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. v ABSTRACT

An analytic theory is developed for the time dependent

magnetic fields inside the Moon and the diamagnetic cavity

v/hen the interplanetary electromagnetic field fluctuation

propagates parallel to the cavity axis. The Moon model has an

electrical conductivity which is an arbitrary function of radius.

The lunar cavity is modelled by a nonconducting cylinder extend-

ing infinitely far downstream... For frequencies less than about

50 Hz, the cavity is a cylindrical waveguide below cutoff.

.Thus, cavity field perturbations due to the Moon do not propa-

gate down the cavity, but are instead attenuated with distance

downstream from the Moon. Far from the Moon, the cavity electro-

magnetic field is a cylindrical TE mode propagating downstream

with the same frequency and wavelength as the interplanetary

field. Thus the magnetic field in the far downstream cavity has

a component parallel to the cavity axis which is 90° out of phase

with the incident magnetic field. The far cavity field is the

result of a surface wave on the cylindrical boundary induced by

the interplanetary field and moving downstream with it. Cavity

surface currents and charges accompany the far field surface

wave.
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INTRODUCTION

In a recent paper Schubert et al. [1973] took the first

step in the development of an analytic theory for the asymmetric

electromagnetic induction in the space defined by a spherical

Moon and its downstream cylindrical cavity formed by the solar

wind. Previous theories of lunar induction were spherically

symmetric approximations [Schubert and Schwartz, 1969; Blank

and Sill, 1969; Schwartz and Schubert, 1969; Schubert and

Schwartz, 1972]. The asymmetric theory was developed in the

quasistatic limit corresponding to large wavelength and low

frequency of the oscillating interplanetary field. Thus Schubert

et al. [1973] • determined the asymmetric electromagnetic

response of a two layer Moon model with an infinitely conducting

core of radius b and an insulating layer of thickness (a-b) down-

stream of which was a nonconducting cylindrical cavity. The

frequency dependence of the response was treated qualitatively

by the rough correspondence between frequency and the ratio of

the core radius to the lunar radius (b/a). Small values of b/a

correspond to low frequencies while larger values- of b/a correspond

to higher frequencies. Despite the simplifications of this first

asymmetric theory Smith et al. [1973] have obtained good agree-

ment between theory and the experimental data of the Apollo 12

Lunar Surface Magnetometer.

In the quasistatic limit there are only two fundamental



orientations of the interplanetary magnetic field, parallel- '

and perpendicular to the lunar cavity axis. In the more complete

time dependent scattering theory all directions for the plane

wave propagation vector of the incident interplanetary field

relative to the cavity axis must be considered. In the case of

incident waves parallel to the cavity axis all linear polariza-

tions are theoretically and physically equivalent since the in-

cident electric and magnetic fields are both perpendicular to the

cavity axis. However, when the propagation vector is not parallel

to the cavity axis there are two distinct physical cases: the

magnetic field may be perpendicular and the electric field may

have a component parallel to the cavity axis, or the electric

field may be perpendicular and the magnetic field may have a

component parallel to the cavity axis. Thus there are three

theoretical problems associated with the general solution for

the electromagnetic scattering of a plane, linearly polarized

wave incident on the asymmetric space defined by a spherical Moon

and its downstream cavity.

In this paper we obtain the general analytic solution for the

propagation vector parallel to the cavity axis. ^We develop the
\

theory in terms of an arbitrary Moon model subject only to the

condition that the lunar electrical conductivity a , permittivity

e and permeability pi are functions of radius. fhe theory is also

limited to solar wind velocities less than 0(10 m/s) and to

frequencies less than or equal to 10 Hz. The former condition is
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of little consequence in the lunar environment while the latter

one encompasses the total frequency range of the Apollo surface

and subsatellite magnetometer experiments. In future papers we
•

will extend the theory to the case of the incident wave propa-

gating perpendicular to the cavity axis. The asymmetric scatter-

ing theory can then be used to invert Apollo surface and sub-

satellite magnetometer data to yield lunar electrical conductivity

distributions with the advantage that all magnetometer data,

whether characteristic of the sunlit or night side lunar en-

vironments, will be treated as a unified body of data to be

inverted with a single theory. :



