
Information Note 050572

LE

Multispectral Data Compression

Through Transform Coding

and Block Quantization

P. J. Ready

P. A. Wintz

The Laboratory for Applications of Remote Sensing

Purdue University



LARS Information Note 050572

MULTISPECTRAL DATA COMPRESSION
THROUGH TRANSFORM CODING AND

BLOCK QUANTIZATION1

Patrick J. Ready
Paul A. Wintz
TR-EE 72-2
May, 1972

Published by the
Laboratory for Applications of Remote Sensing (LARS)

and the
School of Electrical Engineering

Purdue University
Lafayette, Indiana 47907

This work was supported by the National Aeronautics and Space
Administration under Grant No. NGL 15-005-112.



^^^

TABLE OF CONTENTS

Page

LIST OF TABLES v

LIST OF FIGURES vi

ABSTRACT x

CHAPTER I - INTRODUCTION 1

1.1 The Need for Data Compression 1
1.2 Transform Coding and Block Quantization 3
1.3 The Two Data Sources 4
1.4 Statistical Description of the Multispectral

Source 5
1.5 Basic System Structure 10

CHAPTER II - ERROR CRITERIA, SAMPLING AND QUANTIZATION. 13

2.1 Definition of the Error Criteria 13
2.2 The Rate Distortion Function 14
2.3 Sources of Error 17
2.4 The Karhunen - Loe"ve Transformation 21
2.5 The Fourier and Hadamard Transformation 25
2.6 Equivalent Matrix Transformations 26
2.7 Applications to the Hadamard and Fourier

Transformations 30
2.8 Quantization 32
2.9 Minimization of the Total System Error 35
2.10 The Markov Source - An Example 41
2.11 Selection of the Optimum Block Size 43

CHAPTER III - EXPERIMENTAL RESULTS PART I - AIRCRAFT
SCANNER DATA 49

3.1 Introduction and Description of the Source .... 49
3.2 The Spectral Dimension and Principal

Components 53
3.3 The Spectral Dimension and Fourier Components . 62
3.4 Data Compression in the Spectral Dimension .... 68
3.5 The Two Spatial Dimensions 72
3.6 The Three Dimensional Source 89
3.7 Conclusion and Comparison of Results 94



^v

Page

CHAPTER IV - EXPERIMENTAL RESULTS PART II - SATELLITE
DATA 98

4.1 Introduction and Description of the Source .... 98
4.2 The Three Test Regions 99
4.3 Statistical Characteristics of the Three

Regions 102
4.4 One and Two Dimensional Encoding 106

4.4.1 Region A 106
4.4.2 Region B 113
4.4.3 Region C 116

4.5 Comparison of Data Rates Over the Three
Regions 118

4.6 Three Dimensional Encoding 120
4.7 Principal Component Images 122

CHAPTER V - DISCUSSION OF THEORETICAL AND EXPERIMENTAL
RESULTS 125

5.1 Theoretical Results 125
5.2 Principal Component Imagery and Feature

Selection 126
5.3 Encoder Performance Based on Mean Square Error. 126
5.4 Encoder Performance Based on Classification

Accuracy 127

LIST OF REFERENCES 128

APPENDICES

Appendix A - Mean Square Error as a Function of
Position Within the Data Block 134

Appendix B - The Optimum Block Size 139
Appendix C - Bit Distribution for the K-L Encoder .. 147



LIST OF TABLES

Table Page

3.1 Spectral Channels and Their Corresponding
Wavelength Bands 49

3.2 The Six Spectral Eigenvalues 61

3.3 The Fourier Coefficient Variances 63

3.4 Features Used for Classification 66

3.5 Integer Bit Distribution Over the K-L
Coefficients 86

3.6 Re-Ordered Spectral Channels 91

4.1 The Four Film-Filter Combinations 98

4.2 The Three Test Regions 99

4.3 Region Statistics •. 102

4.4 Percent of Total Variance Contained in Each
Transform Coefficient 116

Appendix
Table

C.I Bit Distribution for the K-L Encoder and 1x1x6
Data Blocks 147

C.2 Bit Distribution for the K-L Encoder and 1x64x1
Data Blocks 148



v^

LIST OF FIGURES

Figure Page

1.1 Panchromatic Photograph of the Aircraft Scanner
Data Set 6

1.2 The Satellite Data Set (.59-.715um) 7

1.3 The Multispectral Vector Source 8

1.4 System Diagram of the Transform Coding - Block
Quantization Data Compression Technique 11

2.1 The Karhunen - Lo6ve Transformation with N=2 .... 23

2.2 The ith Lloyd - Max Non Uniform Quantizer with
m. = 2 ... 34
^

2.3 Optimum Number of Samples Versus Data Rate for
the Markov Source 42

2.4 Bit Distribution Over the n Quantizers for
the Markov Source ?Pr 44

2.5 Data Rate Versus Percent Distortion for the Markov
Source 45

3.1 The Aircraft Scanner Data Set 51

3.2 Ground Resolution Points and Their Associated
Channel Vectors 54

3.3 First and Second Order Spectral Statistics 55

3.4 The Six Principal Component Images for the
Aircraft Scanner Data Set 59

3.5 The Six Fourier Component Images for the Aircraft
Scanner Data Set 64

3.6 Classification Accuracy Versus Number of Features
Using the Spectral, Fourier, and Principal
Components 67



v^^

Figure Page

3.7 Data Rate Versus Percent Distortion Using the
1x1x6 Data Block 69

3.8 Reconstructed Channel 2 Image Using the K-L
Encoder at Three Different Data Rates (1x1x6
Data Blocks) 71

3.9 Error Image Between the Original and Reconstructed
Channel 2 Image Using the K-L Encoder (1x1x6
Data Blocks) 73

3.10 The N Two Dimensional Spectral Images 74

3.11 Normalized Inter-Line and Inter-Column
Autocorrelation Functions 75

3.12 One and Two Dimensional Spatial Data Blocks 77

3.13 First Column of the 8x8x1 Data Blocks
Covariance Matrix 78

3.14 Data Rate Versus Percent Distortion Using the
1x64x1 Data Blocks 79

3.15 Data Rate Versus Percent Distortion Using the
8x8x1 Data Blocks 80

3.16 Comparison of the One and Two Dimensional Data
Blocks with the Original Spectral Image 82

3.17 Reconstructed Channel 2 Image Using the K-L
Encoder at Three Different Data Rates (1x64x1
Data Blocks) 83

3.18 Reconstructed Channel 2 Image Using the K-L
Encoder at Three Different Data Rates (8x8x1
Data Blocks) 84

3.19 Error Images Between the Original and
Reconstructed Channel 2 Image Using Two
Different Data Blocks and the K-L Encoder 85

3.20 Reconstructed Channel 2 Image Using 8x8x1 Data
Blocks with the Fourier and Hadamard Encoders
at R = 2.0 87

3.21 Percent Correct Classification Versus Data Rate
Using 8x8x1 Data Blocks 88

3.22 The Three Dimensional Data Blocks 90



Figure Page

3.23 First Row of the 8x8x2 Data Block
Covariance Matrix 92

3.24 Data Rate Versus Percent Distortion Using
the 8x8x2 and 1x64x2 Data Blocks 93

3.25 Data Rate Versus Percent Distortion Using
the K-L Encoder and Various Data Blocks 95

3.26 Data Rate Versus Percent Distortion Using
the Optimum and Non-Optimum K-L Encoder with
the 1x64x1 Data Blocks 96

4.1 The Original Three Spectral Images 100

4.2 The Three Test Regions 101

4.3 The Three Test Regions of Maximum Resolution .... 103

4.4 Histograms of the Three Regions 104

4.5 First Column of the 8x8x1 Data Block Covariance
Matrix for Regions A, B, and C 105

4.6 Data Rate Versus Percent Distortion Using
the 8x8x1 Data Block Over Region A 107

4.7 Reconstructed Channel 1 Image Using the K-L
Encoder at Three Different Data Rates (8x8x1
Data Blocks) 109

4.8 Error Image Between the Original and Reconstructed
Channel 1 Image Using the K-L Encoder (8x8x1
Data Blocks) 110

4.9 Reconstructed Channel 1 Image Using 8x8x1 Data
Blocks with the Fourier and Hadamard Encoder at
R=1.0 Ill

4.10 Data Rate Versus Percent Distortion Using the
K-L Encoder and Various Data Blocks Over
Region A 112

4.11 Data Rate Versus Percent Distortion Using the
8x8x1 Data Block Over Region B 114

4.12 Reconstructed Channel 1 Image Using the 8x8x1
Data Blocks and the K-L Encoder Over Regions
B and C 115



Figure Page

4.13 Data Rate Versus Percent Distortion Using the
8x8x1 Data Blocks Over Region C 117

4.14 Data Rate Versus Percent Distortion Using the
Optimum and Non-Optimum K-L Encoder (8x8x1
Data Blocks) 119

4.15 Reconstructed Channel 1 Image Using the
Non-Optimum K-L Encoder Over Regions B and C
(8x8x1 Data Blocks) 121

4.16 The Three Principal Component Images 124



ABSTRACT

Transform coding and block quantization techniques are

applied to multispectral data for data compression purposes.

Two types of multispectral data are considered, (1) aircraft

scanner data, and (2) digitized satellite imagery. The

multispectral source is defined and an appropriate mathe-

matical model proposed.

Two error criteria are used to evaluate the performance

of the transform encoder. The first is the mean square error

between the original and reconstructed data sets. The second

is the performance of a computer implemented classification

algorithm over the reconstructed data set. The total mean

square error for the multispectral vector source is shown to

be the sum of the sampling (truncation) and quantization

error.

The Karhunen-Loeve, Fourier, and Hadamard encoders are

considered and are compared to the rate distortion function

for the equivalent gaussian source and to the performance of

the single sample PCM encoder.

The K-dimensional linear transformation is shown to be

representable by a single equivalent matrix multiplication



of the re-ordered source output tensor. Consequences of

this result relative to the K-dimensional Fourier and

Hadamard transformations are presented.

Minimization of the total encoder system error over the

number of retained transform coefficients and corresponding

bit distribution for a fixed data rate and block size is

considered and an approximate solution proposed. Minimi-

zation of the sampling error over the data block size for

the continuous source is also considered.

The results of the total encoder system error problem

are applied to both an artifically generated Markov source

and to the actual multispectral data sets.

The Karhunen-Loeve transformation is applied to the

spectral dimension of the multispectral source and the

resulting principal components are evaluated as feature

vectors for use in data classification.

