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v ABSTRACT : -

An‘analytic théory is developed for the time dependent
magnetic fields ihside the Moon and the diamagnetic cavity
wvhen the interplanetary electroﬁagnetic field fiuctuation
propagates parallel to the cavity axis. The Moon model has an 13
electrical conductivity which is an arbitrary function of radid;.
The lunar cavity is modelled by a nonconducting cylinder extend-
ing'infinitely far downstream. _For frequencies less than about
50 Hz, the ca&ity is a cylindrical waveguide below cutoff.
.Thué, cavity field perturbétions due to the Moon do not propa-
gate down the cavity, but are instead attenuated with distance
downstream from the Moon. -Far ffom the Modn; the cavity electrd-
magﬁetic field is a cyliﬁdrical TE mode propagating downstream
Qith the same'frequency and wavelength as the.interplanetary
.field. Thus thé magnetic field in the-far downstream cavity has
a compoﬁent parallel fo the cavity axis which is 90° out of phase
with the incident magnetic field. .The fér cavity fieid is the
result of a surface wavé on the cylindrical boﬁndary induced by
the‘interplanetary field énd moving downstream with it. Cavity
sqrface currents and charges accompany the far field surféce

‘'wave.
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INTRODUCTION ;

In a recent paper Schubert et al. [19737 took ;ﬁé first

step in the development of an analytic theory for the asymmetric

electrbmagneﬁic induction in the space defined by a spherical

Moon and its” downstream cylindrical cavity formed by the solar uf

wind. Previous theories of lunar induction were spherically

Symmetric approximations [Schubért and Schwartz, 1969; Blank

and Sill, 1969; Schwartz and Schubert, 1969:“Schubert aﬁd :

Schwartz, 1972]. The asymmetric theory was developed in the

quasistatic limit corresponding:to large wavelength and low

frequency of the oscillating interplanetary field. Thus Schubert

et al. [1973] = - determined the asymmetric electromagnetic

reépbﬁse of a two layer Moon model with an infinitely‘condudting

vcofelof radius‘b and an insulating layer of thickness (a-b) down-
‘stream of whiéh'was a nonconductihg cylindrical cavity.. The

frequency dependence of the response was treated qualitatively

by the rough correépohdence beﬁween frequency énd the ratio-éf
the corebréaius to.the lﬁnar_radius (b/a). ‘Small yaiues of b/a
correspond to low freéuencies while.larger values. of b/a'corresﬁond
to higher freqﬁencies. Despite the simplificaﬁions of thig first
asymmetric theory smith et al. [1973] have obtained good_agrég—v
ment between theory and the experimental data of the_Apollo 12

Lunar Surface Magnetometer.

In the quasistatic limit there are only two fundamental



" orientations of the intetplanetary magnetic field,-parallel"
and perpendicular'to the lunai caﬁity axis. In the more complete
time dependent scattering theory all directione for the plane -
wave propagation Qector of the incident interplanetary field
relative to the cavity axis must be considered. In the case of
incident waves parallel to the cavity axis all linear polariza-
tions are theoretically and physically equivalent since the in-
01dent electric and magnetic fields are both peroendicular to the
cavity axis. However, when the propagation vector is not parallel
to the ca&ity axis there are two distinct physicai caeee: the
. magnetic field may be perpendicular and the electric field may
Ahave a component patallel to the cavity axis, or the electric
field may be perpendicular and tﬁe magnetic field may have a
component parailel to the cavity axis. ‘Thus there are three
'theoretical problems associated with the general solution for
the electromagnetic scattering of a plane, linearly polarized
wave 1nc1dent on the asymmetric space defined by a spherical Moon
and 1ts~downstream cav1ty. ) |

- In this paper we obtain the general ahalytic solution fot the
propagation Qector parallel to the cavity axis. ~We develop the
- theory in terms of an arbitrary Moon model subject only to the
conditicn that the lunar electrical conductivity o , permitt1v1ty
€ and permeabiiity M are functions of radius. The theory is also
limited to solar wind velocities less than O(lOGm/e)_ and to

frequencies less than or equal to 10 Hz. The former condition is



of little consequence in“the lunar environment while the latter

one encompasses the total frequency range of the Apollo surface

and subsatellite mégnetometer experiments. In future papers we

will extend the theory

to the case of the incident wave propa-

-gating perpendicular to the cavity axis. The asymmetric scatter-

ing theory can then be
satellite magnetometer
distributions with the

whether characteristic

used to invert Apollo surface and sub-
data to yield lunar electrical conductivity
advantage that all magnetometer data,

of the sunlit or night side lunar en-

vironments, will be treated as a unified body of data to be

inverted with a single

théory.



