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"EXACT ANALYTICAL SOLUTION TO A TRANSIENT CONJUGATE
HEAT-TRANSFER PROBLEM
by James Sucec*

Lewis Research Center

SUMMARY

An exact analytical solution is found for laminar, constant-property, slug flow over
a thin plate which is also convectively cooled from below. The solution is found by
means of two successive Laplace transformations when a transient is initiated by a step
change in the fluid inlet temperature. Two cases are considered: (1) the case where
the fluid and the plate are originally at the coolant temperature before the step change
in inlet temperature and (2) the case where the fluid and the plate are at the eventual
steady state of the first case when another step change in inlet temperature occurs.
Results are given for the temperature within the moving fluid as a function of space
coordinates and time, for wall surface temperature, and for surface heat flux. The re-
sults of the exact solutions are compared with the quasi-steady values, and a criterion
for the validity of the quasi-steady solut1on is evolved. Also the effect of the flu1d-to—
plate coupling is investigated.

One notable difference between this type of transient (a step change in the fluid inlet
temperature) and the transient induced by a step change in wall temperature is the ab-
sence of infinite and very large heat fluxes, which are characteristic of the transient
induced by a step in the wall temperature.

INTRODUCTION

This report analytically predicts the transient surface heat flux and temperature,
on a cooled turbine blade or vane, caused by an abrupt change in the inlet temperature
of the gas stream.

* Associate Professor of Mechanical Engineering, University of Maine, Orono,
Maine; Summer Faculty Fellow at the Lewis Research Center in 1972.



In the design of blades and vanes for gas turbine engines, situations often arise
where the fluid flowing over a solid boundary undergoes a transient, thus inducing time-
dependent surface temperatures and heat flux. More often than not, a quasi-steady
analysis is apphed to such a problem; that is, it is assumed that the steady-state rela-
tions for the heat flux and the surface coefficient of heat transfer are approximately
valid at each instant of time so long as the instantaneous values of temperature and
velocity are inserted into these relations. That the quasi-steady approximation can in-
duce appreciable error has been demonstrated in many publications, among them refer-
ences 1to 6. Sparrow (ref. 1) solves the problem of a step jump in the surface temper-
ature at a two-dimensional planar stagnation point for laminar, constant-property flow
when the velocity field is steady. By inserting Kantorovich velocity and temperature
profiles into the integral form of the energy equation, he obtained approximate solutions
for the transient surface heat flux and surface coefficients of heat transfer. In particu-
lar, he found that for small times, the process was that of pure conduction, with the
result that the heat flux at the surface is inversely proportional to the square root of the
time from the step change in temperature. Hence, very large (relative to steady-state
values) surface heat fluxes are present during the initial portion of this type of transient.
The linearity of the cons_tant_-propefty energy equation allows the response to the step
change in wall temp_eréture to be.generalized to a wall temperature which varies arbi--
trarily with time. This he a.ccoAmplAished by way of the superposition integral. Siegel
and Sparrow (ref. 2) solve for the transient surface heat flux due to a step change in
wall temperature for the laminar thermal entrance region of flat ducts. Again, Kantoro-
vich approximating sequences are used for the velocity profile (steady) and for the un-

. steady temperature profile. This time, however, insertion of these profiles into the
integral form of the energy equation yields a partial differential equation for the thermal
boundary layer thickness as a function of axial distance and time. They use the method

. of characteristics to arrive at the solution, which is then generalized by superposition
to handle wall temperature variations that are arbitrary functions of time but are spa-
tially uniform. The step change in surface flux and its generalization is also considered.
The problem of transient heat transfer for laminar slug flow in ducts yields to the tech-
nique of separation of variables in an exact analytical solution by Siegel in reference 3.
Cess (ref. 4) solves for the transient surface heat flux in laminar, constant-property,
steady-velocity flow over a flat plate which has its surface temperature changed ab-
ruptly. He finds a series solution for small time.in the physical plane, and one for long
time in a Laplace transform plane. These limiting solutioﬁs are then joined, in an ap-
proximate manner, in the Laplace transform plane, and the result is inverted to give the
surface flux over the entire time domain. Goodman (ref. 5) uses a Lighthill-type veloc-
ity profile in the integral energy equation to yield an equation which can be solve?l by
characteristics for arbitfaryﬂfree- stream velocity variation with position along the sur-



face of interest when the wall temperature abruptly changes. In reference 6, Chao and
Jeng deal with unsteady heat transfer due to either wall temperature variation or wall
flux variation with time at either a two-dimensional planar or an axisymmetric stagna-
tion point. Sparrow and Siegel (ref. 7) consider unsteady turbulent heat transfer in
tubes due to a step change in the wall temperature at time zero. Chambré (ref. 8) uses
a double Laplace transformation to arrive at an exact analytical solution for the tran-
sient heat transfer in laminar slug flow of a fluid over a plate insulated on the bottom
but containing an exponential generation term. Axial conduction in the plate is neglected
and the temperature distribution in the transverse direction is lumped. Thus, the plate
has no internal resistance to energy flow in that direction, but it does have finite ther-
mal storage capacity. This finite thermal storage capacity couples the transient tem-
perature distribution in the fluid to that of the plate and, hence, it becomes a transient
conjugate problem (see Perelman, ref. 9). Transient local surface temperatures of
the plate are presented for the case where both the plate and the fluid are at zero non-
dimensional temperature initially, then the exponential generation term is turned on
while the fluid approaching the leading edge of the plate stays at a nondimensional tem-
perature of zero. Note is taken of the plane ''wave'' phenomenon peculiar to slug flow,
namely that the "'front'' of fluid which is located at the leading edge, at the instant when
the generation in the plate is turned on, separates the thermal fluid field into two vastly
different regions. Ahead of this front, the process is one of conduction in the fluid with
no mixing; whereas, behind the front there is mixing due tQ fluid being processed over
the leading edge. Siegel (ref. 3) also discusses this effect in some detail. In refer-
ence 10, Soliman and Chambre use double Laplace transformations to find an exact
analytical solution for the case of laminar, constant-property flow with a steady veloc-
ity distribution which is a linear function of distance away from a plate which undergoes
either a step change in the surface temperature or in the heat flux.

