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GODUNOV METHOD AND COMPUTER PROGRAM TO DETERMINE THE

PRESSURE AND FLOW FIELD ASSOCIATED WITH A SONIC BOOM FOCUS

By Lee W. Parker and Robert G. Zalosh

Mt. Auburn Research Associates, Inc.
Newton, Massachusetts

SUMMARY

A numerical method has been developed to calculate the
flow field associated with sonic boom focusing. The computer code
used in the calculations is capable of following weak N-waves (rela-

«*5

tive overpressures of the order of 10" before focusing) for large
distances as they approach the focus, in addition to providing the
flow field at the focus itself.

Results are presented for two types of problems. In one
type of problem, the refraction and subsequent focusing of the N-wave
is caused by a localized cold-spot in the atmosphere. In the second
type of problem, the N-wave is assumed to be initially refracted (for
example, by atmospheric inhomogeneities or aircraft maneuvers) into a
prescribed concave shape.

Several sample problems in each category were run. Result-
ing overpressures at the foci range from 4.4 to 20 times the nominal
overpressure. The typical length scale of the high-pressure focal
region is of the order of one wavelength. These results are for
hypothetical situations, not necessarily typical of supersonic air-
craft booms. However, the computer code is now available for use
with data taken from specific maneuvers and/or atmospheric disturbances.

An interesting result of this investigation is the resolu-
tion of the controversy concerning wave folding at a focus. The
theory of geometric acoustics predicts that a concave shock front



will fold over upon itself as it propagates through a focus (ref. 2).
As opposed to this, Whitham (ref. 9) has claimed that a concave shock
will straighten out without folding over. It appears from the calcu-
lations reported here that both phenomena occur, but under different
conditions. A weak shock wave with a relative overpressure much less
than unity folds over, whereas a strong shock with a relative over-
pressure of the order of unity (or higher) tends to straighten out.



1. INTRODUCTION

The overpressures in a sonic boom N-wave can be intensi-

fied through the focusing phenomenon associated with concave shock

fronts. Such concave shock fronts may Be produced By atmospheric

inhomogeneities and by aircraft maneuvers. This report is addressed

to the computation of the flow fields that occur during focusing. Of

particular interest is the calculation of the pressure at the focus

as well as the extent of the high-pressure region surrounding the
focus.

The far-field disturbance from a supersonic aircraft is

in the form of an N-wave with two shocks, "fore" and "aft," separated
by a linear rarefaction wave. Since the overpressures in a sonic Boom

' • ' ' . • • _ o
N-wave are typically of the order of 10 times atmospheric pressure

(i.e. extremely weak) before focusing, the theory of geometric acoustics
is often employed to describe the approach to the focus. However, as
explained later, geometric acoustics must be abandoned at the focus

itself. On the other hand, standard numerical finite-difference
techniques cannot be used to follow weak shocks for large distances

because their artificial viscosity tends to smear out the shocks.

The shock-following method developed during this study combines the
advantages of both geometric acoustics and hydrodynamics. It preserves

the weak shocks of the N-waves throughout the entire flow field, and

accurately computes the pressure in.the focus.
Throughout this report, both line foci and point foci will

be discussed. Axisymmetric (r,z) geometry leads to a point focus,

whereas two-dimensional (x,y) geometry leads to a line focus. For
simplicity, the discussion to follow treats single shocks. It is
understood that similar reasoning may be applied to both shocks of

the N-wave.
The first mechanism for generating concave shock fronts

that will be discussed here is the refraction of a shock wave through

3



a localized cold region in the atmosphere. Consider the situation
illustrated in Figure 1-1, where the bow shock from a supersonic air-
craft passes through a spherical atmospheric "cold spot" (leading to
a point focus as described below). If the sound speed variation with
altitude is neglected, the shock wave propagates at a uniform speed
before it penetrates the cold spot. Since sound speed Tn the cold
spot is lower than the ambient sound speed, the portion of the shock
passing through the cold spot fs slowed relative to the rest of the
shock. The resulting concave shock front focuses in such a manner
that a shock cusp is produced at the focus. Thus, the action of the
cold spot in producing a focus is similar to that of an optical lens.
As Figure 1-1 indicates, beyond the focus, the depth of the cusped
region decays asymptotically with time.

The theory ordinarily used to predict sonic boom propaga-
tion (ref. 1) is based upon a modified form of geometric acoustics.
According to geometric acoustics, the wave front propagates along
rays which are everywhere perpendicular to the wave front. A geo-
metric acoustics description of the propagation of a concave shock
is illustrated in Figure 1-2, where the rays are drawn, and Figure 1-3,
where successive shock fronts are drawn. The caustic sheets shown in
Figures 1-2 and 1-3 are defined as imaginary surfaces along which
adjacent rays cross. The two caustic sheets shown in Figure 1-3
correspond to a two-dimensional (x,y) geometry in which the focus is
a line focus. In axisymmetric (r,z) geometry, the caustic sheets
would become a single surface of revolution, and the focus would
become a point focus.

One of the premises of geometric acoustics is that the
local amplitude of the wave front is inversely proportional to the
square root of the area of the ray tube formed by adjacent rays. Con-
sequently, geometric acoustics predicts infinite overpressures at a
caustic, where the ray tube areas vanish. Of course, non-linear dif-
fraction effects, which are not accounted for in geometric acoustics,



limit the overpressure amplification to some finite value. This value
may be computed by the method of the present report.

Although geometric acoustics falls to predict shock over-
pressures in the immediate vicinity of a caustic sheet, there is no
reason to discount the qualitative geometric acousticsdescription in
Figure 1-3. .

Pierce (ref. 2) refers to the cusped intersection of the
two caustic sheets in Figure 1-3 as an "arete."* Beyond the arete,
which is also called the "focus" or "caustic cusp" in this report,
the shock folds over upon itself. The fold-over is confined to the
region bounded by the two caustic sheets. The above description is
confined to weak shocks. As will be shown in Chapter 5, the fold-
over occurs for weak shocks, but not for .strong shocks which tend
rather to straighten out smoothly. This verifies a hypothesis of
Pierce (ref. 16).

Apparently, there have not been any direct measurements
of sonic boom focusing caused by local atmospheric inhomogeneities,
such as a cold spot as illustrated in Figure 1-1, or wind shear fluc-
tuations as illustrated in Figure 1-4. On the other hand, there have
been some measurements of focusing generated by maneuvering aircraft
in supersonic flight. Schematic drawings of shock focusing resulting
from turning and diving maneuvers are shown in Figures 1-5 and 1-6,
respectively. Both Figures 1-5 and 1-6 have been redrawn from refer-
ence 3. Wanner (ref. 4) reports measured focus factors (defined as
the overpressure at the focus divided by the nominal overpressure)
up to about 5 for level turns. Maglieri (ref. 5) reports measured
focus factors up to about 4 for the same type of maneuver. For the
case of turn-entry, in which an arete similar to the one in Figure 1-3
is formed, Wanner reports measured focus factors of about 9.

* Computations of arete locations are included in the Boeing geo-
metric acoustics program (ref, 15).



Most of the pressure-intensification data that is avail-
able refers to the so-called "sontc cut-off" phenomenon. The cut-off
phenomenon occurs when an aircraft is flying faster than ambient sound
speed but slower than sound speed at the ground. At the altitude at
which the speed of sound is equal to the speed of the aircraft, the
down-going wave front is reflected into an up-going wave front. The
locus of points at which reflection occurs represents a caustic sheet.
Figure 1-7 illustrates the situation for an accelerating aircraft, in
which the altitude of the point of reflection moves down toward the
ground with time.

It should be emphasized that the sonic cut-off intensifica-
tion phenomenon, which produces overpressure intensification factors of
the order of 2 (see Maglieri et al., ref. 6), is to be distinguished
from proper focusing. In proper focusing, which is the phenomenon of
interest here, much higher intensification factors are expected.

Confusing terminology exists in the literature. The cusp
of an N^wave shock at a single caustic surface has been called a "focus"
and the associated overpressure a "superboom." When the shock cusp
occurs where two caustic sheets meet (at the "arete"), the shock cusp
has been called a "super-focus" and the associated overpressure a'
"super-superboom," respectively. The distinction between the single
caustic surface and the cusped caustic surface has been discussed by
A. Pierce (ref. 2).

Except for Pierce's scaling law analysis (ref. 2), all the
previous theoretical investigations of sonic boom intensification have
been confined to phenomena associated with smooth single caustics, i.e.,
superbooms. The analyses of Hayes (ref. 7) and Seebass et al. (ref. 8)
fall into this category. In contrast, the present report is concerned
with proper focusing of a shock at a'cusped double caustic, i.e., super-
superbooms.

The primary approach adopted in this report is different
from those of the past. Rather than attempt a correction to geometric-
acoustic theory, or make restrictive assumptions about the nature of



the flow field, the full inviscid conservation equations are retained.
A numerical solution is obtained through the use of a moving mesh that
propagates with the N-wave (see Chapter 3). By confining the mesh to
the spatial region of interest, the computer problems which, would be
encountered in following an N-wave for large distances with a code
using a finite stationary grid are avoided.

A secondary approach based on Whitham's approximate model
(ref. 9) of shock wave propagation is also presented. The Whttham-
type model deals with a single shock wave, whereas the more rigorous
model described in Chapter 3 treats the focusing of the entire N-wave.

The contents of the remainder of the report are summarized
as follows:

Chapter 3
The shock following code called GODUNOV is described.

GODUNOV computes the flow field within the N-wave as it propagates
through the focus.. The technique employed to solve the conservation
equations is discussed, as well as the results of some test problems.

Chapter 4
The single-shock model code called WHITHAM is described.

The model is based on a ray-tube-shock-segment formulation in which
an empirical formula is used to relate ray-tube areas and shock-
segment Mach numbers. WHITHAM is used as an independent auxiliary
calculation that can follow the behavior of single curved shocks in
much less computer time than would be required with GODUNOV.

Chapters 5 and 6
Solutions have been obtained for focusing problems involv-

ing two types of assumptions, namely,
(a) initially plane N-wave fronts, refracted into concave shapes

by passing through cold spots
(b) initial concave-front configurations with prescribed geometric

parameters such as curvature and rate-of-change of curvature.
In both cases, the solutions are carried through the focus. Case (a)



represents the full problem starting from the physically expected
initial condition. However, Case (b) ts useful for the following
reasons. First, a significant amount of computer time is saved by
avoiding the early part of the calculation, namely, that dealing with
the propagation through the cold spot. Second, having geometric con-
figurations based on analytic formulas (such as Gaussian and polyno-
mial functions) allows one to study scaling laws involving, for example,
the curvature and the derivatives of the curvature. Third, generally
prescribed configurations are applicable, not only to cold-spot refrac-
tion, but to the refraction produced by any of several possible physi-
cal mechanisms. Hence, it is understood that, for the problems involv-
ing assumption (b), atmospheric disturbances or aircraft maneuvers can
produce the refracted fronts. The flow variables as functions of two-
dimensional space and time are obtained. Tests are made with changes
in numerical parameters such as numbers of grid points in order to
obtain numerically-convergent solutions. Focus factors are given for
various values of the physical parameters. Also investigated is the
question: Under what conditions will a concave shock fold over?

Chapter 7
Some conclusions that follow from our results are summar-

ized. These include the confirmation of the geometric-acoustics wave-
folding phenomenon for weak shocks, (Ap/p « 1) as well .as the absence
of wave-folding predicted by .Whitham for strong shocks (Ap/p ^ l).

Focus factors of 19 and 13 have been obtained for polynomial and
Gaussian front N-waves, respectively. In both cases, high over-
pressures are confined to spatial regions with scale lengths of the
order of the wavelength. These results demonstrate the capability
of solving the focusing problem with the numerical hydrodynamics formu-
lation described in the report. Computations with initial conditions
representative of proposed supersonic transport operations can now be
carried out.



2. SYMBOLS

a = A . / A r in GODUNOV

A = area of cell boundary in GODUNOV, area of shock segment
in WHITHAM

A = cross sectional area of cell in r,z plane

B = normal component of cell boundary velocity

c = sound speed

e = internal energy per unit mass
1 2 2

E = total energy per unit mass E = e + ^ (u + v )

i = index for horizontal rows in GODUNOV mesh; index for shock
segments and nodes in WHITHAM

j = index for columns parallel to shocks in GODUNOV

K = constant in area versus Mach number relation used in WHITHAM

A. = length of shock segment i (GODUNOV and WHITHAM)

m = mass flux across a wave appearing in Riemann problems

M = Mach number . .

p = pressure

qi = shock velocity of segment i (GODUNOV and WHITHAM)

r = radial coordinate

r. = vertical component of shock node velocity in WHITHAM

Ar. = separation of horizontal grid lines in GODUNOV

t = time

u = velocity component in z (or x) direction

u.j = shock node velocity in WHITHAM

u. . = node velocity in GODUNOV (see Figure 3-2)
i >J



U = normal component of velocity flowing into a cell in
60DUNOV

v = velocity component in r Cor y) direction

V = cell volume in GODUNOV

V = wave propagation speedw
x = coordinate parallel to direction of propagation

y = coordinate normal to propagation direction

z = axial coordinate

z.. = axial component of shock node velocity in WHITHAM

Y = ratio of specific heats

6 = symbol appearing in conservation equations.
6=0 for x,y geometry, 6=1 for r,z geometry

e. = angle of inclination of segment i to vertical

p = density

Subscripts

N, S, E, W = north, south, east, west cell boundary

old = value at beginning of time step

new = value at end of time step

1, 2, 3, 4 = regions 1, 2, 3, 4 in Figure 3-3

spot = cold spot

cs = contact surface (see Figure 3-3)

n = normal to cell boundary

10



3. THE 60DUNOV CODE

A computer code, called GODUNOV, has been developed to
solve the full set of two-dimensional time dependent conservation
equations for the case of a focusing N-wave. The numerical method
that is employed in GODUNOV is a modification of a technique originally
devised by Godunov, et al. (ref. 10) to study the shock layer adjacent
to a blunt body in supersonic flight. Since Godunov's original pre-
sentation, the Godunov technique has been applied successfully to a
variety of blunt body problems, e.g. references 11 and 12. To the
authors' knowledge, this is the first time the technique has been
extended to a propagation problem.

One great advantage of the Godunov scheme is that it pre-
serves the discontinuity across shock waves of arbitrary strength.
In this respect, it is superior to the standard finite difference
codes, such as SHELL, which use artificial viscosity to spread a shock
over several mesh points and tend to obliterate weak shocks. It should
be pointed out that GODUNOV also treats any internal discontinuity which
may arise within the N-wave, through its intrinsic artificial viscosity.

3.1 Mesh Motion and Geometry

The mesh geometry employed in GODUNOV is illustrated in
Figure 3-1. The leading and trailing shocks in the N-wave are shown
as solid lines. The grid points lie on horizontal lines with fixed
spacing in the vertical direction.

Since the high pressure region that results from focusing
does not extend far from the axis of symmetry, it is desirable to
place most of the grid points near the axis of symmetry. This can be
achieved by placing the horizontal grid lines close together near the
axis of symmetry and further apart at large radial distances. The
separation between horizontal grid lines in GODUNOV follows the geo-
metric progression

11



where a is a constant. We have found that the optimum value of a is
1.05 for these problems.

In order to follow the N-wave as it propagates, the grid
points are allowed to move horizontally but not vertically. The N
grid points within the N-wave (N = 5 in Figure 3-1) move in such a
fashion that they are always equally spaced between the leading and
trailing shocks. There are M grid points behind the N-wave (M = 2 in
Figure 3-1), and they move so as to be equally spaced between the
fixed left boundary of the grid and the trailing shock of the N-wave.
The grid points behind the N-wave provide an indication of the net
disturbance imparted to the atmosphere after the passage of the N-wave.

