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STEADY INVISCID TRANSONIC FLOWS OVER PLANAR AIRFOILS

A SEARCH FOR A SIMPLIFIED PROCEDURE

By R. Magnus and H. Yoshihara
General Dynamics/Convair Aerospace Division

San Diego, California

SUMMARY

A procedure to calculate steady inviscid flows over a general class of planar
airfoils with embedded shocks at high subsonic Mach numbers has been developed
earlier using an unsteady finite difference analogue. Here the embedded
shocks were assumed to be sufficiently weak to permit the assumption of isen-
tropic flow. The desired steady flow was obtained as the asymptotic flow
for large times by prescribing suitable boundary and initial conditions. The
unsteady Euler equations have been used in the proper conservation form to
obtain the proper jump conditions across the embedded shock following the
guidelines set forth by Lax using the concept of a weak solution to a hyper-
bolic initial -value problem. The Lax-Wendroff two step second order differ-
ence scheme has been employed. The procedure as described above yielded
satisfactory solutions for even the extreme cases of a highly blunt nosed
aft cambered supercritical profiles, but at a cost of large computer times.
In the present study simplifications are investigated to reduce the computer
times without sacrifice of the accuracy of the solutions and always conform-
ing to Lax's guidelines. As a first step the adequacy of the Guderley-
Von Karman small disturbance theory with fictitious times derivatives and
various simplified conditions at the airfoil have been examined to treat
blunt nosed aft-cambered supercritical profiles. The results indicate that
the simplifications are simply too severe resulting in an inacceptably poor
prediction of the flow about the nose and.the shock wave. A more exact
formulation of the problem is then proposed where the flow domain is con-
sidered in two parts, the first sub-domain embedding the shock wave, while
the second containing the remaining region where the flow is continuous. In
the latter region the exact equations in non-conservation form for the two
cartesian velocities are used, while the proper conservation form is employed
in the sub-domain containing the shock. The exact flow tangency condition
is prescribed on a semi-infinite slab where the upstream extremity is a semi-
circle which overlays the airfoil leading edge. Downstream of the leading
edge the condition is fulfilled in a quasi-planar fashion. The procedure is



then illustrated by several examples with a supercritical profile. The
report is then concluded by assessing the treatment of the embedded shocks
both by the present unsteady and other steady finite difference analogues,
suggesting here the need to incorporate viscous effects.

1. INTRODUCTION

In an early effort (Refs. 1-3) a finite difference procedure was developed
to treat high subsonic flows with shocks over a general class of planar
airfoils. Here the desired steady flow was obtained as the asymptotic flow
for large times in an unsteady formulation for which a marching process
could be reliably employed. The finite difference analogue here was based
upon the unsteady Euler equations assuming the shocks to be sufficiently
weak as to permit the assumption of isentropic flow. The airfoil condition
was fulfilled exactly at the actual airfoil surface. Following the results
of Lax (Ref. 4) the equations were used in an appropriate conservation form
to insure jump conditions corresponding to the isentropic limit of the
Rankine-Hugoniot conditions. As a consequence of the dissipation generated
by the truncation errors, the shock discontinuities were endowed with a profile
(to be sure a fictitious one), so that the flow could then be treated as
entirely continuous. Of course, a fine mesh must be employed about the shocks
to obtain an adequate spacial resolution of the shocks and to minimize the
extent of the inadmissible region within the shock profile. Embedded shocks
were thus evolved automatically in the analogue, a liability (truncation
error) here being parlayed to resolve the very difficult task of treating the
a .priori unknown embedded shocks - a rare event indeed especially in transonic
aerodynamics. A drawback of these early efforts was the resulting complexity,
in particular in the fulfillment of the boundary condition at the airfoil,
which led to a large expenditure of computer time. The emphasis at this
early stage was concentrated in obtaining meaningful results, and this pre-
occupation compounded by the conservatism engendered by the lack of both
experience and resources resulted in a procedure, which, in light of progress
to date, must now be considered obsolete. Thus the goal of the present effort
is a thorough renovation of the above unsteady procedure to reduce the com-

puter costs without significantly compromising the accuracy and the gen-
erality of flows that can be treated. At the same time the resulting numeri-
cal procedure must be suitable for use in an overall procedure to incorporate
viscous effects, and for ultimate extension to steady three dimensional
flows. The retainment of the unsteady format here to treat steady flows
was motivated to be sure by our past experience, but more so by the firm
foundation on which the unsteady analogue rests, namely in the treatment of



shocks via the concept of weak solutions developed by Lax (Ref. U). A real
unsteady approach would, of course, also fill a dire need for a procedure to
treat supercritical unsteady flows.

Subsequent to the introduction of the above unsteady analogue there has been
phenomenal progress in the development of steady finite difference procedures
using relaxation techniques that has reduced the problem of large computer
times. The key to this progress was the introduction by Murman and Cole
(Ref. 5) of a finite difference scheme that was locally tailored to be com-
patible with the local domain of dependence, and the use of a line relaxation
in a direction natural to near-sonic flows. In their efforts the transonic
small perturbation equation of Guderley and Von Karman was used together with
planar boundary conditions. The basis of subsequent more exact procedures of
Lomax and Steger (Ref. 6) and Garabedian and Korn (Ref. 7) have been centered •
on the above innovations of Murman and Cole. (These procedures are reviewed
in Ref. 8). Despite the ostensible success of the above steady analogues, there
are some apparent shortcomings in the treatment of the shocks that are diffi-
cult to assess fully due to the absence of a guiding background comparable to
Lax's contributions for the hyperbolic unsteady case.

In Section 2 to follow we shall first as a review formulate the problem
starting with the exact unsteady non-isentropic case, followed by the
Guderley-Von Karman unsteady small disturbance case, and the small disturbance
and exact cases with fictitious time derivatives. The intent here, in order,
is to introduce the use of the concept of the weak solution by Lax to justify
heuristically the' use of the unsteady analogue to treat flows with shock
discontinuities, to review the consequences of the small disturbance limiting
process to clarify the compatibility of shock pressure drag with the isen-
tropic state of the flow, and finally to introduce the use of fictitious
time derivatives to advantage when the sole interest is in the steady flows.
In Section 3 factors in the formulation of the problem and in its numerical
analogue which affect computer costs, will be discussed briefly, while in
Section U some results using the simple equations and boundary conditions
will be described for the severe case of a highly blunt-nosed, aft-cambered
profile representative of the supercritical profiles now receiving extensive
attention. In Section 5 we shall next describe the procedure proposed to
meet the objectives listed earlier, and illustrate its use for a case with
a "peaky" supercritical airfoil. In the concluding remarks we shall review
and assess the treatment of the shock discontinuities by both the steady
and unsteady finite difference analogues, (in this connection the role of
Zierep's local ana'lysis about the "foot of the shock" will be related);
finally followed by a discussion stressing the need to incorporate the
viscous effects.



2. Formulation of the Airfoil Problem

We are concerned with flows over a general class of profiles at high subsonic
Mach number JV^ in which one or more embedded shock discontinuities may arise.
The flow thus is to be considered inviscid everywhere except at the shock
discontinuities where the flow particles are assumed to suffer an abrupt in-
crease in entropy as they pass through the' shock. The flow is assumed to
be non-heat conducting everywhere including the shock so that any heat ad-
ditions by dissipation within a fluid particle is confined to that particle;
that is, the flow will be everywhere adiabatic. The flow will be additionally
isentropic (and therefore irrotational) at all points except in the subdomain
downstream of the shock discontinuities, where the flow will be non-isentropic
and therefore rotational when the shock is of variable strength or curved in.
shape. Downstream of the shock the entropy will be constant along any given
streamline, but will in general differ from streamline to streamline.

Under these conditions the basic flow equations in cartesian coordinates are
given by

dW . BF 3G .— + — + — = 0
at dx By (1)

where the vectors ¥, F and G are given by

W =

P

pu

pv

Lp[-(u + v ) + e]

F=J

pu
2

pu

puv
1, 2 +
2vu

G=,

pv

puv

2
pv + p

12 2
~(u + v ) h]



When the equations are given in the divergenceless form of Eq. (l) , it is
said to be in conservation form. In the above the usual symbols have been
employed with the less familiar symbols h and e noting respectively the spe-
cific enthalpy and specific internal energy. For ideal diatomic gases the
specific enthalpy is defined and given by

h = e + E = — *- £ (2)
P Y - 1 P

while the specific internal energy e is given by

e = c T = — ~ E (3)
v Y - 1 P

Here c . is the specific heat at constant volume, y is "the ratio of specific
heats equal to i.k for air, and T is the absolute temperature. With the
value of h and e from Eqs. (2) and (3) inserted in (l), the resulting equations
form a fully determined set of four equations for the four unknowns p, p, u,
and v. A further useful thermodynamic relation, the caloric equation of
state, which is in fact implied in Eqs. (2) and (3) is given by

p = PRT = p(v - 1) exp

where R = c_. - c is the gas constant, S is the entropy, and S is a constant
*•, v °reference value.

