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ABSTRACT -

Tﬁis Report contains the results ¢f a.bne year study into the
effects of a pulse shape on the transient kegponse of a cylindrical
éhell. Uniaxial? membrane, and Bending theories for isotropic
shells were used in this study. In addition to the results of the
above analytical study, the preliminary results of an experimental
stﬁdy'into the generation and meaéuremeht‘of shear waves in a

cylindrical shell are included.



 NOMENCLATURE

K2 = shear correction factor

.Cé = plate velocity = S

* p(1-v2)

2 m ‘ sa 6

c; = shear velocity = K >

t, = pulse duration

- ‘ _ tC

vt = dimensionless time = 'Tfll

;o = dimensionless pulse duration
‘A = equivalent pulse length = Cpto
. X = dimensionless pulse length = ©

o]

~ Other symbols are defined in text
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" 'I. INTRODUCTION

Ihc]uded in this Réport are the results of a one year study performed
fo} the'Structufes Division of NASA - Langley Reseérch Center. The major
tasks of this study were: . |

1. An analytical parametric study to determine the effect of pd]se

shape (e.g. magnitude, shape, duration, rise time) on the transient

response of cylindrical shells Sijécted to longitudinal impacts,

2. An analytical parahetricAstudy to determine the effect of pulse

shape on the transient response of cylindrical shells having geometri-

cal discontinuities (é.g. discontinuity in thickness) subjected to
longitudinal impacts, ‘ |
3. An evaluation of the importance of secondary shell theory terms

(e.g. transverse shear defofmation, radial and rotary inertia, and

bending) in predicting transient responses of cyTindricai shells

subjected to axial impécts. | .

In addition to the above tasks,'an experimental pkogram was initiated
to develop a technique'for géheféting shear waves in a cylindrical shell.

The initial results of this program, including the measured shear wave

velocities, are also included in this Report.



© . I1: SOLUTION OF THE MEMBRANE SHELL EQUATIONS

BY THE METHOD OF CHARACTERISTICS

Since part of our tésk iﬁ this grant'was to determine the effect of
the hiéher order shell terms (eg rotary inertia, transverse shear sﬁréin,
bendiné) on the prédicted responses of cylindrical shells subjected to
longitudinal impact, we decided to attempt the solution of the classical.
membrane equations by the method of characteristics. The first point to
be mentioned is that the classical membrane equations do not constitute a
system of completely hyperbolic partial differential equations. The method
of characteristics. is only applicable to hyperbolic systems of equations.
Obviously the application of the method oficharacteristicsvto a non-hyperj
bolic system of equations is suspected. Before discuséing the numerical
approach used here to achieve this abparent misapplication of a mathematical
_technique, we shall describe fhe classical membrane equations.

The equations of motion of a Qy]indricaf membrane under axisymmetric

conditions are (see Appendix A for equations of all shell theories used)
aN 3%y
_)S. = h .
X LT 2

Ne 22y ) (II-])
"R e e
and the strain-displacement and stress-strain relations are
, 3u '“';7_—“""”"”"f_“""
fxx T %88 R (11-2)
_ Eh ' _ Eh |
Ny =7 [ oeggtvegels W= Degptve,, ]
1-v 1-v i



where Nx’ €yx? and u are the stress, strain, and-disp]acement in the

axial direction; Ne and €90 the stress'and.sfrain fn_the ciﬁcumferenfig]

directions; w the displacement in radial direction; h and R the shell

thickness and radius. : ‘ | |
Substituting equations (II-2) into (1151) yields the c1assiéa1

membrane equations in terms of the two displacements. These are

32y 1 a2y ., e
axZ T E;Q at? N T
(I1-3)
2
92w £ _ au

- = [.‘f’__-{- [
" Pt i-vz,_R v 3x

where cp2 = E/p(1-v2) called the p]ate-ve1ocity. "As we see, this system

of equations is not completely hyperbolic. The first equation can be
considered to be hyperbolic (the Teft-hand sidé is of the form of the simple
wave equation) while the second equation is parabolic in nature. In order
to understand our reasoning, soon to be intrdduced,_]et me describe another
"membrane" theory which will incorporate the effect of the transverse shear

force into the classical membrane formulation. For this case the "membrane"

equation of motion are (Ref. 1)

aN_ - 32u
B X = oh )
ax Pl aET
(11-4)
2
U Mo _en2 M
9X R ot
~where in addition to the relation of (II-2) we now have
au' ) é ow
Yxz Tax M4 Q= Koy, = K0 G e (11-5)
where G is the shear modulus, Q, the transverse shear stress, yxé the trans-

-t

verse shear strain, and K2 the shear correction factor. Substituticn ¢



equations (II-2) and (II-5) into (II-4) yields the system of equations

2u - ‘i 32y , W

axZ T EEY' at? -f"_ﬁ' X _
o (11-6)
X< cs2 at” pc54 T-v R © X

where'cs2 = K2G/p is called the shear ve]ocityQ Equation (II}G) is a com-
pletely hyperbolic system of partial differential equations; disturbances 1h

u will propagate with the plate velocity, ¢ , and disturbances in w will

p
‘propagate with the shear ye]ocity, . Me can now see, cohceptual1y, the
difference in physical interpretation between equations (I1-3) and (II-6). 'If
in the second of equations (I-6) we multiply through by cs2 (or K2) and then
let cs? go to zero we see that eq. (II-6) reduces to eq. (II-3). Sb, our
numérica] procedure used here will be.to solve eq;.(II-s), but, we will

- require cs2 to be extremely small, but, not zero. In_other words, we wi]T
actually be so1vfng the syStems.bf equations'(II-G); but, due to the smallness
of cs2 we are physically approximating equations (II-3). The question now
arises, the application of the method of charactéristics to equations (fI-B)

has been a standard technique so why this procedure? The answer is simply this.

When people do apply the method of characteristics to equations (II-3) in order

to analyze a cylindrical shell impact problem they always consider g;Semf -

infinite medium. The reason for this is simple, this standard technique does

not permit the incorporation of a boundary condition in w (remember a term
.. 9W. :

3% appears in the governing equations). So, at the impactéd end é boundary
condition in u is prescribed and the other end is assumed to be at infinity,
thus, the question of ihposing one boundary condition in w‘ is avoided. With
our procedure outlined here we are able to;mathematica11y incorporate all the
" boundary conditions proper]y. The only point to be démonstrated is whether

our solution of equations (II-6) with Cq (K ) very small yields, for practical

.



purposes, the so]ution'to the classical membrane equations.

We r;n~some test cases‘to numerically detenwfne how small cS2 must be.
Our procedure was to useiMCDIT-21 (Ref. 2)-to solve equations (II-6)
suhjected to impact boundary conditions at x=0, or,

au
gf—'(o,t) =V

W : :

G K2 5§-(o,t) =0
We used the shear correction factor, K2, as our'parameter~to vary the shear
velocity, CS (remember c 2 = K2G/p); the value of K2 is approximately 0.87
for most shell problems involving shear waves. We calculated the transient
' responses of a typﬁca] cylindrical shell subjected to axial impacts with
different values of K2. We then compared the sfrains at a particular point
as- predicted by each run. When the strain predictions did not significantly
chahge with a further reduction 5n K2 we chpse that value of K2 for our
1§ter studies involving the classical membrane'theory. As an indication of
our K2 study, Table (II -1) shows the comparison of 1ongitudinai strain at -

~a distance 60 thicknesses from the impacted end for various values of K2.

