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~ GODUNOV METHOD AND COMPUTER PROGRAM TO DETERMINE THE:
PRESSURE AND FLOW FIELD ASSOCIATED WITH A SONIC BOOM FOCUS

- By Lee W. Parker and Robert G. Zalosh

Mt. Auburn Research Associates, Inc.
Newton, Massachusetts

SUMMARY

A numerical method has been developed to calculate the
flow field associated with sonic boom focusing. The computer code
used in the calculations is capable of following weak N-waves (rela-
tive overpressures of the order of 10'3 before focusing) for large
distances as they approach the focus, in addition to providing the
flow field at the focus itself.

Results are pfesented for two types of problems. In one
type of problem, the refraction and subsequent focusing of the N-wave
is caused by a localized cold-spot in the atmosphere. In the second
type of problem, the N-wave is assumed to be initially refracted (for
example, by atmospheric inhomogeneities or aircraft maneuvers) into a
prescribed concave shape.

Several sample problems in each category were run. Result-
ing overpressures at the foci range from 4.4 to 20 times the nominal
overpressure. The typical length scale of the high-pressure focal
region is of the order of one wavelength. These results are for
hypothetical situations, not necessarily typical of supersonic air-
craft booms. However, the computer code is now available for use
with data taken from specific maneuvers and/or atmospheric disturbances.

An interesting result of this investigation is the resolu-
tion of the controversy concerning wave folding at a focus. The
theory of geometric acoustics predicts that a concave shock front



will fold over upon itself as it propagates through a focus (ref. 2).
As opposed to this, Whitham (ref. 9) has claimed that a concave shock
will straighten out without folding over. It appears from the calcu-
lations reported here that both phenomena occur, but under different
conditions. A weak shock wave with a relative overpressure much less
than unity folds over, wheréas a. strong-shock with a relative over-

pkessure of the order of unity (or higher) tends to straighten out.



1. INTRODUCTION

The overpressures in a sonic boom N—wave can be intensi-
fied through the focusing phenomenon associated with concave shock
fronts. Such concave shock fronts may be produced by atmospher1c '
inhomogene1t1es and by aircraft maneuvers. This report is addressed
to the computat1on of the flow fields that occur during focusing. Of
part1cu1ar interest is the calculation of the pressure at the focus '
as well as the extent of the h1gh,pressure region surrounding the
focus. " ' | 4 | o

The far field d1sturbance from a supersonlc aircraft is
in the form of an N-wave with two shocks, "fore" and "aft," separated
by a linear rarefact1on wave. Slnce the overpressures in a sonic boom
N-wave are typ1ca11y of the order of 10 -3 times atmospher1c pressure
(i.e. extreme]y weak) before focusing, the theory of geometric acoustlcs
is often emp]oyed to describe the approach to the focus. However, as
exp1a1ned later, geometric acoustics must be abandoned at the focus
itself. On the other hand standard numerical f1n1te difference
techn1ques cannot be used to follow weak shocks for 1arge d1stances
because their artificial viscosity tends to smear out the shocks.

The shock-following method developed during this study combines the
advantages of both geometric acoust1cs and hydrodynamics. It preserves
the weak shocks of the N-waves throughout the entire flow field, and
accurately computes the pressure in_ the focus

Throughout this report, both Tine foci and point foci will
be discussed. Axisymmetric (r,z) geometry leads to a point focus,
whereas two-dimensional (x,y) geometry leads to a line focus. For
simplicity, the discussion to follow treats single shocks. It is
understood that similar reasoning may be applied to both shocks of
the N-wave.

The first mechanism for generating concave shock fronts
that will be discussed here is the refraction of a shock wave through



a localized cold region in the atmosphere. Consider the situation
illustrated in Figure 1-1, where the bow shock from a supersonic air-
craft passes through a spherical atmospheric "cold spot".(leading to
a point focus as described below). If the sound speed variation with
altitude is neglectéd, the shock wave propagates at a uniform speed
before it penetrates the cold spot. Since sound speed in the cold
spot'is'lower than the ambient sound speed, the portion of the shock
passing through the cold spot is slowed relative to the rest of the
shock. The resulting concave shock front focuses in such a manner
that a shock cusp is produced at the focus. Thus, the action of the
cold spot in producing a focus is similar to that of an optical lens.
As Figure 1-1 indicates, beyond the focus, the debth of the cusped
region decays asymptotically with time, | '
| The theory ordinari]y.uséd to predict sonic Boom propaga-
tion (ref. 1) is based upon a modified form of geometric acoustics.
According to geometric acoustics, the wave fronf propagates along
rays which are everywhere perpendicular to the wave front. A geo-
metric acoustics description of the propagation of a concave shock
is illustrated in Figure 1-2, where the rays are dfawn, and Figure 1-3,
where successive shock fronts are drawn. The caustic sheets shown in
Figures 1-2 and 1-3 are defined as‘imééinary surfaces along which
adjacent rays cross. The two caustic sheets shown in Figure 1-3
correspond to a two~dimensional (x,y) geometry in which the focus is
a line focus. In axisymmetric (r,z) geometry, the caustic sheets
would become a single surface of revolution, and the focus would
become a point focus. '

One of the premises of geometric acoustics is that the
Tocal amplitude of the wave front is inversely proportional to the
square root of the area of the ray tube formed by adjacent rays. Con-
sequently, geometric acdustics predicts infinite ovefpreééures at a
caustic, where the ray tube areas vanish. Of course, non-linear dif-
fraction effects, which are not accounted for in geometric acoustics,



limit the overpressure amplification to some finite value. This value
may be computed by the method of the present report.

- Although geometric acoustics fails to predict shock over-
pressures in the immediate vicinity of a caustic sheet, there is no
reason to discount the qualitative geometric acoustics description in
Figure 1-3. , .
Pierce (ref. 2) refers to the cusped intersection of the
two caustic sheets in Figure 1-3 as an "aréte."* Beyond the aréte,
which is also called the "focus" or "caustic cusp" in this report,
the shock folds over upon itself. The fold-over is confined to the
region bounded by the two caustic sheets. The above description is
confined to weak shocks. As will be shown in Chapter 5, the fold-
over occurs for weak shocks, but not for .strong shocks which tend
rather to straighten out smoothly. This verifies a hypothesis of
Pierce (ref. 16). A

" Apparently, there have not been any direct measurements
of sonic boom focusing caused by local atmospheric inhomogeneities,
such as a cold spot as -illustrated in Figure 1-1, or wind shear fluc-
tuations as illustrated in Figure 1-4. On the other hand, there have
been some measurements of focusing generated by maneuvering aircraft
in supersonic flight. Schematic drawings of shock focusing resulting
from turning and diving maneuvers are shown in Figures 1-5 and 1-6,
respectively. Both Figures 1-5 and 1-6 have been redrawn from refer-
ence 3. Wanner (ref. 4) reports measured focus factors (defined as
the overpressure at the focus divided by the nominal overpressure)
up to about 5 for level turns. Maglieri (ref. 5) reports measured
focus factors up to about 4 for the same type of maneuver. For ‘the
case of turn-entry, in which an aréte similar to the one in Figure 1-3
is formed, Wanher reports measured focus factors of about 9.

. * Computations of aréte locations are included in thé Boeing geo-
metric acoustics program (ref, 15).




Most of the pressure-intensification data that is avail-
able refers to the so-called "sonic cut-off" phenomenon. The cut-off
phenomenon occurs when an aircraft is flying faster than ambient sound
speed but slower than sound speed at the ground. At the altitude at
which the speed of sound is equal to the speed of the aircraft, the
down-going wave front is reflected into an up-going wave front. The.
locus of points at which reflection occurs represenfs a caustic sheet.
Figure 1-7 illustrates the situation for an accelerating aircraft, in
which the altitude of the point of reflection moves down toward the
ground with time. '

It should be emphasized that the sonic cut-off intensifica-
tion phenomenon, which produces overpressure intensification factors of
the order of 2 (see Maglieri .et al., ref. 6), is to be distinguished
- from proper focusing. In proper focusing, which is the phenomenon of
interest here, much higher intensification factors are expected.

Confusing terminology exists in the literature. The cusp
of an N-wave shock at a single caustic surface has been called-a "focus"
and the associated overpressure a "superboom." When the shock cuSp
occurs where two caustic sheets meet (at the "aréte"), the shock cusp
has been called a "super-focus" and the associated overpressure a°
"super-superboom," respectively. - The distinction between the single
caustic surface and the cusped caustic surface has been discussed by
A. Pierce (ref. 2). ‘ |

Except for Pierce's scaling law analysis (ref. 2), all-the
previous theoretical investigations of sonic boom intensification have
been confined to phenomena associated with smooth single caustics, i.e.,
superbooms. The analyses of Hayes (ref. 7) and Seebass et al. (ref. 8)
fall into this category. In contrast, the present fepcrt is concerned’
with proper focusing of a shock at-a‘cusped double caustic, i.e., super-
superbooms. :

The primary approach adopted in this report is different
from those of the past. Rather than attempt a correction to geometric-
acoustic theory, or make restrictive assumptions about the nature of



the flow field, the full inviscid conservation equations are retained.
A numerical solution is obtained through the use of a moving mesh that
propagates with the N-wave (See Chapter 3). By confining the mesh to
the spatié] region of interest, the computer problems which would be
encountered in following an N-wave for 1arge distances with a code
using a finite stat1onary gr1d are avoided.
A secondary approach based on Whitham's approx1mate model

(ref. 9) of shock wave propagation is also presented. The Whitham-
type model deals with a single shock wave, whereas the more rigorous
model described in Chapter 3 treats the focusing of the entire N-wave.

‘ The contents of the remainder of the kepoft are summarized
as fo]]oWs:
Chapter 3 .
The shock following code called GODUNOV is described.
GODUNOV computes the flow field within the N-wave as it propagates
through the focus. The technique employed to solve the conservation
equations is discussed, as well as the results of some test problems.

Chapter 4
The single-shock model code called WHITHAM {s described.

The model is based on a ray-tube-shock-segment formulation in which
an empirical formula is used to relate ray-tube areas and shock-.
segment Mach numbers. WHITHAM is used as an independent auxiliary
calculation that can follow the behavior of single curved shocks in
much Tess computer time than would be required with GODUNOV.

Chapters 5 and 6
Solutions have been obtained for focus1ng prob]ems involv-
ing two types of assumptions, namely,

(a) initially plane N-wave fronts, refracted into concave shapes
by passing through cold spots

(b) initial concave-front configurations with prescribed geometric
parameters such as curvature and rate-of-change of curvature.

In both cases, the solutions are carried through the focus. Case (a)




represehts the full problem starting from the physically expected
initial condition. However, Case (b) is useful for the following
reasons. Fikst, a significant amount of computer pime is saved by
avoiding the early part of the calculation, namely, that dealing with
the propagation thrdugh the cold spot. Second, having geometric con-
figurations based on analytic formulas (such as Gaussian and polyno-
mial functions) allows one to study scaling laws involving, for example,
the curvature and the derivatives of the curvature. Third, generally
presgribéd configurations are applicable, not only to cold-spot refrac-
tion, but to the refraction produced by any of several possible physi-
cal mechanisms. Hence, it is understood that, for the problems involy-
ing assumption (b), atmospheric disturbances or aircraft maneuvers can
produce the refracted fronts. The flow variables as functions of two-
dimensional space and time are obtained. Tests are made with changes
in numerical parameters such as numbers of grid points in order to
obtain numerically-convergent solutions. Focus factors are given for
various values of the physical parameters. Also investigated is the
question: Under what conditions will a concave shock fold over?

Chapter 7
' Some conclusions that follow from our results are summar-

ized. These include the confirmation of the geometric-acoustics wave-
folding phenomenon for .weak shocks, (Ap/p << 1) as well as the absence
of'waveafo]ding-pfedicted by Whitham for strong shocks (Ap/p ~ 1).
Focus factors of 19 and 13 have been obtained for polynomial and
‘Gaussian front N-waves, respectively. In both cases, high over--
pressures are confined to spatial regions with scale lengths of the
order of the wavelength. These results demonstrate the capability

of solving the focusing problem with the numerical hydrodynamics formu-
lation described in the report. Computations with initial conditions
representative of proposed supersonic transport operations can now be
carried out.



2. SYMBOLS

Ari/Ari_l in GODUNQV

area of cell boundary in GODUNOV, area of shock segment
in WHITHAM

cross sectional area of cell in r,z plane
normal component of cell boundary ve1ocity
sound speéd

internal energy per unit mass _

total energy per unit mass E = e + %ﬂ(uz + v?)

index for horizontal rows in GODUNOV mesh; index for shock
segments and nodes in WHITHAM

index for columns parallel to shocks in GODUNOV
constant in area versus Mach number relation used in WHITHAM
length of shock segment i (GODUNOV and WHITHAM)

mass flux across a wave appéaring in Riemann problems
Mach number |
pressure ‘

shock velocity of segment i (GODUNOV. and WHITHAM)
radial coordinate

vertical component of shock node velocity in WHITHAM
separation of horizontal grid lines in GODUNOV

time

velocity component in z (or x) direction

shock node velocity in WHITHAM

node velocity in GODUNOV (see Figure 3-2)




U = normal component of velocity flowing into a cell in

GODUNOV
v = velocity component in r (or y) direction
v = cell yo]ume‘invGODUNOV
Vw = wéve propagation speed
X = coordinate parallel to direction of propagation
y = coordinate normal to propagation direction
z = axial coordinate
ii = axial component of shock node ve]dcity in WHITHAM
Y = ratio of specific heats
S = symbol appearing in conservation equations.
§ = 0 for x,y geometry, § =1 for r,z geometry
0, = angle of inclination of segment i to vertical

o - density

Subscripts

N, S, E, W = north, south, east, west cell boundary
old = value at beginning of time step

new = “value at end of time step

1,2, 3, 4 = vregions 1, 2, 3, 4 in Figure 3-3

spot = cold spot

cs = contact surface (seé Figure 3-3)

n = normal to cell boundary

10



3. THE GODUNQV CODE

A computer code, called GODUNOV, has been developed to
solve the full set of two-dimensional time dependent conservation
equations for the case of a focusing N-wave. The numerical method
that is employed in GODUNOV is a modification of a technique originally
devised by Godunov, et al. (ref. 10) to study the shock Tayer adjacent
to a blunt body in supersonic flight. Since Godunov's original pre-
sentation, the Godunov technique has been applied successfully to a
variety of blunt body problems, e.g. references 11 and 12. To the
authors' knowledge, this is the first time the technique has been
extended to a propagation problem. '

One great advantage of the Godunov scheme is that it pre-
serves the discontinuity across shock waves of arbitrary strength.

In this respect, it is superior to the standard finite difference
codes, such as SHELL, which use artificial viscosity to spread a shock

over several mesh points and tend to obliterate weak shocks. It should
be pointed out that GODUNOV also treats any internal discontinuity which

may arise within the N-wave, through its intrinsic artificial viscosity.

3.1 Mesh Motion and Geometry

The mesh geometry employed in GODUNOV is illustrated in
Figure 3-1. The leading and trailing shocks in the N-wave are shown
as solid lines. The grid points Tie on horizontal Tines with fixed
spacing in the vertical direction.

