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SUMMARY

The behavior of gas occlusions in arterial heat pipes has been studied
experimentally and theoretically. Specifically, the gas-liquid system prop-
erties, solubility and diffusivity, have been measured from -50° to 100°C
for helium and argon in ammonia, Freon-21 (CHCIZF), and methanol.
Properties values obtained were then used to experimentally test models

for gas venting from a heat pipe artery under isothermal conditions (i.e.,
no-heat flow), although the models, as developed, are also applicable to heat
pipes operated at power, with some minor modifications. Preliminary cal-
culations indicated arterial bubbles in a stagnant pipe require from minutes

to days to collapse and vent,

It has been found experimentally that a gas bubble entrapped within an artery
structure has a very long lifetime in many credible situations, This lifetime
has an approximately inverse exponential dependence on temper:ture, and is
generally considerably longer for helium than for argon, The models postu-
lated for venting under static conditions were in general quantitative agreement
with experimental data, Factors of primary importance in governing bubble
stability are artery diameter,artery wall thickness, noncondensible gas partial
pressure, and the property group aD (the Ostwald solubility coefficient multi-
plied by the gas/liquid diffusivity). The solubility-diffusivity product is unique

for each gas/liquid system, and changes exponentially with temperature.

As a result of these investigations, several suggestions have been made con-
cerning design and performance of arterial heat pipes to minimize failures or

performance limits attributable to arterial gas occlusions,

ix



Section 1
INTRODUCTION

With the advent of high performance heat pipes utilizing bypass fluid flow
avenues for condensate return to the evaporator, the influence of bubbles on the
performance of such passages has become an important consideration. The
arterial return passage can be a single artery, an artery filled with capillary
tubes, a screen covered grooved pipe, an annular passage, or a highly redundant
central composite return wick. Of these, the single artery is the configuration
most susceptible to the influence of bubbles. It has been suspected for some
time that certain types of arterial heat pipe malfunctions are attributable to
partial or total blockage of the artery with noncondensible gas. These mal-
functions are manifested by very low initial burnout powers at all heat pipe
elevations, while heat transport can often be increas.d to approximately the
correct level by allowing the heat pipe to remain idle for several days. This
type of behavior is possible with a noncondensible gas occlusion in the artery,
because the gas can interfere with capillary pumping, and isothermal conditions
allow the gas to diffuse from the artery, eventually collapsing the bubble. In
heat pipes with a wall covered by screen or other fine-pore covering, there is

a similar potential for gas films to form, increasing AT and causing premature

burnout.

This program was directed toward generating information which permits a
quantitative approach to solving the problem of bubbles. In particular, the
underlying philosophy of this program is the amalgamation of experimental data
with analytical modeling, each influencing the other, to yield a comprehensive

understanding of the mechanisms of bubble generation, transport, and life cycle.

This report discusses venting of arterial bubbles under stagnant conditions.
Section 2 presents theoretical aspects of gas bubble dissolution, Section 3
describes experimental apparatus, and Section 4 compares theoretical values

with experimental data for physical properties and gas venting times.



It has been shown that the physical properties, solubility and diffusivity, are of
primary importance in venting gas occlusions. An apparatus was built to
measure these properties for gas/liquid systems from -50° to 100°C. Pre-
liminary investigations indicated significant differences in these properties for
various gas/fluid combinations, and the gas/fluid combinations selected for
experimentation reflect attendant performance/reliability tradeoffs. Property
data obtained were utilized to simulate an arterial heat pipe environment in

an apparatus in which an artery is charged with a known amount of gas, and the
collapse of the gas occlusion is then observed as a function of time. Venting
characteristics generally agreed with theory, and initial estimates of long bubble

lifetimes for quite-low impurity levels were confirmed.

Symbols used in this report are as follows.

C concentration (g-moles/cm3)

C stagic gas concentration in sphere, neglecting surface tension (g-moles/
a cm™)

Cg solute concentration in bubble interior (g-moles/cm3)

Ci initial concentration of gas solute in solvent (g-moles/cm3)

Cs saturation concentration for solute gas in solvent (g-moles/cm3)

Cy concentration attributable to surface tension pressure (g-moles/crn3)

Co gas concentration in vapor space (g-moles/cm3)

D diffusion coefficient (cmZ/sec)

Lo initial bubble cylindrical length (cm)

P_ Prandtl number (Cpp/K)

Py surface tension pressure = 2Y/R (dynes/cmz)

P, partial pressure of noncondensible gas in vapor space (dynes/cmz)

R interfacial radius (cm)

Ra fluid tube (artery) radius (cm)

R, tube-flow Reynolds number (PDV /i)

Ro initial bubble radius (cm)

Sc Schmidt number (v /D)



critical temperature

fluid saturation fraction (Ci/CS)
radial measure (cm)
dissolution time from R = F‘o (sec)

total time to vent a bubble of initial radius Ro {sec)

dimensionless time (Dt/Rc?;)
arterial wall thickness (cm)

Ostwald coefficient, solute concentration in liquid phase/concentration
in gaseous phase

surface tension (dynes/cm)

ratio of surface tension pressure to the sum of static pressures
(CS - Ci)lcg

correction factor to quasi-stationary model vent time

Kinematic viscosity (cmZ/sec)

arterial-wall transmission factor
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Section 2

THEORETICAL ANALYSIS OF ARTERIAL BUBBLE DISSOLUTION

The application of experimental data obtained in this program depends on
valid modeling of the physical processes occurring within a heat pipe. This
section discusses the theoretical aspects of arterial bubble venting, in
particular, the interrelationships of diffusion and solubility, and arterial
geometry. The idealized situation of a spherical bubble in an infinite media
is discussed, followed by an analysis of arterial gas dissolution. The infinite
media solution is significant because the experimental method of diffusivity
measurement in this program relies on an accurate representation of this

collapse phenomena.

2.1 BUBBLE DISSOLUTION IN AN INFINITE MECIUM

If a spherical bubble of gas, with instantaneous diameter R, is dissolving in
an infinite fluid medium, the time-dependent radial concentration field is
given by the diffusion equation in spherical coordinates about the center of

the gas bubble as

2

ac (_R_)dRGC- 2_(3c._2__8£)
ot T\r) at ar - PV C =Dlg % (1)

The velocity term involving dR/dt, not usually included, is necessary to account
for the inwa rd-moving fluid as the bubble dissolves, i.e., the necessary

inclusion to reflect the moving boundary.

Governing boundary conditions are

C(r, o) = C.l r>R (2)
C(r, t) = Cg r<R (3)
C (R, t) =0Cg = CS (4)



R’ = R (5)

t =0 o
Q¢
dR _ D ar ! r =R (6)
dt Cg

Equation 6 implies bubble size change results solely from diffusion at the
liquid-gas interface, a basic assumption of this analysis. In addition, the
concentration of gas in the vapor phase and gas in the liquid phase is assumed
negligible compared to the concentration of solvent in the solvent phase at all

times. Generally, the following dimensionless variables are introduced.

R* = __&_ . r;:: = _r_. t* :_I_)i. e = _?_sﬁ.. . Cg:: = _C._:E:_i‘__. (7)
R _°’ R’ 2’ P Cg ' Cc _-C.
o] o R 5 1
o
with these variables, Equation 1 is given as
S 2 b3 % AR
ac; _( 2* _( R* ) dl:: ) Bc* _ .9 (iz = O (8)
ot r r dt or or

This governing differential equation appears in similar form in References 1,

2, and 3. The boundary conditions are then

Cl(r, 0)=0 r>R” (9)

c(R", t) = 1 (10)

R t:,: -0 =1 (11)
N . 3¢

dR_. p* B¢ (12)

dt ar | ¢ _ g

For the remainder of this discussion, the asterisk symbolism is dropped, and
unless specifically noted, the discussion concerns the dimensionless solutions.
The boundary conditions, as stated, are for a situation in which the effects of
surface tension can be neglected. That is, if surface tension were included,
C(R,t) increases as the bubble shrinks, because of the pressure term 2 Y/R.

Discussion of this situation is deferred to present the general theoretical base.

A closed-form solution to Equation 8 is obtainable only for bubble growth
from zero initial size (Reference 1). For bubble dissolution from some

initial size Ro' either approximations to Equation 8 must he made, or the



second-order nonlinear equation must be solved by numerical methods. For
this program, both approaches have been used. The numerical solution
ensures accuracy of experimental diffusivities obtained from bubble dissolution,
while useful engineering relationships can be obtained in closed form if

certain approximations are made. These short-cut solutions for the most

part, are sufficiently accurate to characterize arterial bubble dissolution.

Possibly the most often used approximation to Equation 8 is that in which
the mass transport term is neglected. At each point in dissolution, the bubble
is assumed to be in equilibrium with the diffusion profile characteristic of

a sphere of that size. The quasi-steady state differential equation is

dc 2 Oc_ 9 ¢c _ <
9t ~ r or =0 (13)

By anology with the solution to the heat equation in spherical coordinates

(Reference 4), Equation 12 becomes

dR _ ( 1 1 )
S plwt— 7 (14)
dt R (ﬂt)l/Z

If tae collapse rate is very slow, it has been postulated that the term
1/(”)1/2

dissolution phase. If this term is disregarded, the total dimensionless time

can be disregarded, because it contributes only to the initial

for a spherical bubble to disappear (the vent time) in an infinite media is

1
ty © 2p (15)

or in dimensioned variables,

RZ
t =

—_e
v 2aD(1-f) (16)
where f is the percent saturation of the solution in which the sphere is
dissolving., If the tc»m 1/(Tr1:)1/2 is included, the complete solution to

Equation 14 is

tv(H-Z\/:l—%):Tlp—- (17)

In a numerical solution of the exact differential Equation 8, Duda and Vrentas
(Reference 6) presented a correction factor to the vent time as given by

Equation 15, so that

t = — (18)



The correction factor is shown in Figure 2-1 as a function of p. Also presented
1

is the correction factor T, when Equation 17 is considered exact. This

expression, in fact, underestimates true vent time. Inclusion of the moving

boundary impedes dissolution on this basis.

