
N A S A C O N T R A C T O R /tB^MilNASA C R - 2 1 9 0

R E P O R T

CM
t

OS.

e

A TWO DIMENSIONAL, ITERATIVE
SOLUTION FOR THE JET FLAP

by Alan Charles Herold

Prepared by

UNIVERSITY OF WASHINGTON

Seattle, Wash. 98195

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C • FEBRUARY 1973



1. Report No. 2. Government Accession No.

NASA CR-2190
4. Title and Subtitle

A TWO-DIMENSIONAL, ITERATIVE SOLUTION FOR THE
JET FLAP

7. Author(s)

Alan Charles Herold

9. Performing Organization Name and Address

University of Washington
Seattle, Washington 98195

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

3. Recipient's Catalog No.

5. .Report Date ,-_„
February 1973

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

760-61-02-81-23
11. Contract or Grant No.

NGL 48-002-010
13. Type of Report and Period Covered

Contractor Report
14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

A solution is presented for the jet-flapped wing in two dimensions. The main
flow is assumed to be inviscid and incompressible. The flow inside the jet is
considered irrotational and the upper and lower boundaries between the jet and
free stream are assumed to behave as vortex sheets which allow no mixing.

The solution is found to be in satisfactory agreement with two dimensional
experimental results and other theoretical work for intermediate values of
momentum coefficient (1.0 < Cj<5.0), but the regions of agreement vary with
jet exit angle. At small values of momentum coefficient, the trajectory for the
jet, as computed by this method, has more penetration than that of other available
data, while at high Cj 's this solution results in less penetration of the jet into
the main flow.

17. Key Words (Suggested by Author(s))

Jet flap
Two dimensional
Numerical analysis

18. Distribution Statement •

Unclassified - Unlimited

19. Security dassif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified
21. No. of Pages

47
22. Price*

$3.00

For sale by the National Technical Information Service, Springfield, Virginia 22151



PREFACE

This report was prepared with the support of the NASA through

Grant No. NGL-48-002-010. The work herein was presented by Mr.

Herold as a thesis for the degree of Master of Science in

Aeronautics and Astronautics at the University of Washington,

and was carried out under the supervision of Professor Robert G.

Joppa.

iii



TABLE OF CONTENTS
PAGE

LIST OF FIGURES vi

LIST OF SYMBOLS vii

SUMMARY 1

INTRODUCTION 2

ANALYSIS OF POLAR ELEMENT OF JET WAKE IN
UNIFORM FLOW FIELD 3

THE AIRFOIL AND JET AS STREAMLINES OF THE MAIN FLOW 10

AN ITERATIVE METHOD OF SOLUTION 11

DESCRIPTION OF PROCEDURE AND SETUP OF COMPUTER
PROGRAM SOLUTION 12

ANALYSIS OF ACCURACY DEPENDENCE UPON INPUT VARIABLES 17

Effect of Number of Unknowns in Chord 17

The Effect of the Jet Length 17

Effect of Varying the Convergence Value, Epsilon 17

DISCUSSION OF RANGE OF APPLICABILITY 18

SOME REMARKS ON THE CONVERGENCE OF THE SOLUTION 19

COMPARISON WITH EARLIER THEORY AND EXPERIMENT 19

CONCLUSIONS 20

REFERENCES 21

APPENDICES

Appendix I - Flow Chart of Jet Flap Iterative
Solution Method 22

Appendix II - Source Program in FORTRAN IV
for Solution of Jet Flap 25



LIST OF FIGURES

FIGURE PAGE

1. The Jet Flap Lifting System 2

2. A Polar Element of Jet Wake 3

3. Representation of Jet Flap with
Two-Dimensional Vortices 10

4. Velocity Induced by a Two-Dimensional Vortex 11

5. Approximation of Jet Wake with Straight
Line Segments 12

6. Geometry for Relation Between Radius of
Curvature and Jet Angles 14

7. Effect of Number of Unknowns in Airfoil
on Lift Coefficient 33

8. Dependence of Jet Trajectory on Number
of Unknowns in Airfoil 34

9. Variation of Lift Coefficient with
Length of Jet 35

10. Variation in Vortex Strength Distribution
with Jet Length 36

11. Effect of Convergence Value, Epsilon,
upon Lift Coefficient 37

12. Lift Coefficient as a Function of Attack Angle 38

13. Comparison of Trajectory Results with those of
Reference 4 39

14. Comparison of CL versus Cj curves with
References 4, 7 and 8 40

15. Further Comparison of Results with
Experimental Work (References 7 and 8) 41

vi



LIST OF SYMBOLS

a Airfoil angle of attack

a The distance between vortices

c Airfoil chord length

CT Lift CoefficientLI

C Momentum coefficient of jet

ds Arc length at centerline of jet element

ds..,ds2 Arc lengths of upper and lower boundaries of jet element

diji Angle subtended by element of jet

6 Jet thickness

60 Jet thickness at infinity

Y_ Vorticity per unit length in airfoila

Y Vorticity per unit length in jet

, 2
'

Vorticity per unit length on upper and lower
boundaries of jet element

F The total circulation about a contour which
enclosed the entire lifting system

F. Point vortices used to represent chord and jet
3L • • * Tl

J Momentum flux of jet

J0 Momentum flux of jet at infinity

L Aerodynamic lift

p0 Mean pressure at infinity

$. The angle between a normal and the velocity
1 induced by the itn vortex

p1 ,p_ Static pressures at upper and lower jet boundaries

q Dynamic pressure

Q Mass flow of jet

vii



r. The distance from a control point to the ith
1 point vortex

R Radius of curvature of elemental section of jet

p Jet density

p0 Main stream density

T Exit angle of jet sheet relative to airfoil chord

9 The angle made by a jet segment with the horizontal

u, ,u- Main stream velocities just outside jet boundaries

U Average free stream velocity across jet

U0 Average free stream velocity across jet at infinity

U The component of the free stream velocity along a normal

v1 , v? Jet velocities inside wake boundaries

v The velocity induced by a vortex

V Average velocity across jet section

V0 Average velocity across jet section at infinity

viii



SUMMARY

A solution is presented for the jet-flapped wing in two dimen-
sions. The main flow is assumed to be inviscid and incompressible.
The flow inside the jet is considered irrotational and the upper
and lower boundaries between the jet and free stream are assumed to
behave as vortex sheets which allow no mixing.

