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Preface

The work described in this report was performed by the Guidance and Control
Division of the Jet Propulsion Laboratory.
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Abstract

This report documents the derivation of minimum-dimension sets of discrete-
coordinate and hybrid-coordinate equations of motion of a system consisting of an
arbitrary number of hinge-connected rigid bodies assembled in tree topology.
These equations are useful for the simulation of dynamical systems that can be
idealized as tree-like arrangements of substructures, with each substructure con-
sisting of either a rigid body or a collection of elastically interconnected rigid
bodies restricted to small relative rotations at each connection. Thus, some of the
substructures represent elastic bodies subjected to small strains or local deforma-
tions, but possibly large gross deformations; in the hybrid formulation, distributed
coordinates, referred to herein as large-deformation modal coordinates, are used
for the deformations of these substructures. The equations are in a form suitable
for incorporation into one or more computer programs to be used as multipurpose
tools in the simulation of spacecraft and other complex electromechanical systems.
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Large-Deformation Modal Coordinates
for Nonrigid Vehicle Dynamics

l. Introduction
A. Background and Motivation

Although the influence of vehicle nonrigidity on spacecraft attitude stability and
control has been noted in singular cases since the very beginning of the space age
(Refs. 1, 2), it is only in recent years that this influence has been widely recognized
as a systems problem of paramount importance to the success of many missions
considered crucial to the space program.

The determination of the influence of spacecraft nonrigidity on mission perform-
ance is not a single problem but a family of problems. It is therefore appropriate
that the engineer have at his disposal an arsenal of analytical and computational
weapons, and not just a single approach or a single computer program. This report
focuses accordingly on the exposition of a particular method for simulating a cer-
tain class of spacecraft subject to large changes in attitude and configuration. The
formulation provided here seems to be more comprehensive than any previously
published for application to spacecraft amenable to mathematical modeling as a
collection of point-connected rigid bodies assembled in a topological tree (with
contiguous bodies sharing a common point and no closed rings of bodies); but not
every spacecraft should be modeled in this way. In order to establish the position
of this contribution in the spectrum of methods currently available for the simula-
tion of nonrigid spacecraft, the literature in this field must be reviewed and the
need for extensions of existing procedures established.
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1. Energy sink and reaction force methods. Attitude anomalies observed after
the launch of Explorer I (Fig. 1) were explained (Ref. 1) by means of an approxi-
mate dynamic analysis in which the vehicle nonrigidity was ignored in generating
a preliminary representation of rotational motion, and then the oscillatory deforma-
tions of flexible appendages on the vehicle (the wire turnstile antennas in Fig. 1)
were estimated by prescribing the appendage base motion to be that obtained from
the rigid vehicle approximation. Estimates of the energy dissipation rate were then
obtained from the predictions of relative motions of the appendage components,
and finally, the kinetic energy of the original rigid-body model of the vehicle was
reduced over time in correspondence with the estimated rate of dissipation of
energy in the nonrigid portions of the vehicle. In this fashion, it was determined
in Ref. 1 that nonrigidity and consequent energy dissipation would cause Explorer I
to change asymptotically from initial spin about its longitudinal axis to eventual
spin about a transverse axis, thus explaining the observed behavior of this satellite.

Since the nonrigidity of a spacecraft is acknowledged by the analyst who follows
the practices of Ref. 1 only in the process of predicting the energy dissipation rate,
the vehicle mathematical model which he adopts is often characterized by the
necessarily imprecise term quasirigid, which implies that over a “short” time inter-
val, the overall vehicle motion is essentially that of a rigid body. The procedure
described here has been widely employed in the dynamic analysis of spinning and
dual-spin spacecraft (Refs. 3-5), and it is known in its various guises as the energy-
sink approach. In a variation of this procedure applicable also to systems of quasi-
rigid bodies, the energy loss calculation is replaced by an estimate of the reaction
forces on the spacecraft due to the relative motion of components (Refs. 6, 7).

Although the energy-sink and reaction-force methods have proven extremely
useful, particularly in the interpretation of observed attitude anomalies (Refs. 1, 5)
and in preliminary design (Refs. 3, 4, 6, 7), they are inherently approximate, and
their predictions generally require more formal corroboration. In some industrial
applications, an energy-sink or reaction-force analysis might suffice to establish, in
a given case, the noncritical nature of vehicle nonrigidity, but in this study, a deeper
investigation is presumed necessary. At issue is the question of how to proceed.

2. Discrete-coordinate methods. The practice of modeling a spacecraft as a
collection of discrete rigid bodies (or particles and rigid bodies) is limited only by
the skill with which the analyst can devise his model, the size of the computer
(and computer budget) available to integrate numerically the resulting ordinary
differential equations of motion in the discrete coordinates of the system, and the
accuracy and computational stability of his integration program. Since there need
be no limitations on the relative motions of the constituent parts of the spacecraft,
this discrete-coordinate approach is conceptually ideal for spacecraft undergoing
large changes in orientation and configuration, such as the dual-spin vehicle shown
in Fig. 2 in the process of deploying solar panels while maintaining antenna point-
ing control. This vehicle would seem to require at least eleven bodies in the mathe-
matical model, and more bodies would be required if it became necessary to
accommodate the flexibility of the individual solar panels or the antenna. Addi-
tional problems might be presented by fluids or flexible components in the rotor.
Practical limitations in this approach arise because the costs of computer simula-
tion increase rapidly with the number of bodies in the system, and problems of
computational inaccuracy and instability increase correspondingly.
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Fig. 2. Dual-spin spacecraft during solar panel deployment
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The objective -of formulating equations of motion in a form most conveniently
obtained and most readily solved has preoccupied dynamicists for centuries. The
accomplishments of Euler, Lagrange, and Hamilton in this area are well known;
Lagrange found, for example, that if he restricted the dynamical system to one
involving only holonomic constraints, and if all forces other than those imposed to
satisfy constraints were conservative, then he could write scalar equations of
motion in the form

d 3L\ oL ,

zﬁ<aqi>—aqi—0 i=1] - ,n
where the Lagrangian L is the difference in kinetic and potential energies, and
G, " ' ,Qn are the generalized coordinates of the system. Similarly (but less spec-

tacularly), modern dynamicists have discovered that if they impose other sets of
restrictive conditions on the dynamical system, they too can obtain generic equa-
tions of motion in a form particularly convenient for practical application; in a
modern context, the equations are often judged by their suitability for digital
computer programs for numerical integration.

The specific dynamical system for which equations of motion have most success-
fully been formulated generically consists of a collection of rigid bodies which are
point-connected (i.e., interconnected in such a way that each body shares at least
one point in common with some other body), with no closed loops or rings of point-
connected bodies in the system. This system has become known as the set of point-
connected rigid bodies in a topological tree.

The eleven-body model suggested for the dual-spin spacecraft in Fig. 2 provides
a natural example of such a system of point-connected rigid bodies in a topological
tree. This is a special case because contiguous bodies in every case share a common
line and not just a common point; such systems are called hinge-connected. If it is
deemed essential that the dynamical model accommodate the flexibility of each
of the six individual segments of the solar panels in Fig. 2, then this can be accom-
plished within the framework of the point-connected topological tree model in a
variety of ways, as illustrated by Figs. 3a, b, ¢. In each model, a series of line hinges
has been introduced, with suitable restraints on rotation (spring torques and damp-
ing torques). In model (a), only the bending flexibility of the panel is accommo-
dated. Model (b) also permits the panel to twist about its central axis. Model (c)
permits twisting and bending about two orthogonal axes. With the introduction
of another family of hinges normal to the page, one could accommodate in-plane
deformations of the panels.

Should it become necessary to connect rigid bodies with linear springs in addi-
tion to the basic point connections, this can be accomplished within the framework
of the point-connected topological tree system equations, even if the linear springs
provide the closure of a chain of bodies into a ring; the linear spring forces must
then be included with the external forces in the system equations.

Note that in Figs. 2 and 3, the bodies are hinge-connected rather than merely
point-connected. It is always possible to substitute a hinge-connected system for
a point-connected system simply by introducing auxiliary bodies, such as the small
blocks shown in Figs. 3b and 3c¢; such bodies can be idealized as massless and

JPL TECHNICAL REPORT 32-1565



/ PHYSICAL HINGES—\
|

(0)

e e e —— — ]

I
|
I
|
[
!
I
[
|
[
{

ANALYTICAL HINGES
/ PHYSICAL HINGES —\

®)

O @ @ [0 ‘

ANALYTICAL HIN('EES\f

(ORTHOGONAL PAIRS)

/ PHYSICAL HINGES—\
|

I

(e)

UL

ANALYTICAL HINGES

Fig. 3. Rigid-body model of flexible panel segments from Fig. 2

dimensionless, and their introduction does not alter the minimum dimension of
the problem because it does not change the number of degrees of freedom in
the system.

The disadvantages of employing discrete-coordinate equations of motion of a
system of point-connected (or hinge-connected) rigid bodies in a topological tree
are obvious: (1) No degree of sophistication in mathematical modeling can provide
proper representation of actual local deformations, as required for the calculation
of stresses; and (2) the number of rigid bodies in the system soon grows too large
for computer simulation. (If model 3c is used for each of the six panels in Fig. 2,
the vehicle model involves 95 hinge-connected bodies!)
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The advantages of employing discrete-coordinate equations of motion of a sys-
tem of point-connected (or hinge-connected) rigid bodies in a topological tree can
also be clearly stated: (1) A minimum-dimension set of equations of motion can
easily be formulated generically for an n-body system and programmed once and
for all for reasonably efficient digital computer numerical integration; and (2) rela-
tive rotations between connected bodies can be unrestricted in magnitude, per-
mitting the simulation of time-varying configurations or large deformations.

The contributions of the present report in the area of discrete-coordinate formu-
lations are based upon a very substantial foundation provided by others, whose
work is briefly reviewed in what follows.

The publication in 1963 by Fletcher, Rongved, and Yu (Ref. 8) of the equations
of motion of two point-connected bodies representing a gravity-stabilized satellite
stimulated the parallel derivations by Hooker and Margulies (Ref. 9) and by
Roberson and Wittenburg (Ref. 10) of the corresponding equations for an arbitrary
number of point-connected rigid bodies in a topological tree. Reference 9 provides
vector-dyadic equations, and Ref. 10 contains equivalent but independently derived
matrix equations. Both sets of equations involve all torques transmitted between
bodies at connection points, and this can be a substantial liability if relative motions
are constrained (as by a line hinge). As a consequence of their retention of unknown
kinematical constraint torques and the equations necessary to provide solutions for
these unknowns, neither Ref. 9 nor Ref. 10 offers a set of equations of motion of the
minimum dimension required by the number of kinematical degrees of freedom
in the system.

The equations provided in Refs. 9 and 10 fulfilled in a timely manner a keenly
felt industrial need, and several aerospace organizations developed computer pro-
grams based on these equations or others of similar character derived indepen-
dently. Procedures were proposed and implemented by Velman (Ref. 11) and by
Fleischer (Ref. 12) to enable the computer to integrate the equations without actu-
ally solving for the constraint torques. Russell (Ref. 13) devised an approach to
deriving the equations without ever introducing the constraint torques; he formu-
lated vector equations of motion for subsets of rigid bodies selected so that only
one joint connected each subset to a body outside of the subset, and then dot-
multiplied each subset equation by unit vectors dictated by the degrees of freedom
at that one joint of the subset linked to an external body. Russell provided a pro-
cedure for systematically deriving equations rather than a generic system of equa-
tions suitable for complete pre-programming. Hooker (Ref. 14) then indicated in
a brief note a procedure for operating on the Hooker-Margulies equations (Ref. 9)
in such a way as to obtain a minimum-dimension set of equations. Hooker’s sug-
gestion required coordinate transformations, summation of selected subsets of
equations corresponding to those used by Russell, and dot-multiplying by unit
vectors established by the details of the joint geometry. In his published note
(Ref. 14), these operations are outlined but not presented in explicit detail.

Computer programs based on generic formulation of equations of motion of
discrete-coordinate systems have been widely used in the aerospace community
since 1965, and in a few cases (Refs. 11, 15, 16), public documentation is available.
Although these programs have served a useful and even necessary function, they
have not become a panacea for all problems of simulation of nonrigid spacecraft,
because of the disadvantages noted previously. The deficiencies of the rigid-body
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models in representing local strains and stresses are rarely of concern to the atti-
tude control specialists who have used this approach, but the prohibitive cost of
computer simulations involving many bodies has effectively restricted the use of
these programs. It soon became evident that more efficient approaches would be
required.

3. Vehicle normal-coordinate methods. The problem of accurate representation
of the vibrations of a complex elastic structure with a modest number of coordi-
nates has traditionally been resolved among structural dynamicists by the use of
distributed or modal coordinates. When such coordinates are chosen so that each
one represents a normal mode of vibration, in which the structure can vibrate
without the excitation of other modal coordinates, then the modal coordinate
equations are uncoupled, and one can with impunity solve the scalar equations of
motion one at a time. Estimates of the motion can then be based on the super-
position of as many (or as few) of the modal coordinate solutions as may be desired.
This approach, called the vehicle normal-coordinate method, is rarely appropriate
for vehicles of the complexity of modern spacecraft, however, and in recent years,
other alternatives have been developed which combine some of the computational
efficiencies of the vehicle normal-coordinate method with some of the advantages
of generality offered by the discrete-coordinate method by using combinations
of discrete and distributed coordinates. Any approach which combines discrete
coordinates describing the translations and rotations of some bodies or reference
frames of the system with distributed or modal coordinates describing the small
relative motions of other parts of the system is called a hybrid-coordinate method.

4. Hybrid-coordinate methods. Hybrid-coordinate methods are many and varied,
being represented, for example, by Refs. 17-21. The last of these references pro-
vides an extensive discussion of each of the three approaches (discrete coordinate,
vehicle normal coordinate, and hybrid coordinate) in the stage to which these
methods had evolved by 1970. The application to complex spacecraft of the hybrid
coordinate method described in Ref. 21 is documented in Refs. 22-24 and an exten-
sion of Ref. 21 providing for the representation of a flexible appendage with a
distributed-mass finite element model is given in Ref. 25. Quantitative compari-
sons of simulation results and computer time for discrete-coordinate and hybrid-
coordinate simulations of a Viking spacecraft may be found in Ref. 16, and similar
comparisons of discrete-coordinate and vehicle normal-coordinate simulations are
available for the Radio Astronomy Explorer satellite in Ref. 15.

Because distributed coordinates are used to describe the deformations of flexible
substructures in the hybrid coordinate approach, the internal mathematical model
of the flexible structure is obscured; it might be an elastic continuum (Ref. 18), or
a collection of particles interconnected by massless elastic elements (Refs. 22-24),
or a collection of interconnected elastic elements possessing mass (Ref. 25). The
question might even be ignored in formulating the equations (as in Ref. 20), but
when the time comes for applications, some decision must be made. In the formula-
tions which have been published thus far, no one has suggested the adoption for
an elastic substructure of a model consisting of a point-connected set of rigid
bodies in a topological tree, but, as suggested by the flexible solar panel segment
models in Fig. 3, this is a realistic option. The advantages associated with this
choice (to be amplified later) stem from the possibility of beginning with a descrip-
tion in terms of discrete coordinates describing relative rotations of contiguous
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bodies, and therefore representing local deformations. This distinction permits the
use of modal coordinates to represent large gross deformations.

The several variations of the hybrid-coordinate approach which have emerged
thus far share certain limitations. (1) The critical task of modal analysis of flexible
appendages has in all publications to date been based on restricted boundary con-
ditions; in the most general formulation (Ref. 25), the flexible substructure is
assumed to be attached to one rigid body with arbitrary motion, and in other
formulations in which the flexible substructure is connected to more than one
additional substructure, the system is assumed to be nominally inertially stationary.
(2) Flexible appendages are restricted to small displacements from a reference
state, implying small deformations both in a local sense and in an overall sense.
(3) Except in restricted cases (e.g., Ref. 20), hybrid-coordinate formulations have
not been incorporated into comprehensive generic computer programs (although
such programs are under development at JPL and elsewhere).

5. The need for new procedures. When one considers the limitations of the
discrete-coordinate, vehicle normal-coordinate, and hybrid-coordinate procedures
in their present stages of development, it becomes clear that none of the methods
described in the references is suitable for certain classes of vehicles. As an example,
note that a flexible substructure experiencing small strains and large overall defor-
mations can at present be accommodated only by a discrete-coordinate formula-
tion, which must be based on a crude model to avoid prohibitive expense (Ref. 15).
As an illustration of a different class of problem beyond the scope of present
methods, note that none of the published formulations will suffice in the accurate
simulation of the dual-spin vehicle shown in Fig. 2 while its solar panels are being
deployed, unless the panel segments are presumed rigid. The discrete-coordinate
approach is ideal for a gross approximation of the deployment operation (using
rigid panel segments), and the hybrid coordinate approach in Ref. 21 is ideal for
the simulation of flexible panels after deployment. But if antenna pointing con-
trol requirements during deployment demand the accommodation of panel seg-
ment flexibility in the mathematical model, then the discrete-coordinate approach
becomes computationally cumbersome and perhaps prohibitively expensive, while
the existing hybrid-coordinate approaches are inapplicable because of theoretical
restrictions. New procedures are therefore required.

B. Scope of Study

The objectives of this report include the documentation in scalar detail not
available elsewhere of a minimum-dimension set of discrete-coordinate equations
of motion of a hinge-connected set of rigid bodies in a topological tree, and the
introduction of a new procedure for modifying these equations by coordinate
transformation and truncation, so as to obtain a hybrid-coordinate formulation of
the system equations of motion, employing large deformation modal coordinates
in combination with discrete coordinates.

The discrete-coordinate equations presented here (see Section II) are the results
of the application of a variation of Hooker’s procedure (Ref. 14) in a systematic
fashion that results in generic matrix (or scalar) equations, formulated in the spirit
of the Roberson-Wittenburg equations (Ref. 10) but with constraint torques
removed.
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‘The hybrid-coordinate equations presented here (see Section III) have been
obtained by (1) isolating discrete-coordinate equations for subsets of rigid bodies
identified collectively as a flexible appendage or flexible substructure, (2) lineariz-
ing in the variables which describe the relative angular motions of contiguous
bodies within the flexible substructure, (3) transforming these substructure vari-
ables into distributed coordinates for the substructure, and (4) truncating these
distributed coordinates. As noted in detail in Section III, the linearization employed
here remains a useful engineering approximation as long as contiguous bodies
within the flexible substructure experience “small” relative rotations, even if the
rotations between the first and last bodies in a chain become “large” (say, 90 deg).
This is not the case for traditional “small deflection theory” as applied to beams,
etc., because this theory assumes small relative displacements and rotations of all
differential elements. The modal coordinates in Section III are useful even when
the actual elastic substructure experiences large elastic deflections from a reference
state as long as the elongations and shear deformations of differential elements
remain small.

The useful results in this report consist of three versions of the equations of
motion of an arbitrary vehicle modeled as a collection of point-connected rigid
bodies in a topological tree: (1) unrestricted discrete-coordinate equations (see
Eq. 1), (2) partially linearized discrete-coordinate equations (see Eq. 30), and
(3) hybrid-coordinate equations (see Eq. 118). These equations can all be incor-
porated as subroutines in a single computer program, or they can become mem-
bers of a family of computer programs, with use of the hybrid-coordinate program
or subroutine requiring additional input from a separate program designed for
eigenvalue-eigenvector analysis of linear subsets of differential equations.

Il. Discrete-Coordinate Equations of Motion
A. Mathematical Model

Figure 4 illustrates a set of eleven hinge-connected rigid bodies, labeled accord-
ing to a convention designed to facilitate the processing of the equations of motion.
This example, which portrays a system of a degree of complexity that would mini-
mally suffice for the spacecraft shown in Fig. 2, will be useful in illustrating and
interpreting the general mathematical model and the labeling conventions adopted
here for its description. (In reading the lengthy list of conventions and symbol
definitions, frequent reference should be made to Fig. 4.) Only after entertaining
the complete cast of symbols used in what follows will consideration be given to
the much smaller list of symbols to which values must be assigned by the user of
the projected computer program.

The mathematical model consists of a set of n + 1 rigid bodies interconnected
by n hinges*; the indicated numbers of bodies and hinges imply a tree topology.
Any interbody connection forces in addition to those at the n hinges must be
treated as forces external to the entire system. (If there were a linear spring con-
necting the mid-point of body £, in Fig. 4 to some point on body 4, for example,
it would be necessary to replace the spring with a pair of equal and opposite forces

*The word “hinge” as used here implies a connection which maintains a line common to both
bodies; such a connection is sometimes called a line hinge.
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Fig. 4. Eleven rigid bodies interconnected by ten hinges

applied to the spring attachment points on & and &,; the magnitude and direction
of these forces would have to be expressed in terms of the unknown kinematical
variables of the system.)

1. Definitions of fundamental symbols

Def. 1.

Def. 2.

Def. 3.

Def. 4.

Def. 5.

Def. 6.

Let n be the number of hinges interconnecting a set of n + 1-bodies.
Define the integer set &3 £ {0,1, - - - ,n}.

Define the integer set & 2 {1, - - - ,n}).

Let 4, be a label assigned to one body chosen arbitrarily as a reference
body, and let 4,, - - - , 4, be labels assigned to the remaining bodies in
such a way that if ¢; is located between €, and €, then 0 <j < k.

Define the kth neighbor set By for k e B such that r € By if €, is attached
to Jk.

Define the dextral, orthogonal sets of unit vectors b%, b% b% so as to be
imbedded in 4 for k € 3, and such that in some arbitrarily selected nomi-
nal configuration of the system b* = b/ for « = 1,2,3 and k, 7 € 3.
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Def.7.

Def. 8.

Def. 9.

Def. 10.

Def. 11.

Def. 12.

Def. 13.

Def. 14.

Def. 15.

Def. 16.

Def. 17.

Def. 18.

Define {b*} as the column array of unit vectors*
b
(b¥} & {b’;}
b3

Define {i} as a column array of inertially fixed, dextral, orthogonal unit

vectors iy, I, 13, so that
A L
{i} =<1
i3

Let C be the direction cosine matrix defined by
{b°} =C{i}

for ke £3.

Let @° = {b°}7o? be the inertial angular velocity vector of &, so that «°
is the corresponding 3 by 1 matrix in vector basis {b°}.

Let c¢x be the mass center of £ for k e &B (see Fig. 4).

Let /¢ be a point on the hinge axis common to é; and ¢; for j < k and
ke& (see Fig. 4).

For j € B, let p¥ 2 {b*}Tp*! be the position vector with respect to ¢ of
the labeled point on the hinge axis (either f; or ;) which is common to
4 and ¢;, so that p*/ is the corresponding 3 by 1 matrix in vector basis
{b*}. (See Fig. 4, and note the special cases p** =p** =p**=p¥*=p**=0.)

Let g* £ {b*}"g" be a unit vector parallel to the hinge axis through 4, so
that g is the corresponding 3 by 1 matrix in vector basis {b*}.

For ke &, let y, be the angle of a g¥-rotation of €, with réspect to the body
attached at £, that is, a rotation during which a right-handed screw fixed
in 4y, with its axis parallel to g* advances in the direction of g*. Assign the
value zero to yx for k € £ when the system is in its arbitrarily chosen nomi-
nal configuration, for which b = b/, a =1,2,3; k,je 3.

A
Let X = {i}” X be the position vector of the system mass center CM with
respect to an inertially fixed point &, so that X is the corresponding 3 by 1
matriv in an inertial vector basis {i}.

Let my be the mass of 4; for ke 3.

Let 1 2 {b*}7I* {b*} be the inertia dyadic of & for ci, so that I* is the
corresponding inertia matrix in vector basis {b*}.

*Note that braces { } are used in this report both to identify column arrays of vectors and to
enclose sets of integers; the distinction is apparent as soon as the objects within the braces are
identified as vectors (boldface) or scalars.
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Def. 19.

Def. 20.

Def. 21.

Def. 22.

Def. 23.

Def. 24.

Let F* 2 {b*}TF* be the resultant vector of all forces applied to &; except
for those due to interbody forces transmitted at hinge connections, so
that F* is the corresponding 3 by 1 matrix in vector basis {b*}. (Thus, any
interbody forces due to spring connections, efc., which are separate from
the n hinge connections would contribute to ¥, as would all forces from
sources external to the system.)

Let T 2 {b*}7T* be the resultant moment vector with respect to c¢; of
all forces applied to 4 except for those due to interbody forces trans-
mitted at hinge connections, so that T* is the corresponding 3 by 1 matrix
in vector basis {b*}.

Let r be the scalar magnitude of the torque component applied to £ in
the direction of g* by the body connected at f2x.

Let the Kronecker delta symbol 8.g be defined by

1
Sy =1=5(a—Pr5— (=B  &f=123
so that
lifa=2p
SaB =
0 otherwise
Let the Levi-Civita density symbol €ag, be defined by

1
€aﬁeé§(a“‘ﬂ)(,8_0)(0—a) «fB,6 =123

so that
+1 for «, B,  a cyclic permutation of 1,2,3
€po=9{ Ofora=pBorp=60orfd=a
~1 for «, 8, 0 a cyclic permutation of 1, 3,2

Let the tilde symbol (~) signify in application to a 3 by 1 matrix V with
elements V, (4 =1,2,3) transformation to a skew-symmetric 3 by 3
matrix V, whose elements are given by*

Vaﬂ = Eaaﬁvo

Thus, the matrix V has the expanded form

O _V3 Vg

~ A
V= V3 0 '_Vl
-V, \'A 0

2. Definitions of derived symbols

Def. 25.

A A
Let F = {(i}’F = thF", so that F is the 3 by 1 matrix corresponding to

F in vector basis {i}.

*When lowercase Greek subscripts appear twice in a single term, summation over the values
1,2, 3 is implied, so that, for example, €xsVo = €a18V: + €argV, + €asgVs.

12
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Def. 26.

Def. 27.

Def. 28.

Def. 29.

Def. 30.

Def. 31.

Def. 32.

Def. 33.

Def. 34.