The procedure for moving the grid points is the following.
First the propagation velocity of each segment of the leading and
trailing shock is computed by solving a one-dimensional Riemann problem
as described in Section 3.3 (below). Then the projection of each shock
segment's normal velocity along the x axis is calculated. The propa-
gation velocity of a node on the leading or trailing shock is deter-
mined by using an inverse length weighting of the projected velocity
of the two adjacent shock segments. Using the notation indicated in
Figure 3-2, the formula for the shock node velocity is

i,JFORE

A node falling on the contour labeled j between the lead-
ing and trailing shocks, indicated by the dashed curve in Figure 3-2,
is given a velocity

12



U = M + Wi,j i,JAFT i,JFORE * t.JAFT UFORE - JAFTT

where JFORE and JAFT are the j -Indices of the leading and trailing
shocks, respectively.

An attractive feature of this floating mesh scheme is that
it confines the grid points to the continually changing region of
interest. Thus, for a given number of grid points, ft allows for a
higher resolution of the flow field than codes with fixed Eulerian or
Lagrangian meshes.

3.2 Conservation Equations

The conservation equations which describe the two-

dimensional unsteady flow of an inviscid fluid are given below.

Mass

x-Momentum

y-Momentum

3£_ , i_(pu) . 3_(pv) _ 6 p\^ ,-»
3t 3x 3y y v '

3_(P-U) 8_(p + PU) . 8_(PUV) = 6 £UV_
3t 3x 3y y

9_(pv) + 3_(PUV) 3_(p + pV) _ 6
3t 3x 3y y

Energy

3_
3t

[Pe + | (u2 + v2)] + fj- u [p + Pe + | (u2 + v2)]

- v [p + Pe + f (u2
 + v2)] = - 6 v- [p + Pe + f- Cu2 + v2)]

13



In the above equations 6 = 0 for x, y geometry and 6=1

for r,z geometry. These equations together with the equation of state

represent a set of five nonlinear equations for the five unknowns

p, p, e, u, and v. A perfect gas law equation of state has been

incorporated into GODUNOV, i.e.

P = (Y - 1) Pe (7)

In applying the conservation equations to the moving mesh

in GODUNOV, Eqs. (2) - (6) are integrated over a cell volume (V = cell

volume). After applying Green's theorem, the result is

Mass

±$1 = ) | P A ( U - B ) | (8)

NSWE

x -'Momentum

V I" 1- (pA sin e)£ + l_^ [PuA (U - B)j (9)

NSEW

y - Momentum

^^= ( p A c o s e)E - (pA cos e)w

- (pA)N + (pA)s + f_^ [PvA (U - B)_
Across . (10)

NSEW



[pAE (U - B) + pUAJ 01)
NSEW

The subscripts in Eqs. (8) - (11) refer to the north, south,
east, and west boundaries of the cell in question (see Figure 3-1).
The areas of the cell boundaries are denoted by A, whereas A

\+ I L/o o

denotes the cross sectional area of the cell in the r,z plane. U
represents the normal component of inward-flowing velocity and B the
normal component of the cell boundary velocity. The angle 6 is measured
from the positive x axis to the east or west cell boundary as illustra-
ted in Figure 3-1.

During the course of a time step, the cell volume changes
as a result of the .mesh motion. The new cell volume at the end of a
time step, V , must first be calculated before Eqs. (8) - (11) can
be utilized. The resulting equations used to update the flow vari-
able are

At

NSEW

(upV)new = (puV)old + At 1(pA Sin 6)

- (pA sin e)E + /__> [puA (U - B)JJ (13)
NSEW

15



At ^pA cos e^ " ̂ pA cos

(PA)N + (PA)S + }_, [PVA CU - B)j + 62«PAcrossj <14>

NSEW

J J(EpV)new = (pEV)o]d + At _ pAE(U - B) + pUA J (15)

SlSEW

Equations (12) - (15) are used to solve for pnew» ungw, vnew> and

Enew'

3.3 Riemann Problems

Before the right-hand sides of Eqs. (12) - (15) can be
evaluated, the values of the flow variables at the cell boundaries
must be determined. This is accomplished in GODUNOV by solving a
Riemann problem across the appropriate cell boundary.

The Riemann problem describes how an initial discontinuity
between two uniform regions evolves with time. In this case, the two
uniform regions are two adjacent cells separated by a cell boundary.
There are four Riemann problems associated with each cell. Two of
them involve moving boundaries (east and west), and two stationary
boundaries (north and south).

Consider two adjacent cells in the same horizontal row as
illustrated at the top of Figure 3-3. The boundary between the cells
has a normal velocity, B, which is calculated by averaging the normal
components of the node velocities at both ends of the boundary, i.e.

sin 9 /p . r
2 lui-l.i u i . i l (16)

16



Once the fluid velocities in the two adjacent cells are resolved into
components normal and parallel to the cell boundary, the solution of
the one-dimensional Riemann problem proceeds as indicated in the x-t
diagram in Figure 3-3.

In general, a compression or rarefaction wave, wave 1,
will propagate into region (1), and another compression or rarefac-
tion wave emanating from the interface, wave 4, will propagate into
region (4). Between wave 1 and wave 4, a contact surface exists.
To the extent that the width of the rarefaction waves can be neglected
(acoustic limit), the three discontinuities divide the x-t plane into
4 uniform regions, labeled (1) - (4) in Figure 3-3.

At the fore and aft (or leading and trailing) shocks,
wave 4 is a shock wave which coincides with the cell boundary in the
x-t plane. At an interior east or west cell boundary, the boundary
position has a velocity dx/dt = B as computed above, whereas a north
or south boundary is fixed and its position coincides with the t axis
in the x-t plane. In each case, the flow properties at the cell
boundary are set equal to the flow properties of the region in which
it lies.

If wave 4 is a shock wave, the Rankine-Hugoniot relations
dictate that the mass flux across wave 4 is

+ 1) P3
+ (Y - 1) P4]

and, from momentum conservation,

P4 - P3
 +>4 (un4 - unl) = 0 .(18)
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where u is the fluid velocity relative to the wave. In the case

that wave 1 ts a rarefaction wave, the one-dimensional unsteady

isentropic relations provide that

nl
-
Y - 1

=ii +Un2

/P

- 1
(19)

Since the pressure and normal component of fluid velocity

are preserved across a contact surface, p2 = p~ = p and
Un2 = Un3 = Ucs' Ec:luatlons (I8) and (i9) mW now be solved for
and U to give

cs

cs

mlm4 (unl - (20)

and

cs
- P Vn4 mlunl

(21)

where

m -m - 1)
2Y

'YPjPj
i - PCS/P!

.1 - (PCS/PI) Y"
(22)

An iterative solution for m. using Eqs. (17), (20), and

(22) is obtained at each fore and aft shock segment. The shock

velocity is then computed as
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(23)

This procedure is s impl i f i ed at interior cell boundaries
by using the weak wave relations across waves 1 and 4. In the
acoustic l imi t ,

Y P P4 4
(24)

and no iterative solution is required for p and U ,
Lo L-o

To determine the properties of an interior cell boundary,
the boundary velocity, B, is compared to the wave speeds, where

Vwl = unl

Vw4 = Un4

(25)

For example, if V , < B < U- , then the cell boundary lies in region
(2) in the x-t plane, and the flow variables at the boundary are:

p = pcs

U = Ucs

p =

(26)
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If the cell boundary falls in region (3), the first two relations
in (26) would remain the same while

= P = P (P/P (27)

3.4 Time Step Computation

The time step used in updating- the flow variables is com-
puted on the basis of a Courant type stability criterion. This cri-
terion limits the time step to less than the time required for an
acoustic signal to travel across any cell, in either the x or y
directions.

An acoustic signal travels northward across a c,^ll at
speed c + v, and southward at a speed c - v. Hence the vertical
direction time step is

Aty = max (c + I, c - v) (28)

In calculating the horizontal direction time step, the motion of the
cell boundary must be included. An acoustic signal propagates east-
ward at a speed c + u, and westward across a cell at speed c - u. A
signal emanating from the west cell boundary will have to travel a
distance AZ . + B^At, where AZ . is the shortest horizontal leg of
the trapezoidal cell, before it encounters the east boundary. Simi-
larly, a signal leaving the east boundary will travel a distance
AZ . - B At across the cell. Therefore, the horizontal time step is
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AZ .
At _ win

"x max C C + U - B £ , C - U + B^J

In order to avoid difficulties that could arise when the cell bound-
aries and/or the fluid are moving much faster than .sound speed,
GODUNOV uses a modified horizontal time step of

AZ .
At = min

x max (c + |u| + |B£|, c + |u| + |BW|)

Following Godunov, et al. (ref. 10), the overall time step
for a cell is

At At
At =At At + At

A y

and the time step used during a cycle is the minimum value of At
computed for every cell in the grid.

3.5 Boundary Conditions

Zero gradient boundary conditions are imposed at the top
and left boundaries of the grid. This is implemented in GODUNOV by
setting the flow variables at the west boundary of a cell in the
first (far west) column of the grid equal to the corresponding values
at the center of the cell. Similarly, the north boundary of a cell
in the top (far north) row of the grid is assumed to possess the same
properties as the center of the cell.

The right boundary of the grid coincides with the leading
shock of the N-wave. The appropriate Riemann problem is solved (as
described in the previous section) for each shock segment in order
to compute the jump conditions across the shock. The flow field
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ahead of the shock is assumed to be undisturbed except for the pres-
ence of the cold spot.

A symmetry condition exists at the bottom boundary of the
grid. In the early stages of development, the symmetry was accounted
for by placing the center of the first row of cells on the x axis,
and constraining the east and west cell boundaries on the first row
to be vertical. This configuration is illustrated at the top of
Figure 3-4. The vertical component of velocity in the first row of
cells must be zero in this arrangement.

Several runs with this symmetry configuration produced at
late times an abrupt change in the slope of the shock between the
first and second shock segments. In other words, both shocks in the
N-wave tended to be inclined upon passing through the focus, and the
constraint of a vertical segment on the axis was artificial. Down-
stream of the focus the discontinuity in slope seemed to propagate
upward along the shocks, and it appeared as if the shocks "broke up."
This situation is illustrated in Figure 3-5, and is a numerical
artifact.

To alleviate this "break-up" the symmetry condition was
re-posed in terms of an imaginary row of cells across the axis of
symmetry. As the bottom of Figure 3-4 indicates, the imaginary row
of cells was taken to be the mirror image of the first row. Now the
first shock segment can be inclined and a vertical component of
velocity is allowed in the first row of cells. Subsequent runs with
this configuration produced smooth shock profiles.

3.6 Test Runs

A series of test runs was conducted with GODUNOV before

it was used for the two-dimensional N-wave focusing problem.

The first test case concerned the one-dimensional propa-

gation of an N-wave into a uniform atmosphere, without refraction.
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The initial relative overpressure of the N-wave was Ap /p =0.1, and
the initial wavelength was 50 meters. Ten axi.al grid points were
placed within the N-wave and two behind it. Figure 3-6 is a plot of
the pressure distribution both initially and after it has propagated
for 0.1807 sees (50 time steps or cycles).

The half wavelength, a, of the N-wave should increase
with time according to the formula (ref. 13)

(32)

where a and Av are the initial half wavelength and velocity ampli-

tude, respectively. For the parameters of the N-wave in Figure 3-6,

(AV = 24.34 meters/sec), Eq. (32) predicts a value of a/a = 1.100

after 0.1807 sees. The value computed in GODUNOV was a/a = 1.090,

which is within 1 percent of the theoretical value, indicating excel-

lent agreement.

The same problem was run on the SHELL code, which is one

of the standard hydrodynamic codes with a stationary mesh. The pres-

sure profiles obtained with SHELL are illustrated in Figure 3-7. The

artificial viscosity in SHELL has spread the shock waves to such an

extent that they are barely recognizable as discontinuities with well-

defined amplitudes. It is apparent that SHELL is not capable of

following shock waves with relative overpressures much less than 0.1,

which is the range in which we are interested.

The other test problem run on both SHELL and GODUNOV was

a numerical simulation of a "cylindrical shock tube" problem. In

this problem, the ordinary planar diaphragm separating the high and

low pressure gases is replaced by an imaginary cylindrical diaphragm.
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At time t = 0, the pressure ratio across the diaphragm is 4.45, the
diaphragm is instantaneously removed, and the initial discontinuity
resolves itself into a shock wave and a rarefaction wave propagating
in opposite directions. The resulting flow is in the radial direction
only.

The results of computations with SHELL and GODUNOV are
illustrated in Figure 3-8. The initial pressure across the diaphragm
(4.45) was chosen so as to produce a shock wave with a relative over-
pressure of 1 in the axial flow case. There is no equivalent analyti-
cal solution to the radial flow problem, but both SHELL and GODUNOV
indicate that the shock wave is slightly weaker than it would Be for
axial flow. The excellent agreement between SHELL and GODUNOV con-
firms that GODUNOV is computing the radial flow correctly. This con-
firmation together with the axial flow test case results verifies that
GODUNOV is a valid two-space-dimensional fluid dynamic code. The fact
that the shock discontinuity is smeared slightly more by GODUNOV than
by SHELL (in Figure 3-8) shows that the intrinsic artificial viscosity
is slightly greater in GODUNOV than in SHELL.
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4. THE WHITMAN CODE

An auxiliary computer code, entitled WHITHAM, has been

created as a supplement to GODUNOV. WHITHAM follows the propagation

of a single shock according to the approach described by Whitham in

reference 9. In our case, the shock represents the leading shock of

the N-wave, and the validity of the WHITHAM code is contingent upon

a lack of interaction between the shock and the flow behind it.
Whitham's original premise was that a curved shock may be

envisioned as a chain of planar elements, each of which propagates

down a tube of varying cross section. The propagation velocity is

determined by an empirical area versus Mach number relation. Thus,
as the shock begins to focus, the segments near the focus are "com-

pressed" and their propagation velocity increases. In this respect,
WHITHAM is a higher order formulation than the ordinary geometric

acoustic ray tube concept where every point on the wave front propa-

gates at the local sound speed.

4.1 Numerical Description

A sketch of the shock front in WHITHAM is illustrated in

Figure 4-1. Each line segment, which represents in the figure the

cross-section of a planar element, has a velocity, q., normal to
itself, where q. is equal to the segment Mach number, M., multiplied
by the ambient sound speed. The differential relationship between

Mach number (M) and "segment area" (A) is the one proposed by Whitham

(ref. 9), i.e.

dA _ - 2MdM
1 5A (rr -1) K(M)

where K(M) is a slowly varying function of Mach number, given in
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reference 9. Since K.(M) only ranges from 0.5 for weak shocks to 0.394

for strong shocks, Whtttiam (.ref. 9) suggests that its. variation jnay be

neglected In Integrating Eq. [33), Tfie resulting simple relationship

AK (M2 - 1) = const (34)

is the one employed in WHITHAM. The area A- associated with each
shock segment is (a) the area of revolution of the segment about the
axis of symmetry for r,z geometry, or (b) the area of a strip, per
unit length in the z-direction, in x,y geometry.

The sequence of events occurring during one cycle, or
time step, in WHITHAM is the following.
1. The lengths and areas, of the shock segments are computed from

the r,z (or x,y) coordinates of the shock nodes.
2. Mach numbers for every shock segment are computed from Eq. (34)

(K is read in as input data; we have used K = .5 for most runs),
yielding segment velocities, q..

3. The time step, At, is computed by taking the smallest value of
H-/q-. This criterion prevents the segments from moving a
distance larger than their own length in one time step.

4. Using the shock segment velocities and geometry, compute the
r and z (or x and y) components of the shock node velocities.
The method used is described in detail in the next section.

5. Move each shock node a distance f.At in the radial direction
and z.At in the axial direction.

4.2 Shock Node Velocities

Two different methods have been used to compute the shock
node velocities, f- and z., from the segment velocities and geometry.

In the first method, the node velocity components are
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computed as an inverse length weighting of the adjacent segment

velocities. The equations are

(35)

zi =

- r.)

