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DEFINITION OF SYMBOLS

Symbol Definition

Air force matrix

A. Design variables (element sizes)

b Semichord length in flutter

C. Redesign scale factors

c Constant

E Modulus of elasticity

{ f} Generalized force vector

{f.} Generalized force vector of the i element

G Geometric potential energy

g. Direction cosines of redesign vector

[H] Geometric stiffness matrix

I Imaginary part of a variable; moment of inertia

[K] Stiffness matrix

[ K ] Stiffness matrix of i element
i

k = bw/V Reduced frequency (V is air speed)

th
Unit stiffness matrices of i element:

3
[K 1 y ' ' ^ m ^ ' ' m

m= 0



DEFINITION OF SYMBOLS (Continued)

Symbol Definition

L Length or surface area of i element
i

i Length

M Number of behavioral constraints

[M] Mass matrix

[ M ] Mass matrix of i element
i

—i

Unit mass matrices of i element:

.l = E k(m)]A.r

ij J± o L i J i

P Reference to point P; applied force

P. Axial force in i bar elementi

p Eigenvalues

Q = 3q /8A Gradients of behavioral variables
ri r i

q Behavioral variablesr

q* Maximum allowable value of q
r r

R Real part of a variable; ratio

r Radius of tube

[S. Stress-generator matrix: \ a. >= S. If.)i J 6 \ i J |_ i J i

r P! r pi r PIs . Unit stress-generator matrix: S = s.
L i J L i J L i J
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DEFINITION OF SYMBOLS (Continued)

Symbol Definition

T Kinetic energy

T. Kinetic energy of i element

t Wall-thickness of element

U Strain energy

U. Strain energy of i element

U Strain energy of elastic supports
S

(u) Generalized displacement vector

{ u. } Generalized displacement vector of i element

V Air speed; structural volume

V Flutter speeds
r

(v) Associated eigenvector

W Structural weight

W. Structural weight of i element

a Relaxation factor

ft Constant

6 Kronecker delta
ij

e Constant

\ Lagrangian multipliers

y. Constant of proportionality

vn



DEFINITION OF SYMBOLS (Concluded)

Symbol Definition

v Iteration number

th
p Unit weight of i element
i

co Circular frequency: frequency = aj/(2ir)

( ) = 9( ) /BA t

( )' = 8(

( )* Denotes limiting allowable value of variable ( )

( ) Denotes variables associated with r load condition or r
eigenmode

( ) Denotes variables evaluated after the v design iteration

vm



MINIMUM WEIGHT DESIGN OF STRUCTURES
VIA OPTIMALITY CRITERIA

INTRODUCTION

Every design task, whether applied to a structure or some other man-
made object, is either directly or indirectly governed by certain optimality
criteria. The designer is seldom required to create a product that will only
serve its primary function — he is invariably expected to meet additional de-
sign objectives, such as the lowest possible weight or cost, minimal main-
tenance, maximum reliability, pleasing appearance, etc.

In structural mechanics, the term "optimal design" is commonly used
in a much more restricted sense. It implies that the sole design objective is
minimum structural weight.1 Moreover, it is understood that the entire design
process is carried out automatically on a digital computer.

The basic idea of computer-automated, minimum weight design can be
best comprehended by viewing the optimizing algorithm as an evolutionary
advance over the conventional design method. Consider a typical problem in
which the designer is given the layout of the structure, the loading, and the
constraints on the behavior of the structure (e.g., limits on stresses and
displacements). He must then calculate the sizes of the members so that the
total structural weight is minimized and no constraints are violated.

The design procedure is an iterative, trial-and-error process, each
iteration consisting of two steps: an analysis of the current design, followed
by a redistribution of structural material. In the conventional design method,
the analysis, which we presume is carried out by a finite element computer
program, is used primarily to check the behavioral constraints and provides
little or no guidance for the material redistribution cycle. Consequently, the
redesign is a creative task, based on empirical rules and the intuition and
experience of the designer.

An obvious means of improving the technique is to extend the scope of
the analysis cycle so that it will not only calculate the behavior of the current

1. Optimal weight design methods can also be used for minimum cost design
by replacing the unit weight of each structural element by its unit cost.



design but also predict the changes in the behavior caused by material redis-
tribution. As a specific example, consider a structure subjected to displace-
ment constraints only. Let us assume that an analysis of the structure indi-
cates that some of the displacements exceed the prescribed limits so that the
designer must add to the structural stiffness by increasing the sizes of some
of the members. The question is, which members and by how much?

To obtain a rational answer, the designer must have some idea of how
sensitive the displacements are to changes in member sizes. This could be
accomplished, at least partially, by computing the displacement gradients in
addition to the displacements themselves. By displacement gradients we mean

9u. /3W. , where u. is the i generalized displacement and W. represents

the weight of the j member. The designer would then know which members
are most effective in reducing the displacements that violate the constraints

and by using the approximation Au. = (8u. / 8W.) AW. , he could also

estimate the magnitude of the required redesign.

In practical problems such redesign data are too voluminous for the
designer to handle. It is much more reasonable to process the data within the
computer itself, i. e. , to let the computer take care of the redesign in addition
to the analysis. We have now arrived at a fully automated, optimal design
algorithm.

It should be pointed out, however, that it seldom is feasible to obtain
an efficient design without any human participation whatsoever. Structural
layout, for example, is one branch of design that is unlikely to be automated
in the near future, with the exception of some specific problems (e.g., trusses).
Even optimal weight distribution with fixed layout, which is the topic of this
report, cannot be entirely automated. In many problems it is neither prac-
tical to include all the constraints into the computer program (the subjective
constraints defy formulation altogether) nor is it possible to arrive at an
efficient choice of member types on the first attempt. All this requires con-
tinuous monitoring of the design process by an experienced engineer, who
should have the means of stopping the computations and making appropriate
changes in the problem formulation.

Structural optimization algorithms, or more specifically, the methods
of material redistribution, can be divided into two broad categories, which
we call "direct" and "indirect" techniques. In the first category, the



redesign is viewed as a purely mathematical programming problem, where the
merit function (weight) is to be minimized within certain constraints. Typi-
cally, the heart of the method is a systematic search procedure that works
directly with the merit function and the constraints and converges to either
the global or local minimum weight design.

The direct methods trace their origin to the operations research and
optimal control theories and have dominated the literature on automated
design since the birth of the subject, just over a decade ago. Variations of
the technique are numerous — names like "feasible directions," "steepest
descent," and "gradient search" are just a small sampling of the terminol-
ogy used. A very readable review of direct methods has been presented by
Schmit [ 1] .

Despite the successful treatment of many problems, direct optimization
does not appear to be a practical method for the design of large structures.
It has become apparent that the number of design iterations required for con-
vergence to optimal design increases very rapidly with the number of elements.
Present estimates [ 2] place an upper limit of 150 design variables (structural
elements) on the size of the structure that can be treated with acceptable
computational economy. For this reason alone, direct methods have been
increasingly overlooked in recent work on practical aerospace structures and
will not be discussed further in this report.

A somewhat different approach to optimal structural design was devel-
oped in the late 1960Ts. The idea was to avoid the inconvenience and compu-
tational inefficiency of working directly with the merit function and the
original constraints — hence the name, "indirect" method.

Indirect design methods are, loosely speaking, counterparts of the
variational methods used in analysis. Each method is built around an opti-
mality criterion that serves the same function as any well-known variational
principle of mechanics; see Reference 3 for simple examples on the derivation
and use of optimality criteria. The analogy is accentuated by the fact that
the optimality criteria frequently specify the energy distribution in an optimal
weight structure.

An optimality criterion is mathematically equivalent to the design ob-
jective and the constraints; consequently, its use also leads to a true (local)
minimum weight structure. The advantage of the indirect method stems from
the presence of the behavioral variables, rather than the total structural weight,
in the optimality criterion. In contrast, the direct method displayed the



behavioral variables in the constraint conditions only. Since the constraints
are the source of most mathematical difficulties in optimization problems, the
use of the optimality criterion usually leads to a more efficient design algorithm.

Despite the aformentioned superiority, a rigorous application of the
optimality criteria to realistic design problems may still require unacceptably
long computer runs. Consequently, it is a common practice to introduce
convenient ad hoc modifications into the formulation of the problem, which
have the effect of sacrificing some of the structural efficiency for computational
economy. Although the resulting design will not have the true optimal weight,
a modified method is still a substantial improvement over the traditional design
technique.