Across the shock discontinuities we must additionally fulfill the shock jump
conditions representing the conservation of mass, momentum, and energy.
Thus in general for a moving shock with N the component of the shock velocity
normal to the shock, we have

P1(N1 - Ng) = p2(N2 - Ng) (mass)

Pl VN1 " V + Pl = P2 N2(N2 " V + P2 (momentum)

T = T (momentum) -_ . (5)

2 pi(3\ " V (\2 + Ti2) + pi(Ni " Ns) ei + \ pi

. = | P2(N2 - Ns) (N/ + T/) + p2(N2 - Ng) e2 +



Here N and T are respectively the velocity components normal and tangent to
the shock front, and the subscripts 1 and 2 denote conditions upstream and
downstream of the shock. (See Sketch A).

SHOCK

Sketch A. The Oblique Shock Nomenclature

In addition to the jump conditions (5) we must additionally impose the
condition

(6)

where the entropy S is defined in (U) .

The jump conditions (5) can be expressed in terms of the cartesian velocity
components by using the following correspondence:

W.
= sin i = 1, 2

— = cos (a - 9..)
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where
TT2 2 2w = u + v
i l l

vi
tan 9 = —

i u
i

and a is slope of the shock relative to the freestream direction. We note
here for future use the well -known result that the change of entropy S - S
across the shock is third order in terms of the shock strength defined,
for example, as the difference of the pressures p - p across the shock.
Finally we recall that for a steady adiabatic, but non-isentropic flow an
integral of the flow equations, the strong Bernoulli law, exists valid along
a streamline given by

2 2 2
where q = u + v , and q is the limit speed obtained by expanding the gas
isentropically to a vacuum. The value of the limit speed q will in this
case be constant along a given streamline but will vary from streamline to
streamline in accordance to the equation

12 _ _*
grad - q = T grad S + q x curl q

2 L

where q is the velocity vector. Further with the use of Eq. (2), Eq. (?)
can be rewritten as

We shall use this expression later to eliminate p for an isentropic case
where q is a constant.

L

Consider next the formulation of the boundary and initial conditions to
supplement the differential equations (l) for the singly connected domain
G as enclosed by the boundary C of Sketch B.

Here the outer boundary ABC is taken sufficiently. far from the airfoil that
the freestream conditions can be prescribed on this contour for all times.



Sketch B. Domain of the Problem

At the surface of the body y = y (x) for t ̂  0 we require the flow tangency
requirement

v(x," y ) •

15

(Note that y (x) must be a double valued function of x, th£ two branches
corresponding to the upper and lower surfaces.) At the airfoil trailing
edge we must fulfill the Kutta condition requiring the equality of pressures
at K and D for t > 0. For an unsteady case where the lift is changing with
time, the rear stagnation streamline will be a vortex sheet (contact surface),
so that for t > 0 we must fulfill the jump conditions that at corresponding
points along KA and DC the pressure and the flow direction must be equal.
As the steady state is reached, of course, the vortex sheet disappears; and
the flow becomes continuous across the rear stagnation streamline. At
corresponding points on either side of the shock, HI and IJ, one must fulfill
the shock jump conditions given earlier in Eqs. (5) and (6). Finally at a
given time t = t < 0 we must prescribe the initial values of the dependent
variables at all points of G. This initial flow need not fulfill any of the
above boundary conditions , and an uniform flow at the f reestream conditions
or an available neighboring flow is generally used.

The flow in domain G is entirely continuous, so that the flow equations may
be used in any appropriate form; in particular, they need not be used in
the conservation form given in Eq. (l). The difficulty of the above choice of



the domain G is that the location of the shocks is not known beforehand,
or if it is known at the initial time, a procedure must then be incorporated
to determine the shock locations at all later times, clearly a difficult
task. A procedure based upon this approach was in fact devised ingeneously
by Grossmann and Moretti (Ref. 9) who treated several simple cases. In the
present study, we shall circumvent the task of having to determine the in-
stantaneous shock locations by redefining the inner boundary of Sketch B such
that it lies adjacent to the airfoil surface and does not exclude the shocks.
The flow domain defined by such a boundary will now contain flow (shock)
discontinuities, and the dependent variables and their first partial deriva-
tives will no longer be continuous, but will be piecewise continuous. In
such a situation derivatives can no longer be defined at the shock discontinu-
ities making it impossible to check the fulfillment of the equations. To
circumvent this difficulty Lax (Ref. h) used a generalization of the concept
of a solution, the so-called weak solution, which we shall briefly review
in the next sub -section.

2.1 Weak Solutions. (See Courant-Hilbert, Ref. 10)

To handle solutions of first order quasi-linear hyperbolic equations which
are piecewise continuous, and possess piecewise continuous first derivatives,
the concept of the weak solution was introduced by Lax (Ref. k] . Thus con-
sider the simple case of Eq. (l) in two dimensions

W + F =0 (10)
"t x

Instead of requiring this equation to be fulfilled, a "weaker" requirement
on the "solution" is imposed given by the equation

f [ + F ) dx dt = 0 (11)x

where R are subdomains of G (the flow domain) , and £ are arbitrary "test
vectors" having a certain required smoothness and vanishing outside of R.
First for subdomains R not containing a shock discontinuity Eq. (ll) reduces
to (10) , and the usual solution, the genuine solution, is obtained. For
subdomains containing a shock Eq. (ll) will be rewritten as

f k [W + F ] dx dt = /7[(CW) + (GF) ] dx dt
V t X V * (12)

F£ ) dx dt = 0
X

R



The first integral on the right side may be reduced to a contour integral
using Green's formula with the result

dx dt = - Pdt] (13)
R

where s is the contour enclosing R. If we next use instead a contour equiva
lent to s shown in Sketch c, and the fact that £ = 0 along those segments
of the alternate contour not "wetting" the shock, we can rewrite (13) as

dx dt =
shock

M* - [F]
shock

at
ds

shock
ds

where ds is a line element along the shock, [w] = W-, - W and [F] = F - F
(subscripts 1 and 2 denoting conditions upstream and downstream of the shock),

*and —
ds

. dtand —
T, 1 dS

shock

are the direction cosines of the shock,
shock

Eq. (12) using Eg.

R

now becomes

dx dt - J C,
shock •U Tshock shock

ds = 0 (15)

SUBDOMA1N R

ORIGINAL CONTOUR FOR R: ABGHA

REVISED CONTOUR: ABCDEFGHA

Sketch C. Revised Contours for the Weak Solution
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We now define a weak solution W (or F) of (10) if it is piecewise continuous
with piecewise continuous first derivatives, and if it fulfills the equation

+ Fr ) dx dt = 0b (16)

for all admissible "test vectors" £ in all subdomains R within the flow
domain G. From (15) with (16) fulfilled, it follows that weak solutions
will fulfill the condition

/c
shock

- [F]
shock

dt
ds

shock
ds = 0 (17)

Since £ is an arbitrary "test vector", for Eq. (17) to be fulfilled we must
require

= ° (18)
shock shock

which is, without surprise, the unsteady one dimensional shock jump conditions.
Thus a weak solution as defined above will fulfill the correct jump conditions
across embedded shocks. The definition of weak solutions as given above can
be extended to higher space dimensions. (See Ref. 10). Weak solutions as de-
fined above have some surprising properties, and these are described by Lax in
Ref. h. Two of these are of particular relevance to us. The first is the fact
that the shock jump conditions will depend upon the specific conservation form
of the basic flow equations used as would be expected by inspection of Eq. (l8).
Thus it is essential that the basic flow equations be used only in the form
given in Eq. (l) for subdomains containing a shock. The second property is
that for an initial value problem, the initial data alone do not determine an
unique solution. A supplementary condition must be additionally imposed, but
the nature of the additional condition is known unfortunately only for a few
simple initial value problems. In a number of these simple cases with a
first order quasi-linear hyperbolic equation where the exact analytical
solution is known, it has been shown analytically using (l6) that an unique
weak solution was obtained as the limiting solution (viscosity-~0) of a cor-
responding viscous problem where an artificial viscous term was added to the
original equation. Further Lax has shown that for the same problem the same
weak solution was -essentially obtained as a limiting solution for small mesh
using an appropriate finite difference analogue. This is a fortunate result,
though not altogether surprising, since an artificial viscosity is also
implied in the first order diffusing difference scheme used by Lax.