In the case of an infinitely thin jet, as is explored in this
paper, the jet behaves as would a single vortex sheet which has a
vortex distribution in which the vorticity, at any point, is pro-
portional to the momentum coefficient and the free stream velocity
squared and is inversely proportional to the radius of curvature
and the tangential velocity at that point.

The above-mentioned relation is derived and used along with
the condition that the vorticity in the airfoil and in the jet be
such that they are streamlines of the main flow to create a numeri-
cal iterative solution for the jet flap. The method was programmed
in FORTRAN IV for digital computation. Products of the solution
are the vorticity distribution and the jet shape for any attack
angle, jet exit angle and momentum coefficient.

Satisfactory solutions have been computed for a wide range of
momentum coefficients, jet and attack angles and jet lengths.

The solution is found to be in satisfactory agreement with two
.dimensional experimental results and other theoretical work for
intermediate values of momentum coefficient (1.0 < Cj < 5.0), but
the regions of agreement vary with jet exit angle. At small values
of momentum coefficient, the trajectory for the jet, as computed by
this method, has more penetration than that of other available
data, while at high Cj's this solution results in less penetra-
tion of the jet into the main flow.



INTRODUCTION

The jet-flapped wing is an airfoil augmented with a jet of
high velocity air which issues from a span-wise slot near the
trailing edge.

Figure 1. The Jet Flap Lifting System

The jet, as considered in this two-dimensional treatment,
exists at an angle T with the airfoil which is inclined at an
angle a with the free stream, remains in its thin-sheet form
and eventually aligns itself with the main flow.

The aerodynamic advantages of such a lifting system are sig-
nificant. Since the jet ultimately aligns with the free stream
direction, theoretically all of the jet momentum is recovered as
usable thrust. In addition, high lift is achieved from the verti-
cal component of jet momentum as well as the pressure lift on the
airfoil which arises from the asymmetry created in the main stream
by the presence of the jet. These advantages suggest the diverting
of conventional jet thrust through such a slotted wing resulting in
shorter runway distances and lower stall speeds.

The jet flap was investigated as early as 1933 by ShubauerCl]
but the most significant theoretical investigations were carried
out by the British in the mid 1950's[2,3,4]. Spence[4] has pre-
sented a solution for the jet flap in two dimensions but is limited
by the assumption of small deflections of the jet and small attack
angles.

The purpose of this approach is to avoid the small deflection
assumptions to arrive at a non-linearized solution suitable for any



attack or jet angle.

ANALYSIS OF POLAR ELEMENT OF JET WAKE
IN UNIFORM FLOW FIELD

A polar element of the jet will be analyzed as was done by
Preston[2] in order to arrive at a relation between the jet
vorticity, its shape, its momentum coefficient and the velocity
field of the main stream.

It is assumed in the following that the flow both inside and
outside the jet is irrotational and that the total pressure within
the jet is greater than in the free stream.

Consider an element of the wake of thickness 6 . which sub-
tends an angle
which is R .

di|/ at its center of curvature, the radius of

Figure 2. A Polar Element of Jet Wake

The main stream velocities just outside the wake boundaries
are u, and u_ . The jet velocities inside the boundaries are

v, and v- .

The total heads are constant in both the main flow and jet
which are incompressible, resulting in the relations,



"2 Po Ul = P2 + 2" Po

(2)

Since the pressures on the boundaries, p and p2 , must be con-

tinuous, (1) and (2) may be combined in the form

2 2 o , 2 2ui - U2 = £(vi -V2

It is assumed that the jet flow is irrotational, or

Average velocities for the jet and main flow may be introduced

U = ̂ (u1+u2
) (6)

Expanding (4),

V1R - V12 = V2R + V22

vl - V2 =



factoring (3) and using (7)

( U 1 - u 2
) ( u l + u 2 ) =

V p6V2

Ul - U2 =

Now from (1),

Pl '

2" Po

It is now necessary to investigate the effect of the vortex sheet
on the external flow. The value of circulation or strength of a
vortex sheet of unit width is equal to the integral of the curl of
the velocity vector V over the enclosed area. Referring to the
polar element in Fig. 2,

u, - un = ff curl Vds = YT
1 2 J s J

or

Y-r <3s = u, dsn - u» ds-
J 1 1 2 2

5 4 „. , 6x ,,
Y-r ds = u, (R - -r) dw - u~ (R +—) dtyJ 1 2 . 2 2

The values of the elemental vorticities,

Y, dsn = u, (R --r) dill (10)J. l i 2

Y 2 ds 2 = - u 2 (R+ | ) dijf (11)

on the upper and lower boundaries are equivalent to a single vortex
of magnitude



Yjds = Y1ds1 + Y 2 d s 2

and a doublet of magnitude

•|6(Y1ds1 - Y 2 d s 2 ) (13)

The single vortex may be expressed as

= u1(R-|) d* - u 2 (R+ | )

e e

Y , ds = u, Rdi|f - un -^ diji - u0 Rd>|; - u0 -r di|r
J X J. £. f. £. i

ds = ̂  ds - u2 ds - — (^ + u2)

P6V2 5U
YJ p0RU ~ R

The doublet may be expressed

- 6 (Y ds - Y ds) =

u2) ds-| (U]_ -u 2 )

e f u d s - f d ^ - 1
^- Q . -PITT -*
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4p0 RlT

2 2
or 6U 1 -- — — 5 — 5- per unit length of jet centerline. (15)

L 4p0 R^ IT
 J

The momentum of the jet per unit span is given by

"o" o o
= p J * vz dr = ̂  6

in terms of which the vortex and doublet become

YT = R"U AX

and

6u[ 1 -

per unit span respectively.