TABLE (II -1)

K exx (X=60)/¢,, (x=0)
0.87 o .75649
0.87 x 107 | 77251
0.87 x 107 77318
0.87 x 1078 77391
0.87 x 10710 77225
(doub]g precision)

LR T e T
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~ We can sée from Table (II -1) fhét, numerically, once K* has reached the
value of 0.87vx-10'4 there is no significant change in the strain prédic-
tions with a further reduction in K2. Except fbr-the last eﬁtry all other
calculations were performed in single precision. | -

In order to determine the exactnéss of our technique for solvingthe
Classical membfane equations we compared our solution to the Laplace trans-
form solution of the classical membrane equations as published by Berkowitz
(:Ref. 3). ﬁ’ In his paper, thé'author analyzes the response of a semi-
infinite elastic cy]fndrica1 shell subjected to a longitudinal impact. 'He
solves a system of equations identical to (II -3), subjécted to impact
vconditions at x=0, by applying asymptotic expansion techniques to the Laplace
transform inversion integrals. He calculates the longitudinal stress at.

a dimensionless time as it varies with dimensionless axial distance. Figure
1" shows .. - his results as compared to our results for K2= 0.87 x 10’8.
The fact that our results (for K2= 0.87 x 10’8)'and his do not agree identi-

cally is to be expected since both are approximate solutions to the same

governing equations. -
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II1. PULSE SYNTHESIS "FOR- DETERMINING TRANSIENT RESPONSE OF SHELL DUE TO .

PULSES OF DIFFERENT SHAPES

A major portidn of this research project was to determine the-effect
of pulse shape (e.g. rise time, pulse duration, shape) on the transient
response of'cyTindricaT shells subjected to longitudinal impact loading.
One approach for achieving this phase_of the research is to utilize our
tomputer ques (MCDIT-21 and MCDU-26) and make numerous runs where we vary
the shapes, rise times, and pulse durations. The result ofkthis type of
approach would be numerous parametric plots. Another approach would be to
determine a set of "building blocks" wﬁich could be Qsed to approximate the
different pulse shapes and then we need only eva1uateiahd understand the
responﬁe of the shell to these "building block" functions. Once we under-
stand this then.we need only superimpose the resulting responseé‘TinearTy
and we can understand the resbonse to the originaT pulse shapes of interest.
This Tetter concept is not new; people have d1scussed the use of rectangu]ar
functlons as "bu11d1ng blocks" for such a purpose. However we discarded
‘this type of function for our analysis due to the large number which would
be needed to describe the pulse shape functions used in our study. Tﬁe
approaéh we fina]Ty chose to achieve this phase of our research was a
cqmbination of both. In otherwords, we performed some computer runs with
the exact shapes in order to isolate important parameters of the pulse
'I"‘and'then we used the second approach to try and understand these inTtIaT
.results and predict responses with further variations of the parameter.

In this Section of the Repbrt we will discuss the pulse Shapes used in our

. study, the "building block" approach, and the response of the cyTihdricaT



shell to theseA"buildingfplock" pulses. In the next Section of the
Report, we wi]]_distu55»the ekact approach, the use of the "building

blocks", and the results of our pulse shape study.

IIT. 1 Pulse Shapes -

We decided to limit the numﬁer.of pulse shapes to those shown ih
Figure 2. The reéson we chose these shapes is that we fe]tvthat each
shape or combination of shapes was of practica] interest. For ekample, if
~ we understood the response of the shell to shape 2a and 2b we could then
understand the response to a pulse whose rise time ranged from 0 to ¥0/2
(see Figure 3a). This latter shape can be seen to closely represent a
typical explosive pulse (Figure 3b). Other practical pﬁ]se shapes can
be ‘seen to be composed of the shapes shown in Figure‘2. One last point
should be made here. Each of the shapes shown in Figure 2 yield
identical impulse values so thét when we compared the responses due to

these shapes there was no difference'in energy input.

ITI. 2 "Building Block" Synthesis

The essence of this principle, for Tinear differential equations, is
simply as Follows: - | | |
if
a(Input A) + b(Input B) = (Input C)
then | | ,
a(Solution for A) + b(So]ution for B) = Solution for C
where_é and b are Tinear coéfficientsl. In- otherwords, if we -can represent
a particular function by a linear combination of approximating functions
then we can approximate-the solution for the original function by super-

imposing the solutions for the approximating functions.
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~ Before describing. in detail our search for these ébpkoximating
functions ("building b]ocks") we should define a few terms used in the
discussion
| Zero order discontinuity - discontinuity in mggnitude only
First order discontinuity - d{scontindfty in first derivativel
Aon1y . | |
Nth order discontinuity -~ discontinuity in Nth order deriva-
| Ative oh]y |

Approximate linear relation d<
F(E) = Ay Vo(E) + Ay Vo(t) + Ag V5(t) ...

where
F(t) - approximated function

Vi(t), V,(t), V4(t) - approximating functions

A1, A2, A3 - lineér coefficients

In our search for the approximating functions we had two obvious
‘requirements. First, these functions must be able to approximate the five
shapes of interest (Figure 2) and,-éecond, the deviation betwéenAthe axact
Shapes and the combination of these approximating functions should be smé]]
with only a few number of these functions beihg used. Once the approximat-
ing functions were determined we used a least squares technique to determine
the linear coefficients Al‘ Ay, etc. A computer program was written to |

facilitate the determination’of:these coefficients for any shape approximation.

In addition, this program plotted théA;6§ro%imated shape based on the number
of approximating functions desired. ‘This computer prograh is contained 1in
Appendix B. o | , | |

Described below are some of the apﬁroximating functions considered

A. Fourier Series - Single Pulse

-T2- ‘



The initia] speciffcations'for the approximating functions was that
they should have no zero order discontinuity at the origin and they should
be cpntinuous from 0+ to + = ( should not have a discontinuity of any
order in the O+ to + = regioh). The above reqﬁirements are immediately
satisfied.by- the sine series. (sin nnt 3 Ne= 1,2,3 eel) The cosine
series was not considered because of the zero order discontinuity on the
origin. Due to the nature of the approximation and due to the fact that
the sine series is periodic, one single pulse can not be approximated.

For example; when the square pulse is approximated what in effect has been.
created is d new periodic function consisting of a series of square pulses.

B.  Fourier Series - Compound Pulse

Observing the results of the previous example we see that an approxi-
mation of a pulse by a continuous periodic series produces another series.
To partly alleviate the above problem at new puTse is created, which is
composed of'the original pulse plus a finite zerd region. 'The Fourier
‘series approximation produces againia new series, but it is hoped in this
case, if the zero region length is quite large with respect to the square
pulse length, and the approximafion is reasonable, for &11 pfactica1
purposes it will mathematically satisfy the requirements of a pulse.

_This‘compound'pu1se however 6an not be easily approximated. The
results‘shown in Figure 4 indicate that even after ten terms the approxfmation
was still quite poor. |

C. Fourier Integral

The pulses can be abproximated byAéontinuous periodic functions not
by a series, but rather by a continﬁous'integfa1} This is of course useless

for the study because no discrete functions can be extracted.

13-
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I

D. Tﬁe Envelope function}_

.Certain'continuoué functions can form a pulse of a variety of éhabes
“as was shown by the Fourier integral. The FoUrier integral though is
difficult to evaluate. Anothef function that forms a square pu]se.is

e"tm As "m" approaches + « functidn becomes square

This envelope function can be used as a mu]tﬁp]iér for other Fourier series.
The use of the envelope is to accentuate the pgrt of'the.periodic series
which represents the pulse,

E. ‘Raising Sine to a Power

For the sake of interest the sine series was raised to a reciprocal
power and its approximating ability was observed. This widening effect
was excellent for approximating the square pulse but it failed on the
triangular pulses.

F. Creating a Function

In our study we are limited to only the use of three approkimating
,hfunctions.. This means that the approximations will Be poor especia]]y
for the type of functions of interest. T0'511ev1ate this problem a
special set of appkoximating funcfions are created. Thgse functions can
be made to form an almost é;act fit to the pﬁ]ses under consideration,
One effective way of accomplishing this is by replacing some sine functions
. by polynomials. |

G. Removing'Unwanted Portion of Fourier Functions

From part "A" we see that the Fourier series prdducés periodic functions.
instéad of pulses. Instead of using the comp]eteAfunction, we will only
utilize the portion up to ?0. For the sine series however, by removing
the unwanted portion of the periodic function you introdqce discontinuitieS‘
of order one and higher. The utilization of this technique to repreéent our

pulse shapes is demonstrated in Figures 5 (three terms) and 6 (five terms).

-15-
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~ SUMMARY

.

A continuous set of éine functions'cannqt be used since the
approximation‘creates another periodic fqnction instead of a
single pulse. | .

A Fourier integral cannot be used since it ié not compcsed of

a sum of discrete functions.