For diffusivity measurements, it is critical that the exact radial time profile
be known, and a computer code was developed to solve Equation 8 by an
implicit method in which systems of linear algebraic equations are solved

by Gaussian elimination. A detailed discussion of the technique is presented
in Reference 7. For P <1, . 400time steps were generally adequate to describe
the dissolution phenomena, along with 150 dimensionless radial steps in

¢ -space, as discussed in Reference 6. Figure 2-2 shows a comparison
between tabulated numerical results from Raference 6 and results from this
study. The comparison is very good. Also included are Fquation 15 and 18
for comparison. Equation 15 is a poor approximation to the exact sojution;
Equation 18 is correct on vent time, but errs on the radial time-dependent
profile. Both equations become better approximations as P goes to zero,

as indicated in Figure 2-1. In the following analysis, although the model is
possibly too simple, the method used in developing Equation 15 is used

for three reasons. First, the gas/liquid systems under consideration
generally have small P, making the approximations more reasonable; second,
knowing the venting times to within a factor of two is generally adequate, and
third, the equations resulting allow inspection of closed-form expressions

which are useful in understanding tradeoffs between performance and reliability.
2.2 BUBBLE DISSOLUTION WITH SURFACE TENSION

Analysis of bubble dissolution in surface-tension-dominated systems has been
reported in the literature to a much lesser extent than has the case of a constant
interfacial concentration. Equation 8, which governs, is still valid, but the
boundary conditions must be stated differently. A new dimensionless
parameter, 5, expresses the size of surface tension pressure relative to the

summed static pressures on the sphere, as

C
2Y/Ro _ _°Y
a a
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P, is that pressure at the bubble position if the bubble radius of curvature
were infinite., The sum Pa includes, for example, gravity head, ppgh' either
positive or negative, APSAT' the vapor pressure differential between the
bubble site and the general fluid surface, and P_, the par.ial pressure of

gas above the liquid phase. All are assumed constant in valce. The boundary

co “ditions 9, 10, 11, and 12 are then

C(r.0) =0 r>R (2Q)
C (R,t) = [(1 + 8/RVI(1 +6) -f] (1 - f) (21
th _o =] (22)
dR _ P . 9¢ } . p = —Cs-ci (<3)
dat ~ 1+2/36/R ar | g’ C, “
| r=
C_ =aC (1, 0) (24)
s g

Again, the total differential equation cannot be solved formally with condition
(23). If, as in Section 2.1, the convective term is disregarded. the quaci-

steady-state differential equation for collapse rate replacing Equation 14 is

dR__  o(GR +58) (1 . 1
at - " (R + 2/36) (R+ 172) (25)

(wt)
where G = 1 - Ci/aCa

Equation 25 is formally integrable if the term l/(rrt)l/2

is disregarded. With
this modification, which parallels the process of Section 2.1, dimensionless

vent time is

[z 1(s . g2 .
Y T [3 (s- In (l+S)) - & (s -% 1n(l+S))] (26)

where S = G/§

Two cases are of particular importance. In the limit of a completely surface-
tension dominated bubble where § —~®, the dimensionless vent timc is

. .
t, = 3a (27)

and for diffusion into a saturated solution, where G -0,

1 1
tv  3q - (1+7) (28)

10



These equations are closed-form estimates for non-isothermal, but stagnant,
dissclution collapse of a spherical bubble into an infinite body of fluid.
Allowance has been made for surface tension, partial pressure of noncondensible

gas in the vapor space, gravity head, etc.

2.3 APPLICABILITY OF INFINITE MEDIA SOLUTIONS

In gereral terms, the infinite media solutions for vent time are most applicable
if the bubkle radius is less than 1/10 the smallest characteristic radial
dimension of the enclosure in which it is contained. For example, if the
bubble is in an Ra radius artery, then the maximum bubble radius is approxi-
mately 0. 1 R . This “rule-of-thum)'" results from numerical analysis of

the conccntraation field about a bubble, which showed that most of the non-zero
concentration field is within 5 to 10 radii of the surface. Figures 2-3 and 2-4
show the locus of several concentrations as a function of time for = 0.01

and 1.0. The profile c* = 1 is at the bubble interface, and therefcre also
shows the bubble radius as a function of time. As far as solute penetration

is concerned, most of the initial bubble mass is distributed within 5 to 10

radii of the bubble for the #* range chosen. This range is typical of an
impurity gas bubble venting, but is not typical of venting in an isothermal gas-
controlled heat pipe where * can be very small. Under flow conditions, the
small diffusive penetration means that most of the significant solute is removed
within a few radii of the bubble, thereby relieving some of the restrictions to
modeling the dissolution of a spherical particle in a cylindrical tube, because

only flow in the immediate vicinity of the bubble must be considered.

Liebermann, (Reference 8) reports that a spherical bubble contacting a flat
surface requires 1/4n2 longer time to collapse because of the buildup of

solute at the surface, in analogy with a problem in electrostatics. This factor
must also be considered, as well as the fact that a bubble residing against a
thin flaid film, as might be contained in an artery wall, may vent more rapidly.
However, for purposes of an engineering model, the effects of walls on the
static venting of spherical bubbles is a correction beyond the scope of this
program, and is generally neglected. That is, a spherical bubble with a
d?ameter equal to or less than Ra’ is assumed to vent in the time given by
Eguation 26. The validity of this assumption is discussed in Section 4. 2,

which compares theoretical and experimental collapse of arterial occlusions.

11
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Several important conclusions can be drawn from these engineering models.
When the dimensionless time variable is solved for the real vent time, the vent
time is in general given by

2
Ro g (f)

tv * "NeD (29)

where N varies from 2 to 3 and g(F) is a function relating the dissolution time
to the initial solute concentration in the solvent. The importance of the
property grouping oD is apparent. As will be shown in Section 4. i, the
experimental solubility-diffusivity product is considerably different for each
gas/liquid combination, and is exponentially dependent on temperature.
Figure 2-5 shows early theoretical estimates of the factor 1/ oD, designated
the venting parameter. Considerable variability in venting parameter is

apparent.

Venting time is also proportional to the square of the initial bubble radius.
This implies that considerably more stability against arterial occlusion is
possible,if the artery is decreased in size. This, however, is possible only

at a loss in artery performance.

A factor not yet discussed is the function g(F). For the condition in which
static gas pressure of the system is much less than the surface tension
pressure 2Y/R_, the function g(F) is unity, that is, there is little effect of
percent saturation of fluid on venting, and the real vent time is

Ry
ty © 3aD (30)

This condition can occur when the gas source is atrace impurity of the
system, or P_ << 2 Y/Ro. and gravity head and vapor pressure differentials
are negligible. For an isothermal arterial dump which initially removed
fluid from a section of artery L0 in length and compresses it to a bubble of

diameter R, vent time is given approximately by Equation 30, with Rg.

given by
2
P R L
2 _ /3 (w a o)
Ry = (8) Y Ro = Ra D

13
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Equations 30 and 31 relate bubble vent time when there is a small impurity

gas level P_ ., an artery of radius Ra’ and a gas-fluid property group (oo D).

If L0 is established equal to the total artery length, then tV is the maximum time

under isothermal conditions that the artery could be inoperative attributable

to a trace-gas bubble.

Table 2-1 presents representative trace-gas venting

times for the fluids investigated, as well as water.

When noncondensible gas {NCG) pressure and other pressure differentials

are significant compared to 2 Y/Ro. Equation 30 is not applicable. In general,

if a heat pipe has been in an isothermal condition for about one hour, NCG in the

liquid and vapor phases is in equilibrium and the solution is saturated. The

governing equation for bubble vent time is then Equation 28.

dimensioned variables,

2

Ges) (
t:v: 30D 1+

o)
a
ZY/RO

Table 2-1
VENTING OF A TRACE IMPURITY GAS BUBBLE

In terms of

(32)

. Temperature tv (sec) ty (sec)
F
luid (°C) helium argen
Ammonia -40 1200 107
20 €3 6.7
60 7.0 1.6
Freon-21 -40 367 43
(CHCIZF) 20 67 17.5
60 23 7.5
Methanol -40 1030 154
20 133 55
60 50 26
Water 22 1481 1215
¢ = R%/3aD R = 0.050 c¢m
o (o)

15



This solution is significant, Vent time increases linearly with NCG pressure
with other factors constant. In addition, pressure ZY/RO is on the order of
0.01 psia for organic fluids and a typical 0.05-cm radius bubble; a rather
small Pa can then significantly increase dissolution time. Physically, gas
concentration within the bubble increases linearly with NCG pressure, but
the diffusion gradient into the saturated solution remains constant because it
is only determined by the excess pressure attributable to the surface tension

effect. The net result is a vent time increase proportional to NCG pressure.

Substituting actual values for helium and ammonia into Equation 31,

1/eD ~ 75,000 cmz/sec at 20°C (Section 4.1). If Ro = 0.05 c¢cm and

P << 26/ro. then t, = 1.0 minutes. If P, = 1.0 mm Hg, thent = 2.8 minutes.
This corresponds to a helium impurity level of only 130 ppm in the vapor.

If, as in a gas-controlled heat pipe, the isothermal helium pressure is about
equal to the vapor pressure of the ammonia working fluid, then t, = 9.0 days.
This is an extremely long time relative to the expected transients associated
with controllable heat pipe operation. It is possible to decrease this time by
decreasing the maximum bubble size R choosing a different control gas,

or using a working fluid with lower vapor pressure. The time required for
venting such gas bubbles is in agreement with experimental data presented

in Section 4. 2.

2.4 DISSOLUTION OF AN ELONGATED BUBBLE

From observations in glass systems, if a bubble is present in an artery, it is
statistically more likely to be elongated than any other shape. Therefore,
the venting of elongated arterial bubbles is of considerable importance.
Analysis of gas loss from an elongated bubble constricted within a tubular
artery as in Figure 2-6 has resulted in the following simplified differential

equation in real variables.

Ed':* 2aD'(1-1) [RZ L ~ +xéﬁl (33)
a In (l+*§-;) .oa
where
1 = bubble instantaneous length
D = AD
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DEFINITIONS

L = [INITIAL LENGTH OF BUBBLE CYLINDRICAL SECTION

ARTERIAL RADIUS = r, = RADIUS OF HEMISPHERICAL END-CAP
FLUID FILM THICKNESS OVER CYLINDRICAL SECTION

-—
L}

Ar

QUASI|-STEADY-STATE (INERTIAL TERMS NEGLECTED)
I SOTHERMAL CONDITIONS

HEMISPHERICAL END CAPS

DIFFUSION-DGMINATED COLLAPSE

ASSUMPTIONS

Figure 2-6. Arterial Bubble Modeling

A = wall tortuosity factor

f= CqlC,

Ar = arterial wall thickness

B = end-cap diffusion factor (~1)

The derivation of Equation 33 is included in Appendix B. The total time for a
bubble of length ‘o to vent down to a spherical shape is

2 Ar
- Ra In (l‘f‘E) In L s ‘o
17 2a D (1-f) , Ar
sza In (1+R )

a

(34)

The property grouping oD is again important to venting, as is the factor (1-f).
Because of the complex diffusion path through the screen fluid layver, the
factor \ is included to form an effective diffusion coefficient D'. The factor

N changes as the composition of the artery wall is altered by screen size

change, etc,
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To minimize gas vent time, it is desirable to decrease Ra, Ar, 10, and f, and
increase aD. If the bubble is quite elongated, the length of the bubble
decreases by a factor of two, independent of initial size, in the period
2
0.693 “a In (1 +45
2 T 2aD" (1-1) . (35)

R

Table 2-2 gives half-lives for a representative arterial gas-controlled design
for various gas/liquid combinations at 20°C. It is assumed that control gas
pressure is equal to vapor pressure of the working fluid, and that the artery
has been emptied in an isothermal condition. This is a very credible situation.
If a pipe is loaded and sealed, then handled such that the elevation is much
more than 1 foot from end-to-end at any time, the artery will probably be

emptied. Other design criteria appear in Table 2-1.

