transportation Part 192 - Transportation of Natural Gas and Other Gas by Pipeline: Minimum Federal Safety Standards -- Establishment of Minimum Standards, Extension of Time for Confirmation or Revision of Maximum Allowable Operating Pressure, Federal Register, 36, No. 176, September 10, 1971 (Doc. #99000357).

i. Public Law 90-481

Liquid oxygen transfer systems are designed in accordance with:

II. Operational Hazards

F. Oxygen Transfer

2. Pipeline Transportation

APL Oxygen pipeline design concepts and criteria are described in the following documents:

(1) APL, Oxygen Pipelines, APL Engineering Standard LS.30/1, Rev. 0, July 1, 1970, (Doc. #99000404).

(3) APL, Piping Selection Sheet-Carbon Steel-Warm Oxygen Service 150 PSIG (CSO 1.5), APL Engineering Standard LS.31/1, Rev. 0, June 12, 1970, (Doc. #99000406).

(4) APL, Piping Selection Sheet-Carbon Steel-Warm Oxygen Service 275 PSIG (CSO 2.7), APL Engineering Standard LS.31/2, Rev. 0, January 29, 1970, (Doc. #99000407).

(5) APL, Piping Selection Sheet-Carbon Steel-Warm Oxygen Service 500 PSIG (CSO 5.0), APL Engineering Standard LS.31/3, Rev. 0, June 12, 1970, (Doc. #99000408).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

F. Oxygen Transfer

2. Road, Railroad, Barge, and Pipeline Transportation

a. Pressure Relief

The majority of relief devices on LOX tankers and LOX railcars at Air Products have a set pressure of 25 psig and a road safety relief valve set for 15 psig. Several tankers also have safety relief valves with a set pressure of 40 psig and several pumpers have a set pressure of 80 psig. Rupture discs are also provided on the above cryogenic transport equipment which are rated for approximately 1-1/2 times the safety relief valve setting. The relief devices for tankers are designed in accordance with the criteria listed in CGA Pamphlet Number 341 "Tentative Standard Insulated Tank Truck Specification CGA-341 For Cold Liquefied Gases" 2nd Edition, 1970, (Doc. #99000195).

Gaseous oxygen tube trailers containing D.O.T. tubes are provided with frangible discs in accordance with CGA Pamphlet Number S-1.1 "Safety Relief Device Standards, Part 1 - Cylinders For Compressed Gases" 5th Edition, 1969, (Doc. #99000196).
II. Operational Hazards

F. Oxygen Transfer

2. Road, Railroad, Barge, and Pipeline Transportation

b. Contamination Control

Contamination control is insured by Air Products' Quality Assurance Program which monitors on a monthly to four month basis, the product produced at the production facilities and in storage at the cylinder filling facilities. This program is described in detail in the following documents:

(2) Scott, D. J., "Analyses Required on Quality Control Samples", May 10, 1968 (Doc. #99000224).

Assistance is rendered to customers to insure that the customer system is suitably cleaned for oxygen service prior to introduction of oxygen into a new system.
II. Operational Hazards

F. Oxygen Transfer

2. Road, Railroad, Barge and Pipeline Transportation

c. Oxygen Dispersal From Vents and Lines

Liquid oxygen tankers were initially designed with vents extending down to the rear or forward of the control cabinet. It was believed a number of years ago that this was the safest means of disposing of venting oxygen. Within the past several years, design of new tankers have safety relief device vents directed up and back to vent oxygen at an approximate elevation of eight feet above grade. This has substantially reduced the concentration of oxygen enriched atmospheres close to the ground and provided better dispersal of the vapor into the atmosphere.

Gaseous oxygen tube trailers are provided with vent stacks which discharge oxygen straight up into the air above the height of the highest tubes on the tube trailer. Weather protection caps are installed on the vent stacks.
II. Operational Hazards

F. Oxygen Transfer

2. Road, Railroad, Barge and Pipeline Transportation

d. Vehicle Accident Procedures

Accident procedures are included in APCI, Fire Extinguishment, APCI Safety Standards 635.30, pages 1, 2, and 4, February 1968 (Doc. #99000197).
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

F. Oxygen Transfer

2. Road, Railroad, Barge and Pipeline Transportation

e. Vibration and Controlled Sloshing

Vibration of tankers in over the road use is minimized by certain inherent factors in tanker design and by careful selection of the running gear. The inner tank vibration is dampened by perlite insulation and by the inner tank supporting system utilizing phenolic materials as thermal barriers. Piping is guided to permit contraction and eliminate unwanted movement resulting from road vibration. Careful selection of commercially available running gear to obtain minimum vibration transmitted to the chassis.

A number of years ago liquid oxygen tankers were provided with approximately three transverse baffles and one additional longitudinal baffle. In striving to achieve lightweight designs and as the longitudinal baffle did not appear to contribute significantly to tanker operation, it has been deleted from recent designs with no detectable adverse effect. The more recent designs include baffles that are a perforated conical design with a hole in the center with an approximate 50 percent open area. A design to minimize the effect of sloshing and obtain maximum tanker capacity with lightweight design is difficult.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

F. Oxygen Transfer

3. Malfunctions and Failures

a. Oxygen pressure gauge failure on March 23, 1964 in Emmaus Plant. Questionable history and the gauge used because it had not been labeled for oxygen service. Man received bruise on left hand. Refer to memo, Schmoyer, W. W., "Specialty Gas Gauge Failure," April 13, 1964 (Doc. #99000257).

b. Hose rupture and fire on test gauge equipment at our Shakopee, Minnesota cylinder fill facility on June 9, 1968. Rubber hose should not be used in oxygen service. Man received second degree burns to his face and arms. He was wearing safety glasses. Refer to memo, Hubbs, M. H., "Test Gauge Equipment Failure, Shakopee," June 12, 1968 (Doc. #99000284).

c. APCI, Memo by B. J. Berrettini, "LOX Pump Fires and Explosions," dated June 26, 1970 (Doc. #99000258), Summarizes causes and similarities of seven different APCI/APL transfer pump energy releases.
II. Operational Hazards

F. Oxygen Transfer

3. Malfunctions and Failures

The following information identifies several APCI incidents involving oxygen transfer equipment or instrumentation. APCI reports and documents covering these incidents more fully are also identified by date and Document #.

<table>
<thead>
<tr>
<th>Date</th>
<th>Doc. #</th>
<th>Author</th>
<th>Equipment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/28/61</td>
<td>99000274</td>
<td>E. Kehat</td>
<td>Gauges</td>
<td>Tests on orifices to be installed in oxygen service gauges to prevent personnel injury in the event of an energy release or over-pressure rupture of gauge bourdon tube.</td>
</tr>
<tr>
<td>8/2/61</td>
<td>99000275</td>
<td>F. K. Kitson</td>
<td>Gauges</td>
<td>Report of requirements for purchasing new gauges and modifications of old gauges to protect personnel in the event of a rupture.</td>
</tr>
<tr>
<td>1/64</td>
<td>99000049</td>
<td>W. W. Schmoyer</td>
<td>Vacuum System</td>
<td>Safety Standard 607.2.2.5 on cylinder evacuation system to prevent contamination of fill manifold and cylinders.</td>
</tr>
<tr>
<td>7/65</td>
<td>99000270</td>
<td>W. W. Schmoyer</td>
<td>Regulator</td>
<td>Report on operation, use, hazards and general accident causes of regulators.</td>
</tr>
<tr>
<td>12/15/67</td>
<td>99000277</td>
<td>W. L. Ball</td>
<td>Loading</td>
<td>Two reports on an incident whereby a loader's eye was probably saved by glasses when a hammer chip shattered his glasses when tightening a liquid connection.</td>
</tr>
<tr>
<td></td>
<td>99000278</td>
<td>M. H. Hubbs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Doc. #</td>
<td>Author</td>
<td>Equipment</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>12/30/68</td>
<td>99000265</td>
<td>H. H. Master</td>
<td>Pumps</td>
<td>Competitor pump fire had indicated foreign material may have been cause. Reviews our position and specifies suction screens be installed where still necessary.</td>
</tr>
<tr>
<td>1/24/69</td>
<td>99000266</td>
<td>H. H. Master</td>
<td>Pumps</td>
<td>Same as above but directing and instructing managers to accomplish screen installations.</td>
</tr>
<tr>
<td>2/27/70</td>
<td>99000273</td>
<td>H. H. Master</td>
<td>Meter</td>
<td>Near miss report where incompatible material was used in a ring balance meter in oxygen service and action taken to check and eliminate existing and future problems.</td>
</tr>
<tr>
<td>1/19/71</td>
<td>99000276</td>
<td>F. K. Kitson</td>
<td>Vacuum System</td>
<td>Vacuum system arrangement to prevent water from getting into cylinders where Nash water-seal compressor is utilized.</td>
</tr>
<tr>
<td>1/26/71</td>
<td>99000267</td>
<td>R. D. Stompler</td>
<td>Pumps</td>
<td>Review reasons and status of modifications to Operations Department pump to prevent recurrence of a similar pump failure at Puerto Rico. Modifications to lube system addition of suction screens and protective barriers.</td>
</tr>
<tr>
<td>2/19/71</td>
<td>99000268</td>
<td>H. H. Master</td>
<td>Loading</td>
<td>Driver pulled away from load area with hose still connected. Stopped in time to prevent line or hose breakage.</td>
</tr>
<tr>
<td>2/8/71</td>
<td>99000279</td>
<td>H. H. Master</td>
<td>Loading</td>
<td></td>
</tr>
</tbody>
</table>
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

F. Oxygen Transfer

3. Malfunctions and Failures

The following information identifies several incidents which occurred with other oxygen equipment together with reports and documents covering these incidents in greater detail.

<table>
<thead>
<tr>
<th>Date</th>
<th>Doc. #</th>
<th>Author</th>
<th>Equipment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/26/61</td>
<td>99000259</td>
<td>S. H. Duffala</td>
<td>Compressor</td>
<td>Two reports on the 6/21/61 Linde oxygen compressor fire at Great Lakes Steel. Three men were killed. Since all three on site were killed, there is some question on the cause, but it is known they were having trouble with the compressor.</td>
</tr>
<tr>
<td>7/7/61</td>
<td>99000260</td>
<td>W. L. Ball</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/62</td>
<td>99000280</td>
<td>M.C.A.</td>
<td>Pump Filter</td>
<td>Report of a missile pad incident where contaminants in a pump filter were probably initiated by a foreign particle at high velocity. The resulting release caused a massive LOX spill.</td>
</tr>
<tr>
<td>10/21/63</td>
<td>99000261</td>
<td>W. L. Ball</td>
<td>Pump</td>
<td>Reflux pump on the Airco plant at Butler, Pa. exploded and killed one man. Piping and pump believed to have contaminants.</td>
</tr>
<tr>
<td></td>
<td>99000261A</td>
<td>J. J. Rendos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td>99000262</td>
<td>S. W. Cowles</td>
<td>Pumps</td>
<td>1965 AIChE meeting paper on four separate fires experienced at Armour Agricultural Chemical Company.</td>
</tr>
<tr>
<td>Date</td>
<td>Doc. #</td>
<td>Author</td>
<td>Equipment</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>12/29/67</td>
<td>99000264</td>
<td>H. H. Master</td>
<td>Pipeline</td>
<td>Details were limited on an oxygen pipeline filter fire at a steel mill in India where six people were killed.</td>
</tr>
<tr>
<td>6/70</td>
<td>99000269</td>
<td>H. Bauer, W. Wegner, K. F. Windgassen</td>
<td>Pumps</td>
<td>Article from Cryogenics on tests made for causes of pump fires. Includes mechanical problems, relation of various metals to combustion possibilities and intensity, and drop hammer tests on chips of metals and assembly materials.</td>
</tr>
</tbody>
</table>
II. Operational Hazards

F. Oxygen Transfer

3. Equipment Malfunctions and Failures

The two main categories of machinery used for oxygen transfer are compressors and pumps. Malfunctions and failures with these devices have led to numerous design features and operating techniques to prevent failures or at least to prevent serious damage and personnel injury. Most failures have been diagnosed sufficiently to enable action to be taken to prevent recurrence, however, some failures have been unexplained and the resulting action has been protective rather than preventive. Some potential failures are impossible to prevent and these cases are necessarily handled by protective measures.

Materials of construction for compressors and pumps often are not completely compatible with oxygen and under certain conditions will burn. In most instances there is no substitute material which is both compatible with oxygen and which will satisfy the design requirements. In some instances the cost of more compatible materials is prohibitive. Silver is used in limited quantities for shaft seals with some makes of compressors but the high cost has caused some manufacturers to use cheaper less compatible materials. Compressors cast of bronze would be more compatible with oxygen than when cast of iron but the costs and manufacturing difficulties prevent this selection.

Oxygen Compressors Most compressors used by industry for oxygen have been either reciprocating or centrifugal. Generally reciprocating compressors are used for small to moderate flow rates where low to moderate pressures are required. For high flow rates and high pressure a centrifugal and reciprocating compressor are often used in series. Centrifugal compressors require at least 500 CFM actual flow at the last stage of compression for reasonable performance and are generally limited to about 500 psig discharge pressure. Applications with less flow or with higher pressures are usually accommodated with reciprocating compressors.

Potential equipment malfunctions and failures are designed out of the compressor as much as possible during the procurement and design stage. Not all compressor manufacturers are knowledgeable on oxygen compressors and thus the selection of potential suppliers is the first step. Proper purchasing specifications are necessary
to fully describe the duty and design features required. Oxygen compressor suppliers have certain standard features of construction but rely on customer specifications to complete the design. Customer specifications aside from process duty requirements are basically experience factors to be applied to the compressor design. The compressor supplier does not usually receive full feedback information on the operation of the compressor as does the operator. Thus the compressor operator reflects experience factors in specifications for new equipment.

Reciprocating Compressors Reciprocating compressors have been used for many years in oxygen service but until recent years mostly small high pressure units. Prior to the advent of Teflon, and similar materials, for piston rings and piston rod packing most compressors were operated with a soap-water solution for lubrication or used carbon-graphite sealing materials and wear parts. Also in use has been the labyrinth type piston compressor and the diaphragm type compressor.

Present day reciprocating compressors are mostly Teflon ring construction of labyrinth piston construction with a few diaphragm compressors used for low flow high pressure applications.

Some of the notable malfunctions and failures on reciprocating oxygen compressors in recent years which have been "designed-out" are listed below:

Incorrect assembly of compressor cylinder valves such that intake valves were installed in discharge ports. This condition results in recompression in the cylinder and generates excess heat and a high potential for a fire. APCI specifications require a valve design such that an intake valve will not fit in a discharge port.

Foreign objects entering cylinders have caused scoring of cylinders with resultant excess heat and potential fire. Impacting of foreign objects could also cause a fire. APCI specifications require line filters in front of compressors to prevent entrance of foreign objects.

Foreign objects can also be in the form of broken parts from the compressor itself such as valve parts falling into the cylinder. APCI specifications require vibration switches which function on high acceleration or "shock" forces and which shut down the compressor. Experience has shown that the initial impact of the piston with the foreign object causes less damage than the subsequent damage caused by continued operation. Continued operation is likely to cause heat and a resultant fire. For this reason vibration switches must be set to trip the compressor
Instantly, upon sensing a malfunction, in order to be effective.

Non-lubricated cylinders using Teflon or similar materials for self-lubricating rubbing or sealing parts are subject to unpredictable wear rates. Since the self-lubricating material generally separates moving metal parts the wearing out of the material can cause metal to metal contact with high friction heat and potential fire. Self-lubricating piston rings are sometimes supplied with an expansion ring to help hold the piston ring against the cylinder bore. In the event of piston ring failure or high wear the expander can come in contact with the cylinder bore. Since the expander is usually spring steel it can cause scoring and heat and a potential fire. APCI specifications prohibit the use of expanders.

Piston rider rings which support the weight of the piston and guide the piston in the cylinder can wear and allow metal to metal contact. Constant monitoring of this wear is difficult and requires disassembly of the compressor. APCI specifications prohibit the use of expanders.

Temperature indication within the compressor system is very useful to detect problems. Interstage gas temperature indicators will detect cooling problems, compressor cylinder valve problems or piston ring leakage. On compressor cylinders with many valves an individual temperature pickup is mounted on each valve to detect a broken or leaking valve.

Centrifugal Compressors. Centrifugal compressors are being used more in recent years due to larger volumes of gas to be transferred. High rotating speeds are necessary with centrifugal compressors since the pressure is developed by kinetic energy. Because of the high rotating speeds, accidental rubs between the rotor and case are likely to produce a fire.

The materials used for construction of a centrifugal compressor are generally a compromise between oxygen compatible materials and materials having proper mechanical design properties. The compromise materials must be such that they are compatible with oxygen in the normal mode of operation but may not necessarily
be compatible in the event of a malfunction of internal rub during operation. The prime example of this condition is the common use of stainless steel alloys for rotors and steel or iron alloys for the case. A high velocity rub between the impeller and the case has caused several fires wherein the impeller has been consumed by fire and the case has burned through. Since compatible materials are not available or are prohibitively expensive the compressor is designed to minimize the chances of a rub.

Probably the greatest cause for a fire in a centrifugal compressor is having a rub between an impeller and the case. The compressor design should be such that if a rub does take place the rub should occur at a small diameter section where the rubbing velocity is low. Shaft seals are generally a labyrinth type and do experience rubs since they are designed for small running clearances. These seals are small diameter and of thin cross section with narrow edges such that a rub will generally not cause a fire. The labyrinth blades dissipate the friction heat from the rub adequately to keep the temperature of the materials below their ignition point. Conversely a rub of the impeller at high velocity at a massive section will concentrate the friction heat and ignite the rubbing materials.

APCI specifications require materials of construction and certain running clearances to help design out potential fire causes. Additional preventive measures are taken by instrumenting the compressors to detect malfunctions as they develop and thus take corrective action before a rub takes place. Several of the more important instruments in use are:

1. Temperatures - All interstage gas temperatures before and after intercooling, bearing temperatures and cooling water temperatures. All of these temperatures indicate the condition of the compressor and are of primary importance when used to indicate a change taking place.

 High gas temperatures are not necessarily harmful in themselves but the temperature effect on the compressor parts could cause thermal deformations and resulting problems. Of importance is to determine the cause of the temperature rise. APCI connects the compressor discharge temperature indicator to alarm and to shut down the compressor.

 Bearing temperatures are an important indicator of bearing performance. Bearings generate considerable heat and a bad bearing will generally increase in temperature. The bearing heat is removed with the circulating lubricant and thus the bearing temperature also gives an indication of lubricant flow.
2. Vibrations - Rotor vibrations relative to the compressor case and rotor axial position relative to the case are constantly monitored and the instruments designed to alarm and to shut down the compressor. The rotor vibrations are very indicative of the mechanical condition of the compressor. The vibrations will indicate rotor unbalance or looseness, rubs between the rotor and case, bearing problems, and drive coupling problems. Any vibration increase from the normal acceptable level is reason for investigation. APCI standard procedure is to have the vibration instruments sound an alarm at a vibration level 0.5 mils above normal and shut down the compressor at a level 1.5 mils above normal. If a gradual vibration level increase is occurring the compressor will be manually shut down at a level of 1.0 mils above normal.

Axial position of the rotor in the case is maintained by the thrust bearings. A shift of the rotor can allow side contact of the impeller in the case with the previously mentioned fire potential. The position instruments are set to alarm and to shut down the compressor if the rotor moves beyond the limits normally allowed by the thrust bearing.

Vibration monitoring equipment of the proximity probe type, which does not touch the observed shaft, is relatively new and has been very helpful in diagnosing high speed centrifugal compressors. APCI has been able to diagnose many potential problems and perform corrective work prior to a failure with the aid of these vibration sensors. We believe several previous unexplained compressor fires could have been prevented through the use of this type equipment. Because of their importance all APCI centrifugal oxygen compressors are now equipped with radial and axial vibration monitors.

3. Anti-Surge Control - Centrifugal compressors are subject to a condition called surge. Surge occurs when the back pressure imposed on the compressor is greater than the compressor is capable of producing and occurs at different pressure values depending upon the flow rate through the compressor. When surge occurs there is a rapid pressure change within the compressor that usually results in a change in axial force on the rotor and can also reverse the direction of thrust on the bearings. Thrust bearings are usually capable of withstanding repeated surging but it is an aggravated condition and there are many cases of compressor failure caused by surging. Since the surging causes an axial movement a side rub on an impeller is likely and on an oxygen compressor it would probably cause a fire.
All APCI oxygen compressors are equipped to automatically vent or bypass the compressor discharge flow at operating conditions approaching surge. Additional vents will also automatically vent to atmosphere in the event of a shut-down so that the stored volume of gas in the compressor will vent quickly enough to prevent any surge conditions while the compressor is slowing down.

Oxygen Pumps

Most pumps used by industry for oxygen have been either reciprocating or centrifugal. Generally reciprocating pumps are used for small to moderate flow rates and for higher pressures. Centrifugal pumps are used for most all flow rates where low to moderate pressures are required.

Oxygen pumps, both reciprocating and centrifugal, are a specialty item and are available from a limited number of suppliers. The special design features, cleanliness requirements and relatively small sales volume makes them unprofitable for most pump suppliers.

Materials of construction are similar for both types of pumps and fall into the category of acceptable low temperature materials, namely nickel alloys, copper alloys and aluminum. Generally the nickel alloys are used where high strength is required, copper alloys where rubbing contact is expected and aluminum where light weight is required. The copper alloy generally used is bronze and is the most compatible with oxygen of the low temperature metals. Nickel alloys are generally the 300 series stainless steel or Monel.

Oxygen pumps are generally a simple device with few controls or instruments. Most pumps have only a suction and discharge pressure gage to monitor their performance. Oxygen pump usage is mostly for transfer operations where the liquid oxygen is transferred from one storage vessel to another and often from a pressure vessel to a higher pressure vessel or pipe line. This transfer duty is mostly on intermittent operation.

Malfunctions and failures of oxygen pumps are probably due more to the intermittent mode of operation than for any other reason. Starting and stopping of any mechanical device is generally considered detrimental to its long term performance, but with oxygen pumps this condition is greatly exaggerated. Some of the past failures of record and reasons for failure are listed below and it can be seen how intermittent operations affects the pump. Not all failures have been explained and this fact indicates the need for more instrumentation and controls on oxygen pumps. APCI is now working on new standards for oxygen pumps and will attempt to achieve better pumps and better operating techniques.
Centrifugal Pumps. A centrifugal pump is usually trouble free so long as the shaft bearings and shaft seals are intact. Many problems can develop to cause failures and these will be discussed; but we consider bearings and seals as the greatest problems.

1. Bearings - The pump impeller must rotate at a rapid rate in the pump housing in order to develop pressure. Accidental contact between the rotating impeller and the pump case will cause friction heat and even in a liquid oxygen environment can cause a fire. Most known fires and explosions of centrifugal oxygen pumps were due to impeller rubs and most of these rubs were due to failed bearings. Very few pumps are installed with any instrumentation to monitor the condition of the bearings.