. . The envelope can be used but it is necessary since first.order

discontinuities are not harmful for computer applications.

Raising a sine to a power increases the deviation for some of

- the shapes.

Rep]aging'some of the sine functions by polynomials is only use-
ful for obtaining accurate approximations to only a 1imited
number of pulses. | ’ »

Using the sine series and removing thé portionAof the functions
after ?ovcan be used. Thé only pfob]em here is due to the first
and higher order discbntinufties which are introduced by removing
part of the function. Fof computer app]icationsg‘however, this

problem is negligible.

-18-



Having decided on the last approximation technique we decided to
compare the results of a three term approximation for a rectangu1ar'
pulse with the results obtained for the exact shape. The problem we
chose was that of the longitudinal impact of a cylindrical aluminum she11-
(h/R =-0.049). The boundary conditions for this~prob1em were M*=QX= 0

and

a0, t)

75 in/sec ;  O<t< 21 usec

NX(O,t)

0 | ; 21 usec <t

In otherwords, the pulse shapeAwas rectangular. Wé uséd'the three term
approXimation for the rectangular pulse (see Figure 5). We then solved the
governing system of equations, eq. A-1, for the bending theory (k2 - .87)

for each of the three approximating sine functions. The'longitudina1 strain,
‘Ex’ at X=0 and 3 inches for each of these functions is shown separately in
Figures 7a and b. IWe then superimposed the response of each function

(by ﬁse of the Tinear coefficients of Figure 5) and compared the resulting -
response with those of the ngmerica]lsoﬁﬁtion using the exact shape and
experimental results. The 1ongitudina1 and circumferential strain compari-

sons are shown in Figures 8a and b. We see that the three terms approxima-

- . _ * .
tion solution agrees quite well with the solution for the exact shape.
IIT. 3 Transient Response of the Sine Approximating Functions

Our next step in the "building block" approach was to evaluate the transient
, response‘of.é cylindrical shell to the sine pu1se, the function chosen as our

approximating function.” Of course,.by following this approach pf determining the
effect of pulse shape on a shell's response we eliminate a parameter, namely, the

actual shape of the pulse (including rise time). Our remaining parameter is the

*Both of the solutions were based on the bending theofy, eq. A-1.

-19-
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pulse duration. - The problem now reduces to determining the effect of the

duratibn of.the sine pulse on the fransient resﬁqnse‘of the shell. If

this is understqod, then by superposition we should be able to determine

the effect of an arbitrary pulse's shape and;auration on the shell response.
'Our first set of runs involved a cy]indrical shell (h/R = 0.1) |

subjected to an axial velocity input of the type

sin 7 & 0< 1< T
To -— 0 =-- 0

u(o, t).

0 T <7

Nx(o, t)

where Fo is the pulse duration of the half sine. The remaining boundéry
conditions at the impacted end were QX=MX¥ 0. 'Trangient'responses, as
'predfcted by the fbending theory" qq.(A-]),-were'obtained for values of

-1, such that the inverse of wavelength, 1/X = 1/{0 (or in dimensional form a =
tocpl.a§5umed-Va1ues 6f .2, .1,~.05, f025, .Q167, and .01. In otherwords, the
~range of thg pu]sg duration'was such’ that the gquiva]ent pulse length varied
frgmﬂbéThQ:S’timeé*thé*fﬁickness'to*]OOifimestthe tﬁ{CKhess;‘fP1ot§ of the
longitudinal strain at a 1oé;tion of % = 60 are shown in Fig. 9. Comparison

~ of these responses demonstrates an interesting point; the sine pulse disperées
less for the long éﬁd the short pulse duration than for the intermediate
duration.. Responées for identical loading conditions were obtaihed for the
classical mémbrane fheory eq. (A;3), the membrane with shear theory eq. (A-2),
‘and the uniaxial theohy eq. (A-4). The trénds of the 1Qngitud1na1‘strain as
predicted by the first two of these theories were identical fo that of the
"bending" theory although there was a slight deViation in magnitude. of
course the uniaxial -theory indicated no dispefsioh across the enfire wave-
length range since it is governed by the simple wave equatioﬁ. To i1€ustrate
th{s pulse 1engfh effect on the transient respohse of the cylindrica1'she11

we plotted in Fig. 10:thé peak va]uesiof the longitudinal strain versus thz

-23-
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2—(or %) at the'1ocq;iqn;i'='60. A»sim{lam plot of ‘this variation for
a cylindrical shell with h/R = 0.05 is shown in Fig. 11. This variation
of étrain with pulse length can be described subjective]y as fo]]ows:'
when the wavelength is large (2-+ 0), as compamgd to the R of the shell,
we can consider the wave aS‘seeing_é bar and it is well known that for
a wave length much larger than the bar radius there éx}sts no dispersion.
On the other hand, when'the wavelength is smaller than the shell radius
and of the order of the shell thickness (2->'0.5), tﬁg wéve is seeing
" essentially a plate. For this caseuwevcén understand the Tack of dispersion
(mathematically) by realizing that the iinane equation of motion
'(umcoup1ed from the bending and‘transverse equations) for a plate is
‘governed by a simple wave equatioh. The region between these two Timits -
involves coup11ng between the membrane radial, and bending modes, thus
- the dlspers1on

| The essence of this discussion, as it pértains to understanding thé
effect of pulse shape and durat1on on the transient response, is as follows.
m First, I believe we have demonstrated the 1mportance of pulse duration
(equivalent wave1ength) on the transient response of a shell. As we have
~ seen, it is the most important parameter to be considered.. Second, by
using the "building block" approach we can mndefstand the effect the pulse
shapé will have.on the response by simply determining the importance of

each of the approx1mat1ng funct1ons (s1nwt, sin 2+t, sin 3nt etc) for a

part]cu]ar shape via the least square coeff1c1ents Once we know wh1ch of
these functions is most important we can use curves such as those of Figs.
10 and 11 to determine the magnitude and dispersive nature of each'and thus

be able to predict the response of actual shape through superposition. This

- -25-
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. 1atter point will be discussed in more detail in Section IV where we will

" compare transient responses as obtained by the "building block" approach

and the exact shape approach.

Before concluding this Section, a few points .should be mentioned.

- First, work should be continued along the ]ine'of'effort just described

as I believe this will Tead to the understanding of the relatibnship
between dispersion_ana]ysis (harmonic) and actual wave propagation. Secohd,
this understanding of the effect of pulse duration on dispersion for

single-type pulses has imporfance in ultrasonic NDT work (see for example

Ref. -4).
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IV. EFFECT.OF PULSE *SHAPE ON TRANSIENT RESPONSE OF CYLINDRICAL SHELLS

| " In this Section of the Report, we démonstréte the importance of fhé
bu]se shape (especially the pulse duratfdn) on the transient response of |

a cylindrical shé]l.' In achieving-thislgoaj, we will cémpute the response
of the shell due to the exact shapes used for the loéding functioﬁs. How-
ever, in order to demonstrate the usefulness and importance of our "building
block" concept, we will choose certain of ﬁheée shape responses and compare
them with the predictions obtained by this "building block" abproach. By
doing this, the importance of certain of the pulse shape parameters can be
isolated and described. In deciding upon which shapes, specimen properties,
and pulse durations to use in these final computations, we relied heavily
upon the knowledge gained from the work previously described (e.g. the € vs

h/x curves of Figs. 10 and 11). This was necessitated by the fact that we

_cbuld become involved in an endless parametric study with the major results

“being lost in the massive data. For the sake of clarity and completeness 1in

this Section, certain details previously described in this Report will be
briefly repeated. | : ; - - o