Bubble half-lives are generally very long, and therefore, the gas affects
performance, if testing is done any time before t1 (as given by Equation 34)
has elapsed. The arterial venting tests described in Section 4.2

confirm the time necessary for such arterial bubbles to collapse.

Table 2-2

HALF-LIVES FOR ELONGATED ARTERIAL BUBBLES
IN A GAS-CONTROLLED HEAT PIPE AT 20°C

; t1/2 t1/2

Fluid

" (helium) (argon)
Ammonia 7.0 days 17. hr
Freon-21 36. hr 9.5 hr
(CHCle)
Methanol 4,8 hr 1.7 hr
Water 3.0 hr 2.5 hr

Ra = 0,050 cm \ = 0.40 Ar = 0. 020 cm

Position-independent gas mixture
Artery stem height= 0.0 cm

Noncondensible gas partial pressure equals vapor pressure

18



2.5 DISSOLUTION OF AN ARTERIAL BUBBLE IN FLOW

It is possible to obtain a closed-form approximation to dissolution of a small
bubble associated with low arterial flow. The technique, in essence, assumes
that the configuration of a small bubble against an artery wall is very close

to the flow geometry of a bubble touching a semi-infinite plane with a parabolic
velocity profile parallel to the surface. The approach is discussed in more

detail in Appendix C. The vent time for a small bubble in flow is given by

(o]
- _;f R(R+2/3 &) dr R s 1/2R (36)

v {1+BR){ 5 +GR} o
1

where B is a flow parameter given by

R
B = 0.622<§—9>\/Re (5173 (37)
a

and the Reynolds number is the tube-flow value for the artery containing the
bubble.

As an example of the effect of fluid flow on bubble vent time, consider a
condition where & >> GR, that is, surface tension dominates over static

pressure. Equation 36 gives the dimensioned vent time as

RZ

_ 2 o 1
tv = —_3QDB (l - B In (1+B)) (38)

Vent time under these conditions is approximately inversely proportional to

the factor B and has the familiar dependences on other properties.

To obtain a representative value for B, let Ro/R = 0.25, Re = 5, and the
Schmidt number = 100 (/ = 0.01 cmé/sec, D = 10'4 cmzlsec). The factor
B then equals 1.61, and the decrease in bubble lifetime attributable to flow

is about 50%, when Equation 38 is compared to Equation 27. Therefore,

low flow can significantly decrease the time necessary to dissolve a small
gas inclusion, although the arterial pressure drop must also be considered,
so that the gas internal to the bubble is at a pressure where dissolution is

possible.

19



2.6 SUMMARY

Various models have been developed for the diverse conditions encountered
when gas in entrapped within an artery. All calculations assume the existence
of an arterial gas occlusion. The various means by which such a gas plug

can be created are diverse, some of the most obvious being excessive
elevation of the evaporator section of the pipe, burn-out of the evaporator,

and shock effects such as occur at vehicle life-off or payload separation.

The critical factors determining venting time for spherical arterial bubbles

are summarized by

2
.= o Bl)

v NeaD
where R is the initial bubble radius, o D is the solubility-diffusivity product,
N is a constant ~2-3, and g({f) is the forcing function which signals either
dissolution or growth, depending on gas concentration inside the bubble and
in the outside fluid. Table 2-1 summarizes venting times for surface-

tension-dominated dissolution of a trace gas impurity.

Dissolution of an elongated bubble is characterized by a half-life, i.e.,

the time needed to collapse the bubble to 1/2 its original size (Equation 35).
Various half-lives are given in Table 2-2. The factors discussed for spherical
bubbles are of importance in the venting of elongated bubbles and, in addition,

vent time depends on arterial wall thickness.

Low flow in the artery can significantly assist dissolution and shorten bubble
lifetime, and a flow parameter quantifying this assistance is identified

(Equation 37).

Possibly the most critical finding of this analysis is the extremely long
times necessary to vent gas occlusions when these occur in gas-controlled
heat pipes. This results from the large quantity of gas in any one bubble,
and the insignificant surface tensicn driving force causing dissolution.
Experimental data presented in Section 4.2 confirm the long calculated ~vent

times.



Section 3
EXPERIMENTAL APPARATUS

The experimental phase of this program was oriented towards collecting property
data and using that data in an arterial simulator to produce valid working models
of gas dissolution from within heat pipe arteries. To achieve that goal, an
apparatus was constructed to measure the solubility and diffusivity of gases in
liquids over a wide temperature range, and arterial simulators were constructed

to observe the venting of gas occlusions from screened arteries under static
conditions,

3.1 SOLUBILITY-DIFFUSIVITY APPARATUS

An apparatus has been constructed to measure both solubility and diffusivity of
gases in liquids. Construction materials are principally Type 304 and 316
stainlass steel, with a limited number of Teflon seals. All materials are
generally compatible with methanol, Freon-21, and ammonia, the fluids used
in this program. Thermal and pressure-limits on this apparatus are shown in

Table 3-1, along with other pertinent physical characteristics.

Solubility is measured in terms of the Ostwald coefficient. The Ostwald coeffi-
cient of a gas in a liquid is experimentally determined by the isothermal mixing
of a known amount of gas and a known amount of liquid in a fixed two-phase
volume. After some time and agitation, the liquid becomes gas-saturated and
an equilibrium between the molar concentration of gas in the liquid and vapor
phases is attained. Basic arrangement of the apparatus is shown in Figure 3-1.
A test-fluid pressure vessel of about 500 cc is arranged within a large isothermal
vapor chamber. External to the fluid chamber, a coil of tubing with carefully
measured volume is pressurized to about 40 psia with the test noncondensible
gas. Fluid is introduced to the chamber and the low-pressure side of the pres-
sure differential transducer. The low-pressure side is valved off, then fluid
and the complete gas charge are allowed to fill the remainder of the pressure
chamber such that the gas-vap~r/liquid interface is at the top of the reference

reticule, The reticule serves to establish the fluid charge and the new gas
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Table 3-1

SOLUBILITY/DIFFUSION APPARATUS THERMOPHYSICAL CHARACTERISTICS

Characteristic

Limitation

Materials compatibility

Operating temperature
range

Operating pressure range

Transducers

Pump loop

Pressure vessel

Bubble generator

Type 304 and 316 stainless-steel construction.
Two Teflon seals. Stzinless-steel bellows valves.
Cast-iron observation port piece.

-100° to 121°C. Low temperatures limited at pre-
sent to -50°C by Buna-N seals stiffening and
cracking. High temnerature limited by warranty
specifications on pressure transducer.

0 to 300 psig. Magnetically coupled pump rated
ac 300 psig. Pressure transducer rated at 1000
psig line nressure. Observation port window
rated at 1000 psig.

Copper-constantan and chromel-alumel thermo-
couples. Pressure transducer is Validyne vari-
able reluctance 0 to 50 psid range device.
Transducer is stainless steel on both high and
low pressure sides; temperature range is -100°
to 121 °C.

Pumped by variable~speed, magnetically-coupled
centrifugsl pump. At maximum flow, test chamber
fluid is changed twice per minute. 300 psig pres-
sure rating; -54° to 121°C temperature range.

Parr Instrument Co. Model 4762. 3000 psig;
350°C, Teflon gasket. 472 cc volume. Type 316
stainless-steel body.

0.0l cm orifice, 0.1 dia bubbl- - via two-stage
sorter. Bubbles produced by charging orifi e
volume from controlled gas source.
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charge density in the vapor chamber above the reticule. The magnetically
coupied stainless-steel pump is energized so that fluid is sprayed through the
vapor chamber, into the fluid pool, down to the bottom, and through the cycle

as many times as necessary to establish an equilibrium concentration of dissolved
gas in the liquid. Progress is monitored with the pressure differential transducer
as a gradual drop in vapor chamber pressure. When the reaction has proceeded
to equilibrium, pressure differential is noted. Because the reference side is
pure clean fluid at the same temperature, then the pressure differential must
result solely from noncondensible gas remaining in the vapor chamber. Know-
ing the vapor chamber volume, fluid volume, and initial gas charge in moles,

the amount of gas lost to the liquid, and therefore, solubility can be calculated.

This process is repeated at each temperature of interest.

The diffusion coefficient is found by the disappearing bubble technique. Prior
to the solubility studies, small gas bubbles are injected to the underside of the
reticule. The gradual dissolutio- ~f these spherical bubbles in the gas-free
fluid is related to both solubility . gas/liquid diffusivity, Elimination of
solubility from the expressions is possible because of experimental solubility
values established in the solubility-phase of the experiment. Because of the
necessity for an accurate model to relate measurements, the governing
differential equations are solved by numerical methods. The technique is
relatively new, one of the first attempts at using the method described in
Reference 8 in 1957. It was not until 1969 that a satisfactory numerical analysis
method for the complete second-order equation was documented in the

literature (Reference 3).

The technique affords a simple, fast means of diffusivity determination, and is
usable over a broad temperature range. Its limitations are mainly sensitivity
to vibration and diffusion cell convection currents which disturb the concentation
field about the bubble. At higher temperatures, another problem occurs, in
that, dissolution is so rapid (~10 sec) that the effects of placing the bubble in
position may significantly affect dissolution rates. The method, in general,
works best when the vent time for the bubble is long (greater than about 100

seconds), and fluid viscosity is high.
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The diffusivity is obtained by a cross-plot of ollapse nrofile such as Figure 2-2
against the experimental collapse profile. The common axis used is (R/Ro)z.

so that a plot of real time versus dimensionless time should yield a straight line
of slope 8, and the diffusivity is equal to Rg/(0.693[5). The factor 0.693 is in-
cluded to allow for the contacting plane against which the bubble rests. Figure 3-2
presents an experimental cross-plot; Figure 3-3 shows a view through the appara-

tus observation port.

3.2 ARTERIAL SIMULATION APPARATUS

The property data obtained with the solubility-diffusion apparatus were used to
calculate venting times for bubbles within a screened artery such as in the
isothermal fluid/vapor heat pipe apparatus shown in Figure 3-4. This device,
used to observe bubble collapse under more realistic conditions, is in essence
a nonthermally pumped simulated heat pipe and artery. An injection block
introduces gas bubbles into the artery. A sight port is used to monitor the size
of the bubble produced. Once a bubble of proper size has been created, flow is
increased to move the bubble into the glass observation section, then adjusted
to an experimental flow, or no flow. A nickel wire in the injection block can be
heated to form a vapor bubble. This vapor bubble can then be observed in the
same manner as a noncondeasible bubble. The glass Dewar-type observation
area is about 5 in. long; the entire isothermal environment is approximately

12 in. long. Chamber temperature is regulated by a heater/cooler in conjunction
with a circumferential heat pipe; this heat pipe completely surrounds the metal

section of the chamber.