4p0 R

It is now desired to explore the limit as jet momentum remains
finite and velocity goes to infinity. Let J0 , V0 and p0 be
momentum flux, mean jet velocity and mean pressure far downstream
and, as before, J , V and p at any other point.

The mass flow is defined as

Q = P f c Vdr = pV6 and is here constant.R-f
Along the jet

Q = pV6 = p60 V0 (18)



The momentum flux in terms of mass flow is

J = QV ; J0 = QV0 (19)

from which

J - J0 QV - QV0 V - V0~ (20)

Now the head in the jet is constant

or

or

p + pV2 = po + pV0
 2

Po - P = \ P (v2 - v0
 2 ) = -| p (v - v0 ) (v + v0 )

Combining (21) with (20)

- - i +
. Jo

But po - P is also the pressure difference in the exterior flow
and hence proportional to 1/2 p0 U02 or

TI 2
f- =1 + 0 ^
J° V 2

Also from (18) and (19)

_V_ = £ 6 o = ^ o . = _ g L = i + o Uo
2

V0 p6 6 J0 ,,2vo

Now consider the limit as V0 - «. and the momentum remains finite,

8



from (23),

— ' 1 or J = constant

J0
and from (19) Q = 77- - 0vo

and from (18) 6 = - - 0pv

Under these limiting conditions, the vortex distribution on the
centerline becomes, from (16)

PoU2

and the doublet (17) vanishes.

1 2Introducing the momentum coefficient Cj by J = C —p0 U0 c ,
the relation for vortex distribution becomes

c i p 0 U 0
2 c C U 0

2 c
v . _

 J 2— _ J
YJ Rp0U 2RU

(24) may be combined with (9)

oSV2
Pl " P2 = ~ ̂ R~ = ~ R

P2 - ?! = R = Yj Po

P2 ~ PI
 = °° UYJ (26)

What has been accomplished, then, is the derivation of an expression
for the vorticity in the jet (Eq. 25). It is seen to be directly
proportional to the momentum coefficient, the airfoil chord and the
square of the remote wind. It varies inversely with the jet radius



of curvature and the tangential velocity. An expression has also
been found for the pressure difference across the jet at a point
(Eq. 26).

These results have been derived by considering a polar element
of the jet and considering the effects of letting the jet momentum
remain finite while allowing the velocity to become infinite.

THE AIRFOIL AND JET AS STREAMLINES
OF THE MAIN FLOW

The condition that the airfoil and jet be streamlines of the
main flow field, or alternatively, that no fluid flow across these
boundaries must be met and allows a relation between jet shape and
circulation which, when combined with Eq. (25), makes the solution
of the jet flap problem possible.

It is assumed in the paper that the chord and jet may be
replaced, as far as the external flow is concerned, with a series
of two-dimensional vortices located at equal spacing throughout the
length of the system.

Figure 3. Representation of Jet Flap with
Two-Dimensional Vortices.

The vortices may assume strengths such that the main flow has
a velocity field in which the airfoil and jet are exactly stream-
lines. The vortex strength distribution required to do this may be
found by first establishing at control points between vortices,
normals to the jet or chord direction. Now, no flow may take place
along these normals and the negative of the. main stream velocity in
the normal direction may be equated, at each control point, to the

10



sum of all the velocities induced in this direction by the vortices.
The velocity induced at a point by a two-dimensional vortex is
given by

Figure 4. Velocity Induced by Two-Dimensional
Vortex.

where v is the velocity induced perpendicular to the radius from
the vortex to the point and P is the vortex strength with units
ft2/sec.

In order to make a determinant system, there are established
as many control points as vortices and a system of equations results
by equating the free stream component and the vortex-induced veloc-
ities along each control point normal. That is, for each control
point, there exists an equation of the form

r, cos $, r cos §. r cos $
1 2 2 n n _

_ _ _ _

2trr2 • •- 2Trru n

where $ is the angle between the vortex induced velocity and the
normal and Un indicates the normal component of the main flow
(see Fig. 3). The solution of this system of equations then for
the vortex strengths P^ ... Pn gives the values which make the
airfoil and jet streamlines of the main flow field.

AN ITERATIVE METHOD OF SOLUTION

A numerical solution for the jet flap may be accomplished by
an iterative procedure which first computes the coordinates of the
vortices and normals starting with an initial guess at the jet
trajectory. With these points established, the vortex strengths are
found which make the chord and jet streamlines of the main flow with
this jet configuration.

Then knowing these strengths, it is possible to readjust the
shape of the jet by finding the tangential velocity at each vortex
and balancing the lift produced by the jet vorticity to the wake

11



momentum. This is expressed by (25) which may be rewritten in a
form which gives jet shape as a function of vortex strength, tan-
gential velocity and momentum coefficient. If this new shape is
sufficiently close to the shape before improvement, the solution
has been found. If the improved shape differs significantly from
the previous curve, the new trajectory is used to compute new vor-
tex strengths and the readjustment continues until convergence
occurs.

DESCRIPTION OF PROCEDURE AND SETUP
OF COMPUTER PROGRAM. SOLUTION

The computerized solution begins by reading in, as input, the
number of subdivisions to be made in the airfoil chord (taken to be
of unit length) and in the jet itself. The jet sheet is to be
approximated in shape by straight line segments of the same length
as in the airfoil.

Figure 5. Approximation of Jet Wake with
Straight Line Segments.

The shape of the jet is determined by reading in as input the
angles which the jet segments make with the horizontal (positive
for the usual downward deflection). The coordinates of all the
joints of the segments in the airfoil and chord are computed and
at each is located a two-dimensional vortex. A vortex is also
located at the leading edge. Normals are located midway between
each vortex, crossing the segments perpendicularly and, in order to
satisfy the Kutta condition, a normal is located on the final seg-
ment downstream of the last vortex. The last segment, in general,
need not align with the free stream.