11



For the hyperbolic combined initial-boundary value problem of higher dimension
of interest to us , we have no direct prior analysis to guide us as in the
simpler cases; we must extrapolate the conclusions from the simpler cases
studied by Lax and others, and indeed we must be grateful that such infor-
mation is available, since it does offer a reasonably sound point of departure.
Thus we may conclude that a reasonable procedure for the airfoil problem is to
pose it as a hyperbolic initial-boundary value problem using the equations in
an appropriate conservation form and then solving it by an appropriate finite
difference analogue. In such a procedure the correct shock jump conditions
can be expected to be fulfilled across the embedded shocks. It is essential
here that in subdomains containing a shock discontinuity, the proper con-
servation form of the equations be used. Lax (Ref. 4) and Ref. 11 have
shown that for the one dimensional unsteady shock wave problems when the
equations are used in the non-conservation form, either the wrong shock speed
results when the shock is moving, or the required jump conditions are not
fulfilled when the 'shock is stationary. In passing one should finally note
that a comparable background and point of departure does not exist in the
steady finite difference analogues.

2.2 Guderley-Von Karman Formulation of the Problem (See Guderley, Ref. 12)

We need not dwell at length on the transonic small disturbance theory except
to recall that it is the result of a very definite limiting process r-*0
carried out in the basic equations (l) using the transformation (hypothesis)

u(x,y,t)

v(x,y,t)

P(x,y,t)

p(x,y,t)

where

X
§ ~ 5

= a*[l

= a* T"

- p*[l

= p*[l

Tl =

+ T l

3/2 ^

i ~-'V

Tv*

~
v(§,Tl,t')

(19)

~ > t = tut .
o

For a limit of to representing reduced frequencies of order unity, the result
ing limiting equations (lowest order in T) are found to be

uL = -(y + 1) u u + v ; 0 = u - v • (20)
T " S ' I M S

12



Applying (19) to the airfoil boundary condition, one obtains the standard
planar condition v(| ±0) = h~(s) where h"(§) are the slopes on the upper and
lower sides of the profile for the stretched coordinates. There is much
implied in Eq. (19) 5 and in particular the various powers of T have of course
been selected here, so that the resulting lowest order equations and the
coordinate stretching would be physically viable. The parameter T (propor-
tional to the airfoil thickness ratio to the two-thirds power) is a measure
of the proximity of the flow velocities to the sonic speed, so that the limit-
ing process r—O implies values of MM close to one and thin airfoils at small
incidences. It is particularly interesting that in this limit the flow is
irrotational and hence isentropic. This should not be surprising since the

pressure coefficient C = "^ is first order in Tj while the entropyp q*
•5

change across the shock is third order in the shock strength, or O(T ).

The order of magnitude assessment of the various terms in the flow equations
solely in terms of powers of T can be misleading since the actual magnitude
of a term in fact depends additionally on the algebraic magnitude of 'the
term itself. Thus in an unfavorable situation it may require such a small
value of T for the above small disturbance theory to be valid, that the
resulting flow would be of no practical value.

Lastly, it should be noted that the unsteady Guderley-Von Karman equations
as given in Eq. (20) are of mixed parabolic-hyperbolic type, so that Lax's
concept of weak solutions does not apply directly to these equations. If
we are interested only in the steady state, fictitious fully hyperbolic
equations can be obtained by introducing appropriate unphysical time deriva-
tives, and we shall examine this in the next sub-section.

2.3 Fictitious Unsteady Equations to Treat Steady Flows

In preparation for Sections U-5 in the present sub-section we shall simply
note several sets of equations all under isentropic conditions, having
fictitious time derivatives which result in fully hyperbolic systems when
added to either the Guderley-Von Karman or the exact steady terms.. Thus for
the small disturbance case we have

O

ttv. = - (Y + 1) d u ) + (7) ; vr = u - 7 ; (21)
" ^ s M v 'I ?•

13



or with the exact steady terms (in non-conservation form;

2 2
u = (a - u ) u - 2uv
t x

v = u - v
t y x

where the speed of sound is given by

a2 = i(Y + 1) a*
2 - i(Y - 1)

2 2
+ (a - v ) v

v2)

Eq. (22a) can be also rewritten in a conservation form

u. = (pu) + (pv) _
x

v = - v + u
t x y

(22b)

where p = p(u, v) from the isentropic relation.

It is to be noted that these equations are not in the proper conservation form

that yields the correct shock jump conditions, and its use should be restricted

to subdomains where the flow is continuous.

Lastly we note for subsequent use the exact unsteady Euler equations in the

proper conservation form obtained from the Eqs. (l) for the isentropic case,

that is,

at

P
pu

pv

a
+ dx 4

pu

2
pu + p

puv

£

+ dy •

pv

puv
2

pv + p

where

E_ _

= 0

/ - 1 £_ , 2
iq

2Y P* L

(23)

Shock jump conditions for the asymptotic steady state for the above hyperbolic
equations can be obtained using Eq. (l8) extended to the unsteady planar flow
case. Thus for the small disturbance equations we obtain the jump conditions



- [5] =o
shock

dx
+ [u] = 0

shock

Here again the brackets [ ] denote a jump of the bracketed quantity across the
shock. Thus for a normal shock adjacent to the airfoil surface, where [v] = 0
in accordance to the planar airfoil condition, we have [u! "J = ul - u = 0,
or u" = - u > since ̂  ^ u .

Such a condition conforms to the transonic shock polar only if 'v ~ 0, that is
for shock waves essentially normal to the free stream. In the planar case if
the basic small disturbance restrictions are not violated, shock waves that
depart from a normality with the free stream cannot arise, so that the shock
captured by the small disturbance weak solution will automatically conform to
the consistent shock polar. The same situation would prevail also for the
three dimensional case described by the usual small disturbance equations,
where again shock jump conditions implied by the weak solution will not conform
to the appropriate shock polar if the shocks are not essentially normal to the
unperturbed basic flow direction. Thus if an excessive wing sweep causes an
excessively swept shock (sweep of 25° is excessive), then the small disturbance
jump conditions would not be fulfilled for such shocks. (Excessive sweep effects
have of course never been permitted by the small disturbance hypothesis.)

Lastly we note that the shock jump conditions for the exact equations (23) in
the asymptotic steady state are given by

pu
2

pu + p

puv
dx

shock

pv

puv

2
pv + p

= 0

which after some algebraic manipulations can be shown to agree with the
Rankine-Hugoniot conditions given earlier in Eq. (5) with the shock speed
set equal to zero.

2.k The Paradox of Isentropic Transonic Wave Drag

It is universally accepted that the onset of transonic wave drag over airfoils
in an inviscid flow for M^ < 1 is the consequence of streamwise momentum loss
in the far field due to entropy additions by shock waves. The question then

15



naturally arises as to how a drag can arise if an isentropic flow is assumed.
To answer this let us consider the determination of the drag by the vanishing
of the flux of the total streamwise momentum (including the pressure term)
through the control surface of Sketch B. Consider the case that the flow is
calculated with the exact non-isentropic equations with the shocks treated either
as discontinuities fulfilling the Rankine-Hugoniot jump conditions, or evolved
by the continuous shock-capturing weak solution to the appropriate conservation
equations. Vanishing of the streamwise momentum flux through the contour C
(Sketch B) then yields the equivalence of the airfoil drag with the deficiency
of the streamwise momentum flux through the far downstream portion of the con-
tour, since the momentum is conserved across the shock. Since this far field
momentum deficiency can be directly attributed to the increase in entropy, in
the exact non-isentropic case the drag is indeed the consequence of the shock
entropy additions. If we now calculate the flow in the same manner but using
instead the exact isentropic equations and evaluate the total momentum along
the control surface, we find that the momentum flux deficiency along the far
downstream boundary vanishes identically, and the drag is now equal to the
change of the streamwise momentum flux across the shock wave. If the equations
are used in the proper conservation, form, about the shock, (as is done in the
present report), then the momentum is conserved across the shock,- and the drag
must then be identically zero. Care must be therefore exercised in the choice
of the proper form of the conservation equations, since if the equations are
used in the improper conservation form or in the non-conservation form such
that the conservation of momentum is not preserved across the shock, then an
erroneous pressure drag would result precisely equal to the erroneous decre-
ment in the momentum conservation across the shock. In a numerical calcula-
tion truncation errors seldom permit the drag to vanish exactly; the finite-
ness of the drag would then be a measure of the accuracy of the calculations.
If, however, the Von Karman-Guderley transonic small perturbation equations
are used, again in such a way that the shock jump conditions in a consistently
simplified form are fulfilled, one finds that an exact integration of the
streamwise component of the surface pressures will not integrate to a zero
drag. This apparent paradox results since the conservation of momentum across
the shock is fulfilled only to within the small disturbance approximation,
and the drag that is obtained would just match the decrement in momentum
conservation due to the inadequacy of the simplified theory. (Provided of
course the nose region is calculated properly, which is seldom accomplished.)
Thus in a properly formulated isentropic theory the consideration of drag, in
particular, drag divergence, is beyond the scope of the theory, while on the
other hand, the determination of the pressure distribution, and hence lift
and moment, is well within the prediction scope of the isentropic theory so
long as the resulting shock strengths are no stronger than those experienced
in experiments.
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The above remarks apply of course only for ly^ < 1. For 1^ = 1 and M^ > 1
shock pressure drag can arise in an isentropic flow by the loss of streamwise
momentum by radiation through "supersonic windows" that open up in the lateral
far field.