Low speed pumps 3600 RPM and below generally have grease lubricated bearings and are not a general problem when properly maintained. Higher speed pumps are either grease lubricated or oil lubricated and do have bearing problems. Oxygen pumps generally use oxygen compatible fluorinated lubricants which are inferior to premium petroleum lubricants and do not adequately protect against rust and corrosion within the bearings. Pumps can rust in the bearing area while inoperative and fail prematurely during operation. Fluorinated lubricants are also subject to breaking down and forming acidic products when subjected to excess heat and moisture. These conditions can develop in a pump bearing housing with certain bearing failure as a result. Most pumps use a small amount of lubricant and as a result have very little reserve supply to account for any leakage. Oil lubricated pumps rely on circulation of lubricant with most pumps not equipped to monitor the lubricant flow.

Some pumps have their bearings lubricated with the pumped liquid oxygen and it is critical to maintain liquid in the bearings. The friction heat of the bearings will tend to vaporize the liquid and the bearings can fail under this condition. For this type pump, it is critical to maintain sufficient NPSH to prevent cavitation and thus prevent flashing in the bearings.

Temperature indicators are a good device to monitor the condition of bearings not lubricated with the pumped liquid. Bearings generally increase in temperature as they wear and will rapidly increase in temperature while failing. High temperature switches are a good device to detect bearing failure and to shut down the pump prior to an impeller rub occurring.
2. Shaft Seals - Oxygen pump shaft seals are generally exposed to the atmosphere which allows oxygen leakage to safely dissipate. Since the shaft seal gets cold while pumping it can condense moisture which will subsequently freeze and form ice deposits. Intermittent operation allows thawing and refreezing which allows water to penetrate the seal and freeze inside the seal surfaces which can cause seal failure. A dry atmosphere in the seal area is beneficial and if heated, affords additional benefit. Dry heated nitrogen is used to blanket the seal area on installations where nitrogen is available. Installations such as on trailers where dry gas is not available can expect more seal problems.

3. Suction Screens - Foreign objects entering the pump suction can become lodged between the impeller and case and cause friction heat and fire. All APCI pumps are supplied with suction screens to keep foreign objects from entering the pump.

4. Cleanliness - Oxygen pumps, as well as all oxygen handling equipment, must be clear. Too often mechanics are careless and a pump fire or explosion results.

5. Faulty repair - Incorrect assembly of a pump can readily allow impeller rubs. Oxygen pump maintenance and overhaul is best performed at central maintenance depots or by the pump manufacturer to assure proper assembly and cleanliness.

Reciprocating Pumps - Reciprocating pumps are used almost exclusively where high pressures are required for cylinder filling and high pressure storage systems.

The reciprocating pumps operate at slower speeds than centrifugal pumps and have much slower rubbing contact velocity in the liquid oxygen area. Reciprocating pumps generally operate with a plunger in a barrel with packing or seal rings on the plunger to prevent leakage. In the event of malfunction or excess wear accidental rubs between the plunger and barrel rarely create enough friction heat to cause a fire or explosion. Material selection for the cold end of the pump is important so as to have materials which can best tolerate rubs without creating excess friction heat and metal to metal galling. Bronze alloys are preferred over stainless steel for this consideration.

Pump packing material in recent years has been predominantly Teflon alloyed with various stabilizers and additives. Prior to Teflon, carbon-graphite mixtures with asbestos were used and are still used to a lesser extent.
Cleanliness and proper packing installation are important since the contact area of the packing to the plunger is where the most heat from friction can be expected and where a fire or explosion is most likely to initiate. Operation of a liquid oxygen pump on some other cryogenic fluid such as liquid nitrogen or liquid argon can present a hazard when put back on liquid oxygen service, unless the pump is disassembled and properly cleaned. Minute particles of packing, especially carbon particles, are formed during operation and while on oxygen service are gradually oxidized with no problem. If these particles are formed in a non-oxygen environment and then later exposed to an oxygen environment they will oxidize rapidly and together can result in excess heat with a potential fire or explosion.

Reciprocating pump valves can be a maintenance problem but do not normally present a safety hazard in themselves. Valve failure will cause the pump to stop pumping, however, and continuous operation can develop excess heat within the pump since no liquid flow is present to carry away the friction heat. A discharge pressure switch or flow measuring device set to shut down the pump can monitor against this occurrence.

LOG OF FIRES IN CENTRIFUGAL GASEOUS OXYGEN COMPRESSORS

Mid to Late 1950's - Failure somewhere in South Africa, presumably a Brown Bovari compressor.

1959 - January 15 - McClouth Steel, Detroit, Michigan

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Pressure Case:</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>18 H 3501</td>
</tr>
<tr>
<td>Capacity</td>
<td>4,080 cfm</td>
</tr>
<tr>
<td>Discharge</td>
<td>94.5</td>
</tr>
<tr>
<td>High Pressure Case:</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>18 H 3501 I</td>
</tr>
<tr>
<td>Capacity</td>
<td>620 cfm</td>
</tr>
<tr>
<td>Discharge</td>
<td>399.4 psia</td>
</tr>
<tr>
<td>Speed</td>
<td>9500 rpm</td>
</tr>
<tr>
<td>Total BHP</td>
<td>1668</td>
</tr>
</tbody>
</table>

The fire occurred in the high pressure casing between the last stage wheel and the balancing piston. The high pressure case burned through and the flames melted and burned through the low pressure cast iron case. The carbon steel shafts apparently were heavily damaged but the cast iron diaphragms showed no evidence of burning. The journal and thrust bearings were not damaged appreciably and apparently did not enter into the combustion reaction.
1959 - July 10 - Wyandotte Chemical, Geismar, Louisiana

Clark - Type IM8 2 machines in series
Capacity 3150 cfm at 75°F.
BHP 1050
Speed 9500 rpm
Discharge 225 psig

The reaction was confined to the discharge end seal area only. The previous day leakage was found in a diaphragm water nipple, which was repaired during outage of about 30 hours due to process trouble. Fire occurred during startup when oxygen was bled into the machine after 3-hour run-in with nitrogen.

It is speculated that corrosion products caused by water leakage caused frictional heating and ignition in the balance piston area.

1960 - Montecatini, Novaro Chemical Plant

Make Demag Turbo Blower (purchased in 1952)
Stages Three
Inlet Pressure 1 atmosphere
Discharge Pressure 2.5 atmospheres
Speed 10,500 rpm
Speed of Motor 3,000 rpm

A fire reportedly occurred "some time ago" at the referenced facility. The only data available concerns the design of the machine.

1964 - July 17 - Wyandotte Chemical Company, Geismar, Louisiana

Reaction occurred in same machines involved in failure of 1959.

The fire in the oxygen compressor was associated with explosions and fires in other sections of the process system. It is believed that ethylene oxide backflowed through a connection into the process air stream to the air separation plant, went through the air separation plant and into the oxygen compressors. The low pressure case received only minor damage, but the high pressure case was blown apart. The suction bottle of the low pressure machine was split open and the top heat blown about 250 feet away.
1965 - September 26 - Mingo Oxygen Company, Mingo Junction, Ohio

Fire occurred in piping associated with the compressor but did not involve the compressors themselves.

1967 - December - Poland

A Demag unit reportedly failed shortly after startup. Cause believed to be improper/inadequate cleaning after long period of storage.

1968 - Knapsack Gresheim (Division of Messer), Duisburg, West Germany

At this facility five Brown Bovari centrifugal oxygen compressors discharge into a common oxygen main. On a normal shutdown of one of these machines, which had been in operation for seven years, the discharge check valve failed to operate. The operators also had failed to close the manual discharge block valve, which normally is done prior to shutting down the compressor. After coming to rest, the backflow of oxygen caused the machine to rotate backwards. As the lube oil pump does not operate with reverse rotation of the shaft, the main bearings and thrust bearings received no oil and began to overheat, damaging the bearings and the silver labyrinth packings of the sealing glands and impellers. Excessive heating in the bearings vaporized the remaining oil, finally resulting in an air-oil vapor explosion and fire.

Upon closing the discharge block valve, rotation of the machine ceased and the air-oil fire was put out by the operators. Damage was confined to the bearings and labyrinths. Oxygen was not involved in this reaction, which is of a type that under similar circumstances could occur on a compressor regardless of the material being compressed (whether oxidant, fuel or inert).

1968 - June 17 - Shell Chemical Company, Geismar, Louisiana

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Elliott - 24 HB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge Pressure</td>
<td>265 psia</td>
</tr>
<tr>
<td>Capacity</td>
<td>1365 acfm (500 T/D)</td>
</tr>
<tr>
<td>BHP</td>
<td>945</td>
</tr>
<tr>
<td>Speed</td>
<td>19,403 rpm</td>
</tr>
<tr>
<td>Bearing Lubrication</td>
<td>Water</td>
</tr>
</tbody>
</table>

This unit was the high pressure case of a two-case train. The unit had been in steady operation for a period of more than four weeks. There was no indication from the operating records of a change of conditions (loss of power, surging, vibration, pressure or temperature change).

Inspection of the casing revealed the most extensive damage in the area of the first stage impeller discharge. The casing
had been burned through in four places in the plane of the first stage discharge, and the interstage diaphragm was almost completely consumed. Although the second stage impeller was severely damaged, there was very little evidence of combustion in the second stage. The shaft was not burned nor were the journal bearings or thrust bearings.

1968 - June 27 - Air Products and Chemicals, Inc., Sparrows Point, Maryland

Clark IM3 (High Pressure Case). The inboard journal of the high pressure case is believed to have failed during roll-down of the compressor, metal-to-metal rubbing in the interlocking labyrinth at the balance drum of the high pressure rotor ensuing and causing ignition. The fire broke through at both ends of the high pressure casing and several places in the balance piping. The rotor and high pressure case were damaged beyond repair.

1968 - September - Mekog, Holland

Fire reported in GHH oxygen compressor.

1968 - October - Shell Chemical Company, Geismar, Louisiana

The new Elliott compressor, replacing the unit that burned in June 1968, caught fire and was destroyed the first time an attempt was made to put it onstream.

1968 - December 14 - Air Products and Chemicals, Inc., Weirton, West Virginia

In Clark IM7-3 evidence was found, during regularly scheduled maintenance work, of limited fire damage which possibly occurred during an earlier startup.

1968 - December 27 - Airco, Bethlehem, Pennsylvania

A Demag high pressure casing had fire in discharge volute of last stage.

1969 - Nippon Sanso, Japan

A Demag unit reportedly failed early 1969 or late 1968 in a manner similar to the second Airco Bethlehem fire.

1969 - March 18 - Air Products and Chemicals, In., Middletown, Ohio

A Clark low pressure case, fire beginning in 4th stage, burning through into 2nd stage. Fire occurred during a scheduled shutdown of the compressor.
1969 - April 4 - U. S. Steel, Chicago, Illinois

A Clark oxygen compressor in a Linde plant.

1969 - April 15 - Airco, Bethlehem, Pennsylvania

Fire in same Demag machine that had a fire in December 1968.

1969 - June - August Thyssen Hutte, Duisburg

A GHH centrifugal compressor system. Fire reportedly occurred in the last intercooler causing damage to the intercooler and steel foundations. No damage to the compressor.

1969 - December 5 - Air Products and Chemicals, Inc., El Segundo, California

A Clark high pressure case, Type 161 B 4/4, operating at about 1275 psig, caught fire while being run-in on initial startup.

1969 - India

A Clark oxygen compressor reportedly was involved in a serious internal fire at a plant that was being erected by Constructor John Brown (England).

1969 - Linde Division of Union Carbide, East Chicago, Indiana

An incident occurred with a Clark 3M4–2MF, 400,000 scfh to 195 psig oxygen compressor.

Machine went down on a general power failure that also shut down diox pumps and the pipe line. Because of cold weather, the fluid in the dash pot on the discharge check valve froze or became so viscous that the valve failed to close. After an elapsed time of about 20 minutes, power to diox pumps was reestablished, the pumps started up, and pressure in the product line was reestablished. Power to the compressor motor and lube oil pumps was not yet on. As the check valve was not closed, oxygen back flowed into the compressor, rotating the rotors backward and without oil to the bearings.

An operator near the compressor noticed the startup of the unit and went to close the manual valve. As this valve was difficult to operate, the man had to close the next valve downstream.

A puff of smoke came out of the lube oil console and one oil drain burned - otherwise the fire was contained inside the case. All seals were out because of friction and fire.
1967 - Linde Division of Union Carbide, Gary, Indiana

The Clark oxygen compressor was steam-turbine driven and it was felt that in at least one startup the operators were slow bringing the machine through a critical speed. There was no outward manifestation of difficulty, but when it became necessary to open the case for maintenance reasons, they discovered excessive wear on an interstage labyrinth seal and evidence of contact between the seal and the shaft sleeve, and burning on the shaft sleeve which was stainless instead of monel.

1970 - April - Galatz, Rumania

A fire reportedly occurred during the first week of April on a Demag oxygen compressor. Machines have been running two years. Strainer was installed on these machines made of 18/8 stainless steel in suction line and strainer completely disintegrated, went through machine with resulting fire and destruction of two casings in a three-casing train. The strainers were apparently installed against Demag's advice. No injuries.

1970 - April - Auguste Thyssen Chemical Works near Oberhausen, West Germany

A fire reportedly occurred in a GHH compressor during the first week of April.

References:

7. APCI, Piping -- Oxygen Compressor Location, APCI Design Engineering Standard 570.6, January 15, 1971 (Doc. #99000029).

II. Operational Hazards

F. Oxygen Transfer

3. Equipment Malfunctions and Failures

a. Equipment

(1) Gas Pressure Regulators

1. The following applies to pressure regulators manufactured by APCI and used by its customers.

a. General gaseous oxygen high pressure cylinder and low pressure line station service.

(1) Company Practices

 (a) To provide detailed operating instructions to users including the recommendation that the instructions issued by makers of equipment used in combination with APCI regulators be consulted before operating the units in combination.

 (b) To provide qualified factory and distributor repair service.

 (c) To provide precleaned spare parts kits in sealed, dust-tight containers.

 (d) To package regulators prior to shipment in tight closing protective containers and seal body openings to prevent foreign material from entering the interior of the regulators.

 (e) To functionally test every regulator for safety and performance prior to final packaging.

 (f) To provide regulator assemblers with proper tools and supervision to prevent defects being introduced at this point.

 (g) To promote cleanliness throughout the regulator assembly operation, including an initial degreasing step of parts wetted by the gas.

 (h) To provide up-to-date design documentation to assemblers to insure the use of proper parts and supplies.
(j) To maintain a high level of quality control of regulator parts through 100% inspection of all significant dimensions and properties prior to their entry into assembly stock.

(k) To thoroughly degrease and deburr all machined parts prior to inspection and stocking.

(l) To provide maximum cleanliness and physical control in the assembly stockroom.

(m) To clearly identify all parts and materials in the stockroom.

(n) To maintain an ongoing program of product evaluation for safety and performance.

(o) To thoroughly investigate all reported malfunctions and failures and to take any corrective action indicated to prevent reoccurrences.

(p) To thoroughly test all new products under controlled conditions simulating those of actual use.

(q) To corroborate design safety of new products through tests by independent agencies such as Underwriters' Laboratories, Inc. Along with initial testing, UL provides a valuable ongoing inplant quality audit service.

(r) To provide and maintain accurate, clear, and up-to-date engineering drawings and specifications and a system for effectively communicating changes to those who will execute them.

(s) To use all available technical information in the selection of the materials of construction and the specific design features of regulators and to keep abreast of new technology which can be applied to improving the inherent safety of regulators.

b. Gaseous oxygen high pressure cylinder and low pressure line station service with oxy-fuel welding, cutting and heating equipment.

(l) Company Practices

(a) All of a (l)

(b) To provide specific instructions pertaining to this service warning of the special precautions necessary to insure safety of operation.
c. Discussion:

It is the intent of these practices to prevent equipment malfunction and failures due to:

(1) Improper design

(2) Faulty manufacturing practices

(3) Inadequate cleanliness

(4) Improper use

(5) Improper maintenance and repair

Adherence to these practices is the responsibility of the Gas Equipment Department of APCI. Their efforts are audited by the APCI Corporate Safety Department.

d. Related APCI documents

(1) APCI, Product Test Procedures 1200 Series Regulators, APCI January 30, 1970 (Doc. #99000287).

(2) APCI, Operating and Safety Instructions for Regulators and Compressed Gases, APCI, Welding Products Division, WPD4-70 (Doc. #99000288).

(3) APCI, Set-Up and Operating Instructions for Air Products Redi-Set® Welding and Cutting Outfits, APCI Form 3424 WFD 003-M-406000 (5M 92569) Rev 3 (Doc. #99000289).

(5) APCI, Master Drawing 1200 Series Regulations, APCI Drawing 000-0-4070004E, March 4, 1968 (Doc. #99000308).

II. Operational Hazards

F. Oxygen Transfer

3. Malfunctions and failures

a. Equipment

(3) Valves

x. Avoidance of galling - Bronze or monel globe valves with bronze or monel trim should be used for throttling or bypassing oxygen control valves regulators. When the size of the valve is such that a stainless steel body is the only practical valve available commercially the trim should be bronze or monel. If a Colmonoy 6 hard faced stainless steel seat and disc are used, the disc lock-nut must be bronze or monel to avoid any galling between a stainless steel stem and disc. Galling occurs readily with stainless steel in dry gas systems.

y. Check valves in O₂ service should be monel or bronze. Wafer swing type with Kel-F disc inserts do an adequate job when used with centrifugal compressors. For reciprocating compressors, a swing check design is inadequate and would break down in a very short time. A reciprocating compressor plate type check valve or valve specifically designed for reciprocating service must be used.
II. Operational Hazards

F. Oxygen Transfer

3. Malfunctions and Failures

b. Geisering, Excessive Vibrations, Shock (Thermal and Pressure), Line Surges.

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

II. Operational Hazards

F. Oxygen Transfer

3. Malfunction and failures

c. Insulation system deterioration due to vibrations

Oxygen piping is insulated with cellular glass and urethane insulation. Cellular glass insulation is used to insulate all flanges, valves, pumps, etc. where oxygen process leakage may occur in normal operations. This insulation is used for a minimum horizontal distance of 4 feet and minimum vertical distance of 10 feet on either side of the preceding locations. Urethane insulation is used on the remainder of the piping.

Cellular glass insulation is a friable material and subject to failure by vibration. The interior or bore of the inner layer of insulation is coated with a vinyl base compound to reduce abrasion from vibration and temperature change of piping.

Excessive piping vibrations, however, would be detrimental not only to the insulation system but to other mechanical devices and should be eliminated.

Urethane insulation is not friable and no special vibration cushion is used.
II. Operational Hazards

G. Fires and Explosions

1. Methods to contain or restrict combustible mixtures.

The application of a safety factor in the design of oxygen process, storage, and handling systems for the temperature and pressure of service, provides a measure of containment for only minor reactions which occur from ignition of combustible mixtures. Containment of catastrophic high energy reactions is not considered in design for practical and economic reasons.

The intent of process design is to restrict, where possible, the entrance of combustible mixtures in oxygen process, storage, and handling systems. The methods through which this can be accomplished are (a) mechanical devices, (b) instrumentation, and (c) operating procedure.

a. Mechanical Devices - Mechanical devices are additions to oxygen systems which provide a measure of protection to restrict combustible mixtures. They may be part of the process design, requirements of codes, requirements of industry practices, or a completely separate auxiliary component for a specific function. These mechanical devices may be manually or automatically operated.

(1) Industry developed standards, although not mandatory, requiring different valve outlet connections on cylinder valves for the different compressed gases contained in cylinders. Corresponding fittings of fill lines and various accessories are in agreement with the cylinder valve outlet connections. The purpose of this standard is to prevent the accidental filling of cylinders with the wrong and possibly hazardous product. Industry practice is published in Pamphlet V-1, Compressed Gas Cylinder Valve Outlet in Inlet Connections by Compressed Gas Association, Inc. (1) and contains the American Standards B57.1-1965 (2) and the Canadian Standard B96-1965 (3).
(2) Exhibit "A" of Plant Operations Manual, Section 2.02(4), lists the fixed ends of transfer hoses and storage tank connections to be used for the different cryogenic liquid products to prevent intermixing at filling or customer storage sites.

(3) Process design of oxygen producing equipment includes the use of filters, scrubbers, and driers to remove contaminants from the process stream, and the use of hydrocarbon and guard absorbers to handle contaminants which manage to slip through with the process stream. Check valves are used to prevent reverse flow of material and double block and bleed valves are used to isolate circuits where hazardous materials are associated by design with oxygen producing, handling, and storing equipment.

b. Instrumentation - Total hydrocarbon, acetylene spot check, oxygen, nitrogen, and other analyzers are used to continuously or intermittently monitor the various process streams of plants to detect the presence of contaminant materials which might be detrimental to the safety and operation of the equipment. This instrumentation can be tied to alarm and shutdown switches to provide an automatic system for alerting personnel to an impending hazardous situation and for protecting equipment. The area and atmosphere surrounding operation equipment are checked with portable oxygen analyzers at regular intervals or as the operation demands for oxygen enrichment or oxygen deficiency to alert personnel of a potential hazard. An explosimeter is frequently used to check the presence of flammable gases, if the process involved uses these materials.

c. Operating Procedures - Operating procedures have been developed for oxygen process, storage, and handling systems which, in addition to optimum operating efficiency, minimize or eliminate the possibility of combustible mixture formation within equipment. Some important operating procedures to achieve control of combustible mixture formation are listed below:

(1) Safety Standard 626.4.1, Purging Methods, establishes concentration limits concerning purge operations where oxygen or air may possibly be introduced in flammable gas processes or storage systems. The purge media is nitrogen.
(2) District Operations Manual, Section 6.3, Quality Control Program,\(^{(6)}\) lists the requirements for the regular scheduled check and double check on products at a specified quality, this control program detects the presence of contaminants which may effect the safe operation or the process handling or storage system. Similar procedures have been included in the Plant Operations Manual to maintain quality of product.

(3) Detailed procedures exist in the District Operations Manual, Section 9.1\(^{(7)}\), and the Plant Operations Manual, Section 2.02,\(^{(4)}\) for the filling of containers with gaseous and cryogenic liquid products.

2. Avoidance of chemical reactions and flashbacks.

A safety review of APCI process, storage, and handling systems is made for the purpose of determining compatibility with gaseous or liquid oxygen. The possibility of chemical reactions with oxygen are examined during the safety review.

The many different applications in which oxygen is used by other than the producer is an area where a safety review is generally not made excepting where specifically requested. This service is available to customers and when requested, considers the chemical reaction possibility.