Next, a matrix of coefficients is computed which, when multi-
plied by the vortex strength vector, gives the velocity components

12



along the normals. In this calculation, the distance between the
vortex and normal is computed, followed by the angle which the
normal makes with the vortex induced velocity vector. Each element
of the array then is the value of

where r and $ are defined as before (Fig. 3). All vortices are
assumed from the onset to be positive if they induce a clockwise
velocity field. The signs of the matrix elements then are positive
if the velocity induced by the vortex under consideration is direc-
ted "upward" along the normal.

To complete the matrix equation, the right hand side or vector
of free stream normal components is next computed.

The angle of attack and the jet angles are considered in com-
puting the components of the free stream velocity along the normals
that have been established. The velocity component is taken to be
positive if it is directed "upward" along the normal.

The matrix equation then, equates the vortex induced velocity
components to the negative of the free stream components in the
same direction in order that the sum of the two sources of velocity
gives zero net flow across the airfoil and jet.

The solution of the matrix equation is accomplished by calling
the subroutine INVR which uses the Jordan method of solution. It
returns to the main program, in place of the free stream component
vector, the vector of vortex strengths, the first element of which
is the vortex strength at the leading edge.

Subroutine TV is next called, which computes the tangential
velocity felt at each jet vortex location. The average of the
angles of the two segments which adjoin each vortex is computed
which represents the angle of the tangent to the jet trajectory .
at the vortex. Next, the components along this tangent of the
velocities induced by all the vortices in the chord and jet except
the vortex at the location being considered are computed by a method
similar to the one used to determine the normal components. To the
sum of these velocities is added the component of the free stream
velocity along the tangent and control is returned to the main
program.

Before the jet trajectory improvement takes place, the jet
segment angles are stored for comparison with the corrected values.

The proper trajectory for the above computed values of tan-
gential velocity, vortex strength and momentum coefficient is
obtained by application of a modified form of Eq. (25) . The radius

13



of curvature, R , may be found in terms of jet segment angles by
considering the arc subtended by two jet segments as being circular
and using the law of cosines. The length of the segments in the
jet is taken here to be a .

Figure 6. Geometry for Relation between Radius
of Curvature and Jet Angles.

R2 = a2 + R2 - 2aR cos

or a = 2R cos

and R = a/2 cos

but Q _ H fl* - fl JT fl - Q*
p ~ 2 ~ 2 ~ 2 2

so. R =

= a/2 sin [J- (e - 8*)]

14



With this expression.for R , (25) becomes

_ cj.U0
2 csin[;|(9 - 9*).]

YJ au

Now, it is assumed that the point vortex F anywhere in the jet
is the result of integrating the vorticity distribution YJ over
the interval of length a which has the point vortex at its mid-
point, i.e.,

Then the above becomes

FjU = CJU0
2.csin[-|(9 - 9*)]

IT rTU 1
. .9 - 8* =2 sin"1! - ^y- I

The free stream velocity U0 and the chord c are taken to be
unity and the jet angles may be found from the simpler .expression

9 - e* = 2sin

Subroutine WANG accomplishes the computation of the improved tra-
jectory.

It should be remarked that U , the tangential velocity, is.a
function of 9 and 9* as well as the entire jet angle array.
Rather than include its dependence upon the. undetermined angles,
the solution is simplified by using the value of vorticity and the
vortex locations before the trajectory improvement takes place.
This is justified since the tangential velocities after shape
correction are only slightly different from the values before
iteration, becoming more nearly identical as convergence is achieved.

To determine whether the improved values differ significantly
from the values before correction, the absolute value of the differ-
ence between the two is computed and compared with an input variable

15



called EPS. If the error in any one angle is greater than or
equal to EPS, a new guess at the jet segment angles is computed
by adding to the uncorrected angles, a fraction (COEF in decimal
form, an input variable) of the difference between the improved
and unimproved values.

After a new shape for the jet has been determined, control is
returned to that section of the program which computes the normal
and vortex coordinates with the new jet segment angles and another
iteration continues.

When convergence is achieved, the lift coefficient is computed
and the vortex coordinates and strengths are printed. Lift coef-
ficients are computed as twice the sum of the vortex strengths,

_
CL =

2p° U° UoC

where rT is the total circulation about a contour which encloses
the entire lifting system.

rm = r . . ... + r. .T airfoil jet

.chord
J
jet

Yjds

r =

Therefore

where the summation includes all point vortices in the airfoil and
jet. Since the remote wind and chord length are taken as unity,

C = 2 ? T
L 1

16



ANALYSIS OF ACCURACY DEPENDENCE
UPON INPUT VARIABLES

Several input variables exist in the program which determine
such things as the number of unknowns, how long iteration will
continue, etc. The effect of the choice of these variables on the
ultimate accuracy of the output has been investigated.

Effect of Number of Unknowns in Chord

The program was run for a lifting system with a momentum
coefficient of 2.0 and a jet exit angle of 45.0 degrees. The
number of airfoil segments was taken to be 3, 5, 7, 9 and 11 with
the number of jet segments chosen to make the jet a length of four
chords behind the trailing edge in each case. The results are
shown in Fig. (7) and (8). The lift coefficient (the most sensi-
tive index of accuracy) is sufficiently' convergent at 10 or 11
segments in the airfoil. Too few unknowns results in a trajectory
which is too low and corresponds to a vorticity distribution.which
is too large in magnitude. This effect is independent of the
initial guess for the jet shape.

The Effect of the Jet Length

A test of the program was made to determine how the solution
was affected by an increase or decrease in jet length with the
number of unknowns in the airfoil remaining fixed at six. The jet
was allowed lengths of two, three and four chords by adjusting the
number of segments (vortices) in the jet. The momentum coefficient
was 2.0 and the jet angle was 45.0 degrees. The results are found
in Figures (9) and (10). The trajectories and vortex distributions
are very similar while the total lift may be seen to increase with
increased jet length. As the jet length changes, variations in
vorticity are found to be distributed over the jet and airfoil.
The error in the value of lift coefficient at 3 chords, when com-
pared with that at 4 chords is 1.3 per cent.