Def. 35.

Def. 36.

For re (B — k),* let Ni, denote the index of the body attached to £, and

A A
on the path leading to ¢, and let Ny, = k and Ny, = N, (to simplify nota-
tion). The term network elements will be applied to the scalars typified
by Ny,, which are (n + 1)? in number.

Define the scalar e, such that for ke B and se &,

A 1if s, lies between &, and &

£k = .
0 otherwise

The term path elements will be applied to the scalars &g, which are
n(n + 1) in number.

Let Bx; be the branch set of integers r such that 7 € B;; if | = Ni,. Thus,
&Bx; consists of the indices of those bodies attached to 4; on a branch
which begins with ¢;. Since there are n hinges, there are 2n branch sets
appearing in pairs, such that $B;x = &8 — PBx;j.

Let C7 be the direction cosine matrix defined by
A L
{b7} =C"7 {b'}
for r,j€ 3. In the nominal state, yx = 0 for ke &, and all unit vectors of

corresponding subscript are aligned, so that C*/ then is U, the 3 by 3 unit
matrix.

A
Define 1 = 3 my, so that O3 is the total system mass.
ke

A
Define Wx; = 3 m,, so that Oy; is the total mass on the branch of the

. 1By
system attached to £, and commencing with é&;.

For re {8 — k}, define L*" 2 p**, and define L* 4 0. Thus, L*" is the
vector from ¢ to the hinge point attached to € and on the path leading
from é; toward €,. (In Fig. 4, for example, L3¢ = L57 = L% = p% and
L3 =0 for re&B.)

Define {b*}7D** Spud = L¥m;/On for keB.
feB

Let b, be a point called the barycenter of é; and fixed relative to é; such
that D* is the position vector of ¢ with respect to by.

Define {b*}7D*/ 2 D* £ pu + L* for k,jefB. Thus, D¥ is the vector
from by to the hinge point fixed in 4, and on the path leading to é;.

Define the dyadic

O 2 P 4 m, (D - DHU — DHD¥) + S Oy, (DY » DHU — DYDY)
e

*For notational brevity, the set 8 — {k} is designated &8 — k.
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Def. 37.

Def. 38.

Def. 39.

Def. 40.

where U is the unit dyadic, and define the corresponding constant 3 by 3
matrix in vector basis {b*} as
A
= (bF) « @ . (k)T

= I + my (DWDHU — DHDYY) 4 S Oy (DH"DHU — DHDHY)
f€Bx

For j e {&3 — k}, define the dyadic

® = —Qp (D DHY — DHDH)

and define a corresponding variable 3 by 3 matrix as

24 2 (br} 04« (b
= ~OR[{b} (D (b} - (b¥)7 D¥) (b¥)7
= (b7} (b1}7 DADH (b - (b))
= —On [{b')  (DIVCHD) (B¥)7 — DIDH]
= —Qp (CH*D**C*DF — DitpHiT)

Define the 3 by 3 matrix
oo A S S COkiCke = 3 CokphkCRo
ke feB kefB

-my 3 (CoijkTCjkaj — CojDikajT) Cko
keB jeB—k

For ke &, define the 3 by 1 matrices

A
Qo —

2 2 ek,Con'jC'kgk'= 2 ak'COrq)rrCrkgk
reB3 jeB re&

— Q/n 2 2 Ekr (COrDerCi'rDrj —_ CoijrDr}T) Crkgk
re&P jeB—r

A
and let g,, = af; -

For j,k € &, define the scalars

A .
aj = g7 3 3 ensejsCr*omCrigs
1e&P 3P
— ng 2 ekrejrckrcprrcﬁgj
1€

_.(mng E 2 EkvEjs (CkrDchCuDrs — Ck.sDquaT) Cffgi
re&P s€P—r
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Def.41. For ke (B, define the 3 by 1 matrices*
PO e 2 DFICHFS — @ 3 ¢49, (CRC + 3 ¢,,7,C45°C*") g
re& se&P
 (orcn + 3 en CHPICH @ 090+ 3 e Cg]

+ Q/]/Z 2 Dk;Ck/ [C;o-—oco; + z En')'rC" rer]2 D:k
feB—k

_ 2 ijq)kj 2 Erl}'r [Ckor"oCOr + 2 €sr')’3Cks aCer]g
je&P

where the superscript 2 indicates the square of the matrix in square
brackets. This expression for A* can be written in a form which reveals
more explicitly its dependence on time-variable quantities by substituting
in A¥ the expansion of &/ recorded in Def. 37. The resulting expression is

Ak — Tk + E DkJCkJFJ q,kk 2 Erk‘)’r (CkMCOr + 2 e"yacksgBCsr)g
jeB re&p

~ [CRRC™ + 3 ey CHEICH] % (O + 3 003, C]
je&P

+Om X {(DMCH [CiaCY + z ¢,9-CiTgCri]2 Di*
jeB ~ k

(UDJkTCﬂchJ — CkiDJkaJT) 2 6r;7r [CkMCOr + 2 €erka8gaC"] g }
rep

3. Augmented bodies and barycenters, The barycenter b, of body 4, is defined
in Def. 34 in mathematical terms which admit an interesting interpretation as a
physical property of an abstraction called the augmented body. If one imagines
the body 4; to be augmented by the addition of a particle of mass O%y; at the con-
nection point of € with &; (for j e $By), then the result is called the kth augmented
body, here referred to as /. Since \i; is the total mass of the branch of bodies
attached to £, commencing with £, the mass of each augmented body is 0%, the
total system mass.

Definition 33 provides
— QD+ = 2 m,L¥i

which reveals the fact that —D* is the posmon vector of the mass center of £; with
respect to the mass center cx of by. Thus, the barycenter by, is the mass center of the
kth augmented body #f. With this interpretation comes the relationship

S mD¥=mD¥ + ¥ mDF =0
reB reB — k
Since D** is the position vector from the barycenter b, to the mass center ¢; of 4;,
and (from Def. 35) D*/ is the position vector from by to a particle of mass Ohx;
located at the connection point of 4; leading to body ¢;, for j € &3x, one can interpret
®* from Def. 36 as the inertia dyadic of the augmented body £ with respect to the

*It may be helpful to note that identifying superscripts are never attached to the right of a scalar
in this report; a superscript on a scalar denotes its exponent (so that a5 ; means the scalar g;
raised to the fifth power). In contrast, nonscalar quantities are not exponentiated unless noted
explicitly (as in Def. 41), so that a superscript to the right of a matrix, vector, or dyadic is then
an identifier and not an exponent.
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Fig. 5. Augmented ¢4/ from Fig. 4

barycenter bx. Such physical interpretation is not possible for the dyadic ®*/ defined
in Def. 37, since this dyadic involves vector D fixed in #; and vector D¥/ fixed in é;.

In illustration of the concepts just described, Fig. 5 shows the augmented body
é4 associated with body ¢, in the system of Fig. 4.

B. Matrix Dynamical Equations

In terms of the symbols defined in the preceding section, a minimum-dimension
set of n + 3 scalar equations of rotational motion of a set of n + 1 rigid bodies inter-
connected by n line hinges can be written as:

Qoo Aoy Qo2 s Aon »° > CokA¥x
keB
3T a1, (/2% R A I g 3 £, C*AY + 1,
ke
G  Gn G G ||V =] 872 ealCA 4, (1)
ke&P
Qno (%Y Ay e Ann :Y.n g"T 2 enC"™A* + 7,
- SJL L. ke .

This result is proven in Appendix A.

Note that the coefficient matrix on the left side of Eq. (1) is, from Defs. 38-40,
a real, nonsingular,* symmetric matrix which varies with time as the kinematical

*Singularity would imply that at least two rows (or columns) of the matrix are dependent, in
which event some linear combination of the indicated scalar equations would provide a matrix
equation with a zero row (or column) in the coefficient matrix of the column matrix of the mast
highly differentiated variables. Thus, singularity would indicate an incomplete set of equations
unless the variables are constrained. Since the variables in Eq. (1) are independent, the coeffi-
cient matrix on the left must be nonsingular,
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variables vy, - - - , v, change in value. If these angles and their time derivatives
remain in the immediate neighborhood of their nominal zero state, and «° remains
in the immediate neighborhood of its nominal constant value, then upon linear-
ization in the variational coordinates, the indicated coeflicient matrix becomes a
constant, symmetric, nonsingular matrix, which can be inverted in advance of
numerical integration of Eq. (1).

If for preliminary analysis one wishes to replace the variable y; (je&P) by a
known function of time, then one can remove ¥; from the angular acceleration
matrix on the left side of Eq. (1), removing also the corresponding row and column
of its coefficient matrix, and then rewrite on the right side those terms just deleted
by the removal of the column on the left. The result is a set of n + 2 scalar differen-
tial equations in which time appears explicitly.

The equations of mass center translation of the total system can from Newton’s
second law and Defs. 3, 16, 25, and 30 be written as the vector equation

(i’ F=m (i) X
or the matrix equivalent

F =qnX (@)

Equations (1) and (2) constitute a complete set of dynamical equations, but they
are not fully descriptive of the system motion until they are augmented by control
equations specifying =, - - * , 7, and certain external forces and torques, and aug-
mented also by kinematical equations as provided in the next section.

C. Matrix Kinematical Equations

The kinematical variables adopted in the previous sections are as follows: y; for
ke (Def. 15); C for r,j e B (Def. 29); C (Def. 9); ° £ {b°} * w° (Def. 10); and

x2 {i} * X (Def. 16). Although the equations of motion have been expressed in
terms of these quantities, the latter are not all independent. Relationships among
kinematical variables developed in this section must therefore either be considered
in conjunction with the dynamical equations or be substituted into them to remove
redundant variables whenever a solution is sought.

~ The direction cosine matrix C (Def. 9) which establishes the inertial attitude of
é, is related to the inertial angular velocity matrix ° of €, (Def. 10) by

C=-aC (3)

The relationship &° £ C67 is used here to define the angular velocity @°, as on p. 96
of Ref. 26 (where the symbol C is the transpose of that used here).

The direction cosine matrix C"7 (Def. 29) relates sets of orthogonal unit vectors
fixed in é, and €;, and hence depends upon those angles v, for which £, lies
between €, and ¢;, and also upon the corresponding unit vectors g* defining the
intervening hinge axes. For the special case in which 4, and ¢; are contiguous, it
is always possible to identify them in one sequence or another as k and Nj (as
introduced in Def. 26), and then to express C** and C¥** in terms of the single
angle yx and the single matrix g¥, as follows.
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The orientation of &, with respect to 4y, is established by a simple right-handed
rotation through angle y; about a hinge axis with positive direction of rotation
established by g* = {b*}”g*. As will be demonstrated, the direction cosine matrices
then become

C*¥ = U cos yx — Z*sin v + g°2¥ (1 — cos yx) 4)
and

C¥* = U cos yx + Z¥sin yx + g°g*" (1 — cos yx) = (C¥¥¥)T (5)

The proof of Egs. (4) and (5), which can be found (in different terminology) in
Ref. 26, is reproduced here for convenience. Figure 6 portrays two bodies €5, and
¢4, in some relative orientation for which y;50. The unit vectors shown on the
sketch are fixed in the two bodies in such a way that at all times o; X &, = g* =
B: X B», and when y; =0, then {b*} = {b**} (as in Def. 7), and also o, = B, and
o, = B,. Thus, for some constant values of p,, q,, and r, for s = 1, 2, 3, the equations

b¥ = p,&x; + q,&; -+ rsg*

and

b% = psB. + q.B, + r.g*
must apply. Substituting the relationships
B: = cos yx&, + sin v,
B, = —sin y;0x; + cosyrox,
into the preceding equations, one finds that
b* = (ps cos yx — g, sin yx) &, + (P, sinyx + @5 COS yx) X, + 1,8°
or, since «; X g8 = —a, and &, X g¥ = o,

b% = b¥* cos y — b¥* X gFsin y; + b¥x« ghg¥ (1 — cos 9) (6)

Fig. 6. Simple rotation of 4, relativeto «,
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From the definition of C7/, the element C*¥+ is given by
Coar=Dbi-bi (7)

permitting, in combination with Eq. (6), the determination of the elements

CiYr = cos v + (g5)* (1 — cos yx) 8)
Ciys = ghsinye + g5g5 (1 — cos yi) 9)
Cii* = —glisiny, + gigi (1 — cos y) (10)
CiYr = —gisiny + gigh (1 — cosw) (11)
CiY* = cos yi + (g5)* (1 — cos v) (12)
Ci* = gisinyi + ghgi (1 — cos y) (13)
CiYr = gisinyi + gigh (1 — cos y) (14)
Cir = —glisiny, + g5t (1 — cosy) (15)
Ciy* = cos yu + (g)* (1 — cos ) (16)

Although the validity of Eq. (4) can be established by expansion and comparison
with Egs. (8)-(16), this step may for some readers be more apparent with the
intervening representation of Egs. (8)~(16) in indicial or Cartesian tensor notation.
With the definitions of the Levi-Civita symbol €. (Def. 23) and the Kronecker
delta symbol (Def. 22), one can record the elements of C*"* generically as

C* = §,,cOs yi + €ue 8t sin yx + g¥gk (1 — cos yi) (u,v=1,2,3) (17)

and then recognize the validity of Eq. (4). Finally, one might prefer to construct
directly from Eqgs. (6) and (7) the direction cosine dyadic

C¥ = U cos yx — U X gFsin yx + U - gFgt (1 — cos yx) (18)

such that
Chie = b it bl (19)
Any of these approaches can be used to verify Eq. (4), and perhaps to provide

useful information or perspective as well. Equation (5) is, of course, available
directly by transposition of Eq. (4), using

CVek = (Ckzv.):r (20)

Equations (4) and (5) provide the direction cosine matrices between contiguous
bodies only, and the equations of motion are more conveniently expressed in terms
of the more general matrices C*/ (r,j € {3) provided in Def. 29. A direction cosine
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20

matrix relating the orientations of two bodies connected by a chain of intermediate
bodies can be written as the ordered product of the direction cosine matrices relat-
ing contiguous pairs of bodies in the chain. This product can be written sym-
bolically as

Cri = 115, G (21)
where the symbol I1¥:: is understood to imply the following algorithm:

1) Define p 2 N,; and construct C? from Eq. (4) if r > p and from Eq. (5)
£ p
it r<p.

(2) Define g 2 N,; and construct C* from Eq. (4) if p > q and from Eq. (5)
if p<agq.

(3) Proceed until an integer u emerges such that ié N,j, finally constructing
C* from Eq. (4) if 4 > j and from Eq. (5) if u < j.

(4) Multiply the matrices obtained in the sequence

Cri=Cr#Cr - - - Cvi (22)

D. System Specification

Once the appropriate equations from the three preceding sections are embodied
in a computer program, the user need not deal directly with all of the symbols and
concepts introduced in the formulation of these equations. He can provide the
computer with the very limited body of input required to specify his system, and
then concentrate on interpreting the numerical integration output. Although the
specific problems of programming the digital computer to process the input are
deferred to a later report, the definition of the required input is to be established
immediately.

It is assumed that the engineer in his wisdom and experience has devised for
his physical system a mathematical model consisting of a system of n + 1 bodies
interconnected by n hinges (such as that illustrated in Fig. 4). He has labeled the
bodies as indicated by Def. 4 (Section IIA), and fixed in his mind a nominal con-
figuration (for which y;, = 0 for k€& and b = b/ for j, keB and « = 1,2,3). He
must then provide the computer with the following information:

Computer input (required)

(1) The integer n (see Def. 1).

(2) The n network elements Ny (k € &) (see Def. 26).

(8) For ke&B and { e By, the 3 by 1 matrices p*/ (see Def. 13).

(4) The n 3 by 1 matrices g* for k € & (see Def. 14).

(5) The n + 1 masses my for k e B (see Def. 17).
)

(6) The n + 1 3 by 3 inertia matrices I* for ke &3 (see Def. 18).
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(7) For ke&B, the 2(n+1) 3 by 1 matrices F* and T¥, either as explicit functions
of system variables (possibly zero) or in the form of differential equations
characterizing control laws (see Defs. 19 and 20).

(8) For ke&P, the n scalar functions =, either as explicit functions of system
variables (possibly zero) or as differential equations representing control laws
(see Def. 21).

(9) Initial values for the 2n scalars yx and 7 for k e & (see Def. 15), the nine ele-
ments of the direction cosine matrix C (see Def. 9) and the three elements
of the angular velocity matrix ° (see Def. 10).

(10) Initial values of X and X, to be included if F = nX (Eq. 2) is included in
the simulation program. More often, Eq. (2) will be solvable for vehicle mass
center motion X(f) without reference to the rotational equations (Eq. 1),
and X(t) will be input to the rotational dynamics program as an explicit
function of time. Very often, Eq. (1) will not involve X(¢) or its time deriva-
tives, and then, of course, no input regarding X is required.

Computer input (optional)

(1) A set of attitude variables (attitude angles, Euler parameters, or other kine-
matical quantities) to characterize the inertial attitude of 4,; if this option is
exercised, an expression must be provided in terms of these variables for the
direction cosine matrix C introduced in Def. 9, and initial conditions on
these variables and their derivatives (consistent with constraints) might be
adopted rather than initial values of C and «°. Equation (3) can then be
replaced by a kinematical equation appropriate for the variables selected.

(2) Any kinematically prescribed variables, such as y; (£) for some j € £. As noted
in Section I1B, it is possible to modify Eq. (1) so as to accommodate the sub-
stitution of an explicit function of time for a variable, such as y; (), which
in Eq. (1) is treated as an unknown. If this option is elected, the computer
program input must include the specification of variables to be prescribed
and the appropriate time functions.

No additional input is required. The computer can be programmed to construct
numerically all intermediate concepts (such as the neighbor sets 3« and the remain-
ing network elements Ny, for k,re &P, the path elements e for ke B, se &P, the
barycentric position matrices D¥ and D*/ for k, j € {3, the augmented body inertia
matrices ¥, and the inertia-like matrices ®*/ for k,je3). The computer can then
evaluate numerically the functions displayed in Eq. (1) and, with initial values
prescribed, accomplish the numerical integrations required for Eq. (1) and any
necessary kinematical equations (such as Eq. 3). This process is illustrated in gen-
eral terms by example in the next section. Explicit scalar equations of motion are
obtained from Eq. (1) for a simple three-body system in Appendix B.

E. Sample Problem Formulation

Consider once again the eleven-body system portrayed in Fig. 4. Imagine that
equations from the preceding sections have been programmed for digital computa-
tions. In this section, an outline will be provided for the specific input required by
this system, and the internal operations of the computer will be traced conceptually
to the point of integrating equations of motion and printing out results.
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According to the input list in the preceding section, the following system param-
eters would suffice for a simulation of the vehicle model illustrated in Fig. 4:

Required input

(1) n=10

2) N, =0 N, =
N,=1 N.=6
Ny =2 Ng =
N,=3 N, =
N, =0 Ny =

(3) Numerical values for the 3 by 1 matrices p%, p°, p'°, p*3, p*, P, p¥, p*,
p43, pso’ pss, pes, pe'l, ps,m’ pm, pvs’ pB'I’ pss, pss’ pm,e_ In this case, le = p'ls -
p%? = p3* = p*3 = 0, and other values are nonzero, but are not recorded here.

4) Numerical values for the ten 3 by 1 matrices g fork=1,2, - - - ,10. Here
y
we adopt g* = g® =gé =g =g = [0 ~10]7, g*=[—-100]", g° =
[-V2/2V2/720], and gt = g*>=g*=[00 1]~

(5) Numerical values for the eleven scalars my for k =0,1,2, - - - , 10, not fully
recorded here. In this example, the masses m, and m; are taken as zero in
order to illustrate the possibility of simulating 3 deg of rotational freedom
between 4, and 4,.

(6) Numerical values for the eleven 3 by 3 matrices I* for k=0,1,2, - - - , 10,
not fully recorded here. In this example, I? and I® are taken as zero, and all
matrices except I° are assumed diagonal.

(7) Eleven values for each of the 3 by 1 matrices F¥ and T*, fork=0,1, - - - ,10.
Although these are often complex functions representing environmental
interactions and controller influences, in this example, the system is assumed
to be free of all external forces, so that F¥ = T% = ( for all k € (3.

(8) Ten scalars =, - -, 110, which for this example are given by 1« = —kaya for
a=5,6,7,89,10 and 5 = 0 for B = 2, 3, 4. The scalar 7, is unspecified here
because y, will be prescribed as an explicit function of time.

(9) Initial values for ys, * - -, v10, 1, * * * , 710, C and «° which for this example
aregivenbyy2=y3=y4=0,y5=ys=y, =yg=y9=ym=7r/8rad,}"4=
10z rad/s, 2 = ¥ = 95 = V6 = 91 = ¥s = y9 = 710 = 0, C = U, and * =
The function y, () is prescribed, as noted below.

(10) Initial values of X and X; in this example, these are irrelevant because they
do not appear in Eq. (1), and it is assumed that mass center trajectory data
can be obtained more efficiently from a special-purpose program for the inte-
gration of Eq. (2).

Optional input

(1) Inertial attitude variables for £,, here assumed to be the set of body three-axis
angles 6, 8,, 6, so defined that b% =i, when 6, =8, = 6, for « = 1,2, 3, and
in general, the attitude of {b°} can be obtained by rotating {b°} from a state
of alignment with (i} first through an angle 4, about i, = b, then through

JPL TECHNICAL REPORT 32-1565



an angle 6, about the newly displaced b}, and finally, through an angle 6,
about bS. The resulting direction cosine matrix is given by (Ref. 26, p. 61,
after transposition)

CoCs CoSs -,
C = 8,8:¢5 — 8101 $:8.83 + C3C, C18:83 — €38, (23)
C18,C3 + 838, $.C, CyCs

A A,
where ce = c0s 8, and se = sin 4,.

Although one could simply input Eq. (23) into a computer program de-
signed to integrate the kinematical equation C = —a°C (Eq. 3), this option
has little merit when contrasted with the alternative of replacing Eq. (3) in
the program with

§ = Pu® (24)

where 8 2 [8, 6, 6,]7 and (from Ref. 26, p. 147, with P = M-

Cz  §15:2 82
Al
P=—|0 ¢ —8:;
Ca
0 $, ¢,

Equation (23) is then no longer required input in this example since it does
not appear in Eq. (1).

Note that P is undefined for ¢, = 0, that is, for 6, = =/2, 3x/2, etc. This
singularity is characteristic of all three-variable systems for attitude descrip-
tion. The choice of the particular set of attitude angles adopted for this
example is based on the conviction that, for the given parameters and initial
conditions, the variable 6, will remain away from those values for which P
is singular.

(2) Kinematically prescribed variables, in this case being y, = sm Strad, with
S given a numerical value not recorded here.

This completes the input required by the computer. Since, ultimately, the differ-
ential equations, (1) and (24), must be integrated, the computer must generate
numerical values for all parameters appearing in these equations. Before this
process is outlined, the equations to be integrated will be rewritten as a single
system of first-order differential equations, in a form most suitable for computer
operations.

Define the 24 by 1 matrix x = [9 s 05 00 03 0% y2 92 ©  * vi0 ¥10)T and recast the
required equations as the state equation

Vi=W (25)

Note that the kinematically prescribed variables y, and y, have been excluded
from the state variable x. The second-order equations in Eq. (1) have been cast
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24

e

A
as first-order equations in Eq. (25) by the expedience of including y. = xs, ¥5

X0, * ° " 5> V10 2 X2, in the state variable x. This step necessitates the inclusion in
Eq. (25) of identities such as x5 = %, (or 7, = 7,). For the particular arrangement of
variables indicated for x, the matrices V& and W in Eq. (25) are, for equivalence
with Eqgs. (1) and (24), given by

| o o0lo] 0| |o|01-w
Uit ojop oflo] o} jol o 6
_d_tqo0ro0joj o 401 0 f
I Jol 1ol | ol
0 I Qoo I 0 I ago | 0 I Qo3 I " .I 0 I a(l_.l() mO
IR N O 2 L NN U HE |
00]000j1 0 0 0 ---0 0 ||
Vi = 000' azol 0 a; 0 ax 0 a0 Y2 (26)
000| 000| 0 0 1 0 0 0 Vs
000| as | 0 a3z 0 Qas3 0 Q3,10 Ys
I
OOO, OOE} 0 0 0 0 -1 0 Y10
..OOOl Qo,0} 0 Qyo,2 0 aws: - 0 Q10,10 | _")'.10_
and
- Pwo -
R r— .
E COA —am'yl
_._____‘;lz ______
gﬂ 2 €2kC2kAk + 72 — GaY:
A ke y
w2 ¥s @7

gar 2 EskcakAk + Tz — aal:);l
ke .

Y10
T .
| g*° Eﬁ]’ exo,kcm'kAk + 710 — G10,1 Y1

Of course, the rows of V (and of W) could be shifted around by adopting a different
ordering of the elements of x. The indicated choice is governed by considerations
that become evident in Section III.

The only task remaining in preparation for integration is the identification of
procedures for evaluating the elements of V and W from the input. Functions such
as P, 5, 710, 8%, g'° are given explicitly as input, and need no further consideration.
Direction cosine matrices appearing explicitly in W are obtained from Eq. (21) or
the algorithmn following that equation, and to apply that algorithm, the network
elements Ny, (k,r€&B) are required. These quantities are provided as input for
r =0, and are generated by the computer from knowledge of the branch sets
Brj (keB, and j€Bx), which in turn are obtained from the neighbor sets $Bx (k € 4B),
which in turn are available from the input quantities Ny (= Ny,).
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Specifically, the neighbor sets {3x may be obtained from the input network ele-
ments Nj by the following interpretations of Def. 5, written here both verbally and
in terms of set theory symbolism: &3, is the set of all integers § such that N; = 0
(or 8B, = {j|N; = 0}), and for k € &, B« is N, plus the set of all integers f such that
Nj = k (or %k B {Nk + {1|N, = k}} fOI' kﬁ@)

By scanning the input values of N, through N, for this sample problem, the
computer can readily find the following neighbor sets:

Bo = {1,5} Be = {5,7,10}
B, = {0,2} 8B, = (6,8}
B, = {1,3) Bs = (7,9)
B = {2,4) By = {8}

B = {3) Bro = {6}

@B = {0,6}

The validity of these results can be established by inspection of Fig. 4, with Def. 5
in mind.