^THEORETICAL MODEL

In this section we lay the groundwork for the general

analytic solution to the problem of electromagnetic scattering

of a plane wave incident on a spherical Moon of arbitrary con-
t •

ductivity a (r) and its downstream nonconducting cylindrical

cavity when the incident wave propagation vector is parallel

to the cavity axis. Following the notation of Schubert and

Schwartz [1969} we represent the incident field by

-u)t) uvaf ,
{ *} , . (1)
v. a J

= H0er . , . U .— incident — y

where E and H are the electric and magnetic fields, a , a and• — — . . • . . . . . — x ~ - y

a are the unit vectors of a Cartesian coordinate system whose~z . . • . . -. . . . . . . . . . ..

origin is at the center of the Moon, X is the wavelength, tu

is the circular frequency as measured by an observer fixed with

the Moon, HO is the amplitude of the magnetic field oscillation,
- • • ' . / • •

v = Xu)/2n and p is the magnetic permeability of free space.

Throughout this paper MKS units are used. Also the time dependence

—itut
e will henceforth often be understood. The wave propagates

v

in the positive z-direction which is also the axis of the cylindri-

cal downstream diamagnetic cavity. The Moon-cavity geometry and.

the geometry of the incident electromagnetic field are shown in

Figure 1. Both spherical coordinates (r, 8, cp) and cylindrical

coordinates (p, cp, z) will be used. The space outside the Moon



and the cylindrical cavity contains only the incident inter-

planetary electromagnetic field given by (1). The fields

associated with the current systems induced within the Moon,

on the lunar sunlit hemisphere and on the cavity boundary cannot

penetrate into this external region. The confinement condition

on the front side is approximately correct since magnetohydrodynamic

waves cannot travel upstream in the supermagnetosonic solar wind

plasma. Confinement to the interior of the cavity occurs because

downstream travelling scattered waves in the supermagnetosonic

solar wind are limited to the interior of the Mach cone extending

downstream from the lunar limb. Since the Madh angle is small,

the cylindrical surface is a good approximation to the Mach cone.

The confinement is accomplished by currents which flow in

the interplanetary plasma at the sunlit lunar smrface and the

cylindrical surface of the cavity. In the theoretical model

these currents are assumed to be ideal surface current distri-

butions, i.e. the current layers have negligible thickness. The

boundary conditions are the continuity of tangential electric

fields and normal magnetic fields on the sunlit lunar hemisphere

and cavity boundary.



THE MAGNETig FIELD IN THE LUNAR INTERIOR

. i

The electromagnetic field inside the Moon is most easily

written in spherical coordinates. In general it consists of

both transverse electric TE(E =0) and transverse magnetic

TM(H = 0) modes, however, we will neglect the TM field. At

the frequencies of interest f = W/2TT < 1 Hz , the TM induction

is negligible because of the relatively high resistivity

near the lunar surface. • _ -

On the sunlit lunar hemisphere, the radial component of

the lunar magnetic field H must be equal to that of the

interplanetary field (the permeability of the Moon will be

assumed to be that of free space). The application of this

boundary condition is facilitated by writing the TE part of the

incident interplanetary field in multipole form. Also, this

spherical harmonic expansion of the TE incident field serves to
*

indicate the form of the expansion for the lunar TE field. For

the TE part of the incident magnetic field (1) we have [Schubert

and Schwartz, 1972]

He

Hm. ^

_ v_
2Trir

incident

sincpj

sincp

coscp
, 4

CD

>I •* '
4=1

TE

2rrr.

sin9

(2)
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where

and j.(x) and P.(cos6) are the spherical Bessel functions and

associated Legendre functions, respectively.