Effect of Varying the Convergence Value, Epsilon

An indication of the importance of the choice for the value of
epsilon, which determines how much error may exist in jet angles
after iteration, was obtained by running the program for a fixed
configuration. Epsilon was varied between 0.01 and 0.60 degrees.

The plot of Fig. (11) shows values of lift coefficient which
resulted for various values of e . The points, however, do not
represent the maximum possible error in lift coefficnet which may
result. The values were computed by requiring that all angle

17



errors (the difference between angles before and after iteration)
be less than the value, epsilon. If all angle errors were a max-
imum while still being less than e , which they are not for' the
usual solution, slightly greater errors in the solution may be
found. Further,.the solution converges not from one direction but
alternates between"a solution which is too high and then too low.
The result is that the-final trajectory may be either above or
below the asymptotic solution, each case having an equal probability.

Assuming that the-maximum possible error in the solution has
a- small probability•of occurring and considering that the solution
may converge to'a trajectory above or below the true shape, the
estimated convergence limits were constructed, which represent a
good approximation at the boundaries for error in the lift' coeffi-
cient. In particular,.for epsilon equal to 0.3, the error'in CL
(assuming an extrapolated value'at e = 0.0 to'be without error)
is only 0.23 per cent.

The variation in jet trajectory and values of individual vor-
tices is very small. Comparing results for epsilon equal to 0.01
and 0.6-. degrees, the discrepancy in trajectory was found to be only
0.00264 chords in the vertical direction at the downstream end of
the jet. The error between the values of vortex strengths at the
leading edge for the same two values of e is 0.33 per cent.

DISCUSSION OF RANGE OF APPLICABILITY

Because the solution has not been linearized in any way, the
program may be use'd for any lifting system for which it will con-
verge. A solution has been obtained using the program for jet
angles as high as 90 and as low as 30 degrees. (Lower jet exit
angles will produce no difficulty; convergence is more easily
achieved at small jet angles because of the lower values of vor-
ticity).

The value of Cj has been allowed to range from 0.1 to 5.0
(at T = 45°) without any difficulty. Lower values may be
achieved if the solution input is carefully chosen. (A discussion
of convergence follows). Higher values will be easily handled by
the program.

The program also is applicable for a useful range of angle of
attack. Lift curve slopes were computed for a wing with jet exit
angle equal to 45°. Cj values were taken to be 5, 2 and 1 and
the"attack angle ranged from - 10 to + 10 degrees. ' The results
are depi'cted in Fig. (12). Five points were computed for Cj = 2
which indicate an almost exactly linear relationship between attack
angle and lift. The upper and lower bounds on alpha for which the
solution will converge is difficult 'to ascertain. Solutions for
any moderate alpha will be possible.

18



SOME REMARKS ON THE CONVERGENCE OF THE SOLUTION

The program will not yield a solution for its input when the
ratio, at any jet vortex location, of the product of the vortex
strength and tangential velocity to the momentum coefficient is
larger than unity. The inverse sine function in subroutine WANG
encounters this value as its argument and the execution of the
program is terminated.

Subroutine WANG computes the jet angles that should exist
for the above-mentioned ratios. If these exact values are used by
the main program for the jet shape, in some cases over-correction
occurs, the shape of the trajectory diverges and the arcsine func-
tion error is encountered. To prevent this, the input variable
COEF prescribes a percentage of the correction that is to be added
(or subtracted) to the old value and the new trajectory remains
within an "interval of convergence".

Despite this, the trajectory of the jet before iteration must
be somewhat close which means that the initial guess must be rea-
sonable. To prevent divergence at small values of Cj (large
ratio values), higher values of Cj must be solved first and the
corresponding trajectories will be used automatically as initial
guesses for the smaller Cj's.

. COMPARISON WITH EARLIER THEORY AND EXPERIMENT

Several authors have explored the jet flap problem in two
dimensions using analytical methods[3,4,5,6]. D. A. Spence has
published rather complete results of his solution which has been
linearized by assuming small deflections of the jet. Figure (13)
depicts his curves of the jet wake for values of Cj from 0.5 to
5.0 with the jet exit angle equal to 45°. A solution to three
chords downstream was computed by this method for comparison. As
may be seen, this solution results in a slightly more shallow
trajectory (smaller lift coefficient) at momentum coefficients
above 1.0 and more penetration into the main flow than Spence's
plot at Cj = 0.5. The solutions for Cj = 1.0 appear to be the
same.

Further comparison may be found in Fig. (14) which shows a
plot of CL versus Cj for T = 31.4° . Lif.t coefficients com-
puted by Spence are lower below a Cj of about 3.5 . Note that
CL values of this method become increasingly higher than Spence"s
with decreasing Cj which is a trend consistent with the jet plots
of Fig. (13) except that the Cj at which the solutions are the
same is higher (3.5) for this lower jet angle.

Extensive experimental work with a two-dimensional jet
flap was conducted by the British at the National Gas Turbine
Establishment during 1953 - 1954,[7,8,9]. This model was a 12.5
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per cent thick elliptic cylinder with jet exit directions of 30,
60 and 90 degrees.

For T = 31.4° (nominally 30°), the jet trajectory was pre-
sented and is compared with the result of this theory in Fig. (15).
The discrepancy is found to be in the same direction as indicated
in a comparison with the results of Spence. That is, the jet com-
puted by this method is again slightly low when compared at small
momentum coefficients.

Figure (14) also shows the comparison of lift coefficients
over a range of Cj . Since the model used in the N.G.T.E. is
too thick for direct comparison, an approximate correction for
thickness has been made by assuming that thickness affects lift
coefficients in the jet flap case in the same way as in the case of
irrotational circulatory flow. That is, the lift coefficient of an
ellipse of thickness to chord ratio t/c is (1 + t/c) times that
of a flat plate with the same incidence angle[4].