YTHEORETICAL MODEL : )

In this seétion we lay the gfoundWork for the general
analytic solution to the problem of elect;omagnetic scattering
of a plane WAQe incident on a sphericai Mocn 6f arbiﬁrary con-
ductivity 1g(r)A'and'its downstream ﬁonconducting cylindrical
cavity when the incident wave propagation vector is barallel
to-the cavity gxis. Following the notation of Scﬁubert and -
~ Schwartz [1969] we represent the incideqt fie1d by
E ,‘A . i(g¥5 fwt){uvgx}

- = H_.e

o N ¢ 5

. . a
= incident

where E and H are the electric and magnetic fields, a_, a _ and
X . —_ .. . . . - . —xK Y ..

Ezfare thg unif vectors 6ffa Cargesian cpo;éinate sysﬁgp wH?se
‘origin is at.fhe'ceﬁﬁer of tﬁe Moon, X is the Qavelength, w

is the circular freduencé'as measured by anvobservér fixed with
4the Méon, HO ig the amplitude of the magnetic fie}éiéspil;ation,

v = Xw/ZU:and P is the magnetic permeability of free ;pace.
Throughout this papervMKS units are used. Alsd theltime dependence

e“lwt'will henceforth often be understood. The wave propagates

in the positive z-direction which is also the axis of the cylindri-
cal downstream diamagnetic cavity. The Moon-cavity geometry and
the geometry of the incident electromagnetic field are shown in

Figure 1. Both spherical coordinates (r, 8, ) and cylindrical

coordinates (p, @, z) will be used. The space outside the Moon



aﬁd the cylindrical cévity éontains only the imcident inter-
.plénetary eiectfomagnetic field given by (1). The fields
associated with the current systems induced‘within.the Moon,
on the lunar sunlit hemisphere and on the cavity boundary cannot
penetrate into this external region..'The}confinement condition
on the front side is approximately correct since magnetohydrodynaﬁic
waves cannot travel upstream in the supermagnetosonic solar wind
plésma.‘ Confinement to the interior of fhé cavity occurslbecause
downstreaﬁ travelling séétteredﬂwaves in the supermagnetosonic |
- solar wind are limited' to the interior of the Mach coné extending
downstream from the lunar.limb. Since the Mééh angle is small,
the éylindriéal}surface is a good approximation ta.the Méch cone.
?he confinement is_accémﬁiished by currents which flow in
thg inte:planeﬁéry plasma ét the sunlit lunar sﬁfface‘énd‘the
2 chindrical suffacé of the cavity. in the thegretical modél
these currgnts are‘aésumed to be ideal surface curfent distri-
bﬁtions, i.e. the current layers have negligible thickness. The
béundary conditions are the continuity'of tangential eiectric
fields and normal magnetic fields on the éunlit-lupaf‘hemisphere

and cavity boundary. | ' ) .



THE MAGNETIG FIELD IN THE LUNAR INTERIOR
The electromagnetic field inside the Moon is most easily
written in spherical'éeordinates. In general it consists of
' both transverse electric TE(Er = 0) and transverse magnetic
TM(Hi = 0) modes, however, we will negiect the ™ field. At

the frequencies of intereqt £ ='w/2ﬂ <1 Hz , the T™ induction

‘is - ‘ negllglble because of the relatlvely high re31st1v1ty.