In reference 11, Inouye and Yoshinaga use an approximate integral method to solve
two problems of unsteady heat transfer at a stagnation point. In their first problem, the
wall temperature is constant and the transient is caused by a step change in the fluid
temperature. They indicate that there is no published work on this type of problem.
However, it seems to this author that, near the stagnation point, there should not be any
difference between the solution for a step change in wall temperature and their solution
for a step change in the fluid temperature. This is so, because when the fluid tempera-
ture abruptly changes, it changes for all the fluid. There is no waiting for free-stream
fluid which has had its temperature changed to be carried to any point on the body.
Hence, the physical situation looks just like a fluid with constant temperature in contact
with a wall, at a stagnation point, which has just had its temperature abruptly raised.
Inspection of the relevant partial differential equations and the boundary and initial con-
ditions also bears out this conclusion. As a final check, this author compared, for a



Prandtl number of unity, a few selected predictions for the surface heat flux from the
paper of Inouye and Yoshinaga (ref. 11) with those of an earlier paper by Chao and Jeng
(ref. 6) and found excellent agreement between them. In the second stagnation-point
problem worked in reference 11, the wall has its rear surface insulated and is initially
at the temperature of the fluid when suddenly the fluid temperature is changed. Axial
conduction was neglected in the plate and the plate temperature was lumped in the trans-
verse direction, but the plate had finite thermal storage capacity. Hence, this is a
transient conjugate problem, as was the problem in reference 8. Approximate results
for the surface heat flux and wall temperature are given as a function of time for vari-
ous values of a transient coupling parameter. Lyman (ref. 12) solves for the wall heat
flux and wall temperature at a stagnation point when the free stream suddenly exper-
iences a step change in its temperature. His is a conjugate problem which he solves in
an approximate fashion using Kantorovich profiles in the integral form of the energy
equation for the fluid while retaining the partial differential equation for the solid wall.
For the case of a semi-infinite wall an approximate solution for all values of time is
found. Short- and long-time approximate solutions are found for a finite thickness plate
insulated on its lower surface. Unlike the approach of reference 11, Lyman applies the
step change in free-stream temperature to the outer edge of a thermal boundary layer
and calculates the transit time needed for the wall to feel the effects of this change.
Thus, for times less than the transit time, the wall flux is zero. The flux is never in-
finite even at the time when the wall first learns of the free-stream temperature change.
By that time a smooth continuous temperature profile has developed in the thermal
boundary layer, thus negating the possibility of an infinite temperature gradient at the
wall.

Except for the conjugate problems of references 8, 11, and 12 and the present re-
port, there does not seem to be any literature on transient conjugate problems. How-
ever, some steady-state conjugate probléms in forced-convection heat transfer can be
found in references 9 and 13 to 17.

The instigation for the present work was the transient in the fluid, flowing over gas
turbine blades or vanes, induced by a change in the fluid inlet temperature due to startup
or due to a change in the power level of an already operating engine. One wishes to pre-
dict the transient surface flux and the surface temperature variation. This problem,
unlike the other transient heat-transfer problems already solved in the references, is
unique in the sense that the reason for the transient is not some prescribed wall tem-
perature variation with time. Rather the transient occurs because of the change in the
fluid temperature at the leading edge. In addition, a blade or vane does not usually have
some prescribed temperature but rather has prescribed internal coolant conditions.

And hence, the solid over which the fluid flows has its temperature distribution coupled
to that of the fluid - a conjugate problem.



ANALYSIS

A cooled gas turbine blade or vane will be idealized as a thin flat plate of thickness
b which has its lower surface exposed to coolant at a constant temperature T c and
which has a constant surface coefficient of heat transfer h c between the coolant and the
lower surface. The hot combustor gases at temperature T, and velocity u_ flow
over the top of the plate as depicted in figure 1. (All symbols are defined in appendix A. )

————— Gases at Ty, and Uy

~

4,
N
Coolant @ T, and hy T

Figure 1. - Schematic diagram of physical situation.

The analysis is for laminar, constant-property, two-dimensional planar, boundary-
layer-type flow without appreciable viscous dissipation.