A universal application of oxygen is in conjunction with acetylene in the welding and burning of metal processes where piped systems are used to distribute the gases to their points of use. Design of these systems is in agreement with National Fire Protection Association Code No. 51, Welding and Cutting, Oxygen-Fuel Gas Systems\(^{(8)}\). Hydraulic flash arrestors are used in the fuel system to prevent flame from getting back to the supply source. Check valves are used at the individual use points to prevent the intermixing of gases and the formation of flammable mixtures within the system.

Materials used in oxygen process, storage, and handling systems must meet the requirements as listed in Safety Standard 609.1, Compatible Materials\(^{(9)}\) and must be suitable for the temperature and pressure of the service as specified by applicable professional and industrial codes.
4. Methods to reduce the vulnerability towards internal and external fires.
 a. Quantity-distance requirements of the National Fire Protection Association Code No. 566, Bulk Oxygen Systems at Consumer Sites (10) and NFPA No. 50 (11) are used for both gaseous and liquid oxygen storage on customer property.
 b. The same rules (NFPA No. 566) apply at producing facilities with possible expansion of distances between oxygen compressors and other equipment.
 c. In the case of oxygen compressors, inventory dump accessories are provided along with appropriate instrumentation and shut-down devices to vent the oxygen, close the inlet valve, introduce nitrogen into the compressor and piping, and stop the compressor.
 d. An oxygen compressor is always started on nitrogen and the system completely checked prior to introduction of oxygen to the system.
 e. Plant liquid, when product quality or other reasons dictate, is drained and disposed in a location away from main plant components through a vaporizer.
 f. Trailer vents are connected to a vapor disposal system which exhausts the vapors in an area away from plant components or where personnel may be working.

5. Protection provided for adjacent components from internal or external fires.
 a. Personnel protective shields as per Design Engineering Standard 546.1(12) used around oxygen compressors have a secondary purpose of offering protection to adjacent components.
 b. The above practice is being extended to cover protective shields around plant mounted centrifugal liquid oxygen pumps.
 c. The oxygen compressor control panel position must be in agreement with Design Engineering Standard 546.1(12) requirements and must have a protective roof as per Design Engineering Standard 534.1(13).
d. Operating plant liquid oxygen transfer from storage to rail or highway tanker loading areas are provided with a manually operated water deluge system for fire protection and vaporization of liquid spills.

e. Fire fighting capabilities are provided at strategic locations throughout producing facilities. Fire hydrants, hose houses, hose reels, and fire extinguishers, as specified in Safety Standards 630.2.2(14), 630.2.3(15), 630.2.6(16), and 630.2.2(17).

References

(2) American Standard, Compressed Gas Cylinder Valve Outlet and Inlet Connections, American Standards Association, B57.1-1965, (Doc. #99000236), published as CGA Pamphlet V-1, 1965 (Doc. #199000235).

(5) APCI, Purging Methods -- APCI Safety Standards 626.4.1, January 1970 (Doc. #99000240).

(7) APCI, Filling Procedure for Transportable Cryogenic Containers (250 - Gallon Capacity or Larger) -- General -- APCI District Operations Manual, Sect. 9.1, April 1966, (Doc. #99000239). (Same as D.O.M. Sect. 2.02).

(9) APCI, Oxygen Compatible Materials -- APCI Safety Standards, 609.1, June 1964, (Doc. #9900051).

(13) APCI, Oxygen Control Panel -- APCI Design Engineering Standard 534.1, (to be published) (Doc. #9900243).

III. Maintenance Program

A. System Check and Inspection Where, Why, and How

1. Structure

Structural inspection is made on a yearly, monthly, or daily task depending on the equipment and location.

Listed below are a few examples as used in the Operations Department.

a. Inspect general condition of piping system. This should include pipe supports for overloading, deflection and cracked welds. The piping is checked for excessive stress or sagging. This is done on a daily task and is a visual inspection.

b. Inspect general condition of enclosures of pumps and cold piping. This is generally considered as cold boxes and cold piping duct work. Over pressure protection devices are provided on these systems. The number and kind of devices and set pressure are based on the configuration, pressure rating, purge pressure, and the type insulation used in the box.

c. Inspect general condition of Lox Storage Tanks. This inspection is depended on the type of tank. The normal structural inspection will include foundations, supports, insulation level, vacuum readings, and general condition.
III. Maintenance Program

A. System Check & Inspection Where, Why, & How

2. Leaks

Major liquid and cold gas leaks are repaired immediately because of possible foundation heaving, overpressuring of jacket, or cracking of carbon steel structural members. First indications of leaks are frost spots and changes in purge pressure or cold vapors. A detailed procedure is attached from the APCI Plant Operations Manual section 1.14, Cold Box Leaks, Nov. 10, 1968 (Doc. #99000227). Should the leak occur in a coded vessel APCI Plant Operations Manual Section 6.09, Coded Vessels Repair, November 29, 1968 (Doc. #99000228) must be used. Quality Control Layout Pneumatic Testing QCL105A, July 1, 1971 (Doc. #99000207), and Quality Control Layout, Hydrostatic Testing, QCL117A, July 1, 1971 (Doc. #99000206) are used for testing after the repairs are made.
III. Maintenance Program

A. System Check & Inspection Where, Why, & How

3. System Instrumentation and Controls

System instrument and control checks in operations are continuous as readings are taken on hourly basis and a malfunction of most of them will give an alarm and/or shutdown of related equipment. The Plant Operations Manual Section 6.05, Instrumentation Preventive Maintenance, October 30, 1968 (Doc. #99000229) gives inspection procedures and frequencies. The safety relief valves and rupture discs are inspected as per Plant Operations Manual Section 6.02, Safety Valves and Rupture Discs, December 8, 1969 (Doc. #99000230).
III. Maintenance Program

A. System Check & Inspection Where, Why, & How

4. Insulation

Insulation check and inspection is accomplished on a daily visual inspection and in more detail when the preventive maintenance manual requires it.

Insulation of interconnecting lines which contain low temperature streams require insulation to prevent heat input to the stream and to provide personnel protection from cold temperatures.

Insulation for liquid oxygen lines or other lines which may come in contact with liquid oxygen are non combustible to protect against the possibility of a reaction in the event of a liquid leak.

Process lines operating at temperatures colder than the condensing temperature of air are insulated with material compatible with oxygen.

Appropriate weather protection that was applied to the insulation must be maintained.
III. Maintenance Program

A. System Check and Inspection; where, why, and how

5. General Considerations of the "aging" system

Inspection of Bulk Oxygen Storage Systems. IGD inspection procedures for gaseous and liquid oxygen storage systems at consumer sites are contained in District Operations Manual Volume 1, Section 4.2.3, and Section 4.1.3, respectively.

III. Maintenance Program

A. System Check & Inspection, Where, Why & How

5. Preventive Maintenance Program

All of operations facilities are on a formal P.M. Program. Manuals are issued listing all tasks with a definitive numbering system for each of the tasks. Work required on a monthly or less frequent basis is on an IBM Card and the cards are distributed each month at which time the task is to be performed. The Operations Dept. Preventive Maintenance Report, Feedback Card (Doc. #99000231) is filled in if and when the work is done and returned to the corporate offices. Each month a report is issued indicating compliance in percent of "Normal" tasks and "Downtime" tasks. Man hours expended in each category are also noted. In the event downtime tasks cannot be done due to operating requirements, they can be rescheduled and they are not penalized in the compliance report. Further details are given in the "Plant Preventive Maintenance Control" Document, June 1971 (Doc. #99000232). Also attached are a few representative pages of the PM Manual.

The following lists are representative of maintenance program entries on oxygen equipment or related items. Frequencies of the maintenance tasks are also noted with one period in some cases and with a range of period intervals in others. It must be understood that the frequency is a function of not only the type of the equipment in this category but also its history, process, usage, vendor and construction which may dictate more or less frequent task requirements.

Oxygen Gas Storage

1. Inspect valves and packing for leaks
 Weekly

2. Inspect general condition of vessels, supports and piping for paint requirements.
 1 Year

3. Check exterior of storage vessels, vessel supports and safety valve equipment. Check shut off valve.
 1 Year

4. Soap test storage bank piping at maximum working pressures.
 3 Years
Lox Storage and Piping

1. Check valve packings for leaks. Inspect boots on extended stem valves. Daily-Weekly

2. Inspect relief valve for leakage. Daily

3. Inspect interconnecting piping and insulation. Weekly

4. Inspect storage tank and crossover for frost spots. Weekly

5. Check crossover for oxygen concentration Weekly

6. Inspect top of tank and jacket vents. Weekly

7. Check and top-off insulation level. 1 year

8. Check to ensure controller for foundation heating is maintaining its set point. Recalibrate according to manufacturers instructions. 6 mos.

9. Check vacuum reading and record 1 year

10. Check purity from top of Lox Storage Tank. Weekly

Lox Pumps

1. Defrost pump. Clean and inspect pump suction screens. Clean or replace as necessary. 3 mos.-1 yr.

2. Inspect for pump seal (or packing) leakage. Listen for any unusual noises or vibration. General visual inspection of pumps and motors. Check nitrogen purge flow. Shift-Daily Daily.

3. Check oxygen concentration in box. Weekly

4. Check pump box for frost spots and general condition. Weekly-Monthly

5. Inspect condition of blowout panels on box. Weekly-6 mos.

6. Lox Pump (BJ)—Perform solvent wash. Prior to and after solvent wash inspect internal parts with a black light and report observations. 3 yr.

7. Lox Pump (External, usually transfer pump)—After 500 operating hours overhaul pump replacing bearings as well as other worn parts. 6 mos.

9. Lox Pump (BJ)-Rotate shaft by hand one full turn before and after cooldown.
Start up

10. Inspect general condition of pump and piping system for product or oil leaks.
Daily

Vaporizers

1. Check steam regulator valve. Check condensate trap.
3 mos.

2. Inspect all steam piping valves and fittings for leaks. Repair as necessary. Inspect steam drain lines and traps for plugging. Clean as necessary.
Daily-weekly

3. Inspect vaporizer for cracks and general condition. Repair as necessary
Daily

4. Pressure test product oxygen coil
monthly

5. Shift test shell vent for high oxygen. Report and readings greater than 21% oxygen.
monthly

6 mos.

7. Wash vaporizer internally. Use methylene chloride.
4 years

8. During freezing weather check water bath temperature, heater on at 35°F and off at 40°F. Check panel heater operation.
Daily

 a. test flame guard system.
 Daily

 b. test run burner. Allow system temperatures to reach normal operating levels.
 "

 c. Check flame stability through sight port. Adjust as necessary.
 "

 d. Visually inspect for leaks and sign of overheating
 "

 e. Check combustion air blower and circulating water pump for unusual noise or vibration.
 "

 f. Record one complete set of log readings (reconsider schedule after 3 months)
 "
g. Inspect flame scanner lenses for cracks and dirt. Clean or replace as necessary. Inspect spark plug gap setting. Inspect blower discharge sleeve. Perform daily system test after performing the above work. Check for corrosion and requirements for touch-up painting. Monthly-6 mos.

h. Replace scanner cell. Clean gas filters on combustion and oxygen analyzer. Inspect combustion blower. Clean as necessary. 1 year

i. Clean water circulating pump suction strainer. Monthly

j. Remove and disassemble burner. Inspect for damage to ceramics and combustion chamber. Split burner at flange just below spark plug and thoroughly inspect ceramics for deposits, cracks and spalling or other damage. Replace scanner cell. 24 mos.

k. Check tubes, tube supports, baffles and interior of shell for corrosion. Make inspection with burner removed and by removing bottom manhole and section of stock. 24 mos.

Loading Stations

1. Trailer and railroad loading station lot filters. Inspect and service as necessary. 6 mos.

2. Inspect all loading connections and hoses for wear or abuse. Replace faulty connections or hoses. Daily

Cylinder Filling

1. Inspect all copper pigtails for wear and replace as necessary. Monthly

2. Anneal all copper pigtails 6 mos.

3. Inspect tube trailer stanchion hoses, tubing and fittings for leaks, damage and proper anchorage. Repair or replace as necessary. 6 mos.

4. Calibrate all cylinder manifold pressure gauges. 3 mos.

5. Check and calibrate pressure switches. 1 year
General

1. Perform visual inspections of all safety valves. Leakers, no seal, illegible or missing date tags, signs of corrosion, etc. will require retest, repair, or replacement as necessary.

Further Details are given in the Following:

a. Plant Preventive Maintenance Control, June 1971 (Doc. #99000232)
b. Monthly Plant Safety Survey, Form 2032, Sect. 5.18 (Doc. #99000233)
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

III. Maintenance Program

B. Safe Cleaning Procedures for Filters, Traps, and Instruments

Filters

The only standard locations for any numbers of filters or strainers in oxygen service are the suction lines to pumps, suction lines to compressors, discharge lines of high-pressure reciprocating pumps, and in-line product filters for government requirements.

When we were using pumps in plant processes for pumping through heat exchangers to vaporize against incoming air we had suction filters on the suction lines to prevent larger particles of desiccants, solder and any other foreign material from entering the pump. There are a few of these systems still in operation but concept has changed, and we generally do not utilize this process anymore (liquid vaporization from storage, or oxygen gas compressors have succeeded this method). Generally construction was per our print 58521C(1) which has related prints specifying 10 mesh monel wire cloth, which is backed by 304 stainless steel perforated sheets (cylindrical).

We now have screens in all our transfer pumps suction lines. They have 100 mesh stainless steel conical screens. This action was prompted by fires in pumps in Airco at Bethlehem where it was believed foreign material caused the incidents.

Our old high pressure reciprocating pumps, which have graphite packing, have sintered bronze (porex) filters on the discharge side of the pump to prevent graphite and asbestos particles from getting into the exchangers and subsequently into cylinders or other area where it would be undesirable.

Government specifications for LOX require filtration of our product. Where necessary, we install in-line filters on our product hoses used to load trailers for government locations. We are presently using a Pall Trinity Rigimesh (stainless) 10 micron, 98 percent removal, 40 micron absolute removal filter assembly.

All of the above filters are cleaned in methylene chloride or trichlorethylene and blown dry with nitrogen. Air known to be dry and oil free is also permitted for drying.
Traps

I do not know of any so-called traps used in any of our oxygen systems excepting the suction line of the old APCI high-pressure reciprocating pump. At one time we had used brass refrigeration filters here, but later put a U-type "plumbers" trap made from copper return bends or street elbows just upstream of the pump. It was intended only to hold any heavy material, such as solder, in this low point and prevent the foreign material from getting into the pump or the pump valves.

This trap was cleaned initially as part of the original piping and had no further cleaning requirements.

Instruments

Instruments are generally cleaned according to our QCL 116F(2). Design Engineering Standard 531.2(3) specified gauges be cleaned to 116F. It also states a decal "Oxygen - Use No Oil" be affixed to the gauge.

The only other formal cleaning procedure for instruments that I could find in manuals and inquiries in the Engineering Department was QCL 102F(4), Cleaning Bourdon Tube Type Gages for Oxygen Service.

References

(2) APCI Requirements for Class AA Cleaning -- APCI Quality Control Layout No. QCL 116F, July 1, 1971 (Doc. #99000085).

(3) APCI Instrumentation Pressure Indicators -- APCI Design Engineering Standards 531.2, October 1963 (Doc. #99000022).

(4) APCI Cleaning Requirements for Bourdon Tube Type Gages Used For Oxygen Service -- APCI Quality Control Layout No. QCL 102F, July 1, 1971 (Doc. #99000078).
III. Maintenance Program

C. Pressure Testing

The following steps are followed in pressure testing:

1. Secure a safety work permit.

2. Areas where testing is taking place is to be considered off-limits for personnel except for authorized people doing the work. Rope off the area and display applicable signs.

3. Whenever possible, hydrostatic testing is to be utilized in preference to pneumatic testing.

4. Never test a circuit without a proper relieving device, such as a relief valve or rupture disc, as an integral part of the circuit or vessel.

5. Always use a regulator when pressurizing circuits with high-pressure cylinders.

6. Always use dry and oil-free fittings and lines when pressurizing oxygen circuits. Also, the pressurizing medium, nitrogen or air, must be dry and oil free.

7. Build up pressure gradually to 50 percent of test pressure and then in increments of 10 percent until test pressure is reached. This is especially important on high-pressure circuits. Hold a proof pressure for at least five minutes and then reduce 10 percent before "moving in" for soaping and visual inspection.

8. Stand clear of equipment while it is being pressurized.

9. Never stand in line with pipe corps, plugs, or blinds which can blow loose under pressure.

10. Before pressurizing circuits, be sure all valves are set properly and know where vent valves are located in the event that quick venting of pressure is necessary.

11. The pressure gauge must be visible to the operator when pressurizing a vessel or circuit. In cases where the operator cannot see a gauge, a second person observing the gauge must relay signals to the operator.
12. After pressurizing a circuit, wait several minutes before attempting to check lines or soap test. Remember, some flux can hold high pressure temporarily.

13. Be careful when venting and relieving pressures. Be sure all personnel are clear. Anchor all lines to prevent "whipping". When possible, vent upward rather than at lower levels.

14. If a circuit is left pressurized, warn all personnel at charge of shifts and leave signs reading "Danger - Under Pressure" in conspicuous places. Hourly checks are to be made by qualified persons to check the equipment and guard against over-pressure due to temperature.

15. Never walk away from an unfinished solder joint, threaded joint, etc. because of a rest break or shift change. Always finish the joint.

16. Be sure fittings, valves, and piping for the hookup are suitable for pressures involved.

Other Sources of Information

1. POM 1.03, Safety Control Procedure - TagOut, and POM 1.04, Safety Control Procedure - Safety Work Permit has some relationship with pressure testing as they are procedures to prevent inadvertent pressurizing of vessels or circuits not intended to be part of the test. Also, tagging of the valves serve as warnings to those individuals not part of the actual work. See attachments. These POM procedures are the same as Safety Standards 626.3.3 and 625.3.5.

2. POM procedure 6.09, Coded Vessel Repairs, outlines Operations Department action on coded vessels including pressure test. QCL 117A, Hydrostatic Testing - General and QCL 105A, Pneumatic Testing - General, are attachments to this POM procedure which are Manufacturing Department procedures used in conjunction with our work.

APCI References:

5. APCI, Hydrostatic Testing - General, APCI Quality Control Standards QCL 117A, October 20, 1958 (Doc. #99000206).

6. APCI, Pneumatic Testing - General, APCI Quality Control Layout QCL105A, July 1, 1971 (Doc. #99000207).

IV. System Emergencies

APCI Safety Standard 626.3.8, Emergency Procedures, May 1962 (Doc. #99000053), is the guideline for establishing specific emergency procedures for each company location considering the function of the facility and the number of people employed. The emergency conditions considered are equipment malfunction or failure, human failure, extreme climatic conditions, or national emergency.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

IV. System Emergencies

A. Safety Training and Area Placarding

1. Safety Training

 a. Safety Meetings

Safety Standard 625.0.1(1) (duplicated as POM 5.16(2)) requires at least one safety meeting each month. This is generally complied with and all personnel are covered by the most practical scheduling. Reports on the meetings are submitted to the Operations Safety-Service Manager where they are reviewed and recorded for compliance. Non-compliance is questioned and reported to Operations management as necessary.

Generally, plant management is spokesman at the meetings. Experts from the corporate offices may hold the meetings occasionally on subjects in which they are more proficient. Also, technicians (mechanical or electrical, etc.) assigned to a range of plants may speak on safety problems in their particular fields and theories of same so a better understanding of the equipment and operating principles may prevent accidents.

Topics can be a wide range of general industrial, personnel protective, equipment or process divisions. The facilities' current problems would be given priority. Second priority would be recent problems at other plants which may be directly related to the facilities' operations. Plant managers are kept posted on these problems in order to insure distribution of pertinent information. If very important, this is done immediately by telephone. Other means of relaying the information are by memos, Safety-Grams or Safety Bulletins.

Plant incidents ranging from near accidents to accidents and their investigations are reported on standard forms. Monthly reports on injuries are reported to the Safety Department. Serious incidents are covered immediately by phone. Details for this reporting are in Corporate Administrative Procedure 1.5(3), Safety Standard 625.0.1(1) and Plant Operations Manual 5.16(2), 5.18(4), and 5.21(5). These procedures and associated reports are used to obtain and relay information to applicable locations.
Quality control topics are also used occasionally as safety meeting material. There is some relationship with oxygen and other gases production as the mixing with other gases, lack of sufficient purity, and end uses could result in reactions hazardous to personnel and property. Low oxygen purity or inadvertent filling of oxygen containers with another gas could directly result in loss of life; for instance, in hospital breathing usage.

b. Printed Material

Facilities are provided with periodicals and safety papers as applicable to their operations. All facilities subscribe to National Safety Council material. Technical papers are purchased and distributed.

At one time the American Institute of Chemical Engineers annual symposium report on Safety In Air and Ammonia Plants was distributed to all facilities. However, the last four (there are twelve volumes) were essentially all limited to the ammonia plant and distribution was limited to New Orleans and a few key personnel in the Operations offices.

All facilities have copies of the Plant Operations Manual, one section of which is devoted entirely to safety. Operators have their own copy of this POM in the control room with the Safety, Quality Control, and Operations sections for their review and reference. Many times the new or revised procedures are covered formally in safety meetings.

Each facility also has two binders, one specifically for the AIChe symposium reports and another for all Safety-Grams and Safety Bulletins issued by the Safety Department. The Safety Manual also contains copies of miscellaneous technical papers applicable to our work.

For the last ten years all employees have been issued a pocket size Operations Safety Manual for ready reference. It includes the following sections:

- Safety Organizations
- General Safety Rules
- Properties of Products
- Safe Handling of Cryogenic Liquids
- Safe Handling of Compressed Gases
- Plant Operation and Maintenance Safety
- Maintenance and Shop Procedures
- Plant Housekeeping
- Protective Clothing and Equipment
- Chemicals
- First Aid Instructions
- Fire Protection
- Office Safety
This pocket manual has been revised several times and reprinted. However, this past year it was decided to discontinue its use when the present supply is exhausted. Company growth, expanded operations, diversified products, etc. now make it impractical to include even the main items as revisions and additions are needed constantly. The POM does this job better and since it is available in all control rooms and is a looseleaf manual, it fills the bill adequately.

2. Area Placarding

Main placarding at air separation facilities are the No Smoking signs. Generally, there is no smoking permitted except in offices, control rooms and locker rooms, but areas of increased hazards may have additional reminders.