As a second major step, the elements of the 2n branch sets {Bx; can be obtained
by the following general algorithm:

(1) Set k =0, and from the previous calculation identify the elements of B as
@1,as, * * * ,an,, where ny is the number of elements in &;.

(2) Set g =1, and record the calculated elements in &3, ; then identify the ele-
ments of {{3, — k} as by, bs, - - -, b,.aq, where Ty, i the number of elements

in {(%aq - k}.

(3) Setr =1, and obtain the neighbor set &3,_from the calculations; then identify
the elements of {8y, — a,} as ¢1,¢a, - * * ,Cny , where ny_is the number of
. T
elements in {3, — ag}.

(4) Proceed as in (2) and (3), finding &B., for s = 1 and identifying the elements

of {Bc, — b} as d,d,, - - ,d., , where n._is the number of elements in
8
{8, — b}, proceeding in this manner, identifying elements e, - - - , e, ”
and fi, - - - ,fs, , etc., until an empty set is encountered. (This sequence of
u

operations cannot involve more than n steps.)

(5) Upon obtaining an empty set, say the set {£3;, ~ e.} for v = 1, change the
most recently generated index (here v) from 1 to 2, and proceed with the
indicated sequence of operations until an empty set is again obtained. Then
set the most recent index (here v) to 3 and proceed again to an empty set.
Continue this process until v = n., has been considered.

(6) Change u from 1 to 2, and repeat the process from the point at which u was
previously given value 1. Continue until 4 = ny, has been considered.

(7) Change t from 1 to 2 and repeat, continuing in this manner until the index r
introduced in step (3) exhausts the n,, elements of the set {{B., — k}, for
g=k=1
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(8) Populate the set {Bia, With the elements of the following sets:
{aq}
{Qaq - k}
S0 (B, — o)

Eﬂaq Em, {%ca — b'}

r=1 8=1

DD 'ugl"‘“ {€Br, — eu}

r=1 8=1

At this point, the branch set &Bo., has been obtained.

(9) Return to step (2), change g from 1 to 2, and repeat the process to find Bea,
repeating again until &, is obtained.

(10) Return to step (1), change k from 0 to 1, and repeat the entire process until
the final branch set %”“ﬂn is obtained.

Although the indicated algorithm for finding the 2n branch sets may appear to
be lengthy and arduous, it is exactly this process that a man accomplishes in a
moment’s time when he examines a sketch such as Fig. 4 and records the branch
sets “by inspection.” If you will close your eyes to the sketch in Fig. 4 and consider
only the neighbor sets generated for that system from item (2) of the computer

input, you will be able to obtain the following branch sets from the algorithm
provided:

Bor = {1,2,3,4}
%05 = {5: 6) 7a 8’ 97 10}
@1, [ {0> 5> 6, 7’ 8; 9’ 10} .

Bie = {2,3,4)

82 = {1,0,5,6,7,8,9,10)
€82 = {3,4}

£B:. = {2,1,0,5,6,7,8,9,10}
Bs = {4)

8B = (3,2,1,0,5,6,7,8,9,10}
Bso = {0,1,2,3,4)}

Bss = {6,7,8,9,10)

Bes = {5,0,1,2,3,4}

Bsr = {7,8,9}

Be,10 = {10}

Brs = {6,5,0,1,2,3,4R
Brs = {8,9}
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Bs: = {7,6,5,0,1,2, 3,4}

Bso = {9}

Bse = {8,7,6,5,0,1,2,3,4, 10}
B = {6,5,0,1,2,3,4,7,8,9}

These results are easily confirmed by examination of Fig. 4. By having the com-
puter generate this information internally, we minimize user input and user error.

The next step is construction of the network elements Ni, for re & and k € 3;
A
these elements were input for r = 0, since Ny = Ni,. This is a simple matter since,

from the definition, Ny = k and, for r==k, Ny, = j for r € By;. Hence, for a given
k and r, one merely searches & for s = 0,1, - - - until one finds a value s = j for
which B3, includes 7, and then assigns this value § of s to Ng,. In application to
Fig. 4, the result is as shown in Table 1, which includes the input Ni,.

Table 1. Network elements N, for Fig. 4, k,re

N
1k ¢ (ingut) : 1 2 3 4 5 6 7 8 9 10
0 o |1 1 1 1 5 5 5 5 5 5

1 0 I 1 2 2 2 0 0 0 0 0 0

2 1 ; 1 2 3 3 1 1 1 1 1 1

3 P) | 2 2 3 4 2 2 2 2 2 2

4 3 |3 3 3 4 3 3 3 3 3 3

5 o | o 0 0 0 5 6 6 6 6 6

6 5 | 5 5 5 5 5 6 7 7 7 10

7 6 | s 6 6 6 6 6 7 8 8 6

8 7 |7 7 7 7 7 7 7 8 9 7

9 8 | 8 8 8 8 8 8 8 8 9 8

10 6 | 6 6 6 6 6 6 6 6 8 6

With the network elements available, the computer can, by means of the algo-
rithm culminating in Eq. (22), construct any direction cosine matrix appearing in
Eqgs. (25)—(27) as a product of matrices whose numerical values are available in
terms of input parameters g* and kinematical variables yx (k€£3) from Eq. (4),
Eq. (5), or Eqgs. (8)-(16). For example, Eq. (22) provides

C27 = C21C10C05C56C67
Cs5:10 = Css(Css 10
C40 — C43032C21C10

and each of the matrices on the right sides is available from Eq. (4) or Eq. (5) (or its
elements can be written directly from Eqs. 8~16). For example, from Eq. (4),

C?* = Ucos y, — Zsiny; + g2g*" (1 — cos y2)
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and from Eq. (5),
Co%= U cosys + Z°sinys + g°2° (1 — cos ys)

In addition to the direction cosines, Egs. (25)~(27) involve many other func-
tions to be generated internally by the computer. Among these are the path ele-
ments &, for se€ & and ke B. These are readily determined from the branch sets
Brs (relB,s€P) and the network elements N, (for se&P) as follows: If ke By,s,
then ¢ = 1; otherwise, e, = 0. In application to the system of Fig. 4, this algorithm
provides the results shown in Table 2.

Table 2. Path elements ¢, for Fig. 4,5¢&, ke

¥
ls 0 1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 1 0 0 0 0 0 0
2 0 0 1 1 1 0 0 0 0 0 0
3 0 0 0 1 1 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 1 1 1 1 1 1
6 0 0 0 0 0 0 1 1 1 1 1
7 0 0 0 0 0 0 0 1 1 1 0
8 0 0 0 0 0 0 0 0 1 1 0
9 0 0 0 0 0 0 0 0 0 1 ¢
10 0 0 0 0 0 0 0 0 0 0 1

All that remains for the computation of the terms in Eqs. (25)—(27) is the evalua-
tion of the matrices A* (k € £3) shown in Eq. (27), and the evaluation of the symbols
appearing in the upper left partition of V in Eq. (26). All of these symbols represent
functions for which explicit expressions are provided in Defs. 38-41 (Section IIA).
These definitions, in turn, involve symbols requiring reference to the preceding
Defs. 33 and 35-37, and these require additional reference to Defs. 30-32; but
finally, all quantities are available in terms of those provided in the input. Thus,
the coefficient matrices V and W in Eq. (25) can be evaluated numerically for time
Zero, and the numerical integration process can begin.

The discussion of this example is continued in Section IIIE, where partially
linearized equations are recorded and coordinate transformations and truncations
are considered.

l1l. Hybrid-Coordinate Equations of Motion
A. Rationale

In many applications, it can be anticipated that some of the kinematical vari-
ables appearing in Eq. (1) will remain in some sense “small.” It may be, for example,
that some of the angles y,, - * -, yn represent relative rotations of contiguous
bodies connected by an analytical hinge, rather than a physical hinge (see Fig. 3,
for example). Then, the characteristics of the hinge (stiffness, etc.) may be based
upon an idealization which retains its validity only for small structural strains.
Nonlinear terms in the angle of relative rotation then become meaningless and
should be dismissed, with the understanding that solutions indicating large values
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of such variables are also meaningless. Further argument must be advanced in
order to justify the additional assumption that nonlinear terms in the time deriva-
tives of these small angles are also negligible; this step would be justified, for
example, if it could be anticipated that the angle would experience only low-
frequency oscillations.

Linearization of kinematical variables and their time derivatives might alterna-
tively be justified in an entirely different way, relying upon mathematical theorems
rather than physically based arguments. If an exact solution of Eq. (1) can be
found, then this solution can be adopted as a nominal motion. By transforming to
a new set of kinematical variables which describe the deviation from the nominal
motion, and linearizing in these variables and their time derivatives, one can obtain
a set of linear differential equations which, in many cases, quite rigorously establish
the Liapunov stability properties of the nominal motion. The new variables are
often called variational coordinates, and the transformed equations are then known
as the linearized variational equations.

In many spacecraft applications, an exact solution of Eq. (1) will not be avail-
able, but still there will exist a desired motion which can informally take the place
of the nominal solution in the preceding paragraph. The resulting linear equations
may have considerable engineering significance, even though they are no longer
rigorously indicative of motion stability properties.

Linearization based on mathematical arguments is at best formally indicative of
local stability properties of solutions; thus, all variational coordinates and their
time derivatives are taken to be arbitrarily small. Since the sum of a finite number
of arbitrarily small quantities is still arbitrarily small, a formal interpretation of
linearized variational equations representing the deviation from an exact solution
of Eq. (1) does not permit large relative motions of even physically separated
bodies of the system.

In engineering applications, however, linearization of a variable is generally con-
sidered to be an acceptable practice as long as the linear term in the variable is
“substantially larger” than additive terms of higher degree. In this sense, lineariza-
tion is a process whose range of validity is somewhat ill-defined. For example, if
we amticipate that y, will have a solution approximating y, = 0.2 cos 2t rad, then it

is quite reasonable to replace siny, = y, — y3/3! + y3/5! — - - - by v, (since
sin 0.2 = 0.199 =2 0.2) and to replace cosy. = 1 — y2/2! + y%/4! — - - - by 1 (since
cos 0.2 = 0.98 = 1); but one might hesitate to replace ¥. — y> = —0.8 cos 2¢

— 0.16sin* 2t by ¥, = —0.8 cos 2¢.

Evidently subjective judgments are involved in the engineering interpretation
of linearized equations. Within this framework, however, one can interpret linear
differential equations obtained from Eq. (1) as descriptive of large gross deforma-
tions of a vehicle experiencing small strains as manifested by small angles of rela-
tive motion of contiguous pairs of bodies. If, for example, for the eleven-body
system illustrated in Fig. 4, it could be assumed that angles ys, ye, y1, vs, vs» and y10
remain “small” then equations of motion linearized in these variables would still
permit the dynamical description of “large” relative rotations of physically sepa-
rated bodies such as €, and £,, which might experience rotations on the order of
magnitude of 1 rad (0.2 rad for each of five hinge angles), within the reasonable
limits of the equations. If there were fifty bodies in the chain rather than five as in
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the example cited, large gross deformations could be accommodated even if every
relative rotation angle remained well below 0.1 rad.

When any justification can be found for the linearization of any of the kine-
matical variables appearing in Eq. (1), this step should be taken, since the mathe-
matical and computational benefits of linearization are quite substantial. The
primary immediate benefit is the elimination of variable terms from the coeffi-
cient matrix on the left side of Eq. (1) (see Defs. 38-40). If »° and all angles
v, * * * ,vn and their time derivatives can be assumed to remain arbitrarily small,
then the indicated coefficient matrix is formally constant, and much computer
simulation time can be gained by computing its inverse only once, in advance of
numerical integration. When the angles are expected to be small in an engineering

sense, less rigorous arguments can be marshalled to gain the same computational
advantage.

Potentially more significant advantages can be gained when coordinate trans-
formations can be found which permit the substitution for the linearized variables
of new coordinates, some of which may with impunity be deleted entirely from the
dynamical description. In order for this coordinate truncation to be justifiable, the
new coordinates must be distributed or modal coordinates which are to some
degree uncoupled, and some of these coordinates must be demonstrably incon-
sequential to the dynamic response. The subject of coordinate transformation and
truncation has been explored extensively (see Refs. 21 and 25, for example), and
previous results can be applied directly once some or all of the scalar equations
implied by Eq. (1) have been written in linearized form.

If all of the kinematical variables in Eq. (1) are linearized, then the transformed
coordinates are vehicle normal mode coordinates, while if only a subset of the

kinematical variables in Eq. (1) are linearized, then a hybrid-coordinate formula-
tion results.

B. Partial Linearization of Discrete-Coordinate Equations

The immediate objective is to isolate a group of unknown kinematical variables
appearing in the rotational equations of motion (Eq. 1), and to linearize these equa-
tions in those variables and their time derivatives.

In the special case in which all angles of relative motion between contiguous
bodies remain small, it becomes advantageous to introduce a chain of three imagi-
nary, massless bodies connected at one end to one of the rigid bodies of the system.
This rigid body is then labeled 4, and the chain of imaginary bodies is labeled se-
quentially ., 4, and 4,. All other rigid bodies of the system are labeled according
to previously established conventions, which apply now to both real and imaginary
bodies. Unit vectors g°, g2, and g* are fixed along hinge axes in the chain of imagi-
nary bodies in such a way that in the nominal configuration they are mutually
orthogonal and g! X g? = g?. The hinge torques T, T2, and T are all set equal to
zero. With these interpretations, Eq. (1) continues to apply without change, with
the understanding that the “n + 1 rigid bodies” to which it applies now include
the three imaginary bodies. In order to minimize computations, it is convenient to
specify these imaginary bodies as having their mass centers all coincident with the
mass center ¢; of tﬁ,,gmd to let the hinge axes parallel to g?, g% and g' all pass
through c¢;. Figure 7 provides an illustration of a system for which imaginary bodies
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Fig. 7. System with imaginary bodies 4, 4, 4,

have been introduced. The new (imaginary) reference body €, now serves as a
floating reference frame which accommodates the gross motion or mean motion
of the collection of bodies in a sense to be established by the coordinate trans-
formations in the sections to follow. The coordinate truncation which follows the
transformation eliminates the coordinate redundancy introduced with the creation
of three imaginary bodies.

In the more general case, not all of the angles of relative rotation can be assumed
(with their time derivatives) to remain small. Then, 4, is selected as some rigid
body of the system which is attached to some other body by a hinge where large-
angle rotations are not precluded.

In every case, it will be possible to identify some number of angles (say, v) for
which linearization is in some sense justified, and to collect the indices of these
angles in the set (A. If all angles of the system defy linearization, then v = 0 and
A is empty. There is then no recourse but to integrate Eq. (1) directly (numeri-
cally, of course). If all of the angles of the system permit linearization (so that
“the system” has been augmented to include imaginary bodies), then v = n and
A=1{1,2, - ,n} = &. More generally, we must expect 0 < v < n.
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In any case, Egs. (1) can be rewritten in the form

aoou')o + 2 aok:y.k = z COkAk (283)
ke ketB
and
;6 + 3 aiyi = g7 D eiCHFAF + 1 (i€ &P) (28b)
kesP ke&P

It should be noted that, for a wide class of systems, it can be recognized in advance
that e;x = 0 for ie A and ke & — (A. This is the case whenever none of the hinge
points whose indices comprise 4 lies on a path from ¢, to any hinge point whose
index is not in (A. In physical terms, this means that the small-angle rotations are
confined to terminal appendages, each of which is attached to only one body whose
index lies outside of (A. In programming, it may be convenient to have the option
to declare an appendage terminal and reduce the sum in Eq. (28) from the range
ke & to the range ke (A.

If in the example depicted as Fig. 4, the angles vs, y¢, v, ¥s, vo, and y;, remain
small enough to justify linearization, then v = 6 and (since the flexible substructure
is a terminal appendage), whenever { =5, - - - | 10, the summations over the set
ke & in Eq. (28) could be replaced by sums over (.

If, on the other hand, it became necessary to permit nonlinear terms in y,, (still
keeping v;, * * -, vy, small), then one would have » = 5, and nonzero summations
over the set &@ — (A. (The path elements ;.10 and &5 1, would be nonzero, since fs
and f; lie on the path between 4, and 4,,.)

The next step is the linearization of Eq. (28) in the v variables vy and their time
derivatives for ke (A. To this end, we expand each symbol in Eq. (28) which may
involve such variables into three parts, the first being free of these variables (indi-
cated by overbar), the second being linear in the variables (indicated by overcaret),
and the third containing terms above the first degree in the variables (indicated by
three dots). In particular, we write (for any 1, k)

Ch =Tk 4 G - - - (29a)
Ta=Fat fat - (29b)
Qw =T + Qe + * (29¢)
Ab = AE+ AR 4 - (29d)

and then determine explicit expressions for the new barred and careted symbols
from the definitions of a;; (Defs. 38-40), A* (Def. 41), and the expansion for C*
(Eq. 21). In terms of the symbols introduced in Eq. (29), the linearized form of
Eq. (28) becomes

= A — — A
(@0 + 8u) 3+ 3 (@ + B Ve + = G = 3 [(CF + Co%) AF + Toxa¥]
ke — A keA kesB

(30a)
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@0+ 8io)a? + 3 @+ ) e+ S Bt =
keB — A A ke(A A
g7 S e [CHA + (CH*+ CH A + 7+ 8 (ie®) (30b)
ke&

If the flexible substructure is one or more terminal appendages, then in Eq. (30b),
whenever i € (A, the sum over the range k € & can be reduced to the sum over ke (4,
since eix = 0 for ke &P — A.

It is convenient both for immediate computations and for later coordinate trans-
formations to have Eqs. (30) written in matrix form. To this end, we can define
column matrices y%,v%, .- - ,y¥*! (with N an odd number) to consist of angles
with sequentially numbered indices within the appendage set (4, so that all angles
y; for j € (A appear in some matrix y* for some even integer k. Similarly, we define
Y5 ¥4 9% 0 - ,¥Y (for N odd) to accommodate those angles of the system not
assumed small, so that all angles y; for j€ & — (A appear in some matrix y* for k
odd. As a general convention in what follows, an even index on a matrix estab-
lishes an identification with a flexible substructure having small angles of rela-
tive rotation, and an odd number is identified with a set of unrestricted angles.
Equations (30a,b) then take the matrix form shown in Eq. (30c).

r 600 + aoo I ‘dOl + aOI l 7‘“02 , '603 + 603 __1_ . | aON + aoN I —a() N+1 = - (I)O -
EIO + 610 I _all + &ll | Elz T a—13—+ als _+ .—.- ' alN + alN —I- al,N+l bAA
Tmeb e 1w | aveds e | wee ||
a0 + 330 a3 + aal —T as? s+ 333 P a3y + aaN | a3 N+1 .ya
—“—_-'{""—.—‘_‘T_ —— —1—,~T—————,——— — =
. | . | | | | b
T o | it e | amadm T e e | e
-—EN+1,0-_—+,_QN+1,0TE7V—+1.,1 4 ézvn,l_t—aﬁ.'z_-r %TV—»,Ls +_¢/l\;*:; _—_1 _Evu_l.v :_—6;1,5’ -617:1,7:1'1 EN+1 i
p- ~, A Y = A se -
Z [(C + CH A" + Cora] ~ Eg ok
L R PRt e
RO YL g TR
R3 (mo, 'Yl’ . , N+l o1 ., . YN+1 t)
_r oy ey Y oi (30¢)
RY (‘Do: 'Yla » 7N+1: Yl) ’ YN+1, t)
(Rl s, T T

The many previously undefined symbols appearing in Eq. (30c) can be con-
structed by comparison with Eq. (30b), with the set ke G defining given or pre-
scribed variables. The purpose of writing the coeficient matrix on the left side in
partitioned form is to facilitate the repeated inversion that is required for numerical
integration. Any terminal appendages in the system can always be labeled so that
the appendage bodies bear the highest indices in the system; this puts the corre-
sponding angles in the matrix y¥+1, (If only internal flexible subsystems are present,
there is nothing in y¥*1, and if all angles are small then y? is empty. ) Inspection of
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the matrix ay.:, 5. then reveals that it consists solely of scalar elements @;; for
i,k € Fiy., (the terminal appendage set), and it can be shown that these quantities
are all constants. The right sides of Eq. (30c) will depend explicitly on ¢ when
either torques or kinematical variables are prescribed functions of time.

Both for computational reasons and for purposes of coordinate transforma-
tion, it is necessary to replace Eq. (30c) by a first-order matrix differential equa-
tion. This can be accomplished in a variety of ways, and the optimum arrangement
for computations is often inappropriate for the transformations to be discussed
in sections following. Guided primarily by the latter consideration, we define

(for ,k=1,--- ,N+41)

A A
Ay =0 + a®

A =017 + 8] (jodd), A = AL
A 2 [0189] (jeven); Az = AT,
Ap = [_ Wl 3—,;7] (G, k 0dd)
A0} 0 . A
A,-k=|:—'6'1:'—71;;—] (j odd, k even); A = AT
A xU1 0
Ajp = [— —]5- —:r%,——] (j, k even)
and rewrite Eq. (30c) as
— - -— A _— —
Aw | Aw I Ax b ] Agya [ @ S [(C* + C%) A + CHA¥ — S auti
e e ke
=1
A I Ay, l Ay _{ ) : ‘ A1,N+1 T ‘—_'—‘—"—;—1"—‘——'—'———‘
| e - — SR S,
T ‘l ‘ -—l‘__ . .;,2
Az l A, I Ag I : As v I? _ —————'————H;'——_"—“_
S S .
| | |
| | | A
Apxito | Ayiis | AN+1,z I I Avi, v ] LFNH j L:__"—"—_"H_m_;_‘—_”—‘——
(30d)

Whether we choose to work with Eq. (30d), or its equivalent, Eq. (30c), or the
more explicit equations, in Eqgs. (30a, b), any progress requires explicit expressions

for the symbols C¥,

i Ak A¥ Ty, and 8 for all permissible i and k. (We also
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need 7; and %;, but these can be written only for specific systems.) The required
expressions can be obtained by combining Eq. (29) with the definitions of ay and
A* in Section ITA and the expression for C* in Section IIC.

Specifically, from Eq. (21) we have an expression which provides C™/ (for r,§ € £3)
in terms of direction cosine matrices relating contiguous bodies, and they, in turn,
are always available in expanded form from Eq. (4) or Eq. (5). The basic ingre-
dients of C*7 and €7 are therefore available from Egs. (4) and (5) as

ChM =CkM forke®P — A (31a)
CkM =U for ke A (31b)
Cem=0  forke®— A (31c)
G = —y, 2 for ke (314)

When C'/ in the symbolic form of Eq. (21) is expanded according to the algo-
rithm culminating in Eq. (22), this latter expression then becomes

- A —_ A — A
Cri=CPCH - - C¥ e~ (Cm + Cm) (Cm + Cpq) PR (Cui 4+ Cuj)

=~ CCr - - - C4 +CPCr - - - C¥ S (en; — exr) Py (32)
keA

so that, with indices generated according to the algorithm following Eq. (21),
Ci=CrCr - - C (33a)

é”. = 6”’6"‘7 v Euj 2 (Eaj - 581) gs‘Ya (33b)
se(A

In substituting Eqs. (33) into Eq. (30), simplifications can often be realized by
recognizing Eqgs. (31). If, for example, the flexible substructure consists of a single
terminal appendage, then, in Eq. (30), the direction cosine terms for r,je 7 sim-
plify to

- A
Cri=U Cri=73 (e“- — e”) g“y.g (34)
se(A

Equation (30) then becomes

-— A —_— -_—
(@0 + 8) 6 + 3 TuFi + S (@ + o) e = B [(C* + C) Ak + CoxA¥]
keB

keA ke — A
(35a)
@0+ Bi0)6° + Saay+ T (@ + &)=
keA ke® — A
gi" 2 Eik {Ak + [U + 2 (Esk - Eu’) gs)’s] Ak} + T -+ 1"\,‘ (i€(9) (35b)
ke(A selA

Whether we retain the general result jn Eq. (30) or only the special equations in
Egs. (35), we require expressions for A¥, AF, 8, and Ty These symbols can be
expressed in terms of more basic quantities by expanding Defs. 38-41 in the man-
ner indicated by Eqgs. (29¢) and (29d). In terms of the symbols C™7 and C'/ available
from Eqs. (33), these definitions lead to the following, in which we have substituted
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— A —
T¢*=TF+ T+ - - - and F¥ = F* + ﬁ"‘ + - - - in the manner established by
Eq. (29):

Too= 3 CH%G*C — O S 3 (CHDMCHDY ~ CoiDHD+™)Ck  (36a)
ketB jeB—k

ketB 7
For ke &,
o = % ekf"’fb"(—?”‘g" ~ M3 3 e (EO'Dj'Taj'D'j - EOij'D'iT) afkgk
re&P re&P jeB—r
(36b)
@y = GG, (36c)
For i, ke &P,
Eik = giT E eirekrairerarkgk
reP
— Q/ngi!' 2 2 €irEks (-_E"D"TEHD" — EiaDarDr.sT) Erkgk (36d)

7€) 3P -1
For ke,

Ak =Tk + S DHCHEI — ¢t 3 ene (CRBC" + 3 0, 7,CHFC*") g
eB reP—A - seP— A

— [CH5°C%* + 3 eny;,CHFICH] & [CR0® + 3 ey,Cg"]
F-A je@—A
Lon S (BT GT - S ey BR T D
jed — k P

+ (UD#*C#*D* — CHDH*D¥®) S ¢, [CH3°CO" + 3 e,,9,C*F*C*"] g7}
re&P—A se&P— (A

(36e)
By = 3 (CorahTro + Covglin) — oS, S [(CHDHTHDH — CoiDHDHiT) Cro
keB ke je3~k
+ (6‘°"D”"5”‘D"f + a°"D""’(/3\""D"" — 6"foka"’) 5"0] (87a)
For ke &,
A A — — A
Qo = E Ekr (C‘"@"C'k + COlefrCrk) gk
re&P

- MmMS I e [(EorDirTEirDri - EoiDirDrjr) 6rkgk
P -~ A A -
+ (CDi*"CiDri + CDi"Ci*Dri — CYDiDri")C™*g¥]  (3Tb)
{l\ko = egk (37C)

For i, ke &P,
: A. — P
{l\ik = g”’ 2 £irEr (Cqu)rrc‘rk + Cir@rrérk) gk
re&

_OMETT S cvns (CDTDr — GupHp) B
reP seP—r,

I (6“D"’6”D" + Ei,D"ré,,Drs — 6ieDkiDik1‘) Erkgk] (37d)
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For keB,

A ~ — A - _ —
g 3 (oo + CHE) — % S ey, [CromoCor + Crogolor
reP—A

+ 2 E”yscksgsc.u + 2 8"*/, (ekagsCar+ Cka sCar)] r
seP—A

D> Erkyr (Eko-u-;oéw + 3 E"?'sﬁksgaﬁar) g
re(A seP-A
- _ A A = = A
— [OroeGor + TrogCok + S ey, (CHFT® + CHgiCm)
feP—A

+ 3 entiCHECH] 8% [C0® + 3 epy,CHig']
jeA jeP—-A

— — — A
C[CH5C + S e, CHEICH] 0% [0 + S enyiO¥g + 25,,,7, kigi]
jeP—A jeP A

-~ A = o - _
+0n 3 {DHCH [Ci50IC% + 3 e,9,C7E T DI
jeB—k reP—A

~ A - — A A o= = _A.
+ DG ([Cio5Coi + TowCo + 3 ersgr (CHETTT + CigrCr)
reP—A

+ 2 e T FCH] [CPCY + 3 enyy,CIEC]
relf—A

+ [Ciom9C% + 3 £,;9,C75C] [Ciomoa—oi 4 CiogoQos
reP—A

+ S ey (QirgrCri + T Criy + 3 a,,y,cv'rCff]}D:k}

reP—A
+m 3 ;(UDJ'"’C“‘D""— CHDHDMT) S ¢, [CroaCor
feB—k redP—A

+ 3 €07,048C*] g" + (UDMCHDH —c'ch:kaﬂ){z eriir [CFBCO"
se&P~A

+ 3 su}',sakcga_c_ar] g + 2 8”,)-,’ [Ckoa;oEo'r +6kom—oCOr
_ﬂ _

+ 2 Esr‘Ya (Cka aCJr + Ckag 6" + 2 serSCkSgchr] g } % (376)
seP—A

(The superscript 2 in Eq. 36e indicates the square of the preceding bracketed
matrix.)