Solution for Step Change in Fluid Inlet Temperature When

Fluid and Plate Are at Coolant Temperature

At time t = 0 both the plate and the fluid flowing over the plate are at the coolant
temperature Tc when suddenly the fluid for x = 0 has its temperature changed to a
value T different from T e (The problem of a step change in the inlet temperature
after the steady state has been reached, which occurs when going to a different power
level or in shutdown of the engine, can be easily handled once the solution to the case
just described is available.) The surface-heat-flux, plate-surface-temperature, and
temperature distributions within the moving fluid are required for all values of time
t > 0. In order to investigate the general character and trends of such a solution, some
further idealizations are made which permit an exact analytical solution. These ideali-
zations are a steady slug flow velocity field (which corresponds to vanishingly small
Prandtl numbers), neglect of axial conduction in the plate (which can sometimes be
justified physically on the basis that cooled blades and vanes are relatively thin walled
and constructed of relatively low-thermal-conductivity material), and lumping of the
temperature distribution in the y-direction in the plate (which can often be justified if



the plate Biot number, based upon b and the larger of the coolant-side surface coeffi-
cient and the gas-side surface coefficient, is relatively small). With 4 =T - T, the
partial differential form of the thermal energy equation for the fluid is (see, e.g.,

ref. 18)

EQ+uwﬁ=cvzf§-2—9- (1)
ot 0xX ay2
The boundary conditions are
t=0 x>0 y>0 9=9C=T0'Too (2)
x=0 t>0 y>0 6=0 (3)
y - t>0 x>0 06 isfinite (4)

Next make an energy balance on the plate material, neglecting axial conduction and ther-
mal resistance in the y-direction. Note that the plate temperature at any x and t must
equal the fluid temperature at the same value of x and t. Thus, the partial differential
equation for the plate temperature becomes a boundary condition for equation (1),
namely,

h
y=0 t>0 x>0 2. C@E.g).r (5)
ay kf ot

where r = pst’ sb/kf and is a measure of the thermal storage capacity, per unit length,
of the plate material.

The solution of equation (1), subject to the side conditions (2), (3), (4), and (5), was
approached by way of two successive Laplace transformations. First, the Laplace
transformations of the equation and the appropriate boundary conditions with respect to
time were taken. The transformed temperature function in the first transformed plane is

5:5{[9]:/ ge Pt gt (6)
t—p 0

Performing the indicated transformation yields



y=0 x>0

2 g 20 (™)

9=0

x>0 @ is finite (8)

- h [/ 8 _
9 __¢ <9__9>+ r(pé - 9,)
oy kf P

Next, a Laplace transformation with respect to x is taken for equation (7) and the last

two equations of the set (8).
formed plane is defined as

The transformed temperature function in the second trans-

(9)

w —
/ e~ 5% dx
0

This operation yields the following ordinary differential equation and its associated

boundary conditions:

2z fu_s +p\= 0 :
76 [ §=--—C (10)
dyz Qg Say
y—~© 8 is finite (11)
= /h _ h
y=0 0 C.rpl)h-g (L2 (12)
dy kf s kfsp

Solving equation (10) and subjecting its solution to condition (11) and to condition (12),
which is actually the conjugation condition, yield the solution for 8 as

h
— +rple
k

-y Y (u,s+p)/ oy

(13)




Since one is primarily interested in the surface-temperature distribution and the
surface-heat-flux distribution, he can, in the spirit of Lighthill (ref. 19) invert equa-
tion (13) with y =0 and invert dd/dy at y = 0, rather than the entire temperature
distribution. Since the successive inversion with respect to x and t of equation (13)
is not all that formidable, the author has inverted equation (13) and then computed the
wall temperature and surface heat flux by operations in the x, y,t-plane. As an internal
check the transformed surface-heat-flux and surface-temperature distribution in the
s, ¥, p-plane was also inverted and exact agreement was noted. All the inversions were
performed by using tables of transforms (specifically, refs. 20 and 21) in conjunction
with the substitution, translation, and convolution theorems of the operational math-
ematics. Details are given in appendix B.

When the nondimensional variables

uOO
ag
h ’afx

and

€ = —m——

X
o
2r

are introduced, the exact analytical solution for the nondimensional temperature excess
ratio in the moving fluid becomes

2
S _1iur-1) (—1 + erfc[Y] - e21Y+N {erfle( - 1) + n + Y] -erf[n + Y]}) (14)
0
c

where u(7 - 1) is the unit step function, that is,



=0 for 7<1
u(r - 1) =+1 for 7> 1
The surface-temperature variation is found by setting Y = 0 in equation (14), which

gives

2
W - 1)(_e" ferfle(r - 1) + 7] - erf[n]}) (15)

B¢

The nondimensional surface heat flux Qw is defined as follows:

q

Q, =——— (16)

The denominator in equation (16) is the surface heat flux that would obtain in steady,
slug flow over an isothermal plate at temperature excess equal to 6 '
It can be readily shown that

i

Yhy=0

With this and equation (14), the exact analytical solution for the nondimensional surface
heat flux becomes

2 2 2
Q, = e [€7(7-1)%+2me(7-1)] V7 ne’ {erfle(r- 1)+ 7] - erf[n]} for 7=1

Q_w=0 for 7<1 J

The exact analytical solution for the nondimensional temperature is seen to satisfy
the side conditions of equation (1) and, as a final check on the solution technique, equa-
tion (14) was substituted into the governing partial differential equation (1) and was found
to satisfy it identically in the domain of definition of #. Some limiting cases of equa-
tions (15) and (17) have also been checked to ensure that they agree with physical reason-
ing. If n - o, interpreted as hc - o, the plate must be at the coolant temperature
excess 0 ¢’ and the nondimensional flux Qw should reduce to that appropriate to an

(17)



isothermal flat plate, namely unity. By applying L'Hopital's rule to the second term of
equations (15) and (17), it is readily seen that, as

n-w 6, -6, Q-1 (18)

The coupling parameter € — 0 corresponds to infinite thermal storage capacity of the
plate. And since the plate is initially at 8 e’ it would behave, with € ~ 0, as a heat
reservoir at 6 c for all values of time. Hence, Qw should be unity. Equations (15)
and (17) properly reduce to this degenerate case also.