Other placards used as applicable are listed below:

a. Fire Extinguishers - May have bright red paint at the actual hanging area to facilitate location in emergencies and also act as an indicator to the fact that one belongs at that location so replacement can be expedited if necessary.

b. "Authorized Personnel Only" - Generally used in electrical bays only and in the immediate areas of oxygen compressors. Oxygen compressor areas are so posted to reduce personnel exposure to fire possibilities. Also, authorized personnel are familiar with the compressor and must first check operating conditions to be sure they are satisfactory before they spend any appreciable amount of time in the area.

c. "Danger, Do Not Stand in Front of Cabinet While Motor is Being Started" - These signs are posted on motor terminal boxes containing switches, lightning arrestors and capacitors rated 2500 volts or higher. There have been several incidents of explosions of this type of equipment. One man was hurt quite seriously in one case.

d. "Danger, High Voltage" - As applicable.

e. "Danger - No Smoking, Matches or Open Lights" - Or similar sign in storage battery areas where hydrogen may be emitted.

f. Exits - As applicable for more remote escape routes.
g. "Danger Caustic" and "Danger Acid" - As necessary to applicable areas for purifier or water treatment.

h. "Caution, May be High in Oxygen" - For areas, such as in storage tank skirts where there may possibly be oxygen leaks and/or concentrations. Also, nitrogen tanks indicate there may be an asphyxiating atmosphere.

A good many other signs for normal industrial safety considerations are used, such as:

- Fire Hose
- Emergency Shower
- Safety Glasses and Hard Hats Must be Worn
- Visitor's Parking
- Visitors Must Apply at Office
- Chemicals Goggles Must Be Worn in This Area

3. References

(1) APCI, Industrial Safety Policy, APCI Safety Standards 625.01, October 3, 1961, (Doc. #99000241).

(3) APCI, Accidents Reporting, APCI Corporate Administrative Procedure, No. 1.5, April 1, 1968, (Doc. #99000254).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

IV. System Emergencies

B. Warning Devices

Warning devices for oxygen systems vary with process, application and vendors variations of similar equipment. However, most of the systems have some general applications. Unless otherwise noted, the summary below is for general applications.

Compressors - Oxygen

1. Process Stream

 a. Low pressure switch and alarm upstream in the suction of a centrifugal compressor to recycle the compressor if suction pressure decline continues to sub-atmosphere level. For reciprocating compressors, it will not recycle but will alarm and shut down.

 b. A low temperature switch and alarm on suction piping of any compressor taking suction from a possible cold source. Setting shall be based on area climate but in no case shall it be set below -5°F.

 c. A high temperature indicator-switch and alarm shall be provided on each stage discharge upstream of the cooler. Maximum permissible alarm and shutdown settings shall be 340°F and 350°F respectively. Each producing facility shall establish a lower setting when operating temperatures indicate this is possible. Alarm and shut down points shall then be 10°F and 20°F respectively above maximum normal summertime operating temperature.

2. Lubrication

 a. For centrifugal compressors, a high oil temperature indicator-switch, bulb type shall be installed in the oil return header from the bearings to the oil sump. The switch shall be connected to the alarm on the oxygen compressor instrument panel. The intent of this requirement is to warn the operator of excessive oil temperature due primarily to insufficient water flow.

 b. For reciprocating compressors, the high oil temperature indicator switch shall be in the oil return line from the cooler to the sump.
3. Motor

a. The motor winding temperature indicator shall be located on the main instrument panel. A switch shall automatically shut down the compressor on excessive temperature.

b. The motor cooling air temperature switch shall actuate an alarm located on the oxygen compressor panel in case of excessive temperature.

c. Water-cooled motors shall be protected against internal water leakage from overhead coolers by a liquid-level switch connected to an alarm on the oxygen compressor panel or by a bottom drain continuously open to atmosphere.

4. Cooling Water

a. A pressure switch shall be connected to actuate an alarm located on the main instrument panel, in case of abnormally low water pressure in the water pump outlet header.

b. Loss of cooling tower fan operation shall be indicated by an alarm located on the main control panel.

5. Seal Gas System (centrifugal compressors only) - A labyrinth system with nitrogen as a sealing gas is an integral part of centrifugal compressors to prevent bearing lubricating oil from reaching oxygen systems. Generally, at least a double protection is provided by these seal systems.

a. Pressure switches shall be provided to alarm and shut down the compressor when manufacturers' limits are exceeded for the following conditions.

- Pressure at bearing end is too low
- Pressure at injection part is too low
- Pressure at impeller end is too high
- Differential pressure between impeller and injection part is too low

b. Seal gas backup system pressure is too low (alarm only)

NOTE: Backup system is provided in the event primary seal source has problems. Usually, the backup source is a cylinder supply with sufficient storage to get primary system working or shut down the compressor.
6. Rotor Shift (centrifugal compressors only) - A rotor shift device is incorporated to indicate wear on the thrust shoes and if wear is excessive to shut it down. Normally, there is a bleed-through of gas in this system, but as wear on shoes progresses, it will permit it to touch the plunger which actuates a gear and permits a piston to drop. When this piston drops, it stops the bleed-through, builds pressure and actuates the alarm and shut down.

7. Vibration - Centrifugal Compressor

 a. Equipment shall be provided for monitoring radial vibration, axial vibration and axial position of each compressor rotor shaft and of the high speed pinion. This equipment shall be connected to the oxygen compressor instrument panel alarm. A switch shall shut down the oxygen compressor in case of excessive vibration at any point normally connected for continuous monitoring.

 b. Continuously monitored vibration points shall be set for alarm and shut down at initial startup and every major overhaul as follows:

Maximum Normal Vibration	Alarm
+0.5 mil	Automatic Shut down
+1.5 mil	

8. Vibration - Reciprocating Compressors

 a. Seismic type vibration switches shall be provided to shut down the compressor when frame vibration amplitude increases to twice the value at the new conditions as accepted by Machinery Engineering. A minimum of one switch per two crank throws is required. Each switch shall be wired to light a yellow light, which will indicate the switch that has shut down the compressor. The light shall be maintained until the switch is reset.

 NOTE: The majority of the above information was extracted from APCI Design Engineering Standard 570.7, APCI Operated Oxygen Compressor System, July 19, 1971 (Doc. #99000256).

Vaporizers

1. Warm discharge side of vaporizers generally go into carbon steel piping. Temperature switches are applied here to sound alarms if piping gets too cold, usually due to
insufficient heating source (water or steam). The liquid source (pump or valve from a pressurized tank) is shut off at the same time the alarm is sounded.

2. Thermal Research Type Vaporizers (Natural Gas Fuel) - Alarms and shut downs for this system are:

a. Low temperature switches, similar to Item 1 above.

b. Pressure switch to act in the event the natural gas supply pressure is low or high.

c. Low pressure switch for air blower.

d. High temperature switches for the downcomer in case of low water level.

e. High stack temperature switch, in case stack temperature is too high as a result of low water level.

f. Low water level switch.

g. Flow switch to act in case of failure of water pump.

h. CGA combustible gas analyzer to indicate incomplete combustion. Calibrated 0-2 percent total combustibles in an inert atmosphere.

i. Fire Eye to indicate no flame condition.

Pumps

1. Some of the older plants had low-pressure alarms on suction side of pumps to indicate loss of feed or low head to the pump. General use was on BJ type pumps.

2. New plants are now getting low current (amps) devices to indicate low suction pressure. Low pressure and low current switches are both to prevent cavitation and subsequent damage to the pumps, particularly bearings and shafts.

Product Lines

1. Some customer feed lines are provided with alarm indicating low pressure. Low pressure could be indicative of failure of some of our equipment, excess demands by the customer or
failure of the line. Excess flow valves are installed at a few older locations and most of the new plants whereby a line failure would also automatically shut off this valve. Excess flow valve is actuated by readout on a flow indicator across an orifice section. Ashland, Cleveland and Los Angeles have such systems. The Cleveland valve prevented a more serious incident some years ago when the customer had a fire in their reducing station and the excess flow valve was actuated.

Storage Tanks

1. Low pressure storage tanks have low pressure alarms, usually set at approximately 1 psig, to warn operators if there is a tendency to approach vacuum conditions which could cause a tank collapse. Buildup coil system malfunction could result in lowering of pressure, particularly during withdrawal procedures.

General

1. It is our policy to install temperature switches in an area where carbon steel lines may be cooled down to -20°F or lower due to malfunctions of equipment. This is mentioned above for lines downstream of vaporizers, but is applicable in other areas. This same arrangement has been used where expansion of gas may cause excessive cooldown, but general rule here is to use proper materials of construction rather than the switch. Switch is tied into an alarm and/or applicable systems shut down to prevent further cooling.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

IV. System Emergencies

C. Protection

1. Personnel

The adequacy of personal protective equipment is insured by testing and maintenance as required by APCI, Plant Operations Manual 1.12 (1).

a. Eye Protection

Safety glasses must be worn at all times in areas such as operating areas, cylinder filling areas, and near any grinding or cutting operations.

Glasses must be worn by office personnel or visitors when in these areas.

Working around welding operations, flash goggles with side shields must be worn.

Employees who normally wear prescription glasses may obtain safety spectacles, made according to their prescription through the company.

Face shields and chemicals goggles must be worn during mixing or transferring of corrosive materials.

Goggles must be used when using a stationary or portable grinder.

Chemical goggles must be used during any operations requiring the use of solvents or cryogenic liquids. Additional eye and face protection may be required in some locations for special reasons.

References Safety standards Sec. 627.4.2 (2), Safety-Grams No. 1 (3), 29 (4), 30 (5), and 58 (6).

b. Hard Hats

Safety hats-caps must be worn by all operating personnel around machinery, operating areas, and storage areas. The only exempted areas are the office, control rooms, and locker rooms.

Visitors, office personnel, and maintenance men are required to follow the same instructions as above.
Safety hats-caps are excellent protection against falling objects.

The wearing of hard hats is mandatory at all operating facilities.

Reference Safety Standard Sec. 627.4.1 (7).

c. Safety Shoes

Realizing the importance of safety shoes, the company contributes toward the purchase of safety shoes and recommends their use. Injury records prove the reduction in the frequency and the severity of foot injuries by personnel wearing safety shoes. Safety shoes are not mandatory, but are urged and recommended at all facilities.

Reference Safety-Gram No. 11 (8).

d. Respiratory Protection

Filter-type respirators are to be used when working in dusty areas or when handling dust-producing materials such as rockwool or perlite.

Respirators equipped with "rebreathers" in which the wearers breath is passed over alkali peroxide to replace oxygen and remove carbon dioxide, should not be used in trichlorethylene service. Reaction of trichlorethylene with the caustic formed during the regenerating reaction leads to the formation of dichloracetylene, which is highly toxic and explosive.

Self-contained or air-line breathing apparatus is to be used in any area where there is a high concentration of solvent vapors or where the oxygen content of the atmosphere is below 18 percent. Life lines will be used except when otherwise instructed. Areas to be considered are, internal cleaning of storage tanks and vessels, and entry of cold boxes with nitrogen atmosphere when using cleaning solvents.

Reference Safety Standard Sec. 627.3 (9).

e. Hearing Protection

Operations Department has been supplying hearing protection equipment as needed or requested for a number of years. Wearing of this equipment is now mandatory largely where the occupational noise level exceeds 90 decibels as measured on the "A" scale of a standard sound level meter at slow response, regardless of octave band. Sound level surveys are made at each location and safety meetings are held with employees.
Safety meeting outlines include: Reasons for concern, sound measurement, exposure limitations, parts of the ear and their function, and where protection should be worn. Generally, ear plugs are satisfactory, but ear muffs are recommended where noise levels reach 110 decibels. There may be occasions where the decibel level may exceed 130, for these exposures both the ear plug and the ear muff shall be provided and used.

Reference: Safety Standard Sec. 627.4.8 (10), Memo Operations Hearing Protection Program, H. Master, Dated 4/7/71 (11), Safety Standard Sec. 625.0.1.2 (12).

f. Gloves

Neoprene or suitable plastic gloves are to be worn during handling of solvents, acid, or other harmful chemicals.

Approved gloves with gauntlets are to be worn during cryogenic liquid transfers or handling.

Approved gloves for electrical service are supplied. These are high voltage lineman's gloves and lineman's leather protector gloves.

Gloves are also supplied for normal every day use.

g. "Check In" Systems

The Safety Department recommends the guidelines listed be utilized in establishing the controls to provide a means of checking on the conditions of personnel who are working alone, performing emergency maintenance work or daily routine operations. Obviously where a "check-in" system can be established with a near-by Air Products facility, customer personnel, or neighboring industry guard service, such an arrangement shall be made. The hazards inherent in the type of work being performed by the individual shall be the criteria used in determining whether a "check-in" system is required.

Flammables—Regularly scheduled operations with one man/shift at any facility handling flammables must be provided with a positive method of "check-in" by the operator. The frequency of "check-in" may vary with the type of system established but must provide a minimum operator "check-in" once every hour.
Oxygen - A "check-in" system for one man/shift operation is required if routine operations necessitate operation from more than grade elevation or if cryogenic liquid loading operations are performed. The frequency of "check-in" shall be a minimum of once every hour.

Maintenance - Maintenance work on systems containing flammable gases will require the presence of more than one person.

Maintenance work on energized electrical systems with voltages up to 250 volts will require the presence of more than one person. Under no circumstances are personnel permitted to work on energized circuits with voltages exceeding 250 volts. Work on de-energized circuits with voltages of 440 volts or above will require the presence of more than one person. The second person need not be an electrical technician.

Acceptable "check-in" systems - The "check-in" system utilized shall be a reliable method of determining the responsiveness of an individual.

The A.D.T. system is used at many facilities. A switch must be actuated every hour or an alarm is flashed in the A.D.T. office. They in turn call the plant and if there is no answer they will investigate or call facility management.

The telephone system, by being called or by calling another facility, or a guard service hourly.

h. First Aid Instructions

All injuries, no matter how slight, must be reported to facility management, and shall be treated immediately.

A first aid record must be kept of all injuries, their cause, and the first aid treatment.

First aid kits are not a substitute for dispensary or medical treatment. It is merely the first step in preventing a bad situation from becoming worse.

Know the location of stretchers, first aid kits, fire blankets, and other first aid equipment.

Know the emergency numbers or where they can be found for doctor, hospital, and ambulance service.
First aid is no substitute for proper medical attention. Injuries of any magnitude must be referred to a competent physician after first aid treatment.

Minor injuries: treat accordingly as listed under first aid guide or refer to the Red Cross First Aid Manual, which is available in all first aid cabinets. If there is any doubt to the seriousness of the injury, the patient should be driven to the doctor after first aid treatment. Make notations with full particulars on the first aid record sheet.

Serious injuries: call for a doctor and/or ambulance immediately. Be sure to keep the patient warm and lying down. Attend to serious bleeding immediately and give artificial respiration if necessary. Do not move the injured person unless absolutely necessary. Contact management as soon as practical.

i. Evacuation Routes

Management of each APCI facility prepares a plan for quickly evacuating all areas in an orderly fashion and in a minimum of time. The plan, clearly identifying all evacuation routes and exits, is posted at convenient locations in all areas.

Personnel are trained to direct an orderly evacuation and to secure their area before leaving.

The evacuation plan is reviewed and revised every six months or less if conditions arise which warrant changing the plan.

2. References

(1) APCI, Personal Protection Equipment Maintenance, APCI Plant Operations Manual 1.12, April 21, 1967 (Doc. #99000104).

(3) APCI, Pressure Gauge Failure, Safety Glasses Save Another Pair of Eyes, APCI Safety-Gram No. 1, June 1, 1961, (Doc. #99000317).

(4) Smith, H. W., Safety Equipment Never Prevents an Accident -- It only Prevents an Injury, APCI Safety-Gram No. 29, August 1, 1963 (Doc. #99000318).
(5) Ball, W. L., Are Safety Glasses Worth the Cost and Effort?, APCI Safety-Gram No. 30, August 9, 1963 (Doc. #99000329).

(6) Schmoyer, W. W., And Then There was Darkness, APCI Safety-Gram No. 58, March 15, 1967 (Doc. #99000319).

(12) APCI, Industrial Safety, Occupational Noise, APCI Safety Standards 625.0.1.2, April 9, 1971, (Doc. #99000325).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

IV. Systems Emergencies

C. Protection

2. Buildings and Adjacent Systems Protection

a. Deluge Systems:

Deluge Systems are used at cryogenic liquid loading facilities where daily transfer operations are conducted on a routine basis.

A spray nozzle is provided at each liquid loading connection. The adjustment of the nozzle depends on available G.P.M. capacity and pressure of fire water system. The nozzle pattern is set for full coverage of the rear of the trailer with sufficient angle to allow for the trailer to be spotted off center from the loading connection. The system is provided with an air operated block valve which is actuated from at least two remote positions or a manual valve when the valve can be located in a safe operating area.

References: Safety Standards Sec. 630.2.6 (1)

b. Barriers:

Protective barriers of single sheet corrugated steel are erected around most stationary liquid oxygen pumps, (B.J. pumps excluded).

The protective barriers are installed in such a manner that the operator will be protected from metal parts, liquid, or a fire in the event of a pump failure and fire.

The protective barriers, for oxygen gas compression systems, vary due to the size and type of compressors, and are fully covered in the APCI Design Standards.

References: Stompler, R. D., LOX Pump Safety Barriers, February 19, 1971 (2)
 APCI Design Engineering Standards 546.1 (3)
 APCI Technical Bulletin No. 42 (4)

c. Fire Protection:

The guides for fire protection are based, where possible, on National Fire Protection Association Codes, the Insurance Carrier, and The Company Standards. In all instances fire
protection at the facilities exceed the requirements of the insurance carrier.

The first consideration for a fire water system is the availability of water, its source, volume and pressure.

Hydrant locations are based on the specific exposure in the facility. Generally, they will be located at least a minimum of fifty feet from the exposure.

Each hydrant has a house and is equipped with double doors which open outwards. The standard equipment for each house includes a spanner and hydrant wrench, hose straps, hose fittings, nozzles, and hoses.

Normally the facilities have a small complement of men, with this in mind the hose equipment provided is designed for ease of handling.

The facilities are instructed to follow the rule of calling outside help first then combating the fire. If help is available naturally fire fighting equipment is put into service while one employee phones for assistance.

Portable fire extinguishers are located according to what is considered to be possible problem areas in the facility. The two types used are the Dry Powder and Carbon Dioxide extinguishers. The inspection of these are on a regular schedule by the employees with the duty rotated to keep each man acquainted with the locations.

Monthly safety meetings are conducted at each facility with each employee explaining the fire fighting equipment along with personnel safety.

References:
APCI Operations Safety Manual (5)
APCI Plant Operations Manual, Section 1.13 (6)
APCI Safety Standards 605.1 (8)
APCI Safety Standards 605.1.3 (9)
APCI Safety Standards 610.1.1 (10)
APCI Safety Standards 625.0.1 (11)
APCI Safety Standards 626.3.8 (12)
APCI Safety Standards 627.4.7 (13)
APCI Safety Standards 627.5.1 (14)
APCI Safety Standards 630.2.2 (15)
APCI Safety Standards 630.2.3 (16)
APCI Safety Standards 630.3.2 (17)
d. References:

(2) Stompler, R. D., LOX Pump Safety Barriers, APCI Memo, February 19, 1971 (Doc. #99000327).

(8) Ball, W. L., APCI Plant Site Criteria, Air Separation, APCI Safety Standards 605.1, November 10, 1960 (Doc. #99000042).

(9) Ball, W. L., Criteria, Air Separation Plants Layout, APCI, Safety Standards 605.1.3, January 6, 1961 (Doc. #99000043).

(10) Ball, W. L., Check List, Air Separation Plant Site, APCI Safety Standards 610.1.1, November 28, 1960 (Doc. #99000052).

(11) Ball, W. L., Industrial Safety Policy, APCI Safety Standards 625.0.1, October 3, 1961 (Doc. #99000241).

(14) APCI, Personnel Protective Equipment, Tonnage Air Separation Plant, APCI Safety Standards 627.5.1, June 14, 1970 (Doc. #99000334).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

IV. System Emergencies

E. Hazards Protection

One of the prime considerations when locating a new facility is the immediate industry in the area. A survey is made within a substantial radius of the proposed site to eliminate trouble areas that could not be controlled. There are instances where undesirable industry has located next to one of APCI facilities and precautionary measures must be undertaken. Listed below are a few instances where this has occurred and the action taken to protect equipment and personnel.

The Delaware City facility had a chlorine plant built adjacent to it. The first thing that is normally done is to get to know the hazards involved such as possible spills, abnormal process vents and possible line ruptures. This is usually done by a meeting with the new facility management and receiving a firm agreement to be notified immediately in the event of an emergency. APCI has purchased 20 masks which is a sufficient number to protect the maximum personnel in the plant at any one time. The masks are for escape from the area and not for prolonged exposure. Self-contained breathing type masks were purchased for prolonged exposure and are used by operators to secure the facility.

All personnel are advised on the use of the masks and the hazards involved. Escape routes are posted and an alternate gate was installed for emergencies.

The procedures for emergency shutdowns are posted and take minimum time.

The escape type masks are the Willson Double-Cartridge Filter Series 800C with the #43 cartridge. These are for maintenance type personnel and are used for immediate evacuation of the area.

The prolonged exposure type masks are the 272-OVAC-L with full face as manufactured by Acme Protection Equipment Co. This type is effective for an adequate period of time to permit securing the equipment in a safe and orderly manner.

The Alcoa, Tennessee installation had a chlorine storage tank located in the immediate vicinity. The concern again was mainly to supply suitable gas masks and proper instructions to the personnel located at the facility. This installation is a one man operation. The type mask used here is the Scott Scapak, Model 9000 11-03 with an extra cylinder. This gives the man sufficient time to secure the facility in an orderly manner. The Willson
TLGW mask with LG3 cannister case is available for maintenance personnel which could be on site, and they would be expected to evacuate immediately.

The new Martinsville, West Virginia installation had a problem with a neighboring facility venting large amounts of NO₂ gas. The neighbor at the time was having what is considered normal start-up problems and have since remedied these. The neighbor also stores phosgene gas at the facility. We have purchased sufficient number of gas masks and posted emergency procedures.

Where a facility is located in area an extreme hazardous area, such as in a storage area containing flammable liquids, we would consider installing a system which would provide a curtain of water between the hazard and the facility. This is of course considered an extreme case.

The protection and precautions taken are decided upon, after the hazards from neighboring facilities are studied. The facilities are equipped with proper type portable fire extin-
guishers. The larger facilities have fire water loops and hose houses located strategically.
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

IV. Systems Emergencies

E. Hazards Protection

The following APL bulletins and reports identify and discuss various problems related to oxygen safety:

(1) Everson, I., Notes for Guidance of Customers Having Air Products Ltd. Oxygen Equipment, APL Safety Department Information Sheet No. 19, (Doc. #99000422).

(2) Everson, I., Fire Hazards in Compressed Air and Oxygen Rich Environments, APL Safety Department Information Sheet No. 33, (Doc. #99000423).

(7) Everson, I., Limiting Values of Oil Contamination of Stainless Steel Surface Exposed to Gaseous Oxygen, APL Safety Department Information Sheet No. 42, April 8, 1971, (Doc. #99000428).
V. Accident/Incident Investigation and Report

Accidents Involving Spills and Leakage

It has been Air Products' experience that accidents involving liquid oxygen tankers and oxygen tube trailers do not result normally in a loss of product. There have been occasions when the liquid oxygen tanker has been damaged to the extent that transfer from the damaged vehicle was believed to be necessary. If the product cannot be completely transferred into another tanker it is our practice to add liquid nitrogen to the "heel" of liquid oxygen remaining in the disabled vehicle to bring the residual liquid to a liquid air concentration. The remaining heel of liquid air is then discharged to a safe location.