The two cylindrical shell épecimens chosen for oﬁr analysis are shown
in Fig. 12. Each of these specimens is seen to have a dfscontinuity in
thickness. The reason for this is that a portion of the proposed study per-
tainé to the effect of geometrical discontinuities (the results are.discussed
in thé next Section), so, by analyzing the specimens, as shown, we then have
data necessary for the uniform shell and the‘geométrica1 discontinuous shell.
Notice that for each specihen L]/h = 200, or,‘the 1ength‘of the she]] to be
considered in this Section is 200 times the thickness. " The pulse shapes chosen
for our study are the same as those shown in Fig. 2. “The boundary .conditions

used were

~-29.
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and the initial conditions were zero. Note that thése boundary conditions
were all app]fed at the left end of the specimené as shown in Fig..12.
Finally, the_equations used for the énalysis were those 6f the bending theory
(egs. A-1) since we have seen (Figs. 10 and 11) that, except for the uniaxial
theory, there is no sizeable discrepancy betwéen the predictions of the
bending theory with those of the modified membrane theory or the c1assica]
membrane theory. We should remember two bofnts here. First, the uniaxial
theory will yield é transient_reéponse in which there is no change in shape
or magnitude of the pulse as it propagates along the shell and second, the
fact that there is only a slight difference between the predictions of the-
other theoriés app]fes because we afé only considering longitudinal loadings;
fhi§ is not true for radial loadings. |

The first set_pf computations invo]ved specimen #1 for which'h]/R] = 0.05.
Observétion of Fig. 11 showsAuﬁ that for tﬁe pulse shapes having a value of
1/% = h/x = 0.05 We should not expect much shapé change or dispersion as fhe
wave traverses the éhe]]. In order to reach this conclusion we are relying
on our sine "building block" concept~w5éh~ﬁggﬁawﬁgafﬂTf:‘“ReéaT1"ihaf'each
of the exact shapes can be approximated by a seriés of sine pulses, the first
sine term having a pulse duration equal to the exact shape pulse duration.
The second and higher terms of the sine series will have pulse dﬁrations
| (or A's) which are shorter, thus, will have even less dispersion because we

are moving to the right on Fig. 10 (e.g. the third term will have a value of

-31-



'h/A of 0.15). On'tﬁe other hand, by observing Fig. 11 we would expectA“
pulse shapes having a puise duration equiva]éhf tovh/A = 0.01 to.suffér‘
much dispersion. With these predictibns established from Figt 11, we |
then ran two sefs of computér calculations; the first, shown in Fig. 13, °
are the results for the shapes having a pu]sé duration equivalent to
h/x = 0.05 and the second, shown in Fig. 14, the results for h/x = 0.01.
In Figs. 13 and 14 we have plotted the longitudinal strain at x = 50, 100,
150 and 300; remember that the location X = 300 is beyond the geometrical
discontinuity, so, the strain history at this 1ocation will not be discussed
until the next section as it represents the transmitted wave through the
discontinuity. Observation of Fig. 13 and'14 confirms our predictions
from.Fig. 11. For example, in the case of h}/A =in05 we note very little -
change in shape, pulse duratfon, or magnitude as the wave propagates down
the shell; the peak magnitude of the isoceles triangle pulse at X = 150
is 0.91. On the other hand, we see for the casé of h]/x = 0.01 the pulse
changing shape, increase of puTse duration, and more attenuation of peak
magnitudes; the peak magnitude of the isosceles triangle pulse at x = 150
is now 0.75. | - | |

The second set of computations involved specimen #2 for which h]/R] =
0.10. Observation of Fig. 10 shows us that more dispersion is possible
for this h/R ratio than in the previous case. For this specimen, then,
we performed three sets of'computations; these were for the values of h}/x
~ of 0.1, 0.025, and 0.01. We would predict, based on Fig. 10, that the pulse
duration causing the least dispersion of the pulse would be,for those pu]se
:shaﬁes having h]/x = 0.1, while the most-dispersive would be for hl/l = 0.025;
the pu]se,shapes having h]/x = 0.01 shou]d.]ie‘betweén these two. Figs. 15,
16, and 17 are the results of the computer calculations for values of_hT/X

of 0.07, 0.025, and 0.1, respectively. Observation of Figs. 15, 16 and 17
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indged"confinms‘Ouf predictipns. The pulse shapes with;ﬁ]/x =‘0.1 did
not chénge shape drasti;al]y, maintained essentially the same pulse duration
~and had a peak value for the isosée]es shape of 0.8 at x = 150, The pU]se
shapes with h}/A = 0.01 did change shape some what,increased in pulse |
duration, and had a peak value for fhe isosceles shape of 0.85 af X = 150.
Finally, the resﬁ]ts for the hl/A = 0.025 shgh a much more drastic shape
change and increase in pulse duration than either of the previous two cases;
the peak value for the isosceles triangle has diminished to a value of 0.65.
Note, also, from these Figures that the longer pulse duration pulses Tose
their identity in shape and begin to resemble oneAanother in shape as the
wave propagates along the shell. This indicates that for‘lggg;duration
pulses the present practice of not worrying about the shape of the initial
pulse in detail {s most 1ikely proper for practical applications.

The results of this study indicate that the pulse shape parameter
which effects the transient response of a cylindrical shell is the parameter
h/X which is directly reTated-to the pulse dqratioﬁ, T2 through the relation
A= cP; We havg shown that the degre? of dispersion of a pulse {s related
to this ratio. A useful tool in prediéiing whether a particular pulse will
be dispersiye 15 the type of curves showh'in Figs. 10 and 11. In order to
demonstrate the usefulness of the "bui1ding b1ock"‘concept to actually
predicf the transient response of the shell subjected to a particular shaped
pulse, we will compufe the transient response of specimen #2 due.to thg |
isosceles shaped pulse by this technique. We will use the two term approxima-

tion of the isosce]es-shape as shown in Fig. 5; in otherwords

I

0.81099 sin = = - .09048 sin 3=
: ‘o 0 -

\\
s
il

-~



~ We will perform the calculations- for this isosceles shaped pulse for the

cases of h,/x = 0.025 and 0.01. The first stép is to compute the response

of the shell to each of the sine functions. Next, we superimpose the

~ results by use of the previous equation and we have the resulting approxi-.

mations for the transient response of an isosceles shapes pulse. Figs. 18

and 19 contain the results of the "building block" response predictions for

, hT/x = 0.025 and h]/A = 0.01, respectively. These Figures each contain the

response to the sine functions, the superimposed response, and the response

due to the actual shape. Comparisoh of the response predictions as obtained

by the exact shape and the approximation, show that the "building block™

concept can be used not only for subjective predictions, but, also practical

' bredictions. Once we understand the way in which individual sine pulses

effect the transient response of a shell we can supéffmpose and understand
the response due to an arbitrary shaped pulse. |

In conclusion, we must say that an experimental program to vefify these
analytical results is warranted; the reason being that we are solving a
system of approximate (although iﬁc]usive) governing different1a1 equations
for the shell response. An expérihenta] verification of the curves shown in

Figs. 10 and 1 would be sufficient to verify our results.
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V; EFFECT OF PULSE SHAPE ON TRANSIENT RESPONSE OF CYLINDRICAL SHELLS

HAVING GEOMETRICAL DISCONTINUITIES

The purpdse'of this phase of the research program is to deténnine the
effect of pulse shape on the trahsient response of a cy]indfica] shell with
a geometrical diécontinufty subjected to a 1&ngitudina1 impact. In this
Section we will be referring to Figs. 13 through 19, again, as ‘was mentioned
previous1y, In particular, we will be interested in the Strﬁin responses at

X = 150 and 300 in these Figures. The strain histories at these two 1ocafions

" can be considered as the incident and transmitted pulses, respectively.

Observation of Figs. 13 and 14 for spécimen #1 and Figs.‘15,'16,>and 17 for
specimen #2 establishes certain trends: . |

1. For the shorter pulse duration the actual shape {s important
in establishing the peak transmitted pulse magnitude. For

- example, observation of Fig. 17 demonstrates that the maximum
»magnitude is established by initial rise time.

2. For the longer pd]se duratidn‘the shape does not play as
important a role as_for thé'sh;rter-duration pulses. For
example, the peak magnitudes of the trénsmitted pu]ées, as shown
in Fig. 15, are not dependent upon the rise time or shape
parameters. As a matter of fact, we see in this figure{that
the peak magnitudes occur well behind the wave.front and that
the deviation between these magnitﬁdes is not as large as that
which occurs for the shorter duration pulse. Note, also, in
Fig. 15 that the pulses have essentially lost their identity

and in fact are quite similar behind the wave front.