near the lunar surface. . R

'.On the sunlit lunar hemlsphere, the tadlal component of .
.'the lunar magnetlc fleld H. must be equal to that of the
1nterplanetary fleld (the- permeablllty of the Moon will be -
‘assumed tc be that of free space) The anpl:catlon of this
: boundary condltlon is fac111tated by writing the TE part of the
j,1nc1dent 1nterp1anetary fleld in multlpole form. Also, this
iSpherical'harmqnic expansion of the TE'incident field serves to

indicate the form of the expansion for the lunar TE field. For

- the TE part of the incident magnetic field (1) we have {schubert -

and Schwartz, 1972]

-~
. -

{ Hr’ ~ \sing ' L(L+l)jL(2Wr)P (cos®)
H.) b
' -0 . : S ldar . 2ﬂr
< fie ‘1L~ 2Wir S-lnCP' z BL dr[rj{’ )] de P (COS )j? ’
_ 1=1 d[ ?l(cose)
H {cosy - rj )]
. ? Jincident \ dr L sin )

TE



where

By _jlz_tll' S o - L (3)
and jL(X)'and'Pi(COSe) ére the sphgricgl Bessel functions gnd
associéted Legendre functiqns, respectively. |

Thé form of the TE magnetic field in the lunar inte:ior is
identical to that of incident field (2) except for‘the r;diélly
eréndent functions. Foliowing Schubert3andech§artz;;l972] we

- write .

S ' T 'GL(IY 1
_gsincp . juul){ “— P, (cosf)

H _ : d :

Oa . T " ™ 2 _E_{_’_ d !')1 In/\.fnn\: {AN\

> ) .Ll].kp1 i/_ ,.J. Ln{ dr dﬁ ‘“l_ A\ vy ' 2 3 NHI

o 1=1 ;

cosw® B @GL L(cose)
: \dr‘ ~ sin®
wheré

' p' N S B, J (2ﬁa/k) | - o (5)
1 2ﬂ1a L 1 ’ B ' . ! L

v

and A, are coefficients to be determined. The G, (r) are

solutions of the second order ordinary differential equation

2 .

a%e

—t e [x? - 6 () =0
.

dr -

’ (6)



" subject to the conditions that G, are finite at the origin

and GL(a) = 1‘, ‘The 1atter condition on G is only a con-~ -

4
venient normalization condition; -the coefficients AL of each
multipole contribution to H inside the Moon are as yet unknown.

The propagation constant k is
. 2 : . ;i ' .
k= (0°ue + iwpo) - ' (7)

where, for simplicity, K aﬁd-e have the free space values and
o is:én arbitrary function of r (it ié not any ﬁore difficult
~to éllow K and € to also be functions of r). As én example, qu
i'fthe two layer Moon model with'a perfectiy'conducting core of

radius b. and an insulating shell of thickness (a-b)

0 ' r <b

G = o S 7
| e/t - (g{aizt+1 (a/r)* berea
1= (b/a)®t?t I

for frequencies of interest.



. THE CAVITY AS A'CYLINDRICAL WAVEGUIDE BELOW CUTOFF -

Before we construct the general solution for the electro-
magnétic field in -the ﬁonconducting cylindricai cavity downstream .
- of the Moon,it is instrﬁctive to consider the physics of'waye-
propagation in this cavity. Electroﬁagnetié wave propagation
in a holliow cylindrical wavegﬁide is a classical préblem dis-
cussed, for example, in Stratton_[l94l],- A:Eriori poséible
‘modes éf propagatidn are transverse magnetifc'TM(Hz = Q) and transvérse‘
electric TE(Ez = 0). The TE and TM ndméné;atgfe in the cavity

- 'should not be confused with similar designations inside the Moon.

f

The form of the incident field can be used to restrict our
consideration of the number of possible ﬁodes; In cylindrical
coordinates thé incident field (i) is

E . 7 cuveoso 2 - pvsing & . E
{g} o = Hge ‘ {sinm P + cosp © '}H S (8?
“incident I SRR . :

" Thus wé need only‘cénéider possible TE:and T™ modes of order'l,
for which the lowest cutoff frequencies are 50.52 Hz and i05315 Hz;
réspectiVely. The cutoff freéuencies of the first order TE ana

TM modes are given by c¢/21ma (c is the speed-of light in vacuum)‘

times the zeros of dJl(x)/dx and Jl(x) , respectively (Jl(X)