Since the high pressure region that results from focusing
does not extend far from the axis of symmetry, it is-desirable to
place most of the grid points near the axis of symmetry. This can be
achieved by placing the horizontal grid lines close together near the
axis of symmetry and further apart at large radial distances. The
separation between horizontal grid lines in GODUNOV follows the geo-
metric progression

11



where a is a constant. We have found that the optimum value of a is
1.05 for these problems. '
In order to follow the N-wave as it propagates, the grid
points are allowed to move horizontally but not vertically. The N
grid points within the N-wave (N = 5 in Figure 3-1) move in such a
fashion that they are always equally spaced between the leading and
trailing shocks. There are M grid points behind the N-wave (M = 2 in
Figure 3-1), and they move so as to be equally spaced between the
fixed left boundary of the grid and the trailing shock of the N-wave.
The grid points behind the N-wave provide an indication of the net
disturbance imparted to the atmosphere after the passage of the N-wave.
The procedure for moving the grid points is the following.
First the propagation velocity of each segment of the leading and
trailing shock is computed by solving a one-dimensional Riemann problem
as described in Section 3.3 (below). Then the projection of each shock
segment's normal velocity along the x axis is calculated. The propa-
gatiqn velocity of a node on the leading or trailing shock is deter-
mined by using an inverse length weighting of the projected velocity
of the two adjacent shock segments. Using the notation indicated in
Figure 3-2, the formula for the shock node velocity is

- 1 [qi i1 | 9341 Y ]
U, = - + — (1)
i,JFORE (zi + 21+17 sin 6, sin 6,4

A node falling on the contour labeled j between the lead-
ing and trailing shocks, indicated by the dashed curve in Figure 3-2,
is given a velocity

12



- ) . (- JAFT
Ui, 5= U omer * Wy grore ™ U5,aF7) t‘u_"_LyJFoRE — JAFT (2)

where JFORE and JAFT are the j-indices of the leading and trailing
shocks, respectively. o

An attractive feature of this floating mesh scheme is that
it confines the grid points to the continually changing region of
interest. Thus, for a given number of grid points, it allows for a
higher resolution of the flow field than codes with fixed Eulerian or
Lagrangian meshes.

3.2 Conservation Equations

The conservation equations which describe the two-
dimensional unsteady flow of an inviscid fluid are given below.

Mass
9p , 3 (pu) , 3 (pv) _ _ 8 pv
ot * X * oy y (3)
X-Momentum
2
3 (pu) , 2 (p+pu”) . 3 (puv) _ _ 6 puv
3t * X * 3y y (4)
y-Momen tum
3 (ov) L 2 (puv) L 2 (p+ ov?) . s oVt (5)
ot X dy y
Energy

©

<+
<
N
~—

[pe+'~‘§-(u2+v2)] + 2y [p+pe+§(4u2

wlw
ct

d B 2 8
*a‘y“V[P”“%(U ) - - )VT[P+09+%(U2+VZ)] (6)

13



In the above equations & = 0 for x, y geometry and & = 1
for r,z geometry. These equations together with.the equation of state
represent a set of five nonlinear equations for the five unknowns -
P, p» €, U, and v. A perfect gas law equation of state has been
incorporated into GODUNOV, i.e.

p={y -1) oe (7)

In applying the conservation equations to the moving mesh
in GODUNOV, Egs. (2) - (6) are integrated over a cell volume (V = cell
volume). After applying Green's theorem, the result is

Mass

x -'Momentum

A iguV) = (pA:sin e)w - (pA sin e)E +A j{: [pUA.(U - B)] (9)
NSEW

y ~ Momentum

s (pvV) _

T (pA cos e)E - (pA cos e)w

- (pA) + (pA)g + j{: {va (U - B)] + 821A poss .(10)
NSEW

14



é;%%E!_.= EE:_[PAE (U-B)+ pUA} (11)

NSEW

The subscripts in Eqs. (8) - (11) refer to the north, south,

east, and west boundaries of the cell in question (see Figure 3-1).
The areas of the cell boundaries are denoted by A, whereas Across
denotes the cross sectional area of the cell in the r,z plane. U
represents the normal component of inward-flowing velocity and B the
normal component of the cell boundary velocity. The angle 6 is measured
from the positive x axis to the east or west cell boundary as illustra-
ted in Figure 3-1. '

‘ During the course of a time step, the cell volume changes
as a result of the mesh motion. The new cell volume at the end of a
time step, V., must first be calculated before Eqs. (8) - (11) can
be utilized. The resulting equations used to update the flow vari-
able are

’i (Dv)new = (DV)O]d + At Z[PA (U - B)] | (12)

NSEW

(UpV)new = (pUV)o]d + st $(pA sin e)w

- (pA sin o) + j{: [puA (U - B)] (13)

NSEW
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(VpV)new = (va)O]d + At {}pA cos e)E - (pA cos e)w

- (PA)N + (PA)S + jg: [va (v - B)] + Gz"pAcross:} (14)

NSEW
(EpV)new = (pEV)o-Id + At{Z [pAE(U - B) + pUA} } (15)
NSEW :
Equations (12) - (15) are used to solve for Pnew’ Ynew’ Vnew’ and

Enew’ respectively.

3.3 Riemann Problems

Before the right-hand sides of Eqs. (12) - (15) can be
evaluated, the values of the flow variables at the cell boundaries
must be determined. This is accbmp]ished in GODUNQV by solving a
Riemann problem across the appropriate cell boundary.

The Riemann problem describes how an initial discontinuity
between two uniform regions evolves with time. In this case, the two
uniform regions are two adjacent cells separated by a cell boundary.
There are four Riemann problems associated with each cell. Two of
them involve moving boundaries (east and west), and two stationary
boundaries (north and south).

Consider two adjacent cells in the same horizontal row as

illustrated at the top of Figure 3-3. The bdundary between the cells
has a normal velocity, B, which is calculated by averaging the normal

components of the node velocities at both ends of the boundary, i.e.

_s%in e ,~ ~ )
B = W15+ up5) (16)
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Once the fluid velocities in the two adjacent cells are resolved into
components normal and parallel to the cell boundary, the solution of
the one-dimensional Riemann problem proceeds as {ndicated in the x-t
diagram in Figure 3-3.

In general, a compression or rarefaction wave, wave 1,
will propagate into region (1), and another compression or rarefac-
tion wave emanating from the interface, wave 4, will propagate into
region (4). Between wave 1 and wave 4, a contact surface exists.

To the extent that the width of the rarefaction waves can be neglected
(acoustic 1imit), the three discontinuities divide the x-t plane into
4 uniform regions, labeled (1) - (4) in Figure 3-3.

At the fore and aft (or leading and trailing) shocks,
wave 4 is a shock wave which coincides with the cell boundary in the
x-t plane. At an interior east or west cell boundary, the boundary
position has a velocity dx/dt = B as computed above, whereas a north
or south boundary is fixed and its position coincides with the t axis
" in the x-t plane. In each case, the flow properties at the cell
boundary are set equal to the flow properties of the region in which
it Ties. o S '
| If wave 4 is a shock wave, the Rankine-Hugoniot relations
dictate that the mass flux across wave 4 is

m4 =.\/T;_4'.[(Y + 1) p3 + (v "Al) p4]. (17)

and, from momentum conservation,

Py - Py tmy (U, - un1)4= 0 . (18)
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where Uy is the fluid velocity relative to the wave. In the case
that wave 1 is a rarefaction wave, the one-dimensional unsteady
isentropic relations provide that

Un1 Yy - 1 Un2 Y - 1

Since the pressure and normal component of fluid velocity

are preserved across a contact surface, Py =P3 =P and

cs
Upp = Ug3 = ch' Equations (18) and (19) may now be solved for Pes

and UCS to give

mPy + mypy + mymy (U - upy)

P = (20)
cs . my + my
and
'p - p, + mu_, + mu ,
Ug = 1 4 n ﬁ ;4 1'nl (21)
1 74
where

1 - p/P
U , 1
m = Lk Vs L T C?(Y-nm} (22)

Pes/P1

An iterative solution for my using Eqs. (17), (20), and
(22) is obtained at each fore and aft shock segment. The shock
velocity is then computed as
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. .m4
qn = Un4 + EZ (23)

This procedure is simplified at interior cell boundaries

by using the weak wave relations across waves 1 and 4. In the
acoustic limit,

mo= \[vppey and my = \[vpe, (24)

and no iterative soiution is required for Pes and ch’
To determine the properties of an interior cell boundary,
the boundary velocity, B, is compared to the wave speeds, where

-/ 1) - U
wl - Y1 YPi/ey * g (Ugs unl)

+1)
* 4 (ch

v
(25)

Vg = Una ¥ \JYP4/0y - Upg)

For example, if le <B < UCS’ then the cell boundary lies in region
(2) in the x-t plane. and the flow variables at the boundary are:

: 3
P = P
U=l $ (26)
P =0y =0 (Pcs/pl)l/Y
o
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If the cell boundary falls in region (3), the first two relations
in (26) would remain the same while

p = 03 = 94 (PCS/P4)1/Y : (27)

3.4 Time Step Computation

The time step used in updating the flow variables is com-
puted on the basis of a Courant type stability criterion. This'cri-
terion 1imits the time step to Tess than the time required for an
acoustic signal to travel across any cell, in either the x or y
directions.

An acoustic signal travels northward across a cz211 at
speed ¢ + v, and southward at a speed ¢ - v. Hence the vertical
direction time step is

At Ar (28)

y max (C + Vv, C = V)

In calculating the horizontal direction time step, the motion of the
cell boundary musf be included. An acoustic signal propagates east-
ward at a speed ¢ + u, and westward across a cell at speed c - u. A
signal emanating from the west cell boundary will have to travel a
distance AZ oo F Beat, where AZ is the shortest horizontal leg of
the trapezoidal cell, before it encounters the east boundary. Simi-
larly, a signal leaving the east boundary will‘travel a distance

AZ o " BwAt across the cell. Therefore, the horizontal time step is
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Az .
mn (29)

At = .
x max (c+u - BE’ cC -u+ Bwf

In order to avoid difficulties that could arise when the cell bound-
aries and/or the fluid are moving much faster than sound speed,
GODUNOV uses -a modified horizontal time step of

- AZm1'n (30)
x max (c+ Jul + [Bc[, ¢+ [ul +[B [}

At

Following Godunov, et al. (ref. 10), the overall time step
for a cell is

Atx at

Atx + Aty

At = (31)

and the time step used during a cycle is the minimum value of At
computed for every cell in the grid.

3.5 Boundary Conditions

Zero gradient boundary conditions are imposed at the top
and left boundaries of the grid. This is implemented in GODUNOV by
setting the flow variables at the west boundary of a cell in the
first (far west) column of the grid equal to the corresponding values
at the center of the cell. Similarly, the north boundary of a cell
in the top (far north) row of the grid is assumed to possess the same
properties as the center of the cell. _

The right boundary of the grid coincides with the Teading
shock of the N-wave. The appropriate Riemann problem is solved (as
described in the previous section) for each shock segment in order
to compute the jump conditions across the shock. The flow field
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ahead of the shock is assumed to be undisturbed except for the pres-
ence of the cold spot.

A symmetry condition exists at the bottom boundary of the
grid.  In the early stages of development, the symmetry was accounted
for by placing the center of the first row of cells on the x axis,
and constraining the east and west cell Boundaries on the first row
to be vertical. This configuration is illustrated at the top of
Figure 3-4. The vertical component of velocity in the first row of
cells must be zero in this arrangement. | »

Several runs with this symmetry configuration produced at
late times an abrupt change in the slope of the shock between the
first and second shock segments. In other words, both shocks in the
N-wave tended to be inclined upon passing through the focus, and the
constraint of a vertical segment on the axis was artificial. Down-
stream of the focus the discontinuity in slope seemed to propagate
upward along the shocks, and it appeared as if the shocks "broke up."
This situation is illustrated in Figure 3-5, and is a numerical
artifact.

To alleviate this "break-up" the symmetry condition was
re-posed in terms of an imaginary row of cells across the axis of
symmetry. As the bottom of Figure 3-4 indicates, the imaginary row
of cells was taken to be the mirror image of the first row. Now the
first shock segment can be inclined and a vertical component of
velocity is allowed in the first row of cells. Subsequent runs with
this configuration produced smooth shock profiles.

3.6 Test Runs

A series of test runs was conducted with GODUNOV before
it was used for the two-dimensional N-wave focusing problem.

The first test case concerned the one-dimensional propa-
gation of an N-wave into a uniform atmosphere, without refraction.
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The fnitia] relative overpressure of the N-wave was Apo/p0 = 0.1, and
the initial wavelength was 50 meters, Ten axial grid points were
placed within the N-wave and two behind it. Figure 3-6 is a plot of
the pressure distribution both initially and after it has propagated
for 0.1807 secs (50 time steps or cycles).

The half wavelength, 2, of the N-wave should increase
with time according to the formula (ref. 13)

zolzo

=~Vﬁ+h—;—1_)%93 | (32)
0 _ 0

where %6 and Av, are the initial half wavelength and velocity ampli-
tude, respectively. For the parameters of the N-wave in Figure 3-6,
(Av0 = 24.34 meters/sec), Eq. (32) predicts a value of /2, = 1.100
after 0.1807 secs. The value computed in GODUNOV was 2/20 = 1.090,
which is within 1 percent of the theoretical value, indicating excel-
lent agreement.

The same problem was run on the SHELL code, which is one
of the standard hydrodynamic codes with a stationary mesh. The pres-
sure profiles obtained with SHELL are illustrated in Figure 3-7. The
artificial viscosity in SHELL has spread the shock waves to such an
extent that they are barely recognizable as discontinuities with well-
defined amplitudes. It is apparent that SHELL is not capable of
following shock waves with relative overpressures much less than 0.1,
which is the range in which we are interested.

The other test problem run on both SHELL and GODUNOV was
a numerical simulation of a "cylindrical shock tube" problem. In
this problem, the ordinary pianar diaphragm separating the high and
Tow pressure gases is replaced by an imaginary cylindrical diaphragm.
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At time t = 0, the pressure ratio across the diaphragm is 4.45, the
diaphragm is instantaneously removed, and the initial discontinuity
resolves itself into a shock wave and a rarefaction wave propagating
in opposite directions. The resulting flow is in the radial direction
only.

The results of computations with SHELL and GODUNOV are
illustrated in Figure 3-8. The initial pressure across the diaphragm
(4.45) was chosen so as to produce a shock wave with a relative over-
pressure of 1 in the axial flow case. There is no equivalent analyti-
~cal solution to the radial flow problem, but both SHELL and GODUNOV
“indicate that the shock wave is slightly weaker than it would be for
axial flow. The excellent agreement between SHELL and GODUNOV con-
firms that GODUNOV is computing the radial flow correctly. This con-

firmation together with the axial flow test case results verifies that
GODUNOV is a valid two-space-dimensional fluid dynamic code. The fact
that the shock discontinuity is smeared slightly more by GODUNOV than
by SHELL (in Figure 3-8) shows that the intrinsic artificial viscosity
is slightly greater in GODUNOV than in SHELL. :
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4. THE WHITHAM CODE

An auxiliary computer.code, entitled WHITHAM, has been
~ created as a supplement to GODUNOV. WHITHAM follows the propagation
of a single shock according to the approach described by Whitham in
reference 9. In our case, the shock represents the leading shock of
the N-wave, and the validity of the WHITHAM code is contingent upon
a lack of interaction between the shock and the flow behind it.
Whitham's original premise was that a curved shock may be-
envisioned as a chain of planar elements, each of which propagates
down a tube of varying cross section. The propagation velocity is
determined by an empirical area versus Mach number relation. Thus,
as the shock begins to focus, the segments near the focus are "com-
pressed" and their propagation velocity increases. In this respect,
WHITHAM is a higher order formulation than the ordinary geometric
acoustic ray tube concept where every point on the wave front propa-
gates at the local sound speed.