Upon substituting Egs. (31), (33), (36), and (37) into Eq. (30), one can obtain the
most general form of the partially linearized set of differential equations stemming
from Eq. (1). These equations (to be assembled in detail by computer program)
are then in a form whose dependence upon the small angles ya, * - * , yp and their
derivatives is fully explicit; by examining the structure of an appropriate subset of
these equations, we can determine those circumstances for which transformation
to distributed coordinates and subsequent coordinate transformation is feasible.
It should be noted that in the special case of Eq. (30) recorded as Eq. (35), corre-
spondingly simplified versions of Eq. (36) and (37) can be used. For example, for
the special case in which the flexible substructure consists of a single terminal
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38

appendage, one can simplify Egs. (36) and (37) by noting that if « is the append-
age hinge closest to 4,, then, for ke A and i€ & — (A, eix = eia and C** = Cie, Since
A* and A* appear in Eq. (35b) only for k € (4, this simplification is computationally
quite significant.

Before proceeding with the search for coordinate transformations for the small
variables and their first time-derivatives, it should be noted that the partially
linearized discrete-coordinate equations are themselves of some computational
value. Depending upon the extent of the partial linearization, Eq. (30) (or for
terminal appendages, Eq. 35) may be much more amenable to numerical integra-
tion than the unrestricted counterpart, Eq. (1). If Eqgs. (30) are to be integrated
directly (without coordinate transformation), then the suggested imaginary bodies
should not be introduced, even if all angles remain small.

C. Linear, Constant-Coefficient Differential Equations for Coordinate
Transformations

Equation (30b) includes the set of v equations

— A A, i Fikh AT A _
2 G + @ioa® + T iy — g7 3 en [CHAF + CHAY] — 7 =
ke keB—F ke?
'a';o{n° + E Eik.};k + gﬂ 2 eikaikzk + 7 (ie@) (38)
kedB—A ke
and these will provide the basis for the desired coordinate transformation. The
hybrid-coordinate procedure entails the transformation of the set of variables defin-
ing the substructure deformation (here y; and y; for i € (A) into a set of distributed
coordinates for which coordinate truncation can be accomplished without jeopar-
dizing the salient features of the dynamic response. Truncation is never a rigorous
mathematical process, and its justification must be based on rather subjective judg-
ments of the acceptability of certain engineering approximations. Great caution is
therefore necessary in adopting a truncated set of coordinates, and all possible
effort should be made to select the coordinate transformation for which maximum
truncation of coordinates can be accomplished with minimum risk. In order to per-
mit the systematic evaluation of the consequences of truncation, it is important
that coupling among the scalar equations of motion in the transformed coordinates
be minimized. (If coupling were entirely eliminated, one could solve each of the
transformed scalar equations in turn, and obtain the true solution by superposi-
tion; then, irrelevant coordinates could be discarded with no risk of adverse
consequences.)

In the quest for a coordinate transformation which minimizes the coupling
among distributed coordinates, the theory of linear, constant-coefficient, homo-
geneous, differential equations provides our only guidance. Although in fact,
Egs. (38) are not in this category, in application, it is often reasonable to approxi-
mate slowly varying coefficients or coefficients with small magnitude variations as
constants, and to ignore the indirect coupling of Eqs. (38) through kinematical
variables external to the flexible substructure, focusing only on the homogeneous
counterparts to Eqgs. (38). These approximations will therefore be adopted in this
section for the purpose of finding a coordinate transformation, after which the
inhomogeneous equations (30) will be transformed and retained for simulation.
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The homogeneous counterpart to Eq. (38) is

— A A . Dot s S A )
E aik'yk + aiou';° + E aik"y'k - gﬂ. E Eik (C'kAk + C'kAk) - T = 0 (ifm)
kerA ketB—A ke
(39)

All careted symbols in Eq. (39) are linear in the small-angle variables of the
substructure. From Eq. (36e), A* depends on «°, so that the coefficients of the small
variables in Eq. (39) are not constant unless a° = 0. This restriction also eliminates
the second term in Eq. (39). Moreover, the dependence of these coeflicients on
direction cosines which involve all of the angles of rotation external to the append-
age requires that these angles be constant if Eq. (39) is to provide a coordinate
transformation based on constant-coefficient differential equation theory. This
restriction removes the third term from Eq. (39) and greatly simplifies Eqs. (36e)
“and (37e) for A* and A*. As the basis for coordinate transformation, we adopt
instead of Eq. (39) the following approximation of the equation:

- ‘ A= =N R .
2 a,—k'fk - g,r E Eik (C'kAk + C‘kAk) — T = 0 (te@) (40)

where @i is a constant defined by @i« in some nominal state (see Eq. 36d), and
where, from Egs. (36e) and (37¢), A* and A are given by

A2 Th 4 5 DMCHET — CrgoCoraiCrog + Gy S DHCH (CrogCoy: Di*
feB feB—k
(41a)

Ay S Dv (C’”F' + C"JF') B 2 £, CHo50CO"g"
jeiB

A =
— [Ckogrocok C o‘wToCok + 2 e;ky Ck;gicﬂc] q,kkcko—o
— Cko—-ocokq,kk [Cko-o + 2 e,ky,ck’g’] + an E % ﬁkick; (5 o—T;oE j)z D
jeB—k

+ DriCw ([Cff%ocw + c:'oz,w@w + 3 &3, CIgCr] Co5oCos

reiAl
= = A= =_§. = =

+ C195°C% [Ci%°C% + Ci%°C% + 3 &,;7,C/7E'C"]} D*

reiA

+ (UD#*C*D — eriDikaiT) (s Ern-,fjko—;u:oﬁorgr] z (41b)
re(A

It is understood without the introduction of more notation that each symbol in
Eqs. (40) and (41) is constant, except for those depending on y; or its time deriva-
tives, for je (A.

Equation (40) is typical of v scalar equations of motion, which can be written as
a single matrix equation of the form

Iy+J3+Ky=0 (42)

where, if the v indices in (A range from « to p,

A
y=lya - wl”
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and where I is the v by v symmetric matrix whose elements are @;; for i,j € 7 (see
Eq. 36 for @;;). As indicated in the footnote following Eq. (1), the variable coeffi-
cient matrix with elements aix is nonsingular, so that the constant matrix I is also
nonsingular.

The v by v matrix J comprises the coefficients of ¥; in terms involving A", and
perhaps £;, for i,je 4 and k € &. More specifically, a typical element of J may be
written for i,j e (A as

A _
=. aAk 34'\,
i‘=_iT icﬂc..___. 43

The elements of the v by v matrix K are similarly available as

A A —

0C* = = pA¥ oP;
Ki; = —gif i _.Ak+cik__]___' 44
' € keng ) k[ 0y; 0y; Oyi (44)

Since coordinate transformations which may usefully be applied to Eq. (42) are
more readily calculated when the matrices J and K have certain properties of sym-
metry (or skew symmetry), we might profitably examine the structure of these
matrices.

The hinge torques 7; for i € A will in most cases be representative of structural
connections, in which case they will usually represent either a linear elastic spring,
for which

= —kiys (45)
or a viscoelastic connection, for which
= —kiyi—dips (46)

In both cases, the contribution of the hinge torque to K is symmetric, and the con-
tribution to J is zero for the elastic spring and symmetric for the viscoelastic con-
nection. Only in the unusual case in which 4, is established by a control law that
depends on appendage body relative rotations other than y; will the hinge torques
contribute any but diagonal terms to the matrices J and K.

n order to assemble the matrix equation (42), we require the partial derivatives
oC*/dy;, aZk/ay,-, and BA"/Z){/,-, for i,je (A and k€ &. From Eq. (33b), we have

aéik

0vi

=CTiCrt - - - C%* (e — e3:) @ (47)

where again the algorithm following Eq. (21) is used to generate the unspecified
indices. When the flexible substructure is an external appendage and « is the index
of the hinge point closest to 4,, Eq. (47) becomes

A
BC ik
0v;

M T (e — o) B (482)

Qi

= 600
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When k € (A, both of these expressions reduce to

o

0v;

= (ejx — €5i) & (48b)

Equation (41b) provides, for ke & and je A,

D A U
5= 3y, S DR o — #MeuC5eCg) — epCHETH T
) ) S ?

- 5"%"(—_}""@"‘5,*5""1‘;" +Mm 3 e [5“5’“ (E”giéi.gaoﬁogw
seB~k

+ Esog—oé:oagaigién) D* + (UD*"CekD** — CreDe*Dher) Crox Coigi]
(49)

Also available from Eq. {(41b) is the expression

A
ok ko
oC .

Jy;

A
= = 80 = 08
+ Ceo0Cos [aac FCos + Cor° ,()C _ ]} Da"s (50)

For the special case in which there are no external forces and body 4, is nomi-
nally at rest in inertial space so that T* = F* = ° = 0, Eqs. (49) and (50) reduce to

oy;  Ovi
as might be expected. If, in addition to these simplifications, we have linearly elastic

spring torques at the joints, so that #; = —k,y; for i€ (A, then the equation to be
examined for coordinate transformation (Eq. 42) is simply

I5+Ky=0 (51)

where K is the diagonal v by v matrix with nonzero elements K;; = K;, and the
elements of the symmetric v by v matrix I are given by Eq. (36d)

A second special case of interest is one for which all hinge lines are parallel, so
that for all ie &, we can replace g; by the new unit vector g; in addition, the
angular velocity vector w° has the same orientation, so that w° = Qg for some scalar
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spin rate Q. This special case will be called the transverse deformation case for
brevity; it should be understood that this term is applicable to three-dimensional
systems such as that illustrated in Fig. 8. Substantial simplification of the preceding
equations then follows from the vector identities (for i, j € &)

QX gl=0 (52a)
gl + @® X (any vector) = 0 (52b)
gt g’ X (any vector) = 0 (52¢)

In matrix terms, these identities can take various forms, depending on the vector
basis chosen for matrix representation of the various vectors involved. Since we
have chosen to employ the matrices defined for i e & by

wO =A-_ {bO}TwO gi é {b‘i}Tgi (53a)
wifh vector bases related for 4, € 43 by
{b'} = C* {b'} (53b)

we might expect to find Eqgs. (52) reflected in our matrix equations in the form

Coigi =0 (54a)
g ( ) =0 (54b)
gCHgi( ) =0 (54c)

Because more than one change in vector basis might intervene, we might find
instead of Eqs. (54b) and (54c) equivalent expressions requiring substitution of the
identities (for 1, e )

Cii = CH*Cki (54d)
and

Cil = CikCrsCri (54e)

In the transverse deformation case, the final sum in Eq. (49) for BA"/B)':; vanishes
by virtue of Eq. (54a), as does the third term on the right side. Moreover, most of
the terms remaining in Eq. (49) vanish when it is substituted into the expression
for J;; in Eq. (43), because of identities (54b)-{54¢). All that remains in Eq. (43) is

= a?" ~, = aﬁ’ 62’—
Ji=—¢g3 EikC”‘[‘.— + 3 Dkacks___.__] — __‘
kD i B 0%; 8Y;

—g" S cal* M S «;,D* (CHECI0ECY + CHagCoECH) D*
kesP sefB—k

(55a)
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If, in addition, any external forces (F*) or torques (T*) on the bodies are inde-
pendent of the relative rotation rates (7;), then the first summation over k € &
disappears from Ji;. The interbody hinge torques (%) will contribute to J;; if
“damping” is included in the joint, or the hinge rotation is subject to automatic
control with rate feedback, but only in extraordinary cases will %; contribute to
Ji; for ig=j. For simplicity in what follows, we ignore any contribution of hinge
torques to J;;. Moreover, we imagine that in the nominal steady state, all direction-
cosine matrices equal the unit matrix, with no loss in generality. Then we have

Jij=—2mag™  eix S ¢j.DEED* (55b)
kes? seiB—k
or
Jii=2meg™ S S eie;DFgD%g (55¢)
ke seP—k

From Eq. (55b), we see that J;; = 0 if all D" for q, r € {8 are parallel. This restricted
transverse deformation case will be explored further in what follows. Before pur-
suing this course, we should note that in the more general transverse deformation
case represented by Eq. (55¢), the matrix J is skew symmetric, so that J;; = —J;;.
To establish this result, note that the scalar J;; must equal its transpose. Thus,
Eq. (55¢) provides

Iij = —2Q’I’ng" > > eike,-sﬁ'kgﬁk‘g
keP seP-k

Exchanging i and j in this expression, we find

Iii=—20mag" ¥ > Ejkeigﬁakgbk’g
kesP seSP—k

After exchanging the dummy indices s and k, we obtain

Ji=—2mag' S 3 e eaDgD*g (56)
se&P keP—s

Comparison of this expression with Eq. (55¢) establishes the claimed relationship,
J;i = —1ij, since in the course of each of the two indicated summations, both
s and k assume all values in the set £.

The next question of symmetry in the transverse deformation case concerns the
matrix K, whose elements are given by Eq. (44). Because the external forces and
torques represent a variety of influences (environmental interactions, control forces,
etc.), their contribution to K cannot be described in comprehensive general terms,
and they will be ignored in the discussion of the symmetry of K. The hinge torques
7; are also ignored. With these omissions, and the vector-dyadic identities

g X DR e = geQ2g X Okeg = (57)
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which apply to the transverse deformation case, Eqs. (44), (41a), and (50) combine
to provide

0
Kij=—¢g" X Eik{ 3
kes?

k ~ o= = =
(m 2 QZDerkr (CTOgCO!)Z Drk
vi refB—k

=. ~ aék" = =
+ Cﬂvo/n E Qsza (Ceogcoa)z
selB—k 0vi

A A
= 0 = = 0C%\ = =
+ Cka (aa(; gco.s + Csog_a?) CaogCOa

A
= = Ccs = = 03
+ CkogCoa ( aa : chs + Coeg _aai.>] Dsk} (583)

The structure of the matrix K is more apparent when in the nominal steady-state
motion all direction-cosine matrices are the unit matrix. Then we have

Aik

oC ~
Kij = —mag™ 3 e {— > D¥ggD™
ke® Vi rebk _ _
A Ny A Y
~ aCka acso aCOs aCso - aéos ] }
-+ Dr¥s gg+ g+ 7 F+g g+38g Dsk
se%—k [ 0v; &8 Oy; seTE Oyi £Teé dy; © g€ 0vj

From Eq. (33b), it follows that

A A ~ ~ ~ o~
Co+ Co = 2 (Epo - em) Fo74 + 2 (5115 - 590) 8y = 0
peAl PeR

so that K;; simplifies to
Iy A
ix - - ke
aC 2 Dks g’gDsk + 2 Dks oC g"g"Dsk}
9v; seB—k seB—k aYi

Kij = ‘—(mQ"’gT 2 Eik{
ke&

A A
aCik ~ ~ ks
= ~(mag” ¥ Gik{ > [ D¥ + Dk % ]ggD"k}
re® sk OYi 7]

= —mazg™ B ea{ S [en — e50) D + D¥E (ejs — e)] BED™)
kD selB-k

= —M02 S e D (ese — e52) g7 DEZED* (58b)
ke seB—k

since gTg = 0. Because ¢, = 0, the range of s can be modified to obtain

Kij=—-MP 3 3 ene;og’DPGEED* + M S 3 ennepng’ D*BEED
keD seP—k k<D selB-k
(58¢)

By exchanging i and j in this expression, one finds K;; and discovers that, since
s and k both cover the range of & in the first double sum in Eq. (58¢), we have
K,'i - Ki i= 0.
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We may conclude that, at least for a vehicle of transverse deformation configu-
ration with linearly elastic hinge torques and no external forces or torques, the
vibration equation I + Jy + Ky = 0 found in Eq. (42) offers the following sym-
metry properties: I and K are symmetric and J is skew-symmetric. Such a case was
illustrated previously in Fig. 8. Moreover, if all vectors D% are parallel in the
undeformed configuration for q,r €3, then (from Eq. 55b) the matrix ] is zero.
We may call such configurations rectilinear transverse deformation cases. Figures 9
and 10 illustrate examples of this kind, identified respectively as polar and equa-
torial rectilinear transverse deformation cases.

In the quest for special cases with demonstrable symmetry properties, we might
next consider the configuration for which gi = g for all ie &; g+ @ = 0, and in the
nominal state, g+ D™ = 0 and ° - D"* = 0 for all 7, k € £3. Figure 11 illustrates this
configuration, which is here referred to as the meridional deformation case.

In order to examine the structure of the equations of motion in this case, we
- choose b?% b3 b? such that

w0’ = 0b? (59a)
gl =blforie (59b)
D™ = D,b’ for r, ke B (59¢)
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assuming moreover that in the nominal state, b; = b§ for all r e &. With these sub-
stitutions, the matrices J and K which first appeared in Eq. (42) take the form of
Eqs. (60a,b) (see Egs. 43 and 44, and note that

014
b= (b*}7] 1 |={b*}"b,
0
for any ke&B):
—A— -
0A¥ o
Jij = —b% Egem'&}f =%, (60a)
and
S LY 'E Ry
Klz—bz H Ak+“— - 60b
j Eg“‘[ayf aw] o; (606)

Fig. 8. Example of ““transverse deformation case’’




Fig. 9. Example of ‘““polar transverse deformation case"’

w' =g
4 ]
= = 2
g=9 g =9 9=9 ng QT:Q QaT=9
o——c(«—o—l(-c——o—&?‘. o - O Y———0 o \
D65 056 054 045 D40 DO4 DO 1 D] 0 D] 2 DZ 1 DZ3 D32
és és éy 4o 4 4, 4

Fig. 10. Example of “‘equatorial transverse deformation case’ in nominal configuration

0

Two'—‘ﬂb]

065 0% o p% oo ™ O\ 00 p2 2! B o2
[ —T >
| o——p(-‘——o——)——o—-(-i———v e ros ‘;\‘ —
é6_,0 5 .0 2_.,0 3_.0
= = =b, =b,
g=b, g=by g4= b(z) gl= btz) g=b, g=b,
4 4 4% 4 4 ) 4

Fig. 11. Example of “meridional deformation case’ in nominal configuration
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These equations simplify most substantially when, as a further restriction, it is
assumed that in the nominal state, the principal axes of the augmented body
barycentric inertia dyadic ®* parallel b%, b?, and b? for all ke&3. (Such a case is
illustrated in Fig. 11.) In this case, Egs. (59), (60a), and (49) can be combined to
provide

A A
k ~ Fa - -
Jij= —2 eadl {%’IL‘ + Dksbsg—.f — ep®% by — £5Q (b,8%b, — b, db,)
ke Yi Vi
+ Q’}’z 2 QD];,Z;;E,‘, (Zgbl + Elbz) bang
seB—k
~ o
+ON S ¢;, DDy, (UbTh, — b,bT) bib, § — ——
reB—k aYi
—fw Iy —
=2 Eikbf {3_ + Dks—l;s i} - 'ai (61)
ked o7; 97; 97,

This special case is comparable in its simplification of J to the transverse deforma-
tion case (see Eq. 55).

The matrix K in the meridional deformation cé.se, with the indicated restrictions
on the inertia dyadics, has elements given by Eqs. (59), (60b), (50), and (41a) in
combination. The result is

A
k= ~ = ~

Ky = =3 cubi {5 T+ 3 DB — .o,

re3

keP

Yi

X
~ .y, k ~
+ON S @DubbBbDa] + - + S Db

Lo +
relB-k OYi s

A N
( oF* oCke F" )
0yj dy;

olro . ol - alw
- 92[— b, + b, :Ifb""b, — b, P b,
dy; dv; dy;
A A g
ks o . 80 . ~ 08 7Y ..
+ Q’n 2 Qszlbq aC b1b1b3 + {[EC-— 1 1 a ]bl
selB—k 0v; 0y 9y;
2l 2Cos a8,
+Z [ ~1 +zl ]} b’iDs - -
) dy; Oy; ¥ 0y
= -3 n,-;;b'g{ [T* + S Dy,bF'] + — + 3 Dubs (—— + Fa)
%vj res 0Yi B Oy; 0yj
Iy A
~ ok ko
— ah, l:ac P 4 gk 8C ]b1
oyj 7,
ry A -
~ Cee ~ ¢Co B
+Gn 2 Qszstkbﬂbl |:'— i—bz + bl e b1 ]} - _a__ (62)
sefB—-k a}’j a‘)’j an

By returning to Eq. (34) and comparing with Eq. (59b), we can determine that

A
aCrm

o= (in = )2 = (m = 1B )
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so that all partial derivatives of direction cosine matrices in Eq. (62) are propor-
tional to b,. With the substitution of Eq. (63) into Eq. (62), we find

= —2 eab] {(Eik - Eji)zz[Tk + E Dk,b F + -?g]
ke Yi

aF ~ =
+ 2 Dk,bs [ a ” + (e,, Ejk) b2 FS:I
T T -~ 8-5,‘
— Q*b, [(es — £50) b2b1@k1k + O (650 — €i) bzbll} — _37
i
-
= | = ~ = oT*
= —3 exbl {(e,-k — /i) b, [ T + 3 DybF™ + v
ke reB Vi
3F" ~=
+ szx [a vi +(€j5_£,k)b F’]
&
~ 0. (e = o) (81— @8] b —
vi

Since e;0 = 0 for all f, and b?h, (any vector) =0, and bZb, = 1, this expression
reduces to

ofs =
= -3 wbif, 3 Dk,[ +(eyo — e31) bgF«]

SO S ey (086 — ) — O (64)

kesP 0y;
Finally, we have found, in this meridional deformation case, with restricted inertias
and all local deformations small, a class of system for which a symmetric K matrix

is a realistic possibility. In particular, if external forces are zero and the hinges are
elastically constrained as in Eq. (45), we can write Eq. (42) as

I5+Ky=0 (65)

where K and I are symmetric matrices with elements given respectively for

i,je& by
K,’,‘ = Q2 2 EikEjk (¢7;k — q){:k) + 8,-,-ki (66)
ke
and, from Eq. (36d),

Li; =-E- = b’ E eirejrd"h,

—mbl ¥ 3 eirejsDeDrs (U — by b7) b,
re®

e 4

2 51751r O% 2 2 £ir5jaDern (67)
16&P seP—r
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In summary, we observe that in every case the linear, constant-coefficient equa-
tions of motion which are to provide the basis for coordinate transformations have
the form (see Eq. 42)

Iy+Jy+Ky=0
where I is a nonsingular symmetric matrix.

Moreover, ] = 0 and K is symmetric in the following special cases:
(1) Hinge torques are elastic, and
(2) External forces and external torques are zero, and

(3) Either
(a) The nominal spin rate is zero, or
(b) Only rectilinear transverse deformations occur, or

(c¢) Only meridional deformations occur and all augmented body principal
axes are suitably aligned.

Furthermore, ] is skew-symmetric and K is symmetric for the general transverse
deformation case under conditions (1) and (2) above.

It should perhaps be emphasized that the conditions outlined have been shown
only to be sufficient for the noted symmetry properties; they are not, in general,
necessary conditions.

From the basic relationships of analytical dynamics, it can be shown that for con-
servative, holonomic systems, the linearized matrix variational equations obtained

from
d (oL\ oL _ N
E(Eq_,) __6—57_0 (i=1, ;1) (68)

(where L is the Lagrangian and g; a generalized coordinate) always have the
structure

M§+G§+Ng=0 (69)

where ¢ 4 [g: - - - g.]7, M and N are symmetric, and G is skew-symmetric. It
may be anticipated that these symmetry properties are also present for Eq. (42)
for holonomic, conservative systems, despite the preference given in this report to
an Eulerian rather than Lagrangian formulation of the equations of motion.