CONCLUSIONS

An iterative numerical solution for the jet flap in two dimen-
sions has been programmed for digital computation. The flow past
the wing is considered to be inviscid and incompressible. The jet
flow is assumed to be irrotational and bounded by vortex sheets.
In the limiting case of an infinitely thin jet, the vortex bound-
aries are found to behave as would a single vortex sheet of
strength proportional to momentum and inversely proportional to
curvature and tangential velocity.

The condition that the chord and jet both be streamlines may
be combined with the aforementioned relation to produce an itera-
tive solution by satisfying both relations alternatively until
both produce the same jet shape and vortex distributions.

Point vortices have been located along the airfoil chord and
the jet trajectory to represent the circulation of the system. An
error analysis, carried out for this approach, has determined that
the solution is convergent for 11 or 12 vortices equally spaced in
the airfoil and at the same spacing in the jet. A jet length of
3 to 4 chords behind the trailing edge will insure convergent
results.

Solutions have been found by this method for jet angles as
high as 90° and as low as 30°. The momentum coefficient range has
been found to be 0.5 and above.

Attack angles from minus ten to plus ten degrees have been
investigated. Lift curve slopes computed by this method have been
found to be linear over the range of attack angles mentioned.
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It has, therefore, been demonstrated that point vortices may
be used to represent the wake of a jet flap just as they are
assumed to represent circulation about an ordinary airfoil.

It is believed that the absence of linearization in this
approach accounts for the discrepancies which exist at very low or
high momentum coefficients.
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APPENDIX I

FLOW CHART OF JET FLAP ITERATIVE SOLUTION METHOD
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Read in model momentum coefficient,
attack and jet angle, number of
unknowns and the initial guess at
the jet trajectory

Compute coordinates
of all vortices

Compute coordinates
of normals

Determine matrix
of coefficients

INVR Subroutine

Compute free stream
components along normals

Call INVR Subroutine

The matrix equation is
solved for the vortex
strengths which make
the airfoil and jet
streamlines of the main
flow

TV Subroutine

Call TV Subroutine The tangential
velocities at jet
vortex locations
are computed
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Store jet angles for
comparison with
corrected values

I WANG Subroutine

Call WANG Subroutine

Compute new
trajectory

no

Computes corrected jet
angles using the relation

9 - 6* = 2 sin"1

Is new trajectory
for jet sufficiently
similar to shape
before iteration

yes

I
Compute lift
coefficient

List results

T
STOP

24



APPENDIX II

SOURCE PROGRAM IN FORTRAN IV
FOR SOLUTION OF JET FLAP
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PROGRAM FLAP {INPUT»OUTPUT»TAPE5=INPyT»TAPE6=OUTPUT)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PROGR.AM TO COMPUTE VORTICITY DISTRIBUTION AND WAKE
TRAJECTORY OF JFT FLAP. TN TWO DIMENSIONS

INPUT SEQUENCE

CARD 1 NC.NW - THE NUMBER OF SUBDIVISIONS IN THE AIRFOIL
AND THE JET RESPECT IVELY.NOTE-NW DOES NOT INCLUDE THE
SEGMENT DOWNSTREAM OF THE LAST VORTEX. (215)

CARD 2 EPS - IN THE CONVERGING PROCESS , I TERAT I ON WILL
CONTINUE UNTIL EVERY JET ANGLE AFTER AN ITERATION DIFFERS
FROM ITS VALUE BEFORE ITERATION BY AN AMOUNT LESS THAN
EPS (IN DEGREES) (F15.8)

CARDS 3 THRU 3 + NW WA(I) - THE. INITIAL GUESS AT THE ANGLES
(IN DEGREES) MADE BY THE JET SEGMENTS WITH THE HORIZONTAL,
BEING POSITIVE IF THE SEGMENT SLOPES ARE NEGATIVE.
NW+1 ANGLES ARE NEEDED»THE LAST BEING FOR THE SEGMENT DOWNSTREAM
OF THE LAST VORTEX. (F15.8)

CARD NW+4
(DEGREES)

ALPHA -
(F15.8)

THE ANGLE OF ATTACK OF THE AIRFOIL

CARD NW+5 AND ANY NUMBER OF SUBSEQUENT CARDS CJtC-OEF - THE
MOMENTUM AND CONVERGENCE COEFFIC I ENTS. ( 2F1 5 .8 ) ONE CARD FOR
EVERY VALUE OF CJ IS NEEDED:.

A(60) ,B<60) »E(60,60) »FS(60) »C(60) ,0(60)
V( 60) ,G( 60) »WAH( 60)

.6)

.6,12X,F10.6,12X,F10.6)
fORTEX STRENGTHS, 8X,12HX COORDINATE » 10X »

THE NUMBER OF SEGMENTS IN THE AIRFOIL IS,

NUMBER OF SEGMENTS IN THE JFT IS, 15)
INITIAL GUESSES FOR THE JFT ANGLES ARE)
VALUE OF EPSILON IS.F7.4, 8H DEGREES)
VALUE OF MOMENTUM COEFFICIENT IS»F7.4)
CONVERGENCE COEFFICIENT IS.F7.4)
ANGLE OF ATTACK IS,F7.4, 8H DEGREES)
JET EXIT ANGLE IS»F9.4, 8H DEGREES)
NUMBER OF ITERATIONS REQUIRED WAS, 15)
CONVERGENT JET. ANGLES ARE)

1
2
3
4
305
310

701

702
703
704
705
706
707
708
709
710

DIMENSION WA(60) ,
DIMENSION UU(60) »
INTEGER CC
FORMAT (215)
FORMAT (F15.81
FORMAT (2F15.B)
FORMAT (/»13X»F10
FORMAT (/»13X»F10
FORMAT </,lOX»16H
112HY COORDINATE)
FORMAT (/»/»/»41H
115)
FORMAT ( /,37H THE
FORMAT (/,43H THE
FORMAT (/,24H THE
FORMAT (/,37H THE
FORMAT (/»31H ITS
FORMAT (/»23H THE
FORMAT (/,22H THE
FORMAT (/,38H THE
FORMAT (/»30H THF.
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711 FORMAT (/»24H THE LIFT COEFFICIENT IS.F7.4)
ITER=0