4.1 Numerical Description

, A sketch of the shock front in WHITHAM is illustrated in
Figure 4-1. Each line segment, which represents in the figure the
cross-section of a planar element, has a velocity, 9y normal to
itself, where q; is equal to the segment Mach number, Mi’ multiplied
by the ambient sound speed. The differentia]Arelationship between
Mach number (M) and "segment area" (A) is the one proposed by Whitham
(ref. 9), i.e.

dA _ - 2MdM 33)
Al - 1) km) (

where K(M) is a slowly varying function of Mach number, given in -
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reference 9. Since K(M) only ranges from 0.5 for weak shocks to_0.394
for strong shocks, Whitham (ref. 9) suggests that its variation may be
neglected in integrating Eq. (33). The resulting simple relationship

AK (M2 - 1) = const | - (34)

is the one employed in WHITHAM. The area Ai associated with each

shock segment is (a) the area of revolution of the segment about the

axis of symmetry for r,z geometry, or (b) the area of a strip, per
unit length in the z-direction, in x,y geometry.

The sequence of events occurring during one cycle, or
time step, in WHITHAM is the following.

1. The lengths and areas. of the shock segments are computed from
the r,z (or x,y) coordinates of the shock nodes.

2. Mach numbers for every shock segment are computed from Eq. (34)
(K is read in és input data; we have used K = .5 for most runs),
yielding segment velocities, q;-

3. The time step, At, is computed by taking the smallest value of
Qi/qi. This criterion prevents the segments from moving a
distance larger than their own length in one time step.

4. Using the shock segment velocities and geometry, compute the
r and z (or x and y) components of the shock node velocities.
The method used is described in detail in the next section.

5. Move each shock node a distance FiAt in the radial direction
and iiAt in the axial direction.

4.2 Shock Node Velocities

Two different methods have been used to compute the shock
node velocities, ﬁi and ii’ from the segment velocities and geometry.
In the first method, the node velocity components are
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computed as an inverse length weighting of the adjacent segment
velocities. The equations are

[}Zi - 2;_1) 938441 + (254 - 2;) qi+121}
L. L

. i i+l (35)
r, = -

; (e + 45,)

[(ri - i) 95ty + (ripp -1y q1.+121.]
2. 2.

. i i+l (36)
Z. =

1 (R Ly

In the second method, the two adjacent shock segments are
displaced a distance q;At normal to themselves and the new node posi-
tion is computed as the geometric intersection of the two segments.

The equations are
Qe12 (ryop = rg) + 0585 (rgyy - ry) (37)
i Lzz1_1 - Z-i)(r-i+1 - r]') - (Z'i+1 - z'i)(r'i-l B Y‘_i)-‘

9% (2441 = 2) - Q49244 (75 - 254)
L E TN AR I (N [ VI )

(38)

-

Equations (37) and (38) are singular when the two segments
are parallel. Therefore, Eqs. (35) and (36) are used only when the
cosine of the angle between the segments differs from 1 by more than

-3
10 .7,
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5. RESULTS FOR INITIALLY-CONCAVE N-WAVES

5.1 Polynomial Front -

Two different initially-refracted configurations are
investigated, using GODUNOV. The first configuration to be discussed
is called the "polynomial front" N-wave. Both the fore and aft shocks
of the polynomial-front N-wave at t = 0 are represented by the formula

2. 4
_ xr | _1lfr
z -z, = 100 [(100) > (100) J 0 <r <100 (39)

where z and r are in meters, and z, locates the fore shock and the aft
shock. .
Consider the 4 pairs of approximately equally-spaced curves
shown in Figure 5-1. For each pair, the curve on the right represents
the fore shock profile at a given time, while the curve on the left
répresents the aft shock profile at the same time. The first pair of
curves (labeled t = 0) corresponds to a polynomial-front N-wave with
an initial wavelength of 10 meters and a radius of curvature at the
axis of 50 meters. The initial relative overpressure is chosen to be
(ap/p)y = 107
and Po is the ambient pressure.
The shock profiles at the four indicated times in Figure

» where Ap is the pressure jump across the fore shock

5-1 illustrate how the N-wave changes shape as it propagates to the
right into a uniform atmosphere. Note that the point of inflection
on either front migrates toward the axis as the N-wave approaches the
focus, defined here to be the position of maximum pressure, which is
located at z = 79 meters (corresponding to t = .172 sec, not shown in
Figure 5-1). According to geometric acoustics, the focus is located
at the center of curvature of the fore shock, at z = 70 meters in
this case. We will designate the geometric-acoustic focal point as

28




the "nominal focus," to distinguish it from the “actual focus" deduced
from the calculation. At the actual focus, the shock develops a cusp

at the axis of symmetry.' The prof{]e at the focus resembles the geo-

metric-acoustic wave-folding picture in Figure 1-3.

The incipient break-up of the last shock profiles at the
axis in Figure 5-1 is a numerical artifact involving use of a verti-
cal shock segment at the axis. A suitable modification which avoids
this break-up has been discussed in Section 3.5.

The polynomial front N-wave shown in Figure 5-1 and
defined above was run several times with different grid sizes.
Although thé_shock profiles exhibit the general shapes shown in
Figure 5-1 for all of the grids, the focus factors, Apmax/Apo, depend
on the number of grid points used. Table 5-1 displays the focus
factors corresponding fo each of the grids. The authors believe that
the grid consisting of 100 equally spaced radial points and 20 axial
points yields a reasonably accurate value for the focus factor, namely
18.7, in the sense that increasing further the number of grid points
will not change this value significantly.

Moreover, the use of inclined cell segments on the axis
is believed to yield more accurate results (see Section 3.5). Through-
out the rest of this chapter, the results refer to inclined cell seg-
ments. Focus factors obtained with inclined cell segments are
approximately 10 percent higher than those obtained with vertical
cell segments. Thus, a better estimate of the focus factor for the
polynomial front is about 20. It is interesting to note that the
focus factor is 11.5 at the position of the "nominal" focus {geo-
metric acoustics).

Figuré 5-2 illustrates the pressure profiles (as computed
with fhe 100 x 20 grid) along the axis at three different times. The
last curve in Figure 5-2 corresponds to the pressure signature at the
focus. The formation of spikes near the fore and aft shocks of
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the N-wave is evident. Detailed structure behind the aft shock is not
shown because the zoning was coarse behind the N-wave.

The pressure profiles at three different radial positions
are illustrated in Figure 5-3. The lowest curve in Figure 5-3, which
is the profile on the axis, is the same as the last curve in Figure
5-2, drawn to a different scale. The rapid drop of pressure with
distance from the axis is apparent in Figure 5-3.

Figure 5-4 is a plot of the relative overpressure behind
the fore shock of the N-wave versus axial position of the shock.
The solid curve represents the results of the 100 x 20 grid GODUNOV
calculation, while the dashed curve represents the equivalent (100-
point) WHITHAM calculation. The maximum relative overpressure com-
puted with WHITHAM (.0285) is 52% higher than the maximum relative
overpressure computed with GODUNOV (.0187).

This is apparently due to the fact that there is no
rarefaction wave in WHITHAM to relieve the pressure buildup. The
calculations in WHITHAM are terminated when the shock segments
overlap, or cross each other. (This occurs somewhat earlier than
the GODUNOV focus.) It can be seen from Figure 5-4 that, along the
axis, relative overpressures greater than .002 (twice nominal)
occur in a spatial interval 40 meters long; and relative overpressures
greater -than .01 (about half the maximum) occur in a spatial interval
10 meters long. In the radial direction, the corresponding interval
lengths are 20 and 10 meters, respecti?e]y. o

In order to assess the relative intensities of point foci
and line foci for the same initial conditions, the problem defined
above was recomputed with WHITHAM in a two-dimensional x,y geometry
(Tine focus). A maximum r¢1ative 6verpressure of .0117 was computed,
as compared to the value of .0285 for the point focus.
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The effect of varying the initial strength of the poly-
nomial shock front was also investigated with WHITHAM. Calculations
with initial relative overpressures, ap /p . of 0.01 and 0.10, in
r,z geometry, resulted in maximum relative overpressures of 0.154 and
0.63, respectively. These results indicate that the intensification
due to focusing of stronger shocks is not as severe as for weaker
shocks. Furthermore, the geometric-acoustics wave-folding description
of focusing is not valid for shocks with relative overpressures of
the order of 1 or higher. This is discussed below in connection with
some GODUNQV calculations for "Gaussian front" N-waves.

5.2 Gaussian Front

We define a "Gaussian frbnt" shock wave as one with a
profile satisfying the equation

2

= - - L
z=12z + 10 - 10 exp ¢-20 (106> (40)

where r and z are both in meters. The profile labeled "t = 0" in
Figure 5-5 is an example of a Gaussian front. (Only the fore shock
profiles are shown.) The other curves in Figure 5-5 represent the
fore shock profile of the N-wave at later times. Initially, the
N-wave has a nominal relative overpressure Apo/po = 10°3 and a
wavelength of 10 meters. The formation of a cusp at the axis as the
focus is approached in Figure 5-5, and the gradual decay of the cusped
portion of the shock beyond the focus, confirms the geometric-acoustics
description of the primary shock shown in Figure 1-3.

The geometric-acoustics wave-folding picture in Figure 1-3
indicates that the primary shock should be reflected from the axis of

symmetry. Further, the reflected shock ends at the caustic sheet, and
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a third (logarithmic) discontinuity joins the “ends" of the reflected
shock. The question arises whether this structure may be inferred
from our calculations. The computed two-dimensional pressure distri-
bution immediately behind the fore shock just after it has passed the
focus has been plotted in Figure 5-6. A portion of the mesh used in
the computation is shown in Figure 5-6, and the numbers within the
cells represent the pressure at that Tocation. If the presence of a
reflected shock and a "logarithmic discontinuity" are to be inferred
fromthe computations, there should be a jump in pressure as one scans
from right to left along a horizontal row in the mesh. This type of
pressure jump does not appear in Figure 5-6. It is perhaps not sur-
prising that the GODUNOV calculations do not reveal the presence of
secondary discontinuities, because the strong rarefaction behind the
fore shock probably swamps such discontinuities. As opposed to this,
the wave-folding picture shown is for a single shock without a strong
rarefaction behind it.

A tabulation of focus factors calculated with different
numbers of mesh points for the Gaussian-front N-wave discussed above
is shown in Table 5-2. The relatively small change in focus factors
between the last two grids in Table 5-2 indicates that approximate
convergence has been obtained. The results discussed in this section
refer to the 50 x 50 grid, which required 34 minutes of CDC 6600
computer time.

Pressure signatures along the axis of symmetry at three
different times are plotted in Figure 5-7. Here again, the develop-
ment of steep spikes adjacent to the fore and aft shocks of the N-
“wave is apparent. The pressure signature at the time corresponding
to focusing in Figure 5-7 indicates a focus factor of 13.0 (relative
overpressure = .013) for the Gaussian front N-wave.

Note that the location of the actual focus (z = 64 meters)
is close to the center of curvature (the nominal focus) of the initial
N-wave (z = 70 meters).
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For the Gaussian-front N-wave, relative overpressures
larger than .002 (twice nominal) occur in an axial interval 35
meters long, and relative overpressurés greater than .0065 (about
half the maximum) occur in an axial interval 20 meters long. In the
radial direction, the corresponding interval lengths are 6 meters
and 1.5 meters, respectively.

5.3 Strong Shocks

The same Gaussian front N-wave described above was rerun
on GODUNOV with a much higher initial overpressure in order to inves-
tigate the focusing of relatively strong shocks. The shock profiles
for an N-wave with Apo/po = 0.90 are shown in Figure 5-8. Notice the
lack of a cusp in the shock profile at the focus in this case. In
fact, the entire picture Tooks more 1ike Whitham's picture of a con-
cave shock "overshooting" than the geometric-acoustics wave-folding
picture “(compare figures 1 and 4 in ref. 9). The focus factor is 1.5.

GODUNOV has been used to investigate the propagation of
other relatively strong concave and convex shocks. The convex shock
that was studied is identical to one of the shocks that Collins and
Chen (ref. 14) used in their study of shock wave diffraction.

As indicated in Figure 5-9, the initial shock profile is
composed of three straight sections labeled A, B, C. Segments A and
C have Mach numbers of 2.23 (Apo/p0 = 4.63), while the inclined seg-
ment, B, has a Mach number of 1.576 (Apo/p0 = 1.73). The decay of
the convex portion of the shock at later times as illustrated in
Figure 5-9 is in close agreement to Collins' and Chen's results.

A similar shock, with a concavity instead of a convexity,
is shown in Figure 5-10. Although the shock does straighten out, the
return to a planar configuration is not as smooth as it is for the
convex shock. The spike in the Tast shock profile is a numerical
artifact due to the symmetry constraint employed in that particular
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run. (The modifications referred to in Section 3-5 of Chapter 3
would eliminate this artifact.)

Comparisons of Figure 5-8 and 5-10 with Figures 5-1 and
5-5 reveal that the focusing of concave shocks is much different for
weak shocks than it is for strong shocks. Weak shocks with relative
overpressures much smaller than unity focus according to the geometric-
acoustic wave-folding mechanism, whereas strong shocks with re1ative
overpressures of the order of unity or higher tend to straighten out
as Whitham (ref. 9) predicted.
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6. RESULTS FOR COLD-SPOT REFRACTION OF INITIALLY-PLANAR N-WAVES

In early runs, spherical cold-spot$ with uniform tempera-
tures below ambient were inyestigated. The incident shocks were
assumed to be initially planar, which is a good approximation if the
radius of the cold-spot is much smaller than the radius of the Mach
cone associated with the bow shock of a supersonic aircraft. The
discontinuity in temperature at the cold-spot interface caused a
reflected shock. The disturbance in the N-wave (as calculated by
GODUNQOV) that was caused by the reflected shock produced complicated
solutions without providing further insight into the focusing mechanism.
Consequently, in later runs a continuous transition in temperature was
imposed at the cold-spot boundary, so that reflected shocks, if any,
were weak and did not appear. The temperature variation within the
cold-spot was taken to be

, -1
T . dp. . - 2 4 2]/l _bp -
To =41+ o exp [ 3((2 Zspot) +r )/rspot] S exp (-3) (41)
where zSpot is the Tocation of the center of the cold-spot, rspot is

the cold-spot radius, and Ap/p0 is the relative density change between
the center of the cold-spot and ambient conditions. The pressure in
the cold-spot is taken to be the same as the ambient pressure.