The form of the TE magnetic field in the lunar interior is

identical to that of incident field (2) except for the radially

dependent functions. Following Schubert and Schwartz [1972] we

write ;

(3)

1 Vu*-{. r

c ^ Jlunar
TE .

SJ.I1CP

sincp

cosco

eo

v •• r. » .
L -L inl
1=1

\> \VTX/ • r p v l- (~' f c>u/r . v
&Gt A 1* d ^4 ^^._o>
dr d9 "/ ^"~.>

dG^ Pj(cos0)

dr sin9
k. •• ' . •

(A \

where

(5)

and A. are coefficients to be determined. The Gt (r) are
4, Is

solutions of the second order ordinary differential equation

d2G(

dr'

r,2 " = 0 (6)



subject to the conditions that G. are finite at the origin

and G.(a) = 1 . The latter condition on G. is only a Can-
't "t

venient normalization condition; the coefficients A, of each

multipole contribution to H inside the Moon are as yet unknown.

The propagation constant k is •

k = (ciu jae + ioujaa) 2 , (7)

where, for simplicity, M- and e have the free space values and

a is an arbitrary function of r (it is not any more difficult

to allow n and e to also be functions of r). As an example, for

the two layer Moon model with a perfectly conducting core of

radius b and an insulating shell of thickness (a-b)

0 r ••£. b . "

' ' <7>

b^r^a
. . 1 - (b/a)

for frequencies of interest.



THE CAVITY AS A CYLINDRICAL WAVEGUIDE BELOW CUTOFF

Before we construct the general solution for the electro-

magnetic field in the nonconducting cylindrical cavity downstream

of the Moon, it is instructive to consider the physics of wave

propagation in this cavity. Electromagnetic wave propagation

in a hollow cylindrical waveguide is a classical problem dis-

cussed, for example, in Stratton [1941]. A priori possible

modes of propagation are transverse magnetic TM(H = 0) and transversez

electric TE(E = 0). The TE and TM nomenclature in the cavity
Z • • _ . ' . "

should not be confused with similar designations inside the Moon.

The form of the incident field can be used to' restrict our

consideration of the number of possible modes. In cylindrical

coordinates the incident field (1) is

. , - v „ .

S
R • .A /-uvcoscp £_ - |_ivsirxp OK .

_ = H0e Isincp £ + coscp a J . *
incident

Thus we need only consider possible TE and TM modes of order 1,

for which the lowest cutoff frequencies are 50.52 Hz and 105.15 Hz,

respectively. The cutoff frequencies of the first order TE and

TM modes are given by c/2na (c is the speed of light in vacuum)

times the zeros of dJ, (x)/dx and J, (x) , respectively (J, (x)

is the Bessel function of first order) .
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V

Since the frequencies of interest are more than an order
/

of magnitude smaller than the lower of the above two cutoff

frequencies, disturbances caused by the Moon cannot propagate

down the cavity. Magnetic field perturbations in the cavity,

due to the presence of the Moon, are oscillatory, with amplitudes

which decay exponentially with distance down the cavity. . The

first order TE disturbance decays essentially as exp(-1.84z/a)

while the TM disturbance decays essentially according to exp(-3.83

z/a) . The electromagnetic field far downstream z—^ in the cavitrr

is independent of the presence of the Moon.



THE ELECTROMAGNETIC FIELD IN THE

FAR DOWNSTREAM CAVITY

The electromagnetic field in the cylindrical cavity far

downstream from the Moon can be obtained by a linear super-

position of elementary cylindrical wave functions [see Stratton,

'1941, pages 360-361]. From the form of the incident field (8)

only first order TE and TM modes could contribute to the cavity

field. Since there is no z-component in the incident electric

field, continuity of the tangential electric field on the

cylindrical boundary requires that the cavity field be a pure

TE mode. Continuity of the radial magnetic field H on p=a

uniquely determines the TE solution in the far downstream cavity.

The condition that the tangential electric field component E

be continuous on P=a is automatically satisfied. The solution

i s ' . ; • • .