Most of this report is devoted to the derivation of optimality criteria
and their utilization in design algorithms. Although much of the material is
derived from published descriptions of existing optimization programs, the
report should not be considered merely as a literature survey. The publica-
tions listed either treat specific aspects of optimization, introduce special
techniques, or are applicable to only a restricted class of elements. In
contrast, the present work attempts to establish a general viewpoint to struc-
tural optimization. The optimality criteria and redesign techniques are first
introduced in general terms, then specialized to different constraint conditions
and compared with the methods proposed in the references.

It is important to keep in mind that computer-oriented structural opti-
mization is still in the developmental stage. The only existing program with a
sufficient capacity (3000 elements, 6000 degrees of freedom) to design a large
aerospace structure [4] is largely limited to stress constraints2 and restricted
to elements with special properties. The remaining programs listed in the
references are small demonstration algorithms involving no more than a few
hundred elements with simple size-stiffness relations. Therefore, the design
methods proposed here and in previous publications represent only the first
steps toward a practical, fully automated structural optimization algorithm.

BASIC CONCEPTS

Restrictions

This report is restricted to the minimum weight design of linear,
elastic structures. The layout of members and the loading (static, unless

2. Displacement constraints are treated in an indirect, rather inefficient
manner — see the section, A Selected Survey of Optimization Programs.



specified otherwise) are assumed to be given, the only design variables being
the sizes of structural members — the cross-sectional area and thickness for
one- and two-dimensional elements, respectively. The size is presumed to be
constant within each individual element. It is also assumed that finite element
displacement methods are used in the analysis cycle.

Constraints

The behavioral constraints treated in the report are upper limits on
stresses and displacements, and lower bounds on general buckling loads,
natural frequencies, and flutter speeds. As these constraints play a major
role in the derivation of optimality criteria, they can be classified as primary
constraints.

In most design problems it is desirable to incorporate additional con-
ditions, called secondary constraints, in the design algorithm. Minimum and
maximum limits on member sizes, prohibition of local buckling, and equal
size constraints (the requirement that the sizes of certain members be the
same), fall into the last category. The secondary constraints mainly deter-
mine the details of programming, having little effect on the optimality criterion
itself.

An insight into the relationship between the constraints and the optimal
design can be obtained only through geometrical abstraction. To this end, we
introduce the concept of design space — an N-dimensional Euclidean space,
where N is the number of independent design variables. The coordinates are
the design variables A. , i = 1, 2, ... N , so that each point in the space

represents a specific design of the structure.

The points that do not violate any constraints are known as feasible
designs. The boundary between the feasible region and the remaining space
is called the surface of active constraints, and the points on that surface are
termed as critical designs. The optimal design problem involves finding that
point of the feasible region that is associated with the lowest structural weight;
it is invariably a critical design.

The three-bar truss in Figure la lends itself to a simple example of
design space. All the members are assumed to be made of aluminum, with
E = 6. 8948 x 1010 N/m2 (lO7 psi) (E is Young's modulus). The loading con-
sists of two alternate forces of 88. 96 N (20 kips) each, as shown. The



structural volume (weight) is to be minimized subject to the following con-
straints :

|cr. | =s 137. 88 x 105 N/m2 (20 ksi) ,

u ^ 0.381 cm (0.15 in.) ,

u =£ 0.762 cm (0.3 in.) ,

and

A. ^ 0.508 cm (0.2 sq. in.) ,

where cr is the stress in the i member, A is the cross-sectional area,
i i

and u, and u represent the displacement components defined in Figure Ib.
n v

P = 88.96 N = 2.54m

ALTERNATE LOADS

a. b.

Figure 1. Three-bar truss.



The symmetry of loads and structural layout enable us to simplify the
problem somewhat by considering only one of the loads and imposing the addi-
tional condition A3 = A! (Fig. Ib). This reduces the dimensions of the
design space from three to two.

In this simple example it is easy to analyze the structure with arbitrary
values of the design variables. The results are

A2

2A2 +

£i\t) ~r ^l £I\.4 %

^ - 2A, +

PJ
U = 7—r=T T

v (N 2A2 + A j ) E

and

Pjf
A,E

All the constraints can now be shown in the design space (At - A2 plane) by
plotting the lines CTJ = 137. 88 x 105 N/m2 (20 ksi) , u = 0.381 cm (0.15 in.),

etc., as has been done in Figure 2. The active constraints are determined by
the envelope of all the constraint lines.

Figure 2 also shows constant volume contours of the structure, obtain-
able from V = (2N/~2Ai + A2)j? (V denotes the material volume). The
optimal design can readily be found by inspection; it is represented by the
point where a volume contour is tangent to the active constraint line.



— — — CONSTRAINTS

ACTIVE CONSTRAINTS

VOLUME CONTOURS

6.452

<M

3.27

CRITICAL DESIGNS

FEASIBLE DESIGNS

OPTIMALUJESIGN

= 432.69 xYjO"5 nn?

j i
3.27 6.452

A, (cm2)

Figure 2. Design space for three-bar truss.



The location of the optimal point in Figure 2 is atypical. In the major-
ity of problems it is found at the intersection of two or more constraint surfaces,
as shown in Figure 3a; that is, the optimal design is commonly determined by
several constraints simultaneously, rather than by a stationary point (Fig. 3b).

CM
<

CM
<

a. Intersection of
constraint surfaces.

b. Stationary point.

Figure 3. Examples of optimal points.

An important feature of optimal design topology, which is apparent in
Figure 2, is that only some of the constraints imposed on the problem are
active. Moreover, only a portion of these constraints are active at the optimal
design point itself, i. e., are directly involved in determining the minimum
weight point.

It turns out that it is not too difficult to construct an optimal design
algorithm if the constraints that are active at the optimal point are known
beforehand. Unfortunately, this can be done only in a few, small-scale prob-
lems (see Reference 5 for an example). In the majority of structures a large
portion of the computational effort must be expended, directly or indirectly, on
finding the constraints associated with the optimal point.

Optimally Criteria

Consider at first one load condition and a single primary constraint,

^ q* (1)



where q is a behavioral variable and q* its prescribed upper limit. In

addition, we permit constraints on element sizes:

(A.) . =£ A. * (A.) . (2)i mm i I'max v '

Let A represent a design which is assumed to be critical, i.e.,

but not necessarily an optimal one. We presume that it is possible to compute
the derivatives

The changes Aq of the constraint variable due to changes AA of the designr i
can be estimated from

Aq = 7.Q . AA. . (5)r V ri i v 'i

Equation (5) is an approximation for finite values of AA. ; it is exact only when

|AA| is infinitesimal.

The corresponding change of the structural weight is given by

AW = £p.L.AA. (6)

10



where p. is the unit weigh of the i element and L. represents the length

or surface area for a one- or two-dimensional element, respectively.

The design A can be improved if AA. exist that do not violate the size~ i
constraints and for which AW < 0 , Aq — 0 . We will now investigate the

possibilities of weight reduction in detail.

1. If Q . s: o for an element, it is evident by inspection of equations

(5) and (6) that we can obtain a lighter-weight feasible design by simply de-
creasing the size of that element. It follows that at optimum weight design we
must have

A. - (A.) if Q . 2; 0 . (7)i i mm n

2. Consider any two elements, denoted by i and j , for which
Q . < 0 and Q . < 0 . It might be possible to save weight by removing

some material from element i and adding a portion of that material to element
j, or vice versa. To avoid violating the primary constraint, we consider only
design changes which lead to Aq = 0 . According to equation (5), the last
constraint is equivalent to

Q .

rj

The weight is reduced if AW < 0 , i.e.,

p L AA + p L AA < 0
i i i J J J

Substituting from equation (8), we get

11



Q .x

fp L - p L —— ] AA < 0 (9)
i J J Q

If the size constraints are not active, we can satisfy equation (9) by choosing
the appropriate sign for AA. as long as the term in the parenthesis is not

zero. Consequently, the design can be an optimal one only when the term
vanishes, i. e.,

P.L. Q .
i j _ ri

P.L. ~ Q .
J J rJ

The last expression is equivalent to the equations,

p L + \ Q =0 (lOa)
i i r ri

and

p.L + \ Q =0 , (lOb)
J j r rj

where X is a positive constant (Lagrangian multiplier); its value is deter-
r

mined from the condition q = q* . The positive sign requirement follows

the inequalities p L > 0 and Q . < 0 .
i i ri

Next consider the case A = (A ) . . Because of the minimum size
i i mm

constraint, the design change is restricted to AA. > 0. It follows from an

inspection of equation (9) that the weight can be lowered only if the quantity in
the parenthesis is negative. No weight reduction is possible if and only if

Q .
p.L. - p.L. -£i > 0 .