Various thermophysical characteristice of this apparatus are given in Table 3-2.
Perhaps the most important is the limitation of internal pressure to 30 psia
because of the glass envelope. This limits fluid selection somewhat, as well

as temperature range, because high-pressure working fluids such as ammonia

cannot be used.
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Table 3-2

PUMPED ARTERY THERMOPHYSICAI, CHARACTERISTICS

Characteristic

Limitation

Materials compatibility

Operating temperature
range

Operating pressure range
Transducers
Pump loop

Flowmeters

Bubble injection

Borosilicate glass viewing nrea. Type 304 stain-
less steel, Kovar, nickel, and nickel-based braze
metals in contact with fluid and vapor. Some
Nylon, Teflon, and Buna-N seals. Stainless
steel bellows valves, and copper flange gaskets.

-50° to 200°C. Low temperature limited by ex-
pansion of Teflon seals. High temperature limited
by melting of solder.

0 to 15 psig. Glass observation envelope stress
limitation.

Copper-constantan and chromel-alumel thermo-
couples.

Purnped by variable speed double-acting bellows.
15 psig pressure rating.

3 Tri-Flat calibrated glass flowmeters in a paral-
lel switched array. Total range of array is 0. 059
to 107 cc/min of water. Other fluids wili have a
similar range of flow.

0.0l cm orifice and needle valve. Heated nickel

wire in injection block for production of vapor
bubbles.
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Section 4

EXPERIMENTAL RESULTS

The discussion of experimental data is divided into two parts. The first considers
measurements of the solubility and diffusivity of helium and argon in ammonia,
Freon-21 (CHCIZF), and methanol. The second discusses experimental data
taken of gas occlusions venting from screened arterial passages with Freon-21

and methanol.

All fluids used for the measurements of physical property data and venting effects
were distilled to a total noncondensible partial pressure of less than or equal

to 10-2 atmosphere, or purchased with the required certified purity. Ammonia
was purchased certified to have less than 150 ppm noncondensible gas and less
than 20 ppm water impurity levels; the methanol was Baker certified spectro-
photometric quality; the Freon-21 was purchased from E. I. Dupont De Nemours

& Co., Inc. Helium and argon gases were 0.9999 pure.

4.1 PHYSICAL PROPERTY DATA

The solubility of argon and helium in ammonia, Freon-21, and methanol is
presented in Figures 4-1, 4-2, and 4-3, and Table 4-1. Figure 4-4 presents
solubility of a number of gases in water as compiled by Himmelbau, (Reference 16).
The behaviorisms of the gas/fluid combinations of this investigation are similar
to the same species or like diameter species in water. In general, the molecules
with smallest diameter are influenced the most by temperature. Minima in
solubility, exhibited by gases in water, are not present over the investigated
temperature range, or are of smaller cize in the fluids investigated in this pro-
gram. For example, argon in methanol may exhibit a minima in solubility versus
temperature, although accuracy of the data may not warrant such a conclusion.
Experimental uncertainty for all gas/liquid combinations is shown in Table 4-1.
All partial pressures of noncondensible gas at equilibrium ranged from 10 to

50 psia, and therefore, it is not expected that deviations from Henry's law were

encountered. Solubility theory is discussed in detail in Appendix A.
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Table 4-1
SOLUBILITY DATA SUMMARY

Estimated
. Temperature Ostwald Experimental
Fluid Gas (°K) Coefficient Uncertainty (%)

Ammonia  He 233 0. 00603 Bl
253 0. 00930 --

293 0.0280 --

310 0. 0475 --

Ar 225 0. 0416 10

249 0. 0584 5

291 0.144 5

310 0.215 10

Freon-21 He 225 0.0138 10
251 0. 0223 5

297 0. 0522 5

378 0.160 20

Ar 223 0. 0460 5

252 0. 471 5

299 0.514 5

375 0.377/0. 533 --

Methanol He 226 0.0117 10
253 0.0139 5

303 0. 0384 5

368 0.0918 10

Ar 232 0.267 5

257 0.255 5

297 0.264 5

365 0.344 10

*Not available, Data from Zakarova (Reference 12),
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Diffusion coefficients for the gases and liquids in this program are shown in
Figures 4-5, 4-6, and 4-7, and Table 4-2. All were obtained by the collapsing
bubble technique with a constant partial pressure of gas internal to the bubble, and
degassed fluid, For Freon-21and methanol,a partial pressure of either 20 or 40
psia was used for all measurements. For ammonia, a 40 psia pressure was

used at 20° and 37°C, and 145 psia at the lower temperatures. Pressure-effects
influencing diffusion in a liquid should be small at all pressures in this investi-
gation. Included in these results are estimates derived from an empirical equa-
tion used frequently in the literature. The Wilke-Change diffusivity equation is

given as (Reference 17).

o 14007 opnt/2r
ab 0.6 (38)
Hp va
where
Dab = diffusion coefficient, a—b (cmz/sec)
Mb = solvent molecular weight
Y = association parameter (water = 2. 6, methanol = 1.9, benezene = 1.0, etc.)
T = temperature (°K)
Hb = solvent viscosity (cen*ipoise) ;
vV, = molal volume of solute at normal boiling point, (cm™/g-mole)

Reference 18 gives an empirical relation between the molal volume Va and

the I.ennard-Jones parameter L such that Equation 38 is equivalently given as

9. 76 (1078 (Mb¢)1/2T

ab L8 (39)

F‘b‘ra.

D

Equation 39 has been used with Lennard-Jones parameters from Table A-4 to
calculate diffusivity estimates. In general, the Wilke-Chang relationship has

not been consistent with experimental data, especially for helium, because it

was derived empirically for the diffusion of large solute molecules. As discussed
by Nakanishii (Reference 19), helium apparently exhibits quantum mechanical
effects, as for example,a higher tunneling probability because of its small size,

which enhances diffusion of the gas in solvents. The lack of actual experimental
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Table 4-2
DIFFUSIVITY DATA SUMMARY

. . . Estimated
Fluid Gas Temperature Digfusug.ty Experimental
“ (°K) (x10 ~ cm  /sec) Uncertainty
(%)

Ammonia He 227 11.0 30
254 12.5 30

296 46.9 15

310 49.0 30

Ar 227 15. 4 20

254 19. 8 15

296 82.7 20

310 * --

Freon-21 He 226 13. 4 30
258 21.0 20

297 25.1 20

370 97. 6 40

Ar 227 3.40 30

259 7.38 30

297 8.3 40

370 56. 5 40

Methanol He 226 5.91 20
255 10. 4 20

297 16.9 10

373 47.9 10

Ar 225 1.99 20

253 3.24 10

296 5. 83 10

368 35.9 15

*Beyond limitations of experimental apparatus.



diffusivity data for comparison of values obtained in this program is unfortunate.
Data presented here for these fluids with helium and argon may be the first such
data ever reported. Data reported by Zakarova (Reference 12) of krypton in
methanol is, however, ingood agreement with present argon-MeOH data when
the small diffcrence in o between these two molecules is considered. Data for

argon and helium in CCl, are also included in Figure 4-6. The diffusivity of

4
the two gases in CCl4 should be similar to the diffusivity in Freon-21 because

of molecular similarity. The helium-CC1l,6 data point is in general agreement

with helium-~-Freon-21 data. Because the :rgon molecule is much larger than

a helium molecule, it can be expected that the Wilke-Chang formula will reason-
ably predict differences attributable to the physical environment about an argon
molecule. If the difference in viscosity for the two fluids is considered in Equa-
tion 39, then the diffusivity of argon in Freon-21 is approximately 9.5 (10-5)
cmZ/sec, a value in general agreement with the experimental data. At low
ternperatures, the diffusivity appears to follow the ratio T/p for the combinations

investigated, although absolute values are at variance with Equation 39.

Experimental data indicate a lower diffusivity for helium in ammonia than for
argon, at all temperatures. The difference is statistically significant. and at
present. there is no defect apparent in the measurement technique or data re-~
duction method to account for this anomaly. Additional purification of the
ammonia could be attempted, but is not expected to produce a signilicant change
from these results. If the anomaly is real, the explanation may be the signifi-
cant solvent power of ammonia; ammonia has the unique ability to dissolve
alkali and alkaline-earth metals to yield solutions containing solvated electrons.
With such solution power, there is possibly some electronic interaction between
the argon and ammonia, apart from the Lennard-Jones interaction in which
electronic orbitals of the argon molecule are perturbated so as to enhance
solubility and diffusivity. The diffusivity of a yet larger molecule, such as

xenoil, may be of significant value.

At about T/Tc = 0.60, all experimental diffusivity data imply a very rapid in-
crease of diffusivity with temperature. Whether this is an artifact of the ex-
perimental technique or reflects actual behavior of the diffusion coefficient is
uncertain at this time. However, at the critical temperature, the Lennard-

Jones gas-gas diffusion coefficient was calculated for the critical pressure,



and the implied trends at lower temperatures are not inconsistent with cal-
culated values, which at the critical temperature, should be considered as
approximate, because of the extremely high gas densities. An alternative
explanation is a convective ~urrent set up by the bubble collapse, which removes
solute from the vicinity of the bubble. Whichever explanation is correct, en-
hanced dissolution at higher temperatures is an experimental fact and should be
observable in an arterial heat pipe whenever a bubble rests against a plane

surface.

Minimum diffusivity data uncertainty is 10%, maximum is about 40%. Ex-
perimental uncertainty of all diffusivity measurements is presented in Table 4-2.
The diffusivity measurements are inherently less accurate than the solubility
measurements because the analytical technique assumes the solubility is precisely
known, which is not correct. In addition, convection currents and small vibration
levels can disturb the diffusion field of the collapsing sphere, increasing the
dissolution rate and yielding a fictitiously high diffusivity. Diffusivity measure-
ments by this technique are more precise at low temperatures when viscosity

is high and convcction is minimal, and collapse times are long (>100 sec).

1
ap 252 function of
temperature using the smoothed solubility and diffusivity data estimates, The

Figures 4-8, 4-9, and 4-10 show the venting parameter

venting parameter decreases approximately exponentially with temperature
below T/Tc >~0.60 and decreases even more rapidly at higher temperatures.
In all cases, the venting parameter of helium is significantly larger than that
of argon, as predicted by theory. As the size of the gas molecule increases,
the diffusivity decreases as about the square of the molecular diameter
(Equation 39), but solubility increases exponentially with molecular diameter,
the net result being a decidedly higher venting parameter for helium than for
argon, and longer dissolution times for arterial occlusions., The venting
parameter of helium in ammonia at low temperature is particularly high, be-

cause of very low solubility,

Comparing helium and argon in the three fluids, the combination of helium and
methanol has the largest venting parameters for all temperatures, and argon
and Freon-21 have the lowest venting parameters of all combinations to about .
0°C. From 0° to 100°C, the venting parameters of argon-methanol and helium-

Freon-21 are quite similar, but the argon-ammonia combination yields
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the lowest venting parameter and fastest dissolution rate. However, whether
or not the pipe is controlled by a noncondensibie gas is also of critical importance

to selecting a working fluid. Typical venting times for both are shown in
Tables 2-1 and 2-2.