The infrequent LOX spills which have occurred within IGD have not resulted in a serious problem. The most recent occurred on February 24, 1971, when approximately 2,5000 gallons of LOX discharged from a 6,000 gallon tank. The direction of vapor drift and flow was controlled by fire hose streams to prevent the oxygen vapors from drifting toward a residential section. Water was not sprayed on the liquid oxygen.
V. Accident/Incident Investigations and Reports

Accidents involving oxygen equipment and systems which cause injury to personnel or damage to equipment and property are thoroughly investigated to determine the cause and the corrective action necessary to prevent recurrences.

A. Reporting Requirements

Corporate Administrative procedure requires reporting all accidents to the various managers of departments and divisions, the Corporate President, and the Safety Director. The more serious accident is initially reported by telephone and followed by the appropriate form reporting requirements. The less serious accidents are reported by submitting the forms required. Accidents involving personnel or property of third parties (customer, general public, etc.) are reported by telephone to the responsible managers including the Law Department.

Forms used to report injuries to personnel contain information as required by federal, state or local governments, workmen's compensation; and/or by the insurance carrier. Copies of typical forms are attached. Equipment damage report forms may be memoranda describing the accident or incident.

B. Investigation of Accidents

Each accident involving oxygen and/or oxygen equipment is investigated to determine cause and corrective measures necessary to eliminate or minimize the possibility of recurrence. The extent of the investigation is determined by the type equipment involved and the extent of injury to personnel. The level of investigation for an oxygen gauge failure which caused personnel injury will be greater than a gauge failure which does not involve personnel injury. On the other hand, an accident involving an oxygen compressor or an air separation plant is extensively investigated whether personnel are injured or not because of the economic and technical significance to other Company operating areas.

The investigation of accidents may be made by a competent individual or by teams of specialists, including consultants, using available techniques in determining the mechanics of reaction which caused the accident.

Accidents which occur to oxygen equipment manufactured, owned, and/or operated by other companies and industries are investigated to the extent possible on information obtained through news media, confidential correspondence, professional society symposiums, and federal agencies.
C. Records

Records are maintained on all accidents pertaining to oxygen and/or oxygen equipment which occur within our Company and users of equipment manufactured by our Company. Records of accidents occurring to other companies are also maintained.

For convenience of identification and record retrieval, categories of oxygen equipment failures have been established as follows:

1. Air Process Plants
 a) General
 b) Reboilers
2. Oxygen Compressors
3. Liquid Oxygen Pumps
4. Oxygen Regulators and Related Equipment (Torches)
5. Piping and Lines
6. Storage Systems
7. Gauges and Instrumentation
8. Highway and Rail Tankers

Summaries of accidents in each equipment category are maintained and periodically reviewed:

D. Summary of Accidents

The attached summaries are identified to be in agreement with the categories established in paragraph "C". The column headings on the summaries indicate the date of accident, location of accident by State or Country, equipment owned and operated either by "APCI" or "other" companies with similar activities, component and/or plant size where applicable, and a remarks column which briefly summarizes the accident. The summary applicable to oxygen regulators and related equipment pertains only to equipment manufactured by APCI.

1. Air Process Plants
 a) General

Table VDIa lists accidents to air plants and identifies the component involved where the reaction occurred.

Analysis of each accident led to recommendations to minimize or eliminate the possibility of recurrence.

Review of the summary indicates retraining was necessary in the case of the IT/D plants. Limitations on the oxygen content of reactivation nitrogen for the 75T/D plants, plus some procedural and instrument design changes essentially eliminated air drier type of fires. Establishment of plant washout programs minimized the possibility of expansion.
engine oil absorber reactions. Analyzing contaminant concentrations in process streams and establishing limits of contaminant levels has improved the operating record of air plants. Established preventive maintenance programs has further reduced the possibility of accident recurrence.

b) Reboilers

Table VD1b lists the accidents occurring to air process plant reboilers as a group. The column heading "reboiler type" is letter coded as follows:

A. Shell and Tube (internal to column) Oxygen or crude oxygen is on the shell side and nitrogen gas is condensed in the tubes.

B. Thermo-syphon Reboiler (external to column) Shell and Tube. Oxygen passes through the tubes from bottom to top and nitrogen is condensed on the shell side.

C. Extended Surface (Plate and Fin) Reboilers (external to column). Oxygen passes upwards in its passages and nitrogen passes downward through its passages.

D. Extended Surface (Plate and Fin) Reboilers (Internal to Column). Oxygen passes upwards in its passages and nitrogen passes downward through its passages.

E. Extended Surface (Plate and Fin) Reboilers (Internal to Column). Same as "D" but crude oxygen instead of oxygen.

F. Modified Single Column. Small packed exchangers operating at elevated pressure and attached to a low pressure single column for the purpose of condensing nitrogen reflux streams.

Early plant reboiler failures led to the development of the hydrocarbon analyzer to constantly monitor hydrocarbon in process streams. A quick spot check test for acetylene concentration in plant liquids also came into regular use. Operating changes include disposing of given amounts of plant liquids continuously or at regular intervals to remove contaminants. Some design improvements evolved as a result of reboiler failures.

2. Oxygen Compressors

Table VD2 lists oxygen compressor reactions which have occurred in recent years. A series of reactions have occurred during World War II with water lubricated oxygen compressors and driers due to incompatibility of materials used.
To minimize the damage from reaction, inlet suction screens, vibration detectors, temperature sensors, and automatic inventory dumping valves have been provided. Erection of barriers, and remote operation control are intended to provide protection for operating personnel. Startup and shut-down on nitrogen is routine operating practice.

3. Liquid Oxygen Pumps

Table VD3 lists pump accidents which are identified as plant or trailer mounted and centrifugal or reciprocating pumps.

Contamination or improper materials appears to be the chief cause of reciprocating pump failures. Centrifugal pump failures are related to mechanical failure of bearings and their lubrication which cause interference between pump parts and case. Design changes involving opening of pump clearances and different materials have been made to minimize the accident recurrence potential. A strict preventive maintenance schedule will cause bearings to be changed before they can become a problem.

4. Oxygen Regulator Accidents

Table VD4 lists regulator accidents which have occurred to APCI manufactured equipment. This class of oxygen equipment is widely used by many people from all walks of life. Most accidents have been caused by actions of persons who do not fully understand the hazards associated with the use of oxygen.

Training is thy key to minimizing the possibility of recurrence of this type accident. Improvement in operating instructions and discussions and demonstrations to industry and technical schools are efforts being made to train as many people as possible.

5. Piping and Lines

Table VD5 lists accidents which have occurred in oxygen piping and line systems. Most accidents are associated with persons unfamiliar with the hazards of oxygen. Training becomes the key to minimizing accidents with this class of equipment.

6. Storage Systems

Table VD6 lists only the major storage system failure accidents which are significantly important to total system safety.
7. Gauges and Instrumentation

Table VD7 lists accidents related to gauges and instrumentation failure. Those accidents pertaining to gauges are associated with contamination due to testing media or handling and storage when not in use usually introduced by persons not fully aware of the hazards associated with oxygen service. Training is the key to minimizing these accidents.

8. Highway and Rail Tankers

No entries are made in Table VD8. Highway and rail tankers have been damaged in accidents, however, the damage resulted not from tank failure but rather from involvement in vehicle or train derailment incidents.
AIR PROCESS PLANT ACCIDENTS

<table>
<thead>
<tr>
<th>Date of Accident</th>
<th>Location of Accident</th>
<th>Equip. Owned or Operated</th>
<th>Plant Size</th>
<th>Plant Component</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/56</td>
<td>Virginia</td>
<td>0</td>
<td>1T/D</td>
<td>H.P. Column</td>
<td>Column ruptured by overpressurization through mis-operation and violation of safety practices---gagging of a safety relief valve. H.P. column extensively damaged, cold box and low pressure. Column slightly damaged. No injuries.</td>
</tr>
<tr>
<td>7/11/57</td>
<td>California</td>
<td>A</td>
<td>75T/D</td>
<td>Air Drier</td>
<td>Fire in air drier from oxygen enriched reactivation nitrogen and hot drier. Fire occurred after startup from a cold shutdown. Damage restricted to drier without burn through. No injuries.</td>
</tr>
<tr>
<td>7/12/57</td>
<td>California</td>
<td>A</td>
<td>75T/D</td>
<td>Air Drier</td>
<td>Fire in No. 2 oil separator from oxygen enriched reactivation nitrogen and hot drier. Fire occurred after startup from a cold shutdown. Damage restricted to drier without burn through. No injuries. Operational procedure changes eliminated this potential hazard.</td>
</tr>
<tr>
<td>3/6/58</td>
<td>Florida</td>
<td>0</td>
<td>1T/D</td>
<td>L.P. Column</td>
<td>Column ruptured by overpressurization. Line(s) from H.P. column believed to be partially restricted. Damage to H.P. column was extensive. One person was slightly injured.</td>
</tr>
<tr>
<td>3/30/58</td>
<td>Texas</td>
<td>0</td>
<td>Tonnage</td>
<td>Total Plant</td>
<td>Leaking LOX from drain line impinged upon carbon steel air line which ruptured in trench containing some oil. Extensively damaged the compressor building, including the control room of the plant. Three (3) persons were killed.</td>
</tr>
<tr>
<td>2/9/59</td>
<td>California</td>
<td>A</td>
<td>75T/D</td>
<td>Air Drier</td>
<td>A fire occurred in the No. 2 oil separator when process air was introduced in a hot (above 400°F) separator. Minor internal separator damage. No injuries.</td>
</tr>
<tr>
<td>Date of Accident</td>
<td>Location of Accident</td>
<td>Equip. Owned or Operated</td>
<td>Plant Size</td>
<td>Plant Component</td>
<td>Remarks</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>4/21/59</td>
<td>England</td>
<td>0</td>
<td>Tonnage</td>
<td>Cold Box</td>
<td>Explosion in air plant cold box external to process equipment caused extensive plant damage and three (3) fatalities. The reaction was determined to be between LOX and oil soaked rock wool. Reported in AIChE Safety in Air and Ammonia Plants, Volume 2, page 36 (Doc. #99000295), and Volume 5, page 1 (Doc. #99000103).</td>
</tr>
<tr>
<td>1/4/61</td>
<td>Germany</td>
<td>0</td>
<td>Tonnage</td>
<td>Total Plant</td>
<td>LOX leak penetrated to smoldering wood flooring underneath cold box plates. Extensive damage to entire plant and 15 fatalities occurred. Reported in AIChE Safety in Air and Ammonia Plants, Volume 4, page 70 (Doc. #99000294).</td>
</tr>
<tr>
<td>7/61</td>
<td>England</td>
<td>0</td>
<td>1T/D</td>
<td>L.P. Column</td>
<td>Explosion in top 6 trays of L.P. Column. Details lacking but believe overpressurization involved rather than reaction. Slight damage to cold box. No injuries reported.</td>
</tr>
<tr>
<td>8/15/61</td>
<td>Michigan</td>
<td>0</td>
<td>25T/D</td>
<td>Air line at driers</td>
<td>Fire at driers due to customer cross-tie of oxygen and nitrogen lines. Unapproved field modifications. Damage restricted to piping at driers. No injuries.</td>
</tr>
<tr>
<td>1/14/62</td>
<td>Texas</td>
<td>0</td>
<td>100T/D</td>
<td>Piping</td>
<td>Explosion and fire in drain valve and defrost header on pure oxygen filter. Equipment damage slight. One (1) fatality.</td>
</tr>
<tr>
<td>1/26/62</td>
<td>Florida</td>
<td>0</td>
<td>1T/D</td>
<td>L.P. Column</td>
<td>Column ruptured by overpressurization through mis-operation. Suspected faulty liquid level gauge permitted excessive liquid levels in low pressure column.</td>
</tr>
<tr>
<td>5/20/62</td>
<td>England</td>
<td>0</td>
<td>Tonnage</td>
<td>Vaporizer</td>
<td>Reaction between oil and oxygen in LOX disposal vaporizer. One (1) fatality and two (2) injured.</td>
</tr>
<tr>
<td>5/26/63</td>
<td>Delaware</td>
<td>A</td>
<td>Tonnage</td>
<td>Expansion Engine Oil Separator</td>
<td>Fire in reciprocating expander oil separator at start of reactivation cycle. No equipment damage or personnel injuries.</td>
</tr>
</tbody>
</table>
AIR PROCESS PLANT ACCIDENTS

<table>
<thead>
<tr>
<th>Date of Accident</th>
<th>Location of Accident</th>
<th>Equip. Owned or Operated</th>
<th>Plant Size</th>
<th>Plant Component</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/12/63</td>
<td>Ohio</td>
<td>A</td>
<td>75T/D</td>
<td>Air Drier</td>
<td>Air drier heated box ruptured from overpressure due to leaking H.P. drier valve. Slight damage confined to drier accessories. No injuries.</td>
</tr>
<tr>
<td>9/63</td>
<td>England</td>
<td>A</td>
<td>100T/D</td>
<td>Air Drier</td>
<td>Drier dust filter involved in fire when air was used to cool down a hot drier vessel. Damage confined to drier filter and piping. No injuries.</td>
</tr>
<tr>
<td>12/19/63</td>
<td>Canada</td>
<td>0</td>
<td>Tonnage</td>
<td>Oil Separator</td>
<td>Reaction with air and oil at -265°F in expansion engine oil-knock out pot. Moderate damage to separator and associated piping.</td>
</tr>
<tr>
<td>9/17/64</td>
<td>England</td>
<td>A</td>
<td>Tonnage</td>
<td>Argon Plant</td>
<td>Hydrogen reaction with oxygen in Deoxo unit. Faulty operation. Damage sustained to vessel support legs and concrete foundation. No injuries.</td>
</tr>
<tr>
<td>2/3/65</td>
<td>California</td>
<td>A</td>
<td>75T/D</td>
<td>Expansion Engine</td>
<td>Mechanical failure of engine valve spring and higher than normal oxygen content of process gas reacted with oil accumulation in discharge piping. Piping and valve system extensively damaged. Slight area damage to building and other equipment. No injuries.</td>
</tr>
<tr>
<td>3/4/65</td>
<td>Delaware</td>
<td>A</td>
<td>Tonnage</td>
<td>Expansion Engine</td>
<td>Reaction in expansion engine oil absorber filter carried into piping system. Damage was restricted to piping system and filter media. No injuries.</td>
</tr>
<tr>
<td>9/2/65</td>
<td>Pennsylvania</td>
<td>A</td>
<td>34T/D</td>
<td>Safety valve header</td>
<td>LOX spilled from unattended automatic plant through hole in S.V. header after SV functioned. Design error.</td>
</tr>
<tr>
<td>12/22/65</td>
<td>Michigan</td>
<td>0</td>
<td>Tonnage</td>
<td>Vaporizer</td>
<td>Solvent remaining in vaporizer after being cleaned reacted with oxygen when vaporizer placed in service. The vaporizer was extensively damaged. Two (2) fatalities occurred.</td>
</tr>
<tr>
<td>1/67</td>
<td>Illinois</td>
<td>0</td>
<td>Tonnage</td>
<td>Auxiliary Column</td>
<td>Reaction in auxiliary column. Details lacking.</td>
</tr>
<tr>
<td>Date of Accident</td>
<td>Location of Accident</td>
<td>Equip. Owned or Operated</td>
<td>Plant Size</td>
<td>Plant Component</td>
<td>Remarks</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>7/7/67</td>
<td>Delaware</td>
<td>A</td>
<td>Tonnage</td>
<td>Expansion Engine</td>
<td>Reaction occurred in oil separator filter. Damage was confined to filter element within the separator vessel. No injuries.</td>
</tr>
<tr>
<td>9/18/67</td>
<td>Pennsylvania</td>
<td>0</td>
<td>Tonnage</td>
<td>Hydrocarbon Adsorber</td>
<td>Reaction in hydrocarbon adsorber area. Reaction between oxygen and retained trichlene solvent from previous washout.</td>
</tr>
<tr>
<td>10/6/67</td>
<td>Indiana</td>
<td>0</td>
<td>17T/D</td>
<td>Heat Exchanger Air Header</td>
<td>H.P. Air line ruptured at heat exchanger. Erosion of line caused by water vapor in air circuit. In service 17 years.</td>
</tr>
<tr>
<td>1/10/68</td>
<td>Texas</td>
<td>0</td>
<td>350T/D</td>
<td>Heat Exchanger</td>
<td>Reaction in oxygen circuit of coiled tube heat exchanger in dead end of header where fuels could accumulate. Damage was restricted to one end of oxygen header. No injuries.</td>
</tr>
</tbody>
</table>

0 = Other Companies

A = Air Products & Chemicals
<table>
<thead>
<tr>
<th>Date of Accident</th>
<th>Location of Accident</th>
<th>Equip. Owned or Operated</th>
<th>Plant Size</th>
<th>Reboiler Type</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/18/56</td>
<td>Pennsylvania</td>
<td>0</td>
<td>Tonnage</td>
<td>B</td>
<td>Ethylene and hydrocarbons concentrated in the reboiler and reacted causing extensive damage to air plant cold box, nitrogen wash column cold box, and accessories in the immediate vicinity. Personnel injury occurred.</td>
</tr>
<tr>
<td>8/57</td>
<td>Germany</td>
<td>0</td>
<td>Tonnage</td>
<td>?</td>
<td>Reboiler reaction caused by hydrocarbons from hot air compressor.</td>
</tr>
<tr>
<td>1/59</td>
<td>Philippines</td>
<td>0</td>
<td>.6T/D</td>
<td>F</td>
<td>Distillation column reaction. Acetylene in column sump believed to be cause due to acetylene plant location.</td>
</tr>
<tr>
<td>2/26/59</td>
<td>Brazil</td>
<td>0</td>
<td>.75T/D</td>
<td>F</td>
<td>Distillation column reaction. Details unknown.</td>
</tr>
<tr>
<td>7/15/59</td>
<td>New Jersey</td>
<td>A</td>
<td>6.5T/D</td>
<td>A</td>
<td>Slight reboiler reaction possible due to accumulations of hydrocarbons from poor compressor operation and no plant washout. Only indication of reaction was loss of purity. Slight bulge in reboiler shell at bottom tube sheet. No injuries.</td>
</tr>
<tr>
<td>8/28/59</td>
<td>South Dakota</td>
<td>0</td>
<td>1T/D</td>
<td>A</td>
<td>Rupture of joint between high & low pressure column. Insufficient detail to determine cause of reaction.</td>
</tr>
<tr>
<td>Date of Accident</td>
<td>Location of Accident</td>
<td>Equip. Owned or Operated</td>
<td>Plant Size</td>
<td>Reboiler Type</td>
<td>Remarks</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>11/59</td>
<td>Texas</td>
<td>0</td>
<td>20T/D</td>
<td>?</td>
<td>Reboiler reaction. Details unknown.</td>
</tr>
<tr>
<td>4/20/60</td>
<td>West Virginia</td>
<td>0</td>
<td>Tonnage</td>
<td>C or D</td>
<td>Reboiler reaction. Dry boiling in oxygen passages. Reported in AIChE, Safety in Air and Ammonia Plants, Volume 3, page 12 (Doc. #99000298).</td>
</tr>
<tr>
<td>2/20/61</td>
<td>Mexico</td>
<td>0</td>
<td>2.5T/D</td>
<td>A</td>
<td>Reboiler explosion when contamination reacted due to H.P. oxygen used to unplug lower liquid level line.</td>
</tr>
<tr>
<td>3/61</td>
<td>England</td>
<td>0</td>
<td>1T/D</td>
<td>A</td>
<td>Reboiler reaction. Details unknown.</td>
</tr>
<tr>
<td>5/62</td>
<td>West Virginia</td>
<td>0</td>
<td>Tonnage</td>
<td>C or D</td>
<td>Reboiler reaction. Dry boiling in oxygen passages.</td>
</tr>
<tr>
<td>8/62</td>
<td>Michigan</td>
<td>0</td>
<td>500T/D</td>
<td>C or D</td>
<td>Reboiler reaction. Dry boiling in oxygen passages.</td>
</tr>
<tr>
<td>11/62</td>
<td>Peru</td>
<td>0</td>
<td>.75T/D</td>
<td>F</td>
<td>L.P. Column sump and tray damaged in explosion. Details unknown.</td>
</tr>
<tr>
<td>11/63</td>
<td>Ohio</td>
<td>0</td>
<td>Tonnage</td>
<td>C or D</td>
<td>Reboiler reaction. Details unknown.</td>
</tr>
<tr>
<td>2/64</td>
<td>West Virginia</td>
<td>0</td>
<td>Tonnage</td>
<td>C or D</td>
<td>Reboiler reaction. Dry boiling in oxygen passages.</td>
</tr>
<tr>
<td>11/6/64</td>
<td>California</td>
<td>A</td>
<td>75T/D</td>
<td>B</td>
<td>Details unknown.</td>
</tr>
</tbody>
</table>

Additional Notes
- **7/19/64 England**: Tonnage C or D
- **10/64 England**: Tonnage C or D
- **11/6/64 California**: A 75T/D B

Reboiler reaction. Undetermined contamination concentrated in single tube when dry boiling occurred. Loss of purity and H.P. column pressure, and increase of L.P. column pressure only indication of reaction.
<table>
<thead>
<tr>
<th>Date of Accident</th>
<th>Location of Accident</th>
<th>Equip. Owned or Operated</th>
<th>Plant Size</th>
<th>Reboiler Type</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/65</td>
<td>Columbia</td>
<td>0</td>
<td>1.5T/D</td>
<td>A</td>
<td>Condenser reaction destroyed plant. Details unknown.</td>
</tr>
<tr>
<td>3/29/65</td>
<td>England</td>
<td>A</td>
<td>200T/D</td>
<td>B</td>
<td>Reboiler reaction in a single tube at liquid level submergence line. Cause undetermined. Loss of purity was only indication of reaction.</td>
</tr>
<tr>
<td>2/7/66</td>
<td>Puerto Rico</td>
<td>0</td>
<td>2.5T/D</td>
<td>A</td>
<td>Reboiler tubes crushed, reboiler bulged, liquid level and oxygen drain ruptured. Cause undetermined.</td>
</tr>
<tr>
<td>11/20/66</td>
<td>Peru</td>
<td>0</td>
<td>.75T/D</td>
<td>F</td>
<td>Explosion in oxygen subcooler. Details unknown.</td>
</tr>
<tr>
<td>1/67</td>
<td>Illinois</td>
<td>0</td>
<td>Tonnage</td>
<td>?</td>
<td>Explosion in side arm column. Details unknown.</td>
</tr>
<tr>
<td>8/5/68</td>
<td>California</td>
<td>A</td>
<td>75T/D</td>
<td>B</td>
<td>Reboiler reaction. Contamination concentrated in tube when dry boiling occurred.</td>
</tr>
<tr>
<td>10/5/68</td>
<td>California</td>
<td>A</td>
<td>75T/D</td>
<td>B</td>
<td>Reboiler reaction. Contamination concentrated in tube when dry boiling occurred.</td>
</tr>
<tr>
<td>12/25/68</td>
<td>California</td>
<td>A</td>
<td>75T/D</td>
<td>B</td>
<td>Reboiler reaction. Contamination concentrated in tube when dry boiling occurred.</td>
</tr>
<tr>
<td>3/24/70</td>
<td>Venezuela</td>
<td>0</td>
<td>5T/D</td>
<td>A</td>
<td>Plant exploded. Details unknown.</td>
</tr>
<tr>
<td>6/18/70</td>
<td>Jamaica</td>
<td>0</td>
<td>2.5T/D</td>
<td>A</td>
<td>Reboiler explosion believed caused by acetylene in reboiler.</td>
</tr>
<tr>
<td>6/9/71</td>
<td>Pennsylvania</td>
<td>0</td>
<td>Tonnage</td>
<td>C or D</td>
<td>Reboiler reaction. Faulty liquid level gauge which indicated 100% submergence instead of actual 85%. Cause dry boiling in the condenser.</td>
</tr>
</tbody>
</table>

0 - Other Companies

A - Air Products and Chemicals, Inc.
A reaction within an oxygen compression system is usually of short duration although violent. The damage to the equipment is often severe. Usually, any evidence which can be useful in determining cause is destroyed in the reaction.