>*>»

H
,?P"

H

- cut)

smp

coscp

sinco

^ 7l-v2/o2

.-V

(9)



-J.J-

2TTZ . v
<Wt)

V X

coscp
2no
X

-sin.

= o (103

where I, (x) is the modified Bessel function of order 1 and

I/(x) = dl,(x)/dx. The field in the far downstream cavity (9)

and (10) reduces to the incident field (8) in the limit ur»0 or

v-»c . .

The TE cavity field (9) and (10) is the result of a surface

wave on the cavity boundary induced by the incident field. This

is most easily understood by considering the surface wave on a

plane y=0 induced by a travelling wave (1). In the region y>0,

the field is everywhere the incident field and the half-space

y<0 is vacuum. The field in the vacuum is independent of x ,
i(̂ -U)t)

proportional to e and dependent on y. The vacuum

electric field has only an x-component which is given by

(11)



-14-

It is a surface wave travelling in the z-direction with speed v.

Its amplitude is exponentially damped with distance from the

surface into the vacuum. The attenuation depth is on the order

of a wavelength. Note that the electric field is continuous on

y=0. The vacuum magnetic field has a y-component given by

2rry /, 2/2 . ,*»*. . \
~^~ J-L-v /c i (—— -cot)

e * • e x , . (12)

which is continuous with the y-component of (1) on y=0. Since

the normal magnetic field in the vacuum is attenuated with

distance from the surface, vH = 0 requires that the surface

wave possess a z-component of magnetic field

- 2 H0 e

c

The surface wave is thus not a transverse wave, however, it is TE

Clearly (9) and (10) represent waves on the cylindrical surface

of the cavity which are induced by the passage of the inter-

planetary field. The magnetic field components are 90° out of
\

phase.

The surface current density K on the cavity boundary o=a is

c2 '-,.- - , - -n ~ sincp ~~~~— • (14)
cp U r
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z

fSnal- Zj \
I\ \ '•/ c2 /i (—r— -out) r j. \ A. • <_- •»

K_ = HQ e * cosr.p|l :i=::::::= T̂11111 -̂ J
o / 2 ,„ / 22na /-, v , A2na /, v
"TV1- ~T Ji VT'v1" 2c c

Note that K and K approach zero as w-O or v-c. The surface
co z ^

charge density S on p=a is

vH i (— -- ujt)
coscp

c 2na /, v / /2na /, v N
"T"̂ 1" ~2 Xl V'lT"/1" ~2J

As in the case of the currents, Z-*0 as (ju-'O or v-»c.

Figure 2 shows H /H.. and -E /uvH.,. as functions of p/a
p U cp u

n f x\- A. -v . - / -,
0 X jl -- - ) (16)

with "J1" v /c as a parameter. The dependence of H and E

on sincp.exp[i(— r — - ujt) ] has been suppressed. The field components
K.

H and E have been normalized with respect to the amplitudes

of the corresponding interplanetary field components. Thus the

continuity of H and E on p=a makes the normalized field com-

ponents unity on p=a, independent of the value of the wavelength

parameter. When the wavelength parameter is zero, the normalized

field components are identical to those of the incident field.

As the wavelength parameter increases the field components of the

surface wave are increasingly attenuated with distance from the
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cavity boundary,

The normalized cavity field components H and E are shown
OTT *^ y O O

in Figure 3 as functions of p/a with —— Jl-v /c as a parameter.

The cp, z and t dependences of H and E have been suppressed.

These field components are seen not to be continuous on o=a,

except when the wavelength parameter approaches zero and in this

limit H and E become uniform and equal to the incident field
cp p •

components. As the wavelength parameter increases, the amplitudes

of these surface wave components at p=a decrease and the attenua-

tion of these components with distance from the cavity boundary

increases. At o=0, E /uvHQ = H/
H
0
 = ~ E«/uvHo = H

P/
H0='°""

II
Figure 4 shows the cavity field component — ....'

as a function of p/a with the same parameter as in Figures 2

and 3. Again the cp, z and t dependences have been suppressed.