4.2 VENTING EFFECTS TESTS

It is desirable for a heat pipe artery to prime after emptying in the presence of
noncondensible gas. Possibly the least severe stipulation is artery priming
with ro heat applied, that is, with the heat pipe isothermal. To experimentally
determine the time necessary to effect this refill, arterial simulations were
conducted in which known amounts of gas were injected into a heat pipe artery,
and the collapse of the occlusion observed as a function of time. The fluids
methanol and Freon-21 were used with the gases helium and argon. The

test artery was 0,159 cm in I.D., with a wall composed of two layers

of 200-mesh square-weave stainless-steel screen, The average wall thick-

ness was 0,0197 cm., The artery had a 4-layer stem of the same screen.

The dissolution of elongated arterial occlusions is discussed first, then the
dissolution of spherical arterial bubbles. Spherical-phase observations are

appropriate for characterizing isolated spherical bubbles, or spherical bubbles

created by the collapse of elongated arterial bubbles,

4. 2.1 Dissolution of Elongated Arterial Qcclusions

Experimentally, the dissolution of elongated arterial gas occlusions was investi-
gated by charging an arterial simulator (Figure 3-4) with known amounts of non-
condensible gas and working fluid. The structure was agitated to ensure an
equilibrium between gas in the liquid and vapor, then the screened artery was
emptied by tipping and reset horizontal. Collapse of the elongated bubble was
recorded as a function of time, temperature, and noncondensible gas (helium

or argon), Data presented are for methanol only, Experiments were also run
with Freon-21, and results were of the proper magnitude, but data scatter was
much less with methanol, This was primarily because of a higher dP/dT with

Freon-21 which created a very thermally sensitive system,
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The half-life of an elongated bubble is given by Equation 35. The factor (1-f)

is equivalently given by

2\I/Ra -pglh_ + 2R_ +4r)

1 - f > - 7Y A R +a (40)
°°+E:'pg(s+ , TOr)
where
hs = artery stem height, (cm)
Px = noncondensible gas partial pressure, (dynes/cmz)
P = fluid density, (g/cm3)

The artery stem height is measured from the fluid surface having infinite radius
of curvature. This expression simply is the ratio o1 the driving pressure to the
static pressure within the occlusion. For example, if the stem height is too

great, the factor (1-f} will be negative and gas bubble will grow with time.

For purposes of this study, the actual partial pressures of gas used were very
low {~1 mm Hg) to obtain reasonable half-lives. The test of Equation 35 was
done iy calculation of the factor \ as a function of temperature. That is, if
Equation 3% is zolved for A, and experimental values are substituted for all

other factors, then the model is valid if \ is indeed independent of temperature,
and if the value of the tortuosity factor is consistent with some other independent
estimator ol A\. Figure 4-11 presents the factor A obtained from experimental
half-life data. For all practical purposes, the factor M\ is a constant with a
value between 0.40 and 0. 50. The small but definite increase in A as tempera-
ture decreases has been identified as probably the result of difficulties encoun-

tered in measuring the true fluid temperature.

Independently, the optical attentuation factor of a single layer of the screen was
measured with an integrating photographic densitometer to be approximately
0.40. The half-life model, therefore, appears to be correct in all essential
aspects, and the methanol temperature-dependent venting parameters given in
Figure 4-10 are also reasonable. Apparently,a good estimate for A for open
structures such as screening is the projected free area normal to diffusion, as
indicated by satisfactory agreement between the venting characteristic and

densitometer measurement. How far this correlation can be carried is not kriown.



Bunuay (eLellY (BWIBLROS| WO PUILIIGISQ 103084 AysOniiO] “| |- Banbig

(0p) 38NLVHIJWIL

ov ot oz ot 0 oL oz- oc- oy 0s-
T T T T T T T T T o
INIW3IHASYIW zo
NOISSINSNYH L
1vI11d0
¥
'|||m s cxme e cmes EEge = S e e TG"'J',,"L
R — Ao S, 'f — -
m, - -~ D b -
~— [=}
3
9] 90 C
2
=
——— .A
"
»
Q
-t
g0 g
z
oL
NOSYVY [ (A
WNII3aH O
TONVHLIW ]

vt
o192

47



As an example of half-lifes encountered, with ~1 mm Hg of helium in methanol
vapor and a 0.38-cm stem, half-life for an elongated bubble in the 0. 159-cm
I.D. artery at 22°C was about 1400 sec. Under the same conditions, 3 mm Hg
of argon vented with approximately the same half-life, that is, a 32-cm long

arterial bubble required about 2 hours to contract to 1 ¢cm in length.

Figure 4-12 shows the limiting collapse behavior of a representative argon bubble
as the bubble aspect ratio approaches 1.0. From Equations 33 and 34, the factor
B describing the loss rate from the hemispherical end caps must be set equal
to 2.25todescribe the data. That is, the loss rate from the end caps is about

a factor of 2 over that if the end caps were losing mass into an infinite media.
This is occurring because the fluid plug at each end is of finite size, allowing
gas to escape to the general vapor environment. The factor B is apparently
generally greater than 1.0 for thin-walled arteries, but each arterial design
has a different 3. Possibly, there is a better means of allowing for end-cap
loss than the technique utilized here, where pmust be found empirically. How-
ever, because the vent time (of an elongated bubble) as given by Equation 34 is
only dependent on the logarithm of B, a rather poor choice for the parameter
may still yield a reasonable estimate for the vent time. Furthermore, if $

is set equal to 1.0, vent time is conservative for a free-standing artery, and

is close to actual if the artery were submerged.

4. 2.2 Venting of a Spherical Arterial Bubble

The most severe test of the spherical venting model is to predict with some
accuracy the venting of a sphere equal in radius to the artery. To maximize
the content of this portion of the analysis, assume that the spherical bubble has
been produced by the collapse of an elongated bubble, so that the critical factor,

the total vent time of an elongated bubble, is given by
tiot = te * te (41)

tot

Time te is given by Equation 34 and tg by Equation 32.
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Figure 4-13 shows the reduced volume of a typical experimentally created
occlusion plotted versus time, including the firal spherical collapse sequence.
Reduced volume is bubble volume divided by 4/3rrRz. The total time to dissolve
the entire occlusion is 7100 seconds, including collapse time for the spherical
phase. The calculated vent time of the spherical phase is 1420 sec, and the
total calculated time is about 6800 sec, or about 4% lower than experimental,
Both phases appear adequately described by theory to allow enginecring cal-
culations of vent time, although the spherical collapse equation used was an
infinite media solution, anu the environment of the bubble is far from being
infinite. However, even if p had been left at the infinite media value, = 1,
the total vent time from Equation 41 is calculated as 8. 150 sec, a value 15%

high, but still certainly of the proper magnitude,
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Section 5
CONCLUSIONS

it +: s been shewn both theoretically and experimentally that gas occlusions in
arteria: meat pipes are a reality. Expressions have been developed giving the
lifetime of an arterial bubble under diverse conditions, and these models have
bcen confirmed experimentally, using diffusivity and solubility measurements
made in the initial part of this program. These measurements generally cover

a field where previous data is nonexistent. However, comparison with theory
and with measurements of similar gas-liquid systems confirm most data reported

in Section 4.

From measurements of solubility and diffusivity. venting parameters relevant
to heat pipe applications have beer derived. Under stagnant conditions, trace
gas impurities may take from seconds to thousands of seconds to vent, and in
heat pipes where noncondensible gases are intentionally introduced, many days
may be required for gas occlusions to collapse under particularly unfavorable
conditions. The venting studies allow some conclusions concerning minimization
of arterial bubble vent time. In terms of physical pronerties, the ideal fluid
is one with high surface tension, low density, and low venting parameter, i.e.,
inverse solubility-diffusivity product. However, a high surface tension and a
high solubility have been shown in Appendix A to be incompatible because solu-
bility decreases with surface tension, so that a fluid with high surface tension,
such as water, requires a much longer time to dissolve a gas occlusion than
methanol or ammonia. Vent time decreases very rapidly with temperatare,
because of increasing soiubility and diffusivity, so that gas occlusions can be
expected to be much more unstable 2s temperatures increase. It may be
feasible to remove gas occlusions in some circumstances by maintaining the
heat pipe isothermally at an elevated temperature for some period to take

advantage of the lower venting parameter.

The ideal fiu‘d for a gas-controlled heat pipe may have another desirable
property, and that is a low vapor pressure. A low vapor pressure working

luid requires a low partial pressure of noncondensible gas, which translates
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into a shorter gas venting time. All the venting times measured in this pro-
gram are quite long, with the highest vapor pressure media, ammonia,
requiring the longest time toc vent a gas occlusion, The times are all suffi-
ciently long that reliable operation of an arterial gas-controlled pipe may
require some dynamic "adjustment'' to ensure operation with gas, one being
a vapor pressure differential between the gas occlusion and the general vapor
space so that the gas is in a state of compression. In that case, ammonia

may be a gcod working fluid because of a high dp/dt.