In the following section, it will be demonstrated that the indicated symmetry
properties of Eq. (69) or Eq. (42) can provide computational advantages in the
determination of coordinate transformations which will permit these equations to
be replaced by a set of uncoupled scalar equations.

D. Transformation to Large-Deformation Modal Coordinates

As established in the preceding section, the equations to be adopted as a basis
for coordinate transformation for a given substructure can be written as the matrix
second-order differential equation (Eq. 42)

I"y'+])'/+K'y=0
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where y is of dimension v by 1, I is nonsingular and symmetric, and, in particular
cases, J and K have special properties. This equation can also be written in the form

PI = Qr (70)

where, in terms of matrix partitions, we define

s[r] pefRi0] o2f-0 14X

Since I* exists, it is also possible to write Eq. (42) in the standard form
I =Br @y

where

with U the v by v unit matrix.

It is our objective in this section to find a new set of coordinates to replace
y, v, and ¥ in the partially linearized equations of motion. [See Eq. 30c, where
¥4 vh 0 o, ¥ (for odd N) each represent column matrices containing flexible
substructure deformation variables represented generically in this section by v.]
The rationale for coordinate transformation is to minimize coupling among the
new coordinates in the equations of motion, in order to make coordinate truncation

* feasible. As a practical compromise with this goal, we might instead seek trans-

formations which uncouple the second-order differential equations in Eq. (42); but
even this goal is not attainable unless the matrices ] and K have special properties.
We must therefore often be satisfied with a transformation which uncouples the
first-order scalar differential equations in Eq. (70) or its equivalent, Eq. (71).
Although it may be more convenient computationally to work with Eq. (70),
thereby avoiding the matrix inversion of I in Eq. (71), the latter provides a simpler
basis for discussion of the properties of the system.

If the Jordan canonical form of the matrix B in Eq. (71) were nondiagonal, it
would be impossible to find a transformation which would uncouple the associated
scalar equations. Such a situation would, however, imply powers of t in the general
solution of Egs. (71) and (70), and this would in itself tell us that the dynamic
response of the spacecraft is unacceptable. We therefore assume in what follows
that the Jordan form of B is diagonal. In other words, we assume that there exists
a similarity transformation matrix ® such that

By = A (72)
where A is a diagonal matrix with elements A, - - -, A,. Pre-multiplication of
Eq. (72) by @ produces

Ba =&\
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indicating that the columns @', - - -, ®* of & satisfy
Bo! = @ipr; = A7 i=1 - ,2 (73)
so that A; is an eigenvalue of B and & is the corresponding eigenvector. The exis-

tence of * implied by Eq. (72) indicates that the eigenvectors of B must be inde-
pendent for B to be diagonalizable.

Post-multiplication of Eq. (72) by ! produces

@B = A%
so that the rows of @' are left eigenvectors of B; that is, if ¥'7, - - - , ¥*" are the
rows of &, then
¥I'B = Mt = #iT), =1 .2

With this interpretation, it is convenient to replace @* by the matrix ¥7, where
the columns of ¥ are left eigenvectors ¥, - - - , ¥, normalized so that ¥7® = U.
It may be more convenient computationally to construct ¥ by assembling left eigen-
vectors rather than by inverting @.

We can now diagonalize Eq. (71) with the transformation
T =Y (74)
followed by pre-multiplication by ¥”. The result is
¥7oY = ¥TBaY
or equivalently,
o 10Y = $1B&Y

or

Y=Y (75)

Having satisfied ourselves that Eq. (71), and therefore Eq. (70), can be diago-
nalized if the eigenvectors of B are independent (so that &' exists), we should
note that for this independence, it is sufficient (but not necessary) that we have
distinct eigenvalues. For if the smallest set of dependent eigenvectors of B is desig-
nated &', - - - , @, then they must be related by

S @ =0 (76)

i=1
in which none of the «; is zero. Pre-multiplication by B then produces (using
Eq. 73)

é ajB@i = 2 ajqu,i =0 (77)

ji=1 j=1
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Multiplying Eq. (76) by A, and subtracting Eq. (77) gives

S a (A —A)® =0

j=1

If (x; — A,)==0, then this equation contradicts Eq. (76), which asserted that the
smallest set of dependent eigenvectors has dimension r. Therefore, the hypothesis
of Eq. (76) is invalid unless the eigenvalues A; and A, are identical; that is to say,
if the eigenvalues are distinct (nonrepeated), then the eigenvectors must be inde-
pendent. The converse is not true; that is, eigenvectors can be independent even
when eigenvalues are repeated. Nonetheless, we shall in what follows find it con-
venient to concentrate on the special (and most common) case in which the eigen-
values of the system of Eq. (70) or Eq. (71) are distinct.

Now we can direct our attention to Eq. (70), which we may prefer to the equiva-
lent Eq. (71) for computational reasons. Equation (70) admits a solution

I = dle? (78)

where ®/ and \; satisfy
(Q—X\P)®' =0 (79)
as may be confirmed by substituting Eq. (78) into Eq. (70). Equation (79) requires
|Q — AP =0 (80)

which produces 2v values of the scalar A; (=1, - - - ,2v). Because Q and P are
real, complex roots of A; appear as complex conjugate pairs. We refer to these
scalars Ay, © -, A as the eigenvalues of the differential operator in Eq. (70), and
@', - - -, ®* are the corresponding eigenvectors. Since Egs. (70) and (71) are
equivalent, they both admit the solution in Eq. (78), and these eigenvalues and
eigenvectors also belong to the matrix B in Eq. (71). In any case, the eigenvectors
can be solved (from Eq. 79 or Eq. 73) only to within a multiplicative constant, and
we might select this constant (normalizing eigenvectors) differently for Eq. (70)
than for Eq. (71).

If we introduce the transformation T = &Y (as in Eq. 74) into Eq. (70), we find
P3Y = Q&Y (81)

We now require a matrix pre-multiplier to take Eq. (81) into the uncoupled form
of Eq. (75).

We can obtain the necessary matrix formally by considering the eigenvectors of

Pri = QT (82)
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which is sometimes called the adjoint of Eq. (70). The eigenvalues A} and eigen-
vectors &' of Eq. (82) must satisfy

(QT ~ NPTy 3" =0 (83)
and
|Q" — A3P*| =0 (84)
in parallel with Egs. (79) and (80). Since the value of a determinant is unchanged
by transposition, Egs. (80) and (84) yield the same roots, and the eigenvalues of
Eq. (70) and its adjoint, Eq. (82), are identical. Transposition of Eq. (83) produces
(after changing the arbitrary index j to r and replacing X} by A,)
"7 (Q - \P)=0 (85)

so that the eigenvectors & of the adjoint equation are the left eigenvectors of the
original Eq. (70)

The significance of the left eigenvectors depends upon an orthogonality property
which we can establish by pre-multiplying Eq. (79) by ', to find

&"TQd! = dTPHIN; (86)
Post-multiplying Eq. (85) by @/ produces, for comparison,
"7Qd! = oPII, (87)
Subtracting Eq. (86) from Eq. (87) yields
0=ao""Po/ (A, — )
which, for A, ==, requires the orthogonality relationship
®""PeI =0 r=kj (88a)
Equations (86) and (88a) now combine to produce
2"""Qd =0 r=j (88b)

If now we construct the matrix ® whose columns are ®/, ®*, - - - &, then
the orthogonality conditions in Eq. (88) indicate that, if all eigenvalues are distinct,
®'"P® and ®'7Q® are diagonal matrices. This means, of course, that &'7 is the pre-
multiplier we need in order to diagonalize Eq. (81). We choose to normalize the
left and right eigenvectors in such a way that

o'TPo =U (89)
Then, the equation (from Eq. 81)

®'TPSY = ¥'TQOY
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must (by comparison with Eq. 75) become

Y =Y

(90)

In summary of the general case, we have demonstrated formally that Eq. (71)
can be transformed to the uncoupled form Y = AY provided only that the eigen-
vectors of B are independent, and we have demonstrated directly that the original
Eq. (70) can also be transformed into Y =AY if its eigenvalues are distinct. For a
formal proof that Eq. (70) can be transformed into Y = AY even when eigenvalues
are repeated as long as eigenvectors are independent, we can rely upon the equiva-

lence of Egs. (70) and (71).

Let us now direct our attention to special cases for which transformation is sim-
plified. If, in the original second-order equation (Eq. 42), the matrix K (as well
as I) is symmetric and J is skew-symmetric, then, in Eq. (70), the matrix P is sym-

metric and Q is skew-symmetric. Equation (83) then becomes

(—Q - NP)o¥ =0
or (since A} = );)

(Q +AP)2" =0

(91)

In comparing this result with Eq. (75), we first recall that the complex eigen-
values occur in complex conjugate pairs (since Q and P are real). Next, we observe

that the equation (Eq. 42)
I3+ Jy+Ky=0
possesses the first integral

¥7Iy + y"Ky = constant

(92)

as may be confirmed by pre-multiplying Eq. (42) by 37 and observing that the

scalar $7Jy must be zero, since its transpose is 7]y =

—v7]y and any scalar must

equal its transpose. The first integral in Eq. (92) is a reflection of the absence of
nonconservative forces in the dynamical system represented by Eq. (42) in this

restricted case.

Equation (78) provides us with a solution of Eq. (42) when the former is written

in partitioned form as

g_}'_ ‘E_. Ajt — Ajt
T [Y] E]W-]e = e

that is to say, y has the solution

y = ¢plerst

(93)
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Since v is real, and ¢/ and \; are generally complex, the conjugate pairs of eigen-
values and eigenvectors must be so combined that pairs of solutions such as Eq. (93)
appear as

v = a;j¢pi et + a’}‘q&"’*"e":' (94)

where a; is an arbitrary scalar multiplier and * denotes complex conjugate. To
appreciate the reality of y in Eq. (94), and the possible complexity of y in Eq. (93),

A
let A\; = a; + i0o; and a; = ¢; + id;, and write Eq. (94) in terms of its real and
imaginary parts:

vy = et {(c; + id;) (Rep! + igme’) (cos o;t + isino;t)
+ (¢; — id;) (Re¢’ — idm¢?) (cos ot — isinojt)}
= e"* {Re¢’ [c; cos o;t + d;sin ot]

+ gm(ﬁ] [d, cos it — Cj sin O'it]} (95)
Here i 2 (—1)%

The solution for y in Eq. (95) must satisfy the first integral in Eq. (92). If I and K
are both positive semi-definite (or both negative semi-definite), then «; = 0 in
Eq. (95), and the eigenvalue A; is purely imaginary for all j. If I and K are not both
positive semi-definite (or both negative semi-definite), then (by Liapunov’s theo-
rem) the null solution of Eq. (42) is unstable. As previously, we reject the latter
possibility (which would indicate unacceptable spacecraft performance). Now we
can proceed with the comparison of Egs. (91) and (75), knowing that for stable
systems with the assumed symmetry properties of I, J, and K, we have purely
imaginary eigenvalues. Then, Eq. (91) becomes

(Q—ANP)o" =0
indicating that &/’ = ®/* and

3 = o (96)

Thus, in this special case, the left eigenvectors need not be calculated as an extra
computational task, but may be recorded by inspection of the (right) eigenvectors.

The second special case of Eq. (42) which is of practical interest requires J=0
and I, K symmetric. In this case, we can work directly with the second-order differ-

ential equations, constructing the v by v matrix ¢ whose columns are ¢!, - - - , ¢"
(see Eq. 93) and introducing the transformation

y=¢n 97)
to obtain

1% + Kgp =0 (98)
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Again we seek a pre-multiplier which uncouples these equations, and again we
will turn to the transpose of the matrix of left eigenvectors. In this case, however,
we can discover upon substitution of Eq. (93) into the restricted version of Eq. (42)
that

MI+K)¢' =0 (99)

so that an imaginary eigenvalue A; corresponds to a real eigenvector ¢’. Moreover,
¢’ is a left eigenvector as well as a right eigenvector, since, because of the sym-
metry of I and K, we have (changing j to r for later convenience)

oM+ K)=0 (100)

If now we pre-multiply Eq. (99) by ¢'" and subtract the result from the post-
product of Eq. (100) by ¢/, we get

¢"Kep? — ¢7K¢p/ + ¢7Ip! (At — A5) = 0
For A2=E A3, we thus have the new orthogonality conditions

¢"I¢! =0 r=Fj (101a)
and

¢"K¢! =0 r==j (101b)
We further observe that pre-multiplying Eq. (99) by ¢/ produces
¢""K¢! = —rjgp'"Ig’
which, by virtue of the imaginary character of A; = ig;, becomes
/"Kep? = o3giI¢i (102)
If we choose to normalize the eigenvectors in ¢ such that ¢/"I¢/ = 1 for all j,

then pre-multiplication of Eq. (98) by ¢7 yields

3+ o*p=0 (103)

where

We have proven this result formally only for the case of distinct (nonrepeated)
eigenvalues, but the general argument preceding it applies whenever the eigen-
vectors are independent. Although there are other special cases for which special
transformations can replace the general procedure developed here for Eq. (70),
these have been examined previously in this series (Ref. 21), and will not be
re-examined here. It should perhaps only be mentioned that it is a common prac-
tice among structural dynamicists to accommodate structural damping not by gen-
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erating explicitly a symmetric matrix J for Eq. (42), but instead by modifying
Eq. (103) to the form

i+ on+ ot =0 (104)

where ¢ is a diagonal matrix whose nonzero elements (the “modal damping ratios”)
are established by experiment or by the judgment of an experienced analyst. This
practice amounts to assuming the matrix J in Eq. (42) to be a linear combination of
I and K, which seems to be a reasonable supposition for a wide class of structures.

E. Hybrid-Coordinate Equations

The matrix equation for unrestricted motion (Eq. 1) has been written as Eq. (30)
for the special case in which certain of the angles of relative rotation and their
time derivatives remain small enough to justify the neglect of terms above the
first degree. In Eqgs. (30a) and (30b), all linearized angles are collected in the
single set (A. In Eq. (30c), these equations are repeated in the form of a single
matrix equation, and the variables in (4 are subdivided into the column matrices
¥% - -+, ¥, for which in each case, the hinge labels are sequential. When all
of the flexible appendages are classified as terminal appendages, the corresponding
bodies should be given sequential indices, including the highest index in the sys-
tem, so that in Eq. (30c) all small variables are in 4? and all unrestricted angles are
in y'. Finally, the partially linearized equations appear in Eq. (30d) as a first-order
matrix equation, with the same grouping of linearized and unrestricted angles.

In what follows, we let y* designate a typical submatrix of linearized variables,
sok=2, -+ N+ 1. Corresponding to each value of k, there is a linear, constant-
coeflicient equation of the form of Eq. (42), which we now write as

Pk + JigF 4 Keyk = 0 (105)

We write the equivalent first-order equations (obtained either from Eq. 30 or from
Eq. 105 directly) in the form of Egs. (70) and (71), i.e.,

P = QFTF (106)
and
% = Bhr (107)
where
k
2 [—Zk——] (108)

In the general case, we introduce the transformation
T* = ¢*Y* (109)

as in Eq. (74). The corresponding transformations for y* and y* individually are
apparent from Eqs. (108) and (109).
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In terms of the v by v unit matrix U and the v by v null matrix 0, we define the
matrix operators

r, = [U10]; r,=[0}U] (110)
From Eqgs. (108)-(110), we have
# = S = S aw
and
7* = g T* = T oFY* (112)

These transformations can be substituted into the right-hand side of Eq. (30d),
while the corresponding transformation in Eq. (109) is substituted on the left side.
At the same time, we might substitute

¥k =T ¥ (k odd) (113)
and

vk = 3T 1* (k odd) (114)
into the right side of Eq. (30d) in order to achieve a more consistent notation.

Eq. (30d) then becomes

[ | ‘ ar =
Ao | Aoy l Apr®? l T | Aoy AO,N+1@N+1 ®°
Aso Ay A®? l Ay | Aa, ra @Y r
_ B B g ST L S} e |
Az | A, l Ay | AgN_l Az_ Na BV Y:
Aso A31 A;®° [ - ! Ay I Aa, mar BV 3 =
—_— ___l____.._|__._{__. _____ —_— -
| o
I [ o . .
_ -
B AN+1,0 | AN+1,1I A.\'u,zd)zl : < Am.j,,vl AMLNH(I)N” B Y¥+a |

TS (115)
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In anticipation of coordinate truncation, we would like to accomplish all pos-
sible uncoupling of these equations of motion. We have no hope of uncoupling the
entire set of equations, but we would like to come as close as possible to the point
of uncoupling from each other the coordinates which define the oscillatory defor-
mations of an individual flexible substructure. We know from Eq. (89) that

& Prgk = U (116)

and we can readily identify P* as the nominal value of Ay appearing in Eq. (115)
for k even. Thus, we can .obtain the equations of motion most nearly suitable for
coordinate truncation by replacing Eq. (115) by an equivalent equation in which
the row partition corresponding to Y* is multiplied by &, the transposed matrix
of adjoint system eigenvectors.

The result is

A | Ae | At || Agwaer [ e
Ao :_ A | A T Aaen v
S T e S B ol N
. l . l . l . . . .
I R R :
S S S A |
9 A o] O Ay 1| @5 Ay a7 ] Ay, e | | FY0

— — A=A -
k%—[(cok + C’Ok) Ak + COkAk] _kzg aok");k

—_— e — e — T T ——— ]

_____________ (117)

T HN+IYN+1
@’N{»l" _OU?_ __Y—
RNH

The matrices ®’/"A;;® are diagonal (j even) when the corresponding matrix A;;
assumes its nominal value, P/, If its deviation from this value is small, and if it can
be established that indirect coupling among the coordinate complex conjugate
pairs in Y/ is small, then, for some purposes of dynamic analysis, it may be appro-
priate to truncate the matrix Y/ to the smaller matrix Y/, preserving only those
conjugate pairs of coordinates with frequencies in the domain of interest and with
significant influence on those aspects of the dynamic response which are of interest
in a particular case. The truncation of Y/ is accompanied by truncation of the cor-
responding 2v by 2v eigenvector matrices ®' and @’/ to the rectangular matrices
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&/ and &'/, The result is a reduced-dimension set of equations for which the solu-
tion preserves the salient dynamic characteristics of Eq. (117). These equations
are recorded as Eq. (118).

i Aqo | An l A P? ‘i— v _l_ Ao, N+1$N+l r &0 T
Aw | Aw T AT Awd ||
F7A,, 0 F77A,, 37A,, 5 - oo F7A, y BV Yz

7 B -
S

- ;[—2_6_7’_]' -

(118)

$’N+1T|: Egugzvu_y'zvu :|

A special case of Eq. (118) which is of particular interest is the case for which
all angles and their derivatives may be assumed small. Recall that, in this case,
it has been suggested that a chain of three imaginary massless bodies be introduced
into the mathematical model, with the last of these (labeled #£,) representing the
“mean motion” reference frame of the system. In Eq. (117), the only remaining
variables in this case are «° and Y? and the first of these represents the inertial
angular velocity of the mean motion frame. If ° is retained as a system variable,
then it is important that the “rigid-body mode” (zero-frequency mode) coordinates
that arise in the transformed variable matrix Y? be discarded in the truncation to
Y2 because »° and the rigid-body modes are redundant.

A second special case of practical interest arises when in Eq. (105), the matrix J
is zero and K is symmetric. As established in Section IIID, in this case, the trans-
formation in Eq. (109) can be replaced by the simpler transformation

Y= ¢** (119)
in parallei with Eq. (97). Differentiated terms in Eq. (30c) then become

F=gE = g (120)

and the transformed equations remain second-order differential equations. If such
transformations are applied to all of the small variables in Eq. (30c), and appro-
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priate row partitions are multiplied by ¢**, - - - , $"*'", the transformed equations
have the structure shown in Eq. (121).

I @ + am I 'aoz$2 ! o l oY + aoN I ao,zvn';ml

au + 311 _ﬁa‘:%z:_ |__— —r T _él:\—_*__—al—lv_. o _J_ —a‘_'N:?FV: -

L S S S S S S S
aho + fro v+ fm N @y |- _l VY 4 dwx | Y Neigha
_(#ﬁh_ﬂ‘—(alv_“,: 3N+1,o); ;N_HT_(EN:X_,; _T_—élv::l)l 5;’:11'6?1,%( — . |‘$—N+1T_(6N+1,N :ﬁ;, N)l ?;51,;:1%1_
B Fok 1 Doy Tk 1 ForAx 5 7]
Eg:ﬁ[(c + C*¥)AF + C A]*‘Egaokyk
I o S A AT A NS e A et
'$21'Rz (wo’ .yl’ . - .YN’ ,);1’ SR )-,N’ ;7-1’ e ,"N+1 1'71 , -,"-’~N+1’ t)
- RN (wzl’_.-. -, .YN, ,71’ I ?N’ ;’-1’ e 77N+l .,’1 -;]Nn’ t)
$N+ITRN+1 (wo’ YL, . , .YN’ .;,1, cee yN, ?}1, C nN+ ﬁl ﬁ.Nﬂ, t) |

This result can be compared to the more general alternative displayed in Eq. (118).
For computational convenience, Eq. (121) may be rewritten in first-order form,
providing once again a set of equations having the structure of Eq. (118). In this
special case, however, we can define the new variables as

T £ B’—:—] (k even) and T* = [—;—),:—] (k odd) (122)

so that the transformation matrices become

»tEim] i 4z

In this special case, for which Eq. (105) becomes I35 + Ky = 0 with K symmetric,
there is no accommodation of energy dissipation in the mathematical model. This
represents a departure from physical reality that can have serious consequences.
Yet, it is a very difficult task to determine the proper damping characteristics to be
assigned to any structural joint or connection, and it is virtually impossible to assign
the proper characteristics of an analytical joint, introduced by the analyst to repre-
sent discretely a structural deformation which is actually distributed over an elastic
body. The difficulty of incorporating the damping characteristics of a nonspinning
discretized flexible structure can be met with the introduction of modal damping,
as that concept has long been used by structural dynamicists. When the vehicle is
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spinning, the application of this concept is not entirely straightforward, although
with some reinterpretation the basic idea can still be applied.

For a nonspinning elastic body whose modal-coordinate free oscillations are
described by 7 + o?p = 0 as in Eq. (103), the introduction of modal damping takes
the form of the incorporation of a viscous damping term in each of the uncoupled
modal vibration equations, to obtain i + 2fe + o°p = 0, as in Eq. (104). The
analyst’s task is to assign values to the diagonal elements ¢,, - - - , ¢, of the matrix ¢,
on the basis of experiments or related experience. These values generally range from
0.005 to 0.05 for the class of elastic bodies used in space vehicles. In terms of the
equations of motion for the nonspinning multiple-rigid-body systems considered
in this report, the incorporation of modal damping would involve the introduction
into Eq. (121) of the matrix —2Z7¢/y’ as a part of $/"R/, forj=2, - - - ,N+ 1.
This step is equivalent to the assumption that J* in Eq. (105) is a polynomial in I*
and K* (generally, J* is treated as a linear combination of I* and K*).

For a spinning system, Eq. (121) is replaced by Eq. (118), and the incorporation
of modal damping becomes a more ambiguous procedure. The basic objective is to
replace the imaginary eigenvalues of the undamped structure by eigenvalues with
appropriate negative real parts. As shown in Ref. 21 (pp. 45 and 46), this amounts
to replacing the quantities typified by A; = io; and A} = —io; in the diagonal
matrix A in Eq. (90) by —¢;o; + ie; and —¢;jo; — io;. The matrix A in Eq. (90) came
from &’7Q®, and in Eq. (118), neither A nor #7Q® appears explicitly. There will
be found, however, on the right side of Eq. (118) a product which has the nominal
value ®*"Q*®* = )¥, so it is appropriate to augment Eq. (118) by the matrix product

0 | thok

. - -

as a means of incorporating modal damping. It should be noted that this step no
longer implies the relationship between I*, K¥, and the damping terms in J* which
were implied in the nonspinning case. Here ¥ represents the number of modal
coordinates retained after truncation,

F. Sample Problem Formulation

1. Partial linearization. In this section, we shall extend the sample problem
considered in Section IIE (see Fig. 4) as an illustration of the unrestricted discrete-
coordinate equations. Now we shall examine a set of partially linearized equations
for this system, and explore the possibilities of coordinate transformation and
truncation.

In what follows, we shall assume that in Fig. 4, the angles ys, ys, v, vs, and o
remain small, while y, is a prescribed function of time and »° has a nominal value
in the direction of g'. All other circumstances are as described in Section IIE. This
is a rather complex example, possessing most of the difficulties of the general case.
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In order to illustrate special cases, we shall occasionally consider restricted versions
of this example.

Equations (25) provide the first-order equations of kinematics and dynamics of
this system without restriction on the size of any variables. These equations are
equivalent to the kinematical equations in Eq. (24) and the dynamical equations
in Eq. (1).