(36)

In the second method, the two adjacent shock segments are
displaced a distance q.At normal to themselves and the new node posi-
tion is computed as the geometric intersection of the two segments.

The equations are

ri =
"1+1*1 (37)

zi =
(ZT -

- z.) (38)

Equations (37) and (38) are singular when the two segments
are parallel. Therefore, Eqs. (35) and (36) are used only when the
cosine of the angle between the segments differs from 1 by more than
ID'3.
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5. RESULTS FOR INITIALLY-CONCAVE N-WAVES

5.1 Polynomial Front

Two different initially-refracted configurations are

investigated, using GODUNOV. The first configuration to be discussed

is called the "polynomial front" N-wave. Both the fore and aft shocks

of the polynomial-front N-wave at t = 0 are represented by the formula

0 < r < 100 (39)

where z and r are in meters, and z locates the fore shock and the aft
shock.

Consider the 4 pairs of approximately equally-spaced curves
shown in Figure 5-1. For each pair, the curve on the right represents
the fore shock profile at a given time, while the curve on the left
represents the aft shock profile at the same time. The first pair of
curves (labeled,t = 0) corresponds to a polynomial-front N-wave with
an initial wavelength of 10 meters and a radius of curvature at the
axis of 50 meters. The initial relative overpressure is chosen to be

0

(Ap/p) = 10 , where Ap is the pressure jump across the fore shock
and p is the ambient pressure.

The shock profiles at the four indicated times in Figure
5-1 illustrate how the N-wave changes shape as it propagates to the
right into a uniform atmosphere. Note that the point of inflection
on either front migrates toward the axis as the N-wave approaches the
focus, defined here to be the position of maximum pressure, which is
located at z = 79 meters Corresponding to t = .172 sec, not shown in
Figure 5-1). According to geometric acoustics, the focus is located
at the center of curvature of the fore shock, at z = 70 meters in
this case. We will designate the geometric-acoustic focal point as
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the "nominal focus," to distinguish it from the "actual focus" deduced
from the calculation. At the actual focus, the shock, develops a cusp
at the axis of symmetry. The profile at the focus resembles the geo-
metric-acoustic wave-folding picture in Figure 1-3.

The incipient break-up of the last shock profiles at the
axis in Figure 5-1 is a numerical artifact involving use of a verti-
cal shock segment at the axis. A suitable modification which avoids
this break-up has been discussed in Section 3.5.

The polynomial front N-wave shown in Figure 5-1 and
defined above was run several times with different grid sizes.
Although the shock profiles exhibit the general shapes shown in
Figure 5-1 for all of the grids, the focus factors, Ap /Ap , depend

IMG X 0

on the number of grid points used. Table 5-1 displays the focus
factors corresponding to each of the grids. The authors believe that
the grid consisting of 100 equally spaced radial points and 20 axial
points yields a reasonably accurate value for the focus factor, namely
18.7, in the sense that increasing further the number of grid points
will not change this value significantly.

Moreover, the use of inclined cell segments on the axis
is believed to yield more accurate results (see Section 3.5). Through-
out the rest of this chapter, the results refer to inclined cell seg-
ments. Focus factors obtained with inclined cell segments are
approximately 10 percent higher than those obtained with vertical
cell segments. Thus, a better estimate of the focus factor for the
polynomial front is about 20. It is interesting to note that the
focus factor is 11.5 at the position of the "nominal" focus (geo-
metric acoustics).

Figure 5-2 illustrates the pressure profiles (as computed
with the 100 x 20 grid) along the axis at three different times. The
last curve in Figure 5-2 corresponds to the pressure signature at the
focus. The formation of spikes near the-fore and aft shocks of
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the N-wave is evident. Detailed structure behind the aft shock is not
shown because the zoning was coarse behind the N-wave.

The pressure profiles at three different radial positions
are illustrated in Figure 5-3. The lowest curve in Figure 5-3, which
is the profile on the axis, is the same as the last curve in Figure
5-2, drawn to a different scale. The rapid drop of pressure with
distance from the axis is apparent in Figure 5-3.

Figure 5-4 is a plot of the relative overpressure behind
the fore shock of the N-wave versus axial position of the shock.
The solid curve represents the results of the 100 x 20 grid 60DUNOV
calculation, while the dashed curve represents the equivalent (100~
point) WHITHAM calculation. The maximum relative overpressure com-
puted with WHITHAM C.0285) is 52% higher than the maximum relative
overpressure computed with GODUNOV (.0187).

This is apparently due to the fact that there is no
rarefaction wave in WHITHAM to relieve the pressure buildup. The
calculations in WHITHAM are terminated when the shock segments
overlap, or cross each other. (This occurs somewhat earlier than
the GODUNOV focus.) It can be seen from Figure 5-4 that, along the
axis, relative overpressures greater than .002 (twice nominal)
occur in a spatial interval 40 meters long; and relative overpressures
greater than .01 (about half the maximum) occur in a spatial interval
10 meters long. In the radial direction, the corresponding interval
lengths are 20 and 10 meters, respectively.

In order to assess the relative intensities of point foci
and line foci for the same initial conditions, the problem defined
above was recomputed with WHITHAM in a two-dimensional x,y geometry
(line focus). A maximum relative overpressure of .0117 was computed,
as compared to the value of .0285 for the point focus.
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TKe effect of varying the initial strength, of the poly-
nomial shock front was also investigated with WHITHAM. Calculations
with initial relative overpressures, APO/PO» of 0.01 and 0,10, in
r,z geometry, resulted in maximum relative overpressures of 0.154 and
0.63, respectively. These results indicate that the intensification
due to focusing of stronger shocks is not as severe as for weaker
shocks. Furthermore, the geometric-acoustics wave-folding description
of focusing is not valid for shocks with relative overpressures of
the order of 1 or higher. This is discussed below in connection with
some GODUNOV calculations for "Gaussian front" N-waves.

5.2 Gaussian Front

We define a "Gaussian front" shock wave as one with a

profile satisfying the equation

2 = Zo + 10 - 10 ' f (40)

where r and z are both in meters. The profile labeled "t = 0" in
Figure 5-5 is an example of a Gaussian front. (Only the fore shock

profiles are shown.) The other curves in Figure 5-5 represent the

fore shock profile of the N-wave at later times. Initially, the
o

N-wave has a nominal relative overpressure Ap /p . = 10 and a
wavelength of 10 meters. The formation of a cusp at the axis as the
focus is approached in Figure 5-5, and the gradual decay of the cusped

portion of the shock beyond the focus, confirms the geometric-acoustics

description of the primary shock shown in Figure 1-3.

The geometric-acoustics wave-folding picture in Figure 1-3
indicates that the primary shock should be reflected from the axis of

symmetry. Further, the reflected shock ends at the caustic sheet, and

31



a third (logarithmic) discontinuity joi.ns the "ends" of the reflected
shock. The question arises whether thts structure may be inferred
from our calculations. The computed two-dimensional pressure distri-
bution immediately behind the fore shock, just after it has passed the
focus has been plotted in Figure 5-6. A portion of the mesh used in
the computation is shown in Figure 5-6, and the numbers within the
cells represent the pressure at that location. If the presence of a
reflected shock and a "logarithmic discontinuity" are to be inferred
from the computations, there should be a jump in pressure as one scans
from right to left along a horizontal row in the mesh. This type of
pressure jump does not appear in Figure 5-6. It is perhaps not sur-
prising that the GODUNOV calculations do not reveal the presence of
secondary discontinuities, because the strong rarefaction behind the
fore shock probably swamps such discontinuities. As opposed to this,
the wave-folding picture shown is for a single shock without a strong
rarefaction behind it.

A tabulation of focus factors calculated with different
numbers of mesh points for the Gaussian-front N-wave discussed above
is shown in Table 5-2. The relatively small change in focus factors
between the last two grids in Table 5-2 indicates that approximate
convergence has been obtained. The results discussed in this section
refer to the 50 x 50 grid, which required 34 minutes of CDC 6600
computer time.

Pressure signatures along the axis of symmetry at three
different times are plotted in Figure 5-7. Here again, the develop-
ment of steep spikes adjacent to the fore and aft shocks of the N-
wave is apparent. The pressure signature at the time corresponding
to focusing in Figure 5-7 indicates a focus factor of 13.0 (relative
overpressure = .013) for the Gaussian front N-wave.

Note that the location of the actual focus (z = 64 meters)
is close to the center of curvature (the nominal focus) of the initial
N-wave (z = 70 meters).
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For the Gaussian-front N-wave, relative overpressures
larger than .002 (twice nominal) occur in an axial Interval 35
meters long, and relative overpressures greater than .0065 (about
half the maximum) occur in an axial interval 20 meters long. In the
radial direction, the corresponding interval lengths are 6 meters
and 1.5 meters, respectively.

5.3 Strong Shocks

The same Gaussian front N-wave described above was rerun
on GODUNOV with a much higher initial'overpressure in order to inves-
tigate the focusing of relatively strong shocks. The shock profiles
for an N-wave with Ap /p = 0.90 are shown in Figure 5-8. Notice the
lack of a cusp in the shock profile at the focus in this case. In
fact, the entire picture looks more like Whitham's picture of a con-
cave shock "overshooting" than the geometric-acoustics wave-folding
picture (compare figures 1 and 4 in ref. 9). The focus factor is 1.5.

GODUNOV has been used to investigate the propagation of
other relatively strong concave and convex shocks. The convex shock
that was studied is identical to one of the shocks that Collins and
Chen (ref. 14) used in their study of shock wave diffraction.

As indicated in Figure 5-9, the initial shock profile is
composed of three straight sections labeled A, B, C. Segments A and
C have Mach numbers of 2.23 UP0/P0 = 4.63), while the inclined seg-
ment, B, has a Mach number of 1.576 (AP0/P0 = 1.73). The decay of
the convex portion of the shock at later times as illustrated in
Figure 5-9 is in close agreement to Collins' and Chen's results.

A similar shock, with a concavity instead of a convexity,
is shown in Figure 5-10. Although the shock does straighten out, the
return to a planar configuration is not as smooth as it is for the
convex shock. The spike in the last shock profile is a numerical
artifact due to the symmetry constraint employed in that particular
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run. (The modifications referred to in Section 3-5 of Chapter 3
would eliminate this artifact.)

Comparisons of Figure 5-8 and 5-10 with Figures 5-1 and
5-5 reveal that the focusing of concave shocks is much different for
weak shocks than it is for strong shocks. Weak shocks with relative
overpressures much smaller than unity focus according to the geometric-
acoustic wave-folding mechanism, whereas strong shocks with relative
overpressures of the order of unity or higher tend to straighten out
as Whitham (ref. 9) predicted.
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6. RESULTS FOR COLD-SPOT REFRACTION OF INITIALLY-PLANAR N-WAVES

In early runs, spherical cold-spots with uniform tempera-
tures below ambient were investigated. The incident shocks were
assumed to be initially planar, which is a good approximation if the
radius of the cold-spot is much smaller than the radius of the Mach
cone associated with the bow shock of a supersonic aircraft. The
discontinuity in temperature at the cold-spot interface caused a
reflected shock. The disturbance in the N-wave (as calculated by
GODUNOV) that was caused by the reflected shock produced complicated
solutions without providing further insight into the focusing mechanism.
Consequently, in later runs a continuous transition in temperature was
imposed at the cold-spot boundary, so that reflected shocks, if any,
were weak and did not appear. The temperature variation within the
cold-spot was taken to be

(41)

where z t is the location of the center of the cold-spot, r t is
the cold-spot radius, and Ap/p is the relative density change between

the center of the cold-spot and ambient conditions. The pressure in

the cold-spot is taken to be the same as the ambient pressure.

The results of a run in which the temperature transition
is continuous are shown in Figure 6-1. The solid curves represent
the fore shock and the dashed curves the aft shock. This figure shows

a numerical break-up occurring at late times, which is an artifact and

was corrected in later runs (see Figure 6-2). The break-up occurs

after the focus and has a negligible effect on the value of the focus

factor. Therefore it may be ignored in the following remarks.
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In the results illustrated in Figure 6-1, AP/PO =1.0,
zsoot = 12° meters» and r

spot ''
 50 meters- The first pair of curves

represent the impinging planar N-wave. The second pair of curves in
Figure 6-1 illustrate the refraction that is caused by the cold-spot
slowing down the inner portion of the N-wave. Note the resemblance
between the cold-spot refracted shock fronts in Figure 6-1 and the
Gaussian front of Figure 5-5. The initially-refracted concave shocks
described in Chapter 5 started with uniform overpressures along the
shock fronts. At the time the N-wave shown in Figure 6-1 emerges from
the cold-spot, the overpressure variation along the fore shock is 55%,
i.e., relatively small compared with 390% at the focus (see below).

The third pair of curves in Figure 6-1 have been drawn at
a time when the fore shock has already propagated past the focus, which
occurs at z = 231 meters. With a grid composed of 20 radial points and
7 axial points, a focus factor of 3.9 was computed for the problem
shown in Figure 6-1. A finer mesh would.result in a larger focus
factor; if the results shown in Table 5-1 can be used as a guideline
to extrapolate to a finer mesh, a focus factor of 11.3 can be estimated.

GODUNOV has also been employed to compute the two-
dimensional (x,y geometry) cold-spot focusing that results from a
situation equivalent to the one shown in Figure 6-1. In other words,
the cold-spot is now cylindrical instead of spherical so that a line
focus will result instead of a point focus. A focus factor of 1.5
was calculated using the same 20 x 7 mesh. Extrapolation to a finer
mesh in this case would lead to a focus factor of 4.4.

Figure 6-2 shows the results of a computation with a mesh
consisting of 50 radial points and 50 axial points. The cold-spot
parameters are Ap/p =1.0, z t = 250 meters, and r t = 150 meters.
Thus, the cold-spot in Figure 6-2 is larger than the one in Figure 6-1,
although the central temperatures are the same. The three pairs of
curves in Figure-6-2 represent the N-wave (a) impinging on the cold-
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spot, (b) midway through the cold-spot, and (c) just after focusing
(the focus is located at z = 430meters). Note the absence of a
break-up in the last pair of shocks in Figure 6-2. This is due to
the improved symmetry condition employed in this calculation (see
Section 3.5).

A plot of the relative overpressure behind the fore shock
versus axial position of the fore shock is given in Figure 6-3. Sig-
nificant increases in the overpressure are not observed until the
fore shock is almost through the cold-spot. This is due to the small
time lag between refraction and focusing. The focus factor in this
calculation is 16.7, and the axial distance from the focus at which
the overpressure is one-half the maximum value is about 30 meters
(.6 wavelengths in this case).

All of the results quoted above are for cold-spots with
center temperatures equal to one-half the ambient temperature. This
is an example of an extreme temperature inhomogeneity that would not
be encountered in the real atmosphere. Less extreme temperature
inhomogeneities would produce lower focus factors. However, other
inhomogeneities, such as wind shear fluctuations, may be more signi-
ficant but were not considered in the calculations.

37



7. CONCLUSIONS

The results of this investigation demonstrate the capa-
bility of GODUNOV as a two-space-dimensional shock-following code for

calculating sonic boom N-wave focusing.
The flow field at and near the focus has been computed

by GODUNOV for two types of sample problems. The first type of prob-

lem involves the refraction and subsequent focusing of a planar N-wave
by a cold-spot. Focus factors of 11.3 and 16.7 are obtained for the
two spherical cold-spots (point foci) investigated. A cylindrical
cold-spot (line focus) similar to the first spherical cold-spot yields
a focus factor of 4.4.

The second type of focusing problem investigated in this
study concerns the focusing of an N-wave with a concave front of pre-
scribed shape. The curved front might be caused, for example, by
atmospheric refraction or by aircraft maneuvers. Two different initial
shock-front shapes are studied. In one case we obtain a focus factor
of 13, and in the other case a factor of 20. In all cases, the focal
region (as defined by the distance from the focus at which the N-wave
overpressure falls to one-half the maximum overpressure) extends no
more than 3 wavelengths from the focus. These results illustrate the
dependence of the focus factor on the initial shape of the shock front.