11 J ] Q •J rj

12



Assuming A. to be already at its optimal value, we can use equation (lOb) to

substitute p.L./Q . = -^ > obtaining the optimality criterion
J J J

p L + \ Q . s: 0 if A. = (A ) . . (lla)
i i r n i i mm v '

Similarly, it can be shown that

P.L. + \ Q . ^ O i f A = (A.) (lib)
i i r n i rmax x '

at the optimal design.

The optimality criteria, equations (10) and (11), can be generalized
for cases where the optimal point is determined by several primary constraints
and load conditions [ 6']. The results can be stated as follows: The design A
is an optimal one if

= 0 if (A.) . < A. < (A )
i nun i i max

so if A = (A.) . (12)
i v I7mm v '

^ 0 if A = (A )
i i max

where

p.L. + 1\ Q .
11 u r n

r

= 0 if q < q*

(13)

Equation (13) requires additional explanation. If there are M load
L

conditions, each with M constraints, the total number of primary constraints

13



in the problem, is M = M M ; consequently r = 1, 2, ... M. Only some
L c

of these constraints are active (q = q* ) at optimal design and thus enter

the optimality criterion. The inactive constraints (q < q*) are eliminated

by setting A. = 0 for the appropriate values of r .

Equation (5), from which the optimality criteria were derived, is a
linear approximation of the constraint surface in the neighborhood of the design
A . It follows that the optimality criteria are valid only in a small region
around A ; that is, they are conditions for local optimality and do not guaran-
tee that A is a global minimum weight design. Proof of global optimality is
a difficult problem, which has been resolved only for some special cases.

Weight Reduction Cycle

We assume again, for the sake of simplicity, that the optimal design is

governed by only one primary constraint; q ^ q*. Let A be a point in

the design space, which we call the current design. It does not have to be a
critical design, nor does it have to lie in the feasible region. Our task is to

modify the current design in such a way that the new design A is closer
Mto the optimal point than A . In particular, we want a repeated application

of the weight reduction cycle to produce a sequence of designs that converges
uniformly to the minimum weight configuration, as shown in Figure 4.

A computationally efficient redesign equation can be obtained from the
optimality criteria (12) and (13). For a single constraint, the optimality
criterion for active members, that is, members governed by primary con-
straints rather than size limits, is

p.L. + \ Q . = 0 .
11 r n

Multiplying both sides of the equation by (l - o^A. , where a. is a constant

to be determined later, and rearranging the terms, we can write

A. = C.A. (14)
1 1 1

14



CM
<

W = CONSTANT

Figure 4. Example of a convergent sequence of designs produced by
repeated application of weight reduction operation.

where

C = a - (1 - a ) \
i

Q .
— j-r PiL. (15)

Equation (14), being the optimality criterion, is satisfied identically
for each active member when A is the optimal design, regardless of the value
of a . On the other hand, if A is a nonoptimal point, equation (14) can be

used as the redesign formula for active members: A. = C.A.

Repeated applications of the formula are equivalent to the solution of the

15



optimality criteria by the method of relaxation. The parameter a , - 1 < a. < 1,
is known as the relaxation factor; its value determines the rate of convergence.
It has been found that the optimal rate of convergence usually requires some
underrelaxation (a > 0).

In order to include passive members — members governed by size
constraints — into the redesign equation, the latter is rewritten as

C.A ^' if (A ) =£ C A ("' < (A )i i i min i i i max

(A ) . if C.A W < (A ) . (16)v i mm i i v :' v

(A.) if C.A.^ > (A.)i max i i i max

where C. is given by equation (15).
i

Before C. can be evaluated, however, the value of the Lagrangian
i

multiplier X must be found. As pointed out before, \ is determined in

such a way that'the design A is critical, i.e., from the condition

We assume for the time being that the identity of the active and passive
rs is known a priori. The change in q due

the passive members is, according to equation (5),

members is known a priori. The change in q due to the design changes in

(Aq ) = V Q . [(A.) . - A (v)
v ^Vpass . u , n v rmin ii pass 1 L

+ Z Q . T(A.) - A ( l / ) l . (17). LJ
 n n i max ii pass 2 L J

16



The two sums represent the effects of members governed by minimum and
maximum size constraints, respectively.

The contribution of active members to change in the constraint variable
is

(Aqr)act - Qri AA. . (IS)
i act

From equation (16) we obtain for active members

AA = A.
i i

Substituting for C. from equation (15) yields

AA = -
i r p . . i

Therefore, equation (18) becomes

2

Q . + \ -T-)A.I/ . (19)n r p.L. / i v '
i i

The total change in q is
r

Aq = (Aq ) + (Aq ) . . (20)
r r pass r'act '

We set Aq = q* - q , which is equivalent to the requirement

17



q ^ + ' = q* , and substitute for (Aq ) from equation (19). Ther r r 3.ct
resulting equation can be solved for the Lagrangian multiplier:

.

i act i i

Equation (21) can be evaluated only if the identities of active and
passive members are known beforehand. Since this is generally not the case,
the weight minimization cycle itself must be carried out by a trial-and-error
procedure outlined as follows.

1. Analyze the current design A and compute the gradients Q .

of the constraint variable.

2. Set A = (A ) ifQ >0 and consider these mem-i i mm n
bers to be passive.

3. For the remaining members, use the same division into passive
and active groups that occurred at the end of the previous redesign cycle.
If the present redesign operation is the first one, assume that all these mem-
bers are active.

4. Compute \ from equation (21).

5. Use equations (15) and (16) to calculate A. and use the

results to reclassify the members into passive and active groups.

6. If the classification of the members has remained unchanged, the
redesign cycle is completed; otherwise, use the new classification to repeat
steps 4, 5, and 6.

Experience reported in References 2 and 7 and in a manuscript now
being prepared for publication3 has shown the method to be efficient. In most

3. J. Kiusalaas, Optimal Design of Structures with Buckling Constraints.

18



cases only a few iterations are needed for the active-passive classification of
members. Moreover, the optimization technique itself — repeated application
of the redesign equation (16) — appears to be the most economical method of
minimum weight design in use at the present time. Three or four cycles
usually yield a structural weight that differs only by a few percent from the
true optimal weight, regardless of the size of the structure.

In the preceding discussion it was assumed that the design is deter-
mined by a single primary constraint. It is not difficult to revise the redesign
equations for multiple constraints (or several load conditions). Equation (16)
will remain valid but now

C = a - —r^- X \ Q . , (22)i P.L. u . p pi v 'i i p act

where the sum is taken over all the constraints that are active at the optimal

design. The requirement that q ^ ' = q* , where r applies to active

constraints only, yields a set of simultaneous equations for X :

k . A .<">
- < ! - « ) I "/ £ X Q .v ' ,u I p.L. <-> p pi

i act\ 11 p act

= (1 - a) 7. Q . A. + q*- q - (Aq ) r- 1, 2, ... M .v . . ri i r r r pass

(23)

The contribution of passive members (Aq ) is obtained again fromr pass
equation (17).

As can be seen, optimization under multiple constraints is considerably
more complex than design with respect to a single constraint. The main diffi-
culty is that the active constraints can be identified only by a trial-and-error
routine, similar to the one used in separating active and passive elements.
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The general idea is to initially assume that all constraints are active and to
solve equation (23) for the Lagrangian multipliers. The constraints associated
with negative values of \ are then considered passive [ the multipliers must

not be negative; see equation (13)] and the corresponding rows and columns
are eliminated from equation (23). The equations are solved again and the
process is repeated until all the remaining values of \ are positive. Since the

identity of passive and active members is also unknown at the beginning, the
calculation for the Lagrangian multipliers must be combined with the procedure
for classifying the elements.