C
c READ IN NUMBER OF UNKNOWNS » JET ANGLES, ATTACK ANGLE .EPS ILON,
C MOMENTUM COEFFICIENT AND CONVERGENCE COEFFICIENT
C

READ (5»1) NC.NW
WRITE (6»701) NC
WRITE (6.702) NW
KK=NW+1
READ (5.2) EPS
WRITE (6»704) EPS
EPS=EPS/57.2958 . . .
WRITE (6.703)
DO 51 I=1.KK
READ (5.2) WA(I)
WRITE (6.4) WAU)

51 WA( I )=WA( I J/57.2958
READ (5.2) ALPHA
WRITE (6.707) ALPHA
ALPHA=ALPHA/57.2958

606 CONTINUE
READ (5,3) CJ.COEF
WRITE (6.705) CJ '
WRITE (6.706) COEF

38 CONTINUE
NCC=NC+1

C
C COMPUTE COORDINATES OF VORTICES
C

SEG=1.0/FLOAT(NC)
DO 100 1 = 1. NCC
AA=FLOAT( I )/FLOAT(NC)
A(I)=AA-SEG

100 B(I)=0.0
DO 15 1 = 1. NW
NN=NC+I+1
NNN=NC+I
A(NN)=A(NNN)+SEG*COS(WA( 1 ) )

15 B<NN)=8(NNN)-SFG*SIN(WA( I ) )
CC=NW+NC+1
NWC=NW+NC

C
C COMPUTE COORDINATES OF NORMALS
C

DO 25 1=1. NWC
C( I )=0.5*(A( I )+A( 1 + 1 ) )

25 0< n=0,5*<B<I)+R< I+.1M

C(CC)=A(CC)-»-SFG2*COS(WA(KK) )
D(CC)=8(CO-SEG2*SIN(WA(KK) )
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PI=0.15915
C
C COMPUTE MATRIX OF COEFFICIENTS
C

DO 30 1 = 1.NC
DO 30 J=1»CC
R={(ARS(C< I)-A(J) ) )**2.0+<ABS<D< I)-f)(J) ) )**2.0)**0.5
IF (B(J).EO.0.0) GO TO 90
ARG=-(A(J)-C(I))/(8(J)-D(I))
ANN=ABS(COS(-ATAN(ARG)+1.5708))
GO TO 50

90 ANN=1.0
50 CONTINUE

F.< I»J)=PI*ANN/R
IF (AU) ,GT.C( IM GO TO 35
EU»J)=-E< I »J)

35 CONTINUE
30 CONTINUE

DO 40 I=NCC»CC
DO 40 J=1.CC
R=( {.APSCCd )-A( J) ) )**2.0+(ARS(D( I J-BC-') ) ) **2.0 ) **0. «5
ARG=-(A( J)-C(I ) )/ (FMJ)-D< I > )
K=I-NC
ANN=ABS(COS(ABS(ATAN(ARG)+WA(K)-1.5708)))
E(I,J)=PI*ANN/R
IF (A(J).GT.C(I)) GO TO 351
E( I »J)=-EU »J)

351 CONTINUE
40 CONTINUE
C
C COMPUTE FREE STREAM COMPONENTS ALONG NORMALS
C

DO 59 I=1»NC
59 FS( ! )= - ! . 0#S IN(ALPHA)

DO 60 I=1»KK
I I I = I + N C

60 FS( I I I )=-1 .0*SINIWA( D+ALPHA)
C
c SOLVE MATRIX EQUATION FOR VORTEX STRENGTHS
c

CALL INVR (E»CC»FS»1»DETERM,60.60)
C
C COMPUTE TANGENTIAL VELOCITIES
C - ; - . . .

CALL TV (Nw»NC»UU.WA.A»B»FS»ALPHA)
LN=NC+2

C
C CHANGE INDEXING FOR USE IN FOLLOWING SUBROUTINE
C

DO 45 1=1»NW
NE=NC+I+1
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G( I)=FS(NE)
45 V(I)=UU(NE)
C
C STORE JET ANGLES FOR COMPARISON WITH VALUES OF NEXT
C ITERATION
C

DO 14 I=1»KK
14 WAHm=WA(I)
C
C CORRECT JET ANGLES USING VORTICITY AND TANGENTIAL .
C VELOCITIES
C

CALL WANG (CJ»V»G,WA,NW)
C
C IF CONVERGENCE HAS BEEN ACHIEVED»CONTINUE TO 800
C

DO 70 I=1»KK
ERR=ABS(WAH(I)-WA(I))
IF (ERR.GE.EPS) GO TO 500

70 CONTINUE
GO TO 800

500 CONTINUE
C
C IF NOT CONVERGED.COMPUTE NEW GUESS FOR JET ANGLES
C

DO 600 I=1»KK
600 WAU )=WAH( I )+COEF*(WA( I )~WAH( I M

ITER=ITER+1
GO TO 38

800 CONTINUE
CALL TV (NW»NC»UU»WA»A»B»FS»ALPHA)
DO 73 J=l»60

73 WRITE (6*4) UUfJ)
C
C COMPUTE LIFT COEFFICIENT
C

CL=0.0
DO 105 I=1»CC

105 CL=?.0*FS(I)+CL
C
C PRINT VORTEX STRENGTHS,TRAJECTORY,CJ.JET ANGLES»ITFRAT
C REQUIRED AND LIFT COEFFICIENT
C

TAU=WA(1)*57.2958
WRITE (6.708) TAU
WRITE (6.709) ITER
WRITE (6.710)
DO Q03 1= 1 » K K
.WA< I)=WA(I)*57.?958

903 WRITE (6.4) WA(I)
WRITE (6.711) CL
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WRITE (6»310)
DO 505 I=1»CC

505 WRITE (6,305) FS ( I ) , A ( I ) »R ( I )
GO TO 606
END
SUBROUTINE INVR ( A »N ,R ,M,DETERM, ISIZE » JSIZE)

C
C
C
C
C

C
C

C
C
C

C
C
C

SUBROUTINE TO COMPUTE THE INVERSE OF A MATRIX OF SIZE LESS
THAN OR EQUAL TO 100 OR, IF REQUl RED , F I ND THE SOLUTION OF
A SET OF SIMULTANEUS EQUATIONS