Experimental results using the transform encoder and

several different (i.e., one, two, and three dimensional)

data blocks are presented for both the satellite and aircraft

data sets. Performances of the encoders over the three test

regions within the satellite data are evaluated and compared.



CHAPTER I

INTRODUCTION

Remote sensing of the environment is rapidly becoming

a major area of research for engineers and scientists

throughout the world [1,2]. Satellites and high altitude

aircraft provide ideal platforms from which earth resources

data may be gathered. The data is gathered in the form

of several spectral images of a particular area of the

earth under observation. Each image represents the spatial

distribution of electromagnetic energy as seen through a

given spectral window. Information about a particular

area is obtained through the study of the spatial and

spectral characteristics of the data for that area. Tem-

poral characteristics are also useful, but are not consid-

ered in this study. A source producing data in the above

manner is defined to be a multispectral source [3,4,5],

1.1. The Need for Data Compression

Due to the extremely large volumes of data generated

by a multispectral source three major problems require

attention. The first is the potentially wide bandwidth

required to transmit data from a remote sensor to a data

collection center, as in satellite transmission to a



ground station. As the quantity of data transmitted in a

given amount of time increases so does the required

bandwidth.

The second problem is the actual physical storage of

multispectral data. The value of gathered data never van-

ishes since one cannot always predict with certainty the

future applications of the data. Data libraries soon be-

come unreasonably large as the quantity of stored data

increases.

The third problem is the increasingly large blocks of

time required for man/machine analysis of multispectral

data. The three dimensional nature of the data makes it

quite difficult, especially for the human analyst, to

efficiently use the large amounts of information provided.

The application of appropriate data compression

techniques to the data can significantly reduce the sever-

ity of the above three problems. Data compression reduces

the quantity of data to be transmitted in a given amount

of time and thereby decreases the required transmission

bandwidth. Secondly, multispectral data can be stored in

the compressed state and reconstructed upon user request,

resulting in more efficient data storage.

Thirdly, analysis can sometimes be performed on the

compressed data, thereby reducing the amount of data the

human or machine analyst must process.



Since it is not possible to anticipate the needs of

future users of the data, it is important that any data

compression technique be information preserving. That is,

the technique should not destroy more than what has been

determined to be the maximum acceptable information loss.

In addition, the data compression technique should be

capable of efficient compression of the several different

kinds of data (i.e., vegetation, desert, mountains, etc.)

that a multispectral sensor might encounter over changing

terrain.

1.2. Transform Coding and Block Quantization

The data compression technique analyzed in this study

is that of an appropriate orthogonal transformation of

each realization of the multispectral source output, fol-

lowed by quantization of some subset of the transform

coefficients. The most frequently reported application of

this technique is in the area of one dimensional speech

processing and two dimensional image processing [6], and

has been investigated by several authors, most notably

Kramer and Mathews [7], Huang and Schultheiss [8], Pratt

et al [9], and Habbi and Wintz [10]. A general descrip-

tion of past and present advances in image processing is

given by Huang, et al in [11] and by Wintz in [59]. Ex-

tensive bibliographies on data compression and bandwidth

reduction have been compiled by Wilkins and Wintz [12],

Pratt [13], and Rosenfeld [14].



Applications of transform coding and block quantization

to the three dimensional multispectral source have yet to

be reported by any authors, although Haralick and Dinstein

[15], and Crawford et al [16] used a one dimensional spec-

tral transformation for data clustering purposes. A non-

transform coding approach (i.e., data omission, low pass

filtering with mixed highs, etc.) applied to multispectral

data is reported in [17], and some work with two dimen-

sional transform coding of multispectral data by Silverman

is given in [18] and Haralick et al in [48].

1.3. The Two Data Sources

The two principal sources of multispectral data,

satellite and aircraft mounted scanners, are studied sepa-

rately. This is done in order to provide results more

representative of each, in that enough significant statis-

tical difference may exist in their outputs to warrant

the separation. One major source of the difference is

the vastly different altitudes from which the data is gath-

ered. Aircraft data is typically gathered at an altitude

of from one half to eight miles while satellite data is ob-

tained at altutudes of approximately 100 miles and more. The

satellite data thus (1) may not have the spatial resolu-

tion of the aircraft data, (2) may contain more variations

in ground structure and cover within a given time and

spatial period than the localized aircraft data.



For example, Figures 1.1 and 1.2 are images from the two

data sets on which most of the experimental results of this

study are based. The satellite data contains vegetated

areas, desert, and mountainous regions. In contrast, the

aircraft data contains a large percentage of vegetation,

some bare soil, and a rather small percentage of roads and

buildings. (The panchromatic photograph shown in Figure 1.1

was taken in late May. The aircraft scanner data used in

this study is from the same physical area, but gathered

approximately one month later.)

1.4. Statistical Description of the Multispectral Source

The assumption is made that both the aircraft and satel-

lite sensors may be adequately modeled by the source shown in

Figure 1.3. The source is time discrete and amplitude con-

tinuous. Each realization of the source output is the ensem-

ble of real numbers x, , x_, ..., XN . The output is thus

an N-dimensional vector )( in Euclidean N-space.

The elements of X may be the spectral intensity of an

area on the ground as measured through N different wave-

length bands (channels) , or X^ may represent the spatial

variation of reflected energy within a given wavelength

band, or X may be some combination of the above two inter-

pretations. This generality in the definition of the

source output vector X is useful in the analysis which

follows.



Figure 1.1. Panchromatic Photograph of the Aircraft
Scanner Data Set.



Figure 1.2. The Satellite Data Set (.59-.715ym).
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Multispectral
Source

Figure 1.3. The Multispectral Vector Source.



In any case, X^ is assumed to be a random vector having

mean U

U = £{X} l.l

and NxN real, symetric covariance matrix C

C = £'{(X-U)(X-U)t} 1.2

The variances of the (x.>. , are given by the diagonal
If 1> z J.

elements of C. Thus

a2 , i = 1, 2, ..., N 1.3
Jt •

The average source output energy is then

Ec = E{\ |X-U| |
2} 1.4a

j ™*™ ^"*
c
j

N
i.4b

It is further assumed that II = 0 for the multispectral

source. This represents no restrictions on the source

since X can be forced to have zero mean by subtracting U.

No assumptions are made regarding the joint probability

density function for the elements of X, although it is re-

ported in [19] that the jointly Gaussian assumption is a
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reasonable approximation for several applications in pattern

recognition.

The elements of X are, in general, correlated and

successive realizations of X may also be correlated (i.e.,

the source has memory). It is this memory or source

redundancy that is the motivation for transform coding of

the source output X.

1.5. Basic System Structure

The system diagram of the transform coding block

quantization technique used in this study is presented in

Figure 1.4.

The output of the transform encoder is the n-dimensional

random vector (n <^ N) of real numbers Y. This output is

obtained by pre-multiplying the source output vector X by

the nxN transform matrix T. The matrix transform T is

chosen based on its ability to pack a large percentage of

the total output variance ES into as few elements of Y as

possible. This property of the transformation is discussed

in Chapter 2.

Since (1) the time-bandwidth product of any physically

realizable means of data transmission is finite and (2) the

storage capacity of data libraries is limited, the n-vector

Y must be quantized to a finite number of levels per vector

element. The output of the bank of n quantizers Y* is

therefore a distorted version of the input vector Y.
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The vector Y* is transmitted or stored, depending on

the application of the system. In either case it is assumed

that no error occurs in transmission or storage retrieval.

Thus the input to the decoder is again Y*.

In some cases, to be discussed later, user analysis of

the multispectral data may be carried out using Y*. In

other cases the original source output X is of interest.
A.

The vector X is an estimate of X obtained from Y* by the

transform decoder. This is accomplished by premultiplying

Y* by the transpose of T

X = T*Y* 1.5

*>

A useful system produces an estimate X that is a

reasonable approximation to the original source output X^

when measured by some error criteria meaningful to the

various users of the data. At the same time the useful

system must produce a significant reduction in transmission

bandwidth or data storage requirements.
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CHAPTER II

ERROR CRITERIA, SAMPLING AND QUANTIZATION

2.1. Definition of the Error Criteria

Two criteria are used in this study as a measure of

the fidelity of reproduction of the original source out-

put X. The first is the mean square error between X and

X_ denoted by d. It is the expected value of the square

of the Euclidean distance between X and X.

d = E{\ |X-X| I 2} 2.1

The percent mean square error is also used

d = (d/Es)--100l 2.2

where E has been previously defined in equation 1.4 as
o

the average vector source output energy.

The second error criteria is percent classification

accuracy. This measure reflects the ability of the data

user (man °r machine) to distinguish between pre-selected

classes within the reconstructed data set. It is defined

to be the number of data points correctly classified into

a preselected number of categories, divided by the total

number of data points considered (X100S). The classifica-

tion results presented in this study are the result of
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automatic point by point classification by computer [20].

It may be, however, that the results are also indicative

of the performance of human "classifiers", such as photo-

interpreters, etc. Thus an attempt is made to measure the
/\

usefulness of X as compared to the original X in the anal-

ysis of multispectrally imaged areas. The ability of a

data user to gain information about a particular area from

each spectral band (image) transmitted or stored is criti-

cal. A particular spectral band having a relatively low

distortion as measured by the mean square error criteria d,

but distorted in such a way as to be useless for classifi-
%
cation purposes is not an acceptable situation. It is

therefore suggested in this study that a consideration of

both error criteria, mean square error and classification

accuracy, gives a reasonable indication of the effects of

multispectral data compression on data quality.

2.2. The Rate Distortion Function

Using the mean square error criteria described in

Section 2.1 an information rate may be associated with the

multispectral source based on the concept of average mutu-

al information [21, 22], The average mutual information
>N A

I(Xf XJ between X and X is defined to be the average

information provided about the event

Source output = X 2.3
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by the occurrence of the event

/v

Transform decoder output « X 2.4

/s.

In terms of the expectation operator, I(X, XJ is defined

to be

*\

P ( X I X )
I(X, X) = g{log2( ~ ~ )} bits 2.5
- - P(X)

where P(X) is the joint probability density function for X,
/»

and P(X|X) is the conditional probability density function

for X conditioned on the event 2.4.
xv

That I(X, X) is a measure of the mutual information
^ '• A

between X and X is evident since (1) if X and X are statis-
^

tically independent (i.e., knowledge of X gives no informa-

tion about X) then P(X|X) =* P(X) and I(X, X) = 0, (2) if
/s. A.

the event X implies X (i.e., knowledge of X completely

specifies X) then P(X|X) = 1, and

I(X, X) = £:{iog2f-̂ —)} bits 2.6a
~ " PCX)

- H(X) bits 2.6b

where H(X) is the entropy or self information of the source,

The rate distortion function for the multispectral

source R(d) is defined by
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R(d) = inf (I(X, X)} bits 2.7a

P(X|X)eSd

where S^ is set of all conditional probability density
\̂

functions P(X,X) such that

d > P(X,X)||X-X||2dXdX 2.7b_ j j

as in 2.1. Since the infimum is over all conditional

densities in S,, the rate of the source is a function of

the source statistics and not the transmission channel

or the storage technique.