If only a few constraints are imposed, the method is practical and effi-
cient. It has been successfully applied to design with respect to buckling,4

where two primary constraints (lower bounds on the first two buckling loads)
were employed. Most practical problems, unfortunately, involve numerous
constraints and load conditions, so that the multiconstraint optimization method
just outlined would be exceedingly expensive. Within the confines of the present
state of the art, economically acceptable computer times can be obtained only
by resorting to approximate methods. Two of these methods are described in
this report in the section, A Selected Survey of Optimization Programs.

Behavior Modification Cycle

It is sometimes necessary to modify the behavior of the structure by
means other than the weight minimization operation. The sole function of the
behavior modification cycle is to bring the design as close to the active con-
straint surface as possible within the limitations of the linear approximation
(5). Therefore, the criterion in choosing the appropriate redesign formula is
the accuracy with which the behavioral changes can be predicted; the resulting
change in structural weight is of secondary importance.

The need for a behavior modification cycle stems from the approximate
nature of the expression for changes in the behavioral variables (5). Exper-
ience has shown that equation (5) is sometimes a very poor approximation if
the design change AA is obtained from the weight minimization operation
described in the last section. In certain cases, such as structures on elastic
supports,5 a repeated application of the weight minimization equations may even
lead to divergence of th design from the active constraint surface.

4. Ibid.

5. Ibid.
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In a behavior modification operation the member sizes are changed
more or less uniformly, in which case equation (5) has been observed to be
a more satisfactory approximation to behavioral changes.

Figure 5 illustrates the application of behavior modification. A band
of acceptable, near-critical designs is defined by

where €j and €2 are predetermined constraints. Whenever the current
design is outside the acceptable band, a behavior modification cycle is used to
bring the design closer to the active constraint surface. The weight minimiza-
tion formula is used only on designs that lie inside the acceptable band.

BAND OF ACCEPTABLE DESIGNS q " - e, < q <q* +

/A
f f

BEHAVIOR MODIFICATION CYCLE

\ •— —*- WEIGHT MINIMIZATION CYCLE

OPTIMAL DESIGN

W = CONSTANT

Figure 5. Example of a sequence of acceptable designs produced by
behavior modification and weight reduction operations.
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This method of design, has two advantages over the repeated application
of the weight minimization cycle alone. The first and most important of these
is the "stabilizing" effect that the behavior modification has on convergence of
the design procedure. The use of behavior modification can not only turn a
divergent process into a convergent one but will also improve convergence in
general. Second, the sequence of acceptable designs (points 1, 2, and 3 in
Fig. 5) is useful in monitoring the design process. A weight comparison of
successive designs can be used to terminate the design process whenever the
weight reduction becomes small or ceases altogether. This method of termi-
nation is particularly valuable when approximate, multiconstraint optimization
techniques are used which converge to a point other than the true minimum
weight design.

Uniform scaling is perhaps the most efficient means of obtaining a near-
critical design since it yields a good prediction of behavioral changes. The
sizes of all active members are scaled by the same factor n , i. e., by the
operation

(24)

The passive members can be accounted for by using equation (16) as the scal-
ing equations, with

C. = (25a)

The value of fx is computed in the same manner as \ , namely from the

requirement q = q* . The result is

q*-q v - (Aq ) + £ Q .A.r r v r pass . u L ri i__ _ _ i act
<">

£u ,_i act
• A-ri i

f n c ^ \(25b)
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In all other respects the scaling operation is identical to the iterative weight
reduction cycle described previously in the subsection, Weight Reduction
Cycle.

In multiconstraint design problems a value of n should be evaluated
for each constraint and the largest value used as the scale factor. In practice
it is sufficient to confine the calculations to a few constraints, the choice being
based on the magnitude of the ratio

q <"> - «.
(26)

The constraints yielding the largest values of R are more likely to deter-
mine the critical design.

Another behavior modification operation that has been used is the
gradient travel mode [8, 9, 10]. The idea is to bring the design to the active
constraint surface with a smaller change in weight than in uniform scaling.
In gradient travel the weight change of each active member is proportional to
its effectiveness in changing the constraint variable:

(27)

where /n is the constant of proportionality. Substituting

and

8q /8W. = Q . /(p.L.) ,r i ri i i

we can rewrite equation (27) in the form
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i i

where

Qri
+ M —TT ' (28a)

As in the case of uniform scaling, we can include passive members in
the gradient travel mode by adopting equations (16) as the redesign formulas.
The scale factors C. would, of course, be computed from equation (28a).

The requirement q = q* yields the value of M :

q* _ q " _ (Aq )
M - -= S T^^ • (28b)

The gradient travel mode represents, within the linear approximation,
(v)the shortest distance in the design space between the point W and the active

portion of the q = q* surface. In the absence of passive members the rede-r r / \
sign vector is normal to the q = constant surface at W^ , as shown inr f^>

Figure 6b. In comparison, the redesign vector used in uniform scaling passes
through the origin of the design space (Fig. 6a).

The gradient travel operation does make sense only if the behavior mod-
ification cycle requires an increase in stiffness (and in structural weight). If
a decrease in stiffness is required, the gradient travel mode conflicts with the
design objective because it reduces the stiffness with a minimal saving of
structural weight.
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= qr(l>) (CONSTANT)

a. Uniform scaling. b. Gradient travel.

CM
<

= W(z;) (CONSTANT)

c. Weight gradient travel.

Figure 6. Examples of behavior modification operations.
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A behavior modification operation that is better suited for reducing
structural stiffness is the weight gradient travel operation [ 10],

where i applies to the active members only. Using AA. = A. -A.

equation (29) becomes

i i

where

P.L.
. = M - - l • (30a)

i

The expression for IJL , obtained again from q = q* , is

q* - q ^V' - (Aq )
-E r- LJLEMI • (30b)

.2 f PiLi «n
i act

The weight gradient travel mode in the design space is shown in Figure 6c.
The design change vector is normal to the constant weight contour, the direc
tion of steepest descent on the weight surface.
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GRADIENTS OF CONSTRAINT VARIABLES

General Considerations

The key to indirect optimization (as well as direct optimization) lies
in the computation of the constraint variable gradients. The calculations are,
with the exception of stress constraints, straightforward and economically
feasible, provided that the relationships between the member sizes and the
element stiffness matrices are specified in advance.

We denote the stiffness matrix of the i element by [K.] and the total

stiffness matrix of the structure by [ K]. The generalized displacement vec-

tors of the i element and the structure are written as { u.} and {u} ,

respectively. The rules for compiling [K] from the element stiffness are
based, as usual, on the invariance of the total strain energy U :

U = |{u}T[K]{u) = \ £{u.}T[K.]{u.} + US '

where the sum applies to all the elements in the structure and U denotes theS
strain energy of elastic supports.

To account for equal area constraints, we introduce the group stiffness
matrix [K ] and the group displacement vector {u } , defined by

o &

U
g = <u }T [K]{u } = .

5 & & i group g

th
where the sum is taken over the elements belonging to the g equal size
group; that is, elements that must have the same size A . It is assumed

&

that all the elements in any one group have an identical size-stiffness relation.
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Henceforth, no distinction will be made between problems with equal
size constraints and those without the constraints. All the formulas that follow
are valid for both types of problems, provided that A. , { u.} , [K. ] , etc., are

t h 1 1 1
interpreted as belonging to the i group if equal size constraints are applied.
In other words, all members belonging to an equal size group are simply lumped
together into an equivalent element for redesign purposes.

Development of the general theory requires no a priori knowledge of the
exact form of the element size-stiffness relations. It is sufficient to assume
that the derivatives of the stiffness matrices, namely 3[K. ] / 9A. , are cal-

culable. On the other hand, the size-stiffness relations play an important role
in some programming details, particularly in the storage of the element stiff-
ness matrices.

The great majority of design problems can be handled by using element
stiffness matrices of the form

[K. ] =
m=0

where the unit stiffness matrices

[k.<m>l A.™ , (31)
— n *- ^

(m)
are independent of the element

size A. . The stiffness due to the nonvariable portion of the element is repre-

sented by k and the direct stresses contribute to k. A. ; the
1 T 1

bending and twisting stiffnesses are included in k^ A., k. A. , or
_ L i J i L i J ir (3)i 3k. A. , depending on the type of the element. Three samples of size-

stiffness relations are shown in Figure 7.