<table>
<thead>
<tr>
<th>Date of Accident</th>
<th>Location of Accident</th>
<th>Equip. Owned or Operated</th>
<th>Type of Compressor</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>0</td>
<td>Centrifugal</td>
<td>Evidence of internal reaction found during normal maintenance.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0</td>
<td>Centrifugal</td>
<td>Oxygen compressor rotating backward without oil lubrication to bearings. Overheating ignited hot oil vapors.</td>
</tr>
<tr>
<td>Early '50</td>
<td>Europe</td>
<td>0</td>
<td>Reciprocating</td>
<td>Four reactions with fire origin in thin top section of 4th stage piston.</td>
</tr>
<tr>
<td>Late '50</td>
<td>South Africa</td>
<td>0</td>
<td>Centrifugal</td>
<td>No details.</td>
</tr>
<tr>
<td>1950</td>
<td>Europe</td>
<td>0</td>
<td>Centrifugal</td>
<td>Instabilities caused by operating too close to second critical speed.</td>
</tr>
<tr>
<td>2/27/58</td>
<td>Michigan</td>
<td>0</td>
<td>Reciprocating</td>
<td>No details.</td>
</tr>
<tr>
<td>1/15/59</td>
<td>Michigan</td>
<td>0</td>
<td>Centrifugal</td>
<td>Reaction in high pressure casing between the last stage wheel and balancing piston. No injuries reported. Cause undetermined.</td>
</tr>
<tr>
<td>5/59</td>
<td>England</td>
<td>0</td>
<td>Reciprocating</td>
<td>Grease left on valve springs after overhaul reacted with oxygen on compressor startup.</td>
</tr>
<tr>
<td>7/10/59</td>
<td>Louisiana</td>
<td>0</td>
<td>Centrifugal</td>
<td>Corrosion products caused by water leakage caused frictional heating and ignition in the balance piston area.</td>
</tr>
<tr>
<td>1960</td>
<td>Italy</td>
<td>0</td>
<td>Centrifugal</td>
<td>No details.</td>
</tr>
<tr>
<td>2/9/60</td>
<td>California</td>
<td>0</td>
<td>Reciprocating</td>
<td>Third stage oxygen compressor fire ruined the cylinder and blew off one of the valve covers. No injuries.</td>
</tr>
<tr>
<td>1960</td>
<td>Europe</td>
<td>0</td>
<td>Centrifugal</td>
<td>Instabilities caused by operating too close to second critical speed.</td>
</tr>
<tr>
<td>Date of Accident</td>
<td>Location of Accident</td>
<td>Equip. Owned or Operated</td>
<td>Type of Compressor</td>
<td>Remarks</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Late '60</td>
<td>Luxembourg</td>
<td>0</td>
<td>Reciprocating</td>
<td>Bolt from cooler area dropped into piston-cylinder area and caused fire.</td>
</tr>
<tr>
<td>6/22/61</td>
<td>Michigan</td>
<td>0</td>
<td>Reciprocating</td>
<td>No details. Newspaper report indicates three (3) fatalities.</td>
</tr>
<tr>
<td>7/7/64</td>
<td>Louisiana</td>
<td>0</td>
<td>Centrifugal</td>
<td>Reaction believed caused by backflow of flammable fluids from another process.</td>
</tr>
<tr>
<td>1965</td>
<td>Germany</td>
<td>0</td>
<td>Reciprocating</td>
<td>Broken piston rod caused reaction.</td>
</tr>
<tr>
<td>1967</td>
<td>France</td>
<td>0</td>
<td>Reciprocating</td>
<td>Reaction caused by broken piston.</td>
</tr>
<tr>
<td>1967</td>
<td>India</td>
<td>0</td>
<td>Centrifugal</td>
<td>No details.</td>
</tr>
<tr>
<td>12/67</td>
<td>Poland</td>
<td>0</td>
<td>Centrifugal</td>
<td>Reaction occurred shortly after startup. Improper cleaning after long term storage believed to be cause.</td>
</tr>
<tr>
<td>1968</td>
<td>Germany</td>
<td>0</td>
<td>Centrifugal</td>
<td>Oxygen compressor rotating backward without oil lubrication to bearings. Overheating ignited hot oil vapors.</td>
</tr>
<tr>
<td>4/68</td>
<td>Scotland</td>
<td>0</td>
<td>Reciprocating</td>
<td>Water and corrosion material from leak in after cooler appears to be part of the cause of the reaction. Worker seriously injured.</td>
</tr>
<tr>
<td>6/17/68</td>
<td>Louisiana</td>
<td>0</td>
<td>Centrifugal</td>
<td>Particle appears to have entered compressor intake and caused case to impeller interference. No injuries.</td>
</tr>
<tr>
<td>6/28/68</td>
<td>Maryland</td>
<td>A</td>
<td>Centrifugal</td>
<td>High pressure case reaction may be associated with major electrical failure which occurred at the same time.</td>
</tr>
<tr>
<td>9/68</td>
<td>Holland</td>
<td>0</td>
<td>Centrifugal</td>
<td>No details.</td>
</tr>
<tr>
<td>10/14/68</td>
<td>Louisiana</td>
<td>0</td>
<td>Centrifugal</td>
<td>A fatality occurred when the rebuilt oxygen compressor of June 1968 accident failed upon initial startup.</td>
</tr>
<tr>
<td>12/14/68</td>
<td>West Virginia</td>
<td>A</td>
<td>Centrifugal</td>
<td>A routine internal inspection revealed that a reaction occurred at some previous startup without involving the compressor. A labyrinth seal was installed backward.</td>
</tr>
</tbody>
</table>
OXYGEN COMPRESSOR ACCIDENTS

<table>
<thead>
<tr>
<th>Date of Accident</th>
<th>Location of Accident</th>
<th>Equip. Owned or Operated</th>
<th>Type of Compressor</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/27/68</td>
<td>Pennsylvania</td>
<td>0</td>
<td>Centrifugal</td>
<td>Improper cleaning in discharge volute believed cause of fire in discharge of compressor.</td>
</tr>
<tr>
<td>3/18/69</td>
<td>Ohio</td>
<td>A</td>
<td>Centrifugal</td>
<td>Low pressure case burn through. Mechanical failure in thrust bearing area caused shaft to shift. Fire started in fourth stage and burned through into second stage.</td>
</tr>
<tr>
<td>4/4/69</td>
<td>Illinois</td>
<td>0</td>
<td>Centrifugal</td>
<td>Reaction occurred on startup of compressor.</td>
</tr>
<tr>
<td>4/15/69</td>
<td>Pennsylvania</td>
<td>0</td>
<td>Centrifugal</td>
<td>Origin of fire appears to be in the seventh stage of the high pressure case. No injuries reported. Details concerning cause are lacking.</td>
</tr>
<tr>
<td>6/69</td>
<td>Germany</td>
<td>0</td>
<td>Centrifugal</td>
<td>Dirty intercoolers believed to be cause.</td>
</tr>
<tr>
<td>12/5/69</td>
<td>California</td>
<td>A</td>
<td>Centrifugal</td>
<td>High and intermediate pressure case of compressor burned through causing one (1) fatality and injury to eight (8) others.</td>
</tr>
<tr>
<td>1969</td>
<td>Japan</td>
<td>0</td>
<td>Centrifugal</td>
<td>No details.</td>
</tr>
</tbody>
</table>

0 - Other Companies

A - Air Products and Chemicals, Inc.
LIQUID OXYGEN PUMP ACCIDENTS

The cause of many LOX pump accidents has been established only with difficulty as most of the evidence needed to determine cause has been destroyed in the reaction.

<table>
<thead>
<tr>
<th>Date of Accident</th>
<th>Location of Accident</th>
<th>Equip. Owned or Operated</th>
<th>Type of Pump</th>
<th>Trailer of Plant Mounted</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/19/57</td>
<td>Canada</td>
<td>0</td>
<td>Centrifugal</td>
<td>Plant</td>
<td>Pump seized resulting in fire.</td>
</tr>
<tr>
<td>8/13/57</td>
<td>Ohio</td>
<td>0</td>
<td>-</td>
<td>Trailer</td>
<td>Pump exploded during transfer of LOX. No details.</td>
</tr>
<tr>
<td>1/22/60</td>
<td>California</td>
<td>A</td>
<td>Reciprocating</td>
<td>Trailer</td>
<td>Fire occurred while pump under test. Plunger rod material of questionable compatibility. One (1) fatality, two (2) injured.</td>
</tr>
<tr>
<td>2/11/60</td>
<td>Pennsylvania</td>
<td>A</td>
<td>Reciprocating</td>
<td>Plant</td>
<td>Involved only the mechanical failure of pump barrel. No combustion reaction involved.</td>
</tr>
<tr>
<td>12/60</td>
<td>-</td>
<td>0</td>
<td>Reciprocating</td>
<td>Plant</td>
<td>Pump explosion due to peeling of chrome plating on pump rod and subsequent ignition.</td>
</tr>
<tr>
<td>8/28/61</td>
<td>Illinois</td>
<td>0</td>
<td>Centrifugal</td>
<td>Trailer</td>
<td>Tanker fire and explosion believed to have occurred during transfer of LOX to plant storage. Reported in AIChE, Safety in Air and Ammonia Plants, Volume 4, page 49 (Doc. #99000299).</td>
</tr>
<tr>
<td>11/12/62</td>
<td>Pennsylvania</td>
<td>A</td>
<td>Reciprocating</td>
<td>Plant</td>
<td>Oil contaminated interconnecting. Tubing was also pressure underrated. Reaction caused injury to three (3) persons.</td>
</tr>
<tr>
<td>3/6/63</td>
<td>Pennsylvania</td>
<td>0</td>
<td>Centrifugal</td>
<td>Plant</td>
<td>Oil contamination in LOX lines and pump ignited upon starting a warm pump. One (1) fatality and three (3) injured. Plant equipment severely damaged in air of reaction. Reported in AIChE, Safety in Air and Ammonia Plants, Volume 6, page 41 (Doc. #99000261A).</td>
</tr>
<tr>
<td>Date of Accident</td>
<td>Location of Accident</td>
<td>Equip. Owned or Operated</td>
<td>Type of Pump</td>
<td>Trailer of Plant Mounted</td>
<td>Remarks</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>10/11/63</td>
<td>Sweden</td>
<td>0</td>
<td>Reciprocating</td>
<td>Plant</td>
<td>Substitution of pump rod material and application of chrome plating to rod caused peeling of plating material which reacted with oxygen to cause fire.</td>
</tr>
<tr>
<td>10/24/63</td>
<td>Sweden</td>
<td>0</td>
<td>Reciprocating</td>
<td>Plant</td>
<td>Substitution of pump rod material and application of chrome plating to rod caused peeling of plating material which reacted with oxygen to cause fire.</td>
</tr>
<tr>
<td>12/4/63</td>
<td>Maryland</td>
<td>A</td>
<td>Reciprocating</td>
<td>Plant</td>
<td>Mechanical failure of connecting rod due to excessive tightening of pump packing.</td>
</tr>
<tr>
<td>12/16/63</td>
<td>England</td>
<td>A</td>
<td>Centrifugal</td>
<td>Trailer</td>
<td>Believe bearing failure caused interference between pump impeller and case with subsequent ignition. One (1) person slightly injured.</td>
</tr>
<tr>
<td>5/21/66</td>
<td>Ohio</td>
<td>0</td>
<td>Centrifugal</td>
<td>Plant</td>
<td>Fire in LOX pump caused by thrust bearing failure attributed to water in lubricant. One (1) person injured. Reported in AIChE, Safety in Air and Ammonia Plants, Volume 9, page 5 (Doc. #9900301).</td>
</tr>
<tr>
<td>9/2/66</td>
<td>England</td>
<td>0</td>
<td>Centrifugal</td>
<td>Trailer</td>
<td>LOX tanker exploded when submerged LOX pump failed. Two (2) people killed and seventeen (17) injured.</td>
</tr>
<tr>
<td>10/6/66</td>
<td>Louisiana</td>
<td>0</td>
<td>Centrifugal</td>
<td>Trailer</td>
<td>LOX pump fire during transfer of product to storage.</td>
</tr>
<tr>
<td>11/3/66</td>
<td>Germany</td>
<td>0</td>
<td>—</td>
<td>Trailer</td>
<td>Fire started during transfer of LOX from trailer to storage.</td>
</tr>
<tr>
<td>Date of Accident</td>
<td>Location of Accident</td>
<td>Equip. Owned or Operated</td>
<td>Type of Pump</td>
<td>Trailer of Plant Mounted</td>
<td>Remarks</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>12/21/66</td>
<td>Florida</td>
<td>0</td>
<td>Centrifugal</td>
<td>Trailer</td>
<td>Believe foreign object entered pump and initiated reaction.</td>
</tr>
<tr>
<td>10/13/67</td>
<td>Pennsylvania</td>
<td>0</td>
<td>Reciprocating</td>
<td>Plant</td>
<td>Fire in pump originating in area of insulating seal and seal nut believed caused by tight pump packing.</td>
</tr>
<tr>
<td>2/26/68</td>
<td>Louisiana</td>
<td>A</td>
<td>Centrifugal</td>
<td>Plant</td>
<td>Oxygen from pump packing entered lower motor bearing case where reaction occurred damaging motor.</td>
</tr>
<tr>
<td>12/68</td>
<td>Pennsylvania</td>
<td>0</td>
<td>Centrifugal</td>
<td>Plant</td>
<td>Foreign material entered pump and impacted impeller.</td>
</tr>
<tr>
<td>12/68</td>
<td>Pennsylvania</td>
<td>0</td>
<td>Centrifugal</td>
<td>Plant</td>
<td>Bearing failure occurred. Pump was stopped before damage to pump internals. No fire occurred.</td>
</tr>
<tr>
<td>1/22/69</td>
<td>Germany</td>
<td>0</td>
<td>-</td>
<td>Trailer</td>
<td>Tanker under test when control end caught fire. No other details.</td>
</tr>
<tr>
<td>2/26/69</td>
<td>Belgium</td>
<td>A</td>
<td>Centrifugal</td>
<td>Plant</td>
<td>Poor lubrication permitted bearing wear which eventually caused interference between pump impeller and case and subsequent fire. No injuries.</td>
</tr>
<tr>
<td>10/69</td>
<td>Delaware</td>
<td>A</td>
<td>Centrifugal</td>
<td>Trailer</td>
<td>Fire in pump restricted to bearing case. Bearing and pump seal failure. No injuries.</td>
</tr>
<tr>
<td>12/14/69</td>
<td>Pennsylvania</td>
<td>A</td>
<td>Centrifugal</td>
<td>Trailer</td>
<td>Bearing wear caused interference between pump impeller and case.</td>
</tr>
<tr>
<td>Date of Accident</td>
<td>Location of Accident</td>
<td>Equip. Owned or Operated</td>
<td>Type of Pump</td>
<td>Trailer of Plant Mounted</td>
<td>Remarks</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>1/70</td>
<td>England</td>
<td>A</td>
<td>Centrifugal</td>
<td>Trailer</td>
<td>Bearing wear caused interference between pump impeller and case.</td>
</tr>
<tr>
<td>5/70</td>
<td>France</td>
<td>A</td>
<td>Centrifugal</td>
<td>Trailer</td>
<td>Bearing wear caused interference between pump impeller and case. Two (2) persons injured in fire.</td>
</tr>
<tr>
<td>8/7/70</td>
<td>England</td>
<td>A</td>
<td>Centrifugal</td>
<td>Plant</td>
<td>Parts of pump inlet filter is believed to have entered pump and caused interference between impeller and case with subsequent ignition.</td>
</tr>
<tr>
<td>8/17/70</td>
<td>Pennsylvania</td>
<td>0</td>
<td>Centrifugal</td>
<td>Plant</td>
<td>Cause appears to be bearing failure which permitted pump parts interference with subsequent ignition. No injuries.</td>
</tr>
<tr>
<td>9/8/70</td>
<td>Puerto Rico</td>
<td>A</td>
<td>Centrifugal</td>
<td>Plant</td>
<td>Pump failure caused by sequence of lubrication failure, bearing failure, rubbing contact, and ignition. No injuries reported.</td>
</tr>
<tr>
<td>2/17/71</td>
<td>England</td>
<td>A</td>
<td>Centrifugal</td>
<td>Trailer</td>
<td>Contamination in pump under test believed to be cause of reaction. One (1) fatality and two (2) injured.</td>
</tr>
<tr>
<td>3/5/71</td>
<td>England</td>
<td>A</td>
<td>Reciprocating</td>
<td>Plant</td>
<td>Mechanical failure of internal pump parts supplied the source necessary to ignite the pump materials of construction.</td>
</tr>
</tbody>
</table>

0 - Other Companies

A - Air Products and Chemicals, Inc.
Reactions which occur in oxygen regulators usually result in complete destruction of the regulator. The reaction usually occurs when the operator is operating his supply valves or adjusting the regulator resulting in injury, usually serious, to the operator. The exposure is initially to thermal burns by hot metal, followed by exposure to oxygen which supports the combustion vigorously. The table lists the area of the regulator involved and the apparent cause of the reaction.

<table>
<thead>
<tr>
<th>Date of Accident</th>
<th>Location of Accident</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/15/67</td>
<td>Texas</td>
<td>No details.</td>
</tr>
<tr>
<td>7/14/58</td>
<td>New York</td>
<td>No details.</td>
</tr>
<tr>
<td>8/22/58</td>
<td>New York</td>
<td>No details.</td>
</tr>
<tr>
<td>1958</td>
<td>New Jersey</td>
<td>Repairs by others.</td>
</tr>
<tr>
<td>7/59</td>
<td>New York</td>
<td>No details.</td>
</tr>
<tr>
<td>6/20/60</td>
<td>Indiana</td>
<td>H.P. side reaction. Repairs by others.</td>
</tr>
<tr>
<td>9/22/60</td>
<td>New Jersey</td>
<td>H.P. side reaction. Cause not determined. Regulator attached to tube trailer. Moderate damage to customer property.</td>
</tr>
<tr>
<td>12/9/60</td>
<td>West Virginia</td>
<td>H.P. side reaction. Cause unknown.</td>
</tr>
<tr>
<td>4/24/62</td>
<td>Pennsylvania</td>
<td>Involved in fire but not cause of reaction. Incorrect operating procedures.</td>
</tr>
<tr>
<td>6/22/62</td>
<td>Arkansas</td>
<td>H.P. side reaction. Source of fuel from portable acetylene generator believed to be contributory.</td>
</tr>
<tr>
<td>5/20/63</td>
<td>Maryland</td>
<td>H.P. side reaction. Operating procedure believed to be cause.</td>
</tr>
<tr>
<td>11/21/62</td>
<td>New Jersey</td>
<td>L.P. side reaction. Operating procedure believed to be cause.</td>
</tr>
<tr>
<td>Date of Accident</td>
<td>Location of Accident</td>
<td>Remarks</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>8/26/63</td>
<td>Pennsylvania</td>
<td>H.P. side reaction. Dirt in an uncleaned part of system was cause of reaction.</td>
</tr>
<tr>
<td>1/27/64</td>
<td>Maryland</td>
<td>Hydrogen in oxygen system reacted. System design was cause.</td>
</tr>
<tr>
<td>5/13/64</td>
<td>Pennsylvania</td>
<td>L.P. side reaction. Operating procedure was cause.</td>
</tr>
<tr>
<td>5/22/64</td>
<td>Pennsylvania</td>
<td>Improper equipment maintenance was cause.</td>
</tr>
<tr>
<td>5/25/64</td>
<td>Pennsylvania</td>
<td>L.P. side reaction. Operating procedure was cause.</td>
</tr>
<tr>
<td>7/14/64</td>
<td>Michigan</td>
<td>L.P. side reaction. Equipment in poor repair.</td>
</tr>
<tr>
<td>10/31/64</td>
<td>Maryland</td>
<td>3 regulators involved. Hydrogen in oxygen system. System design was cause.</td>
</tr>
<tr>
<td>1/65</td>
<td>Oklahoma</td>
<td>Defective regulator was tested with oxygen to determine repairs required. Operator procedure incorrect.</td>
</tr>
<tr>
<td>8/30/65</td>
<td>Virginia</td>
<td>No details.</td>
</tr>
<tr>
<td>9/65</td>
<td>Virginia</td>
<td>No details.</td>
</tr>
<tr>
<td>1/1/66</td>
<td>Georgia</td>
<td>L.P. side reaction. Operating procedure was cause.</td>
</tr>
<tr>
<td>3/13/66</td>
<td>Pennsylvania</td>
<td>L.P. side reaction. Operating procedure was cause.</td>
</tr>
<tr>
<td>8/27/66</td>
<td>Illinois</td>
<td>H.P. side reaction. Operating procedure appears to be cause.</td>
</tr>
<tr>
<td>3/15/67</td>
<td>Virginia</td>
<td>H.P. side reaction. Contamination introduced to regulator during repairs.</td>
</tr>
<tr>
<td>5/24/67</td>
<td>Pennsylvania</td>
<td>L.P. side reaction. Operating procedure appears to be cause.</td>
</tr>
<tr>
<td>7/25/67</td>
<td>New York</td>
<td>H.P. side reaction. Improper repairs may be cause.</td>
</tr>
<tr>
<td>10/21/68</td>
<td>Ohio</td>
<td>Reaction appears to have initiated in H.P. gauge bourdon tube. Cause undetermined.</td>
</tr>
</tbody>
</table>
OXYGEN REGULATOR ACCIDENTS