The rate distortion function as defined in 2.7 is

derived for the Gaussian vector source with memory by

Berger [22] Chapter 4, by Bunin in [23], and by Kolmogorov

(for the time and amplitude continuous source) in [61],

R(d) is given parametrically by the equations

R(d) ^i- / iogzCr^-) bits/vector element 2.8aZN .;;.• e

N
d = TA.+ em(e) 2.8b

Z-

i=m(e)+l

where the A., i=l, 2, ..., N are the ordered (Ai>A 2>***>

A) eigenvalues of the NxN source covariance matrix C and
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m(e) is an integer such that

2'8c

If e^Aj, then R(d) - 0.

The rate distortion function defined in 2.8 is a lower

bound on the rate realizable by the block quantization

scheme of Figure 1.4 (assuming a Gaussian input) since it

is shown in [22] to be the lower bound for any coding scheme

applied to the stationary Gaussian vector source with

memory. Since no assumptions are made regarding the source

density function, 2.8 becomes an upper bound on the rate

distortion function for the multispectral source. It

nevertheless serves as a measure of the efficiency of the

block quantization technique. It is recognized however

that in reality the multispectral source, whether aircraft

or satellite, is not a Gaussian source (although it does

have memory), and as such has a rate distortion function

uniformly less than that of 2.8.

2.3. Sources of Error

The two sources of error in the system of Figure 1.4

are (1) the transform encoder (for n<N), and (2) the quan-

tizer. That this is true may be shown in the following

manner for the mean square error criteria. First, define

the mean square quantization error d
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dq = £ { | [ Y - Y * | | 2 } 2 .9a

n
£(y . -y*) 2 n<N 2 .9b

and the "sampling" error due to the transform encoder

2.10a

2.10b

Bringing the transpose inside the parenthesis gives

d
s
 = ^{(Xt-YtT)(X-TtY)} 2.11

or

d
s
 = ^ X - Y - Y X + Y ? ! } 2.12

However, TX = Y, ^T1 = Yt, and TTt = I , where I is the

nxn identity matrix. Thus 2.12 becomes

d = £{X t X-Y t Y) 2.13a
5 *~ ~~" ~~ *~~

N n
*(x?) - E ( 2 ) 2.13b
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Define a2 = #(y2), the variance of the random transform

coefficient y.. Then 2.13 becomes

N n
d
s - I < - I < 2.14
O • ^ A • # V •

It is easily shown (see [24]) that for the class of trans-

formations considered in this study (i.e., orthogonal

transformations)

N . N

A
2 - V a2
x. .£•, X,- 2.15

Thus 2.14 may be written

N
d = I 2.16
5 = yi

Therefore the error due to the transform encoder is equal

to the sum of the variances of the N-n discarded transform

coefficients y., i=n+l, n+2, ..., N.
Z-

It is next shown that the total error d as defined in

2.1 is the sum of the sampling and quantization error.

That is

d = d +d 2.17as q

- I % + I *Uy.-yJ)2> 2.i?b
r=n+l yi t=l l *
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Expanding 2.1 gives

d = ff{(X-TtY*)t(X-TtY*)> 2.18a

= 5{XtX-Y*tTX-XtTtY*+Y*tTTtY*} 2.18b

Recall that TX = Y and xV = Yt, and Y^Y = Y^Y*. Thus

2.18 becomes

d = £'{XtX-2Y*tY+Y*tTTtY*} 2.19

Changing from vector notation to summation of the vector

elements gives

N n n
d = E\l x2 - 2 7 y*y.+ 7 y*2} 2.20• i i . . i t . i i- *

n t t t
That I y*2 - Y* TT Y* is true since TT = I . Rearranging

terms in 2.20 gives

N n n n n
d = E{1 x| + I (ŷ -yj)2 - I y*2- I y| + I yj2} 2.2ia

N n n

"̂*"1 Z™"A t*™"A

Bringing the expectation inside the brackets gives

N n n
d * y £{x2} - y 2?{y2} + y ^{(y . -y*) 2 ) 2 . 2 21 t=l l l
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Using the results of 2.14 and 2.15, 2.22 becomes

- I a* + I E{(y.-yj)2> 2.23a
yi i=l ^ ^

d 2.23b

which is the desired result.

2.4. The Karhunen - LoeVe Transformation

A discussion of the three transformations used in the

data compression system outlined in Figure 1.4 is presented

in this and the following section.

Several authors have shown that the linear transforma-

tion which minimizes the sampling error d for the corre-

lated vector source with positive definite covariance matrix

is the Karhunen - Loe*ve (K-L) transformation (see Kramer and

Mathews [7], Palermo, et al., Appendix I [25], Wintz and

Kurtenbach [26], Koschmann [56], or Loeve [29]). It is

further shown in [8] to possess the added benefit of mini-

mizing the quantization error d . The K-L transformation

is also referred to as the eigenvector transformation, prin-

cipal component transformation ([27] and Chapter II of [28]),

or simply as the optimum transform.

The K-L transformation is an orthogonal transformation

determined by the second order moments of the source. In

this sense it is source dependent. It is this adaptation
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to the source that gives the K-L transformation its unique

ability to minimize the total error d. The transformation

itself is a rotation of the source output X in N-space to

a more favorable orientation with respect to the measure-

ment co-ordinate system. This more favorable orientation

is one in which the average energy E of the source is

redistributed over the co-ordinates such that a larger

percentage of E is distributed over fewer co-ordinates.
o

Figure 2.1 demonstrates this rotation for the two dimen-

sional case (N=2). It is evident from Figure 2.1 that the

K-L coefficient y, has larger variance than either x, or

x7. If variance is considered to be a measure of informa-
£f

tion content, as it is in mean square error rate distortion

analysis, then knowledge of y, conveys more information

than does knowledge of either x or x~. For larger values

of N it is often the case that a rather small number of

transform coefficients contain a large percentage of the

total source variance (energy) Eg. This packing of the

source variance provides a means of reducing the number of

coordinates required to reconstruct the original source

output vector within a given error. Those transform coef-

ficients having small variance are neglected (replaced by

their mean values, which are constrained to be zero).

The K-L transformation is the unique orthogonal

transformation that diagonalizes the source covariance

matrix C.
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TCT 2.24

N

where the A., i=l, 2, ..., N are the eigenvalues of C and
t* ^

their order is chosen such that

A i ̂ A ̂ • • • 2.25

From 2.24 it is evident that the rows of T are the N

normalized solutions to the characteristic equation

C^- = xvv • * " 11 2 , . . . , N 2.26

The covariance matrix for the transform coefficients is

2 .27a

2 . 2 7 b

TCT' 2 .27c

Since TCT is the diagonal matrix of 2.24 the transform

coefficients are uncorrelated and their respective variances
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are given by the ordered eigenvalues of C. The application

of the vector Y as a feature vector in pattern recognition

is discussed in [30] and is considered in this study in

section 3.2.

2.5. The Fourier and Hadamard Transformations

The two additional transforms considered are the Fourier

and Hadamard transforms. Both are non source dependent in

that the set of N orthonomal basis vectors is fixed regard-

less of the source characteristics. Some variability in

these transforms is possible through an appropriate defini-

tion of the source output dimensionality K. For example in

image processing it is advantageous to define the source

to be two dimensional and use the two dimensional Fourier

or Hadamard Transforms. As described in later sections, the

multispectral source is defined to be a three dimensional

source and the three dimensional Fourier and Hadamard trans-

forms are used. Consideration of the source dimensionality

allows the encoder to take advantage of correlations exist-

ing between neighboring points in each dimension defined.

Several authors have applied the Fourier and Hadamard

transforms in studies of two dimensional block quantization

encoders. Landau and Slepian [31], Pratt, Kane, and Andrews

[9], Kennedy, Clark, and Parkyn [32], Huang and Woods [33],

and Habbi and Wintz [10] have reported results.

The rows of the Fourier Transformation matrix are the
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sampled, harmonically related sine and cosine functions.

The rows of the Hadamard matrix are the discrete version

of an Nth order set of orthogonal Walsh functions [34,35,

36].

2.6. Equivalent Matrix Transformations

The usual technique used to perform a K-dimensional

discrete linear transformation (Fourier, Hadamard, etc.)

is the performance of K one-dimensional transformations -

one in each dimension defined for the source. For example

the two dimensional Fourier transform (K=2) would be ob-

tained by pre and post multiplying the N.xN- source output

"matrix" [X]M M by the N,xNn matrix T, and the N-xN-
IN <• j IN A A J. —-L L, L

matrix T9 respectively
— £

[Y]N N = Il^N N Tz 2'281' 2 1*2

It is now shown that a K-dimensional transformation may

be obtained by a single equivalent matrix multiplication of

the re-defined source output.

First the source output tensor [X]M M >j is
1 2 * • • • » K

re-arranged into a N-dimensional (N » NiN2**"NK^ vector

X by sequentially ordering the elements of [X]M M— IN ̂  , . . . , IN ̂

by varying the outermost indices first. For example in

two dimensions (K=2) with N, = N2 =2



[X]2,2
1,2

•2,1 A2,2

and X is therefore

27

2.29

X »•

2,2

2.30

For the K dimensional source an element of the transform

coefficient tensor [Y]M M M is given by
12' "*•• n

Ni
I1

7 7 7 i* 7 f* 7 • * * -"
j " r 1 > ^ O ) * * * > * ' E f t ' 1 > » P 1 *» •} f i" *y 4*1
L - L £ A. i. X ^ ^ .!

2.31

where the t. 7 are elements of the transform matrix T.i. , L, . ~3
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v,
'V'j

•

•

•

*N . , 1 .
3 3

1 3 ' 2 3 13'N3

•

•

•

' N - . N .. . . 3 3

j-1,2,. . . ,K

2.32

If the elements of ^ ^ _, NR are re-arranged

according to the outermost index rule given above, then

the transform coefficient tensor [Y] becomes

an N element vector (N = N.. • N_ . « • N^) with elements

N
xnt m,n m=l, 2, ..., N 2.33

where

m = - 1)N - 1)NK

2.34a

and

n J.J^K

2.34b
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m,n - t. t . .. .t. - 2.35

It is important to note that for each value of m, m-1 , 2,

. . . , N there exists one and only one possible set of integer

values for the I., i-I , 2, ..., K. The same is true for n
c*

and the i., j=l, 2, ..., K.