In summary, the selection of a working fluid requires consideration of a
number of factors, including operating temperature, operating mode, and a

trade off between good capillary pumping potential and gas venting ability,

In a gas-controlled heat pipe, another option is gas selection. It is desirable
to select a gas with a large molecular diameter so as to enhance solution of
the gas in the working fluid. At locw: » temperatures, the effect of gas selection

is very apparent,

Some features of an arterial fluid return structure which is resistant to the
infltence cf bubble phenomena can be defined. The diameter of an individual
fluid return tube should be small to effect a short vent time. The fluid film
between the occlusion and vapor space should be small to produce a rapid mass
loss, or the occlusion should be surrounded by fluid fle'w to accelerate mass
transfer. In a gravity field, if the fluid return siructure is raised on a stem
above the general fluid level, the stem height must not be such that capillary
pumping pressure of the hemispherical caps within the artery is expended

pumping fluid up to the artery, leaving no pressure differeatial to create

diffusive flow of gas oui of the artery.
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Appendix A
SCLUBILITY THEORY

A.1 DEFINITION OF SOLUBILITY

The solution of gas into a liquid has received considerable attention, both for
economic reasons and because many researchers have felt the dissolution of a
gas in a liquid, especially the inert gases, could give information on the
physical and chemical structure of liquids. The solubility of a gas 1n a liquid
is experimentally determined by the isothermal mixing of a known amount of
gas and a known amount of liquid in a fixed two-phase volume. After some
time and agitation, the liquid becomes gas-saturated and an equilibrium between
the amount of gas in the liquid and vapor phases is attained. The amount of gas
dissolved at constant temperature is directly proportional to gas pressure
above the liquid, until gas pressure increases to ~50 to 100 atmospheres. In
this discussion, this proportionality constant ir expressed as the Ostwald

partition coefficient e,
a - Cs/Cg (Al)

where Cs is the molar concentration of gas in the liquid and Cg is the molar
concentration of gas in the vapor phase. This proportionality is more often

expressed by Henry's law,

pg = Kh xg! (A2)
The "stwald coefficient offers several mathematical conveniences. The
Ostwald coefficient and Henry's law coefficient K, are related as

@= PRT/(MK,) (A3)

where R is the universal gas constant in appropriate units, Mis the molecular

weight of the solvent, and P, is the solvent mass density.
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For ideal solutions, the Henry's law constant is equal to Psg, the saturated
vapor pressure of the ''gas'' component at the mixture temperature. Under

these conditions, Henry's law is known as Raoult's law,

P Peg X (A4)

Deviations from Raoult's law are common, but these deviations decrease as

the component mole fraction approaches x_, = 1, and/or compressibility effects

become negligible at low partial pressuresglof the constituents. At the other
extreme, when ng <0.01, and/or the gas is above the critical temperature,
then Equation A2 is appropriate. For this discussion, Raoult's law is a special
case of Henry's law. Most gases discussed here are either below 0.01 mole
fraction in the liquids presented, or above the critical point, e.g., helium,
argon, and methane. Conversely, liquids are of 0.99 or more mole fraction
purity, and are described by Raoult's law. T.iquid ammonia, which has a

compressibility factor of abcut 0.7 at room temperature, does not strictly

follow these criteria, but this does not affect the calculations which follow,

A.2 NEED FOR A SOLUBILITY MODEL

The removal rate of gas from a bubble is very dependent upon solubility of the
gas/liquid pair., Table A-1 lists the Ostwald coefficients for a number of gas/
liquid combinations, and shows the tremendous effect of both the gas and liquid
on the solubility coefficient. Such a wide range in values at a constant tempera-
ture implies correspondingly divevrgent temperature coefficients, as shown by
the data for various gases in water (Section 4. 1). Although there are some
solubility data from 10° to 30°C for common liquids, there are very little data
on the behavior of gas/liquid combinations over an extended temperature range
as might be experienced by heat pipes for either terrestrial or aerospace
applications. Solubility measurements for all potential gas/fluid combinations
are desirable, but without significant expenditure of time and effort, experimental
data for the many fluids and gases of interest cannot be derived. With this
limitation, understanding of the solution phenomena from a theoretical basis is
justified so that attention can be focused on those few gas/liquid combinations

which are either unique or represent a broad class of useful liquids and gases,
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Table A-1

EXPERIMENTAL SOLUBILITIES AT 25°C FOR A NUMBER OF GASES AND +LUIDS

Liguid ] He Ne Hz NZ Co 02 Ar CH4 Kr CF‘4 COZ Xe CZH‘) Rn CZF()
Freon-113 7.2 - 0. 099 0,134 .- .- -- 0, 6200 - .- 0.978 4, 3900 5.8300 .- 3. 05
Ethyl ether 7.4 . .- 0.1300 0.295%0 0.3980 0, 4660 -- 1. 0670 .- 5. 3700 - .- 14. 000 -
Freon-21 8.2 0.0525  -- . .- .- -« 0.5130 - -- -- .- -- .- --
Cyclohexane 8.2 0.0275 0.0419 0.0860 0.1740 - - 0.3330 0.6630 11,0550 0.233 1.7100 4, 5000 - - --
CCl4 8.6 .- - 0. 0428 0.1630 0.2240 0.3040 0.3400 0.7240 .- 0. 301 2, 7000 .- 5.2700 - --
Benzene 9.2 0,0210 0.0315 0,0710 0.1230 0,1540 0,2240 0,2400 0.5700 0.7510 ¢, 157 2,6700 3,0800 4.0700 .- G. 3040
Acetone 9.3 0.0362 0.0520 0. 0769 0.1970 0.2540 0.3087 0.3010 0, 7420 .- 6. 9¢00 .- -- 5. 800 --
Chloroform 9.3 -- -- 0. 0672 0.1360 0.1970 0.2250 .. .- - 3, 7000 .- .- 13, 80O --
Chlorobenzene 9.5 -~ - 0. 0640 0.1030 0,1520 0, 1900 .- 0. 5000 2. 3600 - 3, 5200 -- --
Ethanol 12.8 0,0319 0.045%5 0.0890 0.)420 0.1930 0.1560 0.2560 .- . 3. 2700 .- 2. 7500 5, 700 -
Ammonia 13.7 0.0316 .- 0. 0722 0. UB9S - -- 0. 1460 .. .- -- .- -- .- --
Glycol 14. 2 .- - - 0,0153 .- .- 0. 0370 .- .- -~ - 0.2350 .- -
Methanol 14.4 0.0360 u, 0486 0.0947 0. 1420 0.13%60 1920 0. 2680 o0, 4280 .- - -- 2. 3400 .- -
Water 23.5 0.0097 0.0111 0.0190 0. 0156 “a 0.0310 0.0343 0.0329 0.0610 0,8300 0.1220 0,0450 0.2240 .-
Sodium{!} 28.1 3.340107% 3. @08 2.27010°%) 3. 5701076 0.2730

(1) at 500°C

Table A-2

REFERENCES FOR SOLUBILITY TABLE A-1
Liguid He Ne HZ NZ Co C)2 Ar (‘JH4 Kr CF4 COZ Xe CZHG Rn CZF()

Freon-113 A7 Ab Ab AlS AlLT7 Ab Ab
Ethyl Ether A3 Al A3 A} A3 A4 Alb
Freon-21 pll P
Cyclohexane A3 Al3 A3 A5 Al3 A3 Al4 AlS A5 Al8
CCI4 A3 A3 A3 A3 Al A3 AlS Al Al
Benzene A3 Al3 A3 A) Al A3 A3 A3 A) A)S5 Al Al A) Ab
Acetone All Al3 A3l A3 Al A3 Al3 A3 A4 Al6
Chloroform A3 A3 A3 A3 A4 Alb
Chlorabenzene A3 A3 A3 LY A3 All A3
Ethanol Al3 Al3 A4 Ajq A4 A4 Al A4 Al4 Alb
Ammonia A2,12,P A2, 10 AlO P
Glycol Al4 A7 Al4
Methanol A3, P Al3 A3 A3 Al A3 Ald, P A3l
Water AB8,9,13 A8 A8, 9 A8 AB,9 A7 A9 Ag A8, 9 At A9 AR
Sodium Al9 Al9 Al9 Al9 Al9

a )P resent Investigation



A,3 FUNCTIONAL FORM

The solution of a sparingly soluble gas in a liquid can be addressed using an
energy level diagram (Figure A-1). Outside the fluid, the gas has a Maxwellian
distribution of energies in the energy levels beginning withe = O. Then, on
passing through the vapor-liquid interface, molecules must have at least the
energy AE to break through the fluid surface, but once through, some energy
is given back as the gas molecule is bound into the fluid structure. The maxi-
mum energy returned is AE,., Because both the gas and liquid are at the same
temperature, gas molecules in the fluid still have a Maxwellian distribution of
energies, but displaced on the total energy plot by the potential energy differ-
ence AEj3. If the gas in the liquid phase is in numerical equilibrium with gas
in the vapor phase, then it follows that the respective random molecular
currents passing through the interface from each direction are equal. The
objective is to express these currents mathematically, and in the process,
obtain an expression for the Ostwald gas solubility coefficient. Only the
molecular current into the fluid is considered in detail because both currents

are similarly calculated.

The classical Boltzman distribution for N particles is expressed as

(Reference 20)

2nN

(n’KT)3/2

N(e)de = Je exp (-e/KT) de (A6)

where ¢ is the kinetic energy, 1/2 mVZc . The incremental molecular current

density at a plane perpendicular to an arbitrary x-axis can be expressed as
dJm = N(e)Vx(e)dch (A7)

where N(e)de is the number density of molecules with energies between € and
€+de, V_is the component of velocity toward the interface, and d expresses
the intention to sum over solid angle to include all possible orientations with

respect to the interface. Physically, the interface is the vapor/liquid interface.
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Figure A-1. Energy Level Diagram for Solution Process
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The total molecular current density is given by

o Om _ —
r 2N v i (<e/KT) ¢
J = de — BV e exp(-¢€ . —— co0s8f) —/——
m _41 _/0 (WKT)3/2 \/mgv

(A8B)

The parenthetic term is the x-directed velocity. The in“egration in solid angle

is performed to an angle 6 _, because there must be sufficient x-directed

velocity to break into the fluid. The angle 0, is then

A.'El
8 = arccos
m €

The angle-integrated current density is

wﬁ o0

I - gY - ) (€ - AE, ) exp (-¢/KT)de
m \/2(“KT)3/Z (.\/—mngEl 1 p -t
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If the variable U is defined as U= ¢ - Ael, the molecular current is
N KT
J = —31——7— exp(-AE/KT) (A11)

m (2mm )l 2
gv

A similar analysis of the molecular current from the fluid into the gas phase gives

- N KT
37 =_NgET  exp(-aE,/KT) (A12)
m —L_Tl 5 2

(ermgl)

Equating the molecular currents,

X 1/2
! ey
o= 8L - (—8—) exp (-AE, /K T) (A13)
N m 3
gv gv

The Ostwald coefficient ¢, is exponentially dependent on the difference
between the zero-energies of the gas and solution states, and proportional
to the square root of the ratios of the masses in the gas and liquid phases.
The mass of a gas molecule in the gas phase is the usual mass, although the
effective mass of the molecule in the liquid can be greater because of
intermolecular bonds. For practical purposes, the square root ratio can be
included in the exponential, and a new effective energy difference AE;

defined as

@ = exp (-AE;/KT) (A14)

) M
where AE =AE3 + 1/2 in (.i)

3 M
gv

The expression for a in Equaiion Al4 is identical with expressions for « in
References A2] and A22, where the final form was approached from thermo-

dynamic methods.

Reference A23 gives a statistical mechanical solution for a for a hard sphere

fluid in the form of Equation A13, where the pre-exponential factor is defined as

1/2

m
(mg‘) = (1-y) (A15)
gV

62



and y is defined as the ratio of the hard-sphere fluid volume to the true volume;

y has a value of about 1/2 for many fluids.