. No discernible "rule of thumb" formula seems to be appro-
~priate for the prediction of transmitted to incident strain
or stress ratios. For the shorter pulses having a short

rise time the simple uniaxial equation (Ref.5 )

[5x] transmitted _ 2A1
|ex| incident Ayth,

would yield reasonable results, but, for the pulses with
either long rise times or long pulse duration it appears

that a complete computer analysis is necessary.
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VI. EXPERIMENTAL MEASUREMENT OF SHEAR WAVE VELOCITY

IN A CYLINDRICAL SHELL UNDER RADIAL IMPACT

Another phase of tesearch initiated under this gradt was that of
developing an experimental technique tor generating and measuring shear
pulses in a cylindrical shell. The motivation for this study was to
develop an experimental capability which when combined with our ana]ytica]l
capability would equip us with the neeessary tools to better understand
the role of shear waves in the transient response of shells. Fo]loWing
is a brief description of this phase of our research effort. -

Experimental studies of propagation of shear wave in cylindrical she1]s.
are not found in the literature. Some investigators [6,7] studied shear
wave velocity utilizing the ultrasonic techniques Steveninck [8] developed

apparatus for simultaneous determ1nat1on ‘of longitudinal and shear wave in

nporous media -under pressure. He demonstrated the problem of. separat1ng the

1ongitudina1 and shear wave. The osc11loscope traces obtained in [8]
demonstrated the d1ff1cu1ty 1n obta1n1ng a clear strain pulse which propagates

with the shear ve10c1ty. Ref [9] shows some typ1ca1 osc111oscope traces

~in the study of radiation from an exp]os1on in a circular dlsk.-

In this section a technique to measure shear wave velocity in a
cylindrical she11‘under radial impact is developed. The concept for

generating the shear wave was as follows (see Fig.20). An explosive is

" mounted inside a plug which fits into the end of the shell. The exp]oeive

is detonated resulting in a pulse propegating radially outward from the -
center. The pulse then induces into the end of the shell a radial 1oadtng
thus generating the shear wave. The radial impact is obtained by'an

explosion of an electrical detonator inserted in plexiglass and in lexan zlugs.
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- The purpose of using plexiglass or lexan was to slow down the wave initiated

'be the explosion in order that we will obtain a symmetrical wave in the

aluminum cylindrical shell. A symmetric wayeAwi11 eliminate the effect of
bending ahd thus produce a cleanér'strain bulse propagating with the shear
velocity. | | "

Strain gages mounted on the outside surface at various axial Tocations
of the shell were used to obtain oscilloscope traces; from which the shear

velocity is determined. However, observation of the oscilloscope traces

show the presence of a precursor bending wave propagating at the plate velocity.

EXPERIMENTAL PROCEDURE

A strafght cylindrical shell fabricated from 6061-T6 aluminum was
radially impacted by an explosion of an electrical detonator embedded in

plexiglass and lexan plugs. Average properties for the aluminum are

E =978 x 10% psi = Young's modulus of elasticity

v =0.33 ' = Poisson's ratio

¢, = 214,500 in/sec. = AnaTyfica1 plate ve1ocity = [E/p(j-vzj]]/z
cg = 113,338 in/sec. - = Analytical shear velocity = K(6/p)'/%

The geometrical properties of the shell are shown in Fig.-Z!-l '

Two types of electrical detonators were used. The first was the
Du,Pont<X-549 R electrical detonator. This type of e]ectrica] detonator
has a slow firing time of about 1 millisecond and has 0.3 grams HMX base |
charge.' To avoid any e1ectrica1 noise and currenf the detonator wires
were shielded and grounded. In addition the aluminum cy]indrica1'she11
was groundéd,_which helps in obtaining‘” hofé clear osci}]oscope traces.

| ngera] designs of plexiglass p]ugs'were used and the final one used is

shovm in Fig. 22. ° The use of a plexiglass as a transmitter of the wave

to the aluminum shell was advantageous in trying to obtain a symmetrical
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.wave, sinee the wave in p1exig1asé travels. slower than-in‘the-é]uminum.~
For each erp]osion a new:pTug was used, since damdge,did oceur foithe plug -
after the exp]os1on ' ' _ ._. - g | |

A second type of e]ectr1ca1 detonator used was the Du Pont X 811D.
miniature conductive mix detonator. This type of detonator has a fester
rise time of 4-8 microseconds, and has 52rmg of explosive. There are no
- wires in”thisrtype of detonator and the preb]em of interferences waslreduced.»
The fast firing time will enable us to obtaih_better oscilloscope traces.
Since ﬁhis type of detonator has more explosive, it was embedded in.a lexan .
b]ug which is stronger and more resistant to impacﬁ._ The basic design of
the lexan plug was eimilar to the plexiglass p]ug._,However, since the
X-811D detonator are also smaller than the first type the 1exen cdu1d be
_shortened and we could thus obtain a better impact condition-at the
a]um1num shell. The lexan plug is shown in Fig. 23 :

Micromeesurement strain gages, 1/8 inch long,‘are mounted on the outside
surface of the shell at var1ous ax1a1 1ocat1ons _as shown in F1g 24. E111s
BAM-1B bridge amplifiers tuned to a frequency response of 100 KHZ are used
to provide proper calibrated strain sca11ng of the osc1]105cope. A trigger
lgage located near the impacted end was used to trigger the scope. - Three
a]igﬁment gages mounted on the outside surface 120 deg;‘auart were used to
Aassure as1mu1tane1ty of impact, however in our testing on]y two gages were
used. The arr1va1 time of the propagat1ng pulse at the var1ous gage
. locations is obta1ned from the oscilloscope trace; since the distance befween
strain gages ie known the velocity of propagation of the strain pulse is

obtained by

-
[}
o)X
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The repeatability of the resu1ts was difficult since there’ appeared
to be slight deviations between the detonators However the resu1t1ng
| strain traces have the same character1st1cs and are very s1m11ar in shape
A typical b1ock diagram show1ng the c1rcu1try, 1nstruments, straln
gages and the test specimens are shown in F1g. 25.

RESULTS

y
Typica1.osc111oscope traces are shown in Figs. 26 and‘27.1§Qbservation

of these figures show the presence of'e bending wave propageting at the

| plate velocity, cp, which_is:faster than the shear velocity, Cs - Figure 26'

- presents typical traces psing the X-549 e]ectrica] detonator_inserted in

plexiglass. We obtained better results in this group of tests by using

the c1rcumferent1a1 ‘gages no. 4 and 6 in F1g 24 ‘The measurement of the K

wave speeds y1e1ded an average shear ve]oc1ty of
= ]22,950 1n/sec.

The aT1gnment gages show a reasonab1y good 1mpact but the presence of
bend1ng is shown by the d1fference in magnitude of the straln pulse between
the alignment gages. 'However, a separatlon between the 1ong1tud1na1_and
thelshear wave are not c]earty observed. Fignre 27 presents'typical traces
using the X-811D e]ectriea] detonator embedded in lexan. Since the firing'
time is faster wevused gages no. 7 and 9. The measurement of the‘wave

~ speeds yielded |

214,500 in/sec.

p

¢ = 125,000 in/sec;

" These values are slightly higher than the ana1ytﬁca1 values of

c 205,333 .in/sec.

P

C

s 113,338 in/sec.
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Observation of Fig. 27 shows that thé're§u1ts»obtainedwfromithe use of
X-811D detonators are more consistent. The alignment gages show a better
sjmu]taneify bf strain pulse than the previods types of e]ectrfcaTHBetonator.

A better comparison between theoret{ca1 and expérimenta] sheaf:anei.
speeds is probably impéssib]e, sihée, the analytically predicted value
involves the use of a shear correction faqﬁor." The exact specification

of this factor is questionable.

CONCLUSION

In this section an experimental technique for generating and measuring
shear wave ve]ocities‘iniéy;;ndrica1 shells under radial impact is presented.
Although the strain pulses are not simple in shape the arrival time of the
pulse at a gage location is shown very clearly, from which'fhe wave speec,
can be determined. There is sti]} further investigation to be made in order
to understand the transientAresponse of a cy]indrica] shell to radial impact.
'"Hdwever,ithe first step ih this study was.comp1éted, namely the experimental
verification of the speed of a shear wave pkopagating in cylindrica] she]T.

o
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VII. CONCLUSIONS AND RECOMMENDATIONS

‘The conclusions of this study are briefly listed below.