Rewriting 2.33 gives

Y = T/X 2.36

where vectors Y and X are the re -arranged transform and out-

put tensors respectively, and T"* is the new equivalent trans-

formation matrix with elements t , m = 1, 2, ..., N;
m • n

n - 1, 2, . .., N; N = N1N2"»NK.

The equivalent matrix T' is now shown to be an ortho-

gonal matrix. From 2.34 and 2.35

N N. N Nr

m,n m,n

. , r1 y2-- r t. , t*. 7 t.
L ^ . ̂,^ jj,̂  ^2,

t. t* 2.37a

N, N-

*i I ** I

N
t t* 2.37b
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where * indicates the complex conjugate.

The orthogonality of the original transformation

matrices T., j=l, 2, ..., K requires that

N

2'38

where 6. . is the Kronecker delta. Thus 2.37 becomes
V3P

Similarly it may be shown that

2.39b

From 2.39 it is evident that 1' is an orthogonal matrix,

which is the desired result.

2.7. Application to the Hadamard and
Fourier Transforms

An interesting consequence of the results of section

2.6 is that the equivalent matrix for the K-dimensional

Hadamard transform is again a Hadamard matrix - the NxN,

(N=N,N2*" NK) Hadamard matrix. That this is true may be

seen from equations 2.35 and 2.39. The entries of T' must
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be ± (1/N)K/2 from 2.35. This and the orthogonality of T'

(2.39) combine to require T* to be the Nth order Hadamard

Matrix.

The equivalent matrix for the K-dimensional Fourier

Transform, though an orthogonal matrix, is not the Nth order

Fourier transform. This is shown by an example.

Consider the two-dimensional Fourier transform (K=2)

of equation 2.28. The two transforms, one for each dimen-

sion of the source, are given by 2.32 with

t.
/KT

exp
2TT

and from 2.35

m,n = t. t.

. . , f . . . , . .

j-1,2

m = 1,2 , . . . ,N

n = 1 ,2 , . . . ,N

2 . 4 0

2.41

The following relationships from equation 2.34 are true

m = = n =

2=> i-2, i

Nl=> Nl=>



m = N + l-o- Z-1, 1"2 n

N -> ^1=N1, Z2
=N2 N ra> *1*N1» *2*N2

2.42

Using the above relationships between m, n, £,, £_, Z,,

Z_ and equations 2.40 and 2.41 gives the entries in the

equivalent Fourier matrix with K=2

2.43b

where the relationships between the indices is provided by

2.42.

2.8. Quantization

The remaining source of error in the data compression

system of Figure 1.4 is the quantizer. Its function is to

map the infinite set of possible n-vectors Y into the finite

set of n-vectors Y*, and thereby allow a finite time - band-

width product or finite storage requirements.
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The quantizer used in this study is the optimum non-

uniformly spaced output level quantizer described by Max

in [37] and Lloyd in [38] , and generally referred to as the

Lloyd-Max quantizer. This quantizer is optimum in the

sense that the output levels are chosen such that the mean

square quantization error (d of equation 2.9) is minimized,

assuming a normally distributed input. The input to the

quantizer is the vector Y. Quantization is achieved through

a bank on n quantizers, one for each y., i=l, 2, ..., n.
^

The output of the quantizer is coded for digital transmission

or storage by assigning a binary code word to each output

level. The natural code is used in this study, although

other codes have been investigated by Hayes and Bobilin [39],

and Wintz and Kurtenbach in Chapter 3 of [40],

The ith quantizer is referred to as an m. - bit quan-
m.

tizer, reflecting the fact that it has 2 l possible output

levels, and that each output level is coded with m. bits.
u

Figure 2.2 is an example of the ith m. bit quantizer with
v • I*

m. = 2. The quantizer assigns the output value y*=v. when1 *• J
u. 1<y.<u.. In practice the y. are normalized to have unitj -i t— j i

variance and the u. and v. given in [37] for m. < 5 and in
3 J l —

[40] for 6 < m. < 9 are used.
«. •£ _

Results presented in [8} and [26] show that the quanti-

zation error for the ith quantizer with a Gaussian input

may be closely approximated by
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dq ith quantizer ^i
a2 C-"\ 2.44

where a2 is the variance of the transform coefficient y.
y • x>
1 1/4and C is a constant equal to 10 , or approximately 1.78.

2.9. Minimization of the Total System Error

The results of section 2.3 show that the total system

error d is the sum of the quantization error d and the

sampling error d where, as in 2.14

2-45

and the total quantization error d is the sum of the error

due to each of the n quantizers

Combining 2.45 and 2.46 gives the total error

, - I av
2 * £ a ' C~*ni 2 .47a

5 - y = y

5
a 2 (l-C"2mi) 2 .47b



It is evident from 2.47 that the total error is a

function of (1) n- the number of transform coefficients

retained, and (2) m.- the number of bits assigned to the

ith quantizer. The sampling error decreases with increas-

ing n while the quantization error increases with n. It

is desirable to find that value of n and resulting bit

distribution {m.}., which minimizes the total error d.
Z" tr A

The following minimization problem is stated and an approxi-

mate solution is presented.

Problem: Given that a finite number of bits, say M^,

are to be distributed in some manner to n

Lloyd-Max quantizers, i.e.,

n 2.48

Jl"1* = Mfe

determine the optimum number of samples n

(ordered according to decreasing variance)
j|

and corresponding bit distribution wi.).̂

that minimizes the total system error d*d +d,

of equation 2.47

The problem may be re-stated consisely as

n
min ' E. - T a2(l-C~2mi) ' 2.49
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with the constraint

n
m. » M, 2.50

where the subscript on the coefficient variance o2 has
Yi

been omitted. By definition (equation 1.4) E is a constant

and

n
E > I aUl-C'2mi)
d ~~ • •• V

2.51

with the equality when n=N and M.-*-«. An equivalent problem

is then

max
n

i-l
0J(i-c-»mO 2.52

subject to

n
Y m. = M,

i-l ̂  b
2.53

Treating the m. and n as continuous variables and introducing
&•

the undetermined Lagrange multiplier A gives the following

set of equations

(1)
n

X I

n
2.54a

j-l



(2)

(3)

3
3n I a2(l-C"2mi) + X I m, 2.54b

n
m. = M,t- b 2.54c

Equation 2.54a represents n equations while 2.54b and c

represent one equation each. There are then n+2 equations

and n+2 unknowns (n, X, (m.}n ,).
1, ^ — J_

Carrying out the partial differentiation indicated in

2.54a gives

a?(2lnC)C"2mj + X » 0 2.55

Similarly 2.54b becomes

2.56

by approximating 2.54b with

n n

i + X 2.57

to give 2.56.

Solving for m. in 2.55 gives

-2Ao? 2.58



where A=ln(C). Substituting 2.58 into 2.54c

-2A n n
n 2.59

Solving 2.59 for A and substituting the result into 2.58

gives

m . =
J " Ilogc. "5

f c 2 M b 1
n
n a|

n

"b

2.60a

2.60b

Evaluating 2.60 at j*n and substituting into 2.56

n

n
n

CZMb

n 2AM,
•0 2.61

The value of n satisfying 2.61 and the corresponding bit

distribution given by 2.60 represent the approximate solution

to the minimization problem described earlier. The solution

is approximate since the {m.}1?, and n are assumed to be
t» if """ X

continuous variables while in reality they may take on only

integer values. The approximate solution is achieved in the

following manner: Given the NxN transformation T the trans-

form vector Y is created by the transform encoder. The
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number of bits per vector element (i.e., the rate R) is

specified. Thus

M. = N*Rb 2.62

Equation 2.61 is then used to determine the value of n

which most closely satisfies the equality. That is

n . = min
°pt Kn<N

.,

n
n a?

* = 1 7'

I cZMb J

1
n

2AM n
b - !_ I ln(a?)

n n i-\ ^

2.63

The n determined by 2.63 is then used in 2.60 to compute

the resulting bit distribution over the n=n Lloyd-Max

quantizers. The values of the m. generated by 2.60 are not,
If

in general, integers. The integer values must therefore be

chosen according to some rule. The rule used in this study

is the following: (1) round-off each m. to the nearest
If

integer, (2) if the resulting rate R, exceeds or is less than

the specified rate R then either: (a) remove bits, one at a

time from all possible y. and choose those which result in
*»

the smallest increase in d, or (b) add bits, one at a time
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to all possible y^ and choose those which result in the

largest decrease in d.

It is noted that equation 2.60 for the bit distribution

is also the solution to the less restrictive minimization

problem considered in [8] and [40]. In that problem M,

and n are fixed, and the best set of m. is the desired re-
I*

suit. The solution is again 2.60.

2.10. The Markov Source - An Example

As an example of the sampling and bit distribution

procedure described in the last section the time discrete,

zero mean, one dimensional (K-l), unit variances, station-

ary, Gaussian Markov vector source (N-100) is considered.

The elements of the source covariance matrix C are then

c. . * exp(-ot|i-j |) 2.64

Since a2 =1, the c. . are also the correlations between

the x ..
if

The transformation T is chosen to be the 100x100 K-L

transformation, implying that the variances of the transform

coefficients are the eigenvalues of C.

Figures 2.3, 2.4 and 2.5 summarize the results obtained

with the above source definitions and a = 0.05. Figure 2.3

shows the optimum number of samples determined by 2.63 as

a function of the data rate. The lower curve represents the

actual n used after applying the bit distribution rule of
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section 2.9 since some m. become zero when the integer

constraint is imposed. Figure 2.4 is the resulting bit

distribution over the n . Lloyd-Max quantizers as deter-opt n

mined by 2.60 with data rate R = 1.0 bits/vector element.

The step-wise curve represents the results of the integer

bit distribution rule. As a result only 24 samples are

retained as opposed to n = 32 determined by 2.63.

Figure 2.5 is a plot of the data rates achieved with the

Markov source using the above results and the transform

coding, block quantization scheme of Figure 1.4. The lower

curve is the theoretical lower bound for the Gaussian

Markov source (i.e., its Rate-Distortion function). The

two curves are relatively close, the actual rate being

higher by a factor of only approximately 1.25 over the dis-

tortion range considered. Also included are the data rates

achieved using single sample [58] quantization of the

original source output, referred to as standard PCM.

2.11. Selection of the Optimum Block Size

In section 2.9 the total system error d is minimized

over n and the m., with Mb and N fixed. The problem of

selecting the optimum block size for the K-dimensional source

is now considered.