The derivatives of element stiffness matrices are

9[K ] 3
i v ., v-;, . »— (32)

i i i i

m=l

28



V///j

t

— ̂

i
\ <•— A

•*— t

I

CHANGE IN GAGE THICKNESS t ONLY:

J2 = c3 A
3

PROPORTIONAL CHANGE IN ALL DIMENSIONS:

c4A2 = c 5A 2 c 6 A 2

a.

CHANGE IN THICKNESS OF REINFORCEMENT t

ONLY:

ly = C2 + C3 A

J = c4 + c5 A + c6 A
2 + c7 A

3

A CHANGE IN PLATE THICKNESS t:

= c 2 A 3

c.

Figure 7. Examples of size-stiffness relations.
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Since both [K. ] and [K. .] are used once in each design cycle (the stiffnessi 1,1
matrix is required in analysis and its derivative in the redesign cycle), it is

necessary to store k. , m = 0, 1, 2, 3 separately for each element.

This would require a modification of conventional analysis programs if they
are to be used in an optimization algorithm.

A special case is obtained when

[K. ] = [k.(m)]A.m . (33)

The size-stiffness relation in equation (33) makes the uniform scaling opera-
tion particularly simple if all the members are active (no size constraints).

(v + l) (v)
If ju is the uniform scale factor, such that A. = fj, A. , then

f i (v + l) r -,(f ) , m(u} v ' = (u}v '/M

and (34)

(v + l) m (v)
Pr ' = M Pr

V

where {f} , (u) , and p represent generalized forces, displacements, and
buckling loads, respectively (it is assumed that applied loads do not depend on
member sizes). Consequently, no reanalysis is required after a uniform
scaling cycle.

The linear size-stiffness relationship (m=l) is of particular signifi-
cance in aerospace structures. Shear panels, membrane elements, and thin-
walled beams with variable gage thickness (Fig. 7a) fall into this category.
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Uniform scaling, together with equations (34) , has been extensively used in
aerospace-oriented optimization programs [2, 4, 7, 11, 12, 13].

Although the simple uniform scaling procedure (scaling of all members)
appears to be very attractive, its value is somewhat dubious because the opera-
tion is inconsistent with constraints on member sizes. The selective scaling
procedure in equation (16), based on active-passive member categories, seems
to be preferable.

Stress Constraints

Rigorous design with stress constraints is still an unresolved problem
in the optimization of large structures. The approximate methods that have
been used, and are described in this report, fall somewhat outside the general
optimization theory developed in the preceding sections.

Because of notational complexities, it is difficult to present the ideas
in any generality. They are best displayed for the simplest class of problems
— the design of trusses.

We consider first the constraints on the tensile stresses,

a ^ a* .r r tens

The last inequality is identical to equation (l) if we set a = q andr r
a* = q* . For members of a truss,

r tens r

Pr
A~r

where P is the axial force in member r . Consequently,

P '
r ' A ' L ' (35)

2 "ri
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with 6 denoting the Kronecker delta,n

It is a common practice to neglect the last term in equation (35), i.e.,
to assume that the change in member forces during redesign is negligible.
This assumption leads to an enormous simplification of the design algorithm,
apart from avoiding the difficulties of computing 8P /8A. .

The advantages of the simplified formula, which can be written

„<*>v»

Q . = - —7—r 6 . , (36)
n (v) ri

are most apparent in multiconstraint design problems. It can be verified by
an inspection of equation (23) that the equations for the Lagrangian multipliers
A. become decoupled upon substitution of equation (36). As a result each

P
stress constraint and load condition combination can be handled as a single-
constraint problem. The largest member size predicted by all the load condi-

tions is chosen as the new design A.

Substituting equation (36) in the equations of the weight reduction cycle,
we obtain from equation (21),

(2 -a) a v - a* , .
_ _ r _ r tens T . (v)

A. = - - - p L Ar / / x\2 r r r

Equation (15) then gives the redesign scale factor for the r element:

(2 -a) <r - a*, , N
c = tt + . - f- - Liens. (v) > ( }

r (v) r
r
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Constraints on compressive stresses

> - cr*
r r comp

can be handled by setting q = -
is r

a in equations (21) and (15). The result
r

( 2 - a ) c r
C = a +

+ a*r comp
if < 0 . (37b)v '

As mentioned before, if there are several load conditions, a value of
C is computed for each condition and the largest value is chosen as the scale

factor in the redesign equations:

C.A. ( l / ) if CA. ( l / ) ^ (A. ) .
11 i i i mm

(A ) . if C.A.(v) < (A )
i mm i i i mm

(38)

The statement A = (A )
i max

if C.A
i i

1'' (A.)i max has been

omitted from equation (38) since the simplified design equations are obviously
incapable of handling upper limits on the design variables. This is one of the
major drawbacks of the approximate method.

It can be seen from equations (37a) and (37b) that no change in the

member size occurs (C = l), when cr = cr* or <j = - cr*
r r r tens r r comp

Therefore, the final design is known as the fully stressed design, where each
element is stressed to the allowable value under at least one load condition or
is governed by the minimum size constraint.

The fully stressed design always coincides with the minimum weight
design for statically determinate structures. In the case of static indeterminacy,
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it is generally just an approximation to the optimal weight configuration. The
error (weight penalty) is claimed to be small in most practical design prob-
lems but this contention has not yet been proved conclusively. The fact is that
special problems can easily be conceived where the discrepancy between the
minimum weight and the fully stressed designs is significant.

Equations (37a) and (37b) have actually not been used in the existing
optimization programs. The fully stressed design is traditionally obtained
more directly by the stress ratio redesign method [2, 4, 7]. The assumption
that member forces do not change with redesign is equivalent to the equations,

, < " > A <
r r

= a* A v

r tens r
if

and

Ar r r comp r
„ „ < » > < „

r

Solving the equations for A yields the scale factors to be used in the

redesign formulas (38):

C =
r

r tens

a ( v ) / c r *
r r comp

if

if

„ < " > > 0r

„ < " > < 0r

(39)

No benefit has been obtained by introducing a relaxation factor into the stress
ratio redesign equations [ 14 ].

For a general finite element the stress vector at point P can be
obtained from the nodal forces (f.} by the operation
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r PIwhere the matrix S. depends on A. and the location of P . The stress

constraint

is imposed on the effective stress in the member, the latter being given by

<42)

The operation JF is determined by the failure criterion and is independent of
A. and the location of P .i

For example, if the Von Mises yield criterion in two dimensions is
used,

/ P\2 / P\2 / P\ / P\ / P\. = max ^ (<T. ) + (cr. ) - (<7. ) (CT. ) + 3(r. )
i eff V i /x \ i /y \ i /x \ i /y \ i /

2

xy

The stress ratio redesign is usable only for the special case

[•,PH,PK •
r PIs. does nol
.Ll J (V + I

where s. does not depend on the member size. It is readily verified that

to obtain cr ... - a* , we must use
i eff i

35



(44)

in the redesign equation (38). All of the elements used in References 2, 4, 7,
11, and 12, apart from having linear size-stiffness relations, are of the type
described by equation (43), with /3 = 1 . The only exception is the plate ele-
ment used in Reference 4.

Stress-constrained design with more general elements appears to be a
very difficult problem and thus far no entirely satisfactory methods have been
proposed. Certain elements with a relatively simple relationship between the
effective stress and the nodal forces, such as plates, and circular thin-walled
tubes with a fixed t/r ratio seem to be manageable (we assume combined
action of direct forces, bending, and torsion). However, these elements must
be designed by equations similar to (37a), (37b), and (38) since the stress
ratio method would not be applicable. The alternative is to use specially
tailored failure criteria, as has been done in Reference 4.

Apart from the failure criterion a „- — a* , an optimization algor-
i eff i

ithm should also provide for local buckling constraints. Again, one can make
use of the assumption that nodal forces are unchanged during redesign. With
the nodal forces known, the minimum element size required to prevent it from
buckling can be computed provided, of course, that the buckling design data for
the elements are available [4]. This size is then compared with (A ) . andv i7 mm
the largest value used as the lower bound in the design with respect to stress.
The major difficulty of the method lies in providing buckling design data for
each element.