'is the Bessel function of first order).
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Sincelthe frequencfés of interest are more than an ordér
of magnitude smalier thén the lower of the above two cutoff
ffequencies, distﬁrbapces caused by the Moon cannot propagate
down the cavity. Magnétic field pertufbations in the cavity,
due to the pfesence of the Moon, are‘oécillatory, with amplitudsas
Whiéh decay- exponentlally with dlstance down the cav1ty.. The
fifst order TE dlsturbance decays essentially as exp( 1.84z/a)
while the ™ dlsturbance decays essentially accordlng to exp(-3.83

. z/a). The electromagnetic'fiéld far downstream z—= in the cavitys

is independent of the presence of the Moon.
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 THE ELECTROMAGNETIC FIELD IN THE - -

- FAR DOWNSTREAM CAVITY

The‘electromaénetic field in the chindrical cavity far-
downétream ftém the Moon can be obtained by a linear super—:
position of elemehtary cylindrical wave functions [see Stratton,
i;941, pages 360-361]. From the form of the incident field (8)
only first’qrder TE and TM modes could'éontribute to the ca&ity-.‘
fiéld.‘ Since there is no z-component in the incident éiectrié
field, continuity of the téngéntial électric field on'fhe
éylindrical boundary requires_that the cavity field be a pufg
TE mode, _Coﬁtinuity of the radial magngtic'figld H, on p=a
uniquely determines the TE solution in the far'dowﬁstream cavity.
The conditién tﬁat the tangeptial-électric field compbnent-Ew

‘be continuous”on_p=a is automatically'satisfied. The solution

is
B) sing) (1] (_2¥ Jl : lc% ) 4 |
- AL - ' '
{ me X w , Ii(g_;r_g ﬁ__v2—/c§) \
.Hcp'-‘_F: 2 cose r. {h ()
1 (’2‘%%«/1—’2—2) 2—;‘-9 1-v2/c?
H J : sinw ki\/l—vz/cz Il<2—;\rp- */l—LZ .)J



(E) - : cosep
P | igir—z-—wt) 20 f1y2/c2
. r"»< uvH_, e r A V _‘C

¢ (2ma _ g2
RGP ¥ )
: e _

L

. where Il(x) is the modified Bessel function of order 1 and
ii(x) = dIl(x)/dx. The field in the far downstream cavity (9)
and (10) reduces to the incident field (8) in the limit w~0 or

V_.c Ll

Thé TE cavity field (9) and (10) is the result of a surface
wéve on the éaﬁitylbodndary induced by.the inciden£ field. This
is most easily understood by considering the surface wave on a
plane Q;O ihduced by a travelling wave (1). -In the region y>0,

- the field is everywherelthe incident field and the half-space

y<0 is wvacuum. Thezg%eld in the vacuum is independent of x ,
: i(*f~ -wt) ’

prdportional to e- and dependent on y. The vacuum

electric field has only an x-component which is given by

XI\ X -0

231/1_V2/02 i(2TTz t) ]
PvH0 e a8 . (11)
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It is a'surface wave travelling in the z-direction with speéd_v;
Its amplitude .is éxponehtially damped with distance from the

surface into the vacuum. The attenuation depth is on the order
of a wavelength. Note that the electric field is continuous on

v

y=0. The vacuum magnetic field has a y-c¢omponent given by

2 fv2/e? 1 (EE )
e .

HO e . : - .

which is continuous with the y-component of (l) on y=0. Since
the normal magnetic field in the vacuum is attenuated with
distance from the surface, v*H = 0 reguires that the surface

. wave possess a z-component of magnetic field

2 . ggxda—vz/cz i(2§E -mt)

Aix/l—zv—z H, e e

(12)

(13)

The surface wave is thus not a transverse wave, however, it is TE.

"Clearly (9) and (10) represent waves on the cylindrical surface
of the cavity which are induced by the passage of the inter-

planetary field. The magnetic field components are 90° out of

L

phase.