3- FACTORS AFFECTING COMPUTER COSTS

Consideration of the computer costs in a finite difference analogue must
already commence with the manner of formulation of the initial-boundary value
problem on which the analogue is based. The equations should of course be
used in the simplest form possible, both in terms of the complexity of the
terms and their numbers as well as in the number of equations itself, weighed
of course with the desired range of applicability of the resulting equations.
Thus the simplest meaningful set of equations in the unsteady approach is •
the Guderley-Von Karman equations with fictitious time derivatives, Eqs. (2l).
These equations are in the proper conservation form conforming to the defi-
nition of Lax's weak solution. Here the assumption of small disturbances will
impose limits on the class of profiles that can be treated. In the steady
case with the small disturbance equations' one has the choice of either having
two first order equations in iT and v', or one second order equation in the
perturbation potential. Here the reduction of the number of equations must
be weighed against the increase in the order of the equation, as well as the
increased accuracy with which the potential must be determined to obtain a
given accuracy in its derivatives which are the physically meaningful
quantities. Having to deal with one quantity, the potential, instead of the
two velocities will, on the other hand, reduce the computer storage require-
ments. Simplest equations frequently arise when they are expressed in
cartesian coordinates. Since the latter coordinate system invariably leads
to a near-intolerable incompatibility with the boundaries on which conditions
are prescribed, some compromise here must be sought, though generally the
simplicity of the equations must be sacrificed at least locally.

Consider next the boundary conditions, in particular that at the airfoil
surface which is probably the most crucial. With respect to the condition
itself, it is invariably most preferable to prescribe an explicit non-homo-
geneous condition in terms of only one of the dependent variables; that is,
it is more preferable to have a condition such as v = h~(x) at the airfoil
surface, than v = h~u, where h is a known function. The "tieing down"
of the value of one of the unknowns at the boundary here should in a numerical
procedure which is marginally stable lead to greater stability than if the
homogeneous condition were used. Where only the more.exact homogeneous
airfoil condition, suffices, it will be more effective to set initially
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u = u» (freestream value) to obtain initially an explicit non-homogeneous
condition of the type v = h"(x), and then upgrade u by an iterative procedure,
in imposing the condition it is most convenient to be able to impose it,
not on the exact boundary, but on a neighboring boundary which is more com-
patible with the coordinate system, as in the case of the classical planar
conditions. Where such planar conditions are inadequate, as we shall soon
see is the case in the nose region of a blunt-nosed body, it may be sufficient
to fulfill the exact conditions on a simplified neighboring non-planar boundary
conforming exactly to the airfoil only where it is necessary. We shall
illustrate one example of this in a later section. Another example where
such a simplification might be used is in the procedures where the airfoil
is mapped onto a circle. Here a simpler mapping might be considered, where
only the nose region for example is mapped exactly onto the circle while the
remainder of the profile .is mapped to the neighborhood of the circle. The
exact boundary condition would, of course, be prescribed on the circle in a
"quasi-planar" way.

Let us turn next to the finite difference analogue for the unsteady case
assuming here that we start with the simplest formulation of the problem
suitably compromised to be consistent with our requirements. There are three
factors that now determine the overall computer time. The first factor con-
cerns the amount of calculation required for an elemental step where the
solution at a given point is advanced to the next time step. Here an im-
portant consideration is the choice of the difference scheme. There are of
course a multitude of difference schemes which have been suggested, but it
will suffice here to discuss explicit schemes only, and among these only
Lax's first order diffusing scheme (Ref. U), and the two step Lax-Wendroff
second order scheme'described by Richtmyer (Ref. 13). There have been
suggested other more elaborate schemes of second order accuracy which appear
to be more effective under special conditions, but in general the added
complexity beyond the straight-forward Lax-Wendroff scheme does not appear
to be warranted. Quite obviously the second order Lax-Wendroff scheme for a
given mesh spacing will yield a smaller truncation error in the marching
process, and. hence a more exact solution than a first order scheme, but of
course at the expense of requiring more arithmetic steps. In the problem
in the (x, y, t) system, in the second order scheme five first order schemes
are in fact required. The mesh size required in the x, y, or t directions to
obtain a given accuracy depends on the gradient of the dependent variables
which arise in. these directions. Assume that in a given case that the required
mesh dimensions Ax and Ay are equal. The largest step At that is permitted
for linear stability is dictated by the Courant, Friedrichs, and Lewy con-
dition in the form, At < const. Ax, a statement requiring the point at the
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new time to fall within the region of influence of the initial data. Thus
in a hypothetical case assume that with the first order scheme half the mesh
size Ax used for the second order scheme is required to o"btain the same
accuracy. This then means that 2^ elemental calculations must be carried out
with the first order difference scheme in contrast to one elemental step
involving five first order differences for the second order scheme, a reduction
of computer time by a factor 5/8 for the latter scheme. Unfortunately in a
given unsteady planar flow problem the situation is not so clear cut, with
the precise merits of the first and second order schemes for a sufficiently small
spacial mesh being determined largely by the time rate of change of the develop-
ing flow. Quite clearly if the flow is only changing slowly with time, the
first order scheme may be entirely adequate, while on the other hand the first
order scheme will be entirely inadequate when the flow has experienced a large
unsteadiness prior to its approach to the steady state. In the latter situa-
tion the first order scheme is quite adequate to handle the slowly changing
approach to the steady state, but it has suffered a large truncation error
during the unsteady phase from which it can never recover, resulting in an
erroneous steady asymptotic flow. The latter behavior has been found in
several calculated examples involving a blunt-nosed supercritical profile.
In fact for these test cases the first order scheme was found to be entirely
inadequate, and only the use of the second order scheme led to viable results.
Quite obviously an attractive procedure suggested here is the use of the
second order scheme to treat the more unsteady phase of the time history,
and then switch to the first order scheme in the slow approach phase to- the
steady state.

In passing it may be noted that the use of the two step second order Lax-
Wendroff difference scheme in the unsteady planar equations in conservation
form leads to a "telescoping" feature leading to the automatic fulfillment of
the integrated conservation laws. (See Richtmyer, Ref. 13).

The second factor influencing the computer time is the total number of mesh
points which are required ultimately in the x, y plane to describe the final
steady flow. The mesh spacing here is simply dictated by the flow gradients.
Quite obviously economy would suggest the use of a variable mesh spacing to
fit the final velocity gradients, but this cannot be overdone since a waste-
ful overlap of the different sub-domains with a given mesh must be provided
to assure continuity of the flow. In the early efforts it was thought that
the initial phases of the developing flow could be treated by a coarse
spacial mesh to establish the intermediate and far field flows rapidly, and
only after this introduce a refinement of the mesh about the airfoil to
recover a viable near field flow. This simply did not work out, at least for
blunt nosed supercritical profiles, since the strength of the "singularities"
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to be communicated to the intermediate and far fields were never adequately
developed in the near field, due to the coarse mesh, in particular, the
contribution of the nose flow. Another means to decrease the number of mesh
points is simply to redefine the dependent variables such that the sought
quantities at the new time are differences from the initial values. Such
differences will have significantly decreased gradients, especially in the
long duration approach to the steady state, so that the spacial mesh size
can be accordingly increased. Since as we have seen earlier, the computing
time varies inversely as the cube of the mesh dimension, such a simple
change of dependent variable should have a dramatic impact especially in the
vicinity of a highly blunt nose where generally an early attainment of steady
conditions results and where a disproportionate number of mesh points is
required. In this change of variables, most probably a linearization can be
justified except perhaps about the shock if the shock location is changing.
In a version suggested in Ref. Ik to be .studied shortly, the non-linearity
was retained. Here it is important to reexamine the impact on the shock
jump conditions.

Finally the third factor affecting computer costs is the rapidity with which
the desired steady state is obtained. The last procedure described above
will clearly have a bearing here also. Another important facet here is the
choice of the initial data itself. Quite clearly the proximity of the initial
flow to the final flow is of significance, but the route between the two is
not always direct as was found in several calculated examples, where a slowly
oscillating apparently near-undamped shock sequence was obtained. The simple
cure here is simply not to prescribe an initial flow which is susceptible to
this phenomenon (though we do not of course have a clear cut criterion 'for
this) by using "adjusted" initial data which places the shock somewhat up-
stream of the expected location to provide a fast adjustment path for the flow
to adjust to the desired state.