1.

For clean cylindrical shells subjected to longitudinal impact:

a.) the single most important-parameter effecting.the magpjtude,
of the she]]‘s trans1ent response is the ratlo h/x (x.heing
re]ated to the pulse durat1on, T , by A = rocp) Except for
the rectangular pulse, the peak values of strain or stress

will always depend upon thisiratio,

v

- b.) single-pulse dispersion (wave spreading) is dependent on h/x

in much the same manner as in the d1spers1on of continuous
harmonic d1spers1on,
c.) the shape of the pulse behind the wave front becomes indist-
~ inguishable for long pulse durations fsma]]Ava1ues of h/r) and
all the shapes studied here become similar as the pulse travels
.down the shell, | |
d.) except for the uniaxial theory, which predicts constant shape
and magnitude of propagating pulse, the membrane (with and
without shear) and béneing'fheories predict, for practical '
purposes, similar transient responses, '
e.) the use of a sine series to approximate: the pu]se shapes is:
| a. usefu] too] for pred1ct1ng conceptual or actua] trans1ent |
. responses. The response for each of the sine terms is
-computed and the result for a particu]ar shape is.obtained A
by superpos1t1on of these individual resu]ts | |
For cylindrical shells hav1ng geometr1ca1 d1scont1nu1t1es subJected
to longitudinal impact:
a.) for short pulses havingla'short rise time (e1host a step)

the simple uniaxial result of
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[eX]transmitted 2A1
[e, Jincident N AR,

can be osed to predict the effect of the geometrical .
discontinuity on response. 1 .
b.) For longer pu]se duretions, the peak va1nes occur behind
the initial wave front and a computer ca]cu]atlon 1ncor-
porating matching cond1t1ons at the geometrlcal d1scont1n-
uity is required to pred1ct the effect of the d1scont1nu1ty
on the transient response ' |
3. The generatlon of a shear wave in a cy11ndr1ca1 she]] has been
accomplished with the measured shear velocity agreexng, w1th1n.8£, with the
ana1ytica11y.predicted value. | - |
Recommendations for further work include.
1. .Experimenta1 verifioation of the variation'of strain responselwith
the h/x ratio, | | | | |
-2. More analytical stud1es 1nvo1v1ng a 1arger range of geometr1ca1
' discontinuities in the_py]1ndr1ca1 shell,
3. Experimental verification of the results for the shell having a
geometrical d1scont1nu1ty, | |
4. An ana]yt1ca1 study into the relationship between 51ng1e pulse dis-
~ persion and the c]ass1ca1 harmonic d1spers1on,
| 5.. Further experimental work in the area of shear wave propagation and
" the transient response'of'ehe1ls to shear loadings, -
6. An analytical study into the effect of the shape of a sheer pulse
on a shell's response, |
7. A joint analytical - experimentaT study into the response of a

structure to a combined longitudinal - shear excitation.
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- VIIL.

VIII. GENERAL

1 - Relevance of Results

‘The results of the study presented in this Report can be app11ed directly

to the f0110w1ng techn1ca1 areas:

- a.

Response of Structures to Pyrotechn1c Loads

| Ut111z1ng the results of this study 1nto effects of pu1se"
shapes or transient responses, we\are 1n a p051t1on to, pred1ct
the important parameters of the resulting loading pu1se caused -

by avpyrotechnie‘event. ~In addition, we can apply the results

~ of this study to the prediction of the effect of a structure's

geometrical discontinuities on the resulting response of a
structure subjected to a pyrotechnic event.
Understanding Ultrasonic Signals in Structures (NDT)

Since the thrust of this graht's study was‘the_use of sine

~ "building bTocks", we have used the results of the transient

response of the shell structure to these sine'pujses in the

interpretation of tranSmitted uTtrasonic signals. The s1ng1e most

important result used for th1s purpose 1s the d1spers1ve effect
caused by the th1ckness to wavelength ratio (h/A). For example,

when transmitting ah ultrasonic signal aiong a sheT]-the magnitude 

(and shape) of this signal changes due to'geemetrical or material

defects and dispersion. To date, in the field of NDT only limited

information is available which will help in understanding which

_portion of the change in signal shape is due to defect and which

portion is due to dispersion. The results of this year's grant -
are being epp1ied to an ultrasonic study’which will hopefully
T

lead to a better understanding of this signal interpretatien.

initial results are encouraging.
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c. Response of Composite Material Structures to Dynamic Loads
| Much of the information and tethnb]dgy dereloped in'this o
year's grant -(and previous_years‘) is'in‘the process of being -
~epp11ed to composite materia]'structures,.eoth hohogeneouS:and' |
laminated. The initial results shoW that tﬁese[capabi]ities
are-direct1y applicable to problems, such as, FOD in engine or
he]icopter b1ades.and the dynémi§'10ading of eomposite structures
by foreign objects, pyrotechn1c events, or docklng For examp]e,
one of our initial resu]ts have shown that for certa1n Taminate
plate configurations subjected to dynamic moment inputs, large
normal and shear stresses arejdeveloped'in the laminate, which
is not the case. in isotropic plates. Realizing that lahinates :
cannot withstand highlsheer stresses,'this resd]t is seen to be
imbortant for the proper design'of-1aminatevstructures to with-

stand dynamic Ioads.

VIII. 2 - Personnel Invo]vement

Faculty; Drs. R. Mort1mer, P. Chou, and J. Rose

3 -

3 - Graddate Students; Messrs. B]um, Rodini, and Cokonis
2 - Undergraduate StudentS' Messrs. Flis and Nga Le

1 - Techn1c1an Mr. R. Tschirschnitz |

- 0f the three graduate students 11sted above, two are Ph D. studehts
and one is a Master's student. Mr. Blum has recently completed his Ph.D.

. thesis, which was supported by this grant.
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IX. ADDITIONAL WORK COMPLETED UNDER GRANT

In addition to the studies described in Sections 1I through VIII,
other work related to the thrust of- th1s Grant, and supported by th1s
Grant was comp]eted A brief descr1pt1on of these “tasks fo]lows

a. -Equations Governing the Ax1symmetr1c Motions of a Laminated

Composite.Cylindrica] Shell.

-

A system of dynamic equationsiof motion which gdyern the
motions of a laminated compbsife cylindrical she11'have been
derived. This system of equations was derived by combining the
usual isotropic shell theory development (Ref. 1) with the
technique developed for anisotropic laminated plates (Ref. 10).
This theory includes the‘effects'of transverse shear, rotary

- and radial inertia, ahd behding.: The transQerse»Shear effect
is extremely important when considering 1aminated structures.
The resu1ting system of equations can be used to ana]yzé the
dynamic (transient) axisymmetric response of a cylindrical shell
which is constructed %rom a number‘of isotropic or anisotropic
layers. The form of the resu]ting‘sysfem'of equations is

u" '__';__'-!___‘_', ( ) V' o= o a a . -
c.2

1
V" - . (" Yu" === --
"
| vy . . |
T D R I (1x-1)
c 2. -
2
il we "
' 57 Crwt=-----
2
wn- -J!; = e e e -
‘3
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where u, v, w, Uy and wé denote the.longitudina1; circumferentﬁai;
and radial dispTacement; and the longitudinal and circumferentia]}
rotations, respectively; Cys cé, C3 are wave speed parametersQ' The
parenthesis appearing on the left-hand sidéhof tnese equatfons
involve material and geometric propérties; the night—hand side of

" these equations 1nvo1ve the five dlsplacements and their first |
derivatives. This theory can be; extended to 1nc1ude conical she11s.

Computer Code for the Dynamic Ana]ysis of Laminated Structures.

A computer code based on the method of characteristics,
capable of solv1ng systems of equatlons equivalent to eq. (IX-1)
has been written. Example runs to test the accuracy of this program
still remain to be completed. This code, in additicn to existing
codes at Drexel, enab?e us to analyze the transient behavior of
composite laminate shells, plates, and beams where each individual
lamina may be isotropic or an1sotrop1c

_Cy]1ndr1ca1 Shell w1th F1n1te Length Geometrical D1scont1nu1ty

A computer code capab]e of analyzing the transient behavior
of a shell haVing a finite length gebmetrica1 discontinuity has
been deveioped. This code is an extension of the work reported in'
Ref. 5. | R

Shear Wave Computer Code.