The study has also provided valuable insight into the
process of focusing. The wave-folding mechanism predicted by geo-
metric acoustics (Figure 1-3) for a concave shock has been verified
for weak shocks, although no evidence of secondary discontinuities,
i.e. reflected shocks, has been observed. Wave-folding is the mechanism
responsible for sonic boom focusing. On the other hand, strong concave
shocks with relative overpressures, Ap /p , of the order of unity or
higher tend to straighten out or overshoot rather than fold over.

Thus, the hypothesis of Whitham (ref. 9) that a shock will straighten out

without fold-over, and the fold-over hypothesis of geometric acoustics
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(refs. 2, 16),are complementary to one another; both, are valid but
under different pressure conditions.

It may be noted that the GODUNOV code can be linked to
a geometric-acoustics code (such as the codes described in references
1 and 15) in order to calculate sonic boom signatures from maneuvering
aircraft. Predictions of the intensity and extent of "super-super-
booms" (see Introduction) from prescribed aircraft maneuvers could
provide the basis for defining acceptable flight operations for
supersonic aircraft.
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APPENDIX A

USER'S MANUAL FOR PROGRAM GODUNOV

GODUNOV is designed to compute the flow field that results
from the focusing of an N-wave of arbitrary strength. The focusing
is associated with a concavity in the wave front, which can be caused,
for example, by a cold-spot in the path of the N-wave. One may also
prescribe the initial concavity in the wave front. Thus, GODUNOV can
be used to study focusing of (i) an initially straight-front N-wave
upon passing through a cold-spot of prescribed size and intensity, or
(ii) a curved-front N-wave of prescribed shape in a homogeneous
atmosphere.

The input to GODUNOV determines the initial state of the
fluid, the mesh spacing, and the frequency of printed output. A
short output giving key data such as the shock positions and the
positions and value of maximum pressure in the N-wave, is printed at
every cycle. A long output describing the full two-dimensional state
of the fluid is printed at the desired cycle frequency. In addition,
tape dumps are made periodically to store information for a possible
restart at a later date.

Input Data

The input data required to start a problem consists of a
six-card package as described below. Any self consistent system of
units can be employed. The cgs system is used for the problems des-
cribed in this report, i.e. lengths are in cm, densities are in

2
gm/cc, and pressures are in dynes/cm ,
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1st CARD

Columns 1 - 10 The problem number (CPROBI ts required
in a F10.3 format

Columns 11 - 20 The cycle [time step) number (CYCLE) is
required in a F10.3 format. CYCLE = 0
to start a new problem. In restarting
in order to continue a problem, CYCLE
is the last cycle number of the previous
run.

Columns 21 - 80 are left blank

The data in cards 2-6 are input in the Nameltst format.

The Namelist feature provides considerable flexibility by requiring

only input that specifies the user's choice of options or is different

from the preset data. However, it is only available on certain com-

puters, e.g. CDC 6600. The procedure for inputting data via a Name-

list format can be found in most FORTRAN IV manuals.

2nd CARD - $PRELIM

The following variables are contained in Namelist PRELIM:

IMAX the number of grid points, or rows, in the
r (radial or vertical) direction, indexed by i.

JFORE the number of grid points, or columns, in the
z (axial or horizontal) direction. JFORE is
also the value of the j index corresponding to
the fore shock.

JAFT the number of grid points, or columns, in the
z direction behind and including the aft shock.
JAFT is also the value of the j index corre-
sponding to the aft shock.

TMAX time in seconds at which computations are to
be terminated.

CYMAX cycle number at which computations are to be
terminated. (The program will stop computing
whenever T > TMAX or CYCLE > CYMAX, whichever
occurs first.)
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CPRINT

CDUMP

T

GAMMA

cycle Interval between long outputs

cycle interval between tape dumps

value of T Ctirne) at start of run

ratio of specific heats

3rd CARD - $MESH1

Namelist MESH 1 contains the variables:

RMAX

DZFORE

DZAFT

ZSPOT

DZSPOT

A

ZAXIS

OPT

value of r at outer boundary of grid

initial (uniform) spacing of grid contour
lines within N-wave and parallel to shocks

initial spacing of grid contour lines behind
N-wave, i.e. between the left boundary and
the aft shock, and parallel to shocks

value of z coordinate corresponding to center
of cold-spot

diameter of cross-section of cold-spot

ratio of spacing between successive radial
grid lines

array representing z coordinate of grid points
on axis of symmetry (computed internally for
standard problem corresponding to OPT = 0, 1,
or 2 (see below))

integer indicating initial shock front shape
OPT = 0 planar front
OPT = 1 polynomial front

z = zo +

OPT = 2 Gaussian front

7 _ 7 , RMAXz - z_ + , n

RMAX [(r/RMAX)2 - \ (r/RMAX)4]

r ?1 I
1 - exp[-20 (r/RMAX) j )

where z locates the fore and aft shocks
and the contours in between
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4th CARD - $MESH2

Name!1st MESH2 contains the following variables;

R(i) vector consisting of the r-values of the fixed
horizontal grid lines

Z(i,j) two-dimensional array consisting of the z-values
of the mesh points. The first index (i) labels the
horizontal line, and the second index (j) labels the
node on the horizontal line between the shocks.

When one of the standard problems corresponding to

OPT = 0, 1, 2 is to be run, MESH2 should be left blank, i.e.

$MESH2 $

5th CARD - $STATE1

STATE1 al lows the ini t ia l f l u i d state to be described in
compact form. The fol lowing variables are in STATE1.

P I N I T ( k ) 6-component vector specifying f l u i d state ahead
of N-wave (see 6th card)

PINIT(l) pressure

PINIT(2) density

(The other 4 components are not used. Energy and sound

speed are computed in the program, assuming a static state.)

PSPOT(2) 1 + ratio of density at center of cold-spot to
ambient density.

(The other 5 components are not used.)

The variation of density within the cold-spot obeys the

equation

c r if 7 A ?il
p = P0 <1 + PSPOTC2) -lexp - 3 K(Z - ZSPOTT + R jf/RSPOr J J

- PSPOT(2) - exp (-3) >
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where RSPOT is the radius of the cold spot, and ZSPOT is the axial
position of the center of the cold spot.

S the intttal relative overpressure of the N wave,
I.e. S = Ap0/pQ.where &pQ Is the pressure jump
across the fore shock, and p is the ambient
pressure ahead of the N wave.

The program sets up a linear variation of all the state
variables within the N-wave. The isentropic relations are used to
relate the pressure to the other flow variables. The distribution of
all the flow variables are approximately symmetric about ambi°nt
conditions (i.e., about the mid-point of the N-wave).

6th CARD - $STATE2

Namelist STATE2 allows the user to specify x,y or r,z
geometry, as well as an arbitrary initial distribution of flow variables.

The following variables are in STATE2

IXY IXY > 0 implies x,y geometry
IXY < 0 implies r,z geometry

PINIT(k) The ambient flow field ahead of the N-wave can
be specified as a vector as follows:

PINIT(l) = ambient pressure

PINIT(2) = ambient density

PINIT(3) = z-component of ambient velocity

PINIT(4) = r-component of ambient velocity

PINIT(5) = ambient total energy per unit volume

PINIT(6) = ambient sound speed
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Pti.j.k) three-dimensional array describing the initial
flow field In the N-wave. The first index
labels the horizontal row of the cell in the
mes;h, the:second index (j) labels the cell on
the horizontal line between the shocks, and
the third index (k) labels the state variable
as follows:

k = 1 - pressure
2 - density
3 - z-component of velocity
4 - r-component of velocity
5 - energy per unit volume
6 - sound speed

To run one of the standard problems, only IXY need be
input in STATE2.

The input data package for restarting a problem consists
of the two cards described below.

1st CARD

Columns 1 - 1 0 the problem number (CPROB) in a F10.3
format.

Columns 11 - 20 the cycle number at which the problem
is to be restarted in a F10.3 format

2nd CARD

Columns 1 - 1 0 TMAX, the time at which calculations
are to be terminated

Columns 11 - 20 CYMAX, cycle number at which calcula-
tions are to be terminated

Columns 21 - 30 CPRINT, cycle frequency for long outputs

Columns 3.1 - 40 CDUMP, cycle frequency for tape dumps
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A subroutine-by-subroutine flow chart of GODUNOV is shown
in Figure A-l. The purposes of the various subroutines are as follows.

INPUT reads all required input data regarding mesh, geometry,
initial values of the flow variables, at all points in space, and physi-
cal parameters such as the ratio of specific heats.

NODES deals with changes of the mesh geometry as a func-
tion of time, and computes (at different points in the logical circuit):
(a) the lengths of shock segments (connecting adjacent shock nodes)
(b) the velocities of the shock segments normal to themselves, and

the corresponding axial velocities of the shock nodes
(c) the velocities of the moving (non-shock) boundaries of the

interior cells
(d) the new positions of all mesh nodes. (The various portions (a,

b, c, or d) of NODES are called at different points in the flow
sequence, as indicated in Figure A-l.)

SHOCK solves the Riemann problem according to the scheme
suggested by Godunov et al. (ref. 10) at all shock segments (both fore and
aft shocks), yielding the segment velocities normal to themselves, and
the values of the flow-variables on both sides of each shock segment.
These quantities are employed in evaluating the fluxes (of mass, momen-
tum, and energy) on those special cell boundaries which coincide with
shock segments (for cells adjacent to the shocks). SHIO ("shock-
input-output") sets up the input to SHOCK, and processes its output
for use by the main program.

RIEMANN solves the Riemann problem at all boundaries of
each interior cell (not adjacent to shocks), taking into account the

motion of the moving cell boundaries, yielding the values of the flow
variables (continuous) on the cell boundaries. RIO ("Riemann-input-
output") sets up the input to RIEMANN for each cell boundary, and
processes its output. Accuracy can be maintained while employing a
linearized version of the Riemann problem for the continuous portions
of the flow, with a resulting economy in computation time.
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FLUXES computes the fluxes of mass, momentum, and energy
at the cell boundaries in preparation to updating the values of the
flow variables at the cell centers. (FLUXES is called by NEWFLO.)

NEWFLO computes for a given cell:
(a) the cell boundary surface areas (of revolution in r,z geometry)
(b) the old cell volume (of revolution in r,z geometry) prior to

updating the mesh node positions, and the new cell volume after
updating the mesh node positions.

NEWFLO then updates the values of the flow variables at
the cell center. This latter updating is done by means of the conser-
vation of mass, momentum, and energy over the volume of the cell.
First, the currents of mass, momentum, and energy at the cell boundary
surfaces are obtained by multiplying the fluxes (obtained from FLUXES)
by the cell boundary surface areas. Summing these currents and multi-
plying by the time increment gives the change in a quantity Q (not
indicated in the figure), where Q represents the total mass, momentum,
or energy contained in the cell. Q is approximated by multiplying
the volume of the cell by the mass density, momentum density, or
energy density within the cell (assumed constant across the <:ell).
The new value of Q is proportional to the new cell volume. Hence,
the new value of mass density, momentum density, or energy density
within the cell is obtained by dividing the new value of Q by the new
cell volume. The new values of the flow variables within the cell
are subsequently readily calculated.

EOS ("equation of state") computes the pressure and sound
speed when the mass density, energy density, and fluid velocity com-
ponents are given. We are presently using an ideal gamma-law-gas
equation.

DT determines the time interval to be used in updating
the mesh and the flow variables. The time interval is chosen to sat-
isfy the Courant stability criterion, which requires that the time

interval be less than the time required for a sound signal (speed of
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sound combined with fluid velocity) to travel across any cell, in
either the radial or axial directions. The motion of the moving
boundaries must also be taken into account here.

OUTPUT prints out appropriate information at desired

intervals of time.
This completes the description of the subroutines used

in GODUNOV.
A listing of GODUNOV follows.
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RUN VERSION 2.3 —PSR LEVEL 29«—

0 0 0 0 0 3

0 0 0 0 0 3

0 0 0 0 0 3
0 0 0 0 0 3
0 0 0 0 0 4
0 0 0 0 0 5
0 0 0 0 0 6
000010
000011
0 0 0 0 1 2

000015
0 0 0 0 3 0
0 0 0 0 2 2
0 0 0 0 2 3
0 0 0 0 2<»
0 0 0 0 2 5
000026
0 0 0 0 3 0
000031
0 0 0 0 3 2
000033
00003if
000035
000036
0 0 0 0 3 7

0 0 0 0 5 5
000063
000066
0 0 0 0 6 6
0 0 0 0 6 7
0 0 0 0 7 6
000100
000101
0 0 0 1 0 2
000105
000107
000113
000115
000121
000121*
000125
0001?6

GOOUNOVCINPL'T,CUTPUT,TAPE3,TAPE5=INPUT,TAPE6=OUTPUT,TAPE7)
P(50,20,6) , P (55 ) , Z ( 5 5 , 2 0 ) , Z S T A R T ( 5 0 ) , ZEND(50 t , PINIT<6)
( 6 ) , Z O L O « 5 0 ) , P F O R E ( 5 0 , 6 > , P A F T ( 5 0 , 6 J , F O R S E G f 5 0 ) , F O R V E L ( 5 0 » ,
501 ,AFFVEL(50 ) , PN(20 ,6 ) , P£ (6 ) , A N t 2 0 > , U F O R E ( 5 0 ) , U A F T ( 5 0 » ,
> , IXY

OT,HSEG, GAMMA, T, T M A X , _ ,
LREAO, MWRITE

AE, VNORME, VNORMW ,
IMAX,V S E , V S W ,

JPMAX

P R O G R A M \j\juui^iu v * j.i1*
C O M M O N P ( 5 0 , 2 0 , 6 ) ,

1, PSPOT(6) ,ZOL0150) ,PF ,„.
2 A F T S E G ( 5 0 J , A F F V E L ( 5 0 ) , P N ( 2 0 , 6 ) ,
3 V N E ( 2 0 > , I X Y
< » , Z A X I S ( 2 0 )
COMMON RN, RS, ZNE, ZNW, ZSE, ZSW, ESEG, WSEG, GAMM
1 CYMAX, CPRINT, OTMIN, IDT, JOT, PROB, CYCLE, CDUMP
2, LTAPE, DELR, ISPOT, VCLOLTJ, VOLNEW, AS, AH, AE, V
3 UNORME, UNORMW, UTANGE, UTANGW, VFORE, VAFT, VNW,
«t JFORE, JAFT, I, J, PMAX, HMACHF, HMACHA, IPMAX,
COMMON RSPOT, ZSPOT
LREAO = 5
MWRITE=6
LTAPE=3
REWIND LfAPE
CALL SETPLTS
CALL INPUT
IF (CYCLE .GT. 0.) GC TC 5

START NEW CYCLF
IF (CYCLE .GT. 0.) FMAX~0.
PMIN = 1.E10
00 3 I=1,IMAX
CALL NODES
CALL SHIO
CALL NCCIES2
DO 2 J=l,JFORE
CALL NOOES3
CALL RIO
CALL OTCALC
IF (CYCLE .EQ. 0.) GO TO ?
CALL NEWFLO
CALL NOPES<4
CALL NUFLOW
CALL EOS(GAf'/\,P<I, J,1J ,P(I,J,2),Pa,J,U,P(I,J,<t),P(I,J,5»,P(I,J,
16)1

GO TO
PMAX = P(I, J,l>
IPMAX = I
JPMAX - J
IF (P(I,J,1) .GT. PMIN) GO TO 2
PMIN = P(I,J,1)
IPMIN = I
JPMIN = J
CONTINUE
CONTINUE
IF (PMIN .LE. 0.? CYMAX-CYCLF
IF (CYCLE ,FO. 0.) CTMINO-0.
IF (DTMI^4 .LT. DTHIKC) CT.= OTMIN»«2
IF (OTMIN .GF.. OTMTKC) DT=PTMIN
OTMING^OTMIN
CALL OUTPUT
IF <AMOD(CYCLE,nPRTNT> .FG. 0. .OR