The surface current density K on the cavity boundary o=a is

2
2ma v )
i(’z%E -t) Il( ) ‘/1 o2

' . 2, 2 .
= 1-
K ‘L/ v (c Hy e singp '

- )

(14)
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. ) ’ . 2
4 2ma f1- Y- )
(2§£ -wt) Il( g 2 _
Kz = HO e ?osm{l - } e flS)
2ma [y _ gi 1’ (Zﬂa 1- v
A ’ c2 1 X 2

Note that Kco and Kz approach zero as w—0 or v-c. The surface
charge density I on p=a is

i (202 ;-wt) o (2"a[ )

=5 ¢ . cosm{l - (16)

¢ | - | ST - 2na l' v , 2na2 )
, : i c?

AN
 As in the case of the currents, 2~O'as w—0 or v-c.

| Figure é shows Hp/HO aﬁd _Em/uVHO as functions of p/a
with ZZaJ v /c ~as a parameter. The dependence of H and Em
on“sinQJexp[i(~§§ - wt)] has been suppressed. The field components
Hp and Ecp have been normalized with respect to the amplitudgs

of the correspondiﬁg interplanetéry'field componénts. Thgs the
continﬁity of Hé and Ecp on p=a makes the normalized field com—_
ponents unity on p=a, independent of the value of the wavelength
parameter. When the wavelength parameter is zero, the normalized
field components are identical to those of the incident'field.

As the wavelength parametef increases the field components of the

surface wave are increasingly attenuated with distance from the-

-



cavity boundary.

The normalized cavity field compohents Hm and Ep are shown

21a
A

The ¢, z and t dependences of Hcp and Ep}uwe been suppressed.

in Figure 3 as functions of p/a with Jl—vz/c2 as a parameter.
These field components are seen not to be continuowson o=a,

except when the wavelength parameter approaches zero and in this
limit Hcp and Ep become uniform and equal to the incident field
components. As the wavelength parameter increases, the amplitudes
of these surface wave components at p=a decrease and the attenua-
tion of these components with distance from the cavity boundary

% . =0, = = - — =A0':. A
increases At o0=0 Ep/uvHO Hﬁ/HO Ecp/gvH0 Hp/H0

I
Z

.i HOJl—vz/c2

Figure 4 shows the cavity field component

‘as a function of p/a with the same parameter as in Figures 2
and 3. Again the ¢, z and t dependenceé have been suppressed.
Note that the incident field has no z-component. BAlso the H,
in the.cavity is 90° out of phase with all the other field
components. For the Qavelength parameter egual to zero,(Hz
vanishes. As the parameter increases-the normalized suffgce
amplitude pf H, increases, reaching a maximum value of about 1.1
af a parameter value about 2.8, and then asymptotically decreases
to unity. As with the other components, the attenuation of H,

with distance from the cavity boundary increases with the wave-

length parameter. Note that H, vanishes as p-0.

l‘,"
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v : C -
The ‘discontinuities in Hz and Hm at p=a are associated

with the cavity surface current densities Kcp and Kz , respectively.

K
v)

. 2, 2
i Hojl-v /c

-The normalized surface current densities KZ/Ho and

are showﬁ in Figure 5 as»functioné of the wavelength parameter
(fhe dependences on z,t and mvanaéuppressed).. A surface charge
dehsity.g is associated with the discontinuity in Ep at p=a.
The normalized surface charge densityii'cz/vHO

KZ/H0 . As the wavelength'parameter approcaches zero the surface

is identical to

currents and chérge approach zero. The'pormalized Kz and_:
monotonically approach unity as tHe parameter increases, wﬁile
the normalized K@ exhibité a maximum before eventually4approach—
ing uﬁity. The-magnitude of‘the azimuthal cavity surface currents
exceeds thaf of the axial surface currents by a factor which
increases mondtonicaliy as the parameter approaches zero. As in

the case of Hz . Kw is 90° out of phase with K, and z .

