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PROPAGATION OF WAVES OF ACOUSTIC

FREQUENCIES IN CURVED DUCTS

by Wojciech Rostafinski

Lewis Research Center

SUMMARY

The propagation of waves of acoustic frequencies in curved ducts is studied for
the first four modes. The analysis makes use of Bessel functions of the order (n + -z)
to construct curves of wave number in the duct versus imposed wave number. The
results apply to ducts of arbitrary width and arbitrary radii of curvature.

The characteristics of motion in a bend are compared with propagation of waves in
a straight duct, and important differences in the behavior of waves are noted.

INTRODUCTION

Propagation of waves in curved ducts and pipes is characterized by wave patterns
totally different from those known in straight ducts or in unlimited space (ref. 1). The
curvilinear boundaries are responsible for the appearance of a continuous standing
radial wave which in turn affects the transmitted tangential waves.

However, the method of the basic analysis on long waves (frequency less than
5 Hz) could not be extrapolated to higher frequencies, and a different analytical approach
was needed.

Bessel functions of the order (n + •«) are used to generate characteristic curves of
the angular wave number versus imposed wave number. By using these curves one
can obtain the angular wave number for any desired (imposed) frequency and examine
the motion of waves in bends in detail.

Analysis of waves in the acoustic frequency range, at the present time up to
2500 hertz, is of interest in several areas of engineering. Besides problems of prop-
agation and attenuation of noise in bends it has an application in studies of propagation of
disturbances through compressor blade rows.

The analysis which follows concern a stabilized motion in bends with the exclusion



of the transient effects in junctions between bends and straight lines or any other dis-
continuities. The physical systems considered consists of a two-dimensional circular
bend with inner and outer wall radii R- and R«, respectively. The walls will be
assumed perfectly rigid.

ANALYSIS

The linearized wave equation in cylindrical coordinates is known to be separable
in coordinates proper for the boundary, and its general solution may be written in the
following form:

f^\ "G*

-iv Q iv 61 v

-^0 ~ sinjr^

where k = o>/c is the wave number of the imposed motion at the inlet and

F = J (kr) J' (kR ) - J (kr) J' (kR ) =
n n n n n

sin (it )(j (kr) Y' (kR ) - Y (kr) J' (kR.))
n \ n n L n n /

where the primes indicate differentiation with respect to radius. The function F v ,
n

as shown, was established using the boundary condition d<p/dr = 0 at walls R^ and
R«. The integration constants, still undetermined, may be used to match the flow in a
bend with flow in any ducting upstream and downstream of the bend. In the present
analysis the term depending on the angular position in the bend and containing these two
constants will not be evaluated. Only the sustained motion in a bend of infinite length
(like in a coil) will be examined. Consequently for the far end boundary condition no
reflection of waves need be considered and we set iC = -D . The term in the bracketn n
reduces to -2Dn exp i(-i>n0). The tangential and the radial vibrational velocities
Vg and vf, respectively, are as follows:

n
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where F' is the derivative of F with respect to r
n n

F' (kr,kRi) = J' (kr) J (kRO - J' (kr) J' (kR^ (1)
n n n n n

If we set r = Rg = aR. with a = Ro/Ri and equate equation (1) to zero, we obtain

F' (akR^kR.) = J' (akRj J ' (kR.) - J' (akR.) J' (kR.) = 0 (2)
n n " n n n

We are interested in finding the real roots of this characteristic equation, the "n
 fs.

They will be fractional numbers, functions of (kRj and of the parameter a. The
v _'s have the character of an angular wave number and determine the angular phase
velocity 0 = oj/i/ in curved ducts. Determination of the roots v , not available in
tables, required use of a special procedure. This procedure uses Bessel functions of
the first and second kinds of the order (n + 77) which are characterized by closed form
expressions. Using published (ref . 2) expressions for spherical Bessel functions and
the Raleigh's formula, F'v were calculated for r = aR., v = n + 77 (n = 0, 1, 2, . . . )

and for (kRj), in small increments, ranging from 0. 1 to 20. This study gave a series

of roots (kRj) satisfying characteristic equation (2). Solution of this inverse problem
allowed construction of curves and tables which yield, by interpolation, values of v
for any given (kR..). Typical results are shown on figure 1. The graph gives the
angular wave numbers v's for any arbitrary, imposed, wave number parameter (kR-).
The calculated curves are for a = R^/R^ = 2.0. The graph indicates that, up to
(kR..) = 3. 20, only a single mode will be transmitted by a curved duct. At 3. 20 < kR,
< 6. 30 two modes may be transmitted provided that both modes are present at the
inlet to the bend. In order to interpolate between v = (n + «•), the function F1 was

formed using general expansion of Bessel functions, limited to 15 terms, for the
arbitrary, noninteger v. The results of calculations are given in table I. To each
v correspond two columns of values of (kR..), one calculated from the closed form
expressions for the Bessel functions, the other using 15 terms of the Bessel series.
It will be noted that all roots (kRj of the inverse problem, and consequently, the v
for the direct problem (when (kR.) are imposed) are calculable by both expressions
with high accuracy in the basic (zeroth) mode and in the first mode up to i>. = 3. 5.
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Figure 1. - Characteristics of motion in a bend for a • R^Rj • 2.