In summary the path' suggested to reduce computer time without sacrifice of
the accuracy of the solution is to tailor not only the formulation of the
problem but also its analogue, both in space and time, to be "just adequate."
Thus in regions not containing a shock the equations in the simpler non-
conservation form is suggested, while about the shock the appropriate con-
servation forms must be used. At a blunt nose the exact boundary condition
should be applied at the exact surface while elsewhere the condition may be
fulfilled in a quasi-planar way on a simpler boundary in the neighborhood of
the airfoil surface. In the analogue a variable spacial mesh spacing to-fit
the anticipated flow gradients should be used; the two step second order Lax-
Wendroff difference scheme must be used during the initial unsteady phase
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converting to a first order scheme with a change of the dependent variables
without a linearization in the final time consuming approach to the steady
state. Quite obviously the extent to which the above philosophy should be
implemented must be weighed against the increased program logic and storage
required as well as by the wasteful overlap and added complications to avoid
a mismatch at boundaries where the procedures are patched.

In the next section we shall first examine whether the Guderley-Von Karman
equations with fictitious time derivatives and with planar boundary con-
ditions are adequate to treat blunted nosed supercritical profiles. This is
then followed by a more exact formulation incorporating some of the suggestions
given above.

h. INVESTIGATION OF THE SIMPLIFIED PROBLEM

In the present section we shall first describe the finite difference results
using the Guderley-Von Karman small disturbance equations as given in Eq. (21)
with a planar boundary condition at the airfoil. The test case will be the
flow at M^ = 0.80 over the supercritical profile of 11$ thickness ratio at
a = 0 calculated earlier in Eef. 3 with the exact conservation equations (23).
This case was selected because

a. It is fairly representative of the current problems on which one
might want to employ the numerical analysis.

b. The moderately large thickness (11$), heavy cambering, considerable
nose blunting (2.2$) and fairly high local Mach numbers would provide
severe tests of the ability of the simplified equations and boundary
conditions to describe adequately the flow.

c. A solution obtained by the numerical method described in Ref. 3 was
available for comparison.

In the calculations a modification of Richtmyer's two step version of the
second order Lax-Wendroff difference scheme has been used with an inclusion
of some diffusive damping. (See Ref. 2). As is well known this explicit
difference scheme is stable only if the marching increment At is kept below
some limiting value dependent on local conditions. For simplicity the allow-
able At has been determined for a representative range of u and v to be en-
countered in typical airfoil problems. The complex amplification of small
disturbances of various wave lengths and orientations was determined as a
function of the marching increment, At, and limiting values which would keep
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the absolute value of the amplification below unity were chosen. These
limits were then examined as "functions of u and v, and an overall limit,
At < 0.15 Ax was chosen. This limit is highly conservative around the stag-
nation point and is closest to the actual stability limit for sonic flow at
an inclination near 30° to the x direction.

The preceding remarks on stability and damping apply to the centered differ-
ence schemes used at ordinary field points. At the airfoil surface (or,
rather, the chordline slit) where boundary conditions are to be imposed,
compatible non-centered difference schemes were devised. That is to say,
special schemes were constructed to have the same nominal order of accuracy
as the ordinary schemes. These were also screened by checking amplification
of small disturbances of various wave lengths and orientation. . This screening
was considered necessary but insufficient to prove stability inasmuch as the
presence of the boundary can shift disturbance energy into disturbances of
different wave length and orientation; this would be incompatible with the
fundamental assumptions in the linearized stability analysis which is being
employed. The boundary 'schemes are of the Lax-Wendroff one-step class with
special matrices for the stabilization terms. The orientation of the boundary
with respect to the mesh influences the magnitudes of the elements of the
stabilization matrices.

In the calculations a cartesian mesh system was employed about the airfoil
overlapping with a polar mesh system in the far field. Approximately 3500
mesh points were typically used distributed as shown in Table 1. Here the
airfoil chord is of unit length with the nose located at the origin.

In the present problem the flow about the leading edge is singular. To avoid
this region in the calculation, a similarity solution for a parabolic nose at
zero incidence is used in a 0.0125 chord square domain centered about the
slit terminus. This similarity solution is defined in terms of the perturba-
tion potential by the hypothesis

where

£ = (Y + 1) ~
1/3 I | f) I , and

') F" + 30£F' - 12F = 0 .
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Table 1. Typical Mesh Arrangement

Region Ax = Ay Range

Inner Nose Region . 0.00625 -.075 < x < .075
-.10 < y < .10

Outer Nose Region 0.0125 -.15 < x < .15
-.20 < y < .20

Airfoil Region 0.05 -.1*0 < y < .60

Fine Outer Region 0.10 -.70 < x < 1.70
-.80 < y < 1.20

Coarse Outer Region 0.20 -1.10 < x < 2.10

Outer Polar Region Ar > 0.2 l.U < r < oo

A9 =9° -9° < 8 < 360°

In Fig. 1 we now show the resulting surface pressure distribution in terms

of the pressure coefficient C given in accordance to small disturbancep
theory as

= - 2u .

Here for comparison is shown the results from the more exact calculations

.from Ref. 3. The comparison shows a drastic discrepancy in the nose region,

both on the upper and lower surfaces, with the simplified solution exhibiting

a horrendous nose over-expansion. There is further a discrepancy in the shock

location and 'in the over pressures on the lower aft surface. In the plateau

region, on both the upper and lower surfaces, there is good agreement. It

is thus amply clear that the small disturbance simplifications are inadequate
at least for the test example.

The cause of the above discrepancies can be attributed to the combination of

the inadequate equations, and an inadequate airfoil boundary condition imposed
at an inappropriate boundary. To separate these effects we have next calcula-

ted for the same test flow the following four additional cases characterizing

each case in the following by noting the equations and the airfoil boundary

condition used.
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Figure 1. Results of the Guderley-Von Karman
Small Distribution Problem
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I. Equations: Exact non-conservation form - Eq. (22).
B.C.: Planar condition.

II. Equations: Small disturbance.
B.C.: Exact condition [v = (l + u) tan 9] fulfilled on a

slab described earlier in a first order planar fashion.

III. Equations: Exact in non-conservation form.
B.C.: Exact (Same as II).

IV. Equations: Exact in non-conservation form.
B.C.: Exact condition fulfilled on slab in second order.

For the cases where the airfoil condition is fulfilled on the slab, the mesh
configuration is shown in Figure 2 and detailed in Table 2. The resulting
surface pressure distribution for these cases are shown in Figs. 3~6. Con-
sider first Fig. 3 (Case I) with the exact equations with planar conditions.
It is seen here that the nose overexpansions have been somewhat subdued on
the upper surface by the more exact equations, but have been "over-subdued"
on the lower surface to the extent that the plateau pressures have been
additionally distorted. Planar conditions are clearly inadequate in the nose
region. The previous discrepancy in the overpressures on the lower aft surface
has been remedied by the more exact equations, so that planar conditions
appear to be adequate except for the nose region. The shock wave is still
inadequately treated, but this is most probably the consequence of not using
the equations in conservation form.

The results of Fig'. U (Case II) with the approximate equations and the exact
boundary condition illustrate the importance of having the proper condition
at the nose. The discrepancy due to the inadequate equations at the nose
now appear to be reduced to the order of that along the aft portions of the
airfoil. Fig. 5 (Case III) shows that the use of the exact equations in non-
conservation form and the exact slab boundary conditions gives reasonable
agreement with the reference calculations except at the nose where a slightly
increased loading arises, and at the shock. In Case IV an improvement of
Case III is sought by simulating the fulfillment of the boundary condition
at the actual airfoil surface by imposing a modified condition on the slab
(second order planar condition) which assumes the velocities u and v to vary
linearly from the actual airfoil surface to the slab. The results for Case IV
in Fig. 6 show some improvement due to the improved boundary condition, but
there still remains a small discrepancy on the lower surface.
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Table 2. Mesh Arrangement, Blunted Slab Approximations

Region Range

Cartesian 1 AX = Ay = 0.2 -1.1 < x < 2.1
-1.525 < y < 1-675

Cartesian 2 AX = AY = 0.1 -0.7 < x < 1.7
-0.725 < y < 0.875

Cartesian 3 Ax = Ay = 0.05 -O.h < x < l.U
-O.U25 < y < 0.575

Cartesian 1| Ax = Ay = 0.025 -0.15 < x < 0.2
-0.175 < y < 0.175

Cartesian 5 AX = Ay = 0.0125 -0.1 < x < 0.15
-0.125 < y < 0.125

Cartesian 6 AX = AY = 0.00625 -0.05 < x < 0.1125
-0.075 < y < 0.075

Curvilinear Nose A& = ̂ -5° 90° < 9 < 270°
0.00̂ 0 < Ar 0.025 < r < 0.0625

Outer Polar A r > 0 . 2 l.k < r < »o o ~ , oAe = 9 -9 < e < 360
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Figure 6. Results for Case IV - Exact Equations
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Thus in summary we note the following:

b. The exact condition must be prescribed at the actual airfoil surface
in the nose region, while it may be prescribed in a quasi-planar
manner over the remainder of the profile. The slab condition should
thus be adequate.

b. The exact equations must be used, and they probably must be used in
conservation form about the shock. (We shall check the latter in
the next section. )

It must be remembered that these conclusions pertain to the more "severe"
profiles and flow conditions, and that the Guderley-Von Karman formulation
of the problem is most certainly adequate for a wide class of other less
severe airfoils and flow conditions.