1 CYMAX) CALL OUILNC-

/OTMINO

. T .K T M A X .OP. C Y C J . T . GE,
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RUN VERSION 2.3 —PSR LEVEL 29fl— GOOUNOV

00011*6
000160
000162
000161,
00016*4
000165
000165

I F ( T . G E . T * A X . O R . C Y C L E . G E . C Y M A X ) GO TO 9
T = T » O T
CYCLE = CYCLE *• 1.
GO TO 1

9 CALL ENDPLTS
CALL EXIT
END

50



RUN VERSION 2.3 --PSR LFVFL 293—

000002

000002

000002
000002
000002
000002
000002
000002
000002
000002
000002

000002

000012

000013
000022
000030
000030
000033

00007<»
000112
000131
000155
000170
000173
000176
000212

000213
000215
000216
000217
000220
000222

000225
000233
000237
00021*5

00025U

13

65

SUBROUTINE INPUT
COMMON P < 5 0 , 2 0 , 6 ) , R < 5 5 ) , Z ( 5 5 , 2 0 « , Z S T A R K 5 0 I , 7 E N O ( 5 0 ) , P . r N T T ( 6 >

1, PSPOT (6) , Z O L O ( 5 0 ) ,FFOPF. (50 ,6) , P A F T ( 5 0 , 6 ) , F 0 9 S F G ' ( 5 0 ) ,FORVEL ( 5 0 » ,
2 A F T S E G ( 5 0 ) , A F T V E L ( 5 0 ) , FNt20,6) , P E ( 6 > , A N < 2 0 ) , UFO^F ("50) , Ufl^T t 50 )
3 V N E ( 2 0 ) , IXY

1, PSPOT (6) , ZOLO(5
2 A F T S E G ( 5 0 ) , A F T V E L
3 V N E ( 2 0 ) , IXY
< » , Z A X I S ( 2 0 >

ZNE
i»,£«X15 (tVI
COMMON RN, RS, ZNE, ZNK, 7SE, ZSW, ESEG, KSEG, GAMMA, T, TMAX, DT,
1 CYMAX, CPRINT, DTMIN, IDT, JDT, PRCB, CYCLE, COUMP, LREAD, MWRITF
2, LTAPE, DELR, ISPOT, VCLOLO, VOLNEK, AS, AW, AE, VNORMF, VNOPMW,
3 UNORME, UNCP..1W, UTANGE, UTANGW, VFORE, VAFT, UNW, VSE,VSW, IMAX,
«t JFORE, JAFT, I, J, PMAX, HMACHF, HMACl-fl, IPMftX. JPMAX

DELR, ISPOT
UNCP.MH,

JAFT, I,
PSPOT, ZSPOT

• ^ l W '> C. T w ^ i i j *. J ./ 7 i i T i-« /\ f r > : i « i,

COMMON PSPOT, ZSPOT
DIMENSION TITLE (8) , X T I T L E < 8 ) , Y T I T L E 1 8 >
DIMENSION ZC IRCL(55 ) , RCIRGL(55)
INTEGER OPT
NAMEL1ST/PRELIM/ IMAX,JFORE,JAFT,GAMMA,T,TMAX,CY1AX,CPOINT,COUMP
NAMELIST/MESH1/ RMAX,P7FORE,OZAFT,ZSPOT,DZSPOT,I SPOT,A,ZAXIS,OPT
NAMELIST'MESH2/ R,Z ,ZSTART,ZEND,ISPOT
NAMELIST/STATE1/ PIMT, PSPOT, S
NAMELIST/STATE2/ PIMT, PSPOT, P, PMAX,IXY
READ IN PROBLEM AND CYCLE NUMBER
READ UPEAt),100) CPROR, CCTCLE

is IT A RESTART OR A NFW PROBLEM*
IF <CCYCLE .EQ. 0.) GO TO ?

RESTART -REAO INPUT FROM TAPE
!EAO ILTAPE) PROS, CYCLE
WRITE (MWRITE,10M CYCLE
'ORMAT (-8H CYCLE =,F7.1)
._ . 11*, 13

GO TO 10
G A M M A , F,

REAO ILTAPE)
WRITE (MWRI._,_

FORMAT (-8H CYCLE =,hr.l)
IF (EOF,LTAPE) 1^,13
IF (ABS(PROB-CPROB) .GT. .01J
READ (LTAPE) IMAX, JFORE, JAFT, G A M M A , T, TMAX, CYtt
1 ISPOT, COUMP, PM6X, PT
READ (LTAPt) (R (I) , ZSTAPH I) , ZENDC I) , I = 1,IMAX>
REAO (LTAPE) ( (Z11,J),J=l,JFORE),1 = 1,IMAX)
READ (LTAPE? (((P(I ,J, lO ,<=!,6) ,J = i,JFORE),1=1,IMAX
REAO(LTAPE) (PINIT(K), PSPOT(K),K=1,61
READ (LTAPE)
IF (CYCLE .LT. CCYCLE) GO TO 1

'* READ (LREAO,101) TMflX, CYMAX, CPRINT, COUMP
GO TO 3

NEW PROS -REAO INPUT FROM CAROS
I PR08 = CPR09
CYCLE = 0.
GAMMA = l.l»
T = 0.
READ tLREAO.PRELltl)
READ (LREAO,MESH1)
SET UP CLUSTEREO GRID
IF ((A-l.) .LT. .01) R(1)=RMAX/FLOAT(IMAX)
IF ((A-l.) .LT. .01) GO TO 65
R(1) = (A-1.)/((A»*IMOX)-1.> *RMAX
00 66 T=2,IMAX

C Y W A X , CPRIMT,

IF (I.EQ.21 R(I)=R(1»*(1.*A»
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RUN VERSION 2.3 —PSP LEVEL 29B-- INPUT

000261
000261*
000266

000270
0-00271
000300

000312

00032ft
0003!»6
000351.
000361

000361.
000366
000370
000370
0001*01
OOOV02
000«*0'3

OOOVOl.
OOOV05
0001*07

0001*11
0001*13

OOQi.l'.
OOOV20
OOQi.21
000«*26
000«*27
0001*31

0001*32
OOOV31*
OOOV52
000«.61
0001*65
0001*70
OOOV70
0001.71
0001*71
000501
000507
000513
00051<*
000527
000532
000536
000536
0005V6
00051*7
000551*
000561*
000571.
000606
000617
000620

66 CO!
RE/

i« 00
DO
IF
IF
IF

1 >
IF
IF
IF

5 COI
6 COI

RSI
00

17 ZOl
PII
PII
PS!
PSI
RE<
GM:
PII
PSI
PII
IF
PSI

15 II
7 00

DO
IF
X =

P(
IF
PM(
IP!
JPI

16 COI
P(
P(
P(
IF
ESI
SII
co:
GO

18 ESI
SI
CO'

iq P(
pt
p (
PI
GO

11 DO

iO ( L R E A D , M E S H 2 5
6 I=1,IMAX
5 J=1,JFORE
(J .LE.
{J .GT.
(OPT.EQ

Z ( T , J > = F L O A T ( J ) » O Z A F T
J A F T ) ZU,J) = " 7 L O A T ( J A F T l » n Z A F T *-FLO AT (J-JAFT ) »07FOPE
1) Z(I , J> = Z ( I , J ) « - R M A X * ( ( R ( I ) ^ R M A X ) » *2- (R ( I ) /RM AX) »*i*/2.

2)
1)

Z ( I , J ) = Z
Z A X I S t J ) = Z«I,J)
ZOLD (J )=Z( I , J»

( O P T . E 0
(I .EQ.
(I .EQ.
TINUE
TINUE
OT = D Z S P O T / 2 .
17 J=t,JFORE

Z O L O ( J ) = Z ( 1 , J )
PINIT(3> = 0.
PINITC.) = 0.
psporm = o.
PSPOT(«») = 0.

( L R E A D , S T A T E 1 >
GAMMA - 1.

PINIT15) = PINIM1J/GM1
PSPOT(5) = PSPOTU1/GM1

I T C 6 ) = S Q R T C G A M K A * P I N I T ( l ) / P I N l T t 2 J )
( P S P O T ( 2 ) .LE. 0.) GO TO 15
O T C 6 ) = S Q R T ( G A M K A * F S P O T ( 1 ) /PSPOT<2) )

(S» 7,8,7
9 I=1,IMAX
9 J=1,JFORE
(J .LE. JAFT ) GO TO 11

= (2 . *Z( I , J ) - (Z ( I , JFORE)*Z( I ,JAFT) ) ) / (Z ( I , JFORE)-Z( I ,JAFT»

tJ,D = PINIT(1)*(1.+S*X>
(P(I,J,1) .LE. P ^ A X ) GO TO 16

PMAX=P(I,J,1I

,J,2» = P I N I T ( 2 ) * < 1 . * S * X / G A M M A J
,J,3) = PINIT(6) » S » X / G A M M A
,J,i«) = 0.
(I. EQ.lt GO TO 13

ESEG=SQRT(CR(I)-R(I-1))**2*(Z<I,J)-Z(I-1,J))**2)
SINE=tR(I)-m-l)> 'ESEG
COSINE=(Z( I , J> -Z ( I -1 ,J ) ) /ESEG

TO 19
G = SCKT(R(1 ) * *2 + (Z (1 , J) -ZAX IS ( J) ) **2)
E = R(1)/ESEG
INE = (Z(l, J ) - Z A X I S ( J ) t /ESEG
,J,3) = PINIT(6)*S*X^GA«MA*SINE
t J ,< f ) = -P IN IT(6 ) *S*X /GAMMA»COSINE
f J,5)=P(I, J,l)/Gfl*P<I, J,2)*P<I,J,3)»*2/2.
,J,6) = SQRT (GAM^A*P( I , J,H/P(I, J ,2 )>
TO 9
12 K = l , 6
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RUN VERSION 2.3 —PSR LEVEL 298-- INPUT

000622
000631*
0006<*1
0006i*t»

000650
000651
000657
000675
00070<t
000713
000715

000736
0007<»7
000753
000757
000762
000765
000765
000765
000772
000775
001000
001001*
001022
001032
001035

001037
0010«*7
001052
001055
001060
001063
001071
001077
001105
001105
001107
001110
001112
001113

001115
001116
001117

001136

001137
Q011<»7
0011«»7
00111*7

12
9
8

C

97

98

20
99
C

3

106

C
10
100
101
10?

12 P(I,J,K1 = PINIMK)
CONTINUE

8 READ (LREAD,STATE21
IF (P(l,l,2) .GT. l.E-10) GO TO 3

THE FOLLOWING D A T A REFER TO THE COLLINS AND CHEN BUMP
00 99 I=1,IMAX
IF (R(H .LT. 1.5663) Z(I,JFOREJ= 8.«»37
IF (R(I) .GT. 1.5663 .AND. Rd> .LT. 3. 127) 2( I ,JFORE)~.85*R( I )+7.2
IF (R(I).GT.3.127) ?(I,JFORE)=10.
2(I ,JAFT)=2(I ,JFORE1-02 AFT
00 20 J=l,JFORE
IF (J .GT. JAFT .AND. J .LT. JFORE) 2 ( I , J ) = Z ( I , J A F T ) » O Z F O R E
*FLOAT<J-JAFf l

IF ( R ( I I .GT. 1.567 .AND. R ( I ) .LT. 3.1271 GO TO 97
P( I , J ,1 ) = 1.126EO<*
P ( I , J , 2 ) -= .6681E-02

= 1667.
= 0.

P(I,J,3)

GO TO 98
CONTINUE
P(I,J,11 = 5<»62.
P(I,J,2) = . ( f< t<*8E-02

P(I,J,3) = 622.
P(I,J,5)=P(I,J,1) /GP1*P(I, J,2)MP(I,J,31»*2 + PTI, J,<*)»*2)/2.
P ( I , J , 6 )=SQRT(GAMMf l»P ( I , J , l ) /P ( I , J , 2 ) )
CONTINUE
CONTINUE

WRITE CUT INITIAL S T A T E
W R I T E ( M W R I T E , 1 0 2 ) P K O R , CYCLE
WRITE (MWRITE, PRELIM)
WRITE (MWRITE,MESH1 )
WPITE ( M W R I T E , S T A T E D
W R I T E (MWRITE, MESH2)
R E A O ( L R E A D , 1 0 6 ) TITLE
R E A O ( L R E A T , 1 0 6 ) XT ITLE
READ(LREAD,106 ) Y T I T L F
F O R M A T ( 8 A 1 0 )
Z ( I M A X » 2 , 1 » = 0 . 0
R ( T M A X + 2 ) = 0 . 0 '
Z ( I M A X + 3,1)=2. O 'Rd^AX)
R ( I M A X * 3 ) = 0 . 0
Z( IMAX*«» ,1» =0. 0

Z(IMAX*5,1)=0.0
Rt IMAXf 5) = R (IMAX)
CALL XYPLOT (Z(IMAX*2,l),R(I»1AX*-2)i«»,l,0,OtO,10.0,6.0,XTITi.E,5,
1 YTITLE,**,TITLE,80)
RETUPN

WRONG FROPLEM
WRITE (MWRIT?,103) PFCBjCPROR
FORMAT(2F10.2»
FORMAT C.F10.3)

10? FORMAT ( l H l , 2 0 X , 1 5 H P C C G R f l M GOOUNO\// /9X , 1 2H PROBLEM NO.,F6.1,5X,
1 9HCYCLE NO.,F8.1)
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0011<»7 103 FORMAT (11.H WRONG PROBLEM'l&H CARO PROB NO. =,F8.3,17H TAPE PROS
1NO. =,F8.3)

0011<»7 END
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000002

000002

000002
OQQQ02
000006
000016
000026
OOOOVQ
000052
000052
000055
000072
000106
000107
00011«»

000116
000120

000135

000152
000153
000160
00016'*
000165
OD0172
00017«»
000176
000177
000200
000201
000202
000203
000207
000217

000233

000250

000275
000277

SUBROUTINE NODES
COMMON P<50,20,6), M55), ?<55,20>, 7START(50), 7FND(50), PINIT16)
1, PSPOT(6) ,ZOLO(50 ) ,PFOPE(50,6) ,PAFT(50,6) ,FOPSEG(50» ,FORVFL (501 ,
2AFTSEG150) , AFTVEL (50) , PN(20,6), PE(6), AN(20) ,UFORE ( 50) , UAFT t 50 ) ,
3 VNE(20» ,IXY
t,,ZAXlS(20)
COMMON RN, RS, ZNE , ZNW, ZSE, ZSW, F.SEG, WSEG, GAMMA, T, TMAX, OT,
1 CYMAX, C°RTNT, DTKIN, IOT, JOT, PROB, CYCLF, COUMP, LREAO, MWRITE
2, LTAPE, OELR, ISPOT, VOLOLO, VOLNEW, AS, AW, AE, VNORME, VNORMW ,
.3 UNORME, UNORMW, UTANGE, UTANGW, VFORE, VAFT, VNW, VSE,VSW, IMAX,
f» JFORE, JAFT,
COMMON P.SPOT,
IF (I. .GT. U
FORSEG(l)
AFTSEG<1)
FORSEG(2)
AFTSEG(2)
RETURN
IF {I .FQ

I, J, P M A X ,
7SPOT

» GO TC 2
= S Q R T ( R ( 1 ) * * 2 •
= S Q R T ( R ( 1 ) * * 2 '
•= S Q R T M R
= SQRTi (R

HMACHF, HMACHA, IPMAX, JPMAX

t Z t l , J F O R E ) - Z A X T S ( J F O R E )
( Z » l , J A F T ) - 7 A X I S ( J A F T ) ) » * 2 >

D*»2 ^ (Z<2 ,JFORE« - Z (1 ,JFORE))* *2 I
)»*2 * ( Z ( 2 , J A F T ) - Z ( 1 , J A F T ) ) » » 2 )

<Z (It-1, JFORE )-Z< I, JFORE) )**2)
(Z (!«•!, JAFT)-Z (I, JAFT ))**?)