If the source is defined to be K-dimensional and if the

maximum number of elements in X is fixed at N (due to hard-

ware constraints, processing time limitations, etc.), then
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the question arises as to how many elements in each of the

K-dimensions of the source should be selected. In other

words, choose N. , N_, ..., N., to minimize the sampling error

d with the constraint N.»N0»•-N^
 a N. The problem may be

S i. L Iv

re-stated using 2.14

mm

, iK

N n
2.65

subject to

K
n N

t-i
= N 2.66

An approximate solution to the above problem is presented

in Appendix B under the following assumptions

(1) The source is time and amplitude continuous,

(i.e., X becomes the continuous process

^l^i»^2' * * * 'K *

(2) The source statistics are stationary.

(3) The K-L sampler is used, i.e.,

Nl ,N2 rNK

0 0

2.67
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where the <J>.(t)are eigenfunctions defined below.
t» ™~~

The results of Appendix B show that the proper choice

K
of the {N.}. , that minimize d_ must satisfy

t- ^ — J. 5

N -- Aj4>j(t;Ni)dt'= Nr- I X^j(t;Nj)dt- 2.68

where -- and t' are defined in Appendix B and the 4».(») are
— X-

the eigenfunctions of the integral equations

N, N,, NK

R(t-T)*.(T)dT^_ __ - — — 2.69

and R(t_-T_) is the source autocorrelation function.

Equation 2.68 may be simplified if the kernel R(t_-r_) is

separable [41], i.e., if

K
n -T .) 2.70

Then 2.68 becomes

N I \ Q2 (N ) = N I X.0? -(N-) Vi,l 2.71
l= J J» l * *= II' 1- L
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where

K
8- .(t.) = 4, (t) 2.72
J'*- ^ J -

Although 2.68 and 2.71 are not explicit expressions for

the N., a trial and error search could be used to select
1̂

the best set. It is noted however, that for each new value

of N. the appropriate set of eigenvalues X. and eigenfunc-
If tr

tions <f>. must be computed.
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CHAPTER III

EXPERIMENTAL RESULTS PART I - AIRCRAFT SCANNER DATA

3.1. Introduction and Description of the Source

The results achieved using aircraft scanner data and

the transform coding-block quantization system of Figure 1.4

with the sampling and quantization methods described in

Chapter II are presented in this chapter. The data source

is the digitized output of an airborne multispectral scanner

flown over predominantly agricultural areas in the midwest.

The scanner itself [3,42] is an analog device sensitive

to the electromagnetic energy emited or reflected from the

particular area to which it is focused [52]. This sensi-

tivity is restricted to several adjacent spectral bands or

"channels". The following is a list of the spectral chan-

nels and their corresponding wavelength bands for the data

set discussed in this chapter.

Table 3.1. Spectral Channels and Their Corresponding
Wavelength Bands.

Channel Wavelength Band (ym)

1 0.40 - 0.44
2 0.62 - 0.66
3 0.66 - 0.72
4 0.80 - 1.00
5 1.00 - 1.40
6 2.00 - 2.60



so

The altitude at which the scanner is normally flown

(^ 3000 ft. A.G.L.) constrains the ground resolution to an

approximately circular area having a diameter at nadir of

^ 9 feet. The width of a typical data set (flightline) is

approximately one mile. The sampling rate used in the digi-

tization of the scanner data is such that the one mile width

yields up to 444 samples per line. Flightline lengths are

of course variable, but typically vary from one to twenty-

five miles. One square mile of aircraft scanner data as

described above contains on the order of 2xl05 samples per

channel.

The specific data set chosen for analysis is shown in

Figure 3.1. This same area is shown in Figure 1.1 via pan-

chromatic photograph. The data was gathered over Tippecanoe

County, Indiana on the morning of June 30, 1969 at an alti-

tude of 3000 ft. The entire flightline (PFL24) is 24 miles

long while the section analyzed and shown in Figure 3.1 is

approximately 0.9 miles by 0.7 miles (384 samples by 293

samples per channel). This section of the flightline is

representative of the remaining 23 miles, and is quite

typical of other aircraft scanner data sets taken over agri-

cultural terrain. Areas of high and low spectral and spa-

tial detail are represented as well as irregular field

boundaries, roads, diagonal fields, etc.

Results obtained using the data compression scheme of

Figure 1.4 are presented in the following sections. The
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multispectral source output is transformed using the

Karhunen-Loeve (K-L), Fourier and Hadamard transformations

in various combinations of the three dimensions of the

source. In addition, the choice of which transform coeffi-

cients to retain and the corresponding bit distribution over

the quantizers are optimized as described in section 2.9.

The rate versus distortion curves achieved with each of the

three transformations are compared to each other and also to

(1) the rates achieved with standard single sample quanti-

zation (standard PCM) and (2) the theoretical minimum rates

realizable assuming a gaussian source (i.e., the rate-

distortion function described in section 2.2, equation 2.8).

The first and second order statistics of the data set

are also presented in this section. The three dimensions

of the source, the two spatial and one spectral, are consid-

ered for use with the one, two, and three dimensional

transformations.

3.2. The Spectral Dimension and Principal Components

Each ground resolution point has an associated N-

dimensional vector X whose elements are the N spectral chan-

nel intensities for that particular point. This concept is

shown in Figure 3.2. The elements of X are, in general,

correlated and each channel typically has a different mean

and variance. This is evident in the six spectral images of

Figure 3.1. The actual means and variances are given in

Figure 3.3 along with the spectral correlation matrix.
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Mean
Variance

73.0

287

93.3

1136

79.3

1094

111.0

795

150.8

746

83.2

345

1.00

0.90

0.90

•0.39

-0.36

0.73

1.00

0.98

-0 .45

-0.41

-0 .78

1.00

-0 .54

-0.50

0.80

1.00

0.89 1.00

-0.46 -0 .40 1.00

Correlation Matrix

Figure 3.3. First and Second Order Spectral Statistics
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The source output vector )( is input to the transform

encoder where it is pre-multiplied by the K-L, Fourier or

lladamard transformation matrix and then quantized. The out-

put of the quantizer is then transmitted or stored. However

with the spectral definition of the source output a special

significance may be given to the quantizer output Y* when

the K-L transformation is used. The significance lies on

the fact that Y* may be used as a feature vector in the

maximum likelihood classification of spatial characteristics

(various types of vegetation, water, etc.) within the data

set [30,43,44,45]. When used in this manner Y* (or Y) is

commonly refered to as the vector of principal components.

The feature vector usually used in classification of

multispectral data is the channel vector X. However it has

been found experimentally that a subset of the elements of

X often gives classification results as acceptable as those

obtained with the entire vector [20,46]. This is due to

the fact that the correlations existing between channels

reduces the number of channels having non-redundant

information.

The choice of which subset of the elements of X to use

as features is generally a difficult problem. The solution

is usually based on a combination of (1) statistical inter-

class distance measures resulting from an exhaustive search

of all possible combinations of the elements of X to form

a subset of given dimension [19,47], and (2) an intuitive
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selection based on previous experience with perhaps similar

data.

The principal component vector Y* offers a possible

solution to the feature selection problem. As discussed in

section 2.4 the elements of Y* are uncorrelated. In addition,

the total variance of any ordered subset of the element of

Y* is greater than the total variance of the same number of

elements of X [30]

* > la2 n < N 3.1
~ *

where the summation of the a* is over any n values of i .

The effects of the quantizer are ignored (i.e., y. » y.*),
if . ̂f

since it is assumed that if Y* is to be used as a feature

vector the quantization will be so fine as to produce

negligable error.

If variance is considered a measure of information

content, then the feature set {y.}n , is at least as good
•Z- Z- "" X

as, and in general better than, any n-member subset of

elements from X as indicated by 3.1.

An additional favorable characteristic of Y is the

fact that in the visual analysis of a multispectrally

scanned area the analyst is limited to the observation of

one spectral image at a time. However some areas may not

produce significantly different responses in the particular
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spectral channel chosen. A compromise must be made and a

channel that is good on the average for the area of interest

is selected. Some features will then be less distinguish-

able than if the best channel for these particular features

had been chosen. The variance-packing property of the K-L

transformation provides a new image in y, having variance

greater than any of the original spectral channel images

i.e.

a2 >_ a2 i = 1,2 N 3.2
yl xi

This indicates that on the average more data variability

(information) exists in the y, image of the area of interest

and that visual analysis of the y, image may therefore be

more productive.

The six (N=6) principal component images of the origi-

nal data set of Figure 3.1 are presented in Figure 3.4

(i.e., y-,*, y,*,..., yfi* with m. = 8 Vi). As described in
JL L, O **

section 2.4 the K-L transformation is composed of the eigen-

vectors of the source covariance matrix. The 6x6 spectral

covariance matrix for the aircraft scanner data set yields

the following K-L transformation
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0.25797 -0.55725 0.56553 -0.35458 -0.32652 0.26599
0.18572 0.36388 0.24356 0.61212 0.62068 0.11763
-0.08914 -0.21988 -0.15659 -0.18867 0.23038 0.91133
0.01575 0.03032 0.06466 -0.67578 0.67360 -0.29022
0.93811 -0.31709 -0.13615 -0.02113 -0.01910 -0.00768
-0.10350 -0.63817 0.75737 0.08281 0.03090 -0.02462

3.4

where the rows of T are the eigenvectors of C ordered as

described by 2.25. The corresponding spectral eigenvalues

are

Table 3.2. The Six Spectral Eigenvalues

3209.9 931.4 118.5 83.88 46.0 13.4

Each principal component (transform coefficient) y. is

a linear combination (weighted sum) of the original six

spectral channels. The weights associated with each channel

are given by the column entries of T. For example the first

principal component image has the greatest weights associ-

ated with channel 2 (0.62-0.66ym) and channel 3 (0.66-

0.72pm), two of the three channels in the visible wavelength

band. The second principal component image favors channel 4

(0.80-l.OOvim) and channel 5 (1.00-1.40um) , the two channels

in the reflective infrared band. The third component image

has greatest weight associated with channel 6 (2.00-2.60),

the only channel in the thermal infrared region. These

same trends are supported by a comparison of the principal
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component images (Figure 3.4) with the original spectral

images (Figure 3.1). It is also evident that the variances

(eigenvalues of C) of the principal component images decrease

rapidly as evidenced by the grey, low detail appearance of

component images 3 through 6.