Before leaving the subject of fully stressed design, another flaw of the
method should be mentioned. The finite element, stiffness method generally
does not yield stress fields that are continuous between elements, i.e., they
do not satisfy equilibrium conditions exactly. As a result the member sizes of
the final design reflect these discontinuities and may produce a weight distribu-
tion that has an intuitively "wrong" appearance.

The problem is solved in Reference 4 by a stress smoothing procedure,
called the nodal stress method. Roughly speaking, the method redistributes
the nodal forces predicted by the finite element analysis in such a manner that
the net force acting on each node vanishes. A bonus of the nodal stress method
is a considerably faster convergence of successive designs to the fully stressed
state.
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The difficulties with abnormal weight distribution have been tackled in
References 11 and 12 by an energy approach. The scale factor in the redesign
equations (38) is chosen as

C . - X N U . u , (45)

where U. is the strain energy of the i member (the maximum energy pro-

duced by any one load system is used if multiple load conditions exist) and
V* is called the strain energy capacity of the element. The latter is defined

as the energy stored in-the member at failure, assuming a uniform strain field
(constant tension in bars, constant bending in beams, etc.). The constant \

is the same for all elements and is adjusted so as to bring the design A.

to the active constraint surface.

If the structure is composed of constant strain members, such as bars
and membrane elements, the energy approach is identical to the stress ratio
method (x = 1 would be used). A comparison of the results produced by the
two methods is not available for more complex elements.

Displacement Constraints

A displacement constraint can be expressed as

u ^ 1*
r r

where u* is the prescribed upper limit on the generalized displacement u .

The above inequality has the same form as the standard behavioral constraint
(l). Since the displacement gradients can be calculated in a straightforward
manner, the design algorithm can be constructed directly upon the general
theory developed in this report.

The most economical way of evaluating displacement gradients is based
on the dummy load method. To obtain the derivatives of the generalized dis-
placement component u , we first place a unit dummy load on the structure
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in the direction of the r-coordinate. Denoting the dummy load vector by

u f, where f. = 6. , and the resulting displacement vector by lu >,
J J *• /

equilibrium equations of the structure under the dummy load are

(46)

T
Multiplying both sides of the equation by (u) , where (u) is the displace-
ment vector due to real loads, we obtain

(u}T[K]{u ( r )}= ur . (47)

The right-hand side of equation (47) was obtained by

r1 i ir ri

Differentiation of equation (47) yields

dur_ , -,1
9A. ~ ^U'

s. - /

. . T. ( ( r \ \
(48)

where we used the notation {u .} = 8{u}/9A. . Equation (48) can be

simplified considerably. Differentiating both sides of equation (46), we get
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Similarly, differentiation of the equilibrium equations due to real loads,

[K]{u} =
dent of A ,

T T
[K]{u} = (f) or {u} [K] = {f} , yields, assuming {f} to be indepen-

{u }T[K] = -{u}T[K

Consequently, equation (48) becomes

Only the stiffness matrix of the i element contributes to [K .] , i.e.

[K .] = [K. .].
,1 1,1

Therefore,

Q • = TT- = - (U-}T [K. . ] u - • (49)n 9A. l ij ii v '

References 2 and 7, in which the dummy load approach was first used,
imply that equation (49) is an approximation, valid only when the changes in
internal forces are negligible during redesign. The equation is, in fact, an
exact expression for the displacement gradients within the framework of the
finite element theory.

( r)
The displacements (u) and {u } can be calculated simultaneously

(r)during the analysis of the structure by adding {f ^ } to the matrix of real
loads. The extra cost of computation would be relatively small.
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The special size-stiffness relationship (33) produces an interesting
result. Because

K] = |k. (m)lA.m

• i L i J i

we have

[K. .] = m [K.I /A.
1 , 1 1 1

Therefore, equation (49) takes the form

Q . = - m U / r V A . ,ri i i

where

Vr)

may be called the "dummy energy" of the i element — the work done by the
real internal forces as they undergo the displacements of the dummy load. The
optimality criterion (12) now becomes for active members

where

W. = p. L. A.i 1 1 1
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th
is the weight of the i element. For a single constraint, the criterion is

U. /W. = c ,

i.e., the dummy energy density must be constant throughout the structure.
The value of c is determined by the allowable displacement u* .r

Buckling Constraints

We assume that all the loads acting on the structure can be considered
to be proportional to a single parameter p . The values of p at buckling are
denoted by p and are presumed to be arranged in an ascending order:r

Pi ~ Pa ~ PS • • • •

If the structure is to be safe against buckling, the constraint conditions
are

Pr * P* ,

where p* is the desired value of p at buckling. The inequality can be brought
to the standard form of equation (l) by multiplying both sides by minus one and
setting q = - p , q* = - p* .

At casual glance it may appear that the design could be based only on
Pi , the fundamental buckling load. This approach is indeed adequate if
P! < p2 at the optimal design. It can be shown,6 however, that the minimum
weight structure may possess two fundamental buckling modes (pj = p2),
which requires the use of a multiconstraint design approach. (There is a
slight possibility of having more than two fundamental modes at the optimal
design.)

6. Ibid.
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The buckling problem is governed by the incremental equilibrium
equation

[K] (u) = p [ H ] { u ) , (50)

where (u) is the vector of generalized buckling displacements, and [H]
represents the geometric stiffness matrix of the structure. The latter is
symmetric and is assumed to be independent of the member sizes.7

Differentiating both sides of equation (50) with respect to A. , we
obtain

[K ] (u) + [K] {u } = - [Hi {u} + p[H] {u } . (51)
j 1 j 1 Or\. , i

T T
Multiplying equation (50) from the left by {u .} and equation (51) by (u)

j1

and then subtracting (50) from (51) yields

Finally, upon substituting [K J = [K. .] , we obtain
,1 1,1

9p
Q- = - TT- = - -H—T r ^ ' 7 . (52)

7. The assumption is strictly valid only when the prebuckling state is statically
determinate. For the case of static indeterminacy, the assumption is a
convenient approximation; optimal design can be obtained by recomputing
the forces in the prebuckling state after each redesign cycle.
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The superscript (r) signifies that the displacements of the r buckling
mode are to be used in the equation. There is a striking similarity between
equations (52) and (49), which is accentuated when the special size-stiffness
relations (33) are used. With the substitutions

the optimality criterion becomes

(r)for the multiconstraint case and U /W = c for a single constraint. Asi i
in the design for displacement constraints, the last equation also requires a
uniform energy density — in the present case the strain energy of buckling —
throughout the structure.

Natural Frequency Constraints

Constraints on natural frequencies are handled in essentially the same
manner as buckling constraints. We introduce p = w 2 , p^ ̂  p2 ̂  p3 . . . ,

where o) / (2?r) are the natural frequencies of the structure. It is assumedr
that the design objective is to eliminate all frequencies below a certain value
a;* . Consequently, the behavioral constraints are, as they were for buckling,

Pr
 s P"

Again, the standard form of the behavioral inequality is obtained with
q = - p and q* = - p* .r *r r
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The importance of optimizing the design with respect to at least two
modes, which was discussed in the preceding subsection, is also applicable
to frequency-constrained design.

The free vibration equation is an eigenvalue problem of the same form
as equation (50):

[K] {u} = p [M]{u) (53)

where (u) represents the buckling mode and [M] is the mass matrix. If
the rotary inertia is neglected, the element mass matrixes can be written as

[M.1 = m.i
(0) m.i

(1) (54)

where are independent of A . In addition to the contribution of the
i

individual elements (54), [M] is also allowed to contain nonstructural
inertia terms (due to masses attached to the structure).

The gradients of p are obtained in a manner identical to the method

used for buckling constraints, and the derivations are not repeated here (one
must not forget, however, that the derivatives of [M] are nonzero). The
result is

Q = - —-ri 9A.