IHAX) RETURN
I=SQRT((R(IH)-R(U)**2

<I + l)=SQRT((R(I«-l)-RtI)1**2
RETURN
ENTRY NODES2
II = 1*1

COMPUTE CELL NOOE VELOCITIES
IF (I .EO. IMAX) GO TO «,
VNFORE = FORSEG(I)*FCFSEG(Il)MFORSEG(I)«-FORSEG(Iin*(FORVELm / (R (I
l)-R(I-l) ) *FORVEHI1)/(P(I«-1)-R(I) ) )
VNAFT=AFTSEG(I)»AFTSEG(I1) /(AFTSEG (T)«-AFTSEG(I1J)*(AFTVEL(I)/(R(I)
l-R(I-D) *AFTVEL(Il)/(R{I+l)-R<m )
RETURN
VNFORE = FORSEG(I)*FORVEL(I)/tR(IMAX»-RUHAX-ll3
VNAFT = AFTSEG(I) »AFTVEL(U/(R(IMAX)-R(IMAX-1)J
RETURN
ENTRY NOOES3
IF (J .F.Q. 1) GO TO 6
VNW = VNEtJI-H
VSW=VSE
VSE -
GO TO
VNW =
VSW =
IF (I
IF (J
IF {J

VNElJ1
7

0.
0.
.GT. II
.LE.
.GT.

JAFT)
JAFT)

KJFORE-JAFT)
IF ( I .EO. 1 .ANO. J

1 FLOAT (J)XFLOAT(JAFT)
IF ( I .EQ. 1 .AND. J .GT.

1 t (FORVEL(1)*FORSEGU1 -
2 JAFT) JFLOAT(JFORE-JAFT)

COMPUTE NORnAL
RN=R(II
ZNE=Z(I,J>

VNEl J)=VNAFT "FLOAT tJ) /FLOAT (JA^T)
VNE(J) = VNAFT «• (VNFORE-VNAFTI 'FLOAT (J-JAFTI /FLO AT

.LE. JAFT) VSE=AFTVEL(l)*AFTSEG(l)rR(U*

JAFT) V S E = A F T V E L { 1 ) » A F T S E G ( 1 ) / R ( 1 )
AFTVEL l l ) »AFTSEG( DJ/Rll) *FLOAT<J -

VELOCITIES AT EAST ANH WEST BOUNDARIES
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000303
000301,
000307
000311
000316
000323
000330
000333
000335
00031*5
000350
000352
000355
000357
000365
000373
000<»00
000<tQ(f
Q00i»05

000«*12

000<»23
OOOW26
000<»32
000<»33

ZSW=ZSE
IF (I .GT. 1)
ZNW = ZOLT)(J-1)
IF (CYCCE .EO
IF (CYCLE .EO
IF (CYCLE
IF (J .EO.
IF (J .EO.

7SE = ZOLIHJ)

0.) ZSE=Z(I-1,J)
EO. 0.» ZSW-ZU-1, J-l)
EQ. 0.) 2NW=Z(I,J-1)
H ZNW=0.

ZSW=0.1)
IF (I .EQ. 1 .AND. J .GT. 1) ZSM = ZSF.
IF (I .EO. 1) ZSF=Z«XIS<J)
RS=R(I-1I
IF (I .EQ. 1) RS=0.

9 DELR = RN - R.S
ESEG =SORTJOELR»*2» (ZNE-ZSE)**2»
WSEG = SQ<U(OELR**2MZNW-ZSW)**2»
VNOPME = .5»OELR/ESEG* (VNE(J)*VSE)
VNORMW = .5*OELR/WSEG*(VNW*VSW)
RETURN
ENTRY NODES'*

COMPUTE NEW NODE POSITIONS, I.E. MOVE MESH

Z(I,J) = ZII,J) * OT'VNf.O)
IF (I .GT. 1) RETURN
ZAXIS(J) = ZAXIS(J) + DT'VSE
RETURN
END
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OOQ002
000002

000003

000011

000013
00001^
000016
000020

000027

000051*
000066

00011«i
000125
000133
000135
000137

0001^2

0001<»2
0001U3
000153
000163
000166
000170
000170
00020<»

00020<«
000205
000206

000215
000217
000217
000221
000222

SUBROUTINE SHOCK
SHOCK SOLVES THE FULL RIMANN PROBLEM AT THE FORE AND
AFT SHOCKS TO DETERMINE THE SHOCK VELOCITY AND FLUID
PROPERTIES BEHIND THE SHOCK

COMMON /SHOCK/P1,RH01,U1, VI, P«»,RHO'»,U'»,'V'»f G , V SHOCK, P3 , RH03, U3 ,M
G A M M A = G

IS THERE REALLY A SHOCK W A V E
IF (A8SU.-P1/PM .LT. l.E-lfl) GO TO «,

S T A R T f=Y GUESSING PRESSURE ACROSS C O N T A C T SURFACE
PCS = (Pi + P«»»/2«

COMPUTE FLUX DENSITY OF W(» TSHOCK W A V E !
ITER =0
GM1 = GAMMA-1.
GP1 = GAMMAH.

1 EM<» = SQRT(RHO<r/2.MC-Pl»PCS«-GMl*P«,) )
COMPUTE FLUX DENSITY OF Wl (RAREFACTION WAVEJ

EMI = GMl/2./GAMMA*SQRT(GAMMA*Pl*RH01)Ml.-PCS/Pl)/ll.-<PCS/Pl)«l*
KGM1/2. /GAMMA) )
IF (P1.LT.P«») EM«» = SCRTtPHOl/2.MGPl«'PCS + GMl*Pm
IF <P1.LT.P«») EMl = Gf*l/2./GAMMA»SQRT<GAMMA*P<**RHO<t)Ml.-PCS/P'*)/
1 U.-(PCS'P<*>*» (GMl/2./GftHMA)>

CHECK GUESS FOR PCS
PCSP =(EMl*Pi» + EM'**PltEMl»EM«»»fUl-U'«n AfEMltEM'*)
IF (ABS(1.-PCS/PCSP) .LE. l.E-03) GO TO 2
ITER = ITER »• 1
IF (ITEP .GE. 50) GC TC 3
PCS = !PCSP*PCS>/2.

HAVE NCT CONVERGED, GUESS AGAIN AND REPFAT CYCLF.
GO TO 1

CONVERGENCE, COMPUTE JUMP CONDITIONS AND SHOCK VELOCT
2 P3 = PCSP

RH03 = RHO>»" ( GPl'P 3«-GMl*P<.) / (GPl*Pi«+GMl*P3»
U3 =(P1 -
VSHOCK - U«* v
V3 = V«»
RETURN

3 WRITE (M,100) PI, P<. , PCS, PCSP
100 FORMAT <i»<»H SHOCK HAS NOT CONVERGED AFTER 50 ITERATIONS/ 17H Pl,i>i,

1, PCS, PCSP =,<»E15.l«>
CALL ENDPLTS
CALL EXIT
VSHOCK = U«. tSORT ( G*F<,/RHOit )

RETURN
END
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000002

000002

000002
000002
000002
00000<»
000006
000011
000013
000015
000016
000017
000023
000026
000030
000032
000036
0000<*0
0000<«i«
00001* <«
0000^6
000053
000065
000077
000111
000121
00012=5
000130
000135
0001^2

000175
Ot)0213
000232
000256
000271
000303
000311
000312
00031?
000325
000332
0003314
000335
000342

58

SUPROUTINE OUTPUT
COMMON P(50 ,20 ,6 ) , M55) , Z < 5 5 , 2 0 > , Z S T A R T ( 5 0 ) , ZEND(50I, PINIH6)
., P S P O T 1 6 ) , Z O L O C 5 0 ) , P F O R E * 5 0 , 6 ) , P A F T ( 5 0 , 6 1 , F O R S E G < 5 0 » , F O R V E L < 5 0 > ,
! A F T S E G ( 5 0 ) , A F T V E t ( 5 0 > , PN(20 ,6> , PE<6) , A N ( 2 0 ) ,UFORE<50) , U A F T < 5 0 > ,
! V N E t 2 0 » , I X Y

GAMMA, T, TMAX, DT,
CDUMP, LREAO, MWRITE
AE, VNORME, VNORMW,

VSE,VSW, IMAX,

16

25

.3 u r-r r\ u v i i lie uu 1 r-u I

COMMON P(50,20,6), M55) , Z<55,20), ZS
1, PSPOT16),ZOLOC50),PFOREK50,6),PA FT(5 ,.,
2AFTSEG(50),AFTVEt(50), PN(20,6>, PE<6), AN(20
3 VNE(20»,IXY
<«,7.AXIS<20)
COMMON RN, RS, ZNE, ZNH, ZSE, ZSW, ESEG, WSEG, GAMMA, T,
1 CYMAX, CPRINT, OTMIN, IDT, JOT, PROB, CYCLE, CDUMP, LREAi
2, LTAPE, DELR, ISPOT, VOLOLD, VOLNEW, AS, AW, AE, VNORME,
3 UNORME, UNORMW, UTANGE, UTANGW, VFORE, VAFT, VNW, VSE,VS
V JFORE, JAFT, I, J, PMAX, HMACHF, HMACHA, IPMAX, JPMAX
COMMON RSPOT, ZSPOT
DIMENSION ZPRIME(55,2> .RPRIME(55)
MIMAX=-IMAX-1
CPLOT = 2.»CPRINT
IF ( A M O D C C Y O L E , C P L O T ) ) 25,16,25
ZPRIMEU,!) = Z A X I S U F O R F )
ZPRIME(1,2) = Z A X I S ( J A F T )
RPRIMEt l )=0.0
DO H, 1=1,IMAX
ZPRIME 11*1,1 v=zu, JFORE*
ZPRIME(IH,2 ) = Z ( I , J A F T )
RPRIME (IHI=R*I)
CONTINUE
CALL X Y P L O T ( Z P R I M E ( 1 , 1 ) ,RPRIME(1) ,MIMAX,1 ,0 ,1 )
IF (JAFT.EO. l ) GO TC 33
CALL X Y P L O T I Z P P I M E ( 1,2 ) ,RPRIME<1) ,M IMAX,1 ,0 ,3 )
CONTINUE
I P L O T = I P L O T n
WRITE(MWRITE,1151 C Y C L E
W R I T E ( M W R I T E . l O O t FROB, CYCLE , T
WRITE (MWRITE,101) T f , I D T , J O T
WRITE (MWRITE,102) FMAX,IPMAX,JPM»X
WRITE (MWRITE,103) ZAXIS<JFORE), ZAXIS(JAFT)
IF (AMODCCYCLE,CDUMP)1 1,3,1

. IF (T-TMAX) 2,3,3
\ IF (CYCLE-CYMAX) «« , 3 , 3
: WRITE (LTAPE) PROB, CYCLE
WRITE (LTAPE* IMAX,JFORE, JAFT, GAMM A , T, TMAX, CYMAX, CPRINT,
ISPOT, CDUM?, P M A X , DT

- = 1 , I M A X »WRITE
WRITE

, , P M A X , DT
( L T A P F I ( R ( I » , Z S T A R T ( I ) , 7 E N O < I ) , 1 = 1,1

. . . _ . . . (LTAPE) ( ( Z t I, J) ,J = 1, JFORE) , 1 = 1 , I M A X )
W R I T E ( L T A P D («P(I,J,K), K = l, 6J , J = l , JFORF )
W R T T E ( L T A P E ) (PINTTl iO, PSPOT«) , <=1,6)
W R I T E (LT ( \PE) ( Z O L O ( J ) ,J-1,JFORE)
UIDTTC (MWRITE ,111 ) C Y C L E

,I=1,IMAXJ

W R I T E ( L T U P E ) ( Z O L
W R I T E
RETURN1

FNTRY OUTLNG
IF ( I X Y . L E . O ) W R I T E . . . . .....
IF ( I X Y . G T . O t W R I T E <MW?ITE,
DO 11 1 = 1 , I M A X
00 10 J=i,JFORE
IF (J .EO. 1) W R I T F
W R I T E ( M W R I T E , 10rO I,

, 110)
), 7(1,



RUN VERSION 2.3 --PSR LEVEL 298-- OUTPUT

0001*01
000<*01*
ooo' toe
000<t l2
0001*26
0001*30
000<»33
0001*37
O D D ' * M
000i«65
0 0 0 i » 7 0
0001*71*
000«*76
000522
000522
0 0 0 5 2 2
000522

10
11

12

13
100
101

102
103

000522

000522
000522
000522

000522
000522
000522
000522
000522
000522

000522
000522
000522
000522
000522

105
106
107

108
109

110
111
112

115
116
117

1), P<I,J,«») , P(I,J, V
CONTINUE
CONTINUE
WRITE (MWRITF. ,117)
WRITE (MWRITE.116) <J,ZAXIS*J),J=l,JFOREI
M=MHRITF
WRITE CM,1061
WRITE tM,1071
DO 12 1=1,IHflX
WRITE (H,109» I,FORVEU(I),HMACHF,(PFOt>EtT,K),K=lf5i
WRITE (M,103»
WRITE (M,107)
00 13 I=1,IMAX
WRITE (M.109) I,AFTVEL(I),HMACHfl,(PflFT<I,K),K=1,5»
FORMAT? 10X, 3H PROBtE^, F7.2, 6H CYCLE,PS.1, <tH T =,F12.«fl
FORMAT </5H DT =,E12.«»,12H AT CELL I =,I3,«*H J =,13)
FORMAT 1/7H PMAX =,E12.?,12H AT CELL I =,I3,t»H J =,13?
FORMAT (10X,21H FORE SHOCK IS AT 2 =,E12.l,,20H AFT SHOCK IS AT Z =
1.E12.M
FORMAT('«X,lHl,<tX,lHJ,9X,lHR,l«tX,lHZ,l'«X,lHP,12X,3HRHO,l«tX,lHU,litX,
HHVjgX.eHENE'GY)
FORMAT (215, 7 { 3X.E12. «f) )
FORMAT (1H1,20X,22H FORE SHOCK PROPERTIES)
FORMAT (7X,lHI,SX,6t-VSHOCK,7X,6HMSHOCK,12X,lH<»,12X,3HRHO, li*X,lHU,

11'»X,1HU,10X,6HENERGY)
FORMAT <20X,21H AFT SHCCK PROPERTIESJ
FORMAT (5X,I5,7t3X,E12.i»)J
FORMAT (IX,n
FORMAT (/^19H TAPE CUMP OH CYCLE,F7.1/I
FORMAT </7H PMIN =,E12.«»,12H AT CELL I =,I3,i»H J =,13)

FORMATCiX,lHI, «»X, 1H J,9X , 1HY, 1<*X ,1H X , 1I»X,1HP,12X, 3HRHO, 1«»X ,1H(.I, l«t X,
11HV,9X,6HENERGY)
FORMAT(1H1,5X,37H FCRE AND AFT SHOCKS PLOTTED AT CYCLE,F3.1)
FORMAT («»(I5,1X,E12.(,) )
FORMAT (12H ZAXIS ARRAY)
RETURN
END
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SUBROUTINE EOS ( G,P , f HO , ZDOT, ROOT, E NERGY , SOUND )
000012 P=(G-1. )* (ENE<?GY - RHO* (700T*»2 + >OOT*»2) /2 . )
0'00020 SOUND = SQRT(G*P/RHO
0 0 0 0 3 0 RETURN
000030 END
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RUN VERSION 2.3 —PSR LEVEL 298 —

000002

000002

000002
000002

000002
00000V
000006
000015
000015
000017

000022
000025
000030
00003^

000037
00001*1
0'000<»2
00001*5
0000<*6
000051
00005V

000056
000061
00006U
000072
000103
000107
000110

c
c

5
6
C
10

12

15

lo

SUBROUTINE FLUXES
COMPUTES M A S S , RAOIAL MOMENTUM, AXIAL MOMENTUM, AND ENERGY
FLUXES ON THE NORTH, SOUTH, EAST, AND WEST BOUNDARIES

COMMON P(50 ,20 ,6 ) , R ( 5 5 ) , Z ( 5 5 , 2 0 » , Z S T A R T ( 5 0 » , ZEND(50J , PINIT(6)
P P O T P F O R ( 5 1 P A F T ( 0 » FORSEG (501 F ( E L ( 5 0

DT,

FLUXES , , ,
COMMON P(50 ,20 ,6 ) , R ( 5 5 ) , Z ( 5 5 , 2 0 » , Z S T A R T ( 5 0 » , ZEND(50J , PINIT(6)

li PSPOT(6) , ZOLO(50) ,PFORE(50,61 ,PA FT (50 ,6 » , FORSEG (501 , FOR(/EL(50S ,
2AFTSEGI50) , A F T V E L < 5 0 ) , PN(20 ,6 ) , P E * 6 > , AN(20 ) ,UFORE (50 ) , UAFT (50 ) ,
3 V N E ( 2 0 ) , I X Y
« » , Z A X I S C 2 0 )

COMMON RN, RS, ZNE, ZNW, ZSE,
1 C Y M A X , CPRINT, DTMIN, IOT , JOT,
2, LTAPE, OELR, ISPOT, VOLOLO, VO
3 UNORME, UNORMW, UTf lNGE, U T A N G W , VFORE, VflFT, V N W , V S E , V S W ,
k JFORE, JAFT, I, J, P M A X , HMACHF, HMACHA, IPMAX, JPMAX

COMMON RSPOT, ZSPOT
COMMON/FLUX/ F L U X N ( 2 0 , 5 > , F L U X S 1 5 ) , FLUXW (5) , FLUXE (5>

SOUTH FCUNPAPY

ZSW, ESEG, WSEG, G A M M A , T, T M A X , ,
PR08, CYCLE, CDUMP, LRESD, MWRITE

VOLOLO, VOLNEW, AS, AW, AE , VNORME, VNORMW ,
E, U T A N G W , VFORE, VflFT, V N W , V S E , V S W , IMAX

, HMACHA, IPMAX,

IF
SOUTH

1) GO TO 5(I .EQ
00 2 K=2,5
FLUXS«) =-FLUXN(J,<)
GO TO 10
DO 6 K=2,5
FLUXS(K)=0.