3.3 The Spectral Dimension and Fourier Components

The Fourier component images of the aircraft scanner

data set are also of interest. They are obtained by trans-

formation of the spectral channel vector X by the appropriate

6x6 Fourier matrix T (The Hadamard matrix of order 6 does

not exist[9] and thus prevents consideration of the Hadamard

component images in this particular six-channel case. Hada-

mard images based on 12 channel data have been produced how-

ever, and are quite similar to the 12 Fourier component

images).

The 6x6 Fourier transformation matrix is

T- -1- /J

1//Z

0

1

1

0

I//?

1//I
/I
~7

1/2

-1/2

/I
~7

-1//I

1//I

/I
T

-1/2

-1/2

-/I
T

1//2"

I//?

0

-1

1

0

-1//I

1//I

-/I
"7

-1/2

-1/2

-/J
T

1//I

1//I

-A
"T

1/2

-1/2

/J
T

-1//2"

3.5
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where the rows of T are ordered by decreasing component

variance as shown in Table 3.3.

Table 3.3. The Fourier Coefficient Variances
2 2

av v4 5 76

2 2 2 2 2 2
0 ° a a a

1218.8 1199.8 1017.2 486.8 421.1 59.3

The first Fourier image is proportional to the jnean value

of the total spectral response for the area. Each original

spectral channel is weighted equally. Emphasis on specific

wavelength bands begins with the second image. These

weights, however, are non-source dependent and would be the

same for any six wavelength bands. The six Fourier images

are presented in Figure 3.5.

Although there is a packing of variance as with the

principal component images, the Fourier image variances do

not decrease as rapidly. In terms of the complex Fourier

transform, the second and third images are the imaginary

and real parts of the complex second harmonic coefficient

respectively. Similarly the fourth and fifth images are

the real and imaginary parts of the complex third harmonic

coefficient. The sixth image is the real part (the imagi-

nary is the negative of the imaginary part of the second

harmonic, and is therefore redundant and not retained) of

the complex fifth harmonic coefficient.
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Computer classification results using (1) the spectral

channel vector X, (2) the K-L coefficients or principal

components, and (3) the Fourier coefficients are presented

in Figure 3.6. A gaussian maximum likelihood decision

rule is used to classify selected areas of the data set

into one of six classes (various types of vegetation, roads,

etc.). The sixth class is a null class into which all

points having classification error probabilities greater

than a specified threshold are placed. All points in the

null class are considered errors and are used as such in

computing classification accuracy. Training of the class-

ifier is based on 1.3% of the total data set, and test

results are based on classification of 16.21 of the total

data set.

The abscissa in Figure 3.6 is the number of features

(n) used in the classification. For each value of n an

exhaustive search is conducted to determine the n-member set

of features from X and Y giving the highest percent correct

classification results. The features used are given below.

Table 3.4. Features Used for Classification

n K-L Channel Fourier

1 1 2 3
2 1,2 3,5 1,3
3 1,2,3 2,5,6 1,2,3
4 1,2,3,4 1,2,5,6 1,2,3,4
5 1,2,3,4,5 1,2,3,5,6 1,2,3,4,6
6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6
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The above list and Figure 3.6 point out the feature selec-

tion advantages inherent in the K-L or principal component

transformation. For each value of n the first n principal

components are the best selection. This is obviously not

the case with the original spectral channels. The Fourier

components are apparently not quite as consistant as the

principal components, although (with the exception of n=l)

the "first n" selection rule is close to being correct.

3.4. Data Compression in the Spectral Dimension

In the last section the vector Y or (Y*) is discussed

in terms of pattern recognition and data interpretation. In

this section it is but one step in the over-all (spectral)

data compression system of Figure 1.4. It is the input to

the bank of n Lloyd-Max quantizers. The choice of n and

the number of bits m. assigned to each quantizer is dis-
IT

cussed in section 2.9. The application of those results to

the channel vector X is presented in this section.

The data rates achieved using the K-L and Fourier

encoders are shown in Figure 3.7. Also included are the

theoretical lower bound R(d) for the gaussian source, and the

actual data rates achieved using single sample encoding

(standard PCM) of the source output vector X. The number of

transform coefficients retained and resulting m. are listed
1*

in Appendix C. The K-L encoder lies below the Fourier

encoder, while both are below standard PCM. However the
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Fourier encoder represents a relatively small improvement

over standard PCM. A rate reduction by a factor of only 20%

is realized for the distortion range considered (as compared

to a factor of about 501 for the K-L encoder). This poor

performance of the Fourier encoder is in general agreement

with the results of the last section where the six Fourier

images are presented (see Figure 3.5). It is evident from

the images that the variances of the Fourier coefficients

decrease slowly indicating that little variance packing has

been accomplished.
>N

Images representing the reconstructed output X of the

spectral data compression system are presented in Figure 3.8.

An interesting effect is noticeable as the data rate

decreases. For low data rates (i.e., around 0.5 bits/vector

element) spatial features distinguishable in some of the

original channels become visible in channels where they were

originally not distinguishable. This effect can be seen in

Figure 3.8 where a small field to the immediate left of the

bottom road intersection is not visible in either the origi-

nal channel 2 image or the reconstructed image at 2 bits/

vector element, but does become visible in the 1.0 and 0.5

bit/vector element images. With low data rates the recon-
^

structed source output vector X tends to lie in the same

direction in N-space as the first row t, of the transfor-

mation matrix T. Any deviation the original X may have from

that direction is lost as the data rate decreases. In
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addition the magnitude of X in the direction of t, is deter-

mined by the projection of X onto t,. If one or more ele-

ments (channels) of X are relatively large then X't, may be

dominated by these elements. The field discussed above is

quite bright in channels 4 and 5 and thus becomes visible
^

in the reconstructed channel 2 image (X-) at l°w data rates.

An "error image" between the 1 bit/vector element image

and the original channel 2 image is shown in Figure 3.9.
^

It is the square of the difference between X and X for each

resolution point. Black represents 0 error and white repre-

sents a squared error of 255 or greater. It is evident that

most of the error occurs over the roads and buildings and

relatively little error is present in the vegetated areas.

3.5. The Two Spatial Dimensions

In contrast to the definition of a spectral N-vector

associated with each ground resolution point as described

above, the two spatial dimensions of the multispectral

source output suggest the concept of N-two dimensional

images, one for each spectral channel. This idea is pre-

sented in Figure 3.10.

Correlations existing in the horizontal and vertical

directions are compared in Figure 3.11 where the estimates

of the normalized source autocorrelation functions (R (T) and
•C

R (T)) are plotted. The R (T) curve lies above the R (T)y x y
curve for small T. This reflects the fact that the aircraft
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scanner gathers data by sweeping out a single horizontal

line at a time. The finite bandwidth of the scanner elec-

tronics tends to correlate adjacent points within a scan

line more than vertically adjacent points.

The spatial transformations applied to the data set

are, for purposes of comparison, one dimensional (horizontal)

and two dimensional (horizontal and vertical). The data is

taken in one and two dimensional blocks as shown in Figure

3.12. As discussed in section 2.6 the two dimensional blocks

are re-arranged into column vectors. The two block-sizes

considered are 1x64x1 (1 vertical point by 64 horizontal

points by 1 spectral point) for the horizontal one dimen-

sional spatial block, and 8x8x1 for the two dimensional

spatial block. The NxN (N=64) covariance matrix is computed

for both data blocks by averaging )( X over each of the six

spectral images. The first column of the 8x8x1 data block

covariance matrix is plotted in Figure 3.13.

Data rates achieved using the above two data blocks and

the data compression system of Figure 1.4 are shown in Fig-

ures 3.14 and 3.15. The K-L, Fourier and Hadamard transfor-

mations are considered, with the gaussian source lower bound

R(d) and the standard PCM encoder also included. The K-L

encoder realizes the lowest data rates for both data blocks,

while the Fourier and Hadamard encoders also achieve rates

substantially below those for standard PCM. In both cases

(1x64x1 and 8x8x1 data blocks) the Fourier encoder gives
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lower data rates than the Iladamard. The two dimensional

block is more efficient with all three encoders for distor-

tions near 71 and greater. Below 7% the one dimensional

block is best. The number of transform coefficients retained

and resulting m. are listed in Appendix C for the K-L
I*

encoder and the one dimensional data block.

The relative sizes of the 8x8x1 and 1x64x1 data blocks

in relation to the original spectral data set are shown in

Figure 3.16. These images are the result of retaining only

the first coefficient in the K-L encoder and quantizing that

coefficient to 512 levels (m.=9). This is not the manner in
*•••

which the 0.141 bit/vector element data rate would be

achieved.

Channel 2 images using the K-L encoder at rates of 2,1,

and 0.5 bits/vector element for the 1x64x1 and 8x8x1 data

blocks are presented in Figures 3.17 and 3.18 respectively.

Figure 3.19 is the error image between the original channel 2

image and the reconstructed image at 1 bit/vector element.

As with the spectral data blocks (1x1x6) most of the error

is found near the roads and buildings. However in this case

the error is due to spatial high frequencies (detail) as

opposed to spectral high frequencies. In the low detail

area the prime source of the error for the two dimensional

encoder is the distortion near the edges of the 8x8x1 data

blocks. (See Appendix A for a discussion of error within

the data block.) Essentially no image degradation is
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noticeable in the 2 bit/vector element image, while some

distortion is evident in the 1 and 0.5 images for both data

blocks. Channel 2 images using the Fourier and Hadamard

encoders at 2 bit/vector element and 8x8x1 data blocks are

shown in Figure 3.20.

The effects of data compression on percent classifi-

cation accuracy are presented in Figure 3.21 for the K-L and

standard PCM encoders using the 8x8x1 data blocks. The two

curves represent the performance of the maximum likelihood

classifier (described in section 3.2) over the reconstructed

spectral images for several different data rates. The per-

formance of the K-L encoder is far superior to that of the

PCM encoder although both converge to 94% correct classifi-

cation for large (> 4 bits/vector element) data rates. The

apparent insensitivity of the K-L encoder to degradation in

classification performance at low data rates is a consequence

of the variance packing property discussed in section 2.4.

At one bit/vector element for example, the PCM encoder allo-

cates only 2 output levels to each element of X« Tne K"L

encoder however, distributes the 64 bits in the following

manner

Table 3.5. Integer Bit Distribution Over the
K-L Coefficients

I

m.
1

7

2

4

3

4

4

3 3

10 19

2 2

20 30

1 1

31 64

0 0
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Fourier Encoder

Hadamard Encoder

Figure 3.20. Reconstructed Channel 2 Image
Using 8x8x1 Data Blocks with
the Fourier and Hadamard Encoders
at R = 2.0.
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Thus the first quantized coefficient may take on one of 128

possible values, the second may be one of 16 values and so

on. The increased number of possible values for y.* (and
Z-

/N.

therefore X) allows greater class separation within the

data.