The results of a run in which the temperature transition
is continuous are shown in Figure 6-1. The solid curves represent
the fore shock and the dashed curves.the aft shock. This figure shows
a numerical break-dp occurring at late times, which is an artifact and
was corrected in later runs (see Figure 6-2). The break-up occurs
after the focus and has a negligible effect on the value of the focus
factor. Therefore it may be ignored in the following remarks.
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In the results illustrated in Figure 6-1, bo/o, = 1.0,
Zenot © 120 meters, and rspot = 50 meters. The first pair of curves
represent the impinging planar N-wave. The Second pair of curves in
Figure 6-1 illustrate the refraction that is caused by the cold-spot
sTowing down the inner portion of the N-wave. Note the resemblance
between the cold-spot refracted shock fronts in Figure 6-1 and the
Gaussian front of Figure 5-5. The initially-refracted concave shocks
described in Chapter 5 started with uniform overpressures along the
shock fronts. At the time the N-wave shown in Figure 6-1 emerges from
the cold-spot, the overpressure variation along the fore shock 15'55%,
i.e., relatively small compared with 390% at the focus (see below).

The third pair of curves in Figure 6-1 have been drawn at
a time when the fore shock has already propagated past the focus, which
occurs at z = 231 meters. With a grid composed of 20 radial points and
7 axial points, a focus factor of 3.9 was computed for the pfob]ém
shown in Figure 6-1. A finer mesh would result in a larger focus
factor; if the results shown in Table 5-1 can be used as a guideline
to exfrapo]ate to a finer mesh, a focus factor of 11.3 can be estimated.

GODUNOV has also been employed to compute the two-
dimensional (x,y geometry) cold-spot focusing that results from a
situation equivalent to the one shown in Figure 6-1. In other words,
the cold-spot is now cylindrical instead of spherical so that a line
focus will result instead of'a point focus. A focus factor of 1.5
was calculated using the same 20 x 7 mesh. Extrapolation to a finer
mesh in this case would lead to a focus factor of 4.4.
_ ngure 6-2 shows the results of a computation with a mesh
consisting of 50 radial points and 50 axial points. The cold-spot |
spotA= 250 meters, and rspot = 150 meters.
Thus, the cold-spot in Figure 6-2 is larger than the one in Figure 6-1,

parameters are so/p, = 1.0, 2

although the central temperatures are the same. The three pairs of
curves in Figure-6-2 represent the N-wave (a) impinging on the cold-
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spot, {b) midway through the cold-spot, and (c) just after focusing
(the focus is located at z 5.430“meters); Note the absence of a
break-up in the last pair of shocks in Flgure 6-2. This is due to
the improved symmetry condition employed in this calculation (see
Section 3.5). | .

A plot of the relative overpressure behind the fore shock
versus axial position of the fore shock is given in Figure 6-3. Sig-
nificant increases in the overpressure are not observed until the
fore shock is almost through the cold-spot. This is due to the small
time lag between refraction and focusing. The focus factor in this
calculation is 16.7, and the axial distance from the focus at which
the overpressure is one-half the maximum value is about 30 meters
(.6 wavelengths in this case).

A1l of the results quoted above are for cold-spots with
center temperatures equal to one-half the ambient temperature. This
is an examp]e_of‘an extreme temperature inhomogeneity that would not
be encountered in the real atmosphere. Less extreme temperature
inhomogeneities would produce Tower focus factors. However, other
inhomogeneities, such as wind shear fluctuations, may be more signi-
ficant but were not considered in the calculations.
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7. CONCLUSIONS

The results of this investigation demonstrate the capa-
bility of GODUNOV as a two-space-dimensional shock-following code for
calculating sonic boom N-wave focusing.

The flow field at and near the focus has been computed
by GODUNOV for two types of sample problems. The first type of prob-
lem involves the refraction and subsequent focusing of a planar N-wave
by a cold-spot. Focus factors of 11.3 and 16.7 are obtained for the
two spherical cold-spots (point foci) investigated. A cylindrical
cold-spot (1ine focus) similar to the first spherical cold-spot yields
a focus factor of 4.4.

The second type of focusing problem investigated. in this
study concerns the focusing of an N-wave with a concave front of pre-
scribed shape. The curved front might be caused, for example, by
atmospheric fefraction or by aircraft maneuvers. Two different initial
shock-front shapes are studied. In one case we obtain a focus factor
of 13, and in the other case a factor of 20. In all cases, the focal
region (as defined by the distance from the focus at which the N-wave
overpressure falls to one-half the maximum overpressure) extends no
more than 3 wavelengths from the focus. These results illustrate the
dependence of the focus factor on the initial shape of the shock front.

The study has also provided valuable insight into the
process of focusing. The wave-folding mechanism predicted by geo-
metric acoustics (Figure 1-3) for a concave shock has been verified
for weak shocks, although no evidence of secondary discontinuities,
i.e. reflected shocks, has been observed. Wave-folding is the mechanism
responsible for sonic boom focusing. On the other hand, strong concave
shocks with relative overpressures, Apo/po, of the order of unity or
higher tend to straighten out or overshoot rather than fold over.

Thus, the hypothesis of Whitham (ref. 9) that a shock will straighten out
without fold-over, and the fold-over hypothesis of geometric acoustics
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(refs. 2, 16),are complementary to one another; both are valid but
under different pressure conditions,

It may be noted that the GODUNOV code can be 1inked to
a geometric-acoustics code (such as the codes described in references
1 and 15) in order to calculate sonic boom signaturesvfrom maneuvering
aircraft. Predictions of the intensity and extent of ."super-super-
booms" (see Introduction) from prescribed aircraft maneuvers could
provide the basis for defining acceptable flight operations for
supersonic aircraft.
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APPENDIX A
USER'S MANUAL FOR PROGRAM GODUNOV

GODUNOV 1is designed to compute the flow field that results
from the focusing of an N-wave of arbitrary strength. The focusing
is associated with a concavity in the wave front, which can be caused,
for example, by a cold-spot in the path of the N-wave. One may also
prescribe the initial concavity in the wave front. Thus, GODUNOV can
be used to study focusing of (i) an initially straight-front N-wave
upon passing through a cold-spot of prescribed size and intensity, or
(ii) a curved-front N-wave of prescribed shape in a homogeneous
- atmosphere,

The input to GODUNOV determines the initial state of the
fluid, the mesh spacing, and the frequency of printed output. A
short output giving key data such as the shock positions and the
positions and value of maximum pressure in the N-wave, is printed at
every cycle. A Tong output describing the full two-dimensional state
of the fluid is printed at the desired cycle frequency. In addition,
tape dumps are made periodically to store information for a possible
restart at a later date.

Input Data

The input data required to start a problem consists of a
six-card package as described below. Any self consistent system of
units can be employed. The cgs system is used for the problems des-
cribed in this report, i.e. lengths are in cm, densities are in
~gm/cc, and pressures are ‘in dynes/cmz.
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1st CARD

Columns 1 - 10 The problem number (CPROB) is required
in'a F10.3 format

Columns 11 - 20 The cycle (time step) number (CYCLE) is
required in a F10.3 format. CYCLE = 0
to start a new problem. In restarting
in order to continue a problem, CYCLE
is the Tast cycle number of the previous
run.

Columns 21 - 80 are left blank

The data in cards 2 - 6 are input in the Namelist format.
The Namelist feature provides considerable flexibility by requiring
only input that specifies the user's choice of options or is different
from the preset data. However, it is only available on certain com-
puters, e.g. CDC 6600. The procedure for inputting data via a Name-
1list format can be found in most FORTRAN IV manuals.

2nd CARD - $PRELIM
The following variables are contained in Namelist PRELIM:

IMAX the number of grid points, or rows, in the
r (radial or vertical) direction, indexed by 1.

JFORE the number of grid points, or columns, in the
z (axial or horizontal) direction. JFORE is
also the value of the j index corresponding to
the fore shock.

JAFT  the number of grid points, or columns, in the
z direction behind and including the aft shock.
JAFT is also the value of the j index corre-
sponding to the aft shock.

TMAX time in seconds at which computations are to
be terminated.

CYMAX cycle number at which computations are to be

T terminated. (The program will stop computing
whenever T > TMAX or CYCLE > CYMAX, whichever
occurs first.)
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CPRINT
CDUMP
T
GAMMA

'3rd CARD - $MESH1

cycle interval between Tong outputs
cycle interval between tape dumps
value of T (time) at start of run

ratio of specific heats

Namelist MESH 1 contains the variables:

RMAX
DZFORE

DZAFT

ZSPOT

DZSPOT
A

ZAXIS

OPT

42

value of r at outer boundary of grid

initial (uniform) spacing of grid contour
Tines within N-wave and parallel to shocks

initial spacing of grid contour 1lines behind
N-wave, i.e. between the left boundary and
the aft shock, and parallel to shocks

value of z coordinate corresponding to center
of cold-spot

diameter of cross-section of cold-spot

ratio of spacing between successive radial
grid Tines

array representing z coordinate of grid points
on axis of symmetry (computed internally for
standard problem corresponding to OPT = 0, 1,
or 2 (see below))

integer indicating initial shock front shape
OPT = 0 planar front

OPT = 1 polynomial front

2= 2, + R [(r/Ra0)? - 1 (r/RAX)?)

]
~no

Gaussian front

- RMAX 2
z=2z,+5 1- exp{—ZO (r/RMAX) }j}

where‘z locates the fore and aft shocks
and the contours in between
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‘4th CARD - $MESH2 ‘
Namelist MESH2 contains the following variables:

R(1) vector consisting of the r-values of the fixed
horizontal grid lines

Z(1,3) two-dimensional array consisting of the z-values
of the mesh points. The first index (i) labels the

horizontal line, and the second index (j) labels the
node on the horizontal Tine between the shocks.

When one of the standard problems corresponding to
OPT = 0, 1, 2 is to be run, MESH2 should be left blank, i.e.

$MESH2 §

5th CARD - $STATE1

STATE1 allows the initial fluid state to be described in
compact form. The following variables are in STATEL.

PINIT(k) 6-component vector specifying fluid state ahead
of N-wave (see 6th card) -

PINIT(1) pressure
PINIT(2) density

(The other 4 components are not used. Energy and sound
speed are computed in the program, assuming a static state.)

PSPOT(2) 1 + ratio of density at center of cold-spot to
ambient density.

(The other 5 components are not used.)
The variation of density within the cold-spot obeys the

equation

b= o, {1 + PSPOT(2) -[exp -3 (&z - z5PoT)? + Rz}/-RSPOTZ )]

- PSPOT(2) - exp (-3):}
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where RSPOT is the radius of the cold spot, and ZSPOT is the axial
position of the center of the cold spot.
s the -initial relative oyverpressure of the N wave,
Af.e. S = Apd/po_wherg Apo is the pressure jump
across the fore shock, and Po is the ambient
pressure ahead of the N wave.

The program sets up a linear variation of all the state
variables within the N-wave. The isentropic relations are used to
relate the pressure to the other flow variables. The distribution of
all the flow variables are approximately symmetric about ambient
conditions (i.e., about the mid-point of the N-wave).

6th CARD - $STATE2

Namelist STATE2 allows the user to sbecify X,Y Or r,z
geometry, as well as an arbitrary initial distribution of flow variables.
The following variables are in STATE2

IXyY IXY > 0 implies x,y geometry
IXY < 0 implies r,z geometry

PINIT(k) | The ambient flow field ahead of the N-wave can
be specified as a vector as follows:

PINIT(1) = ambjent pressure

PINIT(2) = ambient density

PINIT(3) = z-component of ambiént velocity
PINIT(4) = r-component of ambient velocity
PINIT(5) = ambient total energy per unit volume
PINIT(6) = ambient sound speed
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P(i,3.k)

three-dimensional array describing the initial
flow field in the N-wave.. The first index
labels the horizontal row of the cell in the
mesh, the: second index (j) labels the cell on
the horizontal 1ine between the shocks, and
the third index (k) labels the state variable

as follows:

k=1 - pressure
2 - density
3 - z-component of velocity
4 - vr-component of velocity
5 - energy per unit volume
6 - sound speed

To run one of the standard problems, only IXY need be
input in STATE2.
The input data package for restarting a probiem consists
of the two cards described below.

Tst CARD

Columns
Columns
2nd CARD
Columns
Columns

Columns

Columns

1

11

1

11

21

31

- 10

- 20

the problem number (CPROB) in a F10.3
format.

the cycle number at which the problem
is to be restarted in a F10.3 format

TMAX, the time at which calculations
are to be terminated

CYMAX, cycle number at which calcula-
tions are to be terminated

CPRINT, cycle frequency for long outputs

CDUMP, cycle frequency for tape dumps



A subroutine-by-subroutine. flow chart of GODUNOY is shown
in Figure A-1. The purposes of the various subroutines are as follows.
INPUT reads all required. 1nput data. regard1ng mesh.geometry.
initial values of the flow variables at all points. in space, and physi-
cal parameters such as the ratio of specific heats.
NODES deals with changes of the mesh geometry as a func-
tion of time, and computes (at different points in the logical circuit):
(a) the lengths of shock segments (connecting adjacent shock nodes)
(b) the velocities of the shock segments normal to themselves, and
the corresponding axial velocities of the shock nodes

(c) the velocities of the moving (non-shock) boundaries of the
interior cells

(d) the new positions of all mesh nodes. (The various portions (a,
b, c, or d) of NODES are called at different points in the flow
sequence, as indicated in Figure A-1.)

SHOCK solves the Riemann problem according to the scheme
suggested by Godunov et al. (ref. 10) at all shock segments (both fore and
aft shocks), yielding the ségment velocities normal to themselves, and
the values of the flow-variables on both sides of each shock segment.
These quantities are employed in evaluating the fluxes (of mass, momen-
tum, and energy) on those special cell boundaries which coincide with
shock segments (for cells adjacent to the shocks). SHIO ("shock-
input-output") sets up the input to SHOCK and processes its output
for use by the main program.

RIEMANN solves the Riemann problem at all boundaries of
each interior cell (not adjacent to shocks), taking into account the
motion of the moving cell boundaries, yielding the values of the flow
variables (continuous) on the cell bouhdéries. RIO ("Riemann—fnput4
output") sets up the input to RIEMANN for each cell boundary, and
processes its output. Accuracy can be maintained while employing a
linearized version of the Riemann problem for the continuous portions
of the flow, with a resulting economy in computation time.
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FLUXES computes the fluxes of mass, momentum, and energy
at the cell boundaries in preparation to updating the values of the
flow variables at the cell centers. (FLUXES is called by NEWFLO.)

NEWFLO computes for a given cell:

(a) the cell boundary surface areas (of revolution in r,z geometry)

(b) the old cell volume (of revolution in r,z geometry) prior to
updating the mesh node positions, and the new cell volume after
updating the mesh node positions.

NEWFLO then updates the values of the flow variables at
the cell center. This latter updating is done by means of the conser-
vation of mass, momentum, and energy over the volume of the cell.
First, the currents of mass, momentum, and energy at the cell boundary
surfaces are obtained by multiplying the fluxes (obtained from FLUXES)
by the cell boundary surface areas. Summing these currents and multi-
plying by the time increment gives the change in a quantity Q (not
indicated in the figure), where Q represents the total mass, momentum,

or energy contained in the cell. Q is approximated by multiplying
the volume of the cell by the mass density, momentum density, or
energy density within the cell (assumed constant across the ce11).
The new value of Q is proportional to the new cell volume. Hence,
the new value of mass density, momentum density, or energy density
within the cell is obtained by dividing the new value of Q by the new
cell volume. The new values of the flow variables within the cell
are subsequently readily calculated.