Solution for Step Change in Fluid Inlet Temperature

After Steady State Had Been Reached

The eventual steady state reached in the previous case can be found by letting the
nondimensional time 7 - « in equations (14), (15), and (17). This yields

6 2
L erfe[Y] - e2n Y erfc[n + Y| (19)
c
6 2
_W,88 _1-¢" erfc[n) (20)
6
c
2
Qw, ss =V?'r]e77 erfc[n]| (21)

where Qw, ss denotes the eventual steady-state value of QW and similarly for the
functions ess and Bw’ ss®

Now the following problem is considered: the plate of figure 1 is in the steady state
described by equations (19), (20), and (21), where the fluid inlet temperature is T_,
when suddenly the inlet temperature of the fluid is changed to a different value, TO,
which corresponds to an increase or a decrease of the power level of a gas turbine en-
gine (a so-called acceleration or deceleration). Once again, we would like to predict the
temperature distribution within the moving fluid and the surface-heat-flux and surface-
temperature distributions in this type of transient. The governing partial differential
equation is still equation (1) and side conditions (4) and (5) remain the same. Side con-
ditions (2) and (3), however, take the following form:

10



t=0 x>0 y>0 06=0 (22)

where 6. is the function of x and y given in equation (19), and
x=0 t>0 y>0 6=Ty-T, (23)

Because of the case previously solved, it is natural to seek a solution to this case by
using the following decomposition:

6(x,5,1) = @ (X, ¥,t) + 6 (x,Y) (24)
Inserting equation (24) into equations (1), (4), (5), (22), and (23) yields

&, ¥,t) =Ty - T, + v(x,y,1) (25)
where ¥(x,y,t) satisfies equations (1) to (5) if 6, is replaced by T - TO' Thus, thé
solution for y(x,y,t) is equation (14) with b replaced by T_ - T0 and, of course, y

in place of §. Doing this and using equations (25), (24), and (19) yields the exact ana-
lytical solution for the temperature distribution within the moving fluid for this type of

transient as follows (details in appendix C):

2
L erfe[Y] - e2n¥+m erfe[n + Y]
]
c

To- T 2
+ T0 T°° u(7 - 1)<'1 + erfe[Y] - 2N Y4 {erfle(r - 1)+ 5+ Y] - erfln + Y]b o

had c

Setting Y = 0 in equation (26) gives the surface temperature excess ratio as

6 2 /r--T_\ 2
W_1-€" erfe[n] - u(7- 1) YTl {erfle(T- 1) +n] - erf[n]} (27
0, T, - T,

By operating on equation (26) and using equation (21), the transient surface heat flux
% can be put in the following convenient form:
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Qw =1 for 7<1 (28)

Qw, Ss

For 7> 1, Q, g5 is given by equation (21) while Q,, is given by equation (17).
)

RESULTS AND DISCUSSION

The first case considered is where both the fluid and the plate are initially at tem-
perature T c and suddenly the temperature of the inlet fluid at x = 0 is changedto T
and held there. Plots are presented, for this case, of nondimensional surface heat flux
QW and nondimensional temperature excess ratio 6 w/ 8, infigures 2 and 3, respec-
tively, as functions of a time parameter e(7 - 1). The plots are presented for various
values of 7 ranging from 7 = 0 (lower plate surface insulated) to 7 — © (which corre-
sponds to a constant plate temperature T c). The values of 17 between these two ex-
tremes were chosen not only to illustrate the trends of the flux and the temperature with

kf Uoo

o0

oo
'”GfX

Q- qw/"fec

Instantaneous nondimensional surface heat flux,

| | I [ l ! l N
0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
et-1

Figure 2. - Heat-transfer response to step change in inlet temperature when fluid and plate are initially
at coolant temperature.
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Figure 3. - Wall temperature response to step change in inlet temperature when
fluid and plate are initially at coolant temperature.

17, but also to be in a reasonable range of possible application. A study of 1 shows, by
its definition, that it is a measure of the coolant-side surface coefficient divided by the
local gas-side surface coefficient. In the range of gas turbine application, this param-
eter could vary from about 0 to unity, with n = 0 corresponding to a solid uncooled blade
or vane and with 5 = 1 corresponding to a relatively sophisticated internal cooling
scheme such as impingement or impingement with crossflow. The choice of €(7 - 1) as
the abscissa rather than €7 is dictated by the fact that because of the unit step function
in the solution, Qw is zero for 7 <1 and only attains nonzero values for 7> 1. A
similar statement holds for ew/e . This is a result of the fact that the plate at position
x does not realize the inlet temperature has changed until the fluid that was at the inlet
at 7 =0 reaches the position of interest. Inspection of figure 2 shows that as 7 de-
creases there is a more pronounced variation of flux QW with time, as would be ex-
pected based on the previous discussion of the limiting case 7 — %, in which there is
really no transient in the plate. Study of figures 2 and 3 allows determination of the
value that €(7 - 1) must be greater than or equal to so that both the surface flux and the
surface temperature excess ratio are within 5 percent of their steady-state values.