For the partially linearized case, we replace Eq. (1) by Eq. (30c) as our starting
point, retaining Eqgs. (24) without change. Since y, is prescribed, y, does not appear
on the left side of the version of Eq. (30c) to be written here. The variables in the
differentiated column matrix on the left side consist of »° and

'y A A
V= lrvsvls Y =lysvevivaves  ¥*= [ra) (124)
and the equations of motion are

aOD + QOOI aﬂl + 301 ! ‘-102 ‘-103 + aoa &)0

_ I~
aw° + am l au + 311 | alzl @’ + alB 3

—IZT A_20 21 21T—2T-2— —A2-3_— —'—- =
@ tar _+_@ ar ¥

as0 -+ éso i a’' + {)31 , a*l g3 + asa .’;3

°
(X

A Co) &% + TRA¥] — (s + Bor) 9,

m,YYYYYYSt) o (125)

R® (“’0’ 'Yla st 73’ ';1’ ';'2’ '?3’ t)

as a special case of Eq. (30c). Explicit values of the submatrices in the partitions on
the left side of Eq. (125) must be constructed from the comparison of Egs. (30a, b, ¢)
and the substitution of expressions found in Egs. (36) and (37). The matrices @
and 4% are available, respectively, from Eqs. (36a) and (37a), while all other matrix
partitions must be expanded before the expressions in Egs. (36) and (37) can be
used. For example, the matrix @°* + 4% can be expanded as

GO + 0 = [Foe + Bre) Ty + Boa | Bus + o] (126)

and @'° + 81 is the transpose of this expression. Explicit values for the 3 by 1
matrices in the partitions of Eq. (126) are available from Egs. (36b) and (37b)
As a second example, the matrix @'? can be expanded as

G35 Gz Q31 Gss  Gae (127)
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and the scalars in this matrix are available from Eq. (36d). A third example of
particular interest is the 5 by 5 matrix '

Gss 8ss Gsr Gss Osy
Tes Qe Ggr Teg  boo
@2 =| Gis Grg Gyr Q1 Tro (128)
Qg5 @sg Qa7 Qgg Qg
Gos Qgs Qg7 0Gog Qg

the elements of which can also be obtained from Eq. (36d).

In order to obtain explicit expressions for the matrix partitions on the right side
of Eq. (125), one must recognize the definitions in Eq. (124) and then examine
Egs. (30a, b). The top 3 by 1 partition on the right side of Eq. (127) is identical to
the right side of Eq. (30a) except for the transfer of the term (@, + c’z\m) ¥, from
the left side of Eq. (30a)—this because vy, (t) is prescribed. The 3 by 1 matrix R? is
from Eqs. (124) and (30b), given by

[ g° "3 e [cskAk + (C* + csk) A+ 5+ — (@ + 8) ¥ ]
g 2 o [CFA" + (T + C8) Z¥] + 70 + & — (@ar + o) 1
Rz

(129)

L ggr 2 Egk [597‘14\76 + (69" + 6976) Kk] + ?9 + 49 - (C-igl + 391) '3/‘1 J
ke&P

Expressions for R* and R® are exactly parallel, differing only in dimension and
numerical indices, as required by the definitions in Eq. (124).

As in the sample problem formulation in Section IIE, it is convenient for subse-
quent analysis and computations to rewrite Eq. (125) as a first-order matrix equa-
tion, and to combine it with a set of kinematical equations, such as Eq. (24). This
can be accomplished exactly as in Eq. (25), that is, by

Vi=W (130a)
where
x 2 [6,6,8, 030503 v,%, * * * YiaTr0l”
G P (130b)

Because we intend in this section to restrict the results in Section IIE by partial
linearization, we now express V and W in terms of partitioned matrices which

JPL TECHNICAL REPORT 32-1565



reflect the linearization. These results (to be compared to the unrestricted counter-
parts in Eqgs. 26 and 27) are given by Egs. (130c).

Ul o o] o olojo' o [ é
vl _lof o_lolofep o JFi
0'@o+80l 0 @ +8ilolan 0jae+8s || a0
! 14 i 0

+___ —_— —_—— —_
00 .Y O_F’r_‘)—rol___‘l_ 7
v 0@+ Mol oy an +4n olawi_()'anréw o
x=|— _ —_t — =} — — — | =
ol o o 0,0, 0 o2
0L 0 4o 0 yufoyor 0 i

0ja" + 8|0 j@ 00| a) 07+ | | 7
0f 0 o] o (olojUu o 7

i 0,530_:,_330’O]am_;_asllo—'—a:sz] ()]as:«x_;_éz\ssJ _.'); j

If the partially linearized Eq. (130c) is to have any immediate computational
advantage over its unrestricted counterpart in Eqs. (25)—(27), then this advantage
is most apt to be found in the simplification of V, since it is the necessity of
repeatedly inverting this matrix (actually or effectively) which makes the numerical
integration of Vx = W such a costly operation. In order to minimize this task, we
can in either case partition the matrix into constant and variable submatrices in
order to take advantage of the algorithm for matrix inversion in terms of matrix
partitions (see Ref. 27, p. 640, or illustration in Ref. 21, p. 49).

As we examine the matrix V in Eq. (130), and compare with Eq. (26), we are
reminded that the caret over a matrix is an indication that the matrix may depend
upon the linearized variables, while the bar over a matrix indicates the absence of
small-deformation variables; in both classes of matrices, however, we must expect
variation with other kinematical variables. In order to detect the possibility of
constancy of the coefficient matrices in Eq. (130c), we must examine the explicit
expressions for their elements, as found in Eqgs. (36) and (37). These elements must
therefore be examined individually to establish conditions for their constancy.

From Eq. (36a), the matrix a*° (which is the same as a,,) is seen to have a defi-
nitely constant part given by &% (the inertia matrix of the augmented reference
body) and a generally variable part involving the direction cosines C%* for k € &.
Only if all relative motions are assumed small (so C%* = U for all k) do we have a
constant matrix @%. The matrix 3°° (or doo) from Eq. (37a) is even more disagree-
able, since it experiences time variations even for small deformations. If &° is also
small (even if «° is large), terms such as 8030 can be ignored; only then does the
matrix @ + 2% in V become constant. It is, in fact, clear that if all variables in x
are assumed arbitrarily small (except perhaps 6, which is coupled only to «°, which
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may be large if nearly constant), and if there are no kinematically prescribed vari-
ables of large amplitude, then the matrix V must be a constant, to be inverted
only once in advance of numerical integration. This is, however, not the case for
the example under consideration.

Matrices in the second row-partition and second column-partition of V are avail-
able in terms of Egs. (36b, ¢) and (37b, c). These matrices also will not be effec-
tively constant except in the extreme case noted, in which all kinematical variables
are small (except possibly 6, 8, and °, which may be large providing that § and &°
are small).

All other submatrices in V are composed of elements defined by Egs. (36d) and
(37d). The scalar @** in Eq. (36d) can be constant only if the path elements such
as &;, adopt zero values when multiplied by time-varying direction-cosine matrices.
For example, the submatrix @*? shown in Eq. (127) contains the scalar @,,, which,
from Eq. (36d), is

539 = g37' 2 ESTEMESr@rrEngQ
red
— Q/ng:ﬂ' 2 2 £arE0s (EarDarTEarDra — (_jsstrDraT) 619g9 (131&)
relp se&P—r

Recall from Def. 27 that the path elements are defined by

€gk —

A {1 if f, lies between 4, and &,
0 otherwise

Inspection of the configuration for this sample problem, shown in Fig. 4, now

reveals that e;, = 0 unless r = 3 or 4 and &5, = 0 unless s = 9. (This information is

also available from Table 2.) Thus, the first series of terms in Eq. (131a) vanishes,
and we retain only

Tao = __Q/ngaf [(EsaDsaTassts _ (_jsstsDasf) 539
+ (634]_)941@“94[)49 _ C-”D”*D“T) 649] g (131b)
Further simplification is afforded by the interpretation of Def. 35, which provides
D°: = D% = D, D = D, D = D40
Moreover, Eqs. (32), (33) may be interpreted to provide
C = U, Co3 = 603; Cos = 504; Co = Eso; Co = C
Thus, Eq. (131b) becomes
Tao = _Q/ngsT [(Dso'l‘aosto — EsoDsoDaoT)an

+ (634D9°7'6‘“D‘° _ @oDsoDwr) 640] g (131c)
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Evidently, in this case, the matrix in square brackets varies with time, so that only
for very special configurations could @, be constant. (For example, if the matrix in
square brackets has a principal axis remaining parallel to g° while g3 remains per-
pendicular to g°, then @, = 0; for the sample problem, we don’t have such good
fortune.)

Generalizing from this experience with @, we can see that, except for very
special configurations, matrices @'/ (i odd, § even), as typified by @*?, are not con-
stant, because in every case there is at least one unrestricted angle lying between
each body in the set & — (4 and any body in the set (4. The same result emerges
for @* (j, k odd), and the careted matrices all vary with time unless they are zero.

Thus, the only matrix partitions in V in Eq. (130c) which retain the possibility
of constancy are @*? and (of course) the unit matrix U. As shown explicitly in
Eq. (128), the elements of @** are the scalars @;; found in Eq. (36d) for i, k € (A.
Because every term in @i is multiplied by ei,, and i is confined to the set (4, we
can discard all terms with superscripts r unless either r € (A or ¢, is separated from
é, by a joint whose index is in (4. In application to the sample problem in Fig. 4,
this rules out all 7 for which y, € y*, leaving only re A1 and r = 10. Moreover, the
path element ¢, is also zero unless either se 7 or 4, is separated from &4, by a
joint whose index is in (4. Since s 3=, we have in this sample problem confined s
to (A. Thus, the expression for @;y in this case becomes

— _ i - y— AT -— .
air = gl 2 Ei,‘sertrérrCrkgk + gz €i,10€k, 10 Ct,qu)lO,lOClO,kgk
reiA

— O/ngiT E 2 €irEks (airDsrTEJan — EistrDraT) 6fkgk
re(A seA—r

— O’I/lg” g@ €176k, 10 (EirDlo,ﬂ'Elo,rDr,lo _ Ei,leo,rDr,mT)Er,kgk
— MG S i otk (ai,loDs,loTc—s,loDlo,s _ aisDa,loDlo,aT) alo,kgk (132)
se(A

All terms in Eq. (132) are constant except those involving Ci1® and C'*, and
these are given for all i,ke A by C** = C**% and C*'* = C*° = (C'**)”. From
Eq. (4), we have

C196 = U c0s y1p — 20 sin y,0 + g°2°°7 (1 — €08 v10) (133)

which obviously varies with time. Although many of these time-varying direction-
cosine matrices are filtered out of Eq. (132) by the path elements, such terms
survive when either i€ {5,6} or ke {5,6}. Thus, the lower right 3 by 3 matrix in
Eq. (128c) is constant.

In generalizing from this example, we can conclude that the matrix @'/ is con-
stant for even § whenever the angles in y/ belong to a terminal appendage, and not
otherwise except for very special configurations. For a flexible substructure which
is not a terminal appendage, the corresponding matrix @’/ (j even) can be parti-
tioned into a constant part and a time-varying part.

Partial linearization with the immediate objective of accelerating the numerical
integration process would appear to be justified only if substantial and identifiable
portions of the V matrix in Vi = W are replaced by constants in the linearization
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process. For the sample problem, the V matrix is 24 by 24, and even without linear-
ization, half of the terms are partitioned into constant (often zero) matrices. The
suggested linearization in ys, - - -, y, renders constant only a 3 by 3 partition of
@%%, changing only nine of the 288 potentially variable elements to constants. This
situation would improve significantly if y,, and its derivatives were also assumed
small, since then y* would embrace v*, the substructure would become a terminal
appendage, and a new 6 by 6 constant matrix a* would emerge, changing 36 of
the 288 potentially variable elements to constants.

Partial linearization begins to offer significant advantages in computation when
the number of bodies in a flexible substructure is large, and particularly when the
substructure is a terminal appendage. In this same combination of circumstances,
more dramatic computational advantage can be realized by transforming to dis-
tributed coordinates, if one can justify truncation of high-frequency modes.
Although these advantages are not very significant for the small sample problem
chosen here, this will continue to be the vehicle for illustrating the general theory.

2. Coordinate transformation. From Eq. (130c), we can extract

522?2 + azo(;)o + 62171 + ézs--a = R? (wo’ ,Yl’ Yz, 73, ,;,1, _;,2’ 7, t) — 2050 — Gt — (‘123,3;3

(134)
All terms on the left side of Eq. (134) depend on y2 or its time derivatives, as does
the term R? on the right. Since coordinate transformations are to be based on a
homogeneous equation in y2, which is obtained from Eq. (134), we must examine
Eq. (129), in which we have explicitly displayed R? and move those (careted)
terms depending on y? or its derivatives to the left side of Eq. (134). If we then

record only the homogeneous counterpart to Eq. (134), we have

522?2 + QZO‘;)O + aZl'y‘l + a23'y'3
r - A A —
g5 2 Esk [CSkAk + C5kAk] + 45 - 651‘.Y.1
ke? .
- . =0 (135a)
T =0 .A iy A A
g9 E Egk [CBkAk + CQkA’C] + To — 091'.);1
ke

In comparison of this particular example with the general theory in Section IIIC,
we can identify Eq. (135a) as the specific counterpart of the general set of equa-
tions established by Eq. (39). As demonstrated in the general arguments following
Eq. (39), it is next appropriate to replace the linear, variable-coefficient equations

in Eq. (135a) by a corresponding set of linear, constant-coefficient equations, which
will have the structure of Eq. (42), that is,

Iy+Jy+Ky=0 (135b)
In this application,
a T
Y= [vsveviv87s)
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A4=,2

I

=22 =22
a a lnominal

and the elements of J and K are as defined in Eqs. (43) and (44).

More explicitly, the elements of the matrix I are established by the nominal
(constant) values of the elements displayed in Eq. (128). Although any “nominal”
might be selected, it may be most convenient to choose the values when all
direction-cosine matrices are the unit matrix U, so that all angles y; for je & — A
are zero. The element @;; in Eq. (128) is then replaced by @;, available from the
nominal value in Eq. (36d) as

e

Lij =i =g" 3 ei,6,07g/
re&P :

~OMg™ 3 I eiess (UDVD—DYD) g (ijed)  (136a)
relP seQ@—r
Similarly, the elements of J in Eq. (43) become
oA o,

lij=—¢g Eg)m- %, %, (i,j e A) (136b)

for the indicated selection of the nominal case. With the substitution of Egs. (49)
and (46), and the recollection of items (7) and (8) from the input list at the begin-
ning of Section IIE, Eq. (136b) becomes

Ii; = g” > e [@kke,-kﬁogj + Sjkgjq)k"(ﬂo + F@kkejkg’.
ke

NS ey, [D* (@ +7F) D* + (UDWDR — DH*DisTZogi] + diss,
seB—k
(136¢)

where 8;; is the Kronecker delta, and &° is the nominal value of «°.

The elements of K in Eq. (135b) are obtained from Eq. (44) in similar fashion,
incorporating Eqs. (46), (47), and (50) and replacing all direction-cosine matrices
by U. The result is

Kij=—g" 3 e {(esx — €j1) gi (__god)kkao +m 3 ﬁksgon—‘)ﬂl)’k)
keP seB—k
+ e (B30 — BOFT) 9Ha° + TOBHFi50]
M S DR (i — ep) TR — e, (B0 — BF)T°
seB—k
+ B0 (— e, 5150 +T0%;,87)] DY + kisi;
or

Kij= —g" 3 eix {8 @ —m I Drsgoze Dy

ke seB—k
+ e [B (PG — P+ Y (8ID% — Dhegl)TaD*]
sefB—k
+m 3 &, D¥ERG D*} + kidi; (136d)
seB—~k
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The next step is to find a coordinate transformation of Eq. (135b) which will
permit this equation to be replaced by a system of uncoupled equations; for guid-
ance in this procedure, we consider Section IIID. In order to determine which of
the coordinate transformations in Section IIID apply to this sample problem, we
must establish the structure of matrices J and K in Eq. (135b); we already know
that I is real, symmetric, and nonsingular, and that J and K are real.

In order to illustrate the two most useful coordinate transformations, this sample
problem will be continued along two branches: (1) We shall assume the nominal
value of ° appearing in Egs. (136¢c, d) to be zero, and the structural connections
to be purely elastic, so that these equations become Ji; = 0 and K;; = k;8:;; and
(2) we shall examine the most general case represented by Egs. (136¢, d).

In the first case, Eq. (135b) becomes
I3+ Ky=0 (137)

as in Eq. (65). The transformation y = ¢y, recorded as Eq. (97), applies directly,
and Eq. (137) can be rewritten as

i+ on=0 (138)

as indicated by Eq. (103). Because ¢ is a diagonal matrix, the five scalar equations
implied by Eq. (138) can be solved independently. If we were to consider inhomo-
geneous counterparts to Egs. (137) and (138), introducing forcing functions on the
right side of both equations, then it would still be possible to obtain the five scalar
solutions in Eq. (138) independently, and it might be feasible for certain purposes
to approximate the total response in all five of the y; of Eq. (137) by

y=¢y (139)

where 77 and ¢ are truncated versions of 5 and ¢. In the extreme case, 7 might be
a single scalar, perhaps 7,, and ¢ the corresponding column of ¢, which, for 7,,
would be the first column.

Coordinate truncation can be an enormously valuable device for improving the
efficiency of dynamic analysis, but it can also be a dangerous oversimplification.
In particular, for this sample problem, one must guard against eliminating a dis-
tributed coordinate which might be excited to large and potentially destructive
values by base motions of corresponding frequency, and one must avoid truncation
of a coordinate whose modest response might degrade the pointing accuracy of the
spacecraft or a spacecraft component. This sample problem is further complicated
by the body £, (see Fig. 4), which can perform large rotations relative to the con-
tiguous body &;. If £, is an instrument with pointing requirements, it might neces-
sitate the retention of appendage modal coordinates which affect £, only negligibly;
if 4, is an actively controlled device, it might destructively force the appendage
at the natural frequency of an otherwise insignificant mode. If &, is massive and
subject to gross departures from the nominal value assumed for the modal analy-
sis, this will seriously jeopardize the entire truncation process. In any case, the
truncation operation must be undertaken cautiously, with systematic evaluation
of consequences.
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Once some level of truncation has been chosen (perhaps tentatively), we return
to the partially linearized equations (Eq. 130c), and substitute the truncated trans-
formation y* = 7 (see Eq. 139 or Eq. 121), together with y?> = &7 and y? = ¢7.
The fifth and sixth row-partition equations must then be multiplied by $” in order
to obtain the reduced set of equations. We may observe that the fifth row-partition
equation now says ¢’$7 = $7¢4, and we can gain computational advantage by
replacing this with Uz = U7. We might wish also to incorporate modal damping
in our system with the addition of —2Z57 to the term $7R2.

In the more general case, for which «° == 0 nominally, we have no simplification
of Eq. (135b), so that coordinate transformation must be preceded by its repre-
sentation in the first-order form

P = Qr (140)
as in Eq. (70). The appropriate transformation is
T =&Y (141)

as in Eq. (74) or Eq. (109). With the same truncation rationale as previously, we
can instead substitute the approximation

r=23aY (142)
into Eq. (130c), where T appears in the several forms

[-%:—]f‘—-r; p=[Uj0lr;  y=[0iUlT

Y

and rewrite Eq. (130c) in the form established by Eq. (118).

Although the additional algebraic complexity of the more general case with a
nominally spinning base is easily accommodated, there remain two considerations
which make this case much more difficult to deal with than the nominally non-
spinning case; the problem areas involve computation and modeling.

The computational difficulty arises because the elements of the eigenvectors
which comprise the columns of & in Eq. (142) are in general complex numbers,
whereas the eigenvectors § in Eq. (139) are all real. Computation of @ is thus a
significantly more time-consuming task than is the computation of ¢, although
recent experience (Refs. 28, 29) suggests that even the general problem can be
handled efficiently with the proper eigenvalue-eigenvector program.

More troublesome problems must be faced in the initial construction of an
appropriate multiple-rigid-body mathematical model of a spinning, flexible space-
craft. The first major task is the discretization of the spacecraft. This involves not
only subdividing the vehicle into rigid-body segments but also assigning the proper
description to the connection characteristics. In the given sample problem, we must
assign d; and k; (i =5, + - - ,9) as well as system geometry and mass properties.
This is necessary whether the vehicle is spinning or not, but the assignment may be
complicated by spin.
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Unless there is actually a physical damping device at a physical hinge, it is prob-
ably best to ignore damping torques at hinge connections until transformation to
modal coordinates has been accomplished; incorporation of a modal damping
matrix can then be accomplished both for spinning and for nonspinning structures,
as described at the end of Section IIIE.

The stiffness characteristics of each connection are defined by a single scalar, so
that k;, - - -, k, must be specified for this sample problem. The determination
of these spring constants is a routine chore when the structure is not spinning,
although the calculation can be greatly complicated if variations in spacecraft
thermal distortions result in variations in the undeformed nominal state of the
vehicle. One must wonder, however, whether the structural properties of a non-
spinning structure are changed by the steady-state forces borne by structural mem-
bers when the vehicle is spinning,.

As noted in Ref. 25, it is necessary when dealing with a spinning elastic structure,
described conventionally in terms of finite elements, to augment the elastic stiffness
matrix with a new matrix called the geometric stiffness matrix or the preload stiff-
ness matrix. The purpose of the new matrix is to reflect the influence on structural
response of steady-state loads in the members—loads induced, in this case, by spin.
Without such correction terms, there would, for example, be no stiffness in the
direction of the spin axis for a finite element model of a spinning cable, and we
know from experience that a cable, even without bending moment capacity when
at rest, gains effective stiffness from spin. If the spinning cable (or a spinning
beam) is modeled as a continuum, the partial differential equations include terms
which reflect the foreshortening of the structure in the direction normal to the
spin axis, and in this way the steady-state load in the structure changes the effective
stiffness. We should examine the possibility of the necessity of such correction
terms in the stiffness characteristics of a multiple-rigid-body model of a spinning
flexible structure.

Let us examine this question once again in the context of the cable disposed per-
pendicularly to the spin axis. Now we idealize the cable as a chain of rigid-body
segments, connected by hinge joints, as depicted in Fig. 11. We imagine that, when
the vehicle is not spinning, the cable has no bending stiffness, so that in the absence
of spin there are no springs at the joints. Should we artificially introduce “effective
spring constants” when the vehicle spins? In this case, the answer is clearly nega-
tive, since the foreshortening is automatically accommodated by the selection of
variables of rotation rather than translation.

Limited investigation suggests that the lesson of the segmented cable can be
generalized. It is not necessary to augment the elastic stiffnesses of the hinge con-
nections of a multiple-rigid-body model of an elastic structure to accommodate
steady-state loads due to spin. Since the determination of the geometric stiffness
matrix for a finite element model is a task of major proportions, this would seem to
offer an extra advantage to the multiple-rigid-body model.

IV. Summary and Conclusions
A. Summary

This report is confined in scope to the dynamic analysis of mathematical ideal-
izations consisting of hinge-connected rigid bodies in a topological tree. The equa-
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tions of unrestricted motion of the system are recorded as Eq. (1), in a matrix form
that follows naturally from the previous developments of Hooker and Margulies
(Refs. 9, 14). Several partially linearized forms of these equations appear as
Egs. (30a) through (30d), with the objective of providing approximations of Eq. (1),
for which numerical integration is facilitated. Equations (1) and (30) are formu-
lated in terms designed to minimize the demands on the user of a digital computer
program for the numerical integration of these equations. This report includes the
conceptual outlines of such a program and illustrative examples for its use; how-
ever, we reserve for later documentation the detailed listing of the computer pro-
gram and instructions for the user.

The bulk of this report is devoted to the exposition of what seems to be an
entirely new idea, which is based upon the application of a coordinate transforma-
tion to a subset of the deformation variables in the partially linearized Egs. (30),
and subsequent coordinate truncation, The resulting hybrid-coordinate equations
appear as Eq. (118). Because the distributed (modal) coordinates in this formula-
tion are linear combinations of “small” variables which represent relative rotations
of contiguous pairs of rigid bodies, their use does not imply that the deformations
of the elastic substructure modeled by a chain or branch of elastically connected
rigid bodies are “small” in any global sense, but only that the strains or local
deformations are “small.” Thus, we have accomplished a discretized version of
the equations of elasticity for large deformations with small strains. The distributed
coordinates introduced here are called large-deformation modal coordinates. We
expect these results to have applicability to a class of spacecraft for which deforma-
tions are so large as to preclude the use of modal coordinates in the usual sense of
structural dynamics (as in Ref. 21), and yet we can gain the advantages of computa-
tional efficiency normally associated with hybrid-coordinate analysis (as opposed
to discrete-coordinate analysis).

While Eq. (118) provides an alternative to Egs. (30) which has advantages in
computational efliciency, the former equations demand a much more complex
specification of input information, including mode shapes and frequencies gen-
erated in a separate computer program for eigenvalue—eigenvector analysis. For
this reason, the decision has been made at JPL to develop a distinct computer pro-
gram for the numerical integration of Eq. (118), as opposed to its successively
more comprehensive counterparts in Egs. (30) and (1). This program will be docu-
mented separately when it becomes available.

B. Projection

As noted in the Introduction, the determination of the influence of spacecraft
nonrigidity on mission performance is not a single problem but a family of prob-
lems, and a family of solution procedures is required for the efficient resolution
of these problems. In this report, we have tried to deal with those vehicles for which
a multiple-rigid-body tree model is appropriate. In a report now in preparation,
we treat those vehicles for which it seems preferable to adopt an idealization con-
sisting again of hinge-connected rigid bodies in a topological tree but with a small-
deformation elastic appendage attached to each of the rigid bodies.* These equa-
tions are still quite tractable, and are amenable to digital computer numerical
integration. More general formulations will be developed if it becomes clear that
they meet the criteria of need and reasonable efficiency of simulation.

*The equations of motion appear in vector-dyadic form in Ref. 30.
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Appendix A

Derivation of Discrete-Coordinate Dynamical Equations®

In addition to the symbol definitions adopted in Section IIA, consider the
following:

Def. Al. Let p* be the position vector of ¢, with respect to CM.

Def. A2. Let the system of forces applied to £; by ¢; for k € &3 and j e &3x be equiva-
lent to a resultant force f*/ applied at the labeled point (/; or /) com-
mon to £ and 4;, plus a torque T*/.

Def. A3. Let t*/ be the kinematical constraint torque applied to é; by 4&;, for ke &3
and e By; that is, let the total torque T* applied to 4; by its neighbor
é; be given by

Tki = tkj + 8ijTkgk — SkNjTjgj
so that if k > j, then g+ T* = 7, and if k < f, then g/ * T = — ;.

Def. A4. Let @ be the inertial angular velocity of ;.