A computer cade capable of analyzing the transient response
of structures to step loadings in transverse shear has been

developed.
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APPENDIX A

P

'EQUATIONS GOVERNING THE MOTION OF A CYLINDRICAL SHELL
Four systems of governing differential equatiohs,were used in this
study. These equations, as presenfeq here, are nondimensionalized with
respect to h such that .
. E tc

’X_K’T—h .

==

i=p,0=y, W=

The first system of equations includes membrane, bending, transverse

shear, and rotary inertiévef?ecté énd is'given by (see Ref. 1)

220 3%y _ h oW

— -, °"VR -

3x2  3t2 X

FY 2 2 . ' 2 ( W

¥ _ 3o _9 s (g+nv) W (A-1)

ax2 3;2_ .R. n(1-n) - R _.n(1-n) dX

R L I T A R

)
ax2 .G a2 R g ax X 9

The second system of equations represents a modified membrane theory

. and- is given by (see Ref,f] )

32u  3%u _ h w
- 2% " VYW
X2 3t X
(A-2)
2 (G ot by w2l b2 (1t n) g
3x2 G5 372 Rz R g

A-1



The third system of equations represents the classical membrane theory

r -

and is given by

%u _d%u_ _ h aw |
3X2 372 R ax | i " |
- (A-3)
C 2 2= o 2 - ) -
- (D 3% _ by v oBu 2 | _‘] tn) g
s .

by
25 a2n e '
2__%-_3% =0 o , (A-4)
X 3T ’ :
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"APPENDIX B

" LEAST SQUARES LINEAR ESTIMATION

-
£

: Cababi]ities of Program

The program will:
1. Compute coefficients to any linear relation
A

2.. Print and plot results on printout.

e.g. .
E(g,y,z);; Ad + A]%v](x,y,z) + Ay Vox,y,z) oAV
F(x,y,z) — Function being estimated
Vi(x,y;z)~-Estimating functions .
(x,y,z) - Indépendent coordinate variables
A,~=A, — Coefficients computed by program
Note:

(A) Approximafion takes place on a finite interval

(B) A1l functions must/Be bounded | :

) A]T functions must be defined on the same coordinate system -
Cbordinaté system can be compriséd of any number of independent
variables. e.g.: |

F(x),F(r, o), F(z, Y, Vs V)

. (D) A1l functions can be discontinuous =~ == = - -

B-1
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130 1F(NT1-K)1 4923

57 FILYAT(E,58)
R0 LPAACISIT BB ByAS R . ——
g¢ o OIHERSION  8(%0,20),83(20,2D)
90 o _COFMONZAP/ND MY oNCV o N, MO, [C U 3 - -
=S NT=1D*NV B L
B2 MT Y= Ty — . S
03 NTL=NT+NDV : L
86 o IF(MND=1)1,1,2 .
35 .2 CONTINUE '
86 DD314M=1, N0 \
97  MP=NV -
98 .DO215K=2,ND ,
99 00301L=1,MV v
1920 HP=1+NP -~
101 IFIB(M,L)) 212,313,212
2102 0 212 B MaNPYI=BAM,L)mELK
103 GO TG 301 S
104 313 B(MyhP) =0, —_
105 201 CONTINUE
106 315 CONTINUE
107 © 314 CONTINUE
108 © 1 CONTINUE .
109 IF(IC)ill,1C,12
~110 11 CONTINUE o
111 BB(1l,1)=NO
112 00304K=1,MNTL
113 KS=K+1
114 - AS=0.
115 DO305M=1,N0
116 © AS=ASHB(M,K)
117 " 305 CONTINUE : . T
18 BB KS ) I AS e e e e
119 © BB(KSs1)=AS ‘
120 304 CONTIMNUE
121 10 CONTINUE
122 - DO302N=]1,NT
123 ' - Nl=N+IC
124 DO302K=N,NTL
125 o KS=K+IC
126 AS=0.
127 D0303M=1,NC
128 AS=B (M K)FBIM,N)+AS
129 303 CONTINUE e

131 3 CONTINUE
132 BR(ML4KS)=AS

133 BBIKS,N1)=AS

134 GO_TO 302 o _
135 4 CONTINUEZ :

A3 o sBNLyASY=AS -

Ty 2L CONTT U

T ¥ = R ¥ 1 —

is59 END



A'X,-J;J A

23 :U‘w' WUTINE ST WVA) L el e e e
mha '

.5:«,/ yi\"-?‘.-"I 'ﬁ\'v‘.;y {C

e ettt a e 2 e s i

«xa=uq+muv

DAL=, LA
Ll=t+]
NS==-10. ____ _ e e e P
DOLOLN=L,yMA .
[Z(A(N,1L)) 102,101,102

102 NS=N I
60 . T0 103

1C1 CONTINUE | ’ T ¥
103 [F(NS=L)113,106,105 .

105 D0O104N=1,MAL
X=A(L N}

AlLyN)=a(NSyN) R
104 A(NSIN)=X_

106 Aspzl./A(L,Lr
' DNZODMN=L 1, MAL

A(LyN)=aSP=2{L4N)
200 CONTINUE

DOLO7N=L1,M2
IF(A(N,1))1C8,107,108

103 SAP=1./A{(N,L)
D10GK=L1 yMAL

A(NysK)=a{N,K)*SAP =-A{L,K) .
109 CONTINUE

107 CONTINUE
100 CONTIMUE

DO 1K=MAl,MAL | -
ALMAZK  )=A(MA,K )/ A{MA,MA)

1 CONTINUE
113 CONTINUE

RETURN

ctND

270 SUBROUTINE DIAG(A,MA)
271 DOUBLE PRECISIUN A

272 DIMENSION A(20,20)
273 C CMMON/ AP/ MU, NV,NDV NDT, NDpIC

274 , MAl=MA+]
27H Ml A=rA=]

276 MAL=MA+NDV
2117 DOL11L=MAL,MAL
278 DOL10M=1,MIA

279 N1=MAL=Y
250 N2=N1-1

enl 114 Dolliks

I*')




(4,7 e -
165 TR L,L B, TY,R0 .
Cise LoE St e{27,20) 0 (~= y20),0 e85y o

8 "/ th’HM’I'\’ yIC
: }/PP/Vi?(éu,LC),V‘W(/by; )

r—*;—-fr—'wi-
~ G0 G

S ) PN ANGTTS) yuUANK , STAE - : , . ,
170 cv FORMAT(LIHL,// 420X, E ST 1T M AT E-L. F UNCT G NIY=fyzon
‘i1 ) // )
171 44 FORMATL///, lSA,'FSTINAT 9',1ux,'cu~u1n D FUMCTIONS T, CY;'PICFE;:)E'
L vax, X ') ‘ B
172 45 FORMAT(//,20X,* LINEARLY COMBINED tSTIMATING FURCTIOMS ',/ )
173 43 FOPMAT(4(10XyF1l&a7))
174 40 FORMAT (20X, '(*',Cl4. 7,')*(',20A1,')**(',12,')') L
175 41 FOPMAT(/YV EMS DIFF = ",Dl&4.7,/)
176 42 FORMAT(' *',D14.7,% = CONSTANT') . A
177 45 FORMAT (/7,7 CCvPARISON BETWEEN :STIMATEU Fumcrxrm AND LIMERRLY CO
S 1MBINED ESTIMATING FUNCTIONS')
178 : KS=1-1C
179 MAI=MA+] —
130 M1A=MA-1
181 ' MAL=MA+NDY
182 NT=NV=ND
153 NI1=NT+1
184 : KK={MA=1C)/NV i }
185 DOSOL=MAL , MAL - , , ey
1396 LL=NT1+L-MAL
» 1817 K=L=MA
188 PRINT 100, (VADI(I, K),I 1,29)
189 ) PRINT &5
190 - IF(IC-1)44244
191 2 PRINT42 4A(1,L])
192 4 CONTINUE :
193 I=1C I
194 DO110=1,KK ~
195 . DAO1INV=1,.NV ‘ o
196 I=1+1
197 1 PRINT 40,A(I L), (VA R_(_J_ll_.v_)_.!.JiL’.Z.O.,)__L.[,D
198 PRINT 46
199 PRINT 44 , .
‘200 RM=0. ) T T o T
201 DO310N=1,MN0
é02 IF(KS=-1)11,10,11
203 10 CONTINUE
204 TY=A(1l,L )*B(M,KS)
1205 - GO _TQ 12
206 11 CANTINUF S T T
207 IY=A(1,L )
208 12 COMTINUE
209 DN311K=1,M1A -
210 : Kl=K+1
21 K2=K#+KS __ R _ e - S e
2rz . TY=0{ "1, K2) = {X1l,L )+TY
AR AT SR YO I S L . )
2.4 SaETY =G, 0L )
21 5_ e W 2=ENOEN _ S — e e - - -
218 L2=pd+L2