This critical value of €(7 - 1) is denoted as a*; the values of a* are presented in the
following table for various values of 7:

13



h, fax Value which a time parameter, €(7 - 1),
=15 | must be greater than for solution to
f « be within 5 percent of steady state,
a*
0.25 1.75
.50 1.375
1.00 .875
b 0

For 5 =0, this type of criterion does not hold since the steady-state values of Q and
ew/ec are both zero. For this case, 5 = 0, it may be noticed that for e(7- 1) = 2,
both @, and ow/e ¢ are less than 0.02.

The influence of the coupling parameter € can be seen by reference to figure 4
where Q. is plotted versus 7- 1 for different values of € at two different values of
7. One immediate observation is that the eventual steady-state QW is independent of ¢
and dependent only on 7. That this should be so can be verified by recalling that neglect
of axial conduction in the plate and the lumping of the plate temperature in the y-direction
causes the plate temperature to be coupled to that of the fluid only through the thermal
storage term of the plate. And in the steady state, the thermal storage capacity of the
plate is immaterial since the plate temperature does not change with time. Side condi-
tion (5) shows this also since in the steady state 96/dt = 0, and the solution must be

0o

Uso
Q= Gu/kc o

Instantaneous nondimensional surface heat flux,

S~
—
>~ I I = |
0 .5 1.0 L5 2.0 2.5 3.0 3.5 4.0 4.5

Figure 4. - Influence of coupling parameter e on heat-transfer response to step change in inlet tem-
perature.
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independent of r and therefore of €. Also the effect of increasing € on the nondimen-
sional flux QW is decreased with increasing 7, as would be expected from the prior
discussion of the limiting case 5 —~ «.

A physical interpretation of the coupling parameter € can be made as follows:
From its definition and the definition of r,

After some algebraic manipulation this becomes

X
pfcp, f u
€= 2 (29)
2pst, Sb

But for steady, laminar, slug flow over an isothermal plate, the thermal boundary layer
thickness is proportional to the square root appearing in the numerator of equation (29).
That is,

Therefore,

PGy 1%

PsCp, 5P

€

Thus, € is a measure of the ratio of the thermal storage capacity of the boundary-layer
fluid per unit length to the thermal storage capacity of the solid plate per unit length.
Hence, when € is very small, € ~ 0, the plate temperature excess will remain at 8 e’
giving the previously discussed limiting case of Qw = 1. At the other extreme, ¢ ap-

15



proaches <, meaning that the plate has essentially zero thermal storage capacity com-
pared to the fluid and thus reacts to impressed thermal loadings instantly and without
hindering the fluid. This case causes a rather degenerate transient in which QW is
zero for 7 <1 and equal to its steady-state value for all 7> 1, the steady-state value
being the function of 7 given by allowing € to approach <« in equation (17). Doing this
gives

2
Q, ~y7nel ericlh] as e~w for 7> 1

For this case, once 7 is greater than unity, the deviation of Qw from unity results
solely from the thermal history effect. (Recall that the definition of Qw requires that
it be unity for an isothermal surface at temperature excess 6 ¢’ ) An interesting obser-
vation from figures 2 and 4 is that the nondimensional flux never achieves the infinite or
extremely large values which are characteristic of solutions in which there is an abrupt
step in the wall temperature caused by the pure conduction process ahead of the fluid
front located at x =0 at t = 0. This observation agrees with the results presented in
reference 12, where a transient stagnation-point problem was worked for a step in free-
stream temperature which required a nonzero transit time to be felt at the solid surface.
When trying to establish conclusions based on figures 2 or 4, we must keep in mind
that the surface flux has been normalized by dividing it by the steady-state surface flux
for an isothermal flat plate at 4 c’ If we compare the ratio of the instantaneous flux for

. N D RN NN NN R SR B
-1.0 -5 0 .5 1.0 L5 2.0 2.5 3.0 3.5
e(t-1)

Figure 5. - Heat-transfer response to step change in inlet temperature when fluid and plate are in an
initial steady state with their temperature not equal to coolant temperature. 7= 0. 50;
(Mg ~ TeolllTeo - T¢) = 2.0
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particular values of 7, €, and 7 to the eventual steady-state flux at the same 7 and e,
and the picture, of course, is vastly different. For instance, at 7 =0.50 and 7 =1,
the ratio of the surface flux at 7 =1 to the eventual steady-state flux (7 — ) is 1. 833.

In figure 5, one representative curve for the transient flux is given for the situation
where steady-state conditions originally prevailed. Thus, the surface temperature and
flux are given by equations (20) and (21), respectively, and the inlet temperature is T_,
when suddenly the inlet temperature is increased to the value TO' For 1 =0.50 and
(T - Te)/(Tq - T¢) = 2, the ratio of the instantaneous nondimensional flux Q! to the :‘
flux Qw, ss which existed in the original steady state is plotted versus the time param-
eter. As shown in figure 5, Qy = Qw, gg forall 7 < 1. Then, when the fluid that was
at x = 0 when the inlet temperature was changed arrives at any position corresponding
to 7 =1, the flux increases and then gradually decays to its new higher steady-state
value.