The roots of the second and higher modes are not exactly calculable by the general
series expression. The effect of the curvature of the duct on the behavior of waves
will be more apparent by comparing figure 1 to figure 2, which illustrates the behavior
of waves in straight ducts. Figure 2 was established using the theory given in several
texts (refs. 3 and 4). The equation for the velocity potential is .... :. . -..̂

n=0
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Figure 2. - Characteristics of motion in straight ducts for 2L - 0.2 meter.

Wave number, v

5.5 4.5 3.5 2.5 1.5.5

1.0 .9 .8 .7 .6
Tangential velocities

1.0 0
Radial velocities

Figure 3. - Vibrational velocities of zeroth mode in curved duct of
a • R^RI = 2 for a range of frequencies. All curves are nor-
malized to maximum amplitude of 1.0.

low frequency (v = -), the distribution of tangential velocities across the duct's width
O £i

is very nearly that of a potential vortex, inversely proportional to radius. At a higher
frequency (y = 5-k) the distribution becomes more of the forced vortex type, proper-

O tt

tional to radius. However, the radial velocities exhibit little change in the same range
of frequencies; a quasi-parabolic distribution remains and only the maximum is
shifting continuously upwards with frequency. To continue evaluation of the data in
figures 1 and 2 vibrational velocities have been calculated for four modes and for a
single angular wave number (v = ). The results are shown in figure 4. In figure 5
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the same type of data is presented for a straight duct. The vibrational velocities in a
curved duct exhibit more pronounced changes than in a straight duct. It will be noted
that the first and the higher modes in a straight duct are characterized by appearance
of transversal velocities not present in the zeroth mode. In the case of a curved duct,
the width of a duct or sharpness of the bend have a significant effect on the character-
istic of the motion of waves. In figure 6, the data of figure 1 are supplemented by

I I I

1.5

Mode

7

3 2

I /

1 /

1

2 3 4 5 6 7 8 9
Imposed wave number parameter, kRj

Figure 6. - Characteristics of motion in bends for three bends of different widths.

10

curves calculated for a = 1. 5 and 2.5. In figure 7 the data of figure 2 are supplemented
by data pertaining to a duct only half as wide as the duct of figure 1. Comparing the
two maps we note that the width of a straight duct has no impact on the character of
the basic mode. In the curved duct the width of the channel has a significant effect.
The wave number will change, and the distribution of velocities will be altered. In
both the straight and the curved ducts, the narrower the duct is the less chances are
that higher modes will be:transmitted. A wide duct admits higher modes much more
easily. Roots of equati6ri?(2) for several values of the wave dumber i/n and for two
values of a are given ia|able II. They complete the data of table I. It was found that
interpolation between da'ta? of the two tables was satisfactory provided that a curve is
traced between three points taken from the tablesr

8
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Finally as an application, let us evaluate motion in a curved duct of R* = 0.1 meter
and R2 = 0. 2 meter (a = 2). We assume that, at the inlet (kRj) = 3.45, frequency
equals approximately 1900 hertz and that three modes are being generated. From fig-
ure 1 we learn that the duct will admit only two modes. The angular wave number of
basic mode will be VQ = 5. 5 and that of the first mode is v^ = 1. 74. The distribution
of the tangential and radial vibrational velocities is shown on figure 8. The vibrational
velocities of the zeroth mode are positive everywhere. The tangential vibrational
velocities of the first mode are negative in the outer half of the duct.

1.0 .8 .6 .4 .2
Tangential velocities

-.4

Mode

Radial velocities

Figure 8. - Vibrational velocities in curved duct of Rj • 0.1 meter with inlet
(kRjl-3.45.

CONCLUDING REMARKS

Propagation of acoustic waves in a frequency range of 5 to 2500 hertz in curved
ducts was examined. Using an inverse method (calculating the imposed wave number
parameter (kR^ for an assumed angular wave number i/n instead of vice versa) cor-
relation has been obtained between the wave number k of the imposed motion and the
angular wave numbers in bends v^. The results have been tabulated for a range of
parameters. Analysis indicates that interpolation between the tabulated data by means
of series expansion of Bessel functions yields accurate results for the zeroth mode
of motion in the range of arguments (kR«) up to ~5. 0.

10



Analysis showed that distribution of vibrational velocities in curved ducts strongly
depends on frequency and the angular wave number depends on a = RO/RI» a measure
of the bend's sharpness.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, October 30, 1972,
501-24.
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