(..<"}%. j|u.<4t i } 1.1 i i J . (55)
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For the special case [K ] = k/m' A.m and [Ml = [m ^MA
i 1 t h ' i L i J i

we introduce the potential and kinetic energies of the i element,

and

respectively, and the kinetic energy of the entire structure

T(r) = p ( u(r) }~

Equation (55) then is

Q. = -
n

and the optimality criterion (12) becomes for the active members,

p / T ( r ) ) ( m U ( r ) - T.(r))/W = I
c-r / \ i i // ii

If a single constraint is used, this reduces to

(mU. '
\ i

= c
i // i
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Before leaving the topic, we should point out a peculiarity of the uniform,
scaling operation. Assuming the special size-stiffness relation just described
and an absence of nonstructural inertia terms in [ M ] , the uniform scaling
operation, when applied to all members, would result in

where M is the scaling factor. The vibration equation (53) for the new design
would be

A comparison with the equation of the previous design,

leads us to the conclusion that

(v + l) (v)v ' = uv '

and

(v + l) m-1 (v)
P = M P
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We note that when m = 1 , no change in the natural frequencies will
occur. Consequently, the uniform scaling operation will be ineffective in modi-
fying the behavior of the structure if the size-stiffness relations are linear
unless the terms that are independent of A. dominate the mass matrix.

Flutter Velocity Constraints
Design with respect to flutter velocity completes the trio of eigenvalue-

constrained problems, the other two being designs with respect to buckling and
natural frequency constraints. Denoting the flutter speeds of the structure by
V , Vj ^ V2 ^ V3 ..., and the desired lowest flutter velocity by V*, the

constraint conditions are

V > V*r

Therefore, q = - V and q* = - V* .

The equations governing steady-state motions of the structure can be
written in the form [ 10],

[K]{u> = p ( [ M ] + [A] ){u ) (56)

where [A] is the air force matrix and p = a;2, a> /2n being the frequency

of flutter oscillations. The air force matrix is complex, asymmetric, and a
function of the reduced frequency

k = , (5V)

b being the semichord length. The exact form of [A] depends on the aero-
dynamic theory used.
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Multiplying both sides of equation (57) by V and differentiating, we
obtain

,8V _ 8 co _ 8k = b 8p _ bco 8k
8 A. ~ 8 A. ~ 8A. ~ 2 o ) 8 A . k 8 A.1 1 1 i i

from which

8V , 8p bw 8kr _ b r_ r r_
8A. 2w k 8A. . 2 8A.i r r i k ir

To obtain 8p/8A. , we differentiate both sides of (56);

u} + lK]/u,A = f-([M] +

+ p([M]
(59)

The next step is to eliminate the derivative of the eigenvector { u . } . Since
> i

[A] is asymmetrjc, we need the help of the associated eigenvector (v) ,
given by the solution of

(v}T[K] = p{v}T([Ml + [A]) . (60)

It can be shown that the eigenvalues p of equations (56) and (60) are identical.
r

TMultiplying equation (59) from the left by {v} and equation (60)
from the right by {u .} and subtracting, we have
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(v}T[K ]{u) =
' i

p(v}T([M .] + [A .]){u)

Substituting

[A .] = (8 [A] / 8k) (8k/8A. )
* i *

and using the notation

8 [ A ] /8k = [A']

we get

{v}T[-K ]{u) -

8A.i (v}T([M]

At this point we recall that if an arbitrary value of V is used in equa-
tion (56), the resulting eigenvalues are generally complex. A real eigenvalue
p , signifying a steady-state motion, can be obtained only when V = V ,

r = 1, 2, 3 ... . Since we are designing with respect to flutter, i. e., steady-
state oscillations, we must use p = p and k = k (both real) in equa-

tion (61) and also restrict 3p /8A and 8k /8A to real values. Thev r i r i
last requirement essentially establishes an interdependence between

dP = 7! (8p /8A. ) dA.r LJ r i ii
and
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dk = A (9k /9A. )dA.
r u v r 1 1

i

which assures us that p + dp and k + dk also correspond to the
r r r r

flutter conditions (are real) for the design A. + dA. .
1 1

Following the technique developed in Reference 10, we separate the
terms appearing in equation (61) into real and imaginary parts:

(r'
_. l - P r[M ; . ] ){u r} -B

{ v < r > } T [ A ' J { u ( r ) } = R ( r ) + i I ( r ) , (62)P r 2

and

(v ( r )}T([M] -f

With the terms introduced, 8p / 3A. can also be divided into real and imagi-

nary portions:

9p V"1 2 9A.
r _ . i_

9A
i

(r) / ( r ) (r) 9kr \ (r)
~ VZl " l2 9 A. ')**

3k
i

9A. y"3 ~ V"1 ~ "2 9A
i i

(63)
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The last term in equation (63) must vanish if 9p /3A. is to be real, which
yields r *

3 1 1 3
3A. (r) (r) _ (r) <r)

, ,
<64>

From the real part of equation (63) we now obtain

9A.

2 3 2 3 , cv
(65)

Substitution of equations (64) and (65) inequation (58) completes the expression
for Q . .

ri

The main difficulty with flutter optimization appears not to be in the
redesign but in the analysis — the solution of the flutter equation for a realistic
air force matrix [ A ] .

A SELECTED SURVEY OF OPTIMIZATION PROGRAMS

Stress and Displacement Constraints

One of the most troublesome aspects of optimal design is the treatment
of multiple constraints other than stress constraints. The difficulties are most
acute in displacement-constrained designs since it is not unusual to have a very
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large number of displacement limits placed on a single problem. As noted
before, a rigorous use of optimality criteria is out of the question and approxi-
mate techniques must be found.

An effective method for handling stress and displacement constraints
has been developed by Gellatly and Berke [ 2 , 7 ] , In essence, they consider
the stress constraints and each displacement constraint-load combination as a
separate, autonomous optimization problem. If there are M displacement
constraint-load combinations, then M + 1 different values are calculated for
each element size during a redesign cycle (one value from stress constraints
and M values from displacement constraints ) . The largest value is selected
as the size for each element.

The separation of members into active and passive categories during
each redesign cycle is accomplished by successive iterations, as shown in
Figure 8. At first all the members are assumed to be active. During subse-
quent iterations the active members in each of the autonomous problems are
limited to elements that were controlled by the same problem in the previous
iteration. The procedure is repeated until no change takes place in the active-
passive member categories.

Following each redesign cycle, the design is analyzed and scaled uni-
formly to the active constraint surface. Since only elements with linear size-
stiffness relations are used in the program, the scaling operation predicts the
corresponding behavioral changes exactly, eliminating the need for further
analysis. The design procedure is terminated when the structural weight
ceases to decrease between two successive critical designs.

The algorithm of Gellatly and Berke, like all approximate methods,
does not converge to the true minimum weight design. The weight penalty has
not yet been evaluated.

The redesign equation used during the weight reduction cycle in
References 2 and 7 differs somewhat from the formula (15) proposed in this
report. For elements with linear size-stiffness relations, equation (15)
becomes

C. = a + (I - a)\ U.v ' /Wi r i i

Gellatly and Berke, on the other hand, use

52



Analyze initial design

Stress ratio redesign
with respect to all load
conditions (design No. 1)

Displacement-constrained
redesign, one constraint/load
at a time. Consider all
elements as active.
(Design Nos. 2 to M+1)

Stop

Yes

_ Did weight
\ Decrease?
N No

Yes

Behavior modification
mode - uniform scaling

Choose the largest values of A;
produced by designs 1, 2 ... M+1.
Record the design number that
controlled the selection of each Aj.

Displacement-constrained redesign, one
constraint/load condition at a time.
Consider all elements previously
controlled by other constraint/load
conditions as passive. (Design Nos.
2 to M+1).

Choose the largest values of Aj
produced by designs 1, 2 ... M+1.
Record the design numbers that
controlled the selection of each A;.

Did the
design control numbers

change?

No

Figure 8. Flow diagram for program in References 2 and 7.
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C. = N/A U . ' / W .
r i (66)

(r)
which can be derived from the optimality criterion \ U. ' /W. = 1 upon

the assumption that the internal forces do not change during redesign.

It is easily shown that the discrepancy between the two expressions for
C. is negligible for small design changes AA. (i.e., if C. « 1 ). With

C. ~ 1, we have

•J\ u ( r )/w « -(
ri i 2 \

\ u
r i

which coincides with equation (15) if we take a = — . Since the redesign
^

formulas are strictly applicable for small design changes anyway, neither
formula can be considered to be more "accurate" than the other. Equation
(15), however, has the advantage of greater flexibility: It is applicable to
size-stiffness relations other than linear, it allows control of the convergence
rate through the relaxation parameter a , and it can be used in rigorous
multiconstraint design (the simultaneous equations to be solved for X would

be linear, as opposed to nonlinear equations if the Gellatly-Berke redesign
formula were used).