For a wavelength parameter smaller than 1/2 , the cavity
field components Ho ’ H& , Ep , and Ecp are essentially the same

as the corresponding components of the interplanetary field. The
parameter value 1/2 corresponds to a frequency of 0.02 Hz , for
an assumed wave propagation speed of 400 km/sec. The wavelengﬁh

parameter must be smaller by a factor of 2 (frequency smaller

than 0.01 Hz) for H, in the cavity to be negligible.
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For hydromagnetic waves and discontinuities in the solar

5. Using the smallneés of

‘wind v < 106 m/seé and-vz/c2 < 10°
v2/cz,'the expreséion (9) for the cavity magnetic field as

Z—o can be rewritten as

: '(2¥E - wt) , _
. H.e : sing .
=y {2 , &2 } . an
27 p1 (Zwa) - L
) S § I\

In the'limit of largevﬁaveiéngth i.e. 2ﬂa/xl<< 1, (17) is neérly
é blahe travelling wave with the magnetic field in the y-direction.
With the aid of an identity froﬁ Cooke 19561 , (17) cén be re-
wfitten in.A form ap?ropriate for satisfying‘métching conditions

on the»night side lunar hemisphere

| H e-lwtsinm (=
H = v { 0 r z _L__

T U

) °~

P o(cosm)} . . Qe



MATCHING THE LUNAR AND FAR

CAVITY MAGNETIC FIELDS

The far éavity field satisfies the boundary conditions on
the chindriéal cavity surface éxactly. To match‘the lunar TE.
magnetic field to the far cavity magnetic field it is only
necessary to add to‘the far éavity magnetic field tﬂe_décaying

TE mode of the cylindrical wavequide. The‘decaying TE mode

Ecp =E, =0 on-p=a and consequently the sum

of the far cavity field and the TE waveguide mode match the

qatisfies Hp

incident fleld correctly on the cavity surface p=a. The magnetic
field of the decaying TE waveguide mode can be written [Stratton,

1941, p. 5411 .

.' pr | S ‘%? Jq (Y P )sino )
! - ~h_=z ' S |
4 Hcp # = Hy Z Qm e ™ ﬁ (Jl(gmp/a)/P)coscp 4 } | (19)
) m=) o
- | | _Y
tHZ ] : o c h J (Xmo/a)/a )51nm.

where y ~ for m=1,2,*:-+ are the ascending zeros of Iy (x),

N

A w 2 ¥m ) .
n =AM - (E_) =7 J1- ’ (20)

w

5]



aﬁd mm-is the mth éutofﬁ_frequéncy cy,/2 - As noted in ouf_‘
diécussion of thé.cavity as a waveguide below cutoff, the
freguencies of interest lie one or more orders of magnitude below -
the smallest cutoff frequency of about 50 Hz. . Thus it is an
excellent approximation to take h =~ xm/a and rewrite the

magnetic field (19) as

5 = V{HO i sineg C, e—YmZ/ Jy (v )} .' - (21)

This is identical to the-qdasistatic cavity disturbance field
determined by Schubert et al. [1973]. To match with the lunar
TE magnetic field on the night side hemisphere, (21) must be

rewritten in spherical coordinates. Using Cooke [1956] we find
) o @ )
- o U A ¥ a 1l }
‘gvf V{ sino HO‘L.Cm.L (t+1) PL (cosh) . ‘ (22)
‘ e m=

Because we have used only the decaying TE wavegpide modé'
to appropriately match the ﬁagnetic fields on the nigﬁt side
lunar surface, some mismatch of the electric fields is possible.
‘This could be corrected.by the inclusion of the decaying TM
wavequidelmode (and the lunar TM mode) ‘which would contriﬁute
~a_ﬁagnétic field a factor of mz/wi smaller than the TE magnetic
field. Thus for the freguencies of interest we make a negligible

error by matching with only the decaying TE waveguide mode.



COMPLETE ANALYTIC SOLUTION

In the previous sectioné we developed representétions
for the TE magnetic field in the lunar interior (4) and in the
cavity; the éuﬁ of (17) and (21), for an incident linearly
polarized plane wéve propagating in the positive z direction with .
Velb&ity v<éc(=3x10sm/s), freguency f<< 50 Hz and with the
ﬁagnetic field vector in the y direction. These forms contain
two infinite sets of cénstants Al and C, which must be evaluated
by using_appropriaﬁe boundéry conditions. By the mannér in which
wé constructed the}cavity field, the boundary conditions at the
cyliﬁdrical cavity surface, p=a , are automatically satisfied.
The continuity»cf'thé normal coﬁpoﬁent of the magnetic field at
r?é over thezeﬁtire Moon and the continuity of the téngential
component of the magnetic field on r=a in the cavity, O<B< g- ,
determine the doubly infinite set of constants. fhe algebraic
' detail of this procedure is given in the appendix, together with