EOS ("equation of state") computes the pressure and sound
speed when the mass density, energy density, and fluid velocity com-
ponents are given. We are presently using an ideal gamma-law-gas
equation. _

DT determines the time interval to be used in updating
the mesh and the flow variables. The time interval is chosen to sat-
isfy the Courant stability criterion, which requires that the time
interval be less than the time required for a sound signal (speed of
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sound combined with fluid velocity) to travel across any cell, in
either the radial or axial directions. The motion of the moving
boundaries must also be taken into account here.

QUTPUT prints out appropriate information at desired
intervals of time.

: This completes the description of the subroutines used
in GODUNOV.

A listing of GODUNQV follows.
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RUN VERSION 2.3 =--PSR LEVEL 298--

000003

000003

000003
000003
000001
000005
000006
000010
000011
gooo1e

000015
000020
000022
000023
000024
000025
000026
000030
000031
600032
000033
000034
800035
000036
000037

000055
000063
000066
000066
000067
000075
000100
000101
000102
000105
000107
000113
860115
gooi2t
000124
goo0125
000126

=0

n

-~

PROGRAM GODUNOVI{INPLY,CUTPUY,TAPE3,TAPES=INPUT,TAPE6=0UTPUT,TAPET7)

COMMON P{50,20,6), R(55), 2(55,20), ZSTARY(S50), ZEND(50}, PINIT(b)
1, PSPOT(6),20L0(50) ,PFORE(50,6),PAFT(50,6),FORSEG150}),FORVEL(50Y,
2AFTSEG(S0Y 4 AFTVEL(S50), PN(20,6), PE(6), AN{20),UFORE(SD) ,UAFT(50),
3 VNE{20),IXY
LkyZAXIS(20)

COMMON RN, RS, ZNE, ZNW, ZSE, 2ZSW, ESEG, WSEG, GAMMA, T, TMAX, OT,
1 CYMAX, CPRINT, DTMIN, IDT, JDT, PRCB, CYCLE, CDUMP, LREAD, MWRITE
2y LYAPE, DELR, ISPOT, VCLOLD, VOLNEW, AS, AW, AE, VNORME, VNORMW,
3 UNORME, UNORMW, UTANGE, UTANGW, VFORE, VAFT, VNW, VSE,VSH, IMAX,
% JFORE, JAFY, I, J, PMAX, HMACHF, HMACHA, IPMAX, JPMAX

COMMON RSPQOY, Z2SPOTY

LREAD = 5

MWRITE=6

LTAPE=3

REWIND LTAPE

CALL SETPLTS

CALL INPUT

IF (CYCLE .GT. 0.,) CC TO S

START NEW CYCLE

IF (CYCLE +GTs 0.) FMAX=0.

PMIN = 1,E10

00 3 I=1,IMAX

CALL NCOES

CALL SHIO

CALL NCDES?

DO 2 J=1,JFORE

CALL NODES3

caLt RIO

CALL DYCALC

IF (CYCLE €3, 0,) 6o 10 2

CALL NEWFLO

CALL NODRESY

CALL NUFLOW

CALL ECS{GAMIAZP(I,J,13,P(T,Uy2%yPlI,Jdy),HyP(I,0,43,P(1,J,51,P(1,J,
161

IF (P(TIyJ,1) LLT, PEAX)Y GO TD &

PMAX = P(I,in’

IPMAX

JPMAX

IF (P(

PMIN

IPMIN

JPMIN

CONT INUE

CONT INUE

IF (PMIN JLE, 0.3 CYMAX=CYCLF

IF (CYCLE .FR. 0.) CTMINO=Q.

IF (DVTMIN LT, DTHMINCY TT=DTMIN®YZ270THING

IF (DTMIN JGE, DTMINC) DT=DTMIN

DTMING=0DTMIN

CALL QUYPUT

IF (AMODICYCLE,CPRTINTY ,FC., 0. 40R, T .GE, THAY ,0F. CTYLLS  LGE,
1 CYMAX) CALL OUVYLNC

) «GT, PMIN) GO TO 2
sdy 1)

’

1
I

o e
— o

(SR R « B S Y ]
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RUN VERSION 2,3 --PSR LEVEL 298--

000146
000160
goote62
000164
000164
000165
6001656

50

IF(T.GE.TMAX,0R.CYCLE.GE.CYMAX) GO YO 9
T=Ts+DT

CYCLE = CYCLE + 1.

GO TO 1

CALL ENDPLTS

CALL EXIT

END

GODUNOV




RUN VERSION 2,3 --PSR LFVFL 298--

000002

800002

000002
000002
000002
000002
000002
000002
000002
000002
000002

006002
000012

000013
000022
000030
000030
000033
000041

000074
000112
000131
000155
gopo1v7o
000173
000176
000212

000213
000215
800216
000217
000220
000222

000225
000233
000237
000245
000247
000254

10&

13

65

14

SURROUTINE INPUT

COMMON P(50,20,6), R{SE), Z(55,200, 7ZSTART{50), 7END(S50), PINIT(6)
14 PSPOT(6),Z0LD(50) yFFOPE(S0,6) 4PAFT(50,6),FIRSEGL50) 4FORVELISOY
2AFTSEG(50) ,AFTVEL(50), PN720,6%, PE{K), ANL20) ,UFOPF(S0),UAFT (50,
3 UNE(20),IXY
49ZAXIS(20) :

COMMON RN, RS, ZNE, ZNW, 7SE, ZSW, FSEG, WSEG, GAMMA, T, TMAX, DT,
1 CYMAX, CPRINT, DTMIN, IDT, JDT, PROB, CYCLE, COUMP, LREAD, MWRITE
2, LTAPE, DELR, ISPOT, VOLOLO, VOLNEK, AS, AW, AF, UNORME, VNOPMW,
3 UNORME, UNOPMW, UTANGE, UTANGW, VFORE, VAFT, VNHW, VSE,VSH, IMAX,
% JFORE, JAFT, I, 3, PMAX, HMAGHF, HMACKA, IPNMAX, JPMAX

COMMON RSPOT, ZSPOT

DIMENSION TITULE{8),XTITLE{8),YTITLE8)

DIMENSTON ZGIRCL(55), RCIRGL{55)

INTEGER 0PF

NAMELIST/PRELIM/ IMAX,JFORE,JAFT,GAMMA, T, TMAX,CYMAX,CPRINT,COUMP

NAMELTIST/MESH1/ RMAX,NZFORE,D7AFT, 2SPOT,02SPOT,ISPOT,A,ZAXIS,0PT

NAMELISTFMESH2/ R,7,2START,ZEND,ISPOT

NAMELIST/STATELs PINIT, PSPOT, S

NAMELIST/STATE2/ PINIT, PSPOT, P, PMAX,IXY

READ IN PROBLEM ANC CYCLE NUMBER

READ (LREAD,100) CPRCR, CCYCLE

IS IT A FESTART OR A NEW PPOBLEMa

IF (CCYCLE .€0, 0.) GO YO 2

RESTART -READ INPLUT FROM TAPE
READ {LTA®E) PROB, CYCLE
WRITE (MWRITE,1043 CYCLE

FORMAT (8H CYCLE =,F7.1)

IF (EOF,LTAPE) 14,13

IFf (ABS(PRNB-CPROB) .GY. .01 GO TO 10

READ (LTAPE) IMAX, JFORE, JAFT, GAMMA, T, TMAX, CYMAX, CPRINT,

1 ISPOT, COUMP, PMAX, DT

READ (LTAPE) (R(I),ZSTART(I),ZEND(I), I=1,IMAXD

READ (LTAPE) ({Z1T,J),J=1,IFORE),I=1,TMAX)

READ (LTAPEY (((P(I1,JyK)4K=1,6) yJ=1,IFORE),I=1,TMAX)

READ(LTAPEY (PINIT(K), PSPOT(K),K=1,61

READ (LTAPE)

IF (CYCLE .LT. CCYCLE) GO TO 1

READ (LREAD,101) TMAX, CYMAX, CPRINT, COUMP

GO TO 3

NEW PROB -READ INPUT FRNM CARNS

PRO8 = CPROS
CYCLE = 0.
GAMMA = 1,.%
T = Ol

READ (LREAD,,PRELIM)

READ (LREAD,MESH1)

SET UP CLUSTERED GRID

IF ((A=-1.) LT, .01} R{1I=RMAXZ/FLOAT{IMAX)
IF ((A-1.) .T. ,01) GO TO 65
RI1I={A=1. ¥ 7ULAS*INMAX) -1.) *RMAX

DO 66 T=2,IMAX

R(IIN=R(I-1) & A*{RUI-1)-R(I-2))

IF (T.€0.2) RITI=R{11*¥(1,+A)Y
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RUN VERSION 2,3 ~-PSP LEVEL 298~- INPUTY

000261
00026
000266
000276
000271
000300
000312

000326
000346
000354
000361
000364
000366
800370
000370
000401
60002
0004073
000404
000405
000407
000411
000413
00041t
000420
000421
000426
000427
000431
000432
000434
000452
000461
000465
000470
000L70
oooL71
000471
000501
000567
000513
800514
0008527
000532
000536
000536
000546
600547
000554
000564
000574
000606
000617
000620

52

17

15

16

18

19

66

4

11

CONTINUE

READ (LREAD,MESH2}Y

D0 & I=1,IMAX

DO 5 J=1,JFORE

IF (J JLE. JAFYY Z(T,J) = FLOAY(Y) *0NZAFT

IF (J JGT. JAFTY ZU1,J) =FLOAT(JAFTI*DZAFY +FLOAT(J-JAFTI¥N7FQORE
IF (OPT.EN.1) Z(T,3J3=ZCI3J) ¢RMAX®E((R(T)/RMAX) **2-(R(TI)/RMAX) ¥*4/ 2,
1) ’
IF (0PT,EQ.2) Z{I4I)=Z1T3J)+0 1P RMAX® (1. -EXP(=-20,%(RTII/IMAX)**2))
IF (1 L€EQ. 1Y ZAXISWIY = ZA(I,J)

IF (1 JEQ. 1y Z0LD (4)Y=Z(I,J)

CONTINUE

CONTINUE

RSPOT = DZSPOT/2,

DO 17 =1, JFORE

Z0LD(J)=2(1,J)

PINIY(3) = Q.
PINIT (&%) = 0.
PSPOT (3} = 0.
PSPOT (%) = 0.

READ (LREAD,STATE1L}

GM1 = GAMMA - 1.

PINIT(5) = PINIV(1)/GM1

PSPOT (5) PSPOT (1) /GM1

PINIT(6) SQRT(GAMMA®PINIT(1)/PINIT(2))
IF (PSPOTI(2) .LE. 0.) GO TO 15

PSPOT(H) = SART(GAMMA*PSPOT{1)/PSPOTI2))
IF (S) 7,8,7

00 9 I=1,IMAX

DO 3 J=1,JFORE

IF (J JLE. JAFT ) GO TO 1t

X = (26%2(I133)=(Z(I4JFORE) #Z(TI,JAFT)) I/ (Z(I,JFOREI-Z(I,JAFTY)

P(IyJds1) = PINIT(1)*(1,+4S%X) '

IF (P(I,4,1) +LE. PMAX) GO YO 16

PMAX=P(I,J,1)

IPMAX=1

JPMAX=J

CONT INUE

P(TyJy2) = PINIT(2)*#(1.4S*X/GCAMMAD
P(TIysJy3) = PINIT(6) ¥S*X/GAMMA
P(I,J’“) = Q.

IF (T.EQ.1Y GO YO 138
ESEG=SART((R(II-RITI-1))*¥2+(Z(T4J)-2(T~-1,J))**2)
SINE=(R(I}-R{I~1)) 7ESEG
COSINE=(Z(I,J)-Z(I-14J))/ESEG

GO YO 19

ESEG = SQRT(R(1)I**2 + (Z(1,J)-ZAXIS(J))**2)
SINE = R{1)/ESEG

COSINE = (Z(1,)-ZAXIS(J)V/ESEG

P(I,3,3) = PINIT(6) *S¥X/GAMMA®SINE

P(I,Jyt) ==PINIT(6)*¥S*X/GAMMA®*COSINE
P(Ty,J95)=P(1,J,1)/GNM14P (], J,2)%P(I,J,3V%%2/2,
PlI,J,6) = SQRT(GAMPA*P (I, 5,1V /PI(T, J,2))

GO TO 9

DN 12 K=1,8



RUN VERSION 2.3 --PSR LEVEL 298-- INPUT

000622
000634
000641
00064y

000650
000651
000657
000675
000704
000713
goo071s

000736
000747
000753
000757
000762
000765
000765
000765
000772
000775

001000

601004
001022
001032
001035

001037
601047
001052
001055
601060
001063
001071
001077
001105
001105
001107
001110
001112
001113
00111%
001115
001116
001117

001136

601137
601147
001147
001147

97

98

20
99

12
9

PII,JyK) = PINITIK)
CONTINUE

8 READ (LREAD,STATE2)

106

10
100
101
102

IF (P(141,2) .GT. 1.E-10) GO TO 3
: THE FOLLOWING DATA REFER TO THE COLLINS AND CHEN BUMP
DO 39 I=1,IMAX
IF (R({IV.LT.1.5663) Z(I,JFOREY= 8,437
IF (R(I) .GT. 1.5662 ,ANDe RUI) L T.34127) Z(I,JFOREI=.85*R(IV+7.2
IF (R(IV.GT,3.127) 2(I,JFORE)=10,
Z(T14JAFT)=Z(1, SFOREI=DZAFT
DO 20 J=1,JFORE
IF (J «GTe JAFT JANC. J oLT. JFORE) Z(I,J)=Z(I1,3AFT)*DZFORE
1 *FLOAT{(J-JAFT)
IF (R{I) .GT. 1.567 JAND. R(I) LT, 3.127) GO TO 97

P(Iysdel) = 1.126E04
P(IyJy2) = J6681E-02
P(IyJy3) =1667.
PlIydyb) = 0,

GO TO 98

CONTINUE

P{I,Jy1) = 5462,
P(IyJy2) = 44LBE-02
P(I,dy4) =-622,
P(I,J,3) = 622,

PUIy,JsS1=PlI,J0s1)/GHLeP (T, 3,2)%(P(T,J,3)%%2+ P1ITI,  ,4)*%29/2,
PLI,Jyh)=SART(GAMMANYP (I,J,1)/P(I,J,2))
CONYINUE
CONTINUE
WRITE CUT INIYIAL STAYE
WRITE (MWRITE,102) PROR, CYCLE
WRITE (MWRITE, PRELTM)
WRITE (MWRITE,MESH1)
WRITE (MWRITE,STATEY
WRITE (MWRITE, MESHZ)
READ(LREAD,106) TITLE
READ(LREAD,106) XTITLE
READ(LREAD,106) YTITLF
FORMAT (8A10)
ZUIMAX#2,10=0,0
R{TMAX+2)=0,0"
ZUTMAX+3,1) =2, 0*R{INFAX)
R{IMAX#+3)=0,0
Z(IMAX+4,19=0,0
R{IMAX+3)=0.,0
Z(IMAX+5,1)=0.0
RIIMAX+5)=R{IMAX)
CALL XYPLOTH{Z(IMAX42,1)yR(IMAX+2),6G,1,0,050510.,0,6,0,XTITLF,5,
1 YTITLE,4,TITLF,80)
RETURN
WRONG FROPLEM
WRITE (MWHRITS,103) PRCR,CPROR
FORMAT (2F10,2}
FORMAT (4F10,3)
FORMAT (1H1,20X,15HPFCGRAM GODUNOV/ 79X%,12H PROALEM NO.,F6,1,5X,
1 IHCYCLE NO.,F8.1)