NORTH BOUNDARY
FLUXN( J,2) =-PN ( J, 2) *PNtJ,<*)
FLUXN(J,3)=-PN (J,21*PNU,«*)*PN< J, 3 )
FLUXN( J,<*) =-PN ( j,2) »PNHJ,<»)**2 - PN(J,1>

.EQ.

- ,
WEST B O U N D A R Y
1> GO TG 15

) ) *PN tJ ,«» )

IF (J
00 12 <=2,5
FLUXW(K)=-FLUXE<K)
GO TO 16
FLUXW(2)=P(I,1,2)*F(I,1,3)
FLUXW(3)=P(I,1,2)*P(1,1,3)
FLUXW('*)=P(I,l,2)*P(I,l,'t)

*»2 4-

39F L U X W ( 5 ) = t P l I , l , 5 ) + P 11,1 ,1) ) »PJ 1,1 ,
FLUXE(2) = -PE(2) * ( LNORME- VNOP.MF)

= -PE ( 2 ) » P E 1 3 > * (UNORME-VNOPMF) - PE < 1) »DGLR/ESF.G
= -PE (2) »PE («t) » (UNOPME-VMORME) * PE( 1 ) * ( ZNF-7SE) /ESEG
= -PE ( 5 ) » U N O R M E - V N O R M F ) - PF •! 1 ) " U N O R M F

FLUXE (3)
FLUXEC*)
FLUXE (5)
RETURN
END
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RUN VERSION 2.3 —PSR LEVEL 298--

000002

000002

000002
000002

000002
000004
000017

000021
000030

000050

0 0 0 0 5 2
0 0 0 0 5 5
000056
0 0 0 0 6 f >
0 0 0 0 7 2
0 0 0 0 7 2
0 0 0 0 7 * .
0 0 0 0 7 5
0 0 0 0 7 6
000101
0 0 0 1 0 2
0 0 0 1 0 3

SUBROUTINE DTCALC
COMPUTE TIPE STEP FROM COUPANT CONDITION

COMMON P C 5 0 , 2 0 , 6 > , F(551 , Z155,20» , Z S T A R T ( 5 0 > , ZEND(50) , PINITI6)
L, PSPOT(6 ) ,ZOLO*50 l , P F O R E ( 5 0 , 6 ) , P A F T ( 5 0 , 6 ) , F O R S E G < 5 0 ) ,FORVEH50> ,
? A F T S E G ( 5 0 > , A F T V E L J 5 C ) , PN(20 ,6 ) , P E ( 6 ) , AN (20» , U F O R E ( 5 0 ) , U A F T ( 5 0 ) ,
! V N E ( 2 0 ) , I X Y

LfUrlrlUN i \ f \ j y i - \ 4 f \ j i y r* * ^ -s * y t_ »

1, PSPOT(6) ,ZOLO«50) ,PFORE(50f-. ,
2AFTSEG(50),AFTVELJ5C) , PN(20,6),
3 VNE(20),IXY
*,7AXISf20l
COMMON PN, RS, ZNE, ZNW, ZSE, ZSW, ESEG, WSEG, GAMMA, T, TMAX, DT
1 CYMAX, CPRINT, DTHIN, IDT, JOT, PROB, CYCLE, CDUMP, LREAD, MWRIT
2, LTAPE, DELR, ISPOT, VOLOLO, VOLNEW, AS, AW, AE, VNORME, VNORMW,
3 UNORME, UNORMW, UTANGE, UTANGW, •••-""- ••••-' ••••" ••-- ••«-•• *"•«
<t JFORE, JAFT, I, J, PMAX, HMAC
COMMON RSPOT, ZSPOT
NAMELIST/CDT/ OT1,I, J,OTR,OTZ

RADIAL VELOCITY TIME STEP
nD=ncio

, , AE,
VFORE, V A F T , V N W , 'VSE.VSW, IMAX,

HMACHA, I^MAX, JPMAX

OR=HEtR
RSIG ='RSIG =AMAX1«P (I, J, 6) + P (I, J,
DTP = DR/RSIG

.AXIAL VELOCITY T
DZ = AMINK (ZNE-ZNW) , <

) ) , (P ( I , J ,6 ) -P t I , ,

IME STED

ZSE-ZSWU
—' f> j. M i_ w i. ^ v * i^ a i i

DZ = AMINK' I Z N E - Z N W ) , <ZSE-ZSW»
ZSIG = A M A X K (PJI, J , 6 > + A R S (UNORME) *A8S (VNORME) ) , ( P ( I , J , 6 ) * A « J S t

1 U N O R M W ) » A 8 S ( V N O R M W ) ) )
OTZ = OZ 'ZSIG

TIME STEP FOR CELL I,JTIME STEP
OT1 = D T R * D T Z / ( D T R f T T Z )

( D T I .LE. 0.) GO TC 6
J .EQ. l ) DTMIN=DT1

TNI r,n Tn 5

IF
IF
IF ( D T I
DTMIN - DTI
IOT = T

(I.EO.l .AND. _.
.GT. DTMIN) GO TO 5

RETURN
W R I T E
CAtL ENDPLTS
C A L L E X I T
FND
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RUN VERSION 2.3 --PSR LEVEt 29°,--

000002

000002

000002
000002
000002

000002
OOOOO't
000006
000011
000015
000022
000026
000033
000037
000037
0000«»1
OOOO'tU
0000if7
000051
00005««
000055

000063

000102
000112
00011<*
00011'*

000121
000125
000130
000133
000136
00011(1

000151

000171

SUBROUTINE NEWFLO
COMPUTES CEIL SURFACE AREAS AND VOLUMES
AND UPDATES FLOW VARIABLES WITH THE OEFFERENCf EONS.

COMMON P(50,20,6), M55) , Z(55,20), ZSTART(50I, 7ENCH50I, PINIT'(6)
1, PSPOT(f>),ZOL'H50),PFORE{50,f>),PAFT(5Q,61,FO<?SEG<50),FORVEL(50),
2AFTSEG(50),AFTVEL(50), PN(20,6), PE(6), AN(20),UFORE(50),UAFT<50>,
3 VNE(20),IXY
«»,ZAXIS (203
COMMON RN, RS, ZNE, ZNW, ZSE, ZSW, ESEG, KSFG, GAHMA, T, TMflX, OT,
1 CYMAX, CPRINT, DTMIN, IDT, JDT, PROB, CYCLE, CDUMP, LREAD, MWRTTE
2, LTAPE, flELR., ISPOT, VOLOLD, VOLNEW, AS, AW, AE, VNORME, VNORMW ,
3 UNOPKE, UNORMW, UTPNGE, UTANGW, VFORE, VAFT, VNW, VSE,VSW, IMAX ,
*» JFORE, JAFT, I, J, PHAX, HMACHF, HMACHfl, IPMAX, JPMAX
COMMON PSPOT, ZSPOT
COMMON/FLUX/ FLUXN ( 2(1. 5) . FLUXS(5). FLUXW(5). FLUXET5)

3 UNOPKE, UNORMW, UTPNGE, UTANGW, VFORE, VAFT, VNW, VSE,
*» JFORE, JAFT, I, J, PHAX, HMACHF, HMACHfl, IPMAX, JPM
COMMON PSPOT, ZSPOT
COMMON/FLUX/ FLUXN(20,5), FLUXS(5), FLUXW(5), FLUXET5)
NAME LIST/FLUX/ I, J, R A TF., OMASSO, VOL NFW, VOLOLO, FLUXN, FLUX!

1 FLUXE, PN,PE,UNOR^E,VNORME, ZNE,ZSF,ZNW,ZSW,APLflNE,AN,
2,AW,AE,DELR,ESEG

C I l t ^ f A r C A D C A C

, *J J I *» 1^ '\ I- J

A S , R N , R S

PI = 3.14159
IF ( I X Y . G T . O ) GO TO 1
IF (I .EQ. 1) A S = 0 .
IF (I .GT. 1) A S = A N U )
A N ( J ) = P I » 2 . * R N * I Z N E - Z N W 1
IF (J .GT. II AW = AE
IF (J .EQ. 1) AW = P
AE = PI* ( R N » - R S ) * E S E G
GO TO 2

. A S = A N ( J I
A N * J ) = Z N E - 7 N W
IF (I.EQ.l) A S = A N ( J )
A W = A E
IF (J.EO.l) AW= DELP
AE=ESEG

! APLANE= 0.5*OELR*<ZKE
OLO CELL VOLUME

IF ( IXY.LE.O) VOL=
1 PI/3.»OELR*( (2. »RS*PN) » ( Z S E - Z S W ) v (2. *RN«-RSI * (ZNE-ZNW ) )

IF ( IXY .GT.O) V O L - l R N - R S 5 » ( Z N E - 7 N W 4 - 7 S E - Z S W ) / 2 .
VOLOLD=VOL
RETURN
ENTRY NUFLOW

NEW CELL VOLUME
ZNNE=Z<I,J>
ZNSW-Z(I-1,J-ll
ZNSE=Z(I-1,J)
ZNNW=Z(I,J-H
IF (I .EQ. 1) ZNSW = ZAXIS(J - l )
IF (I .EQ. II ZNSE = Z A X I S T J )
IF (J .EQ. 1) Z N N W = 0 .
IF (J .EQ. 1) Z N S W = C .
IF ( IXY.LE.O? VOL=

1 P I /3 . *DELR* ( (2 . *RS tRN)» (ZNSE-ZNSW)*?2 .»RN«-RS) *<ZNNE-ZNNW)»
IF ( I X Y . G T . O ) V O L = ( K N - R S ) M Z N N E - Z N N W « - Z N S E - Z N S W ) / 2 .
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RUN VERSION 2.3 --PSR LEVEL 293--

000201

000203
000201*
000211
000212
00022-5
00022?
000231
00021*0
000261

000306
000310
000317
000337
000357
000360

CONSERVATION EONS FOR NFW FLUT3 PROPERTIES
VOLNEW = VOL

SOLVE
CALL FLUXES
OMASSO = P(I, J,2>'VCLOlO
00 20 K = 2,5
RATE = AN( J)»FLIIXN ( J,<)-fOS»FLUXS« )+AE»FLUXE( K)'
IF (k- ,NE. 1*1 GO TO 10
IF (IXY .GT. 01 GO TO 10
RATE = RATE *• 2. * P I »APL ANE*P (I, J, 1 )

K.EC.5) P(I,J,<)=(VCLOLD»FII,J,0*RATE»DT)/VOLNEW10 IF «.F0.2
IF (K.E0.3

1 2J/VCLNF.W
20 CONTINUE

IF (P(I,J,5)
IF (I .FO. 1
IF (I .EO. 1
RETURN

OR.
OR. K.EC.i*) P(I, J,K)=lQMASSO*PfI, J,K» * Rft TE*OT ) t° (I, J ,

LT.
AND,
AND.

O.t
J
J

WPITF.
,EO. 7
,EO. 1

(6.FLUX1
.AND. CYCLE
.ANH. CYCLE

.LE.

.LT.
2.)
2.)

WRITE (6,FLUX)
16,FLUX)
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RUN VERSION 2.3 —PSR LEVEL 298--

oooooa

oooooa

000002
o'ooooa
QQQ002

OOOOO1*
00000&
000010
000013
000016
0 0 0 0 2 1
00002*»
0 0 0 0 2 ?
0 0 0 0 3 0
000033
0 0 0 0 3 6
O O O O U l
O O O Q < * < <
0 0 0 0 ^ 7
0 0 0 0 5 0
0 0 0 0 5 2
0 0 0 0 5 < »
0 0 0 0 5 5
000057
0 0 0 0 6 6
00006?
000071

000105
oooior
000111
000113
000115
000121
00012W
000127
000132
0001M
0001W
000155
000162

C
c

10
11
c
15

S U B R O U T I N E RIO '
RIO E V A L U A T E S THE FLOW VARIABLES ON THE E A S T
AND NORTH CELL BOUNDARIES BY SOLVING A RIEMANN PROBLE

C O M M O N P ( 5 0 , 2 0 , 6 ) , F ( 5 5 ) , Z t 5 5 , 2 0 ) , Z S T A R T ( 5 0 ) , Z E N C H 5 0 ) , P I N I T ( 6 )
1, P S P O T 1 6 ) , Z O L D ( 5 0 ) , F F C R E ( 5 0 , 6 ) , P A FT 1 5 0 , 6 ) , F O R S E G 1 5 0 > , F O R V E L t 5 0 ) ,
2 f t F T S E G ( 5 0 » , A F T V E H 5 0 > , P N ( 2 0 , 6 ) , P E ( 6 « , ftN (20 ) ,UFORE 150) ,U6FT ( 50 » ,
3 V N E ( 2 0 ) , I X Y

COMMON RN, RS, ZNE, ZNW, ZSE, ZSW, ESEG, WSEG, G A M M A , T, T M A X , OT,
1 C Y M A X , CPRINT, OTMIN, IDT, JOT, PROS, CYCLE, COUMP, LREAO, MWRITE
2, LTAPE, OELR, ISPCT, VOLOLO, VOLNEM, AS, AH, AE, VNORME, VNORMW ,
3 DNORME, UNORMW, U T A N G E , U T A N G W , VFORF, VAFT, V N W , V S E , V S W , IMAX,o uiNursnc, UIIU-M-IN, ui
l» JFORE, JAFT, I, J,

COMMON RSPOT, ZSPOT
C O M M O N / R I E M A ^ N / P 1 , U 1 , P H 0 1 , VI
VB1VB
G=GAMMA

HMACHF, HMACHA, IPMAX, JPMAX

,U«t,RHOi», V«.,U,C<«, G,PB,UB,RHOB ,

NORTH B O U N D A R Y
GMl-GAMMft-1.
IF (I .EQ. I M A X 3 GO TO 10
P = P ( 1 >

. .
PI = P ( I , J , 1>
Ul = P ( I , J , M
R H 0 1 = P ( I , J , 2 )
V 1 = P ( I , J , 3 »
Cl = P ( I , J , 6 >
U = 0.