Note that the incident field has no z-component. Also the H
Z

in the cavity is 90° out of phase with all the other field

components. For the wavelength parameter equal to zero, H
Z

vanishes. As the parameter increases the normalized surface

amplitude of H increases, reaching a maximum value of about 1.1
£t

at a parameter value about 2.8, and then asymptotically decreases

to unity. As with the other components, the attenuation of H
£t

with distance from the cavity boundary increases with the wave-

length parameter. Note that H vanishes as p-»0.
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v • • -.
The'discontinuities in H and H at p=a are associatedz cp

with the cavity surface current densities K and K , respectively
CP Z T,

The normalized surface current densities K /Hn and
 ro —z u
i H^/l-vVc2

ar& shown in Figure 5 as functions of the wavelength parameter

(the dependences on z,t and cp are suppressed) .. A surface charge

density 2 is associated with the discontinuity in E" at p=a.

2The normalized surface charge density 2 c /vHQ is identical to

K /HO . As the wavelength parameter approaches zero the surface

currents and charge approach zero. The normalized K and £

monotonically approach unity as the parameter increases, while

the normalized K exhibits a maximum before eventually approach-

ing unity. The magnitude of the azimuthal cavity surface currents

exceeds that of the axial surface currents by a factor which

increases monotonically as the parameter approaches zero. As in

the case of H , K is 90° out of phase with K and £ .z cp . z

For a wavelength parameter smaller than 1/2 , the cavity

field components H , H , E , and E are essentially the same
D CO P Cp J

as the corresponding components of the interplanetary field. The

parameter value 1/2 corresponds to a frequency of 0.02 Hz , for

an assumed wave propagation speed of 400 km/sec. The wavelength

parameter must be smaller by a factor of 2 (frequency smaller

than 0.01 Hz) for H in the cavity to be negligible.
Z
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For hydromagnetic waves and discontinuities in the solar
P\ O O — R

wind v < 10 m/sec and v /c < 10 . Using the smallness of

2 2v /c , the expression (9) for the cavity magnetic field as

can be rewritten as

- o,t)
Hr»e sincp

2TT T/
~ II

In the limit of large wavelength i.e. 2-rra/\ « 1 , (17) is nearly

a plane travelling wave with the magnetic field in the y-direction.

With the aid of an identity from Cooke [1956] , (17) can be re-

written in a form appropriate for satisfying matching conditions

on the night side lunar hemisphere

m-1
. ..
: -,. •. -.-••.-- ;-,

. (18)

„ -iuot . o , xHe sincp r-, ( — T — )rn scp r-, — JT — : -,. •. -.-••.-- ;-,
H = V {— - 5— - r ) - - p- P_ (cosfl)}L T/ (̂n3.) u rm-n) '
-, •'•I ( \ ' m=l \m+±} •
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MATCHING THE LUNAR AND FAR

CAVITY MAGNETIC FIELDS
• . f

The far cavity field satisfies the boundary conditions on

the cylindrical cavity surface exactly. To match the lunar TE

magnetic field to the far cavity magnetic field it is only

necessary to add to the far cavity magnetic field the decaying

TE mode of the cylindrical waveguide. The"decaying TE mode

satisfies H = E = E =0 on p=a and consequently the sump cp z ^

of the far cavity field and the TE waveguide mode match the

incident field correctly on the cavity surface p=a. The magnetic

field of the decaying TE waveguide mode can be written [Stratton,

1941, p . 541] . . - " • - .