53




RUN VERSION 2.3 --PSR LEVEL 298-- INPUT

001167 103 FORMAT (1aH WRONG PROBLEM/16H CARD PROB NO. =,F8.3,17H TAPE PROB
INO. =,F8,3)
001147 END

54




RUN VERSION 2,3 --PSR LEVEL 298--

000002

000002

000002
aaoaaq?
000006
000016
000026
000040
000052
000052
000055
000072
000106
600107
000114

000116
000120

000135

000152
000153
000160
000164
000165
000172
000174
000176
000177
000200
000201
000202
000203
000207
000217

000233

000250

000275
ooo277

SURROUTINE NODES

COMMON P(50,20,6), &{55), 7(55,20), ZSTART(50), ZEND(50), PINIT(&)
1, PSPOTI6) ,20LD(50) yPFOPEISD,6) ,PAFT(50,6),FORSEG(50),FORVEL (500,
2AFTSEGLS0) ,AFTVEL(S50), PN(20,6), PE(B), AN(20) ,UFORE (50 ,UAFT{50),
3 UNE(20),IXY
4,2AXIS(20)

COMMON RN, RS, ZNE, ZNW, 2SE, ZSW, ESEG, WSEG, GAMMA, T, TMAX, OT,
1 CYMAX, CPRINT, DTMIN, IDT, JDT, PROB, CYCLF, GDUMP, LREAD, MWRITE
2, LTAPE, DELR, ISPOTY, VOLOLD, VOLNEW, AS, AW, AE, VNORME, VNORMHW,
.3 UNORME, UNORMW, UTANGE, UTANGW, VFORE, VAFT, VNW, VSE,VSW, IMAX,
% JFORE, JAFT, I, J, PMAX, HMACHF, HMACHA, IPMAX, JPMAX

COMMON RSPOT, 7SPOT

IF (I, .GT. 13 GO TC 2

FORSEG(1) = SORT(R(1)**2 ¢+ (Z{1,JFOREY-ZAXTIS(JFORE)I*¥2)
AFTSEG(1) = SARTIR(1)**2 % (Z11,JAFT)=ZAXIS(JAFT)I)I®**2)
FORSEG(2) = SART(AR(2)-P(1))**2 ¢+ (Z12,JFOREY - Z{1,JFORE))I*¥*2)
AFTSEG(2) = SQRY{{RI(2I-R(L))I**2 & (Z(2,JAFTY = Z{(1,JAFT))*=2)
RETURN

IF (I .EQ. IMAX) RETURN
FORSEG(I+1)=SORT{(R(I+1)-R{III**2 ¢ (Z(I+1,JFOREI-Z(I,JFOREII**2)
AFTSEGUI+1)=SART((R(I+1)1=-RIIII**2 + (Z(I+1,JAFTI=Z(T,JAFT))**2)
RETURN
ENTRY NODES?2
I1 = I+t
COMPUTE CELL NOOE VELOCITIES
3 IF (I JEQ., IMAX) GO TO &
VNFORE=FORSEGIIV*FCRSEC(I1)7(FORSEGII) +FORSEG(TI1 ¥ *{FORVEL(T 7RI
1)-R{I-1)) #FORVELTII1NI/ (P{I+1)=-R(I) )
VNAFT=AFTSEG(I)®AFTSEGUITL) /(AFTSEGIT) ¢ AFTSEG(ILY ) *(AFTVEL (IY /(R(I)
1-R{T-1)) +AFTVEL(I1)/ (R{I+1Y=-RC(I)Y)

RETURN

4 UYNFORE = FORSEG(I)*FORVEL{YI)/(R{(IMAXI=RIIMAX-1))
VNAFT = AFYSEG(ID*AFTVEL(I)/ (R{IMAX)-R(IMAX=-1))
RETURN

ENTRY NODES3

IF (J .EQ. 1) GO VYO &

VNW = VNETJ-1)

VSW=VSE

VSE = VNET

GO TO 7

6 VNW = 0.
VSW = 0.
IF (I .GT. 1) VSE=VNET11}
7 IF (J +LE. JAFT) VNECJI=UNAFT*FLOAT(J) 7FLOAT(IAST)

IF (J «GTa JAFT) VNEC(J)=VUNAFT & (VNFORE-UNAFTY*FL OAY (J-JAFTY /FLOAT
1 (JFORE-JAFT)

IF ( 1 EQe 1 JANO. J .LE. JAFT) VSE=AFTVEL (1) *AFTSEGILI/Z7R(1I*

1 FLOAT(JI/FLOAT(JAFT)

IF ( T «EQe 1 AND. J .GT. JAFT) VSE=AFTVEL(1)*AFISEG(1)/RI(1}
1 + (FORVEL(1)*FORSEGL1) - AFTVEL{1)*AFTSEG( 1)3/R{1) *FLOAT(U -~
2 JAFTY/FLOAT(JFORE-UAFT)

COMPUTE NORMAL VELOCITIES AT EAST AND WEST BOUNDARIES

RN=R (I}

INE=Z (I,
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RUN VERSION 2.3 --PSR LEVEL 298-- NODNES

000303
00030%
000307
000311
000316
000323
000330
000333
000335

- 000345

000350
000352
000355
000357
000365
000373
0060400
00040
000405

000412
000416
400423
000426
000432
000433

56

ISW=ZSE

IF (I +GT«. 1} ZSE = 201D
ZNW=Z0LD (J-1}

IF (CYCLE .E0. 04) ISE=Z(I-1,0)
IF (CYCLE .¥0. 0.} ZSW=21(I-1,4-1)
IF (CYCLE .EQ. 043 2NW=Z(I,J~1)
IF (J +EQe 1) ZNW=0.

IF (J «EQe 1) ZSW=0.

IF (I .€EQ. 1 <ANDes J 4GV, 1) ZSW=ZSE
IF (I LEQ. 1) ZSE=Z2AXISAY)
RS=R(I~-1)

IF (I .€EQ. 1) RS=0,

DELR = RN - RS

ESEG =SQRTIDELR*¥2+ (ZNE-ZSE) **2}
WSEG = SORTI{DELR¥¥ 2+ (ZNKW-ZSW) **2}

VNORPME = S*DELR/JESEG* (VUNE (J)*+VSE)
VNORMH = S*DELR/WSEG* (VNW+VSH)
RETURN

ENTRY NODESH
COMPUTE NEW NODE POSITIONS, J.F. MOVE MESH
20LB(IV = ZC(1, )
Z(I,)) = ZUI,)) & DT*YNEL))
IF (I .GT. 1} RETURN
ZAXIS(3) = ZAXIS(J) + DTY*¥ySE
RETURN
END



RUN VERSION 2.3 =--PSR LEVEL 298~--

000002
000002

000003
000011
000013
00001%
goooie
000020
000027

000054

000066

000116
000125
000133
000135
000437

000142

000142
000143
000153
000163
000166
000170
000170
000204

000204
000205
000206
00021%
000245
000217
000247
000221
000222

OO0

2 P3 = PCSP

SUBROUTINE SHOGK
SHOCK SOLVES THE FULL RIMANN PROBLEM AT THE FORE AND
AFT SHCCKS TO DETERMINE THE SHOCK VELOCITY AND FLUID
PROPERTIES BEHIND YHE SHOCK . :
COMMON/SHOCK/P1,RHC1,U1,V1,PU%,RHOL,UL,YV4, GyVSHOCK,P3,RHO3,U3,M
GAMMA=G
IS THERE REALLY A SHOCK WAVE
IF (ABS(1.-P1/P4) .LT. 1.€-10) GO VO &
v START EY GUESSING PRESSURE ACROSS CONTACT SURFACE
PCS =(P1+P4b/2,
COMPUTE FLUX DENSITY OF W4 (SHOCK WAVE)D

ITER =0

GM1 = GAMMA-1,

GP1 = GAMMARL,

EM4 =SART(RHOL/2.%* (CP1*PCSGM1%#PL))

COMPUTE FLUX DENSITY OF Wi (RAREFACYION WAVE)
EMI = GM1r/2. IGAHHA‘SOPT(GAMHA‘PI'RHOi)‘(1.-PCS/P1)I(1.-(PCS/P1)"
1(GM1/72./GAMMA))
IF (P1.LT.P4) EM4=SCRTIRHOL/2.*(GP1*PCS+GM1*P1))
IF (P1.LY.PL4) EM1=GM1/2./GAMMA*SQRY(GAMMA*PL*RHOLI¥(1,~-PCS/PLI/
1 11.-(PCS/PLY*¥ (GM1/2./GAMMAYY
GHECK GUESS FOR PCS
PCSP =(EM1*PL+EMLU*PI+EMITENL * (UL-ULY) 7 TEMI+EML)
IF (ABS(1.-PCS/PCSP)Y JLE. 1.E-03) GO TO 2
ITER = IVER » 1
IF (IYER .GE., 50) GC TC 3
PCS = (PCSP+PCSY/2,
HAVE NCT CONVERGED, GUESS AGAIN AND REPFAT CYCLE
GO 10 1
CONVERCGENCFE, COMPUTE JUMP CONDITIONS AND SHOCK VELOCT

RHO3 = RHO%* (GPL1*PI+GMLI*PYL) / (GPL1*PL+GM1*P3)Y
U3 =(P1 -PL+FENL¥ULSEMI®UL) 7 (EMI+EML)

VSHOCK = U% & EML/REOY

V3 = V&

RETURN

3 WRITE (M,100) P1, P&, PCS, PCSP
100 FORMAT (44H SHOCK HAS NCT CONVERGED AFTER 50 ITERATIONS/ 17H P1,Py4

1,pCS,PESP =’!0F15.‘0)

CALL ENDPLTS

CALL EXIT

VSHOCK = U4 +SORT(G®*FL/RHOL)
RHO3=RHCU4

P3=P4

U3=uy

VI=vy

RETURN

END
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RUN VERSION 2,3 -~PSR LEVEL 298--

SURROUTINE OUTPUY

000002 COMMON P(50,20,6), R(55), 2(55,20), ZSTART(50), ZEND(50), PINITI6)
1, PSPOT(6),20LDC50) ,PFOREL50,6),PAFT(50,6),FORSEGI50),FORVEL(50),
2AFTSEG(50)  AFTVEL(50), PN(20,6), PE(6), AN(20) ,UFORE{50) ,UAFT(S0),
3 VNE(20),IXY
by 7AXIS(20)

000002 COMMON RN, RS, ZNE, ZNW, ZSE, ZSW, ESEG, WSEG, GAMMA, T, TMAX, DT,
1 CYMAX, CPRINT, DTMIN, IDT, JOT, PROB, CYCLE, CDUMP, LREAD, MWRITE
2, LTAPE, DELR, ISPOT, VOLOLD, VOLNEW, AS, AW, AE, VNORME, VNORMN,
3 UNORME, UNORMW, UTANGE, UTANGW, VFORE, VAFT, VNW, VSE,VSW, IMAX,

L JFORE, JAFY, I, J, PMAX, HMACHF, HMACHA, IPMAX, JPMAX
000002 COMMON RSPOY, ZSPOT
000002 DIMENSION ZPRIME (55,2),RPRIME (55}
gooogg2 MIMAX=-IMAX-1
000004 CPLOT = 2.%*CPRINT
000006 IF (AMODINYOLE,CPLOT)) 25,186,265
000011 16 ZPRIME{1,1) = 2AXIS (JFORF)
000013 ZPRIME(1,2) = ZAXIS{JAFT)
000015 RPRIME{1)=0,0
000016 DO 1& I=1, IMAX
000017 ZORIME (T+1,1 $=2(1,JFOREY
000023 ZPRIME(I#1,2 ) =Z (1, JAFT)
000026 RPRIME(I#1V1=R{1)
000030 14 CONTINUE
800032 CALL XYPLOV(ZPRIME ¢1,1 1 RPRIME (1) ,MIMAX,1,0,1)
000036 IF (JUAFY.E0.,1) GO TC 33 -7
000040 CALL XYPLOY 1ZPRIME (1,2 y ,RPRIME(1),MIMAX,1,0,3)
000044 23 CONY INUE
000044 IPLOT=IPLOY 41
000046 WRITE(MWRITE,115) CYCLF
000053 25 WRITE (MWRIVE,100) FROB, CYCLFE, T
000065 WRITE (MWRITE,101) €7, I0T,J Ny
000077 WRITE (MWRITE,102) FMAX,IPMAX,JPMAX
000111 WRITE (MWRITE,103) ZAXISHJFORE), ZAXIS(JAFT)
000121 IF (AMOD(CYCLE,CDUMF)Y 1,3,1
000125 1 IF (YT-TMAXY 2,3,3
000130 2 IF (CYCLE-CYMAX) 4,3,3
000133 2T WRITE (LTAPE)} PRAR, CYCLE
000142 WRITE (LTAPEY IMAX,JFORF, JAFT, GAMMA, T, TMAX, CYMAX, CPRINT,
) 1 ISPCT, CDUMP, PMAX, DT
006175 WRITE (LTAPF) {(R(IV,ZSTARTA{I),7END(I}), I=1,IMAX}
000213 WRITE (LTAPE)Y ((€Z11,4),J=1,JF0RE), I=1,IMAX)
000232 WRITE (LTAPE) (((P(T,J,K)y K=1,68,J=1,JFORE), I=1,IMAXS
600256 WRTITE (LTAPE) (PINTTIK), PSPOT(K), <= 1 6)
000271 WRITE (LTAPEY (Z0LNR(J)yJ=1,JFORE)
000302 WRITE (MWRITF,114) CYCLF
000311 4 PETURN
000312 ENTRY OQUTLNG
000347 IF (IXYLED) WRITE (MWPITF,104}
800325 IF (IXY,GT0) WRITE (MWRPITE, 114
000332 DO 11 I=1,IMAX
000334 D0 10 J=1,JFNRE
000335 IF (J JEQ. 1Y WRITE (MWRITE,110)
000342 WRTITE (MWRITE, 106) T, Jy RUIV, Z(I,JY, P(I,Jy,18, P(I,Jy2), P(I,J,3
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RUN VERSION 2,3 =--PSR LEVEL 298-~ : ouTPUT

1)y PUI,dsl)y P(T,J,5)

000401 10 CONTINUE

000404 11 CONTINUE

000406 " HRITE (MWRITE,117) _

000412 WRITE (MWRITE,116) {JyZAXIS{J),JI=1,JFORE)

000426 M=MWRITE

000430 WRITE (M,106}

000433 WRITE M,107)

000437 00O 12 I=1,IMAX

000441 12 WRITE (M,109) I,FORVEL(I),HMACHF,(PFOREIT,K),K=1,5)

000465 WRITE (M,103)

000470 WRITE (M,107}

000474 00 13 I=1,IMAX

000476 13 WRITE (My109) T,AFTVEL(I),HMACHA, (PAFT{I,K),K=1,5)

000522 100 FORMAT{ 10X, 8H FROBLEM,FT.2, 6H CYCLE,F8.1, 4H T =,E12.4)

000522 101 FORMAT (/S5H DT =,E12.4,42H AT CELL T =,I3,4H J =,I3)

000522 102 FORMAT {/7H PMAX =,612.,%5,12H AT CELL T =,13,4H J =,133

000522 103 FORMAT (10X,21H FORE SHOCK IS AT Z =,£12.4,20H AFT SHOCK IS AT 7 =
1,€12.%)

000522 104 FORMATILX,1HT,4Xy1HJyOX,1HR, 1UX,1HZ,14X,1HP 312Xy IHRHO , 14X ,1HU, 1% X,
11HY, 83X, 6HENERGY)

0006522 105 FORMAT (215, 7(3XyE12.4))

0pps522 106 FORMAT (1H1,28X,22H FORE SHOCK PROPERTIES)

gogo522 107 FORMAT (7X,1HI,8X,EFVSHOCKy7X,6HMSHOCK,12X,y1HP 12Xy 3HRHO, 14X, 1HU,
116 X,y1HV,10X,6 HENERGY)

000522 108 FORMAT (20X,21H AFT SHCCK PROPERTIES)

000522 109 FORMAT (5X,I5,713X,E12.4))

000522 110 FORMAT (1X,/"
600522 111 FORMAY (/7194 TAPE TUMP ON CYCLE,F7.1/%

600522 112 FORMAY (/TH PMIN =,E12.4,12H AT CELL I =,I3,4H J =,I3

000522 114 FORMAT(LX,1HT g 4 Xy1HJ9yOXy1HY 14X 31HX 14X, 1HP 312Xy IHRHO 1 X s 1HU, 14 X,
11HV, 9X, 6 HENERGY) .