217 R La=xX0+1 3



N

CPRINTS

(CeNT)

CeL Z2)=tlia, L b - -

Fin

2ie LA 2y=TY e e e b e X
220 ClL 4)==nR ' :

221 . I DENT &2 g_a,.(, el b JaTYe et U {M) e e e e e —
222 ' A M= RRERR+671

go3 BV C CnNTINUE - — N SR
226 RH=RA=x 5 /FLOAT(HT)

275 WRITE(6 41 )EM

226 K=L=14

227 Call, APLOUTIKCeiia4,01) —-
22& 53 CONTINUE '

229 RETURN -

230 EMD. '

140 SUBROUTINE SCRTE(A,BB,MA)

141 DOUBLE PRECISIOMN A,B3,8S

- 142 DIMENSION A(20,20),B8B(20,20)

143 COMMON/ AP/ NG ¢ NV oNDV ,NDI,ND,y IC

144 MAl=MA+? L

145 MIA=MA-1 /

146 MAL=MA+NDV ‘

147 NT=ND=MNV+IC

148 NTI=NT+1 _

149 DO307I=1,M1A

150 -11=1+1 '

151 A(Irl,=58([vl)

152 DO307J=11,MA

153 BS=BEB(I,J)

154 . A(l,4)=8S

155 : A(J,I1)=8S

156 307 CONTINUE : U

157 7 AIMAYMAY=DBBEMALMA)

158 DNll=1,MA

159 DO1L=MALyMAL

160 _LUL=NT1#L-MAY L
- 1ol 1 A{I,L)=BB(L,LL)

162 RETURN

1oz
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S GT SEVEF AU CROSSTVE IASLES VERSUS T ma S VAL TAR £ T
DIPECT PLOTING OF INPUT VARIABLES (HU IHTERPCLATICH)

[Nt

{
|
1
|
l
]
]
i

ﬁﬁﬁpﬁﬁﬁﬁﬁﬁﬁﬁﬁhﬁ"\ﬁ'\ﬁ"\ﬁ slxXakalakallakalsEsiaXs!

_usaées )
caLtL APL T(Nu,Aer 7NS)

UEoCPIPTiEﬂ GF PARRMETERS ‘

NO - CHART NUMBER ({2 DIGITS MAXIMUM) :

AT = MATRIX OF DATA TO BE PLOTTED. FIRST CCLUMN REPRESENTS
BASE VARIARLE AND SUCCESSIVE CPLUMNS ARE THE CROSS--
VARTABLES (MAXTHUM IS 91, : T

N = NUMBER 0OF ROWS IN MATRIX A

M - MNUMBER OF COLUMNS IN MATRIX A (EQUAL TO THE TOT\L
NUMBRER. “GE VARIASL €S ) e MAXIMUM 1S 10.

NS - CODE. FUR SORTING THE BASE VARIABLE DATA IN ASCENDING
ORDER :

C SORTING IS NOT NECESSARY (ALREADY IN ASCENDING
__ORDER). .
1 SORTING IS5 NECESSARY.

REMARKS ' )

IHE FCLLOWING SXECUTION_CARDS NEEDED IN _MAIM _PROGRAM
CCMMON ANGI(9),BLAMNK,STAR
RFAQ_LﬁL_5L_BLAL&LlAM&LLLLL.LL&l&&LAR

5 FORMAT(11Al)

1EE FﬂLLDJl“G_DAIA_LARB_NELDED_lJ_MALM.PhDGRAMAA

STARTING IN COuULUMN #1

.l23&5678b«

“a IS A BLANK SPACE

SUBROUTINES AND FUNCTION SUBPRCGRANS REQUIRED
NOMNE

1
i

1
3

® 0 2D 0. 0.0 0.0 0.0 00 09 9 4 0 9.9 9 0 5 9.8 0.0 0650009 0 0.0 9.0 0 0 000 090000 4 8 099 9 09 900090 0.0

a8 SURRQUTINEAPLOT.CNCy Ay Ny My . __NS)

289 DIMENSION CUT(116),YPR(11)  A(1000)

290 < COMMDN_ANG (91, 8LANK, STAR 0 "o o e
) c . .

231 1_FORMATAIH! 460X, TH_CHART o 134//)

292 2 FORMAT(IH 3F11.4,5X,101A1) .

2933 EORMATA/, 20Xy t05555533>> .5 T I M AT I NG _F UNCIT.I.0NS

1 <<<<<<L<LL 477
2ne 7 FOPMAT( LK 18X ,101H, _ . N
Sos o gazteriieg,egiagie gy ' )

. LL: i




- L .
297 LIENS) 16, 1o, 10 e - e _
. C ) . . )
i O LSBT RASE VAR LSALE LDATA IN ASCEMTING . GRDE: 3
A c :
288 o T An B 15 b=l - = o e .
auf DO 14 J=1,0 :
G0 LRLACINZAL)) 14, 14, 11 . R _
201 11 L=1-p '
307 _bLL=Jg=N _
3013 DO 12 K=1l,M
204 L=L#N
3208 LL=LL+N
306 F=A(L)
307 A(L)Y=ALLL)
308 12 A(LL)=F
309 14 COMNTIMUE
210 15 COMTINUE
C :
C TEST NLL
C .
311 16 ‘CtmLLi.zo,_;al 20
312 18 NLL=50
_C —
o PRINT TITLE
A R e e e —
313 20 WRITE(&,1)N0
‘314 IF(NOEQ0)PRINT3
C
C FIND SCALE FOR CROSS-VARIABLES
' ¢
315 Mli=N+1
316 YMIN=A(M1)
317 YMAX=YMIN ' -
318 M2=M*N .
319 DO 40 J=pMl,M2 g
320 IF(A(J)-YMIN) 28,26426
321 26 IF{A{J)=YMAX) 40y40,30
322 - 23 YMIN=A{J)
323 G0 _TO_ 40
324 30 YMAX=A{J)
325 40 CONTINUE
326 YSCAL=( YMAX-YMIN)/100.0
C ' -
C FIND BASE VARIABLE PRINT POSITIOM
c _
Z27 4 MY=M~1
328 DO 701L=1,N

APTLO T

tcéyT)A




Wi Ll
VISV I F VRN

HPS]

APLCT

CCoretn

b VT

1
|

W uthe w

|wlﬁU)w

B 53.B0 55 Ix=l,its e

c 55 OUT(IX)=EL dhk e T
oo L D2IOTIC=1,110,10 — S S
2 100 GUTLIC)=STAF .

v 80 J=l,0Y N

A LL=L+Jd=n - '

5 JP=((ALL)-YMINI/YSCAL)*+1.0

o GUT (JPI=ANG(J)

7 60_CONTIMUE

PRINT LIME AND CLEAR, GR SKIP

Olo ol

XPR=A{L)

701

WRITE(6,2)XPR, (CUT(IZ),1Z=1, 101)
CONTINUE

PRINT CROSS-VARIABLES NUMBERS

341

o O

WRITE(6,7)

342
343

PRI1)=YiMIN
DO 90 KN=1,9

344
245

YPRIKMN+1)}=YPRIKNI+YSCAL*10.D
YPR{11)=YMAX

™340
247

WRITE(6, P)(YPP(IP),IP 1,11)
RETUPN

3248

END