<table>
<thead>
<tr>
<th>Date of Accident</th>
<th>Location of Accident</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/69</td>
<td>Maryland</td>
<td>L.P. side reaction. No details.</td>
</tr>
<tr>
<td>5/29/69</td>
<td>Maryland</td>
<td>H.P. side reaction. Origin of reaction outside of regulator in cylinder valve or valve passages and involved the regulator.</td>
</tr>
<tr>
<td>11/69</td>
<td>Michigan</td>
<td>A series of L.P. side reactions caused by improper design of fuel system for cold weather operation.</td>
</tr>
<tr>
<td>11/69</td>
<td>Missouri</td>
<td>A series of L.P. side reactions of fuel system for cold weather operation.</td>
</tr>
<tr>
<td>1/30/69</td>
<td>Alabama</td>
<td>H.P. side reaction. Contamination introduced through local repair.</td>
</tr>
<tr>
<td>10/17/69</td>
<td>Pennsylvania</td>
<td>H.P. side reaction. Origin of this reaction is the oxygen cylinder valve seat.</td>
</tr>
<tr>
<td>1/8/70</td>
<td>New Jersey</td>
<td>H.P. side reaction. Cause undetermined.</td>
</tr>
<tr>
<td>5/1/70</td>
<td>California</td>
<td>Jetcut machine extensively damaged by back-fire of oxy-fuel mixture caused by incorrect tips and damaged seating surfaces.</td>
</tr>
<tr>
<td>5/7/70</td>
<td>Tennessee</td>
<td>H.P. side reaction. Origin of reaction appears to be oxygen cylinder valve seat.</td>
</tr>
<tr>
<td>6/23/70</td>
<td>Arkansas</td>
<td>H.P. side reaction. Insufficient details, however, work are contaminated heavily with oil and grease.</td>
</tr>
<tr>
<td>11/23/70</td>
<td>Virginia</td>
<td>Poor practice of changing regulator from one product service to oxygen service without complete disassembly and solvent wash.</td>
</tr>
<tr>
<td>6/22/71</td>
<td>Michigan</td>
<td>Jetcut machine involved in fire which originated in electrical system. One torch was also defective.</td>
</tr>
<tr>
<td>Date of Accident</td>
<td>Location of Accident</td>
<td>Equip. Owner or Operator</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>10/28/58</td>
<td>California</td>
<td>APCI</td>
</tr>
<tr>
<td>12/4/58</td>
<td>California</td>
<td>Other</td>
</tr>
<tr>
<td>1/9/60</td>
<td>Connecticut</td>
<td>APCI</td>
</tr>
<tr>
<td>8/29/61</td>
<td>Ohio</td>
<td>APCI</td>
</tr>
<tr>
<td>7/16/62</td>
<td>Ohio</td>
<td>Other</td>
</tr>
<tr>
<td>7/19/62</td>
<td>Kansas</td>
<td>Other</td>
</tr>
<tr>
<td>4/3/63</td>
<td>Tennessee</td>
<td>APCI</td>
</tr>
<tr>
<td>6/12/64</td>
<td>Illinois</td>
<td>APCI</td>
</tr>
<tr>
<td>6/64</td>
<td>Minnesota</td>
<td>Other</td>
</tr>
<tr>
<td>Date of Accident</td>
<td>Location</td>
<td>Equip. Owner or Operator</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>11/12/64</td>
<td>West Virginia</td>
<td>Other</td>
</tr>
<tr>
<td>9/26/65</td>
<td>West Virginia</td>
<td>Other</td>
</tr>
<tr>
<td>4/29/66</td>
<td>Louisiana</td>
<td>APCI</td>
</tr>
<tr>
<td>1/21/69</td>
<td>West Virginia</td>
<td>Other</td>
</tr>
<tr>
<td>7/12/68</td>
<td>Ohio</td>
<td>Other</td>
</tr>
<tr>
<td>4/70</td>
<td>Ohio</td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>Pennsylvania</td>
<td>Other</td>
</tr>
<tr>
<td>7/12/68</td>
<td>Ohio</td>
<td>Other</td>
</tr>
<tr>
<td>1/21/69</td>
<td>West Virginia</td>
<td>Other</td>
</tr>
<tr>
<td>Date of Accident</td>
<td>Location of Accident</td>
<td>Equip. Owner or Operator</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>8/25/64</td>
<td>California</td>
<td>APCI</td>
</tr>
<tr>
<td>8/19/66</td>
<td>Florida</td>
<td>Other</td>
</tr>
<tr>
<td>11/26/66</td>
<td>California</td>
<td>APCI</td>
</tr>
<tr>
<td>5/13/68</td>
<td>Pennsylvania</td>
<td>Other</td>
</tr>
<tr>
<td>2/24/71</td>
<td>Pennsylvania</td>
<td>APCI</td>
</tr>
<tr>
<td>Date of Accident</td>
<td>Location of Accident</td>
<td>Equip. Owner or Operator</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>11/26/58</td>
<td>Florida</td>
<td>Other</td>
</tr>
<tr>
<td>4/15/59</td>
<td>Pennsylvania</td>
<td>APCI</td>
</tr>
<tr>
<td>5/23/61</td>
<td>Illinois</td>
<td>APCI</td>
</tr>
<tr>
<td>2/4/64</td>
<td>Tennessee</td>
<td>APCI</td>
</tr>
<tr>
<td>3/23/64</td>
<td>Pennsylvania</td>
<td>APCI</td>
</tr>
<tr>
<td>2/6/67</td>
<td>Missouri</td>
<td>APCI</td>
</tr>
<tr>
<td>6/29/67</td>
<td>Iowa</td>
<td>APCI</td>
</tr>
<tr>
<td>6/12/68</td>
<td>Minnesota</td>
<td>APCI</td>
</tr>
</tbody>
</table>
LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

V. Accident/Incident Investigation and Report

The following is a series of APL Safety Bulletins and APL Safety Department Reports related to accidents involving oxygen:

(2) Everson, I., Accident at an Oxygen Charging Manifold, APL Safety Bulletin No. 46, (Doc. #99000383).

(4) Everson, I., More Accidents on Oxygen Equipment, APL Safety Bulletin No. 102, February 8, 1971, (Doc. #99000385).

LIQUID AND GASEOUS OXYGEN SAFETY REVIEW DATA

V. Accident/Incident Investigation and Report

The following is a series of APCI Documents covering safety precautions, accidents, and near misses involving oxygen or air separation plants:

(1) Kitson, F. K., Don't Turn a Cylinder Into a Rocket, APCI Safety Gram No. 4C, August 7, 1961 (Doc. #99000001).

(2) Kitson, F. K., Fire in Oxygen Line, APCI Safety Gram No. 5, October 20, 1961 (Doc. #99000002).

(3) Kitson, F. K., Liquid Oxygen Loading, APCI Safety Gram No. 6, November 17, 1961 (Doc. #99000003).

(5) Schmoyer, W. W., Oxygen Cylinder Failure, APCI Safety Gram No. 13, June 1, 1962 (Doc. #99000005).

(13) APCI, Instrumentation -- Establishing Pressure Settings of Safety Devices, APCI Design Engineering Standard 537.1, April 21, 1959 (Doc. #99000023).

(19) APCI, Instrumentation -- Modification to Existing Pressure Gauges Snubber, APCI Design Engineering Standard 531.10.2, December 5, 1961 (Doc. #99000282).

(20) APCI, Safe Handling of Cryogenic Liquids and Associated Equipment, APCI Plant Operations Manual Section 1.17, April 23, 1969 (Doc. #99000283).
NUMERICAL SECTION

9900000110 KITSUN.F.K. APCI DUNK_T TUNA A CYLINDER INTO A ROCKET APCI-SAFETY-GRAM-NO-04C 1P 8/7/61
9900000210 KITSUN.F.K. APCI FIRE IN OXYGEN-LINE APCI-SAFETY-GRAM-NO-05 1P 10/20/61
9900000070 KITSUN.F.K. APCI LIQUID OXYGEN LOADING APCI-SAFETY-GRAM-NO-06 1P 11/17/61
9900000090 KITSUN.F.K. APCI APPROVED ALLOY STEELS IN CRYOGENIC SERVICE APCI-SAFETY-GRAM-NO-10 REV-1 1P 10/25/63
9900000000 SCHMUYER,F.H. APCI OXYGEN CYLINDER FAILURE APCI-SAFETY-GRAM-NO-13 2P 6/11/62
9900000060 KITSUN.F.K. APCI ISOLATION OF PIPING-SYSTEMS APCI-SAFETY-GRAM-NO-21 1P 10/29/62
9900000070 SCHMUYER,F.H. APCI GASEOUS OXYGEN APCI-SAFETY-GRAM-NO-23C 6P 1/10/63
9900000080 SCHMUYER,F.H. APCI DRAIN-LINE EXPLOSION APCI-SAFETY-GRAM-NO-24 2P 1/17/63
9900000090 SCHMUYER,F.H. APCI LUBRICANTS AND THREAD COMPOUNDS FOR OXYGEN-SYSTEMS APCI-SAFETY-GRAM-NO-27 5P 3/22/63
9900000010 SCHMUYER,F.H. APCI SNIFF THOSE CYLINDERS BEFORE REFILLING APCI-SAFETY-GRAM-NO-31 2P 8/21/63
9900000110 SCHMUYER,F.H. APCI VACUUM PUMP FAILURES APCI-SAFETY-GRAM-NO-35 1P 10/4/63
9900000120 SCHMUYER,F.H. APCI PRESSURE GAUGE FAILURES APCI-SAFETY-GRAM-NO-43 2P 5/8/64
9900000130 SCHMUYER,F.H. APCI HUMAN TONGUES APCI-SAFETY-GRAM-NO-90C 1P 1/3/66
9900000140 SCHMUYER,F.H. APCI OXYGEN REGULATORS IN THE WELDING INDUSTRY APCI-SAFETY-GRAM-NO-60C 5P 11/26/67
9900000150 APCI PRESSURE-VESSELS- VAPORIZER AND CRYOGENIC LIQUID DISPOSAL APCI-DES-ENG-STD-514.6 4P 5/26/61
9900000160 APCI PRESSURE-VESSELS- GASEOUS OXYGEN STORAGE CYLINDER APCI-DES-ENG-STD-515.1.3 3P 10/17/60
9900000170 SCHMUYER,F.H. APCI LIQUID OXYGEN APCI-SAFETY-GRAM-NO-54C 6P 1/31/67 REVISED 1/31/68
9900000180 APCI PRESSURE-VESSELS- VESSEL-DESIGN-BASIS AND GENERAL STANDARDS APCI-DES-ENG-STD-510.1 6P 8/62
9900000190 APCI PRESSURE-VESSELS- MATERIALS OF CONSTRUCTION APCI-DES-ENG-STD-510.1.4 4P 8/62
9900000200 APCI PRESSURE-VESSELS- HEAT-DESIGN APCI-DES-ENG-STD-510.3 3P 8/62
9900000210 APCI INSTRUMENTATION- PRESSURE INDICATORS APCI-DES-ENG-STD-513.2 5P 10/63
9900000220 APCI INSTRUMENTATION- ESTABLISHING PRESSURE SETTINGS OF SAFETY DEVICES APCI-DES-ENG-STD-537.1 6P 4/21/65
9900000230 APCI INSTRUMENTATION- SPECIAL REQUIREMENTS SAFETY AND RELIEF VALVES APCI-DES-ENG-STD-537.9 4P 7/65
9900000240 APCI CIVIL-STRUCTURAL- PERSONNEL PROTECTIVE SHELLS AND OXYGEN SYSTEMS APCI-DES-ENG-STD-546.1 9P 1/15/67
9900000250 APCI MACHINERY- FIELD TESTING AND RECIPROCATING OXYGEN COMPRESSORS APCI-DES-ENG-STD-551.1.9.1 14P 2/3/67
9900000260 APCI MACHINERY- FIELD TESTING AND CENTRIFUGAL OXYGEN COMPRESSORS APCI-DES-ENG-STD-551.2.0.1 18P 2/3/71
9900000270 APCI PIPING- OXYGEN-PIPING APCI-DES-ENG-STD-578.30.1 14P 4/24/72
9900000280 APCI PIPING- OXYGEN COMRESSOR LOCATION APCI-DES-ENG-STD-570.6 2P 1/15/71
9900000290 APCI PIPING- DRY OXYGEN SERVICE -2OF TO 100F 150-PSG-MAX CARBON-STEEL APCI-DES-ENG-STD-578.60.3 3P 9/69
9900000300 APCI PIPING- DRY OXYGEN SERVICE -2OF TO 100F 275-PSG-MAX CARBON-STEEL APCI-DES-ENG-STD-578.60.4 3P 9/69
9900000310 APCI PIPING- DRY OXYGEN SERVICE -2OF TO 100F 500-PSG-MAX-CARBON STEEL APCI-DES-ENG-STD-578.60.6 3P 9/69
9900000320 APCI PIPING- DRY OXYGEN SERVICE -2OF TO 100F 720-PSG-MAX-CARBON STEEL APCI-DES-ENG-STD-578.60.6 3P 9/69
9900000330 APCI PIPING- DRY OXYGEN SERVICE -2OF TO 100F 950-PSG-MAX-CARBON STEEL APCI-DES-ENG-STD-578.60.6 3P 9/69
9900000340 APCI PIPING- STAINLESS-STEEL VALVES AND MATERIAL REQUIREMENTS APCI-DES-ENG-STD-579.3.1 2P 5/64
9900000350 APCI PIPING- EXTENDED ENNENT Valve CODE APCI-DES-ENG-STD-579.4 3P 4/66
9900000360 APCI PIPING- VALVE PROCUREMENT AND CLEANING PROCEDURE APCI-DES-ENG-STD-579.5 3P 8/12/60
9900000370 APCI PIPING- TRANSITION JOINTS AND ALUMINUM TO STAINLESS-STEEL APCI-DES-ENG-STD-579.15 2P 9/66
9900000380 APCI INSULATION AND PAINTING- COLD-BOXES APCI-DES-ENG-STD-581.1 4P 6/7/66
9900000410 APCI INSULATION AND PAINTING- COLD-BOXES, THERMAL TANKS, GLASS MULL APCI-DES-ENG-STD-581.3 1P 10/24/66
9900000420 BALLS &.L. APCI PLANT-SITE CRITERIA- AIR-SEPARATION APCI-SAFETY-STD-605.1 9P 11/10/60
9900000430 BALLS &.L. APCI CRITERIA AIR-SEPARATION PLANT-LAYOUT APCI-SAFETY-STD-605.1.3 6P 7/6/61
9900000440 KITSUN.F. APCI PLANT COMPONENTS- AIR-SEPARATION PLANT OXYGEN COMPRESSOR APCI-SAFETY-STD-607.1.2.3 6P 1/2/62
9900000450 WILLSUN.K. APCI PLANT COMPONENTS- COLD-BOXES APCI-SAFETY-STD-607.1.3 7P 1/63
9900000460 KITSUN.F. APCI PLANT COMPONENTS- AIR-SEPARATION PLANT, PIPING, VALVES AND SAFETY-RELIEF DEVICES APCI-SAFETY-STD-607.1.12 14P 10/62
APCI-MA-67-0-8822 1P 7/63
APCI CLEANING REQUIREMENTS FOR AIR-PLANT EQUIPMENT APCI-QUAL-CONT-LAYOUT-106P 2P PLUS 5P OF ATTACHMENTS 7/1/71

990000740
APCI CLEANING REQUIREMENTS FOR OXYGEN TUBE TYPE GAUGES USED FOR OXYGEN SERVICE APCI-QUAL-CONT-LAYOUT-1 O2F 3P 7/1/71

990000740
APCI CLASS-8 CLEANLINESS REQUIREMENTS APCI-QUAL-CONT-LAYOUT-106P 1P 7/1/71

990000800
APCI CLASS-A CLEANLINESS REQUIREMENTS APCI-QUAL-CONT-LAYOUT-106P 3P 7/1/71

990000800
APCI CLASS-AAA CLEANLINESS REQUIREMENTS APCI-QUAL-CONT-LAYOUT-106P 3P 7/1/71

990000800
APCI CLASS-AAAA CLEANLINESS REQUIREMENTS APCI-QUAL-CONT-LAYOUT-106P 3P 7/1/71

990000800
APCI REQUIREMENTS FOR VENDUK CLASS-B CLEANING APCI-QUAL-CONT-LAYOUT-114F 2P 7/1/71

990000800
APCI REQUIREMENTS FOR VENDUK CLASS-C CLEANING APCI-QUAL-CONT-LAYOUT-115F 2P 7/1/71

990000800
APCI REQUIREMENTS FOR VENDUK CLASS-D CLEANING APCI-QUAL-CONT-LAYOUT-116F 2P 7/1/71

990000800
APCI REQUIREMENTS FOR VENDUK CLASS-E CLEANING APCI-QUAL-CONT-LAYOUT-117F 2P 7/1/71

990000800
APCI BRAZED ALUMINUM HEAT-EXCHANGER CLEANING REQUIREMENTS APCI-QUAL-CONT-LAYOUT-119F 2P 7/1/71

990000800
APCI REQUIREMENTS FOR JPO SPECIFIED PAINT SYSTEMS APCI-QUAL-CONT-LAYOUT-120F 3P 7/1/71

990000800
MASTER-H.F. APCI STORAGE TANK CLEANING APCI-MEMO-63 01/24/63 1P

990000900
HATLEY-W.L. APCI CLEANING LOX STORAGE TANK-NO. 6 SANTA/SUSANA APCI-MEMO-64 03/11/64 1P PLUS 1P ATTACHMENT

990000900
MASTER-H.F. APCI LOX TANKS APCI-MEMO-70 06/26/70 1P

990000920
KITSUNOF.K. APCI WASHOUT ANALYSIS OF SUN-OIL COMPANY'S LOX-TANK VAPORIZER APCI-MEMO-64 04/9/64 1P PLUS 1P ATTACHMENT

990000930
PENNSLATE CORP CLEANING OF LIQUIDIFIED-GAS PROCESSING EQUIPMENT PENNSLATE-TECHNICAL-BULLETIN 0P 2/3/60

990000940
KITSUNOF.K. APCI CLEANING FOR OXYGEN SERVICE APCI-MEMO-63 08/9/63 2P PLUS 9P ATTACHMENTS

990000950
APCI CLEANING AND ATTACHMENT FOR EQUIPMENT IN AIR PLANTS AND IN OXYGEN SERVICE APCI-POM-SEC-1.08 7P PL US 3P ATTACHMENTS 4/4/68

990000960
BASSLER-J. APCI CLEANING FOR OXYGEN SERVICE 1P 1/68

990000970
MASTER-H.F. APCI AIR-SEPARATION-PLANT CONTAMINATION-HISTORY, SAMPLING AND ANALYSIS APCI PLANT MANNERS SAFETY MEETING-CHESTER/PA/75/70 2P 2/28/60 AND 3/02/60

990000980
APCI EXCHANGER PLANT, AND PLANT EQUIPMENT WASHOUT-FREQUENCIES APCI-POM-SEC-5.07 3P 7/15/70

990000990
APCI PLANT SOLVENT WASHOUT-GENERAL APCI-POM-SEC-1.05 2P 2/20/67

990001030
KEATINGE APCI IGNITION TESTS OF T-FILM AND PENTON APCI-MEMO-61 11/28/61 2P

990001010
APCI CLEANING APCI-CONSTR-SPEC-230.15 ON PB 1P 9/1/69

990001020
APCI CLEANING OF CARBON STEEL PIPE AND FITTINGS CLEANING ALUMINUM PIPE FITTINGS PARTS AND FABRICATIONS 1P 7/15/70

990001030
MATTHEWS-J. OXYGEN, L.C. IMPERIAL CHEMICAL INDUSTRIES LTD SAFETY ASPECTS OF RECONSTRUCTED IGI TANNOGE OXYGEN PLANT AICE-CERP-TECHNICAL-SAFETY IN AIR AND AMMONIA PLANTS V-5 PL 15 P 1963

990001040
APCI PERSONAL PROTECTION-EQUIPMENT MAINTENANCE APCI-POM-1.12 7P 4/21/67

990001050
COULSON-J. EVERSON-J. APCI FIRE HAZARD WHEN VAPOUR CLEANING WITH TRICHLOROETHYLENE (T.C.E.) APL-SAFCITY-DEP-END-SHEET-30 2P 7/10/67

990001060
MUMMENBERGER-F. APCI CARBON-TEFRAFLUOR APCI-SAFETY-GRAM-NO-66 1P 2/21/69

990001070
KEATINGE APCI DETONATION TESTS OF OIL FROM ALUQIPPA PUMP-SUCTION FILTER DEFROST AND OF METHYLINE-CHLORIDE DE APCI-MEMO-61 12/11/61 2P

990001080
HIMMELBERGER-F. APCI NOTES ON LIQUID OXYGEN CONTAINERS MISSLE-PROGRAM 1P 1/69

990001090
KEATINGE APCI DEVELOPMENT OF STANDARD IGNITION TEST APCI-PROJECT-N0-8-0-320/67 8P 11/17/61

990001100
KITSUNOF.K. APCI ASSEMBLY OF OXYGEN REGULATORS T-FILM APCI-MEMO-61 11/20/61 1P

990001110
VINANY APCI OXYGEN COMPATIBILITY TESTS FOR VARIOUS MATERIALS ABMA THREAD LUBRICANT AND SEALANT, ADEL ROL-336 RUST-PREVENTIVE LIGH ETHYLCHEMICAL-CHESTER/NE., PERMACEL-BRONZE-DEC PERMACEL-NEW/BRONZE/NEW/FLASHER, WEST CONCRETE FLOOR TREATMENT WEST CHEMICAL PRODUCTS INC, ALUMINUM-OXIDE, SEAM-CONPOUND G7C P CLYVYNCHLORIDE, PLASTIC LEAD SEAL-NO-2-JHN CRANE APCI-MEMO-59 01/28/59 2P

990001120
CUNTOLE APCI PUTTI RUPEE MANUAL FOR ANALYSIS OF CONTENT AND FLAMMABILITY TEMPERATURE APCI-MEMO-59 12/11/5

990001130
VALDESS-A. APCI GASEOUS OXYGEN COMPATIBILITY OF CROSSLITE FLUOROCARBON TAPE THREE-M-FLUOROCARBON TAPE, P END TAPE-TEFLON TAPE APCI-MEMO-63 07/31/63 1P

990001140
YUDE-T. APCI T-FILM THREAD COMPOUNDS IGNITION TEST APCI-ANAL-REP-61-683 APCI-INCUS-NO-60-008 1P 1/17/61

990001150
FREERICKSON APCI TEFLON TAPE PERCENT ETHYL EXTRACTABLE CONTAMINANTS AND FLUORESCENCE GAMMA-TEFLON TAPE, SANSAMO-SHED INDUSTRIAL CRANE PACKING CO APCI-ANAL-REP-70-404,70-309 1P 1/17/61