600522 115 FORMATU(1H1,5X,37H FCRE ANND AFY SHOCKS PLOTTEN AT CYCLE,F3.1)

000522 116 FORMAT (L(IS,1X,E12.4))
000522 117 FORMAT (12H ZAXIS ARRAY)
000522 RETURN

600522 END
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RUN VERSION 2,3 --PSR LEVEL 298--

000012
0006020
600030
000030

60

SUBROUTINE EO0S(G,P,FH0,ZNOTyRDOT,ENERGY ,SCUND)
P=(G-1,Y*(ENERGY - FRHO* (ZNOT*¥*2 4+ ROOT**¥2)/72.)
SOUND = SQRY(G*P/RHC)

RE TURN

END



RUN VERSION 2.3 --PSR LEVEL 298--

000002

000002

000002
000002

090002
00000%
g0c0006
000015
000015
000017

000022
000025
000030
000034

000037
000041
000042
000045
000046
000051
000054

000056
000061
000064
0go072
000103
goo1a7
0900110

~N

B, O

12

15

SUBROUTINE FLUXES
COMPUTES MASS, RANIAL MOMENTUM, AXIAL MOMENTUM, AND ENERGY
FLUXES ON THE NCORYTH, SOUTH, EAST, AND WEST BOUNDARIES

COMMON P(50,420,6), R(55), Z(55,20), ZSTART(50), ZEND(S50), PINIT(6)
1, PSPOT (6} ,20LD(50) yPFORE(50,63,PAFT(50,6)yFORSEG(50),FORVEL(50},
2AFTSEG(SOY ,AFTVEL(S50), PN(20,6), PE16), AN{20),UFORE(50),UAFT(50),
3 UNE{20),IXY
&y ZAXIST20)

COMMON RN, RS, ZNE, ZNW, ZSE, ZSW, ESEG, WSEG, GAMMA, T, TMAX, DT,
1 CYMAX, CPRINT, DTMIN, IDY, JOT, PROB, CYCLE, CDUMP, LREAD, MHWRITE
2y LTAPE, DELR, ISPOT, VOLOLD, VOLNEW, AS, AW, AE, VNORME, VNORMW,
3 UNORME, UNORMW, UTANGE, UTANGW, VFORE, VAFT, VNW, VSE,VSW, IMAX,
4 JFORE, JAFT, I, J, PMAX, HMACHF, HMACHA, TPMAX, JPMAX
COMMON RSPOY, ZSPOT

COMMON/FLUX/ FLUXN(20,5), FLUXS(5), FLUXWI(5),FLUXE(5)

SOUTH ECUNDARY -

IfF (I .EQ., 1) GO YO 5

DO 2 K:ZQB

FLUXS(KY==FLUXN(J,K)

GO YO 1¢ ’

DO. 6 K=2,5

FLUXStK) =0,

NORTH BOUNDARY

FLUXN(J,2)==PN(Jy2) *PNTJ,4)

FLUXN(Jy33)==PN(J,2V¥PN(J,43%PN(J, 3)

FLUXN(Jy) ==PN(J,2)¥PN1J,4)%%2 - PNI(J,1)

FLUXN(JyS5)==IPNIJ,SI+PN(Jy 1)) #¥PNTI,4)

WEST BOUNDARY

IF (J €0, 1) GO fC 15

DO 12 K=2,5

FLUXW{K)==FLUXELK)

GO 70 16

FLUXW(2)=P(I,1,2)*%F(I,1,3) :

FLUXWI3)=P (I,1,2)*P(J,1,2)Y%%*2 ¢ P(I,1,1)

FLUXH(’»):D(I,].,Z)“D(I,i,'v) *P(T,1,3)

FLUXWISY=IPEI,1,5) + P(I,1,1))%P(T,1,3)

FLUXE(2) = -PE(2)* (LNORME-VNOPME)

FLUXE(3) = ~PE(2)*PE{3I® {UNORME-YNORPME) - PE(LI®DELR/ESEG
FLUXE(4) = =PE(2)*PE(L)*(UNOPME-YNORME) + PE(1)* (ZINE-7SEY JESEG
FLUXE (5) = =-PE (S)* {LNORME=-VNORME) - PFT11)*UNORME

RETURN

END
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RUN VERSION 2,3 --PSR LEVEL 298--

000002

600002

000002
0o0co002

1000002
000004
000017

000021
000030

000050

0go052
0000655
000058
000066
gooo72
000072
000074
000075
000076
000101
000102
000193

62

SUBROUTINE DTCALC
COMPUTE TIME STEP FROM COURANT CONDITION

COMMON P(58,20,6), F(55), 2155,200, ZSTART(50), ZEND(50), PINITI6)
1, PSPOT(6) ,Z0LDI(50) ,PFORE(50,6) yPAFT(50,6),FORSEGI50) ,FORVELIS0) ,
2AFYSEG(50) ,AFTVEL150), PN{(20,6), PE(R), AN(20) ,UFORE(50),UAFT(50),
3 UNE(20),IXY ‘

%, 7AXIS120)

COMMON PN, RS, ZNE, ZNW, ZSE, ZSW, ESEG, WSEG, GAMMA, T, TMaX, DT,
1 CYMAX, CPRINT, DTMIN, IOT, JOT, PROB, CYCLE, COUMP, LREAD, MWRITE
2, LTAPE, DELR, ISPCT, VOLOLD, VOLNEW, AS, AW, AE, VNORME, VNORMW,
3 UNORME, UNORMW, UTANGE, UTANGW, VFORE, VAFT, VNW, VSE,VSW, IMAX,
4 JFORE, JAFT, I, J, PMAX, HMACHF, HMACHA, IPMAX, JPMAX

COMMON RSPOT, ZSPOY '

NAMELIST/COT/ DT1,1,J4,0TR,NTZ

RADIAL VELOCITY TIME STEP

DR=DELR

RSIG =AMAXL P (T, J,E)+P(I,J,0)) ,(P(I,J,6)=-P(I,J,4)))

DTR = DR/RSIG

AXTIAL VELOCTTY TIME STE®

DZ = AMINLI(  (ZNE=-2NW),  (ZSE-ZSW))

ZSIG = AMAX1((P(T, J,6) +ARS {UNORME) +ABS (VNORME) 1, (P{T, J,6) +ARS(

1 UNORMW) ¢ABS{VNORMW)))

DTZ = DZ72516G

TIME SYEP FOR GELL I,J

DT1 = DTR*DTZ7 (DTReCTZ)Y

IF (DT1 +LE. 04) GC TO 6

IF (I1.50.1 JAND. J.EQ.1) DTMIN=DTH

IF (DF{ .GT. DTMIN) GO TO S

DTMIN = OT1

InT=1

JnT=y

RETURN

WRITE (MWRIYE,CDT)

CALL ENDPLTS

CALL EXIT

£ND



RUN VERSTON 2.3 --PSR LEVEL 299%--

SURROUTINE NEWFLO

c COMPUTES CE4L SURFACE AREAS AND VCLUMES
c ) AND UPDATES FLOW VARIAALES WITH THE DEFFERENCE EQNS,
000002 COMMON F(50,20,6), R(55), Z2(55,20), ZSTART(500), 7END{S50), PINIT(3)

1, PSPOT(6),20LN150) ,PFORE(50,6),PAFT(50,63,FORSEG(50),FORVEL (50),
2AFTSEG(50) yAFTVEL (50), PN(20,6), PE(6), AN(20) ,UFORE(50) ,UAFT{50),
3 VNE(20),IXY
LyZAXIS(20)

000002 COMMON RN, RS, ZNE, INW, ZSE, ZSW, ESEG, WSEG, GAMMA, T, TMAX, 0T,
1 CYMAX, CPRINT, DTMIN, IDT, JDT, PROB, CYCLE, CDUMP, LREAD, MWRITE
2, LTAPE, DELR, ISPOY, VOLOLD, VOLNEW, AS, AW, AE, VNORME, VNORMW,
3 UNORME, UNORMW, UTANGE, UTANGW, VFORE, VAFT, VUNW, VSE,VSW, IMAX,

4 JFORE, JAFT, I, J, PMAYX, HMACHF, HMACHA, IPMAX, JPMAX
000002 COMMON RSPQOT, ZSPOTY
000002 COMMON/FLUX/ FLUXN(20,5), FLUXS(5), FLUXW(S)},FLUXETS)
000002 NAMELIST/FLUX/ T,J,FRATE,OMASSO, VOLNEW, VOLCLN, FLUXN,FLUXS,FLUXW,
1 FLUXE, PN,PE,UNORME,VNORME, ZNE,ZSE,ZNW,ZSW,APLANE,AN,AS,RN,RS
29AH,AE,DELR,ESEG
c SURFACE ARFAS
0opoo2 PI = 3.14159
000004 IF {(IXY.GT.0) GO T2 1
000006 IF (I .€0. 1) AS=0.
000011 IF (T .GV, 1) AS=AN{Y)
000015 AN(J)=PI*¥2,¥RN¥ {ZNE-ZNW)Y
000022 IF (U «GYf. 1) AW = AE
000026 IF (J «EQ., 1) AW = PI®*(RN+RS)*DELR
0600033 AE = PI¥*(RNRSI®ESEC
000037 GO T0O 2
000637 1 AS=AN(3)
000041 ANC 3)=ZNE-7NW
000044 IF (I.€0.1) AS=AN(Y)
000047 AW=AE
000051 IF (J.EQ.1) AW= DELE
00005% AE=ESEG
000055 2 APLANE= Q0.5*DELR®L{ZNE-ZNW+ZSE=-ZSH)
C OLD CELL VOLUME
000063 IF (IXY.LE.O0) VOL=
1 PI/3,*DELR* ( (2. ¥RS+PN) *(ZSE-ZSHI+ (2. ¥RN+RSY* (ZNE-ZNH))
000102 IF (IXYeGTeB) VOL=TRN-RSI*(ZINE-ZNW+7SE-ZSW) /2.
000112 voLOLD=VOL
000114 RETURN
000114 ENTRY NUFLOW
c NEW CELL VOLUME
000121 © ZNNE=Z22I,0)
000125 ZINSW=2(I-1,3-1}
000130 INSE=Z(I-1,0)
000133 INNW=Z2(TI,J-1)
000136 IF (I .EQ. 1) ZNSW = ZAXIS(J4-1)
000161 IF (I .EQ. 1) ZNSE = ZAXIS1J)
000144 IF (J +EQ. 1) ZNNW=0.
000147 IF (J .EQ. 1) ZNSH=C.
000151 IF (IXY.LE.O0Y VOL=
1 PIZ3.*DELR* ( (2. ¥RS+RN) *(ZNSE-ZNSH) + {2, ¥*RN+RQS) * (ZNNE-ZNNHW)?
000171 IF (IXYeGTo0) VOL=(RN=-RS)*{ZNNE-ZNNW*#ZNSE-ZNSHWI/2,
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RUN VERSION 2,3 =--PS2 LEVEL 293~- NEWFLE

000201

000203
000204
000211
000212
600225
000227
000231
000240 10
000201

000306 20

000310

000317

000337
000357

600360

VOLNEW = vOL
SOLVE CONSEFVATION E£0ONS FOR NEW FLIUTI PROPERTIES
CALL FLUXES :
OMASSO = P(I,J,2%%VCLOLD
DN 20 K=2,56
RATE = ANCJI*FLUXNI{JsC) +ASEFLUXS(K) +AC*FLUXE(KY 4+ ANTPFLUXWI(K)
IF (K o NE, 4) GO TC 10
IF (IXY «GT. 0) GO YO 10
RATE = RATE + 2.,*PI¥ACLANE*P(I,J,1)
TF (KaFQ42 JORe KeEGL5) PUI,J9K)=(VOLOLD*F(T,J,K)¢RATE*DT)/VOLNEW
IF (KoEN.3 OR. K.FC 4) P(I,J,K)I={0OMASSO*2(T, J,K) +RATE*OT)Y/D(T,J,
1 2)Y/VCULNEW
CONTINUE
IF (P(I,J,5) oLTe 043 WRITE (B,FLUXY
IF (I +E0. 1 LAND., J LEG., 7 «AND., CYCLE LLE. 2.) HWRITE (6,FLUX)
RETUPRN .
END



RUN VERSION 2.3 --PSR LEVEL 298--

6ocoo2

000002

000002
0agg0e

gg0g02

00000¢%
000006
000010
000013
00C016
000021
00002%
gooo2v
000030
000033
000036
000041
000044
000047
000050
000052
000054
000055
000057
000066
0g0067?
000071

000105
goeod107
000111
000113
000115
000121
go012%
000127
000132
0001461
000167
000155
000162

10
11

15

SUBROUTINE RIO °
RIO EVALUATES THE FLOW VARTIARLES ON THE EAST
AND NORTH CELL BOUNDARIES BY SOLVING A RIEMANN PROBLE

COMMON P1(50,20,6), F(55), 2155,20)y ZSTARY(50), ZEND(50), PINIT(6)
1, PSPOT(6),20LD(S0) ,FFCRE(S50,6),PAFT(50,6),FORSEGY50) ,FORVEL (50),
2AFTSEG(S0Y JAFTVEL150), PN(20,6), PE(6Y, AN(20),UFORE(S0) ,UAFT (S0,
3 VNE(20),IXY
Ly, 7ZAXTIS 120}

COMMON RN, RS, ZNE, ZNW, ZSE, ZSW, ESEG, WSEG, GAMMA, T, TMAX, DT,
1 CYMAX, CPRINT, DTMIN, IDT, JOT, PROB, CYCLE, CDUMP, LREAD, MWRITE
2y LTAPE, DELR, ISPCT, VOLOLD, VOLNEW, AS, AW, AE, YNORME, VNORMW,
3 JNORME, UNORMW, UTANGE, UYANGW, VFORF, VAFYT, VNW, VSE,VSH, IMAX,
4 JFORE, JAFT, I, J, PMAX, HMACHF, HMACHA, IPMAX, JPMAX

COMMON RSPOY, ZSPOT

COMMON/RIEMANN/PL,U1,RPEOLy3V1,4C1,Pl UL yRHOL,yVyU,Ct, G,4PB,URB,RHOB,
1vR

G=GAMMA

NORYH BCUNLCARY

GM1=GAMMA-1.