5- PROCEDURE .WITH THE PROPER EMBEDDED CONSERVATION EQUATIONS

In the unsteady procedure for further consideration, the equations with the
exact steady terms in u and v with fictitious time derivatives as given in
Eq. (22) will be used in the continuous regions of the flow; and the exact
unsteady Euler equations in p, u, and v in the proper conservation form as
given in Eq. (23) will be used in the subdomain embedding the shock. There
is then an incompatibility of the time derivatives which would vanish as the
steady state is attained. The exact boundary condition, as previously, will
be fulfilled on the slab. In the subdomain embedding the shock a fine mesh
of 1.25% chord will be employed.

With the above system of equations several examples have been calculated.
Two of the examples were calculated earlier with the original unsteady pro-
cedure of Refs. 2 and 35 and. they will serve as check cases for the revised
procedure. Additionally in the present calculations reduced diffusive damping
will be employed to capture the shocks more exactly.

The first example calculated is the 11$ aft-cambered profile at M =0.8 and
CO

a = 0 which was computed earlier in Ref. 3 (see also Ref. 8). The resulting
surface pressure distribution is compared with the earlier result in Fig. 7-
Here the agreement is reasonably good over most of the airfoil, but there
still remains the discrepancy in the nose pressures observed earlier, and the
shock has now been displaced essentially to the trailing edge, where an in-
sufficient flow resolution with the mesh used precludes its proper capture.
The obvious suspect causing these discrepancies is the application of the
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airfoil boundary and Kutta conditions on the slab rather than on the actual
airfoil. To check first the extent that the streamline slopes 9 differ at
corresponding points on the slab and the airfoil, we have shown in Sketch D
the lines of constant 9 (isoclines) from the earlier calculation about the aft
portion of the profile where the largest differences can be expected. It is
of interest here to note first the differences of the isocline patterns in the
different subdomains, but only in the subsonic region aft of the shock are the
isoclines such that a significant difference arises in the 9 distributions
along the slab and the airfoil surface. In the present calculations we have
prescribed the actual airfoil slopes along the slab, whereas Sketch D would
indicate that less inclined slopes should have been prescribed. The present
results with the slab would thus represent the flow for a profile with a some-
what greater aft camber than desired, and this difference could readily explain.
the -greater expansion at the nose and the more downstream location of the shock.
To verify this we have repeated the calculations using a more exact planar
condition applied on the slab which takes into account the variation of 9
between the slab and the airfoil. The second order planar condition used
assumes a linear variation of 9 with y in this neighborhood where the gradients
9 are taken as the- values obtained in the calculation at the slab. The re-
sulting pressure distribution is shown in Fig. 7. The shock here has now been
displaced upstream of the trailing edge and has been properly captured, but
there now arises a small discrepancy in the plateau pressures on both the upper
and lower surfaces indicative of insufficient aft camber. The probable cause
of this deficient aft camber effect is the inadequacy of applying the Kutta
condition on the slab. Examination of the earlier more exact results, where
the boundary and Kutta conditions were imposed on the airfoil, shows that the
pressures at the points on the slab corresponding to the trailing edge are not
equal, but in fact a small difference arises characteristic of a case with a
jet flap. Thus to regain the proper plateau pressures one must now permit a
small jump in the trailing edge pressures on the slab, where the jump can be
ascertained in the same manner as the slopes 9 were previously corrected.
In the calculations where the first order planar slab conditions were used, as
noted earlier the plateau pressures agreed closely with the earlier exact case,
but in light of the above discussion this close agreement is somewhat fortuitous
since the effects of the deficient first order planar condition apparently were
just compensated for by the missing jet flap effect. Thus for extreme profiles
as the present one, it is essential to apply on the slab the second order
corrections to the slopes, while less important, a correction should also be
considered for the trailing edge pressures.

The second example calculated is that for the NACA 6kA UlO profile at M^ = 0.?2
and a = U°. The results of the present calculation are compared in Fig. 8
with a number of previously calculated pressure distributions from several
methods as well as with the experimental results of Stivers. Directly com-
parable here are the present results, the result from Ref. 2, and the results
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Sketch D. Isoclines for the 11$ Supercritical Profile (Ref. 3).
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of Steger and Lomax (Ref. 6). Consider first the comparison of the results
from the unsteady procedures. The agreement of the pressure distributions
over the lower surface is good, but there is a puzzling not insignificant
discrepancy in the upper surface pressures ahead of the shock, most probably
attributable to a discrepancy in the nose expansions. To check whether the
use of the slab might account for a difference in the nose expansion, the
fulfillment of the surface tangency condition at the actual airfoil nose
was checked in the present results. In this highly inclined segment of the
airfoil the resulting slopes at the actual airfoil surface were found to
agree with the actual slopes to within less than a tenth of a degree, so
that the use of the slab most probably must be ruled out as the source of
the upper surface discrepancy. A comparison of the isobar distributions in
the region about the nose however showed a significant difference. Whereas
in the present calculation, where a more natural polar mesh system is used,
the isobar pattern is smooth and near circular in shape, the isobars in the
earlier calculation with a cartesian mesh system exhibited some irregularities
(see Fig. 5? Ref. 2), and they were less reasonably shaped in general. One
must therefore tentatively conclude that the difference of the mesh con-
figurations about the nose and the patching of the various regions of different
mesh sizes most probably were the causes of the difference in the nose ex-
pansions. The results of the present calculations, despite the fact that
they now depart from Stiver's experimental results on the upper surface
should supersede the earlier results. (Note that the early experimental
results of Stivers, obtained in a closed tunnel at a low Reynolds number
without a boundary layer trip, may be afflicted with wall interference effects
as well as more importantly, viscous effects which may cause the lowering
of the upper surface suctions ahead of the shock through a highly probable
leading edge separation bubble). The use of the first order planar slab
condition here will of course affect the upper surface pressure plateau,
but the consequence should be relatively insignificant since the gradients
of the streamline slopes are negligible about the aft portion of the upper
surface. The present result further exhibits the proper jump condition,
and there is sufficient resolution to yield a post-shock cusped pressure
bucket. The improvement in the fulfillment of the jump conditions is also
shown in Fig. 15. The present results for the NACA 6UA UlO profile is also
directly comparable with the results of Steger and Lomax shown in Fig. 8
where also the full steady Euler equations were used. The discrepancy between
these results on both the upper and lower surface apart from the shock loca-
tion and pressure rise, appears to be due to a difference in circulation
brought about by the difference in the manner of imposing the Kutta condition.

The third example is also for the flow over the NACA 6UA-U10 profile but at
MOO = 0.735 and a = 1°. In Fig. 9 we show the resulting surface pressure dis-
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tribution where a comparison is also made with the results obtained by
Jameson (Ref. 2k) who used a steady relaxation procedure similar to that
of Korn and Garabedian. The major discrepancy here in the two results is
in the fulfillment of the shock jump condition and in the pressures just
downstream of the shock. The desired condition downstream of the shock is
indicated here by the dashed horizontal line, and it is seen that despite
the. fine mesh used, the result of Jameson does not capture the shock correct-
ly. We shall discuss the treatment of shocks by the various steady relaxation
procedures further' in the next section.

The fourth example is an aft cambered profile of 3-9$ thickness ratio, at
IV^ = 0.90 and a = 0. The resulting surface pressure distribution is shown
in Fig. 10. Here only the first order planar slab condition was used, so
that, as in the first example, when a second order planar condition is em-
ployed, one can expect a somewhat further upstream displacement of the shock.

The shock capturing ability of the present procedure is further examined for
an aft-cambered airfoil (Airfoil A) previously calculated and tested at high
Reynolds number (30 x 10/15 inch chord) at NAE (Ottawa) (See Ref. 15).