The simplest approach to transient convection heat transfer is the quasi-steady
analysis where we assume that the steady-state relations for the wall heat flux are ap-
proximately valid at each instant of time if the wall temperature at each instant of time
is used. For the laminar, constant-property, slug-flow problem, the quasi-steady wall
flux, qw, gs is given by

—X dt (30)

qw,qs‘ f T

Equation (30) is derived in appendix D by using Lighthill's approach (ref. 19).
An energy balance on a length dx of plate using equation (30) yields the following
equation for the quasi-steady wall temperature excess:

36 /‘X 20
w 1 w _
—¥.a —X dE =b, (6, - 6

o W) (31)
at jO \/?: o

where
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and

hC
b, = —S—
PsCp, sP

Two successive Laplace transformations, for the cases where GW =6 c at t=0 and
8y =0 at x =0, reduce equation (31) to an algebraic equation that can be inverted to
give the following quasi-steady wall temperature distribution:

6 2
W95 -1 - e {erfleT + 7] - erf[n]) (32)

%

The quasi-steady flux is most easily calculated from equation (31) since the integral
term is directly related to the flux through equation (30) and 9w is now known from
equation (32). The result for the nondimensional quasi-steady flux QW as is

2.2 2
Qy gs = o~ (€574 2neT) | 7 ne'l {erflet + 1] - erf[n]} (33)

Figure 6 shows, for n=0.5 and € =1, the quasi-steady flux given by equation (33)
as the dashed line and the exact transient flux given by equation (17) as a solid line. As
shown, the quasi-steady approximation is not very good for this choice of parameters
n and €. In particular, the quasi-steady solution does not predict the lag time 7 =1
needed before a position on the plate can know that the inlet fluid temperature has
changed. Lyman, reference 12, notes this also in connection with his transit time. In

1.0 ——— Exact solution

— — — Quasi-steady solution

o

Uoo
Q= 9y /K, Vm

tnstantaneous nondimensional
surface heat flux,

Figure 6. - Comparison of exact and quasi-steady solutions for heat-flux response to step change in inlet temper-
ature when both fluid and plate were originally at coolant temperature. € =1 7=0.5.
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Figure 7. - Influence of coupling parameter ¢ on quasi-steady solution for heat-flux response to step change in
inlet temperature when both fluid and plate were originally at coolant temperature. #=0.5.

figure 7 the nondimensional wall flux is plotted versus e(7- 1) at 5 =0.5. (The part of
the quasi-steady solution for 7 < 1 has been deleted.) Again the solid curve is the
exact solution (eq. (17)), while the quasi-steady approximation (eq. (33)) is shown as a
dashed curve for two values of €. As would be expected, the quasi-steady solution ap-
proaches the exact solution for small values of the coupling parameter €. A compari-
son between the quasi-steady solutions (eqs. (32) and (33)) and the corresponding exact
solutions for the same case (eqs. (15) and (17)) yields the conclusion that the quasi-
steady values for both temperature excess ratio and wall flux will be in error by less
than 10 percent relative to the exact solutions, over the time range 7=1 if € < 0.08
for n =0.5 and € = 0.20 for n = 1. There is inherent difficulty in making this com-
parison for the n = 0 case since the exact solutions tend to zero with increasing time.
However, if € < 0.02, the error in the temperature excess ratio and the flux will be
less than 10 percent for 7 =0 if 0 < e(7- 1) = 1.8.

It is interesting to note that if 7 in the quasi-steady solution is just replaced by
7 - 1, the quasi-steady solution agrees with the exact solution. Quasi-steady solution
behavior of this general type was also noted by Lyman (ref. 12) in connection with the
stagnation-point solution. On this basis it would seem reasonable, as a heuristic at-
tempt to getting a better approximation, to just replace 7 by 7- 1 in quasi-steady
solutions to the more difficult transient convection problems invoiving a nonslug velecity
profile. However, this procedure would not be used if axial conduction in the plate were
significant, because downstream portions of the plate and the fluid would not have to
wait until the fluid front that was at x =0 at t = 0 reached them in order that they
respond to a change in inlet conditions.

Finally, a representative calculation of € was made for a turbine vane to see
whether a simpler quasi-steady approach is valid. The conditions used were T _ =
1390 K (2500° R), a pressure of 82.6 N/cm2 (120 psia), u,, =366 m/sec (1200 ft/sec),

b =0.102 ecm (0.040 in.), x = 3.25 cm (1.28 in. ), and pSCp, g ™ 3.4 J/(cm3)(K)
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(50 Btu/ (ft3)(R)). The fluid properties were those of air. This yielded € = 1. 94x10™°
Hence, based on the idealized model analyzed herein, it would appear as if a quasi-
steady analysis would be sufficient for gas turbine blades and vanes. Lyman's compu-
tations for the stagnation-point region, in reference 12, also seems to point to this con-
clusion. Further investigation, however, is needed to see how the inclusion of the
effects of axial conduction and nonslug velocity profiles would modify this conclusion.