IF (I .EQ. IMAX) GO Y0 190

P1 = PtI,J,1)

UL = p(IgJ,'-o)

RH01=p(I,JyZ’

V1i=P(I,J,3)

Cl = P(I,J,€)

U = 0.

P4=P(Xe¢1,J,1)

Ub=P(T+1,J,4

RHO4=P (T+1,J,2)

VL=P(Isi,4,3

Cau=P(I¢1,J,8)

CALL RIEMANN

PN(Jy1)=PN

PN (J,y23=RHOR

PNT1J,3)=VR

PN{J,4)=UR

PN{J,5)=PA/CM1 + RHCB/2.%{UR%¥2+Y3¥%2)

GO Y0 1%

00 11 (:1,5

PN{JyKY = PLIMAX,J,4K)

EAST RTCUNDARY

IF {J .£EQ, JAFT) GC TO 25

IF (J .EQ. JFOREY GC TO 20

SINE = DELR/ESEG

COSINE = (ZNE-7SE)/ESEC
P1L = P(I,J,1)

RHOL1=F (I, )y 2

PL=P(I,J%1,1)

RHOh=P(I,Jf1,23

UL = PUI, Sy RSINE - P(I,),L4) *COSINE

U = P{T,J+1,3)%SINE ~ P1T,J81,4)*COSTNE
Vi = P(I,J,3)¥COSINE & P(I,J,4)¥STNE

V4 = P(I,J¢1,31%COSINF & PII,J0¢1,49%SINE
Cl = F(I,J,®
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RUN VERSION 2.3 -=-PSR LEVEL 298-- RIO

000165 ' Ch = P(I,J#1,6)

000166 U = VNORME

0080170 - CALL RIEMANN

000171 UNORMW = UNORME

000173 VNORMW = VNORME

000174 IF (J +EQ. 1) UNORMK = F(I,J,3)
000202 IF (J .EQ. 1) VUNORMK = 0.
000204 UNCRME = U8

066206 PE(1) = PB

6602907 PE{2) = RHOB

000211 PE(3) = UB*SINE ¢ VE*COSINE
000214 PE(4) = VB¥®SINE - UE¥COSINE
000217 PE(5) = PB/GML & RHCB/2.%(UB*¥2 + yp¥¥2)
000225 RETURN

000220 25 D0 286 K=1,5

000230 2h PE(KY = PAFT(I,K)

000240 UNORMW=UNORME

000241 VNORMW=YNORMF

600243 UNORME = UAFT (I}

000244 RETURN

000245 20 DO 31 £=1,5

000247 PE(K) = PFOREL(I,K)

000255 31 CONT INUE

000257 VNORMHN=VNORME

000260 UNORMW=UNORME

000262 UNORME = UFORE(I)

000263 5 RETURN

000264 END

66



PUN VERSION 2.3 --PSR LEVEL 283--

SURROUTINE SHIO

000002 COMMON P(50,20,6), K(55), Z2{55,203, ZSTART(50), ZEND(50), PINIT(A)
1, PSPOT(6) ,70LN{50) ,PFOPE(50,6) 4PAFT{50,6),FORSEGIS0),FORVFLISN),
2AFTSEG(S0) yAFTVELI50), PN(20,6), PE(R), ANT20),UFORE(S0),UAFTI50),
3 UNE(20),IXY
L,ZAXIS{20)

060002 COMMON RN, RS, ZNE, ZNW, ZSE, ZSW, ESEG, WSEG, GAMMA, T, TMAX, DT,
1 CYMAX, CPRINT, DTMIN, IDT, JDT, PROR, CYCLE, COUMP, LREAD, MWRITE
2, LTAPE, DELR, ISPCT, vOLOLN, VOLNEW, AS, AW, AF, VNORME, VNOPMW,
3 UNORME, UNORMW, UTANGE, UTANGHW, VFORE, VAFT, VNW, VSE,VSH, IMAX,

4 JFORE, JAFT, I, J, PMAX, HMACHF, HMACHA, T®MAYX, JPMAX

000002 COMMON RSPOT, 2SPOT
000002 COMMONZSHOCK/P1,RHO1,U1,V1L,PL,PHOL UL, VY, Gy VSHOCK,P3 4 RHOZ, U3, M
000002 IF (1 ,£0. IMAX) RETURN
0600005 G=GAMMA
000007 II=Ts1t
000011 IF (I .EQ., 1) TI=1

c SET UP AFT SHNCK INPUT FOR SHNCK
000013 1 P4 = PUIT,IAFT+1,1)
000017 P1 = PUII, JAFT,1Y
000022 RHOL = F(II,JAFT+1,2)
000025 RHO1 = P(II,JAFT,2)
000030 DELR = P(IIM-R{IT-1)
000032 STHETA = OFLR/ZAFYSEC{IT}
000034 IF (II .EQ. 1) GO TC 2
000036 CTHETA = (Z{IT,JAFT)- Z2(IT-1,JAFT))/AFTSFG(II)
000045 GO TO 3
880045 2 STHETA = R({I7AFTSEGL1)
000047 CTHEYA = (21, JAFT)-ZAXIS(JAFTYII/AFTSFGI1)
000054 3 UL = P(IT,JAFT,3)*STHETA- P(II,JAFT,4) *CTHETA
00006% U = PIIT,JAFT+1,3)¥STHETA- P(IT,JAFT+1,4)*CTHETA
000072 UAFT(II)= U1
00007% C1 = P(II,JAFT,6)
000076 Cs = P(IT,JAFT+1,6}
000100 Ve = P(II,JAFT+1, 3)FCTHETA + P(II,JAFT#1,4)I*STHETA
00010& CALL SHOCK
000105 V3=vy

c PROCESS AFTSHOCK OUTPUT FROM 'SHOCK
600107 IF (PROD .EQ.13.) VSHOCK=0.
000112 AFTVEL(III=VSHOCK
000114 PAFT(IIl,1)=P3
000116 PAFT(IT,2)=RH03
000117 PAFT(IX,3)=U3*STHETA & V3®*CTHETA
000123 PAFT(IT,4) =V3*STHETA-U3*CTHETA
000126 PAFT(II,5) = P3/7(GAMMA-1,) & RHO3/2.*(U3**2ey3ex))
000137 HMACHA= (VSHOCK=-U%) 7C4

c IF J=1, CO THE SECOND TUBE ALSO
000142 IF (IT .GT. 1) GO fC &
000146 IT = 2
000146 GO TO 1
000147 4 IF (I L€EQ. 1Y II = 1

c FORE SHOCK ANGLE
000152 7 CTHEYF = (Z1II,JFORE)-2(II-1,JFORE}IIFFORSEGIIT)
000162 STHETF = DELR/ZFORSEGIII)
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RUN VERSION 2,3 --PSR LEVEL 298-~- . SHIO

00016k
000170

000178
60g202
000265
000214
800216
000223

600226
000230
000231
000232
000234

000255
000264
000271
000277

000300
000302
00030%
000305
000307
000311
000317
000321
000324
000325
000326

68

IF (II LEN. 1) STHETF = R(1)/FORSEG(1)
IF (I1 E0. 1) CTHETF = (241,JFOREY~ZAXTIS(JFORE) ) FFORSEG (1)
, SEY UP FORE SHOCK INPUT TO SHOCK
P1 = P(II, IFORE,1)
RHO1 = P(IT,JFORE,2)
UL = P(IT, FORE,3) ¥ STHETF - P(TT,JFORE,4) *CTHETF
UFDRE (IT)=U1
V1 = PCII,JFORE,4)*STHETF & P(IT, JFORE,3) *CTHETF
€Ci = P(II,JFORE,BY
ARE KE IN COLD SPOT  OR UNNISTURBEN REGICNa

PL=PINIT{1)

uy = 0.

V'* = 0.

IF (RSPOT.LY., 1.F-4) GO TO B

RHOG = PINIT(2)*(1.¢PSPOT(2)*EXP(-3,%((Z(I,JFORE)I-ZSPOTY**2
1 +R(I) **2)/RSFOT**2) -PSPOT(2)I¥EXP(-34))

8 RADSQR = (ZMI,JFOREI-ZSPOTI**2 +R(I)**2

IF (RADSQR .GT. RSPCT**2) RHOL=PINTIT(2})
C4=PINIY(H) *SQRT(PINIT(2)/RHOL)
CALL SHOCK

PROTESS FORE SHOCK nUTPUT
FORVEL{II)=VSHOCK

PFORE(II, 1y = P3
PFORE (IT,2) = RHO3
PFORE(IT,3) = U3*STEETF

PFORE(IT  4)=-UI*CTHETF

PFORE(IT,5)= P3/(GAMMA-1,) &+ RHO3/2,%U3*¥?
HMACHF = VSHOCK/C4

IF (IT 4GT. 1) RETUFN

IT = 2

GO 70 7

END




RUN VERSION 2.3 --PSR LEVEL 298~--~

SUBROUTINE RIEMANN

c SOLVE WEAK WAVE RIEMANN PROBLEM

000002 COMMON/RIEMANN/P1,U1,RHO1,V1,C1,Pb Utey RHOL,V4,U,Cl, G,PB,UB,RHOR,
1v8

c COMPUTE PRESSURE AND VELOGITY ACROSS CONTACT SURFACE
000002 ° GAMMA=G
000003 EM1 = SORT (GAMMA®P1 *RHO1)
000007 EM& = SQRY (GAMMA*P 4 ¥RHOL)
000014 UGS =(P1 - P& +EM1%U1+EML¥UL) 7 (EML ¢EML)
000025 PCS = (EML¥EMGL*(UL-U4&) ¢ PL¥EML + P1¥EML) 7 (EM1+EMULY

c COMPUTE WAVE SPEEDS

000036 VH1 = UL - C1 # (GAMMA#1,)/%,*{UCS-U1)
000046 VH2 = UL + Cb + (GAMPA+1.)/74.*(UCS-Ub)
000057 IF (VW1 +GE. U) GO YC S

000062 IF (UCS .GE. U) GO TO 10

000064 IF (VW2 .GE. U) GO TC 15

000066 P8 = Py

600067 us = Ub

000070 RHOB = RHO4

000072 V3 = y&

00007% RETURN

000074 S pPA=Pq

000075 us=u1 )
000077 RHOR=RHKO1

000100 v8=v1

000162 RE TURN

000103 10 PB=PCS

00010% UR=UCS

000106 RHOB= RHOL®{PCS/P13Y %% [1,/GAMMA)Y

000114 Ve = Vi

000116 RETURN

000117 15 pPA=OCS

0001290 UA=UCS

000122 RHOB = RHOW*(PCS/P4)®% (1,/7GAMMA)
000130 VB= V4

000132 RETURN

000133 END
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APPENDIX B
THE SHELL CODE

As part of the evolution of GODUNOV, comparisons were made
with another two-dimensional time-dependent hydrodynamic code called
SHELL. SHELL was created several years ago for nuclear detonation
calculations. It was intended originally in the present investigation
to use SHELL in the focal region of the calculation. However, it is
inappropriate for sonic boom studies because it tends to smear out
weak shocks with relative overpressures less than 0.07. Nevertheless,
SHELL was useful in checking out GODUNQV in certain test calculations
(see Chapter 3). .

A flow chart for SHELL is shown in Figure A-2. The input
for SHELL is generated by an auxiliary program called CLAM. In the
course of one time step in SHELL, the fluid properties at the center
of each cell in the grid are updated in two phases. In the first
phase, the conservation equations are solved with the convective terms
neglected. In the second phase, material is allowed to flow across
cell boundaries and transport mass, momentum, and energy. A detailed
discussion of the calculation procedure can be found in General Atomic
report number GAMD-5580, "OIL, A Continuous Two-Dimensional Eulerian
Hydrodynamic Code," 1965, by W. E. Johnson.
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FIGURE . 1-4. REFRACTION AND FOCUSING BY ATMOSPHERIC WIND SHEAR




FIGURE 1-5.

FOCUSING OF A SHOCK WAVE FROM A TURNING AIRCRAFT
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FIGURE 3-2. NODE VELOCITIES IN GODUNOV
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FIGURE 3-4.

AXIAL SYMMETRY CONDITIONS IN GODUNOV

TOP: VERTICAL CELL-BOUNDARIES AT AXIS

BOTTOM: INCLINED CELL-BOUNDARIES AT AXIS
(x DENOTES CENTER OF CELL)
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FIGURE 4-1.

SHOCK SEGMENTS AND NODES IN WHITHAM
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FIGURE 5-3. PRESSURE PROFILES AT THREE DIFFERENT RADIAL POSITIONS
JUST PRIOR TO FOCUSING FOR A POLYNOMIAL-FRONT N-WAVE

(apy/p, = 107°)
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STOP

T > TMAX or

CYCLE > CYMAX

QUTPUT

Print out flow

variables, time,

node positions,
etc.

INPUT A
Set up mesh and
initial state of
fluid y Increment time
\'4 1
NODES EOS
Entry 1: Compute Compute pressure
shock segment < and sound speed
lengths and from egn. of state
inclinations
d NEWFLO
SHIO SHOCK Entry 2: Compute
Process input- >—Solve full Riemann new cell volumes
output for shock problem at fore >— and flow variables
to obtain shock <—and aft shock
velocities segments A
Y NODES
NODES Entry 4: ] Update
Entry 72: Compute noce pos1t1on§,
axial velocities FLUXES 1.e. move mesn
of shock nodes Compute fluxes A
Entry 3: Compute across cell
normal velocities boundaries NEWFLO
at East and West Entry 1: Calculate
cell boundaries cell surface areas
/ \
RIO > RIEMAN DT
Process input- Solve weak wave Determine time step
output for < Riemann problem at from Courant sta-
RIEMANN ~ Jcell boundaries bility condition
Y S F
FIGURE A-1. GODUNQOV FLOW CHART
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TABLE 5-1

FOCUS FACTORS FOR POLYNOMIAL-FRONT
N-WAVE WITH DIFFERENT GRIDS

229-= 1073
Number of Points “APrmax
radial x axial APo
20x 7 6.4
100x 7 12.4
200 x 7 13.1
400 x 7 12.9
100 x 12 16.2
200 x 12 18.8
100 x 20 18.7
* 50 x 7 13.1

= 1.05 (non-uniform spacing)




TABLE 5-2

FOCUS FACTORS FOR GAUSSIAN-FRONT
N-WAVE WITH DIFFERENT GRIDS

Ap o
0 _ 1573
Po
Number of points - BPrhay
radial x.axial P,
20 x 7 3.0
*50 x 7 . 9.4
*.50 x 20. 12.4
* 50 x 50 13.0

= 1.05 (non-uniform spacing)
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