The earlier comparison of the experimental and calculated result at M^ = 0.85
showed a remarkable agreement in the pressure distributions (see Fig. 11)
everywhere except for the pressure along the aft portion of the lower surface,
the location of the shock wave, and the pressures downstream of the shock,
which understandably are the expected departures due to viscous effects. In
the above comparison the angle of attack in the calculations was simply
adjusted until the plateau pressures on both the upper and lower surface
matched. Such a procedure could then be used to obtain an indication of
the incidence correction due to wall effects for a highly porous perforated
tunnel, if the viscous effects on the airfoil were negligible. Viscous
effects, however, are not negligible for the aft-cambered peaky Airfoil A
even at the high Reynolds numbers of 30 x 10°/chord. Leading edge separation
and the change of the effective aft camber due to the not insignificant
boundary layer displacement effects on the aft portions of both the upper
and lower surfaces will significantly alter the plateau pressure levels. It
is somewhat fortuitous that a simple angle of attack correction under such
a circumstance enabled one to obtain the agreement shown in Fig. 10. With
the present updated unsteady procedure a further calculation was carried out
as the fifth example in which a preliminary attempt was made to determine
how the upper aft portion of the airfoil (the viscous ramp of Ref. 20) must
be modified to move the shock to the experimentally observed location and
to obtain the empirically measured pressures aft of the shock. The procedure
was modified such that the experimentally measured pressures aft of the shock
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on the upper surface could be prescribed, replacing the prescription of the
airfoil shape. The results of the calculations would then yield the surface
pressures where the shape was prescribed and the effective shape of the air-
foil where the pressures were prescribed. Such a result could then be used
to obtain the upper surface boundary layer displacement. In the initial
calculation the angle of attack was taken at l.U° of the earlier calculations,
but it was found that the alteration of the upper aft surface by the viscous
ramp decreased the effective aft camber, lowering both the level of the
under-pressures on the upper surface and the overpressures on the lower
surface. The angle of attack was then simply increased to recover a match
of the upper surface pressures. In Fig. 12 we show the resulting pressure
distributions and the shape of the viscous ramp in terms of the slope dis-
tribution. The plus symbols on the aft upper surface denote the prescribed
pressures. For this case the resulting shock at the surface represents a
strong oblique shock where the downstream Mach number is subsonic. If we
take the initial increment 5-1° as the wedge angle of the viscous ramp, then
this is to be compared to 6.2° which would be required by the jump conditions
to produce the shock pressure rise of the calculations for the calculated
upstream Mach number of 1.28. This fair agreement is indeed encouraging
though of course the use of a still finer mesh might, have produced a more
convincing result. There still remains however a difference in the lower
surface pressures of Fig. 12 and experiments since the lower surface boundary

layer displacement effects and the upper surface leading edge separation
effects have not been taken into account in the calculation. The effect
of the lower surface displacement effects would tend to decrease further the
effective aft camber, further lowering both the upper surface under pressures
and the lower surface over pressures. On the other hand leading edge separa-
tion would tend to decrease the suction levels over the upper surface as well
as to produce the observed undulation in the supersonic pressures ahead of
the shock. The net result must be that the angle of attack must be further
changed to counterbalance these effects. If such effects could be calculated,
then the difference of the resulting value of incidence and the geometric
incidence in the experiment would then finally represent the incidence cor-
rection due to wall effects if such effects have not been sufficiently
aggravated to invalidate a simple incidence correction. Needless to say
viscous effects can play a complicating role even at high Reynolds numbers
(though admittedly Airfoil A is an extreme profile), making a direct comparison
of experiments and calculations a major undertaking.

In the above calculations the treatment of the "wake region" required an
improvisation since the wake could not -be simply treated as a rear stagnation
streamline where a straightforward matching of the pressures and streamline
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slopes was sufficient. Clearly across the wake a matching of the pressures
is still a reasonably valid condition, but the streamline slopes clearly
would not be equal. In the first attempt only a match of the pressures was
used as a boundary condition on the sides of the slab representing the upper
and lower surfaces of the wake. As probably should have- been expected the
calculations resulted in an instability in the wake region, suggesting the
need for a second crossing relation analogous to the matching of the streamline
slopes in the case of the rear stagnation streamline. Such a relation no
doubt could be obtained by simultaneously calculating the wake flow, but
in lieu of this, a jump condition in the streamline slopes across the wake
was postulated as follows. First the slope of the centerline of the wake was
prescribed to vary linearly from the average of the streamline slopes at the
trailing edge to a zero value at a prescribed distance downstream of the
trailing edge and then taken to be zero thereon downstream. The slope of
the upper surface of the wake (actually the displacement surface)'relative
to the above meanline slope was then postulated to be positive and just the
negative of the lower surface slope, again taken relative to the meanline.
For high subsonic flows it would not be unreasonable to assume that the flow
upstream of the trailing edge was relatively insensitive to the preciseness
of the above postulated wake, though in the present calculation this in-
sensitiveness was not verified.

Lastly as a further exercise in prescribing mixed conditions along the air-
foil surface (either streamline slopes or pressures) we shall next investigate
the possibility of evolving shockless flows or flows with weakened shocks by
prescribing for example a continuous pressure distribution along the aft upper
surface. Before we proceed to this task we note first some properties of
shockless airfoil flows that severely limit what may be accomplished in this
manner. First it is well known that along the sonic line (which is an isobar)
the Mach waves "arriving" at the sonic line can only be expansion waves, while
those "leaving" the sonic line must be compression waves. This then requires
that only compression waves can impinge onto the airfoil surface, while only
expansion waves can leave the surface when the flow is shockless. This
requirement then mandates that the supersonic segment of the profile must
have sufficient convexity to produce sufficient expansion effects to offset
the effects of the incoming compression waves. Clearly, having any finite
segment of zero curvature where the flow is supersonic would violate the
above necessary condition for a shockless flow. Consider now the case of
Airfoil A treated earlier. This airfoil has an upper surface having essen-
tially zero curvature over much of the region where reduced convexity will be
required, so it does nob represent a promising candidate airfoil to render
shockless. On the other hand it does represent an effective airfoil, and it



will be an interesting exercise to prescribe a continuous aft upper surface
pressure distribution to see to what extent the shock wave can be weakened
(or shortened). An approximate guide as to how far upstream the upper
surface modification should be incorporated can be obtained by noting the
approximate domain of dependence of the portions of the shock that are to be
weakened. Thus in the case of Airfoil A at M = 0,85 and a = l.V3 we shall

00

prescribe an arbitrarily chosen continuous pressure distribution on the upper
surface aft of the 30$ chord station. The resulting pressure distribution
and the shape of the resulting humping is shown in Fig. 13. Here the
prescribed pressures are shown by the plus symbols. Shock weakening must be
carried out only to an extent that the resultant drag in a real flow be-
comes just tolerable, since lift will be lost in the process of adding com-
pression waves to the upper surface. In Fig. 1^ we next, show the resulting
isobar pattern to illustrate the extent to which the shock has been weakened
and shortened. Elimination of the stronger portions of the shock in the
neighborhood of the surface not only reduces the entropy losses, but it also
reduces significantly the adverse pressure gradients that would confront a
boundary layer. In the above process a blunt base will invariably arise.
Some bluntness of course is necessary to permit the removal of the boundary
layer displacement effects, but in general further iterations in the shaping
are required to evolve an aft upper surface configuration which does not pro-
duce adverse viscous effects.

Upper surface contouring to weaken the shock is not new, having been proposed
earlier in Ref. 3 in the form of humped profiles. More recently. Steger and
Klineberg (Ref. 25 ) used the small disturbance steady relaxation procedure
to calculate a number of interesting examples where also the surface pres-
sures were prescribed either partially or entirely over the profile. Un-
avoidably the use of the small disturbance procedures can lead to numerical
difficulties at the leading edge, especially in a lifting case, which seldom
can be resolved in a satisfactory way. Several of the examples calculated by
Steger and Klineberg were perhaps unacceptably compromised in the process of
avoiding the leading edge problem by their assuming that the flow over and
upstream of the nose remained invariant even when aft profile modifications
produced a significant change in the lift.

In summary the results of the present section are gratifying in many respects
and have yielded results that are reasonably viable. However it would be
clearly premature to claim them to be "exact" inviscid results, since in no
case was an assessment made of the effects of the remaining truncation errors.
Particularly care must be exercised in the treatment of the shock where
accuracy degrading diffusive damping must be employed to critically damp the
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over and under shoots about the shock that are characteristic with second
order difference schemes. The Zierep post shock pressure cusp has features
of an overshoot, so that it is essential that a sufficiently fine mesh be, . .
employed about the shock to capture the shock automatically and correctly
when the oscillations are critically damped. Calculations on the whole are
gradually becoming more routine, but despite the numerous examples computed
to date, somehow annoying and time consuming surprises still manage to appear.
Clearly we are still in the learning process.

Finally with regards to the computing time required, typically 300 seconds
were required for a given case on the CDC ?600 computer using UlO? mesh points
and 1500 time planes starting with an incompressible flow. Such times are an
improvement over the original unsteady procedure and are tolerable for use in
planar calculations, but clearly they are still intolerable for practical
three .dimensional examples.

6. CONCLUDING- REMARKS

In the reported effort the flow was considered directly in the physical plane,
since an important prerequisite for the finite difference analogue was its
suitability for use in a procedure to incorporate viscous effects using a
boundary layer concept, and for extension to steady three dimensional flows.
Thus the use of the slab boundary and a quasi-planar condition along the
parallel sides of the slab, introduced primarily to simplify the problem, are
of particular convenience in applying profile modifications due to boundary
layer displacement effects and for extension to three dimensional configurations.