SUMMARY OF RESULTS

By using two successive Laplace transformations, exact analytical solutions for the
transient gas temperature distribution and surface heat flux are found for the case where
the gas, flowing over a cooled vane or blade, experiences a step change in its inlet tem-
perature wl%ich then causes both the gas temperature and the vane or blade temperature
to vary with time.

1. Equations and curves are presented from which the temperature distribution
within the gas and the surface heat flux can be calculated. '

2. Quasi-steady results are also derived and compared with the exact transient
solution, yielding a criterion for use of quasi-steady results with less than 10 percent
error.

3. The theoretical model predicts, in this type of transient, the absence of the in-
finite or very large surface heat fluxes associated with transients initiated by a step
change in the wall temperature.

4. A criterion is derived which gives the time needed for the wall flux and the wall
temperature to'reach a value within 5 percent of their steady-state values.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, September 14, 1972,
501-24.
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APPENDIX A

SYMBOLS

value which a time parameter, e¢(7 - 1), must be greater than for solution to be
within 5 percent of steady state

uoo

—_— r
\/ e, /
plate thickness
hc/Pst, P

constant-pressure specific heat

(hc/rkf) + (yu,, /2rozfx)

X
rq/—2

U

coolant-side surface coefficient of heat transfer

thermal conductivity of fluid flowing over upper surface of plate

Laplace transform parameter

instantaneous nondimensional surface heat flux

same as Qw but for transient initiated after steady state has been reached
eventual steady-state value of Qw

quasi-steady equivalent of Q,

instantaneous surface heat flux

quasi-steady instantaneous surface heat flux

P st, sb/ kf

Laplace transform parameter
temperature
coolant temperature

an inlet temperature
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T an inlet temperature
t time

u(7 - 1) unit step function, equals 0 for 7< 1, equals +1for 7> 1

u,, free-stream velocity
X space coordinate along plate
Y nondimensional y-coordinate

space coordinate perpendicular to plate

o thermal diffusivity of fluid flowing over plate
J¢] expression defined by eq. (B12)

v temperature excess defined by eq. (BT7)

5t thermal boundary-layer thickness

€ X /Zr
Q.

temperature excess, T - T
coolant temperature excess

ss steady-state value of 6

D D D DD

value of 6 at wall

temperature excess defined by eq. (24)
Ty~ Te

density

dummy variable for time

dummy variable for x

(ho/kg) + Tp

7 (hc/kf) ‘/ ozfx/uoo

Q vw >» VD g B

T nondimensijonal time, u_t/x
Subscripts:

c coolant

f properties of fluid flowing over plate
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as quasi-steady conditions
s plate properties
S8 steady state
w wall conditions
w, ss wall conditions at eventual steady state
o free-stream conditions
Superscripts:
function in first transformed plane

= function in second transformed plane
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APPENDIX B

DETAILS OF THE INVERSION OF EQUATION (13) OF THE ANALYSIS SECTION

Equation (13) gives the temperature excess distribution in the second transformed

plane as
(h -yy (U, s+p)/a
c 0 f
u, 6, —+ rp> e
k

6

g = { + ¢ (13)
u,s+p h, s(ug,s + p)
p(u,s + p) — =+ Tp
@ Ky
After defining
h,
g=—=+Tp (B1)
kg

(B2)
. Now the inverse Laplace transformation of equation (B2) with respect to x must be
found. The second term is found to be
. ) . -p(x/u,,)
4 ==8 (B3)

By use of a table of transforms and the substitution theorem, we get for the first term
of equation (B2) the following:
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-1 Uy,
v L

0y+(ozfx02/uw )
e

Thus, equations (B4) and (B3) combine to give the temperature distribution function in
the first transformed plane as

—  -p(x/uy) U +(axo?/u_ ) u
8 .e  leric|¥ :--ew f ® el
6, p 2 X o
-p(x/u,,)
l-e
+ (B5)
p

Now equation (B5) must be inverted so that p is mapped back into time t. The in-
verse of the third term in equation (B5) is

-p(x/u,,)
g lll-e =1-ué:-—x—> (B6)
p~t |Y

where u[t - (x/uoo)] is the unit step function.
The inverse of the first term of equation (B5) yields the foliowing:

u
2 =uft - ZJerfe|d /= (BT)
QX u, 2 § o

In attempting to invert the second term of equation (B5), it is advantageous to add and
subtract yzuoo / 4ax to the exponent oy+(afxc72)/uoo in order to get e to a power which
is the square of the argument of the complimentary error function it multiplies, so as to

-p(x/u,)
.?'1 e _  erfe|d
p-t P 2
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easily perform the inverse transform. Doing this and then defining for convenience

yield
h u
C = _c_ + L _oo
rkf 2r afx
and
a
d =T _f}(
uOO

The second term of equation (B5) becomes

-yzuoo /401f
e

_ u 2
{e p(x/ oo)ed (p+c) erfcld(p + c)]}
p

This result can be inverted by using the convolution theorem. For the first factor we
have

-y2u00 /4azfx
z1]-e - -
p—t p

2
-y u_ /4ax
e ® f (B8)

The inverse of the second factor is found by simultaneously employing the substitution

and translation properties of the transform as
2
- 6-1.) ad? |+ c[t-(x/uoo)]
x )e oy

t
- 9 <
& 1 {e p(x/u,, )ed (p+c) erfe El(p . CB} _ Uy,

p-t vid

(B9)