990001160
YUDE-T APCI TAPE-SEAL THREAD LUBRICANT AND SEALANT TAPE-SEAL FROM SILLAMER PLASTIC COMPANY, PERMAC
OPERATIONAL-HAZARDS: OXYGEN-TRANSFER ROAD RAILROAD BARGE AND PIPELINE-TRANSPORTATION PIPELINE TRANS.
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>990003510</td>
<td>Office of Pipeline Safety Transportation of Natural and Other Gas by Pipeline</td>
</tr>
<tr>
<td>990003570</td>
<td>Office of Pipeline Safety Transportation of Natural and Other Gas by Pipeline</td>
</tr>
<tr>
<td>990003590</td>
<td>Office of Pipeline Safety Transportation of Natural and Other Gas by Pipeline</td>
</tr>
<tr>
<td>990009930</td>
<td>Pennsalt Corp Cleaning of Liquefied-Gas Processing Equipment Pennsalt-Technica</td>
</tr>
<tr>
<td>99004440</td>
<td>Denison, D.M. RAF Institute of Aviation Medicine Farnborough Hants England Assessment of T</td>
</tr>
<tr>
<td>99004550</td>
<td>Denison, D. RAF Institute of Aviation Medicine Farnborough Hants England Further Studies</td>
</tr>
<tr>
<td>990005960</td>
<td>NHart, G.J. et al. Union Carbide Corp Compatibility of Materials with 7500-PSI Oxygen AD608260</td>
</tr>
</tbody>
</table>
990001470 APCl PRODUCTION OF ROCK WOOL BETHLEHEM-STEEL-GO APCl-MEMO-59 11/12/59 2p
990001310 TANCE U FIBERIZED MINERAL WOOL INSULATION APCl-QUAL-CONT-LAYOUT-LULJ 2p 7/1/71
990000710 OXYGEN-PRESSURE-GAUGE TWF WOOL, SPINTEX-305, MOLYKOTE-TYPE-Z AND TYPE-X-15 APCl-MAR-87-0-6822 1p 3/63
990002030 CENTRAL PROCEDURE- SAFETY WORK-PERMIT APCl-POM-SEC-1.04 3p PLUS EXHIBIT-A 1p 2/16/67
990004260 LACK OF OXYGEN KILLS TWO WORKMEN APCl-SAFE-BULL-037 1p REPRINTED 1/68

990003860 NARY REPORT ON ACCIDENT AT ZELZATE PLANT 2/26/69 WHEN AN EXPLOSION AND FIRE OCCURRED IN BURCKHARUT CENTRIFUG
990009230 POSITION CU-56 1-PERCENT ZN38.5-42-PERCENT B30.35-.9-PERCENT APCl-1A6A-37 1p 2/21/72
990001890 TURCO-DYE-CHECK PROCESS, ZYGLO-ZL-2-EMULSIFIER, ZYGLO-ZP-5-DEVELOPER, PROTECTIVE-COATINGS, DOW-CORNING-SILIC
99001890 L-2-PENETREX, ZYGLO-ZL-22, ZYGLO-ZLX-390, DYE-PROCESS-SOLUTIONS, TURCO-DYE-CHECK PROCESS, ZYGLO-ZE-2-EMULSIFIE
99001890 SS, ZYGLO-ZE-2-EMULSIFIER, ZYGLO-ZP-5-DEVELOPER, PROTECTIVE-COATINGS, DOW-CORNING-SILICONE, PAINT-ON-GALVESTOS
<p>| APCI-IA3A-07 | 99004650 BLUE NATIONAL-GYPSUM CORP | 1P | 2/21/72 |
| APCI-IA4A-02 | 99004660 MULTI-12-LURING-CATALYST | 1P | 2/21/72 |
| APCI-IA4A-02 | 99004670 ADHESIVES- KEENE-BINDER | 1P | 2/21/72 |
| APCI-IA4A-03 | 99004680 AND ADHESIVES- KEL-F-81 | 1P | 2/21/72 |
| APCI-IA4A-04 | 99004690 ELS, AND ADHESIVES- NYLON | 1P | 2/21/72 |
| APCI-IA4A-05 | 99004700 AND ADHESIVES- NEOPRENE | 1P | 2/21/72 |
| APCI-IA4A-06 | 99004710 ADHESIVES- VITON-A DUPONT | 1P | 2/21/72 |
| APCI-IA4A-07 | 99004720 VES- NYLON-66 ICI LTD/UK | 1P | 2/21/72 |
| APCI-IA5A-01 | 99004730 REGURATED-ASBESTOS-PACKING | 1P | 2/21/72 |
| APCI-IA5A-02 | 99004740 T.E.N., MELROTH GASKETS CO | 1P | 2/21/72 |
| APCI-IA5A-03 | 99004750 VALLEY/FOURTE GASKET CO | 1P | 2/21/72 |
| APCI-IA5A-04 | 99004760 KEENE-600, JOHN/DORE CO | 1P | 2/21/72 |
| APCI-IA5A-05 | 99004770 ASBESTOS GASKET MATERIAL | 1P | 2/21/72 |
| APCI-IA5A-06 | 99004780 AL NICOLET INDUSTRIES INC | 1P | 2/21/72 |
| APCI-IA5A-07 | 99004790 ATRIALLI GARLOCK MFG CO | 1P | 2/21/72 |
| APCI-IA5A-08 | 99004800 CANIZED-RED-FIBRE-GASKETS | 1P | 2/21/72 |
| APCI-IA5A-09 | 99004810 TEKIAL NICOLET INDUSTRIES | 1P | 2/21/72 |
| APCI-IA5A-10 | 99004820 PACKINGS- TEFLON, DUPONT | 1P | 2/21/72 |
| APCI-IA5A-11 | 99004830 PACKINGS- VITON-A DUPONT | 1P | 2/21/72 |
| APCI-IA5A-12 | 99004840 STUS CEMENT CO LTD/UK | 1P | 2/21/72 |
| APCI-IA5A-13 | 99004850 C & TAPES TYGADURE LTD/UK | 1P | 2/21/72 |
| APCI-IA5A-14 | 99004860 T. PITTSBURGH CHEMICAL CO | 1P | 2/21/72 |
| APCI-IA5A-01 | 99004870 L-97 BENJAMIN FOSTER CO | 1P | 2/21/72 |
| APCI-IA5A-02 | 99004880 PROTECTIVE COATING CO | 1P | 2/21/72 |
| APCI-IA6A-03 | 99004890 NT- COPPER-PIPE ASTM-B-94 | 1P | 2/21/72 |
| APCI-IA6A-04 | 99004900 NT- COPPER-TUBE ASTM-B-75 | 1P | 2/21/72 |
| APCI-IA6A-05 | 99004910 RED-BrASS-PIPE ASTM-B-84 | 1P | 2/21/72 |
| APCI-IA6A-06 | 99004920 LUMINUM ASTM-B-211-2024-T4 | 1P | 2/21/72 |
| APCI-IA6A-07 | 99004930 LUMINUM ASTM-B-210-3030 | 1P | 2/21/72 |
| APCI-IA6A-08 | 99004940 LUMINUM ASTM-B-209-S08 | 1P | 2/21/72 |
| APCI-IA6A-09 | 99004950 LUMINUM ASTM-B-309-508 | 1P | 2/21/72 |
| APCI-IA6A-10 | 99004960 LUMINUM ASTM-B-310-508T6 | 1P | 2/21/72 |
| APCI-IA6A-11 | 99004970 LUMINUM ASTM-B-241-6061-T6 | 1P | 2/21/72 |
| APCI-IA6A-12 | 99004980 LUMINUM ASTM-B-256-6061-T6 | 1P | 2/21/72 |
| APCI-IA6A-13 | 99004990 LUMINUM ASTM-B-266-6061-16 | 1P | 2/21/72 |
| APCI-IA6A-14 | 99005000 SS STEEL (X06CH13) | 1P | 2/21/72 |
| APCI-IA6A-15 | 99005010 SS STEEL ASTM-A-312-TP304 | 1P | 2/21/72 |
| APCI-IA6A-16 | 99005020 SS STEEL ASTM-A-240-304 | 1P | 2/21/72 |
| APCI-IA6A-17 | 99005030 03-WP304 AND 1403-WP304 | 1P | 2/21/72 |
| APCI-IA6A-18 | 99005040 SS STEEL ASTM-A-321-BB304 | 1P | 2/21/72 |
| APCI-IA6A-20 | 99005060 TYP-416-CADMIUM-PLATED | 1P | 2/21/72 |
| APCI-IA6A-21 | 99005070 F-304 AND ASTM-A-512-F-316 | 1P | 2/21/72 |
| APCI-IA6A-22 | 99005080 CERTIFIED AS TO ASTM SPEC | 1P | 2/21/72 |
| APCI-IA6A-23 | 99005090 COPPER-MINIUM ASTM-A-899GB | 1P | 2/21/72 |
| APCI-IA6A-24 | 99005100 Certs. FREE-MACHING BRASS | 1P | 2/21/72 |
| APCI-IA6A-25 | 99005110 ALUMINUM- BEYLLIUM COPPER | 1P | 2/21/72 |
| APCI-IA6A-26 | 99005120 NLSS STEEL ASTM-A-269-304 | 1P | 2/21/72 |
| APCI-IA6A-27 | 99005130 BRONZE ASTM-B-611 OR 622 | 1P | 2/21/72 |
| APCI-IA6A-28 | 99005140 SHEET GR PLATE ASTM-B-36 | 1P | 2/21/72 |
| APCI-IA6A-29 | 99005150 LUMINUM AK-614 | 1P | 2/21/72 |
| APCI-IA6A-30 | 99005160 SS STEEL ASTM-A-351-GH-LFP | 1P | 2/21/72 |
| APCI-IA6A-31 | 99005170 NICKEL STEEL ASTM-A-353GB | 1P | 2/21/72 |
| APCI-IA6A-32 | 99005180 TS- COPPER-TUBE ASTM-B-888 | 1P | 2/21/72 |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>990005190</td>
<td>ILEE EXPOSURE TO OXYGEN</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005200</td>
<td>NTINEAL-STANDARD-GGG-38</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005210</td>
<td>UFACE TREATMENTS- SILVER</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005220</td>
<td>STABILIZER BALANCE FE</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005230</td>
<td>PERCENT PBO-35,9-PERCENT</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005240</td>
<td>K-PERCENT-ZINC REMAINDER</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005250</td>
<td>MISC- CHLOROHANE</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005260</td>
<td>C- CHLORURETHANE</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005270</td>
<td>TS & MISC- CHLOROFORM</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005280</td>
<td>ISC- CARBON-TETRACHLORIDE</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005290</td>
<td>MISC- TRICHLOROETHYLENE</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005300</td>
<td>MISC- METHYLENE-CHLORIDE</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005310</td>
<td>CLEANING-PROCEDURES-APCI</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005320</td>
<td>CLEANING-PROCEDURES-APL</td>
<td>2/21/72</td>
</tr>
<tr>
<td>990005330</td>
<td>TY-CONTROL, FIRE HAZARDS</td>
<td>9/9/71</td>
</tr>
<tr>
<td>990005340</td>
<td>ITY, QUALITY-CONTROL-APCI</td>
<td>9/9/71</td>
</tr>
<tr>
<td>990005350</td>
<td>LITY, QUALITY-CONTROL-APL</td>
<td>9/9/71</td>
</tr>
<tr>
<td>990005370</td>
<td>L-MATERIALS-COMPATIBILITY</td>
<td>9/9/71</td>
</tr>
<tr>
<td>990005380</td>
<td>SENSITIVITY OF MATERIALS</td>
<td>9/9/71</td>
</tr>
<tr>
<td>990005510</td>
<td>Y-PRODUCTION AND WELDING</td>
<td>10/29/71</td>
</tr>
<tr>
<td>990005530</td>
<td>RTS SUITABILITY CONTROLS</td>
<td>9/9/71</td>
</tr>
<tr>
<td>990005340</td>
<td>CATED OX STORAGE TANKS</td>
<td>12/30/71</td>
</tr>
<tr>
<td>990005430</td>
<td>OTTON LOKX STORAGE TANKS</td>
<td>12/30/71</td>
</tr>
<tr>
<td>990005410</td>
<td>NAL-HAZARDS- OVERPRESSURE</td>
<td>10/20/71</td>
</tr>
<tr>
<td>990005450</td>
<td>INESS OF DISPOSAL SYSTEM</td>
<td>10/20/71</td>
</tr>
<tr>
<td>990005470</td>
<td>NINESS OF OXYGEN PIPING</td>
<td>10/20/71</td>
</tr>
<tr>
<td>990005480</td>
<td>S-PROCEDURAL ARRANGEMENTS</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005490</td>
<td>UES COMPANY PRACTICES</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005500</td>
<td>ER SYSTEMS APIC-1IC1-1</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005510</td>
<td>OTE DISPOSAL ARRANGEMENT</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005570</td>
<td>UES OF DISPOSAL SYSTEM</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005530</td>
<td>NINGS AND ESCAPE SYSTEM</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005540</td>
<td>ND RESPONSE-TIME LIMITS</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005550</td>
<td>ZARDS- SPILLS AND LEAKAGE</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005550</td>
<td>CONTAMINANTS ACUMULATION</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005560</td>
<td>OR, TRANSPORT TO SYSTEM</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005570</td>
<td>IC LIQUE STORAGE TANKS</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005590</td>
<td>OEDURES FOR LIQUEPUMPS</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005560</td>
<td>OR TION PRESSURE-RELIEF</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005570</td>
<td>ION CONTAMINATION-CONTROL</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005600</td>
<td>AL FROM VENTS AND LINES</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005630</td>
<td>IC ACCIDENT PROCEDURES</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005660</td>
<td>ANGIRATED SLUSHING</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005680</td>
<td>TION OF STANDARDS</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005610</td>
<td>CONCEPTS AND CRITERIA</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005710</td>
<td>S-GAS-PRESSURE-REGULATORS</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005720</td>
<td>LONS AND FAILURES VALVES</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005730</td>
<td>OR, PRESSURE, LINE-SURGES</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005740</td>
<td>VIURATIONS DETERIORATION</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005750</td>
<td>MALFUNCTION AND FAILURES</td>
<td>12/22/71</td>
</tr>
<tr>
<td>990005760</td>
<td>EMENT OR INSTRUMENTATION</td>
<td>12/22/71</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Certificate</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>99005700</td>
<td>4ES COMPRESSORS AND PUMPS</td>
<td>APCI-11F3-4</td>
</tr>
<tr>
<td>99005690</td>
<td>IN OTHER OXYGEN-EQUIPMENT</td>
<td>APCI-IIF3-6</td>
</tr>
<tr>
<td>99005700</td>
<td>RDS- FIRES AND EXPLOSIONS</td>
<td>APCI-II-1</td>
</tr>
<tr>
<td>99005700</td>
<td>RDS- FIRES AND EXPLOSIONS</td>
<td>APCI-IIL-1</td>
</tr>
<tr>
<td>99005700</td>
<td>EGIE WHY AND HOW STRUCTURE</td>
<td>APCI-I1IA1-1</td>
</tr>
<tr>
<td>99005700</td>
<td>IN WHERE WHY AND HOW LEAKS</td>
<td>APCI-I1IA2-1</td>
</tr>
<tr>
<td>99005700</td>
<td>RDS- REDUCTION AND CONTROLS</td>
<td>APCI-I1IA3-1</td>
</tr>
<tr>
<td>99005700</td>
<td>HOW AND HOW INSULATION CHECK</td>
<td>APCI-I1IA4-1</td>
</tr>
<tr>
<td>99005700</td>
<td>INS OF THE AGING SYSTEM</td>
<td>APCI-I1IA5-1</td>
</tr>
<tr>
<td>99005700</td>
<td>ING AND AREA PLACAROUND</td>
<td>APCI-I1IA5-2</td>
</tr>
<tr>
<td>99005700</td>
<td>IVF MAINTENANCE PROGRAM</td>
<td>APCI-I11P-1</td>
</tr>
<tr>
<td>99005700</td>
<td>IVF MAINTENANCE PROGRAM</td>
<td>APCI-I11C-1</td>
</tr>
<tr>
<td>99005700</td>
<td>PROGRAM PRESSURE TESTING</td>
<td>APCI-IVA-1</td>
</tr>
<tr>
<td>99005700</td>
<td>ING AND AREA PLACAROUND</td>
<td>APCI-IVB-1</td>
</tr>
<tr>
<td>99005700</td>
<td>ING AND AREA PLACAROUND</td>
<td>APCI-IVC-1</td>
</tr>
<tr>
<td>99005700</td>
<td>CLIP PROTECTION PERSONNEL</td>
<td>APCI-IVG-2</td>
</tr>
<tr>
<td>99005700</td>
<td>CLIP PROTECTION PERSONNEL</td>
<td>APCI-IVH-1</td>
</tr>
<tr>
<td>99005700</td>
<td>CLIP PROTECTION PERSONNEL</td>
<td>APCI-IVK-1</td>
</tr>
<tr>
<td>99005700</td>
<td>CLIP PROTECTION PERSONNEL</td>
<td>APCI-IVL-1</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-1</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-2</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-3</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-4</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-5</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-6</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-7</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-8</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-9</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-10</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-11</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-12</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-13</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-14</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-15</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-16</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-17</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-18</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-19</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-20</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-21</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-22</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-23</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-24</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-25</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-26</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-27</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-28</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-29</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-30</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-31</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-32</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-33</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-34</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-35</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-36</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-37</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-38</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-39</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-40</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-41</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-42</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-43</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-44</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-45</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-46</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-47</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-48</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-49</td>
</tr>
<tr>
<td>99005700</td>
<td>RELIABLE TO OXYGEN-SAFETY</td>
<td>APCI-IY-50</td>
</tr>
<tr>
<td>Document Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>CLEANLINESS REQUIREMENTS</td>
<td>2P</td>
<td></td>
</tr>
<tr>
<td>OXYGEN COMPRESSOR SUCTION</td>
<td>2P</td>
<td></td>
</tr>
<tr>
<td>UGY PROJECT 00-1-2495.07</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>EOXU-PUMP SAFETY</td>
<td>2P</td>
<td></td>
</tr>
<tr>
<td>IGN FOR JOB-NU-00-2-2775</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>H RULATIONS AND TORCHES</td>
<td>2P</td>
<td></td>
</tr>
<tr>
<td>Y-PAPER 17P PLUS 2P ATTACHMENTS 7/65</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>E. TO LIQUID-VAPOR-CLOUDS</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>CONTRO PROCEDURE- TAG OUT</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>WERE SAFETY WORK-PERMIT</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>SOLVENT WASHOUT-GENERAL</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>ANALYTICAL PURPOSES</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>TS AND IN OXYGEN SERVICE</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>TABLE FIRE-EXTINGUISHERS</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>C ولو BOX LEAKS</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>CITY OR LARGERI GENERAL</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>WASHOUT-FREQUENCIES</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>INDUSTRIAL SAFETY POLICY</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>SAFETY REPORTS AND FORMS</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>VALVES AND Rupture-Discs</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>ON PREVENTIVE MAINTENANCE</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>CODED VESSEL REPAIRS</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>CODED VESSEL REPAIRS</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>MARYLAND CASUALTY CO</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>IN AN OXYGEN-ATMOSPHERE</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>AIRPLANT EQUIPMENT</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>USED FOR OXYGEN SERVICE</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>MINERAL WOOL INSULATION</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>CLEANLINESS REQUIREMENTS</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>PNEUMATIC TESTING-GENERAL</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>CLEANLINESS REQUIREMENTS</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>CLEANLINESS REQUIREMENTS</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>VENDOR CLASS-B CLEANING</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>VENDOR CLASS-A CLEANING</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>VENDOR CLASS-A CLEANING</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>STATIC TESTING-GENERAL</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>VENDOR CLASS-AAA CLEANING</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>CLEANING REQUIREMENTS</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>SPECIFIED PAINT SYSTEMS</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>PITTSBURGH CHEMICAL CO</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>RTV-60-10-P-13437Z-M235</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>WITH HIGH-PRESSURE OXYGEN</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>SPECIFIED PAINT SYSTEMS</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>R4D-NOTEBOOK-111 P129-32 4P 1/02</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>R4D-NOTEBOOK-111 P149 1P 1/63</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>R4D-NOTEBOOK-111 P152 1P 1/63</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>R4D-NOTEBOOK-130 P16-7 2P 2/11/63</td>
<td>1P</td>
<td></td>
</tr>
<tr>
<td>R4D-NOTEBOOK-130 P3 1P 6/63</td>
<td>1P</td>
<td></td>
</tr>
</tbody>
</table>
FEDERAL REGISTER VOL-35 NO-161 8/19/70
FEDERAL REGISTER VOL-35 NO-205 10/31/70
FEDERAL REGISTER VOL-35 NO-220 11/11/70
FEDERAL REGISTER VOL-36 NO-126 6/30/71
FEDERAL REGISTER VOL-36 NO-176 9/10/71
FEDERAL REGISTER VOL-36 NO-126 6/30/71
FIRE JOURNAL PP76-8 AND 81 4P 1/71
FPNC/1270 28P 9/67
FPNC/MEDU217 24P 1/65
FPNC/MEDU223 12P 7/65
INTERNATIONAL CONFERENCE ON FRACTURE PROCEEDINGS V-1 PP341-62 22P 1965
ME6-3268-69 9P 11/5/69
MCA-CASE-HISTORY-NO-824 2P 8/62
MSC-02681 30P 5/29/70
MTP-P+V-63-14 94P 12/4/63
NASA-THX-53502 34P 5/20/64
NASA-THX-53533 54P 11/3/66
NASA-THX-53773 50P 8/23/68
NASA-THX-945 72P 8/64
NATIONAL SAFETY CONGRESS CHICAGO 7P PLUS 9P FIGURES PRESENTED BY W L BALL
NFPA-NU-50
NFPA-NU-56 10P 1965
NFPA-NU-56B 10P 1965
ASME-SER-0-U-J BASIC ENG V-89 PP885-62 8P 12/67
ASME-CONTFACT-AF3561616730 14P CRYOGENIC ENGINEERING CONFERENCE ANN/ARBOR
USAS-2491 49P 1967

I-93
A thorough and detailed study of Air Products and Chemicals, Inc. and Air Products Ltd. practices in the design and use of equipment in oxygen service, was performed. The report includes Liquid and Gaseous Oxygen Safety Review information covering: Material Compatibility, Operational Hazards, Maintenance Programs, Systems Emergencies, and Accident/Incident Investigations and Reports, and a set of references. Areas requiring further research and development for systems involving exposure to oxygen environment have been identified. An index to the Liquid and Gaseous Safety Review Data Forms and a General Index have been included to allow for easy retrieval of the reported information.