The problem here was formulated as an unsteady (hyperbolic) problem with the
equations expressed in appropriate conservation form in the subdomains con-
taining shocks, to conform to the guidelines suggested by Lax that insure
the proper jump conditions across the shock discontinuities. In contrast to
this, in the steady formulation where the equations are of mixed elliptic-
hyperbolic character, and additionally in some cases even of second order, the
concept of a weak solution has not been established, and there simply is no
guide, comparable to Lax's contributions, to pose the problem properly to
insure proper shock jump conditions. Thus, for example, it is not clear
whether, in the steady case, different shock jump conditions would result
depending upon the form of the equations used as in the unsteady hyperbolic
case. Here in the latter case as noted by Lax (Ref. k) and Courant and
Hilbert (Ref. 10), it may be recalled that even if the continuity and momentum
equations are used in the identical conservation form, different shock con-



ditions are obtained if the fourth equation is expressed, not as the con-
servation of total enthalpy, but of entropy.

Quite apart from being able to define a weak solution, there is still the
task of obtaining the thus-defined weak solution by a numerical procedure.
Here again we are indebted to Lax who has shown that, at least for an initial
value problem, the proper weak solution can be obtained by solving a properly
posed finite difference problem. The results of the present calculations
indicate that Lax's conclusion can be extrapolated to the more complex airfoil
problem, where the proper shock jump conditions and Zierep's post-shock ex-
pansion (we shall discuss this later) can be obtained when a sufficiently
fine mesh about the shock is used.

To review the situation for the treatment of the shock, in Fig.15 we have
plotted the values of Mg (based upon a*) at the airfoil surface downstream
of the shock as a function of the values upstream for both the unsteady,
calculations (Ref. 3 and the present results) as well as the steady relaxation
calculations (Refs. 6> 7, 17, 18, 2U). Also shown are the curves reflecting
the jump conditions implied by .the unsteady weak solutions, as well as those
from the Rankine-Hugoniot conditions consistently approximated. Consider

first the unsteady results. The results of the present calculations as noted
earlier do indeed fulfill the expected jump conditions, while the earlier

.̂results of Ref. 3 exhibit a scatter, and in most cases the values of M2 are
somewhat below the correct values. These latter discrepancies can be elimina-
ted by simply decreasing the excessive diffusive damping which has caused a
round off of the Zierep cusped pressure bucket as was demonstrated in an ex-
ample of Section 5. (See also Fig.15 ). On the other hand the steady relaxa-
tion results have a significantly greater scatter, and the implied mean curves
fall considerably below the corresponding Rankine-Hugoniot values. Most
probably the scatter is due in great part to an inadequate mesh spacing, since
the use of the potential rather than the velocities as the dependent variable
would make more stringent the requirements on the mesh size. However the
cause of the large departures from the desired shock jump conditions remaining
after the scatter is eliminated is uncertain at present. Though such a de-
parture could be caused either by the excessive damping effects rounding off
the Zierep cusped pressure bucket as in the unsteady case described earlier,
or possibly to the form of the equations implying jump conditions other than
the desired ones, it is also possible that the cause inay be due to an inadequacy
in the numerical procedure itself where only a dichotomy of difference schemes
is employed to represent a continuous variation of the "domain of dependence."
In other words it may be conjectured that the flow is "shocked" not by the
physics, but by the abrupt change in the difference scheme. Under these
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conditions it would be unreasonable to expect the correct jump conditions.
Clearly the picture would be clarified by carrying out additional calculations
with refined mesh schemes. Thus at the present stage one must hold in abeyance
the shock-capturing ability of the steady relaxation procedures. If a refined
mesh does not remedy the situation, one should seriously consider a modification
of the procedure to fit in a shock discontinuity directly, imposing the shock
jump conditions, as was done earlier by Emmons (Refs. 16 and 17) 5 whose results
(Fig. 7, Ref. 17) as shown in Fig.15 do indeed fulfill the required jump
conditions. With such a modification the resulting steady relaxation proce-
dures, especially those where the airfoil is mapped into a circle, would be
difficult to improve upon from the point of view of both accuracy and computer
costs.

In summary with regard to the treatment of the shocks, the unsteady finite
difference analogue.as used is based upon a reasonably sound mathematical
background, and the results show that the proper shock jump conditions are
fulfilled, and hence the correct shock location should then follow. On the
other hand the steady relaxation procedures must await further effort before
the treatment of shocks can be credibly accepted. Here, in the absence of a
reliable guide for the correct formulation of the numerical analogue to assure
the proper capturing of the shock, one should seek instead means to fit
explicitly a shock discontinuity into the flow using the proper jump con-
ditions across the shock.

The discussions above regarding the surface shock pressure rise pertain to
inviscid flow. These inviscid results are seldom observed in technically
important experiments due to the interaction of the shock wave with the boundary
layer, which in cases of interest is fully turbulent upstream of the shock.
As the consequence of the interaction either an abrupt thickening or a separa-
tion of the boundary layer takes place at the foot of the shock, and the
resulting displacement effect of the boundary layer changes the shock at the
surface from a normal shock in the inviscid case, to an oblique shock leading
to a decreased pressure rise across the shock. Since the location of the shock
is in part dependent upon the shock pressure rise, as well as the nature of
the subsonic pressure recovery downstream of the shock, it is of paramount
importance to develop a procedure to treat the above viscous interactions.
In Ref. 20 a procedure has been suggested not only to evolve a fully determined
system of turbulent boundary layer equations in the Von Karman integral format
to treat a separated boundary layer, but also to solve the strong viscid-inviscid
flow coupling. Here the artifice of a wedge-shaped viscous ramp has been
introduced to simulate the boundary layer displacement effects.



In determining the surface shock pressure rise from experiments, in particular
where there is negligible boundary layer thickening downstream of the shock,
one must keep in mind the possible presence of an abrupt post shock expansion
measured by Ackeret, Feldmann, and Rott (Ref. 21) and deduced by Etnmons (Ref.
16). If the pressure taps on the model are insufficiently spaced, then such an
expansion can be overlooked, and an erroneous pressure rise can be inferred
by an improper interpolation of the measured pressures.

The behavior of the flow at the foot of the shock has been analyzed by Zierep
(Ref. 22) and by Ferrari (Ref. 23) by a local analysis about the foot of the
shock. For convex surfaces they found that the shock curvature was logarithm-
ically infinite at the surface, the shock changing from a normal shock at the
surface to an oblique shock at an infinitesimal distance off of the surface,
and that an abrupt expansion occurred just downstream of the shock (in fact
starting with an infinite gradient). The uniqueness of such local singular
solutions, as pointed out by Ferrari, is difficult to establish, but the
measurements of Ackeret as well as some existing calculations do indeed ex-
hibit the principal features deduced by Zierep. On the other hand the local
analysis does not of course establish the scale of the cusped pressure bucket,
both in terms of its depth as well as its.width, so that if these scales are
sufficiently small, then it is conceivable that a finite difference result
can satisfactorily capture the shock without exhibiting a pressure bucket.
When a significant pressure bucket does arise, the extent that it can be
captured by a finite difference calculation would depend upon the mesh size
used, since the truncation errors lead to dissipative effects which tend to
round off the cusp. In the case that the airfoil surface at the base of the

shock has zero curvature or a concave curvature as in the viscous case with
a viscous wedge such a post-shock expansion would not necessarily arise.
(Clearly such a post-shock expansion does not arise in the case of a detached
shock ahead of a symmetric wedge at zero incidence at slightly supersonic M̂ ).

t
In the inviscid steady relaxation calculations erroneous shock pressure rises
(see Fig.15 ) have been obtained that are reasonably close to those that would
be expected in experiments with the viscous effects present. It is highly
tempting to then suggest that viscous effects need not be incorporated,
especially since a viable viscous procedure has not yet been demonstrated.
There are. two fallacies inherent in such a point of view. First of all it is
not assured by any means that the proper shock location would be obtained even
with the use of the pseudo-shock, since the reduced shock pressure rise would
be in error off the surface, and it is not accompanied by the proper shock
obliqueness at the surface. Perhaps of more importance is the fact that the
boundary layer displacement effects, essential in determining the effective
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airfoil camber, would not be accounted for .in such an approach; and it is well
known that a change of the effective camber, especially in an aft-cambered air-
foil, can affect the entire pressure distribution. On the other hand the
results using the steady relaxation procedure with its pseudo-shock undoubt-
edly yield surface pressure distributions in most cases that are closer to the
experimental results than the inviscid results with a true shock. The steady
inviscid relaxation procedures therefore would serve as a valuable predesign
tool even if viable boundary layer procedures were eventually developed.

In closing the authors wish to express their appreciation to Mr. Ralph
Carmichael, who served as the NASA contract monitor, for his enthusiastic
support and assistance during the present study, particularly during the post
midnight sessions associated with time-sharing computers.
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