A.4 SOLUBILITY MODELS

It is common practice to separate the energy difference AE3 into components
AEl and AE.2 (Figure Al). Energy AEl represents the energy to get a mole-
cule into a suitable site in the fluid, while AEZ results from the attraction of
the solute molecule by the solvent molecules. Recent efforts have centered
around different mathematical models for AE1 and AEZ. Discussion of the
models here emphasizes utility in predicting solubility coefficients of various
gases and liquids over a wide temperature range. Table A-3 presents the
efficiency of the various models in correlating and predicting solubilities of

a number of gases and liquids. For each liquid, the various models are least
squares fitted to available data as given in Table A-1, for 25°C, and then the
degree of fit is compared. The accuracy of each model is presented by the
ratio of the summed square deviations about the model, divided by the summed
square deviations about the average value of the data for a given fluid at 25°C,

subtracted from one

m
z (Yn - g(x, z)

r =1 - 193] — 2 (Al6)
(Y -7)

n=1
The function g(x, z) represents the theoretical estimate to the nth data point, Yq

A value r = 0, implies the model is no better than a simple average of the
input data, while r = 1 implies a perfect fit of the data. When N = 2, r equals
one for a one-parameter theory with non-zero intercept, regardless of the
model. In that as well as other cases, it is equally important to compare
model effectiveness in predicting solubility data over the -50° to 100°C
temperature range of this program for methanol, Freon-21, and ammonia,

with argon and helium. This comparison is discussed later.

What follows is a summary of the models used in this comparison, presenting
the essential details of each. Energy AE2 is calculated with Lennard-Jones
potential parameters by most investigators, while the characterization of

AE. has been more diverse. Discussion of AE, will be deferred until the

1 2
various expressions for AEl are established.
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Table A-3
SOLYJBILITY MODELS FITTED TO DATA

M, Model | Model 2 Model 3

Fluid ted 1 c, r c, c, r, c, c, ry
Freon-113 5 1,23 0.610 0,999 2.12 0. 720 0.9999 1. 16 1.16 0,799
Ethyl ether 7 1.37 0.727 0.983 1.97 0 790 0,975 0.738 1.28 0.948

Freon-21 2 1.54 0. 655 1.00 2.28 0 744 1. 00 0.776 1. 27 1,00
Cyclohexane 9 0.973 0.721 0.989 1.27 Q.777 0.985 0.511 1.46 0,924
ccCl, 8 0.929 0.639 0.989 1.20 0. 682 0.983 0.443 1.25 0.900
Benzene 12 1.10 0.677 0.983 1.63 Q764 0.971 0.987 1.29 0.931
Acetone 10 1.43 0.536 0.910 2.40 0.631 0.870 1,31 0.950 0. 851
Chloroform 6 1.15 0.689 0.984 1.54 0740 0.979 0.629 1.27 0.941
Chlorobenzene 7 0.860 0.559 0.976 1.26 0625 0.970 0.973 1.05 0.936
Ethanol 10 1.52 0.554 0.957 2.23 0. 631 0,942 0.853 1,04 0.913
Ammonia 4 2.84 0.353 0. 851 5.11 Q. 489 0,357 1,51 0.644 0. 500
Methanol 9 1.36 0.404 0.975 2.24 0.496 0,930 1.16 0.739 0.918
Water 12 1,06 0.178 0.958 1.58 0.222 0.873 1.22 0.330 0.861
Average variance reduction - - -
101 gas/liquid combinations 0. 966 0.910 0. 894

Definitions:

r, = fraction reduction in log-solubility variance for the ith

Y Unlop)-(CiE; + c,E,)?
n=1

model, defined by

el
Z [ln(a ) - ;] 2
n
n=1
. M
andy = Y. z ln(an)
n=1
C CZ = least-squares fitting coefficients necessary to minimize variance.

Model solubility equation for a given fluid is then

tn(o) = -[ClEl/KTJ-CZEZ/KT ,

where E,, EZ are given as

Model 1, El = Eq Al7 Model 2, El Eq Al9 Model 3, El A2l

E, = Eq A30 E, = Eq A30 E, = A30



A.5 SURFACE TENSION MODEL

Energy AEl was first irterpreted by Uhlig in 1937 (Reference 24) as the
work necessary to produce, against surface tension, a spherical hole in the
fluid large enough to fit a spherical solute module of radius r. This is

AE, = Anyr’ (A17)

References A2] and A26 are more rezent examples of approaches using this
model for AEI' A defect of this model is that Y changes as r approaches
molecular dimensions, so that, the effective surface tension is actually a
function of r. In addition, a small molecule can fit between the solvent
molecules in interstital positions with less energy expenditure than given

by Equation A17. If the fluid is considered as an assemblage of hard spheres
of diameter T and the experimental number density of fluid molecules is
Py then the interstital holes can be treated as an internal lattice of small

vacant spheres with equivalent radius ro

_ L3(1-y) 1/2 (A18)
Yo © v P
v 3
where y =_6—pb %y
The quantity (1-y) is the fractional free volume in a fluid with molecules of

hard-sphere diameter Oy The energy AE. is then given by

1

AE, = 4va(r® - rl) (A19)

A.6 SCALED PARTICLY MODEL

By the method of scaled particles, Reiss et al., (Reference 23) derivad an
expression for the amount of work required to insert a sphere of zero radius
into a hard sphere fluid,

AEI = -KT In (1-y), (r= O'b/Z) (A20)

The radial coordinate in this analysis is taken from the center of a solvent
molecule. For solute molecules of non-zero size, Equation A20 was expanded

in a power series in this coordinate system as

- 2 3
AEl(r) = Ko+Klr+K2r +K3r (A21)



where r = (wa + ab)/Z and v, is the solute molecule diameter. In che limit
of large r, macroscopic thermodynamics is valid, .naking it possible to express
the polynomial coefficients in terms of known physical properties f.om the

limits of both zero and very large r.- The coefficients are

3
K-xr‘—‘lz fn (1-Y) "F7a 2
o 2 \iI-y) - (- ST % (A22)
KT Y\~ 6Y
- = Y a
K, = o, (ls(l—Y) 1o ) tnP g, (A23)
KT Y 6Y
K27 Y52 (‘8(1-1{)2 * l-Y)""p‘a (A24)
K, == =P A25
3~ 3 " (A25)

where P is the macroscopic pressure above the liquid.

Experimental data indicate that Equation A20 significantly underestimates the
work to insert small gas molecules into a real fluid. However, when the
model is corrected by least-squares fitting to data at a single temperature,
the temperat.-e-dependeat solubility then predicted agrees well with some
data.

A.7 SOLUTION THEORY

Hildebrand and Scott (Reference 25) expressed (AE. - AEZ) in terms of a

1
differential heat of vaporization. Their final exfression for solubility is
i va (5125 - 6:) va Va
lnxa=lnxa-Tr— +‘n—v—b—+ I-Tb (A26)

In this equation, X denotes the solubility in mole fraction, x; equals the
Raoult's Law solubility, Va the partial molar volume of the solute in the solvent,
and V, the molar volume of the ->lvent. The parameter § for the ith

component is

2 = B (A27)



!
The factor & is called a solubility parameter, and this value 'm(calones/cm”l’z
is included in Table A-1 for the fluids presented. Fluid solvency is ranked
by this solubility parameter, and solubility of a given gas roughly follows the

solubility parameter of the fluid as in Equation A26.

To use Equation A26, one vapor pressure, two heats of vaporization, and two
molar volumes are needed. In some cases, the last two terms contribute
little and are neglected, but this still requires considerable property data.

In addition, other solubility models are as accurate, require less property
information, and have the same exponential/pre-exponential format. For

these reasons, this model is not considered further.

A.8 LENNARD-JONES MODEL FOR AEZ

The negative work term AE._ is customariiy described by the Lennard-Jones

2
potential. The Lennard-Jones pair potential (LJP) is

W)= 4e ((cmlz - (c/r)") (A28)

where ¢ and ¢ are parameters describing the interaction potential of finite-
sized non-polar molecules. If, as in the case of physical absorption, a
molecule is surrounded by several others, the total energy of interaction is
the sum of the individual interactions of ‘he solute molecule with the solvent
lattice molecules. This sum can become an integral if the number of mole-
cules is known as a function of position with respect to the solute molecule.
The nuinber of molecules in a spherical shell of thickness dr at a radial

distance r is given by the radial distribution function g(r) as
_ 2
n(r, r+dr) = Pb g{r) 4wr” dr (A29)

The distribution function for a Lennard-Jones mixture has, however, not been
derived, ana approximations must be made. One of the most used simplifi-
cations (and possibly least exact) is to smooth the interaction by giving the
solvent continuum properties and integrating the LIJP ovar all spacz from

the solvent-solute closest approach distance to infinity.

-

3

- 2 12 6 <F

aE, = - 16wp, c[r (('*p - (M ) dr = 3Zwp 77 (A30)
[
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The barred terms are mean values of the respective parameters because the

interaction is not between likes. The various symbols are

AE2 = LJP interaction energy (ergs)
P, = solvent molecular density (cm'3)

€ = mean energy parameter = (car:b)l/2 (ergs)
o = molecular approach parameter = 1/2 (o, + o) (cm)

a,b = gas, liquid, respectively

To account for the interaction of a polar fluid with a nonpolar (but polarizable)

gas, the following parametric corrections are suggested by Reference A22.

T= ). Bl (A31)
T= 1/2 (ca + o.b)/pl/() {A32)
&
a t ,ﬁ I3
P =l+,—2—2 ab 3b a (A33)
Ta
where

P polarization factor

a = polarizability of non-polar molecule (cm3)
¥*

t

b fluid polarization parameter (tabulated)

Equation A30 provides a means for ranking various gases in terms of solubility.
Solubility is exponentially dependent on the factor N °a3/2 and this means

of ranking the gases has been used in Table A-1. Except for the fluorinated
hydrocarbon gases, this factor describes relative solubility well for a given
flaid.

A.9 SOLUBILITY CALCULATIONS

The models for AEl and AEz relate solubility to surface tension, heat of
vaporization, and potential and geometrical factors on a molecular basis.

As discussed earlier, these models and the ability to predict data are presented
in T.ble A-3. Lennard-Jones parameters are summarized in Tables A-4 and
A-5, and are principally from References A26 and A27. Viscosity-derived
potential parameters were used because the more appropriate second-virial

coefficient values are less abundent from various investigations and more



Table A-4
LENNARD-JONES PARAMETERS FOR GASES

Gas e () cO/K('K) ara(xlo.24 cm3)
Helium 2.57 10. 8 0.2040
Neon 2.858 27.5 0.393
Hz 2.915 38.0 0.802
Nitrogen 3.798 71.4 1.730
(of0) 3.706 88.9 1.930
Oxygen 3.433 113.9 1. 560
Argon 3.405 121.2 1.630
Methane 3.796 144.0 2. 700
Krypton 3.621 171. 6 2. 460
CF4 4.660 134.0 2.860
CO2 4. 185 189.6 2. 590
Xenon 4. 055 229.90 4.000
Ethane 4. 380 236.0 4.330
Radon 4.390 270.0 6.300
CZF6 5.320 7——1.86. 0

Table A-5
LENNARD-JONES PARAMETERS FOR LIQUIDS

Fluids o.(A) £o/K (°K) ¢
Freon-113 5. 66 496.0
Ethyl Ether 5.678 314.0
F1.:on-21 5.093 296. 4 0.1
Cyclohexane 6.182 297.0
Carbon
Tetrachloride 5. 947 322. 7
Benzene 5.350 412.0
Acetone 4.600 560.0 0.7
Chloroform 5.389 340.0 0.1
Chloro-benzene 5.610 610.0
Ethanol 4.530 362.6
Amn.onia 2.900 558.0 1.0
Methanol 3.626 482.0 0.8
Water 2.6410 809.0 1.2
Sodium 3.840 1970.0
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often of conflicting size. The Lennard-Jones parameters o, and o, are
assumed to be the equivalent hard-sphere diameters of the solute and solvent

molecules, respectively.