3.6. The Three Dimensional Source

The multispectral scanner output is actually three

dimensional - the two spatial dimensions and the spectral

dimension. In order to take advantage of correlations exist-

ing in all three dimensions of the source a three dimensional

data block is defined as shown in Figure 3.22. The results

of sections 3.4 and 3.5 indicate that spatial correlations

are higher than those found in the spectral dimension. For

a given block size N, (N-N^-N^N^) it is therefore advanta-

geous to include more spatial samples than spectral (i.e. ,

N,,N_>N3). For this reason the three dimensional data block

is chosen to be 8x8x2, 8 vertical samples by 8 horizontal

sample by 2 spectral samples. As described in section 2.6

the data block is re-arranged into a column vector \ having

N=8-8-2=128 elements.

From the spectral correlation matrix of Figure 3.3 it is

evident that some pair-wise combinations of channels are more

highly correlated than others. Since the data block is

8x8x2 it is advantageous to arrange the channels into those

pairs having the highest correlation. This is possible since
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all the channels of data are presented simultaneously at the

output of the scanner, and the order in which they are

selected is arbitrary. Based on the spectral correlation

matrix the following channel sequence is selected

Table 3.6. Re-Ordered Spectral Channels

Channel Wavelength Band (ym)

1 0.40 - 0.44

6 2.00 - 2.60

2 0.62 - 0.66

3 0.66 - 0.72

4 0.80 - 1.00

5 1.00 - 1.40

From the above sequence channels 1 and 6 are contained in

the same data block, then 2 and 3, and finally 4 and 5. The

first column of the resulting 128x128 source covariance ma-

trix for the 8x8x2 data block is presented in Figure 3.23.

Data rates achieved with the three dimensional data

blocks and the K-L, Fourier and Hadamard encoders are pre-

sented in Figure 3.24. The K-L encoder realizes the lowest

data rate. The Fourier and Hadamard encoders are quite simi-

lar, although the Hadamard is slightly better over the dis-

tortion range considered. This may be due to the relatively

large differences in mean values between the channels as

indicated in section 3.2. All three encoders achieve rates

lower than the PCM encoder for distortion near 1% and greater,
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Also included in Figure 3.24 is the rate versus distor-

tion curve for the K-L encoder using a 1x64x2 data block.

This data block is selected based on the performance of the

1x64x1 block over the 8x8x1 block as presented in section 3.5

As in the two dimensional case the 1x64x2 block achieves

lower data rates than does the 8x8x2 block (d<l

3.7. Conclusions and Comparison of Results

The results of Chapter III indicate that correlations

in all three dimensions of the multispectral source are

sufficiently high to warrent the use of a transform coding

scheme as outlined in Figure 1.4. Correlations are lowest

in the spectral dimension and highest in the two spatial

dimensions.

Data rates achieved with the several different data

blocks considered (plus an additional 6x6x1 block) and the

K-L encoder are compared in Figure 3.25. The 1x64x2 block

is best for rates above 0.4 bits/vector element, while the

8x8x2 block is best for rates less than 0.4. The least

efficient data block is the 1x1x6 block - the spectral

channel vector.

The sensitivity of the K-L encoder to varying scene

statistics is examined in Figure 3.26. The two middle curves

represent data rates achieved with the 1x64x1 data block and

the K-L encoder (1) optimized over the region of Figure 3.1

(these rates are identical to those for the K-L encoder in
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Figure 3.14), and (2) optimized over a much larger area (1

mile by 25 miles) of which the area in Figure 3.1 is a sub-

set. The test area for both encoders is that of Figure 3.1.

Although the non-optimum K-L encoder requires higher data

rates than the optimum encoder, both are substantially below

the PCM encoder.
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CHAPTER IV

EXPERIMENTAL RESULTS PART II - SATELLITE DATA

4.1. Introduction and Description of the Source

In this chapter multispectral imagery gathered on the

NASA Apollo 9 S065 experiment [49] over Imperial Valley,

California (frame No. 3698), is subjected to the data com-

pression system of Figure 1.4. The data is obtained from

images taken by four 70mm Hasselblad cameras mounted in the

Apollo 9 spacecraft window. Each camera has the particular

film-filter combination as listed below

Table 4.1 The Four Film-Filter Combinations

Camera Film Filter Wavelength Band (ym)

1 SO-180 Ektachrome Photon 15 0.51-0.89
Infrared

2 3400 Panatonic-X Photon 58B 0.47-0.61

3 SO-246 B/W Photon 89B 0.68-0.89
Infrared

4 3400 Panatonic-X Photon 25A 0.59-0.715

Images from the above camera-filter combinations were

sampled with a scanning microdensitometer having a 25-micron

aperture and sampling interval of 25 microns [50]. This

sampling rate and the spacecraft altitude of approximately

115 miles gives each sample a theoretical ground resolution
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of 200 ft. at nadir and a sample spacing of 200 ft. (actual

ground resolution is 350 ft. at nadir). The data used in

this study are the quantized (256 levels) samples from the

last three wavelength bands listed above. To be useful in

multispectral analysis the three images must be properly

overlaid, i.e. , each image resolution point must be in

geometrical coincidence in all three channels. This prob-

lem is investigated in [51] and the results applied to the

above three images. The resulting data is then a set of

three geometrically coincident digital images, each repre-

senting the scene reflectance in the 0.47-0.61, 0.59-0.715,

and the 0.68-0.89 pm bands. The three images are shown in

Figure 4.1.

4.2. The Three Test Regions

Three quite different types of terrain are represented

in the images of Figure 4.1 - vegetated areas, mountainous

areas, and desert. It is felt that these three categories

approximate the various types of data that an earth resources

satellite might encounter while orbiting the earth. The

areas chosen to represent the three categories are outlined

in the channel 1 image shown in Figure 4.2. Each region is

designated in the following manner

Table 4.2. The Three Test Regions

Region A - Vegetation
Region B - Mountain
Region C - Desert
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Region A
(Vegetation)

Region B
(Mountains)

Region C
(Desert)

Channel 1

Figure 4.2. The Three Test Regions.
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and each contains the same number of data points (384x300

per channel). The three regions are shown at maximum reso-

lution in Figure 4.3.

4.3. Statistical Characteristics of the Three Regions

The mean and variance of Region A, B, and C (averaged

over all three channels) are listed below

Table 4.3. Region Statistics

Mean Variance Standard Deviation

A 85 839 29.0

B 94 375 19.4

C 134 240 15.5

The vegetated region A has the largest variance followed by

the mountainous region B and the desert region C. The

desert area has by far the highest average response while the

mountainous and vegetated region have similar mean values.

Histograms of the data from each region is presented in

Figure 4.4.

The relative variances and spatial correlations existing

in Regions A, B, and C are evident in Figure 4.5 where the

first row of the source covariance matrix resulting from

8x8x1 data blocks is presented. Spatial correlations are

evidently highest in Region C and lowest in the vegetated

region A. This is in agreement with a subjective evaluation

of the three images in Figures 4.2 and 4.3.
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Figure 4.5. First Column of the 8x8x1 Data Block
Covariance Matrix for Regions A, B,
and C.
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4.4. One and Two Dimensional Encoding

The data rates achieved using one and two dimensional

spatial data blocks (see Figure 3.12) and the K-L, Fourier,

and Hadamard encoders over Regions A, B, and C are presented

in this section. The number of transform coefficients y.
7"

retained and the resulting bit distribution over the coeffi-

cient are determined using the results of section 2.9. The

two data blocks considered are the 1x64x1 and the 8x8x1

blocks.

4.4.1 Region A

The data rates achieved with the K-L, Fourier and Hada-

mard encoders over region A are presented in Figure 4.6.

(The relative size of the 8x8x1 data blocks to the areas

encoded is the same as that for the aircraft scanner data

shown in Figure 3.16. However, one data block of the satel-

lite imagery certainly includes more actual ground area than

does the same block of aircraft scanner data.)

The K-L encoder achieves lower data rates than either

the Fourier or the Hadamard encoder, while all three are

substantially better than single sample PCM. As with the

aircraft scanner data the rate distortion function for the

gaussian source is included as a measure of the relative

effectiveness of the various encoders. It is, as mentioned

in Chapter III, an upper bound on the actual rate distortion

function for the multispectral source. The Fourier and Hada-

mard encoders realize similar rates, although the Hadamard
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is slightly better. This may be due to the uniform nature

of the fields within region A. There is little variation

within a given field and a step-like variation between fields

This type of structure is quite similar to the Hadamard basis

vectors as opposed to the more smooth variations present in

the Fourier basis vectors.

In the 1% distortion region the three encoders are cap-

able of an apporximate 2:1 data rate reduction over standard

PCM. Reconstructed channel 1 images at rates of 2, 1, and

0.5 bits/vector element using the K-L encoder are presented

in Figure 4.7. Little or no distortion is evident at the 1

and 2 bit rates, while the 0.5 bit image contains detectable

distortions.

The error image for the K-L encoder at 1 bit/vector

element is also presented in Figure 4.8. Black represents

no error and white represents a squared error of 255 or more.

The area of large error in the upper-left corner of the

image is due to the reconstruction error encountered over

what is apparently a scratch in the original photograph. The

results of the Fourier and Hadamard encoders using 8x8x1 data

blocks at 1 bit/vector element are presented in Figure 4.9.

Both are subjectively reasonable reconstructions of the

original channel 2 image.

The effects of block structure on data rates is shown

in Figure 4.10 where the rates achieved in region A using the

K-L encoder are presented for the one dimensional (1x64x1)
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Fourier Encoder

Hadamard Encoder

Figure 4.9. Reconstructed Channel 1 Image Using
8x8x1 Data Blocks with the Fourier
and Hadamard Encoders at R = 1.0.
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and two dimensional (8x8x1) data blocks (the three dimen-

sional block is also included and is discussed in section

4.6). The two dimensional block is uniformly better than

the 1x64x1 block over the distortion range considered. This

is in contrast to the results obtained with the aircraft

scanner data where, as described in section 3.7, the one

dimensional 1x64x1 block is better (d>2.5%) than the 8x8x1

block.

4.4.2 Region B

Data rates achieved using the K-L, Fourier and Hadamard

encoders with 8x8x1 data blocks over the mountainous region

B are presented in Figure 4.11. The K-L encoder realizes the

lowest data rate while the Fourier and Hadamard are prac-

tically identical in their performance. This is evidently

due to the low variance and high correlations in region B.