By using equations (B9) and (B8) and the convolution theorem, the inverse of the second
term of equation (B5) becomes, using A as a dummy variable for time and denoting the
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entire second term as II, the following

7 ) = - e

x/u,,

el ey,

(B10)

A

The integration is most easily performed if we complete the square on the exponent in

the integrand by adding and subtracting the term

Equation (B10) becomes, when ¢ and d are replaced by their equivalents,

_elzhgafx/k%uw>+(hCY/kle . <t x )

u
.?‘tl[n] - o
p~ a
vir of
uOO
t . 9 2
u axr” [(h yu
X exp |- .L 2 - X + fx < ® dX
2r X u_ u rkf Zrafx

x/u,,

This equation suggests the following variable change:

2
u 2a.xr” [h yu
g=1 J eh.x T (e, =
2r X u u_ rkf 2rozfx

(B11)

(B12)

(B13)
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When the quantities 7, €, 7, and Y defined in the analysis are used, the changed

limits on the integral are as follows:

X =x/u_ corresponds to
B=n+Y
A=t corresponds to :
B=€e(r-1)+n+Y

When equations (B12) to (B15) are used, equation (B11) becomes

2 e(T-1)+n+Y 2
27 1m] = -e21Y4” y(s - 1)<i> e B ap

p-t.
Jr n+Y

But this, by the definition of the error function, reduces to

-1 2n Y+n?
¥ t[II] =-e“T** M y(r - 1){erfle(r - 1) + n + Y] -erf[n + Y]}
p—o

(B14)

(B15)

(B16)

(B17)

After changing to the variables 7, Y, €, and 7 in equations (B7) and (B6) and adding
equations (B6), (B7), and (B17), we arrive at the nondimensional temperature excess

distribution in the physical plane given by equation (14) of the analysis.
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APPENDIX C

SOME DETAILS OF SOLUTION FOR CASE WHERE INLET TEMPERATURE IS
STEPPED AFTER A STEADY STATE HAS BEEN REACHED

When fluid at temperature T_ is flowing over the plate of figure 1 (coolant tem-
perature being Tc) in the steady state and then the inlet temperature is abruptly changed
to TO’ the mathematical statement of the problem is given by equations (1), (22), (23),
(4), and (5).

A solution of the following form (eq. (24)) is sought:

0(x,5,t) = @(x%,5,t) + 05.(x,7) - (24)

where 6. is the function given by equation (19) and satisfies the following conditions:

x=0 y>0 ess:o A
y - x>0 6,.~-0
S8 > (C1)
. 08 h
y=0 x>0 58 - S (bgg - )
ay kf J

Substituting equation (24) into (1) (noting that 8 ss satisfies the steady-state version of
(1)) gives the partial differential equation for ¢ as

8_¢+uwa_¢=afi¢_ (C2)
ot ax oy
The side conditions on ¢ become
t=0 x>0 y>0 ¢=0 (C3)
x=0 t>0 y>0 go:To-TS:gDO (C4)
y-o t>0 x>0 ¢ is finite (C5)
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h
y=0 t>0 x>0 2. C4p,p2%
oy kf ot

(C6)

Now the following transformation is introduced in order to force the problem posed by
equations (C2) to (C6) to look like the problem given by equations (1) to (5), whose solu-

tion has already been determined:

Y(X:Y>t) = ‘P(X,Y,t) = 900

Inserting this into equation (C2) gives

y = t>0 x>0 vy is finite

h
y=0 t>0 x>0 -C y-(-¢oﬂ+rﬂ’
3y kg at

(CT)

(C8)

(C9)
(C10)

(C11)

(C12)

Inspection of equations (C8) to (C12) shows that they are identical with equations (1) to
(5)if 8 c is replaced by - ? o Hence, the solution function for y is given by equa-
tion (14) with 9 c replaced by - ? 0o and the solution to the total problem of interest be-

comes equation (26).
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APPENDIX D

DERIVATION OF QUASI-STEADY WALL FLUX EXPRESSION FOR ARBITRARILY
VARYING WALL TEMPERATURE UNDER SLUG-FLOW CONDITIONS

The governing equation and side conditions, interms of ¢ =T - T, for this quasi-
steady problem are as follows:

u, - af_a_zﬁ (D1)

ox ay2
x=0 y>0 6=0 (D2)
y-« x>0 6 is finite _ (D3)
y=0 x>0 0=6,( (D4)

Using the Laplace transformation on equation (D1) with respect to x and also on
side conditions (D3) and (D4), solving the resulting equation, and applying the boundary
conditions in the transformed plane yield the transformed temperature excess distribu-
tion as

-yY U, P/ 0y

6 =06 (D5)

where p is the transform variable. Following Lighthill (ref. 19) only the surface heat
flux in the physical plane will be found by inverting the transformed surface heat flux.
The transformed quasi-steady surface heat flux is, after some rearrangement for ease

of inversion,

u —
ke 4f — |- (00,) (D6)

“|ys

Inverting equation (D6) with the aid of the convolution theorem gives the following general
expression for the quasi-steady surface heat flux for wall temperature varying arbi-
trarily with x and time t:

Uy, gs = %t
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X
u, 1 89W
a0 K f o 60
’ ma, |/x -t G} :
0

where ¢ is a dummy variable for x and the integral must be interpreted in the
Stieltjes sense.
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