All dynamical information regarding the motion of the n + 1 rigid bodies whose
indices comprise the set &3 must be contained in the translational equations

FF+3Sf—mE+p)=0 redB (A-1)
por7: 8
and the rotational equations
T+ S TH+ I pii X 9 —PFeob — 0 X Frf =0 ked (A-2)
jeBx jeBa
The objective is to recast these 2(n + 1) vector equations into n + 6 scalar inde-
pendent equations which do not involve unknown scalar components of the kine-

matical constraint torques t*/ or the constraint forces f*/. To this end, sum all equa-
tions from Eq. (A-1) to find

S[F+ 3] = 3 [mX+mp]
reB 3¢B, reB
The action-reaction principle (Newton’s third law) provides

= 3f*=0 (A-3)

reB sefB,
and the mass center definition furnishes
S mp =0 (A-4)
reB

so that the sum of Egs. (A-1) becomes simply

SF=3mX (A-5)
refB re

*The derivation following is the natural progeny of the derivations by Hooker and Margulies
(Refs. 9 and 14), and represents a special case of that presented in Ref. 30.
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or, with Defs. 25 and 30 from Section IIA,
F =X (A-6)
This result is the vector counterpart of the matrix dynamical equation recorded

in Section IIB as Eq. (2), but in addition to verifying that equation, it permits
Eq. (A-1) to be rewritten as

Sfr=—F+ m,[ s g% + .'sr] res® (A7)
€8, ueB

Summing selected equations from the set implied by Eq. (A-7) yields

ft=3 Sfe=-3 [(F— % X F“) —m,ii'] (A-8)

1€Bxy sefB, refBu; ueB

by virtue of the action-reaction principle. (Note that the indicated summation pro-
duces the translatory equation of motion for the nested set of bodies consisting of
all bodies on the branch attached to 4; and commencing with é4j.)

The action-reaction principle combines with Eq. (A-8) to give

fi=—fr=3 [(F - g;q s F“) —~ m,.b"] ked (A-9)
ueB

r€Br;
and substitution of this result into Eq. (A-2) eliminates all interbody forces from

the rotational equations.

The term of concern in Eq. (A-2) can, with Eq. (A-9), be written (using Defs. 32,
34, and 35 from Section IIA) as

E pki X fFi = 2 pk]' X E l:(Fr - Q"/:/; EFH) — mrbrjl

~ jeBr jeBy refByy
=3 [Lkr % Fr — Lk X m, S Fv — L X mr?,r]
re8 m uefB
= S Lo XF +D¥X 3 F«— 3 Lk X m,pr
reB ueB ref8
= 2 Dfr X Fr — 2 Lk X mr"ir (A-lO)
redB rel3

It should be noted that, by Def. 32, L* = 0; thus, certain of the terms in the pre-
ceding summations are zero. '

Combining Eqs. (A-10) and (A-2) furnishes the vector equations
T" + 2 Tk +- szrXFr_ 2 Lerm'b'r_|k.(;)k__mk><|k.wk:0 ke®B
relB rel8

jeBe
(A-11)

Next, sum individual equations from Eq. (A-11) over those values of k corre-
sponding to the indices of a nested set of bodies consisting of all bodies on a branch
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attached to #y, and commencing with &; the resulting equation, which by virtue
of the action-reaction principle involves no interbody torques except T®:, is
given by
TeVe 4+ 3 [TF+ S (D XF =L Xmp) —Feof —of XFrab] =0 se&
k L reB

(A-12)

In what follows, X will be replaced by 3, 4, which, by Def. 27, is equivalent.
kﬁmy', ke )

Definition A3 permits the substitution
To¥e = to¥s + 7,g¢ (A-13)
so that dot-multiplication of Eq. (A-12) by g® yields the scalar equations

ret g S e [TF+ S (DM XF —Lir X mpr) —FeF — b X Fe¥] =0  se&
ke&P reB
(A-14)

Equation (A-14) provides n scalar equations of the desired character, being free of
any involvement with constraint forces or torques. The required three additional
scalar equations are readily obtained by summing the individual vector equations
represented by Eq. (A-11) over all values of k in £3. Since the action-reaction prin-
ciple in this case eliminates all interbody torques, the result is

S [T+ T (DX F —L¥ X m,pr) — Fe6F — o X FFewF] =0 (A-15)
keB reB

In order to prove that Egs. (A-14) and (A-15) establish the validity of Eq. (1) of
Section 1IB, one must first use available kinematical relationships to express p*, w¥,
and @ (for r, k € {B) in terms of the kinematical variables appearing in Eq. (1).

To eliminate p”, let @,; be the set of indices of bodies lying on the path between
4, and ¢;, and note, from Defs. Al and 32, that

pr—pi=Li"+ 3 (Lér— L#) — L7 (A-16)

3€Cy;

See Fig. A-1 for an illustration of this relationship. Having recorded Eq. (A-16),
one can recognize more easily that the right side is unnecessarily complex; since,
from Def. 32, L’/ = L'" =0, and for any index s in the set 3 — @,; the sum L*" — L#/
is zero (as in Fig. A-1 for s = x,y, or z), Eq. (A-16) can be replaced by

pT—pi = 3 (L — L) r,i€&B (A-17)
5B
with the obvious consequence,

m; m;

r__.r_nj_ j — —
mP T wm P =2y

(Lsr — Lsi) T, 1 B (A-18)
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Fig. A-1. Vector chain for @,; = {a,b, - - - ,g}

For any given value of r, there are n + 1 equations implied by Eq. (A-18);
summing these provides

m; m;
S P - 2o

|3

L(Ler — Lei A-19
o (L L) (A-19)

ko]

pr=2 3
jeB 5B

Equation (A-4) removes the second term on the left, and the definition of On
(Def. 30) simplifies the first, yielding

pr=3 3oL — L) (A-20)

Reversing the summation sequence and expanding produces

mj

m.
PT:E[E Lsr_z__’Laj]
o L 7z M s M

=3 [L”— > gfy’l L“':I (A-21)

seB B

Definitions 33 and 35 now permit the representation

pr=3 [L" +D*] = 3 D (A-22)
seB 2B

The term in the dynamical equations (A-14) and (A-15) which requires the sub-
stitution of p* from Eq. (A-22) is

_2 Lermri;r___. _2 L"'Xm, 2 ].jar: _E Lermr(ﬁkr+ E ijsr)
reB reB 5B redB seB—k
(A-23)
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The first term in parentheses in Eq. (A-23) contributes (with the use of Def. 35)

D mrﬁkr = 3 (D* — D¥) X m, Dk
reB red3

oo d .
=D¥ X 3 m D — — (S D¥ X m, D) (A-24)
relB t re3

The interpretation of by as the mass center of the augmented body 4 ; permitted
the recognition in Section ITA of the relationship

S mD¥ =0 (A-25)
red
which eliminates the first term on the right of Eq. (A-24). The second term involves

the inertial time derivatives of vectors D*", which are fixed in &, so that, with
Def. A4, one can write

D" = et X DFr (A-26)

Equation (A-24) thus becomes

~3 L X m,DFr = — —C‘li[z D} X (m,e* X D]
redB " e

g S, m, (D DU ~ DVDV)] - o)

i

4 . o
- (Ko (A-2T)
where U is the unity dyadic and the dyadic K* is defined by

K+ 2 3 m. (D + DU — DVD¥) (A-28)

Thus, Eq. (A-23) becomes

LS L Xmpr =~ (Kwk)— S S mLv X D (A-29)
re dt res seB—k

The second term on the right in Eq. (A-29) can be expanded to find (using Eq. A-25
A
and L% = 0)

__2 E mrLkr Y ijsr — 2 mekr X ﬁrr
reB—k seB—k—r reB—k

==3 3 mLr X Der + S Y mlLF X Dre
reB—k seB—k—r reB—k seB—r

=-3 3 mlexbDr+ S I mlirxDr (A-30)

reB—k seB—k—r reB—k seB—-r
where in the final step, the indices of the summed quantities in the first term have
been exchanged, taking advantage of the fact that the double summation ranges
over a set of indices r,s which is symmetric in the sense that g, b belongs to the
set if and only if b, a belongs to it as well. This observation (first noted in Ref. 9)
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permits the factorization of the terms in Eq. (A-30), and the recognition that
L¥ £ 0 allows the further simplification

S S mLirx Dre — > m,L¥ X ijrs] = 3 3 m I+ —~ L)X Dre
re—k seB—r seB—k—r reB—k seB—r

(A-31)

The quantity L*¥” — L** is zero for any index s corresponding to a body which
lies anywhere on the branch that begins with 4y, and includes ,; for any other
index s, the quantity D" is also D"*. Thus, D"* can be changed to )™*. At the same
time, se{3 — r is replaced by sefB, since there is no contribution when s =r.
With Defs. (33) and (35), Eq. (A-31) then becomes

S 3 m, (LF —~ Lk) X Dre = S [ 3 m, (L — L)) X Drx

reB—k seB—r reB—k 5B
= 3 [OnL¥ — S m,Lk] X D*
refB—k B
= 3 [OnLF +mD*] X D= m S DX D
relB—k refB—k
(A-32)
Finally, Eqs. (A-29)—(A-32) combine to provide
—SL¥ X mp = —i(K" )+ 01 3 DM X D* (A-33)
reB dt reB—k

thereby permitting Eqgs. (A-14) and (A-15) to be written in a more useful vector-
dyadic form as

o + g0 e [TF + S DFr X Fr — 04k« @F — @f X D4« ok
kesP reB

+0n ¥ DXD*) =0 se&p (A-34)
refB—k

and

2[Tk+2DerFr__¢kk c@F — F X O ef 4O S Deri‘jrk]:()
ke reB—k
(A-35)

where the relationship between K* in Eq. (A-28) and ®** in Def. 36 has been noted
to provide K* + I = @*,

Observing that D™ is fixed in é,, we can substitute
Dt =" X D™+ o X (@ X D) (A-36)
The final sums in Eqgs. (A-34) and (A-35) thus become

M 3 DXDF=0gn 3 {—D* X (D* X 6 + D¥ X [0 X (w X D]}
reB—k reflB—k
__O/]/I 2 { Drl Dkr (.\)" +Drk Dkrmr
reB—k
+ D X [0 X (07 X D™®)]} (A-37)
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The final form of the vector-dyadic equations of motion is available upon sub-
stitution into Eqs. (A-34) and (A-35) of Eq. (A-37) and the kinematic expansions

0 =0 + 3 ey, (A-38a)
relP
and
=0+ Jex(gy, + 0 X gy, (A-38b)
re&P

The result of these substitutions into Eq. (A-35) may be written in the form (with
judicious switching of index labels to permit later comparisons)

{(S0%—0n3 3 (D* DHU — DHDH)} -0
keB ketB jeB—k

+3[07—0n T (DD~ DD S engi =
= . kep

S{TE+ 3DV XF — @ 23 ey, (00 + 3 e5r758°) X 8"
ke® jeiB 1e o)

— (0% + T engyr) X O« (0° + 3 engyy)
reP re&
+ 0 2 DY X [(0°+ 3 erig7yr) X {(@° + Z &ri8"7r) X D¥*}]
jeB—k re re&
+m 2 (Djk ‘DU — Dikaj) ‘ 2 811";’7 ((“)0 + E esﬂ"ags) X gr}
rep seP

jeB—k
(A-39a)
If this equation is written in the symbolic form
a®0° + 3 a%y, = 3 A¥ (A-39b)
ke ketB

then, by comparison with Defs. 38, 39, and 41, it becomes apparent that Eq. (A-39)
is equivalent to the first three scalar equations recorded in Section IIB as Eq. (1).
This recognition requires the identification of the matrix a,, in Def. (38) as the
representation of the dyadic a® in vector basis {b°}, i.e., a® = {b°}7 a,, {b°}.
Similarly, it must be recognized that a® = {b°}7 ay, and A* = {b¥}7 AF.

The remaining scalar equations in Eq. (1) must be confirmed by Eq. (A-34) after
substitution of Eqs. (A-37) and (A-38). With some switching of indices to facilitate
comparison with Eq. (1), Eq. (34) may be written in the form

gs . 2 €5y [er — Q/n 2 (Dir.Drju —_ Derrj)] . )0
re jeB—r

+ 8 [Se [®@— O T (DV+D"U —DVD™)] T e;,8'¥; =
e8P ieB—r je&P

gs * 2 Egk {Tk + EDM X Fi — @tk 2 Srk}.’r (wo + 2 Esr';’sgs) X g'
keP B re&P se&
— [(0° + 2 eng™y,) X O (0° + 3 eng'ys)
redP reSP

+0m 3 DM X [(0° + X e,igy,) X {(0° + 3 e,877,) X DF}]

jeB—k relP red
+m 3 (D* DU — D*DF) e T g, iy, (0° + 3 £5r8%7s) T g'}

jeB—k reP e
+ 74 (se&P) (A-40a)
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with the symbolic equivalent (for s € &P)

A0 ©° + X 0.7 = g** Y eaAF + 1, (A-40b)
je&P ke&

Once the vectors in this scalar equation are recast as matrices and comparison is
made with Eq. (1) and Defs. 39 and 40, it becomes clear that with Eq. A-40 we
have established the validity of the last n scalar equations in Eq. (1). Thus, Egs. (39)
and (40) together constitute a proof of Eq. (1).
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Appendix B

Exact Scalar Equations for a Three-Body Example

In order to reveal in explicit detail the structure of the scalar equations of motion
derived in generic matrix terms in the body of this report, these matrix equations
are expanded here for application to the special three-body system illustrated in
Fig. B-1, in the absence of external forces and torques.

Body €4, has a planar slit through its center ¢ in the b% b? plane, and a dumbbell
body ¢, has its center attached to &, at ¢, so that 4, can rotate relative to 4, only
about a hinge axis parallel to b9 (which is also labeled b?).

Body €. is a solid cylinder embedded in a cavity in 4,, with the cylinder axis (and
the single degree of rotational freedom) established by b? (which is also labeled
b3). Point ¢ is the mass center of the combination £, + é,, and principal axes of
inertia of 4, + &, are defined by b%b% b°. The point ¢ is also the mass center of
¢, and hence of the system 4, + €, + €..

The equations of motion are given by Eq. (1) as

Go O Gz @ A® + COA! + C2A?
Q10 an a, ¥ = u"A! + 1, (B-l)
G Gn An || T WA 7,

A
where the symbol u* =[1 0 0]T represents g* and g, since g* = g®= b} =bl =b2,
From Def. 41 in Section IIA, we have simply
A® = —5°%%° (B-2)

because both €, and €, are supported at their mass centers, which are also their
barycenters, so that D* = D = (),

Y

o/

4l

/bl_blﬁg by

<b]\l Kbgr-/
/

Fig. B-1. Three-body example with mass-center
connection points
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The 3 by 1 matrices A! and A? are, from Def. 41,
Al = — 113,05 CMyt — (C195°C + 1,0t) @1 (C%° + $,ut) (B-3)
and
A? = —3229,C?%5°C %yt — (C23°C* + ,U') 22 (C*%° + f,ut) (B-4)

where advantage has been taken of the identities Ti'u* = 0 and D** = D*? = 0.

Further simplification of A and A? is afforded by the substitution from Egs. (4)

and (5) of
C®' = Ucosy, + @i*siny, + u'u'" (1 — cosvy,) (B-5)
C?2 = Ucosy, + 'siny;, + u'u'” (1 — cosys) (B-6)
C = Co Cc?» = o (B-7)
which provide
CPu' = ulcosy, +0 + u' (1 — cosy,) = u' (B-8)
Co%u' =u'cosy, + 0+ u' (1 — cosy:) = u! (B-9)

With Egs. (B-8) and (B-9), A* and A? become
Al = —3,011C¥%5 ! — (C3°C* + 1,U*) @** (C*%° + y,u?) (B-10)
A? = —3,02C2%5% — (C2°5°C + y,0') 22 (C*%° + y,u') (B-11)

Before expanding Eq. (B-1) in scalar terms, we must examine the definitions of
the elements of the coefficient matrix on the left side. From Defs. 3840, we have

Qoo = ®° + CO1@11CH + CO2p22C20 (B-12)
ap, = CUoyt ay0 = u'euCH (B-13)
@op = Co2P22y? @z = UM P22C?° (B-14)
a,; = ul"dliyl a:=0;, a,=0; a,, = ut' oyt (B-15)

If ¢, is a dumbbell of length 2L, with tip particle masses equal to m and a
massless connecting rod, then

2mL?* 0 0

ol = 0 0 0 (B-16)
0 0 2mL?

since (from Def. 36) @' = I'! plus terms which in this case are zero.
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Similarly, for the cylinder £,, we can write
J] 0 O
2=| 0 J 0 (B-17)
O 0 7

where J and ]’ are moments of inertia of the cylinder for the symmetry axis and a
transverse axis, respectively.

Use of Egs. (B-6), (B-7), and (B-17) provides, upon expansion,

Co222C20 = = (B-18)

.so that Eq. (B-12) becomes

a5 = @°° + @2 + CO91C° (B-19)
Because c¢ is the mass center of €, + 4., ¢ is also the barycenter b,. Since &% is
the inertia matrix of the augmented body £, ®° + ®* is the inertia matrix of the

system &, + €, about the system mass center at c. Since by hypothesis, b, b%, b are
principal axes of this system, we can write

L, 0 0
o0 +a2=( 0 I, 0 (B-20)

0 0 I

where I, I,, I; are principal axis moments of inertia.
Combination of Egs. (B-16), (B-5), and (B-7) produces, upon expansion,
1 0 0
CorepnCre =2mL2| 0 sin? y, —sin y; COS y; (B-21)
0 ~—siny, cosy, cos® y,

With this information, we can expand Egs. (B-12)—(B-15) to obtain

I, + 2mL2 0 0
oo = 0 I, + 2mL?sin?y, —2mL?siny, cosy, (B-22)

0 —2mL*siny,cosy, I;+ 2mL*cos?y,
2mL?
Ay = 0 = 2mL*u! (B-23)
0
a0 = [2mL: 0 0] =2mL%u" (B-24)

I
a,.=| 0 = Ju! (B-25)
0
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a,=1[] 0 0]=]Ju" (B-26)
a,, = 2mL3 @, = a5 = 0 s =] (B'27)

Having expressed the left side of Eq. (B-1) wholly in scalar terms, we can return
to Egs. (B-2) and (B-10)—(B-11) and focus again on the right side. Now we can
utilize Egs. (B-16)~(B-21) to simplify the upper partition to

A0 4 C01A1 4+ C02A2 — *'50@001.)0 — )-,1 (Coxq,nClo)Tooul —~0 (Cm@qu) o°

— ?D‘OC()l@ll?lul -— COI)-,lﬁlq)uClomo —_— ,?:{Colul@]lul
— )',2 (Cozq)zzczo) oyt — 30 (Cozq)zzczo) ®° — Eocozmzz,)',zul

_— )'lzcoza'lq,zzczowo — ?%Cﬂ)ﬁlq:ﬂzul

= —73° ((I)oo + P22 + Cmq)nclo) ©°
— )-,1 (Cm,i,ucma;oul + '(;ocmq,nul +4 C°1171®11C1%°
-+ };lcma]q,nul) — )',2 (@2250111 + aocozq,zzul

+ Coiip22(C20,° + };zczoalq,zzul)

= g’ + §: (COIR1CIF + 2mLAT — COFP1C) o0

-+ )‘/2 (q,zr'ul -+ ]171 — Coz'alq,zzczo) wo

But
Coza‘lq_)zngo = ]Icozalczo
= J/ (T cos y. + WG sinyz) (U cos y, — Tt siny,)
= J' (#* cos? y, — WU sin?y,) = J'u* (cos® y, + sin®y,)
= '
so that

& — Cog o C?® = Ju' — J'i* =0
Moreover, the identity
— (COMWRICH)T = CHPUFCIO = COPIC
permits further simplification. The final matrix expression is

A® + CUA! + COZA? = —3%0000° + (2CPDVCH 4 2mL2U) 3,8° + J7200"
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Substitution of the scalar expansions of the coefficient matrices (see Egs. B-21 and
B-22) yields

3 0 w3l + 2mL2s (0ss + w2C) —ow2l; — 2mL? (0:€* + w38C) o
Al + C*AY + C2A% = | —o3 (I, + 2mL?) — (o1 + 2y,) 2mL3sc oIy = Jy. + 2mL? (0,62 — 27132):| [ m{l
| w2 (11 -+ 2mL2) —ouds + ])'12 + 2mL? (2)’/162 — mlsz) 2mL2sc (u)l + 271) w3
( (I: — L) wpws + 2mL? [(0} — w3) SC + wo0s (s — ¢?)]
=| (Is — L) 0301 — 205 — 2mL? (01 + 291) § (038 + w2c) (B-28)
_(11 - 12) 0102 + Jya0, + 2mlL? (ml + 2Y1) c (&)33 + wgc)j|

where s denotes sin y, and c denotes cos ;.

Returning to the original equation of motion, Eq. (B-1), we see that all that
remains of the task of obtaining scalar equations is the determination, from
Egs. (B-10) and (B-11), of the scalars 4*"A* and u'"A? This operation is simplified
by the relationships '

Wt = 0; w’e" = 2mLAu"; ut'®?2 = Ju*
w’C =ucosy; + 4" (1 —cosy,) =w";  w’'C? =y
w5°Cot = u''sut = 0 $ty! = 2mL2u?

ut3°Co%ut = w'zout = 0; P2yt = Ju?

With these substitutions, Eq. (B-10) provides
ulTAl — _,)-/1 (uﬂq,ncmaou]) — u17' (Cmm»ocm + ,;,lal) H11 (Clowo -+ ,;,lul)
= — "3 (C*1C10) o° (B-29)
and Eq. (B-11) provides (noting Eq. B-18)
ulTA? = — 9 (ul"'q)22c20'u-)0ul) — 27 (C2°¢T)'°C°2 + ,;,2171) P22 (Czowo + ,;,2“1)

= — U000 (B-30)

Substitution into Egs. (B-29) and (B-30) of the scalar expansions given by
Egs. (B-17) and (B-21) permits the representation

u"A' = [0 o3 —u.] (CO1CY)°
=2mL? [0 s(038 + 0:€) —c (w5 + w,e)] «°
= 2mL? [(03 — }) SC + wsws (82 — ¢?)] (B-31)
and

1117‘142 - [O w3 '_a)z] @2211)0 - ]’ [0 w3 _‘mz] mo = (B'32)
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Finally, we can combine Egs. (B-22)-(B-28), (B-31), and (B-32) in Eq. (B-1), to
obtain the required set of five scalar equations of motion in the form

(11 + 2mL2) o, T+ 2mL2)’/‘1 + ]'yg = (12 — 13) w03 + 2mL? [wzms (Sil'l2 Y1~ cos? ‘yl)

+ (0} — of) siny, cos 4] (B-33)

(I, + 2mL?sin® y,) &, — 2mL2 g3siny, cos y1 = (Is — IL) ws0r — Jy:204

— 2mL? (0; + 24,) Sin y; (03 siny; + v, €OS y1) (B-34)

(I3 -+ 29ml? cos? yl) o3 + 2111L2&,2 sin v1COS y, = (Il — Iz) w0y T ]);2(1)2

+ 2mL? (0, + 271) €08 1 (w5 8iny, + 0. COS y1) (B-35)

2mL? (&, + $1) = 2mL? [(0} — 0}) siny; COS y1 + wu04 (sin®y, — cos? yi)] + 7
(B-36)

](41)1 + '.Yz) = 72 (B-37)

Needless to say, it is not recommended that Eq. (1) be used (as in this appendix)
for the purpose of deriving equations of motion for simple three-body systems
such as that illustrated in Fig. B-1; the final scalar equations of motion obtained
here can be derived from first principles by an experienced analyst in much less
than half the time it will take him to execute the steps outlined in this appendix,
obtaining the special set of equations from the generic matrix equations. Even for
a much more complicated system, scalar equations of motion can probably be
obtained in literal scalar form more efficiently by starting from first principles,
although as the complexity of the system grows, the question becomes moot.

The purpose of the generic matrix equations of motion in this report is not to
give the analyst a better starting point for the derivation of equations of motion
but to give the digital computer a set of equations in a format it can readily process.
At the present, the computer is programmed to obtain the scalar equations from
the given matrix equations numerically, performing the necessary multiplications
and additions after each integration interval. In the future, as digital computer
capacity for the manipulation of literal algebraic symbols is improved, it may
become desirable for these manipulations to be performed symbolically only once,
in advance of all numerical integrations. At no time is it intended that the analyst
perform the manipulations, unless (as in this appendix) it is appropriate for demon-
stration and checking. Equations (B-33)-(B-37) were derived also from direct time
differentiations of angular momentum vectors, in order to establish some measure
of confidence in the general equations, and to develop some subjective apprecia-
tion of the analytical labor involved in each of the alternative derivations.
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Appendix C

Linearized Scalar Equations for a Three-Body Example

In Appendix B, we considered a relatively simple example of a three-body sys-
tem, and obtained from Eq. (1) a complete set of five scalar equations of motion
for the system. Now we consider another three-body system with five degrees of
freedom, and in this case (see Fig. C-1), we no longer make the support points of
¢, and €, on 4, coincident with the corresponding mass centers, as they were for
the preceding appendix (see Fig. B-1).

The objective of this appendix is to display the structure of Eq. (1) in this par-
ticular application, noting the complexity introduced by the off-center mounting
of 4, and £. on ¢,, and then to extract from these general equations of motion a
new set linearized in the variables y, and y, and their derivatives. These results
are then to be compared to those obtained from the generic linearized equations
developed as Eq. (30) in this report.

In this example (see Fig. C-1), 4, is a cylinder of radius r, and ¢4, and 4. are
identical uniform, thin rods of mass m and length 2L, attached to 4, by hinges
through points p, and p,. Unit vectors bf, b, b? are fixed in &, with b along the
symmetry axis. Position vectors from the mass center ¢, of 4, to £, and 4. are
given, respectively, by

p°* = rbJ p** = —rb} (C-1)
Thus, the barycenter b, coincides with c,, and we have
D = 0; D = L% = p; D" = L% = p% (C-2)
In 4, and 4,, the barycenters are displaced from the mass centers, such that

D'=(L-Rb;  D'=—Rb;  D==—(L—Rb;  D"=Rb
(C-3)
where R = mL/Qn.