Hcp

VHz

• = H,

m=l

«

if Ji

(J1(ymP/a)/p)cosjp

m
)sincp

(19)

where y for m=l,2,***-* are the ascending zeros of J,' (x) ,

(20)
UJm



and in is the mth cutoff^ frequency cy /a . As noted in our

discussion of the cavity as a waveguide below cutoff, the

frequencies of interest lie one or more orders of magnitude below

the smallest cutoff frequency of about 50 Hz. Thus it is an

excellent approximation to take h «« y /a and rewrite them «m

magnetic field (19) as

00 _y z/a
£=V{HQ I sincp Cm e

 m (̂v̂ )} . (21)

m = l - • • - . . _

This is identical to the quasistatic cavity disturbance field

determined by Schubert et al. F1973]. To match with the lunar

TE magnetic field on the night side hemisphere, (21) must be

rewritten in spherical coordinates. Using Cooke [1956] we find

••>'=. °° °° / JLHL_\
H= v{-sinco Hn 7 C V .. * t P* (cosR)} . (22)
~~" ' • v U i—i IU ^_j \ \,~r J_ •) • -i t - j

- m=l f=l

Because we have used only the decaying TE waveguide mode

to appropriately match the magnetic fields on the night side

lunar surface, some mismatch of the electric fields is possible.

This could be corrected by the inclusion of the decaying TM

wavequide mode (and the lunar TM mode)"which would contribute

i 2 2
a magnetic field a factor of ui /«) smaller than the TE magnetic

field. Thus for the frequencies of interest we make a negligible

error by matching with only the decaying TE waveguide mode.
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COMPLETE ANALYTIC SOLUTION ; "

In the previous sections we developed representations

for the TE magnetic field in the lunar interior (4) and in the

cavity, the sum of (17) and (21), for an incident linearly

polarized plane wave propagating in the positive z direction with

8velocity v«c(=3xlO m/s) , frequency f« 50 Hz and with the

magnetic field vector in the y direction. These forms contain

two infinite sets of constants A and C which must be evaluatedn n

by using appropriate boundary conditions. By the manner in which

we constructed the cavity field, the boundary conditions at the

cylindrical cavity surface, p=a , are automatically satisfied.

The continuity of the normal component of the magnetic field at

r=a over the entire Moon and the continuity of the tangential

component of the magnetic field on r=a in the cavity, 0^ &s — ,

determine the doubly infinite set of constants. The algebraic

detail of this procedure is given in the appendix, together with

final formulae for the A and C .n n



v SUMMARY '

In this paper we have, obtained the general analytic

solution for the interaction of the Moon and its downstream

cavity with a linearly polarized plane electromagnetic wave

propagating in the direction parallel to the axis of the cavity.

The solution is formulated in terms of a spherical Moon model

with arbitrary radially dependent electromagnetic parameters

and a nonconducting cylindrical downstream cavity. A number

of approximations consistent with the physical circumstances

of the Moon-solar wind interaction and our present ability to

measure this interaction have been made. Outside the Moon and

the cavity the electromagnetic field is the incident interplanetary

field. The electrical conductivity of the near lunar surface

is sufficiently low to suppress the TM lunar field. The incident

wave velocity v is much less than the velocity of light in

vacuum/and the highest frequency of interest is of order 10 Hz.

All but the first of these assumptions could be relaxed without

presenting any special difficulty in carrying through the solution

with the methods of this paper. •
\

Of particular significance is the finding that for frequencies

below about 50 Hz, the diamagnetic cavity is a cylindrical wave-

guide below cutoff, i.e. cavity electromagnetic field perturbations

due to the Moon decay exponentially with downstream distance.
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Thus the quasistatic representation of the cavity perturbation

magnetic field due to the Moon given by Schubert et al. [1973]

is valid for frequencies as high as 10 Hz. This is not to imply

that the quasistatic solution for the lunar and cavity magnetic

fields is valid at such high frequencies. Quite to the contrary,

high frequency modifications in the lunar and cavity magnetic

fields will be present at frequencies above abomit 0.01 Hz.

Far downstream from the Moon, the interplanetary field

forces a surface wave to propagate down the cavity boundary.

The far cavity field, which is determined by this, propagating

surface wave, is different from the interplanetary field, e.g.

it has an axial magnetic field.component. These differences

become more significant as the frequency of the field increases.