A different approach to multiconstraint design is used by Dwyer et al.
[4] (Fig. 9). The first phase of the design algorithm consists of repeated
applications of the stress ratio redesign formula and the uniform scaling opera-
tion. The displacement constraints are accounted for by computing the uniform
scale factor from all the behavioral constraints. Consequently, each design
cycle produces a critical (usable) design. This procedure is repeated until
the structural weight ceases to decrease.

The second phase is a displacement-constrained design algorithm that
is used only when the last critical design was governed by a displacement con-
straint. The method of redesign used in this phase may be classified as a
gradient search procedure, consisting of alternate steps of uniform scaling and
gradient travel mode. It is not based on the optimality criterion and is not
always effective in reducing weight.
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Analyze initial design and
scale uniformly with
respect to all constraints

Yes

*-( Stop

Weight minimization mode-
stress ratio redesign with
respect to all load conditions

Behavior modification mode-
uniform scaling with respect to
all the constraints

Did weight decrease? y

No

No
•*•

Was the last scale factor determined
by a deflection constraint? <

Yes

Yes

Weight minimization mode-
gradient search

Behavior modification mode-
uniform scaling

Did weight increase, or was the
last scale factor determined by a stress

constraint?

No

Figure 9. Flow diagram for program in Reference 4.
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The optimization program of Venkayya [11, 12] uses essentially the
same approach as Reference 4. The differences are minor: Venkayya replaces
the stress ratio redesign formula with the energy ratio formula (45) and uses
a slightly modified gradient travel mode in the displacement-constrained design
phase. The method for computing the displacement gradients is inefficient in
Reference 4 as well as in References 11 and 12.

Buckling Constraints

There appear to be no published accounts of buckling-constrained
optimization programs. The ideas developed in this report were used by the
author to assemble a frame optimization program,8 which works well on a
variety of problems where the prebuckling state is statically determinate* The
flow diagram of the program is shown in Figure 10.

The program accepts elements with size-stiffness relations

where m = 1, 2 or 3. In addition, elastic supports (discrete nodal supports
or uniformly distributed element supports) are permitted. Minimum permis-
sible element sizes and equal size constraints are also included in the program.

It was found essential to consider the problem as one of multiconstraint
design, where the weight reduction cycle takes into account the first two buckling
modes simultaneously [see equations (22) and (23)1 . Without this feature, the
design did not converge in cases where the first two buckling loads were equal
at the optimal design, i. e., if the optimal design was located at the intersection
of pj = p* and p2 = p* constraint surfaces, as indicated in Figure 3a.

The redesign is carried out by either applying the weight reduction
equations (22) and (23) or the uniform scaling operation, depending on whether
the critical load of the current design lies in the acceptable band or not. In
other words, the design process shown in Figure 5 is used. The program is
stopped if the critical load is within the acceptable range and the optimality
criterion (12) is satisfied within a prescribed latitude.

8. Kiusalaas, op. cit.
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Analyze initial design

Yes Is the

critical load within the
acceptable bounds?

No

Weight minimization
mode (22), (23)

Frequency modification
mode - uniform
scaling (24)

Analysis
(1st and 2nd modes)

Yes
Is the

Optimality criterion (12)

satisfied within a

prescribed latitude?

No

Yes
Is the

critical load within
the acceptable bounds?

No

Figure 10. Flow diagram for program referenced in footnote 3.
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Experience with the program indicates that the initial rate of conver-
gence is very fast. Three or four redesigns were usually sufficient to produce
a structural weight within a percent or two of the true optimal weight. It was
noted that in some problems the structural behavior (buckling modes) became
very sensitive to small design changes near the optimal point. This caused
successive designs to oscillate between two near-optimal points and made
further weight reduction impossible unless the relaxation factor was increased
close to unity. Fortunately, in all cases tested, the oscillatory behavior
occurred only when the design weight was within a percent of the optimal weight.

Natural Frequency Constraints
The first procedure for optimizing a complex-structure with respect

to frequency constraints was published by Rubin [8, 9]. The program treats
frames and restricts elements to linear size-stiffness reductions but accepts
nonstructural masses.

The layout of the program, shown in Figure 11, is somewhat similar
to the algorithm just described for buckling-constrained design. Two frequency
modification modes are used: uniform scaling if the frequency is to be reduced
and gradient travel [equation (28)] if an increase in frequency is required.

The weight minimization mode adopted by Rubin is a numerical search
procedure known as gradient projection search. The redesign formula is
AA. = /Ltg , where g. is chosen so as to maximize the weight loss - AW ,

subject to constraint Apt = 0 (no change in fundamental frequency). The
magnitude of the redesign vector n is obtained by trial and error.

As was already stated in the introduction, numerical search techniques
are generally inferior to indirect design methods that are based on the opti-
mality criteria. This is particularly true for the design of large structures.
Another flaw of the program is the single-constraint design approach, which
restricts its application to structures where the optimal design is a stationary
point on the p'j = p* constraint surface (Fig. 3b).

A more recent frequency-constrained optimization program that does
make use of the optimality criterion has been published by Venkayya et al.
[13]. The elements are again restricted to linear size-stiffness relations.

The weight minimization mode consists of the redesign equation
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Analyze initial design

Is the

fundamental frequency
above the acceptable

band?

No

Yet

Frequency
modification
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scaling

Is the
fundamental frequency
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Frequency
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mode-gradient
travel
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minimization
mode

No
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No
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fundamental frequency

within the acceptable
band?

Yes
Stop

Figure 11. Flow diagram for program in References 8 and 9.
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. c Ai i i

where

n (r) . T (r)

w.1

The origin of the formula is the optimality criterion

(c/W.) (U.

Similarly to equation (66), equation (67) can be shown to coincide with the
redesign formula (15) proposed in this paper,

(r) (r)
TT — rp \ /

C. = a+ ( l - a ) c — —

(67)

provided that we take ot = — and consider small design changes (C. w l).

The algorithm in Reference 13 does not use a frequency modification
mode — the design changes are obtained entirely by repeated application of
equation (67). Experience with buckling-constrained design9 has shown that
the use of the weight minimization mode along can lead to a divergent design
sequence in certain problems. It appears, therefore, that the absence of a
frequency modification mode and the single-constraint approach make the pro-
gram described in Reference 13 applicable to a limited class of problems only.

Flutter Velocity Constraints

Optimization with respect to flutter has been confined to very simple
structural configurations. The most advanced paper published to date, written

9. Ibid.
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by Rudisill and Bhatia [ 10] , is rather similar to the frequency-constrained
design algorithm used by Rubin [ 8, 9] and consequently suffers from the same
drawbacks. The main contribution of the paper lies in the derivation of the
expressions for the flutter velocity gradients.

The weight minimization mode used by Rudisill and Bhatia is also a
gradient projection search procedure, where the incremental increase in the
flutter speed is maximized while the total weight is held constant. For the
behavior modification cycle they use flutter velocity gradient travel [ equation
(28)1 to increase the flutter velocity and weight gradient travel [equation (30)]
if a decrease in the velocity is desired.

CONCLUSIONS

There is little doubt that computer-automated, minimum weight design
is an eminently practical means of structural design, even in its present stage
of development. It is safe to predict that by the end of the next decade most
structures, in aerospace as well as civil engineering applications, will be
computer designed.

The principles and methods found in the present state of the art appear
to be further advanced than their application; that is, none of the published
design algorithms make full use of the existing knowledge and experience. Part
of the blame must be placed on the high cost of program development — an
optimization program requires about twice the programming effort of a corres-
ponding analysis algorithm. In addition, structural optimization is still a
peripheral area of structural design, known only to a small group of engineers.
Consequently, funding agencies have been reluctant to underwrite the cost of
practical (large) structural optimization programs, preferring more traditional
areas of structural mechanics.

In view of the present situation, the next few years should be dominated
by increased applications of optimal design, rather than new theoretical develop-
ments .

George C. Marshall Space Flight Center
National Aeronautics and Space Administration - ... . . . . . .

Marshall Space Flight Center, Alabama 35812, Aug. 4, 1972
124-12-11-0000
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