Fig. C-1. Three-body example
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The hinge axes are defined by
g =g =bj (C-4)
and the corresponding elastic hinge torques by

b} = —ky,b}; 7.b? = —ky.bi (C-5)

The vectors in Egs. (C-1)-(C-5) appear in the equations of motion in this report
in the form of matrices or scalars. In this example, it is convenient to express many

of these quantities in terms of the symbols

1 0 0
u' = 0 |; uzé 1 1; u3é—[ 0 :l (C-6)
0 0 1

Then, some of the quantities of interest become
D* =0 D = ru? D% = —ru?

R
D1t = 2 ((m —m)—r—n—

D' = — Ryt = D2

D = —u? (G — m) %

D = Ru* = D>

g=g=u

n=—kyn 7= —ky (C-7)

The equations of motion are given by Eq. (1) as

Qoo Qo Qys &° A° + CO1A! 4- C2A?
Q1o an Gy, Yo |= u"A — ky, (C-8)
(2] sy ays '.)72 UITA2 - kyz

corresponding exactly to Eq. (B-1) for the simpler system in Appendix B.
From Def. 41 and Eq. (B-7),
A® = —5°®%° + Gp [r@?C* (C*%%°C* + y,i*)? (— Ru?)
— 132C*? (C*%5°C®* + y,4*)? (Ru?)
+ (— Uu?"Cru? + Cuw’u®") rRy, (5°C°* + ,CO4") u?

+ (—Uu?"C?*u? + Cuu®") rRy, (3°C* + 1,C%%0') u* (C-9)
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This equation simplifies immediately upon noting that

~ A
ou =0 Tu? = ud; uru?” = [0 u?10] = U?

Further simplification is afforded by the substitution from Eqs. (4) and (5) of

C = Ucos y, + #siny, + u'ur" (1 — cos y,)
C* = Ucosy, + #'siny, + wu” (1 — cosy2)

C1o = C01T; C20 = CozT

where u'u'” = [u*i 010] a U*. With the substitutions
u?"C*u? = u?u? cosy, — urUu? siny, + uFuut"u? (1 — cosy;) = cos y:
u¥'Cou? = u?™u? cos y, — uF Ul siny, + v uluu? (1 — cosy,) = cosy:
Cow2u?” = C'U? = cos y, U? + siny, B*U?
C02u2u27' — C02U2 = cos Y2U2 + Sin ')'2 ﬁlUZ
Co'u' = ulcosy, +u'(l — cosy,) = u?
Co2u! = ulcosy, + u' (1 — cos y) = u
C2u? = u2cos y, + udsin vy,
C"y? = u%cosy; + u?siny,
0?C" = 2 cos y, + T?W siny,
4*C°% = ©% cos vy, + Ui siny,
and such operations as
WCOUT T u® = (U° cos y, + U0 sin y,) Tud
= —WUusiny, = —ulsiny,

we can rewrite A° in Eq. (C-9) as

A® = —3°9%%° + O)rR [ut sin y,72 — T%%° (42 cos y, + u?siny,)

— W°Cuy, — WCO U C1%° (u? cos y; + ussiny,) 1

(C-10)
(C-11)

(C-12)

(C-13)
(C-14)
(C-15)
(C-16)
(C-17)
(C-18)
(C-19)
(C-20)
(Cc-21)

(C-22)

(C-23)

— U*3°3° (u? cos y. + u®sin y;) — (2 cos y, + W26 sin y.) W'uys

— B%°C%cy, — UPCOUC2%3° (u? cos vz + 4P siny:) .
+ (—Ucosy, + U%cosy, + #*U?sin y,) §:3°u*

+ (—Ucos y, + U?cosy, + @*U?sin y,) y.5°u']
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With the further substitutions
Co2u? = u?cosy, — U’ siny,
Coy® = udcosy, — U*siny,
TECTCY® = (T2 cos y, + T2 sin v1) (Tt cos y; — W sin y,)
= W cos®y, — WA sin’ y,
TeCo2HC? = (U® cos y, + UPH* sin v2) (I cos y. ~ W' sin y)
= WU cos? y, — UUT'T sin’ y,
A becomes
A® = —3°9%° + ONrR {u' (¥3siny, + y3siny)
— W%5°5° [u? (cos y; + cosy.) + u? (siny; + sinvy.)]
— U0 [4® (71€0S 1 + ,cOsyz) — w? (15iny; + Y2 5iny,)]
— (@20t cos® y, — WUWU sin® y,) @° (4P, cos y1 + 4Py siny,)

— (DRT* cos? y» — BT sin® y,) &° (U2 cos y2 + Uiy, siny.)

(C-24)

(C-25)

(C-26)

(C-27)

— (U - U3 (yrcosy1 + 72 005’72) + @ U (yasiny: + . 5inv.)}

Expansion and multiplication establish the identities

[0 1 O

=10 0 O

0 0 0]

[0 1 0]
wwaw=—-|0 0 0 |=-#w

0 0 0

1 0 0]
u-0=|0 0 O((=U+0U

L0 O 1

[0 0 0]

wur=|0 0 O

10 1 0
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Although these substitutions would all simplify the computation of A°, the second
and third alone provide

A® = —398%%° + OnrR {u* (yisiny, + ¥3siny,)
— 2%5°3° [u? (cos y, + cosys) + 4P (sin y; + siny,)]
— 0%5° [4® (y1 COS y1 + 72€O5 y2) — 12 (1 siny; + J25inv2)]
— TS [42 (§1COS y1 + §2€OS v2) + 6P (§, iy + Yo 8inv;)]
~ (U + U?) 3% (31 €Os y1 + 72 €08 v2) + U (31 8iny; + y2siny.)}
(C-33)

Further reduction of A° requires expansion of ® as o® = [6; ©; «s]*. This
explicit representation provides

W13 Waow3y —(a)f + a)%)
7 = 0 0 0 (C-34)
(wg + wg) o102 oy
[~ Wy @1 0
#5°=| 0 0 0 (C-35)
B 0 w3 —wa
B w3 0 —o 1
U= 0 0 0 (C-36)
. 0 o0 o |

0
= 0 |=—wt® (C37)

&

S

2!

=b-\

l
—
coo
—_-o o
coco
(I
—
dso s
[ | |

Il
—

E oo

] = w,u? (C-38)
so that A° becomes
A® = —3°9%%° + OnrR {ul (yisiny; + y3siny,)

o3 ol + o
— 0 (cos y1 + cos y.) + 0 (siny, + siny,)

L T @iz w03

0 oy
+| 0 }()‘/1 oS y; + ¥2COS y2) — l: 0 j|(}'/1 siny, + v siny,)

W2

03
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0 w3
—1 0 [(31c0sy; + y:co5y:) + | O |[(§:siny; + §;siny,)
0 0

0 0
+| —ws |(§1COsyi+ §2c05v.) | O |(§1siny; + yo5iny,) }
L [} ]] w3

or
A® = —5°9%° + OnrR {u* (§3sin y, + y3sinys)
4 (102U% — wywstt?) (oS y3 + oS y2) + [(03 + ) 4 + wi0:u] (siny; + sin ¥2)

+ 20,1 (§1c08 y1 + $2 €08 v,)} (C-39)

From Def. 41, we also find
Al = — @1y, (C3°C + 5,0") ut — [CY%S°C™ + ,T1] &1 [C¥° + y,u']
+ O [ — R%*C*2 (C*3°C°2 + .4')* Ru? — RU*C' (3°%°) u*r
+ (~Uu?"C*u*R? + C**u*u*"R?) 3, (C*°3°C** + ¥.T') u'] (C-40)
and
A% = 2y, (CF°C + 3,T) ut — (C2%G°C + y,1) 22 (C2%° + y,u')
+ Gn [ —w2C* (C15°C + 4,0')? R*u? — Ru*C?° (3°2°) u®r
+ (— Uu?"C**u*R? + C*'u*u*"R?) v, (C?°3°C°? + %) u'] (C-41)
These expressions are certainly no simpler than that found previously for A and
we must expect that their expansion and reduction to expressions of minimum
complexity would again be a substantial chore (although one that a computer can

execute numerically in very little time, since only multiplications and additions
are involved).

It is becoming clear that the task of obtaining exact equations of motion for the
case illustrated in Fig. C-1 is much more arduous than for the simpler system
analyzed in Appendix B (Fig. B-1), although both systems involve three bodies and
five degrees of freedom. Having made this point, we now attack our second objec-
tive, and seek an approximation of Eq. (C-8) in which v, y2, $1, ¥, 71, and ¥, are
small enough to warrant linearization in these variables. ‘

The matrix A® in Eq. (C-39) then simplifies to
A’ = —309%%,° + OnrR {2 (m1m2u3 — wzwsul)

+ (y1 + v2) [(0f + 0d) 4! + 010:4%] + 2 (31 + 72) 024®} (C-43)
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For A' and A?, we can substitute the direction cosine approximations (see
Egs. C-10-C-12)

C" = U + 3 Co=U —
Ce = U + y, 0 C?O = U — 5,0
C12 = CIOCO2 = U - ‘Y]_ﬁ’l + Ygﬁl

021 = U + Yla'l - Yzﬁl

into Eqgs. (C-40) and (C-41). The desired approximations are

and

Al = — 910U — DO + v, WGP
— YT — 7,510 + TPy T — TP
+m[—w(U — vy + v ') 3°%&° R2u?
— U (39,0 + 7.0'%° — y.0'a%° + °2°%.4') R*u?
— Ru* (U — y,0") @%%u?r — R* (U — u*u®") y.5°u]
= —3%"* — MRS u® — MNRAUZST U?
— 1 [@V%u + UV’ + 301 u!]
— 32 (MR (@4 + 4'%°) u? + MR?* (U — u?u®") 3°u]
+ 71 [055°0"0° — TW DM + TV WO
+ QMR 0u? + MRUEE ]
+ v. [ — MR LT + MRS u? — ONRUE% 0 u?]
= —%%"° + O (R? + Rr) U%6%%°
+ 1 (@18 — WO + (2Mu) ] o
+ v, [MBR#W + MR*T T + MR (U — u*u®) %] °
+ v, [W500" — 3WS" + 30T — MR (R + r) TPUTU] o°

2 [MR?E55°) (C-44)

A? = — @500 — TP + 1,050
— Yzmoipq)zzmo —_ igﬁlCPzzwo + mo®227251wo
— 3925, + M [— 8 (U + @ — y.4') 3%°R*u?

— B (— BT + 7 BT + . 0F° + 2°7,8) Ru?
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— Rrii? (U — W'y,) 5%°u? — R* (U — v?u?") y5°u']

= —3'*° — MR W*%°u® — MRriE%s"u?
— 4 [IMR#E (3°0* + u'a°) u? + ONR? (U — v*u®) 5°u]
— v [#2%5%u + 19?200 + T°P*2u!]
+ v [~ MR % (Pa%°u? — U'a%%u? + 3% u?)]
+ ve [93°0%2° — T 2200 + 002U’ + MNR U B%50u?
+ MR Ts%uz]

= —3°$%%° + O (R* + Rr) W60
+ 3 [ MR + MR2Ta® + OMR? (U — w?u?™) 1] o°
+ 7. [@%°0 — W'®22 — (922u")7] 0° + v1 (MR TZTP0°]
+ v, ['5°®% — 3PP + OO

— ONR (R + r) W255°12] o° (C-45)

The augmented body inertia matrices are available from Def. 36 as
$HO0 = Jo 4 m(DmTDmU —_ D01D01T) + m(DozTDOZU . D02D02T)
1 = it m(DuTDnU — D11D11T) + (Q/Vl — m) (DloTDloU — DmDmT)

22 = [22 + m(DzzTDzzU . DzzDzzT) + (Q/n — m) (DonDon — DzoDon)

With Egs. (C-7), these matrices become

®° =+ mr2 (U~ U?) + me* (U — U?) = I° + 2mr* (U' + U%)  (C-46)

o =I" 4 (O — m)z(%>(U— U%) + (M — m)R* (U — U?)

= I + (01 — m) (%)(U U =1+ (o — m)(’%z) (Ut + U?)
and, since
P =In = <m§42>(U1 + U?)
o = Ut = ’;WL” ) (49 — 3m) (U* + U°) = (] — MR?) (U + U)  (C-47)
defining
12 S mLe (C-48)

JPL TECHNICAL REPORT 32-1565

97



98

as the moment of inertia of a rod of mass m and length 2L about an axis normal
to the rod and passing through one end of the rod.

The combination of Egs. (C-44)-(C-48) is simplified by the following identities:

U =0 —uU = (U) =0
Ulu* = u' Ut =0
wu = Uiy, wnl = —-Ue

U—wu"=U—-U2=U+U?
vyt =0

@ (U — U%) =@ (U + U?) = 302 = U

Now Eqs. (C-44) and (C-45) can be written as
A= — (] — MR % (U + U%) o® + ONR (R + 1) B3 W6®
+ (] — OMR?) 3, (U — WU + W) o° + 2R3, U’
+ v {(J — MR [W5° (U + U?) — 30 U* + 2°U]
— OMR (R + r) WUS°%) o + v, MR
= —(J — MR)T (U + U?) o + ONR (R + r) T3°%°
+ 2J5:, UPT'® — 2R (51 — ) Uit
4 T [ (U + U) + 30 (Ut — B UY)] o
— R [@ (U' + U?) + 30 (Uit — WU%) — U] o

+ MR U'T3U ) + v NRUS T o°

or, after cxpansion,
Al = — (] — MR?) (003t — 010:U%) — MR (R + 1) (0205u* — 010:U”)

+ 2]y10u% — 2R (¥, — ¥2) wts®
+ v {J [(03 — of) u* + 01050°] — MR? [(0F — 0} + o} + o}) 4* + 0i0.u°]
— MR (o} + o) w'} + v MR [(0f + 03) 4’ + wr0at’]

=u' {— (] + MRr) wro; + [J (03 — o) — ONR? (of + o)
— MBr (of + i)l v1 + MR (0} + f) v2)
+ 1t {(J + MBr) 02 + 2ozys — 20MR%a; (12— ¥2)

+ (J = OMB?) wrwsy: + MR 01057} (C-49)
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and, by parallel construction,

A? >~ u! {— (] + O’]’IRT) Wog + [] (m% - w§) - O/}’IR"’ (wf + mg) - O’l’er (wf + wg)] Y2
+ MR? (0f + 03) 71} + 63 {{(J + ONRT) w10, + stz + 20MR%e; (71 — 72)

+ (] - (mRz) W103Y2 + O/nszﬂDa‘Yl} (C~50)

Equations (C-43), (C-49), and (C-50) are in final form, ready to be substituted
into Eq. (C-8) to obtain linearized equations of motion. These equations also
require the appropriate approximations for the coefficients on the left side of
Eq. (C-8), as obtained from Defs. 38—40.

From Def. 38, the linear approximation of a,, is given by

Goo =% O + @' + Y WM — 3, VT + &7 + 1, WD — v, 0T
— On {((D®"D*1U — DD™7) + (D*"D*U — D*D")
— v, (D@D + B DYDY — y, (D* W D*U + #*D*°DO%")
+ (DODIU ~ DIDYT) (U — y,@) + y,@ DD + 5, D" D*U
+(D*"DU — DADY) (U — 3,@') + v, @ DHD + (v, — y2) DA"@ DU
— yDUDY" + (D"D?U — DD7) (U — v,a")
+ YW DD + 3, D DHY + (D¥'D*U ~ DD (U ~ v,40")
+ 7@ DD — (y, — y,) D¥IDU — ,@DD™)

Substituting Eqs. (C-47) and (C-7) simplifies this lengthy expression somewhat,
providing

oy 22 4™ + &1 + @22 + (] — ORR?) (U° — USE) (3, + 72)
— OMR (=2 (U — U?) +1(y, + v5) WU
— (U = U (U = 3,@) — rysi
~ R(U = U?) (U — v,@) — Ry,i* + Ry 'U*
— (U = U2) (U = yalit) — ryail®
~ R(U — U?) (U — ") — Ry,i* + Ry,U?)
= 0% + 1 + &% + J (WU — UT) (v, + 72)
+ B2 (U ~ TU?) (4 + v2) + 2(U* + U?)
— U@ (nty) —(nt ) BU +(n+ ) @)

+ ONRr {2(U* + U%) — (31 + 72) BU? + 2(U + U?)

JPL TECHNICAL REPORT 32-1565

99



— U (ya + y2) + (ra + v2) @'}
= @ + o1 + &2 + J (WU — UT) (y1 + 72)
+ ORR? [2U* + 2U* + (31 + 7o) (@ — U* — 5U9))
+ OnRr [4U* + 4U? + (y1 + v2) (@ — @ U? — UY)] (C-51)
By expanding the constituents of this expression, one can verify that
% + @ + @ + (20MR? + 4mrR) (U + U?)

= I°+ 2(] + 2mRBr + ms?) (U* + U?)

2

=]+ <2mr2 + dmrL + %mU) (Ur+U3) =1 (C-52)

where the new symbol I is the inertia matrix of the total system with respect to the
system mass center when y, = y, = 0. Thus, we have

oo = I + (y2 + o) I (@U? — Usit) + QR (@ — WU — wU?)
+ OnRr (@ — WU — UsY)]

But

so we have
oo 21 + (y1 + y2) (J + OnRr) (U* — Usmr) (C-53)

Expanding I, ], and R from Egs. (C-52), (C-48), and (C-3) provides

Qoo == I° + 2m(r2 +2rL + %— L2> (U + U®) + m(% L*+rL ) @ U —UT) (y, + v2)

I‘1’+2m(r2+2rL+%—L2) 0 0
4
- 0 L —m(y1 + v2) (3 L+ rL) (C-54)
4 4
0 'm(vn+72)(—3—L2+rL> Ig+2m(r2+2rL+§-L2>

It may be noted that a,, is the inertia matrix in basis {b°} of the total system
relative to the system mass center. Detailed construction of this matrix from physi-
cal definitions confirms that Eq. (C-54) provides the correct linearized approxima-
tion of ag,.

100 JPL TECHNICAL REPORT 32-1565 -



Construction of the equations of motion from Eq. (C-8) requires expansion of
the linearized approximations of a,, and a., from Def. 39. The expansion provides

a1 = u"e (U — v,0') — Qnuw” [D*"D**U — D*D**"
— DYDY — 5, DOTDOG + D#DU — DDA
— (y1 — y2) D' DU — 4, D*¥DH@* + ., D*" D231
Equation (C-47) yields
uwo (U — ') = (] ~ MRB?) ™ (U + U%) (U — y,@*) = (] — OnR*) u'”
Equation (C-7) yields
u"DRD" = wTDRDH = i = 0 DYyiD = DD = 0
Thus, a,, simplifies* to
ay0 == (J — MR?) u” — Gy (D7D + D2'D*) u'”

= (] — mR? + mR? + MRr)u** = (] + nRr)u'”

I

m <% L+ rL) u” (C-55)
Similar calculations produce

4
Azp = Ao =M (73- L? + rL) ut’ (C-56)

For the remainder of the terms in Eq. (C-8), only constant-term approximations
are required. Defs. 39, 40 provide

8o; = Qg = U'M (% L* + rL) (C-57)
ai; = @ =~ —nu™(DP'D'*U — DD u?
= OMR® = — mL? (C-58)

ay 2= uMeN ! = (J — OnR?) T (U + UP)u?

1 m
=] —WR* =mL (3—5’]_{) (C-59)
rgrgn = | — OnR2 = ml2 [~ — T
e = ut 0%yt = | — QMR =mL (3 Q’)’I) (C-60)

*Note that in this example, the quantities {'\10 and ‘/‘\20 (defined by Eq. 37b and available as the
variable parts of the linear approximations shown here for a,, and a, ) are zero. This convenient
result stems from the diagonality of 11 and the parallelism of D2, D1, D2, and D22; it is not a
general result.
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Equations (C-54)-(C-60) provide all of the coefficients on the left side of the
equations of motion (Eq. C-8), and all of the terms on the right are available from
Egs. (C-49), (C-50), and (C-43), utilizing also the expressions for C°* and C%. The
resulting linearized scalar equations are obtained, after simplification of terms,
as follows:

L, + (] + Q%RT) (Yl + 72) = (12 - 13) w05 + (] + Q’)’lR’) (“’5 - “’g) (71 + ')’2)
(C-61)

Lo, — (] + O’}’ZRf) <Y1 + 72) o3 = (Is - 11) w301 — (] + (WIRT) w102 (Yl + ')/2)
(C-62)

Los; — (] + Q’}’ZRT) (}’1 + 72) By = (11 - 12) w102

+ 2(J + MBr) 0: (31 + $2) + (WMBr + ]) 0103 (32 + v2) (C-83)

(] + ONRr) &y + (J — MB2) §; + MR, = — (] + MR wyos

+ [] (w% - wg) e Q/VlR2 (w% -+ w%) — Q’VZRT (mf + mg)] Y1 + Q’}’ZRz (mf + wg) Yz kyl
(C-64)

(J] + OnRr) o, + MRy, + (J — WMR?) 5. = — (] + MRr) w0,

-+ [] (m% - u)g) - O’}’lRZ (u)‘l2 + wﬁ) - (WIRT (w% + wg)] Y2 + Q’}’IRZ (wi" + mﬁ) Y1 k'yz
(C-65)

where I,, I,, and I; are the diagonal elements of I as defined by Eq. (C-52), so that
these are the principal axis moments of inertia of the total system when y; = y. = 0.

Note that in Egs. (C-64) and (C-85) the coefficients of y, and v, are interchanged,
so that their coeflicient matrix is symmetric. This result was anticipated in Sec-
tion IIIC, since the system in Fig. C-1 is an example of a “meridional deformation
case” (see Fig. 11).

Equations (C-61)-(C-65) have been derived by the laborious process of lineariz-
ing Eq. (1) from Section IIA of this report. In work not shown here, the same
equations have also been derived from first principles. Equations (C-61)-(C-63)
may be obtained simply by taking the inertial frame time derivative of the system
angular momentum for the system mass center. Equation (C-64) is available from
the dot-product of b} and the equation

M‘/"=I.I/'1-i-mc,><'li1
where M# is the external moment about /1 applied to 4,, H’' is the inertial angular
momentum of 4, referred to 4, ¢; = Lb! and P, is the vector from the system

mass center to f,. Equation (C-65) is available from a similar calculation. The
derivation of Egs. (C-61)—(C-65) from first principles is 2 much more rapid and
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more error-free process for an experienced analyst than is the application of Eq. (1)
for this purpose, although at present a digital computer can accomplish only the
latter task.

Although this appendix has served to provide a second explicit check on the

linear terms in Eq. (1), its primary objective is to check these results against the
generic linearized equations recorded as Egs. (30) of Section ITIB.

For a three-body system with only small relative motions, Eq. (30a) becomes

- A — A _ —
(@oo + Boo) 6° + Ty + Tosys = A° + A° + (T + Co2) At + TorA

+ (0 + o) &2 + Coeke (C-66)
and Eq. (30b) provides
(@0 + 810) 6° + Ty + Basye = g (A + AY) + 7, + 4, (C-67)
and
(@ao + Bao) 0° + Torys + Tasye = @77 (A2 + A%) + 7, + B, (C-68)

Having struggled to derive Eqgs. (C-61)-(C-65) from Eq. (1), we can now recog-
nize that we have already executed the steps implied by Eqs (C-66)-(C-68).
Equations (C-53) and (C 54) are, in fact, expressions for aq, + &,,, and Eqs. (C 57)
and (C-56) provide @, @o2, @10, and @,, with the further indication that a,, = 8., =0.
(This simplification is computationally significant, and its validity in every new
case should be investigated.) The right-hand sides of Egs. (/Q -66)—(C-68) apparently
also commde with results already obtamed with A° + A°® given by Eq. (C-43),
A+ A gjiven by Eq. (C-49), and Ar + A given by Eq. (C-50), and with C** =
Czo = U Clo = 'ylu and C?° = —yzu

A These results also match those available from Egs. (33a) and (33b) for C*/ and
C = 0 andr =1, 2) as well as Eq_ (36) and (37) for the quantities @, 800, Gon,
am, s, ann ays = @y, A1y, oo, A A° A, Al A2 and A2 Thus, the generic partially
linearized equations in Section IIIB have also been confirmed.

The final step in the development of hybrid-coordinate equations is the trans-
formation of the small variables (y, and y.) into a new set of variables %, and 7.,
and (when justified) the truncation of the new set of variables to obtain for the
total system a set of equations of reduced dimension. As noted in Sections IIIC
and D, the quest for an appropriate transformation is, in general, a complex com-
putational task involving eigenvector calculations. For the simple system under
consideration in this appendix, however, the necessary transformation can be deter-
mined by inspection of Eqs. (C-61)-(C-65), or by physical argument.

We require the transformation

B R
72 211 -1 7
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with the inverse transformation

[nl}:[l 1][71:| (C.69b)
UE 1 —1 Y2

We can replace y, + v, in Egs. (C-61)~(C-63) by 7,, and replace Egs. (C-64) and
(C-85) by their sums and differences, to obtain

Lié, + (J + OnRr) i, = (I, — I) o205 + (J + mRBr) (0} — o) m (C-70)
L, — (] + Q’}’ZRT) N0z = (Ia - 11) w301 (] + Q’WRT) ®1027 (C-7l)

13!;)3 - (] + Q’}’IRT) ‘771(1')2 = (11 - 12) w12 + 2(] + Q’nR"') u)g'r')l + (] + Q/nRT) W3W3N1
(C-72)

J5. +2(J + MR &, = —2(J + WNRY) wgw; + [J (03 — 02) — WRT (0 + 02) — k] 7
(C-73)

(J — 2MR?) 4, = [J (w3 — o8) — 2ONRE (o} + oB) — MRr (a3 +w2)— k. (C-T4)

Because only the final equation involves 7., and this equation is satisfied by
»: =0, it is quite satisfactory for the purposes of dynamic analysis of rotational
motions of the central body (defined by w,, ., 03} to truncate this system of equa-
tions, abandoning Eq. (C-74) entirely.
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