final formulae for the An and Cn'



v SUMMARY ¢ S

In this paper we have obtained the general.analytic
solgtion for the interaction of the Moon and its downstream
cavity with a iingarly polarized plane electromagnetic wave
proéagating in thé direction parallel to the axis of the caﬁity.
The solﬁtion is fofmulated in terms of a spherical Moon model
with_arbitrary radially dependent electrbmagnetic parameters
and a nonconducting cylindrical downstream cavity. A number
of approxiﬁatiohs consistent.with-the physical circumstances
of the Moon-solar wind interaction and our present ability to
measure this intéraction have been made. Outside the Moon and
 the cavity the electromagnetic field is the incident interplanetary
field. The.eleétrical cqnducti;ify of the near lunar surface
is sufficiently low tq suppress the TM lunar field.  The incident
‘wave velocity v is much less than the velocity 6f light in |
- vacuum ‘and the highest frequency of interest is of order 10 Hz.
All but tﬁe first of these assumptions could be relaxed withouf
presenting any_special difficulty in carrying thrbugh the solution

with the methods of this paper. - : o -

Of particular significance is the finding that for frequencies
below about 50 Hz, the diamagnetic cavity is a cylindrical wave-
guide below cutoff, i.e. cavity electromagnetic field perturbations

due to the Moon decay exponentially with downstream distance.
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Thus the quasistatic reptesentation of the cavity perturbation
" magnetic field due to the Moon given by Schubert et él; rie73]
is valid for frequencies as high as 10 Hz. This is not to imply
that the quasistatic solution for the iunar and cavity magnetic .
fields'is valid at such high freguencies. Quite to the contrary;
high frequency modifications in the lunar and cavity magnetic
fields will be present at frequencies above about 0.01 Hz.

Far downstream from the Moon, the intéfplanetary field
forces a\surfacé wave to pf0pagate down the cavity bouﬁdary.
vThé far cavity field, which is determined‘by this propagating
sﬁrface‘wéve, is‘différent from the interplanetary field, e.g.
it has én axial magnétic field. component. These differences
become more sigﬁificant'as fhé frequency of the field.increases.
The far cavity.field is ihdependent of thg‘presemcé of the Moon
. whose cavity field éerturbations will be damped within several
_lunar radii downstream. . Differences between the interplanetary
and cavity fields measured farther than a few lmmar radii down;
stream muét be attribgted to the cavity itself; they can yield

no information about the lunar eléctrical conductivity.
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. APPENDIX

To determine the unknown c0efficients’Anvand Cn first
consider the continuity of the normal component of the magnetic

field oh r=a. We can write this condition in the form

o, néezn/z ,

L(2+1) FL(AL—l)Pi(cos9)=

N~

1=1 1 n.n_1
‘ -0 2 ni §Pn(cose) -
n=1
i (& ; n(—l)ngnPl(cose)‘-—
a Lo mon
=] n=1 :
N 1 s
;Li.b(§+l) TLPL(cosQ), 5 >0>0
where
. (2';ra) - | . o
€ = — : ' ; ' (A-2)
(n+1)! . -
E‘III]I = m | , " (a-4)
(n+1) ! ’
2TTia' ) 2ma
Q=55 17 (57) . (A-4)



1

Lf(cosﬂ)sine d0 and integrating from 0

Multiplying (A-1) by P

to m yields

2¢’2(4+1)°r,, (8, ,-1)

(247+1)
il » ) > C '
1 x.{=1'e _ _ my el L}
Yoy {3 - wanr,- Y GBehen
1=1 : ' m=] '
I} ) (A—S)
for 1’=1,2,3,-°* where
.I 14
27(0'+1) L o1'=g |
S 2141 A
po= e ) ' .o (A-6)
Wy 0102 (01 b (01 p2 '
Py 0P (0)-B (R0
A I
gy, = (=L') (4L’+1) = - g, - . (A-7)

~.