C«» = P(I f l ,J, f)
CALL RIFKANN
PN(J,l) = Pr1
PN ( J , 2 » = R H O R
PNt J ,3 ) -Vn
PN( J.f.) -U9

GO TO 15
00 11 <=1,
P N ( J , K » = P(IMAX,J,K1

EAST 9CUNCARY
JAFT) GO TO 25
JFORF.) GC TO 70

IF (J ,FQ
IF (J .EQ
SINE =
COSINE = (ZNE-?SE)/ESEG
PI = P(I,J,D
RH01=P(I, J,?>

RHO«« = P (I,J*l,2?
Ul = P(I, J,31 *SINF - P (I ,.J,«.) 'COSINE
UU = P(I,J+1,3)»SINE - PtI,JH,««)»COSINE
VI - F II ,J,3) *COSINE »• P(I, J,«,) 'SIN'f
VZ* = P (I, J * l , 3 » * C O S I N f * P l I , J + 1 , M » S I N E
Cl = P ( I , J , 6 )
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RUN VERSION 2.3 —PSR LEVEL 293-- RIO

000165
000166
0001/0
000171
000173
00017<»
000202
00020<*
000206
00020?
000211
000211*
000217
000225
000226
000230
0002^0
00021*1
0002<»3
0002*1 «t
00021*5
0'002'*7
000255
000257
000260
.000262
000263
00026'*

25
26

?a

31

r,

= PU, J ,3>
= 0.

C<* = P(I,JH,6)
U = VNORME
CALL RIEMANN
UNORMW = UNORME
VNOPMW = VNORME
IF (J .EQ. 1) UNORMVi
IF (J .EQ. 1) VNORMK
UNORME = U6
PE<1) = PB
PE(2) = RHOB
PE(3) = UB'SINE * VE*COSIN<E
PE(M = VB'SINE - U9»COSINE
PE15) = PB/GM1 v RHOB/2 . * (UB**2
RETURN
00 26 K = l , 5
PE(K) = P A F T ( I , K t
UNORMH=UNORME
VNORMW-VNORME
UNORME = UAFT tl)
RETURN
00 31 <-l,5
PE(K) - PFORE«I ,K)
CONTINUE
VNORMW=VNORME
UNORMW=UNORME
UNORME = UFORE(I)
RETURN
ENP
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PUN VERSION 2.3 --PS& LEVEL 293--

000002

000002

000002
000002
000002
000005
000007
000011

000013
000017
000022
000025
000030
000032
00003«f
000036
00001*5
0000«»5
0000<»7
00005<t
00006«»
000072

000076
000100
00010«t
000105

000107
000112
00011«t
000116
000117
000123
000126
000137

0001<+2
0001116
0001^6
0001"»7

000152
000162

SUBROUTINE SHIO
COMMON P ( 5 0 , 2 0 , 6 ) , M55), 2 ( 5 5 , 2 0 ) , Z S T A R T C 5 0 ) , Z E N O ( 5 0 ) , P IN IT f f c )

1, PS POT (6) ,70LD<50) ,PFO<PE ( 50 ,6) ,PA FT (50 ,6) , FORSEGI50 > ,FORVFL150) ,
2 A F T S E G ( 5 0 ) , AFTVEH50) , P N ( 2 0 , 6 » , PE(M, A N T 2 0 ) , U F O R E ( 5 0 ) , U A F T < 5 0 5 ,
3 V N E ( 2 0 ) , I X Y
«4 ,7 .AX IS«20 )
COMMON RN, RS, ZNE , ZNK, ZSE, ZSW, ESEG, WSEG, GAMMA, T, TMAX', DT,
1 CYMAX, CPRINT, DTM1N, IDT, JOT, PROP, CYCLED CDUMP, LREAD, HWRITE
2, LTAPE, OELR, ISPCT, VOLOLn, VOLNEW, AS, AW, AE , VNOPME, VNOPMW,
3 UNORKE, UNORMW, UTANGE, UTANGW, VFORE, VAFT, VNW, VSE,VSW, IMflX,
<t JFORE, JAFT, I, J, PMAX, HMACHF, HMACHA, T^MAX, JPMAX
COMMON RSPOT, ZSPOT
COMMON/SHOCK'P1,RH01,U1, VI, P«t,PHO<»,U«t, V», G , V SHOCK ,P3 , RH03, U3 ,H
IF (I .FO. IMAX) RETURN
G=GAMMA

IF (I .EQ. 1) 11=1
SET UP AFT SHOCK INPUT FOR SHOCK

1 Pi, = P(II,JAFT*1,11
PI = P t I I , JAFT,1>
RHO«t = P(II,JAFT-H ,2)
RH01 -= P ( I I , JAFT,21
DELR = P(II)-R(II-1>
S T H E T A = O E L R / A F T S E G t l H
IF (II .EQ. H GO TO 2
C T H E T A = ( Z ( I I , J A F T ) - 7 (II-l,JAFT) )VAFTSEG( I I )
GO TO 3

2 STHETA = R(11/AFTSEG(1)
C T H E T A = tZ(l , J A F T ) - Z A X I S ( JAFT) VAFTSFG( l )

3 Ul = P ( I I , J A F T , 3 ) * S T H E T A - P< 11, JAFT,«») 'CTHETA
U<» = P(II,JAFT + 1,3» »STHETA- P {II, JAFT4-1 ,« . ) 'CTHETA
UAFT1II)= Ul
Cl = P(I I ,JAFT,6)
Ci» = P ( I I , JAFT*1 ,6»
V«» = P<II,JAFT + 1, 3)*CTHETA * P (II, JAFT*1 ,<f )*STHETA
CALL SHOCK

PROCESS AFTSHOCK OUTPUT FROM SHOCK
IF (PROB .E0.19.) VSHOCK=0.
AFTVEL(II)=VSHOCK
PAFT<II,1>=P3
PAFT(I I ,2)=PH03
PAFT( I I , 3 )=U3*STHETA * V3 'CTHETA
PAFT(I I ,«»» = V 3 * S T H E T A - U 3 * C T H E T A
PAFT( I I ,5 ) = P 3 / ( G A M M A - 1 . ) * RH03^2 . * (U3* *2*V3* *2 )
HMACHA=(VSHOCK-U«t ) 'C<«

IF J=l, DO THE SECOND TUBE ALSO
IF (II .GT. 1) GO TO U
II = 2
GO TO 1

i» IF (I .EQ. 11 II = 1
FORE SHOCK ANGLE

7 CTHETF = (ZTII,JFORE)-Z(II-1,JFOREM'FORSEGJII)
STHETF = OELR/FORSEGIII)
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RUN VERSION 2.3 --PSR LEVEL 298-- SHIO

000170

000176
000202
000205
00021't
000216
000223

000226
000230
000231
000232
00023<i

000256
00026'*
000271
000277

Q00300
000302
00030«»
000305
000307
000311
000317
000321
00032**
000325
000326

IF (II .EO. 1) STHFTF.= PA 1 ) ̂ FO<?SEG (1 )
IF (II .EO. 1) CTHPTF = (7 II, JFOR.E1 -ZAXIS (JFORE1 ) 'FOPSEGt 1)

SET UP FORE SHOCK INPUT TO SHOCK
PI = P(II, JFORE.l)
RH01 = P(II,JFORf.,2i
.Ul = P(II, JFORE, 3) 'STHETF - P ( T I, JFOP.E , M "CTHE TF
UFORE(II)=U1
VI = P(II, JFORE,«O *STHETF t P ( 1 1, JFORE , 3) »CTHETF
Cl = PCII, JFORE, 6»

ARE KE IN COLO SPOT OR UNDISTURBED REGIONA

U<t = 0.

V«t = 0.
IF ( R S P O T . L T . l.F-i,) GO TO ft
RHO«t = P I N I T ( 2 ) *(1. » P S P O T ( 2 » * E X P ( - 3 . » «Z (I , JFORE ) -ZSPOTt »»2

+ R ( I ) * * 2 1 / R S F O T » * 2 ) -PSPOT ( 2 ) * E X P ( - 3 . > )
R A D S Q R = ( 2 < I , J F O R E ) - Z S P O T ) *»2 « - R ( I ) * * 2
IF ( R A O S Q R ,GT. P,SPCT**2> RHO«» = P I N T T < 21
C<t = P I N I T < 6 > *SQPT (PI NIT ( 2 ) / R H O < * l
C A L L SHOCK

PROCESS F O R E S H O C K O U T P U T
F O R V E L ( I I ) = V S H O C K
P F O R E ( I I , 1 ) = P3
P F O R E ( I I , 2 > = R H 0 3
P F O R E ( I I , 3 ) = U 3 * S T H E T F
P F O R E ( I T , i » > = - U 3 * C T H E T F
P F O R E ( I I , 5 ) = P3/ ( G A M M A - 1 . ) * RH03/ 2.»U3*»2
H M A C H F = V S H O C K ' C i t
IF (II .GT. 1) R E T U R N
II = 2
GO TO 7
E N D
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RUN VERSION 2.3 —PSR LEVEL 296—

000002

000002
000003
000007
OOOOH.
000025

000036
00004*6
000057
000062
000064
000066
000067
000070
000072
000071.
00007<4
000075
000077
000100
000102
000103
OOOlOt*
000106
OOOllU
000116
000117
000120
000122
000130
000132
000133

10

15

SUBROUTINE RIEMANN
SOLVE hEA< W A V E RIEMANN PROBLEM

COMMON/R IE MANN/PI, U1,RH01, VI, C1,P<»,U<»,RHO<4,V<»,U,C<», G ,PB ,UB, RHOB ,
1VB

COMPUTE PRESSURE AND VELOCITY ACROSS C O N T A C T SURFACE
G A M M A = G
EMI = S O R T ( G A M M A » P 1 » R H 0 1 >
EM<» = SORT <GAMMA*P<«*RHOi4 l

PCS = (EMl*EM'f*1Ul-L'<4) * PZ»*EM1 + Pl*EM<4l f (EMU-EMM
COMPUTE W A V E SPEEDS

VW1 = Ul - Cl * (GAPKAH. I /V .MUCS-U1)

IF ( V W 1 .GE. U> GO TO 5
IF (UCS ,GE r U) GO TO 10
IF ( V W 2 .GE. U) GO TO 15
P9 = Pi4
U8 = U"V
RHOB - RHO'*
V3 = V<»
RETURN

RHOP=RHni
V9 = V1
RETURN
PB=PCS

. / G A M M A )

RHOB = P.HO'.MPCS/P^ )•* (1 . / G A M M f l )
V8 = V<4
RETURN
END

R H O B = R H O l ' J P C S / P l )
V9 = VI
RETURN
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APPENDIX B

THE SHELL CODE

As part of the evolution of GODUNOV, comparisons were made
with another two-dimensional time-dependent hydrodynamic code called
SHELL. SHELL was created several years ago for nuclear detonation
calculations. It was intended originally in the present investigation
to use SHELL in the focal region of the calculation. However, it is
inappropriate for sonic boom studies because it tends to smear out
weak shocks with relative overpressures less than 0.07. Nevertheless,
SHELL was useful in checking out GODUNOV in certain test calculations
(see Chapter 3).

A flow chart for SHELL is shown in Figure A-2. The input
for SHELL is generated by an auxiliary program called CLAM. In the
course of one time step in SHELL, the fluid properties at the center
of each cell in the grid are updated in two phases. In the first
phase, the conservation equations are solved with the convective terms
neglected. In the second phase, material is allowed to flow across
cell boundaries and transport mass, momentum, and energy. A detailed
discussion of the calculation procedure can be found in General Atomic
report number GAMD-5580, "OIL, A Continuous Two-Dimensional Eulerian
Hydrodynamic Code," 1965, by W. E. Johnson.
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FIGURE 1-1. FOCUSING OF BOW SHOCK WAVE BY A COLD SPOT

71



WAVEFRONT

FIGURE 1-2. GEOMETRIC ACOUSTICS DESCRIPTION OF FOCUSING,
SHOWING RAYS AND CAUSTIC CUSP
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FIGURE 1-3. GEOMETRIC ACOUSTIC WAVE-FOLDING
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FOCUS

*2 *3

FIGURE 1-4. REFRACTION AND FOCUSING BY ATMOSPHERIC WIND SHEAR
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CONCAVITY

FIGURE 1-5. FOCUSING OF A SHOCK WAVE FROM A TURNING AIRCRAFT
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M 2 > M 1

SONIC
CUT-OFF

CAUSTIC SHEET-

GROUND

FIGURE 1-7. SONIC CUT-OFF FOR AN ACCELERATING AIRCRAFT
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Trailing
(aft) Shock Leading

(fore)
Shock

x.z

FIGURE 3-1. GODUNOV MESH
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y,r
A

i ,JFORE

x,z
JAFT j JFORE

FIGURE 3-2. NODE VELOCITIES IN GODUNOV
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1-1

cell boundary

contact surface

wave 4

(1) (4)

-̂ . x

FIGURE 3-3. RIEMANN PROBLEM AT A CELL BOUNDARY
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i=i / 7 "7
x,z

x,z

FIGURE 3-4. AXIAL SYMMETRY CONDITIONS IN GODU.NOV

TOP: VERTICAL CELL-BOUNDARIES AT AXIS
BOTTOM: INCLINED CELL-BOUNDARIES AT AXIS
(x DENOTES CENTER OF CELL)
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FIGURE 4-1. SHOCK SEGMENTS AND NODES IN WHITHAM
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.0072
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FIGURE 5-3. PRESSURE PROFILES AT THREE DIFFERENT RADIAL POSITIONS
JUST PRIOR TO FOCUSING FOR A POLYNOMIAL-FRONT N-WAVE

(Ap /pft = ID'
3)
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INPUT
Set up mesh and
initial state of
fluid

NODES
Entry 1: Compute
shock segment
lengths and
inclinations

SHIO
Process input--
output for shock
to obtain shock
velocities

NODUS
Entry ?: Compute
axial velocities
of shock nodes
Entry 3: Compute
normal velocities
at East and West
cell boundaries

v

RIO
Process input-
output for
RIEMANN

STOP

T > TMAX or
"CYCLE > CYMAX

OUTPUT
Print out flow
variables, time,
node positions,
etc.

A

Increment time

EOS
Compute pressure
and sound speed
from eqn. of state

SHOCK
Solve full Riemann
problem at fore
and aft shock
segments

NEWFLO
E_rrtry_2_: Compute
new cell volumes
and flow variables

FLUXES
Compute fluxes
across cell
boundaries

NODES
Entry 4: Update
node positions,
i .e. move mesh

NEWFLO
1: Calculate

surface areas

RIEMANN
Solve weak wave
Riemann problem at
cell boundaries

DT
Determine time step
from Courant sta-
bility condition

FIGURE A-l. GODUNOV FLOW CHART
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TABLE 5-1

FOCUS FACTORS FOR POLYNOMIAL-FRONT

N-WAVE WITH DIFFERENT GRIDS

= ID'
3

Number of Points
radial x axial

20 x 7

100 x 7

200 x 7

400 x 7

100 x 12

200 x 12

100 x 20

* 50 x 7

APmax
APo

6.4

12.4

13.1

12.9

16.2

18.8

18.7

13.1

Ar.
a =

Ari-l
— = 1.05 (non-uniform spacing)
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TABLE 5-2

FOCUS FACTORS FOR GAUSSIAN-FRONT

N-WAVE WITH DIFFERENT GRIDS

= 10'

Number of points

radial x axial

20 x 7

* 50 x 7

* 50 x 20

* 50 x 50

^max
Apo

3.0

. 9.4

12.4

13.0

Ar
a = Ari-l— = 1.05 (non-uniform spacing)
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