The far cavity field is independent of the presem'ce of the Moon

whose cavity field perturbations will be damped within several

lunar radii downstream. Differences between the interplanetary

and cavity fields measured farther than a few iTmrnar radii down-

s'tream must be attributed to the cavity itself,? they can yield

no information about the lunar electrical conductivity.
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v APPENDIX ' -

To determine the unknown coefficients A and C firstn n

consider the continuity of the normal component of the magnetic

field on r=a. We can write this condition in the form

O , TT2J05TT/2 ,
oo

£ I ('.+!) r t(A t-l)P^(cosfl) =

'"=1 . -- £ I nin§nPn(cos9) -
h=l

CO 00

Y (%) Y n(-l)nepj-(cos9)-i-j a L-• m n
m=l n=l

(n+1)!

(n+1) !

2

1=1 (A-1)

where

n
I . • -

(A-2)

CA-4)

n - , > ,
Q - -- I (-r-) .. (A-4)



A-2

Multiplying (A-l) by P /(cosR) sin9 d0 and integrating from'O
\>

to n yields

(2//+1)

00

m=l
(A-5)

for //=1,2,3, where

-t'U'+D ./_,» -o —-c/
, 2//+1

P = - ' (A-6)
•. //.* ' "

g../ «:(*--c,') (/,+̂ /+D = - g./. . (A-7)
•

On the lunar night side, within the cavity (-j >fl^0) and

on r=a , both H- and H are continuous. It is sufficient 'to use

only the continuity of H . This leads to the equation

0

Q̂̂ - pj" (cosR)-

n) , (A-8)a /--. m . n
m=l n=l



where

(A"9)

To generate a set of equations for the unknown coefficients

from (A-8) we note that on O^fl^n/2 the odd associated Legendre

functions form a complete set. Expanding (A-8) in terms of this

set gives the infinite set of equations,

m=l

where /. '=1, 3, 5,

Equations (A-5) and (A-10) are sufficient for the determina-

tion of the A. and C . After considerable algebraic manipulation*o /» .
a single set of equations can be derived for the C . . ,

• . . . - . • \f

CO t i I * \ '
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n=l,odd: gln

for. £'=1, 3, 5, • • • In the limit v-c and X-»» (A-ll) reduces

exactly to (A-31) of Schubert et al. [1973] with the identifica-

tion of u as l(l+l)a. . Equation (A-ll) represents an infinite

set of linear equations (one for each -{,') for the infinite set of

unknowns C . Since the C eventually decrease in importance asm • m .

m increases the set of equations can be solved numerically by

truncating in m and L'. This was done in the quasistatic limit

by Schubert et al. F19731 and will be done for various Moon models

using the present theory in a future paper. Once the C have been

found, the A may be obtained from (A-5). After some algebraic

manipulation we find
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and for t even
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(A-13)
m=l

Again, in the limit of v-»c and X-"°° , the equations for the

quantities T.A. formally reduce to equations (A.SO) and (A.31) of

Schubert et al. [1973] .



FIGURE CAPTIONS

Figure 1. The geometry of the asymmetric lunar electromagnetic

scattering problem.

Figure 2. The far downstream cavity field components H and E

normalized to the corresponding incident field

components as a function of normalized distance from

the cavity axis with —r— A/l-v /c as a parameter.

Figure 3. The far downstream cavity field components H and E

normalized to the corresponding incident field components

as a function of normalized distance from the cavity

axis with —r— A/!~V /c as a parameter.

Figure 4. The far downstream cavity axial magnetic field

I 2 2~H /i H-^/l-v, /c as a function of normalized distance
Z \J •

from the cavity axis with 2rra as a parameter.

The dependence of H on z, cp and t has been suppressed.

Figure 5. Normalized surface current density ;. and charge

density on the far downstream cavity boundary as a

function of —y^ ./1-v /c . The dependence on z, cp

and t has been suppressed
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