15
20
30

40
45
50
60
70
80
85
90
95
100
105
110

130
140
150
160
170
200
205
210
220
230
250
260
270
310

DIMENSION I
1INDFX(10C,2
EQUIVALENCE

DO 20 J=1,N
IPIVOT( J)=0
DO 550 1=1,

SEARCH FOR

AMAX=0.0
DO 105 J=l»
IF (IPIVOT(
DO 100 K = l,
IF (IPIVOT(
IF( ABS( AMAX
IROWeJ
ICOLUM=K
AMAX=A( J»K)
CONTINUE
CONTINUE

PIVOT( 1 00 )»A( ISIZE, JSIZE), B( ISIZE, M) »
) , PIVOT! 100)
( I ROW

N

PIVOT

N
J)-l)
N
K)-l)
)-ARS<

IPIVOT( ICOLUM)=IP

INTERCHANGE ROWS

IF ( IROW-ICOLUM)
CONTINUE
DO 200 L=l»
SWAP=A( I ROW
A( IROW,L)=A
A( ICOLUM, L)
IF(M) 260,
DO 250 L=l»
SWAP=B( IROW
B( IROW,L)=B
B( ICOLUM,L)
INDEXt 1,1)=
INDFXJ I ,2) =
PIVOTf I )=A(

N
,L)

,JROW) , ( IcOLyM, JcOLuM) » ( AMAX ,T ,SWAP )

ELEMENT

f

60, 105» 60

80, 100, 740
A( J,K) ) ) 85 » 100, 100

^
IVOT( ICOLUM)+1

TO PUT PIVOT ELEMENT ON DIAGONAL

140, 260, 140

( ICOLUM»L)
= SWAP
260, 2
M
»L)

10

K

( ICOLUM,L)
= SWAP
IROW
ICOLUM
ICOLUM .ICOLUM)
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c
C DIVIDE PIVOT ROW BY PIVOT ELEMENT
C

330 AUCOLUM»ICOLUM) = 1.0
340 DO 350 L=1»N
350 A(ICOLUM,L)=A(ICOLUM,L)/PIVOT(I)
355 IF(M) 380, 380, 360
360 DO 370 L = l ,M
370 B(ICOLUM,L)=B(ICOLUM,L)/PIVOT{I)

C
C REDUCE NON-PIVOT ROWS
C

380 DO 550 Ll=l»N
390 IF(Ll-ICOLUM) 400, 550, 400
400 T=A(L1,ICOLUM)
420 A(L1,ICOLUM)=0.0
430 DO 450 L=l»N
450 A(L1,L)=A(L1»L)-A(ICOLUM,L)*T
455 IF(M) 550, 550, 460
460 DO 500 L=1»M
500 B(L1,L)=B(L1,L)-B(ICOLUM»L)*T
550 CONTINUE

C
C INTERCHANGE COLUMNS
C

600 DO 710 I=1»N
610 L=N+1-I
620 IF (INDEX(L,1)-lNDEX(L,2)) 630, 710, 630
630 JROW=INDEX(L,1)
640 JCOLUM=INDEX(L,2)
650 DO 705 K=1»N
660 SWAP=A(K»JROW)
670 A«»JROW)=AU»JCOLUM1
700 A(K,JCOLUM)=SWAP
705 CONTINUE
710 CONTINUE
740 RETURN

END
SUBROUTINE TV (Nw,NC,UU,WA,A,8,G»ALPHA)

C
C SUBROUTINE TO COMPUTE TANGENTIAL COMPONENTS Op VELOCITY
C

DIMENSION UU160)»WA(60)»A(60)
DIMENSION B(60)»TANG(60)»G(60)
INTEGER CC
DO 30 1=1,NW
12=1+1

30 TANG( m=0.5*(WA{ I )+WA( 12) )
NNN=NC+2
NMM=NW+NC+1
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DO 100 I=NNN»NMM
EE=O.O
N O = I - I
no 10 J=I»NO
R=( ( A B S ( A( J ) - A ( I ) ) ) * * 2 . 0 + ( A B S ( B ( J)~B( IM) **Z.O) **0."5
THETA=ATAN<(B<J)-B<i>)/(A(iJ-ACj)> >
ANG=(1.5?C8+TANG(I)-THETA)
ANN=COS(ANG)
EE=-(G(J)*ANN/(6.2832*R))+EE

10 CONTINUE
NP=I+1
CC=NW+NC+1
FF=0.0
IF ( I.FQ.CC) GO TO 99
DO 20 J=NPtNMM
THETA=ATAN(<B<I)-8<J))/(A<J)-A(I)))
R=((ABS(A(J)~A(I)))**2.0+(ABS(B(J)-B(I)))**2.0)**0.5
ANG=(1.5708+THETA-TANG(I))
ANN=C05(ANG)
FF = -(G( J)*ANN/<6.?fn;>*R) )+FF

20 CONTINUE .
99 CONTINUE

UU(I)=FF+EE+COS(TANG(I)+ALPHA)
100 CONTINUE

RETURN
END
SUBROUTINE WANG (CJ»U»G»WA»NW)

C
C SUBROUTINE TO CORRECT JET ANGLES
C

DIMENSION G(60),WA(60),U<60)
DO 5 I=1»NW
12=1+1
FG=G( I)*U< M/CJ

B WA(I2)=WA(I)-2.0*ASIN(FG)
RETURN
END
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