On the lunar night side, within the cavity (% >6820) and-

on r=a , both Hq and H¢ are continuous. It is sufficient to use

only the continuity of Hb . This leads to the equation

ot A )
: 1 _ ivEg 1
z: PLALuLPL(COSQ)_ E: o P, (cosA) -
- ; (——C’“) ‘? (-1)"€pt (cosh) ' " (a-8)
/ a / m.nCOS. ’

m=1 n=1



_< S

where ' e

To,generaté a set 6f_equations for the unknown coefficients
from (A-8) we note that on 0s<#Asm/2 the 0dd éssociated Legendre
functions form a complete set. Expanding (A-8) in terms of this

set gives the infinite set of equations,

AAm- ®

: .4 4 V c - C h  ,
. _ i€ _ m Letpl , :
Z {rx, Aguy o J= Z ) Z L) TR (A-10)

" where 1.'=1, 3, S.ee- -

Equations’ (A-5) and (A-10) are sufficient for the determina-
tion of the A{-and c,- After considerable algebraic manipulation

" a single set of equations can be derived for the C

L
. _ ’ , l.' . .
. , C L7 (L+1)E u. .,
DI B P gy M .
m=1 . (24 +1)P , +(0) 2(1’{1) _ .
& e2p2 (0) | ,
) [1-5 (2 —2 ],
n=2,even gn& n(n+l)  £°(2'+1)
P . © 2 2
' . (2241)u,TPS(0) ]
) | onEEn(0) ) L} -

) 2,, 2 )
n=1,o0dd 1=2,even 2% (£+1) gLL'gLn
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- g,, 0 L 2 : , .2
1=2,even ¥ L(L+1) AN CAL S
. - . , A
r [P}, (0) 17, (2¢+1)

. L(1+1)u, , '
£ (u, ___’_”__‘i_)}+2~ . .

L,(L'+;) 1=2,even 2&2(L+l)2g£&/
' © - nel(o) o gPel Yy o
Z ) n {.(n+1) Fn - 0 } I S | (A-11)

h=1,0dd~ Jin

for;L'=l,3,5;°f' In the liMit v-C and A—e  (A-11) reduces
exactly to (A-31) of Schubert et al. [1973] with the idehtifica—
fion ofAuL gsAZkL+l)aL . Equation (A-1l) represents an infinite
'set of linear equations (one for each t’) for the infinite set of
unknowﬁg:cm . SinceAthe Ch eventually decrease in importance as

; ‘m increqses the set of -.equations can be solved numerically by
truncating in m and £’. This was done in the quésistatic\limit

by Schubert et al. (19737 and will be done for variéusiMoon models
‘using the present theory in a future paper: Once the Cn have been

found, the Am may be obtained from (A-5). After some algebraic

manipulation we find
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2 T anla(o)‘ J’ingn
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- . |
Yo e} - (A-14)

Again, in the limit of v-c and A== , the equations for the
quantltles F& L formally reduce to equations (A.30) and (A.31) of

Schubert et al. [1973] .



" FIGURE CAPTIONS

Figure 1. The geometry of the asymmetric lunar eléctromagnetic

scattering problem.

Figure 2. The far downstream cavity field components H0 and E
normalized to the corresponding incident field
components as a function of normalized distance from

'fhe'caVity axis with 2§§-dﬁ—v2/c2 as a parameter.

Figure 3. ~ The far downstream cavity field components Hcp and E0
normalized to the cofresponding incident field components
as a function of normalized distance from the cavity

‘axis with 2%§-J&—v2/c2' as a paraméter.‘

Figure 4.  The far downstream cavity axial magnetic field
‘Hz/i HO,\/l—v?/c2 as a function_of normalized distance
~.._ from the cavity axis with 2%§ J&—v?/cz as a parameter.

The aependence of Hz on z, ¢ and t has been suppressed.

‘.
\

Figure 5.  Normalized surface current density :: and charge

density on the far downstream cavity boundary as a

function of 2%3 Jl-vz/c2 . The dependence on z, ©

and t has been suppressed
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