/6

For the surface tension model, the equilibrium radius was taken as (Z)l Tb’
in accordance with findings that the radial distribution function of a pure
Lennard-Jones fluid has a peak at the potential minimum, K = :/K”' 10),

In the second version of this model, work against the fluid was assumed to

be only the surface-tension work to enlarge an interstital hole to the final
radius. A temperature-dependent surface tension was used, as suggested by

Reference A28.

a n
;;; = (A34)
where Trl and TrZ are the reduced temperatures with respect to the critical

point. For the organic fluids., n was set equal to 1.2. The following values
of n were found to describe o(T) best by Equation A34 for the fluids in this

program:

Methanol, n = 0.90
Freon-21,n= 1.22

Ammonia,n= 1.22

The number density of solvent atoms as a function of temperature was derived
from a generalized equation for liquid density by Yen and Woods (Reference A30).
Yen and Woods ascribe a maximum error of 2. 1% for 62 pure fluids. Ina

check of equation accuracy, the density of Freon-21 was calculated within

0.25% of experimental data, from -40° to 59°C.

The least squares model vsed to compare the theories is based on the natural
logarithm of the solubility values, becnuse the functional form of the solubility

is exponential in AE_  and AE?. A function of the form

1
E E
. A1, A2
Ina= - (C =y + C, =%%) (A35)



was used to fit the data. If the reduction in variance r is 1.0, and Cl and CZ
are both 1.0, then the theory exactly describes the experimental data, and
AEI and AEZ are statistically correct. Unfortunately, none of the models are

correct in that detail.

All methods are fairly good estimators of solubility. The model best describing
data at 25°C is the Uhlig model (Reference A24) utilizing surface tension, the least
accurate is the scaled-particle model using a complex polynominal expression.
However, neither surface tension model predicts experimental data as well as

Model 3 over the entire temperature range investigated.

The ability of each model to predict solubility temperature-dependence was
determined as follows. For each fluid, the adjusting coefficients to theory,
Cl and CZ' were calculated so that the solubilities of helium and argon were
given exactly at 25°C. Then, the solubility at all other temperatures was
calculated using the same coefficients in Equation A5, that is, if the models
are fundamentally correct, the adjusting coefficients change little with
temperature and experimental data is well represented by the theoretical
estimates. Figures A-2 and A-3 show the behavior predicted by the various

models for argon and helium in Freon-21 and methanol.

The solubility of helium and argon in Freon-21 is well represented by scaled-
particle theory, but the solubility of helium and argon in methanol is not
described well by any of the models. In all cases, the surface tension models
are poor estimators of solubility as a function of temperature. Although the
scaled particle technique reproduced the Freon-21 data well, it did not
reproduce the methanol data, and the reason for this is not clear. The use-
fulness of the various models lies primarily in the domain of identifying
important physical properties, such as surface tension, which relate solution

of a gas to other important heat pipe characteristics, such as capillary pumping
capabilities.

A.10 SUMMARY

The solubility of gases in liquids has been presented from a theoretical
standpoint, with moderate success in predicting solubility as a function of

temperature. The agreement is adequate to enable identification of physical
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properties common to both gas dissolution and general heat pipe performance.
The Ostwald coefficient of a gas is exponentially dependent on the solute and
solvent molecular radiuses, and at 25°C, is exponentially dependent on surface
tension. Solubility parameter theory also links the solubilities exponentially
with latent heat of vaporization, as shown by the factor 6 in Table A-1.

For venting gas occlusions, it is desirable to have a high solubility, and
therefore, the working fluid should have low surface tension and low hfg'

and the control gas, if any, should be a species with large molecular diameter.

The first requirement is in conflict with thermal performance of the heat pipe,
and in conflict, to some degree, with the capability for venting, because a
high sur{ace tension pressure is desirable to increase the concentration
gradient into the liquid surrounding a gas occlusion, thereby decreasing vent
time. However, the use of a large diameter molecular species 2< -ontrol

gas has no apparent drawbacks.

In addition to high solubility, a larger molecule has a lower gas-gas diffusivity,
sharpening the diffusion profile in the heat pipe condenser. Futhermore,

there is an apparent relationship between molecular diameter and the tempera-
ture coefficient of solubility for organic fluids. As shown in Section 4. 1,

the solubility temperature coefficient for argon in F.eon-21 and methanol is
much less than the temperature coefficient for helium in Freon-21 and
methanol. This difference in behavior may be critical for applications where
the system suffers large temperature excursions, because it is possible that
the helium gas could precipitate out of solution as gas bubbles in an arterial

passage or elsewhere.
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Appendix B
DISSOLUTION OF AN ELONGATED BUBE LE

Bubble dissolution in an artery is assumed to be composed of two separable
components, end-cap diffusion and radial diffusion, End-cap diffusion is

treated as in Section 2. 2, with the two hemispheres assumed to be equivalent to
one spherical bubble diffusing into a semi-infinite media. The initial radial
time-dependent mass loss is described with a Fourier series solution, and the
steady-state mass transfer is expressed with the familar logarithmic expression
for diffusion through a thick-walled tube. The fluid surrounding the bubble is
initially assumed in equilibrium with the general gas concentration in the vapor

space, Cq.

The initial dissolution of gas radially is exactly described by a Bessel function
solution, but if the arterial wall is treated as a slab of thickness Ar, then the
appropriate Fourier series solution, mathematically simpler, is a good approx-

imation to the non-steady-state component of venting.

If the origin of the y-coordinate system is fixed to the inner wall of the artery
and continued radially to the outer wall where -- = Ar, then at t = 0, the inner
wall, which was in equilibrium with the bulk fluid with C = Ci’ is in contact with
a gas mass producing a surface concentration C = Cs- Diffusion of gas from the
interior now occurs. To account for the effect on diffusion of the screen or
other porous media comprizing the artery wall, an effective diffusion coefficient

D' is defined, where D' = AD, and M\ is a so-called tortuosity factor.

By the method of separation of variables, the one-dimensional solution to Fick's

second law of diffusion is expressible as a Fourier series as

C(xt)=(C, - Ci)[(l -ylar) -2 Z Ssin (N7 y/Ar) exp (-(%%)Z D't)] (B1)
T N=

1



The general technique used to obtain this solution is discussed in Reference Bl.
The quantity (1 - y/Ar) is the steady-state solute distribution in a slab. If this
component is neglected, the time-dependent diffusion is given by D - 3c/3y at
y = 0. The steady-state diffusion solution for concentric cylinders can be added
to the non-steady-state component to obtain a good approximation to the exact

radial solution,

2]
. \ 1 2 nw\2 .,
m = D‘(CS-Ci} T 2 exp [-(Ar) D't (B2)
R_In{l+ —
a R =1
a
The total mass loss from the elongated bubble is obtained from the sum of Equa-
tion B2 over the area lo in length, and from the solution for diffusion from a
constant diameter sphere, to account for end-cap loss. Translated to a decrease

in length lo'

df _ -2 aD'(Cg-Cw) 1 2\ ¢ Zﬁ( 1 1 )
i} 2=\ e 2 /2) ] B3)
dt C Ra In (1 LAr ) Ar Ra A Ra (7 Dt)

g R
a

where £ is an abbreviation for the summation given in (B2), Cg is the gas concen-
tration in the gas occlusion, Cy is the gas concentration external to the artery,
and g is a factor that corrects for the semi-~infinite fluid plugs each hemispherical
end cap diffuses into. The proper value for g, from experimental venting data,

is discussed in Section 4. 2.

In many cases, the time-dependent components in the collapse equation B3 could

be neglected, giving

!
A 2eD(1-f) + 2B

dt R: In (1 +Ar) MR,

(B4)

R
a

Integrated from £ = lo tof = 0, the time to vent down to a spherical bubble is
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2 Ar

R In (1 +-—-—Ra) 1

t, = In [1+ ° (B5)
2 @D (1-F) Ar
ZﬁRa In (l +Ra)
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Appendix C
DISSOLUTION JF AN ARTERIAL BUBBLE IN FLOW

Reference Cl presents empirical equations describing average unit-surface
conductance for spherer and cylinders heated or cooled in liquid flow. The
average unit-surface conductance of a sphere in flow is very close to the value
obtained if the sphere is assumed constructed of an infinite number of cylindrical
strips, each strip having the unit-area average conductance of a cylinder of

radius R sin ¢, where ¢ is the polar angle of the sphere.

In this condition, it is postulated that a small bubble rests, in gravity, at the

top of the tubular artery. If the bubble is relat‘vely small, the flow pattern

seen by the bubble is very similar topologically to that seen by a bubble resting
against a flat surface if therc is an apprupriate parabolic velocity profile relative
to that surface. It is furiher theorized that the technique of dividing a sphere
into incrementa' strips, and integrating local (ylindrical conductance is again
appropriate, but with the parabolic velocity distribution alsn factored in. Both
the cylindrical and spherical conductances are squace-root dependences on
velocity and radius so that, from a practical standpoint, the system is some-
what forgiving of oversimplifications. The thermal conductance obtained is

easilr transformed to the mass transfer analop.

P:-ceeding as outlined, the average unit-surface conductance for a sphere i1

art:riai parabolic flow is approximately

KA AT R R

12, /3 [T 1/2
-9 . 1, 0.792 (BB-E-)‘ (pr) / [sin ® - sin O cos 9] de.(C1)
b a o

where Re is the Reynolds number for flow in the artery, Rb is the instantaneous

bubble radius, and Ry = 1/2 Ra' In terms of the mass-transfer analog,

8y



1/2 1/3
m =l Re .
paic_c) “ R, * 0'622(“;) (,,D) (c2)

Substitution of this expression into dissolution Equation 26, neglecting the non-

steady-state term (1/7 t)l /2, gives

dR _ -a(GR §) [1 l

dt - (R+2/35) |R * B

R (C3)

where B is a flow parameter given by

R
B = 0. 622(—-“—“-) VRe (Sc) 1/3 (C4)
a

where Sc is the Schmidt number. Expression C3 can be integrated formally,

but the resulting equation has such a comnlex form that no insight is gained into
the dissolution process. One simple solution to Equation C3, where surface
tension pressure dominates, is discusced in Section 2. 5. Many other partial

solutions are possible, depending on system conditions.
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