The first few transform coefficients contain essentially all

the average source energy ES for both encoders. All three

encoders achieve data rates substantially below the PCM

encoder. In the 1% distortion range the K-L, Fourier and

Hadamard encoders require approximately 2 bits/vector element

while standard PCM requires 4 bits, giving the transform

encoders a 2:1 rate reduction. A reconstructed channel 1

image using the K-L encoder and 8x8x1 data blocks at 1 bit/

vector element is shown in Figure 4.12. Very little

distortion is evident.
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Region B (R « 1.0)

Region C (R = 1.0)

Figure 4.12. Reconstructed Channel 1 Image Using the
8x8x1 Data Block and the K-L Encoder
Over Regions B and C.
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4.4.3 Region C

Data rates achieved with the 8x8x1 data blocks and the

K-L, Fourier and Hadamard encoders over the desert region C

are presented in Figure 4.13. All three encoders are approx-

imately indentical in their performance. The data in region

C is so highly correlated (see Figures 4.2 and 4.5) that the

first transform coefficient of each encoder contains essen-

tially all the source energy ES.

Table 4.4. Percent of Total Variance Contained in Each
Transform Coefficient

K-L

Fourier

Hadamard

1

92.

92.

92.

Coefficient

2 3 ' • '

1

1

1

0

0

0

.54

.41

.46

0.

0.

0.

43 ' ' '

36 ' * '

39 ' ' '

63

.07

.07

.07

64

.07

.07

.07

The first Fourier and Hadamard basis vectors are identical,

and both closely resemble the first K-L basis vector (for

this particular data set). Thus the encoders use, in a

sense, the same basis vectors, and the resulting data rates

could be expected to be similar.

The transform encoders do realize rates substantially

below the PCM encoder. As in regions A and B, the improve-

ment is by a factor of approximately 2 in the 1% distortion

region. A reconstructed channel 1 image using the K-L
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encoder and 8x8x1 data blocks at 1 bit/vector element is

presented in Figure 4.12.

4.5. Comparison of Data Rates Over the Three Regions

Data rates achieved over regions A, B and C may be

meaningfully compared on a total error basis, but not on a

(non-adjusted) percent error basis. For example a 1% distor-

tion in region A represent more total error than a 1% distor-

tion in region C. This is because percent error as defined

in 2.2 is a function of the data variance in the region con-

sidered. Total error is not so defined, but is difficult to

interpret. In order to compare the data rates in the three

regions on a percent error basis the "adjusted" percent

error is defined. It is the total error encountered in a

given region, divided by the average source energy E from

the vegetated region A. These results are presented in

Figure 4.14.

The encoder used in each region is the "optimum" enco-

der for that region (i.e., the transformation matrix T, the

number of transform coefficients retained and the resulting

m., are all based on the region covariance matrix). The most
if

difficult region to encode is the vegetated region A, while

the desert region is the least difficult. This is also true

for the PCM encoder as evidenced by the top three curves.

In a practical, non-adaptive situation (see [53] for a

discussion of an adaptive two dimensional encoder; also [55])
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one encoder would be used for all three regions. The sensi-

tivity of the data rates to encoders optimized over one

region and applied to another is demonstrated in Figure 4.14.

The K-L encoder is optimized over the more difficult region A

and used to encode regions B and C,

The data rates achieved over region B and C are approxi-

mately equal although the region C curve is slightly higher.

Both are above the data rates obtainable using the optimum

encoder for each region, but both are still below the "opti-

mized" PCM encoders. These results indicate that it might

be reasonable to design an encoder to efficiently handle a

particular type of terrain designated most important, and

still perform well over statistically different areas. As

an example, the reconstructed channel 1 images from regions B

and C using the region A optimized K-L encoder at 1.0 bits/

vector element are presented in Figure 4.15.

4.6. Three Dimensional Encoding

The three dimensional data block includes correlations

existing in all three dimensions of the multispectral source.

The structure of the three dimensional block is described in

section 3.6 and Figure 3.22.

Data rates achieved using the K-L encoder over region A

with 6x6x3 blocks (6 lines x 6 columns x 3 channels) are pre-

sented in Figure 4.10. Also included are the rates obtained

with the 6x6x1 block. It is evident that the three



121

Region B

Region C

Figure 4.15 Reconstructed Channel 1 Image Using the
Non-Optimum K-L Encoder Over Regions B
and C (8x8x1 Data Block).
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dimensional data block is superior to the other one and

two dimensional blocks for the distortion range considered.

At It distortion an approximate 5:1 rate reduction over

standard PCM is indicated.

4.7. Principal Component Images

Although the satellite data analyzed in this study has

only three spectral channels of information, it is of inter-

est to examine the three principal component images. The

images are constructed in the manner described in section

3.2. The data block (1x1x3) is the three element spectral

vector.

The source covariance matrix is

585.2

C = 594.5

339.7

1034.5

348.7 740.0 4.1

yielding the following three eigenvalues and K-L transfor-

mation matrix T

1689.2, = 512.5, 158.0 4.2

0 .527

-0 .082

0.846

0.719

-0 .487

-0 .495

0.453

0.870

-0.197

4.3



123

The weights given to the original three channels are given

by the columns of T. The resulting three principal

component images are shown in Figure 4.16.
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CHAPTER V

DISCUSSION OF THEORETICAL AND EXPERIMENTAL RESULTS

In this chapter the theoretical results of Chapter II

and the experimental results of Chapters III and IV are dis-

cussed. The transform encoder is evaluated based on the two

error criteria defined in section 2.1.

5.1. Theoretical Results

An approximate solution to the minimization of the

total encoder system error over the number of retained trans-

form coefficients and corresponding bit distribution for a

fixed data rate and block size is presented and successfully

applied to both the Markov source and to the multispectral

data. The optimum number of retained coefficients is shown

to be a function of the variances of the transform coefficients,

as is the resulting bit distribution.

The K-dimensional linear transformation is shown to be

representable by a single equivalent matrix multiplication

of the re-ordered source output tensor. The resulting equi-

valent matrix for the Hadamard transformation is again a

Hadamard matrix. This is not the case for the Fourier trans-

formation, although the equivalent matrix is again orthogonal.
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The selection of an optimum data block size under a

maximum volume constraint is considered for the continuous

source. The solution is in the form of a set of equations

the K dimensions of the optimum block must satisfy, and is

a function of the average error in a particular plane of the

data.

5.2. Principal Component Imagery and Feature Selection

The transformation of multispectral data to principal

components in the spectral dimension is found to be quite

useful in providing an efficient means of data classification

and storage. The first three principal component images (for

the aircraft data) are shown to contain essentially all the

information present in the original six spectral images. For

the three channel satellite data only the first two principal

component images are significant. The six Fourier component

images from the aircraft data are found to exhibit substan-

tially less information packing.

The problem of feature selection is simplified to a

"first n" rule in the transform domain, and the results are

experimentally verified over the aircraft data set. The

results show that the first n transform features are at

least as good as the "best" n spectral channels.

5.3. Encoder Performance Based on Mean Square Error

The results of Chapters III and IV indicate that corre-

lations in all three dimensions of the multispectral source
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are sufficiently high to warrant the use of a transform cod-

ing scheme. Encoder data rates are lowest for the K-L encoder,

with the Fourier and Hadamard encoders typically performing

at somewhat higher rates. All three encoders achieve data

rates substantially below the standard (single sample) PCM

encoder, and therefore represent significant reductions in

bandwidth and/or storage requirements. Reductions (over stan-

dard PCM) range from approximately 3:1 at II distortion to

more than 20:1 at 101 distortion using the K-L encoder over

both the aircraft and satellite data sets.

The area to be encoded is found to be relatively insen-

sitive to the encoder parameters. This result indicates that

it might be reasonable to design an encoder to efficiently

handle a particular type of terrain designated most important,

and still perform well over statistically different areas.

The effects of data block structure are significant in

that the encoder data rates are found to be a function of the

dimensionality of the data block.

5.4. Encoder Performance Based On Classification Accuracy

The ability of the transform encoder to preserve class

separability as determined by a maximum likelihood decision

rule is quite good. Very little (=61) reduction in classi-

fication accuracy is evident for data rates as low as 0.25

bits/vector element using the K-L encoder, while the stan-

dard PCM encoder degrades rapidly (70% reduction at 1.0

bits/vector element).
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APPENDIX A

MEAN SQUARE ERROR AS A FUNCTION OF POSITION WITHIN

THE DATA BLOCK

Consider the K-dimensional zero mean random process :

having the following properties

1) The process is time aplitude continuous, with

x(t) = xCtj, t2, ..., tK) A.I

2) The process is correlation stationary [57].

The autocorrelation function is then R(t_-.r)

and the process variance is

£{x2(t)} = o* A. 2

Define the Karhunen-Loeve series expansion of x(;t) over

the data block (interval) [NI , NZ, ..., Nn]

x(t) = I y,.*-(t) 0 < t. < N. Vi A. 3
= l " " — ^ — ^
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where the 4>.(;t) are the orthonormal eigenfunctions of the
J

integral equation

Nl NK

A.<b.(t) = f ... f R(t-TU.(T)dT A.4
«/ J J J <7

and the A. are the eigenvalues of A.4
If

The random coefficients y. are determined by
J

Nl NK

^. = J ... J

where

A. 5

Define the mean square sampling error d (t)

d ft) = £{[x(t)-x(t)]2} A. 6

x(t) = I y,4>,(t3 A. 7

Expanding A.6 in terms of A.3 and A.7 gives

CO CO

ds(i) E £ £fy-y-H • (t)<f>-CO A. s
i»n+l j=n+l J J
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But

NKN1 NK

J... I J...J x(t)x(T)̂ (t)̂ .(T)dtdT

Nl NKN1 NK

J...J J...J RCt-T^ct^.CDdtdT A.9

From A.4 equation A.9 becomes

Nl NK

Eiy.y.} - J...J A^. A.10

The 4>-Ct) are orthonormal. Thus A. 10 gives
—

A. i=j
i/

0 i?«j
A.11

or

A.12
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and the eigenvalues of A.4 are the variances of the y^.

Substituting A.11 into the expression for dg(O in A.8 gives

00

ds(t) a I A <J>*(t) A.13
• " v v

From Mercer's Theorem [57]

<*l = I A V.(t) A.14

Thus A.13 becomes

n
Z A . <£ . (t) A l l ;

J-l J J ~ b

Equations A.13 and A.15 are the desired result. They express

the total sampling error as a function of position (t)

within the N,xN-x ...xlV data block.
i L 1\

The mean integral square sampling error is

Nl NK

ds - J... J dsCl)dt_ A. 16
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Substituting A . l 3 in to A.16

A.l7b

I V
.i-n+1

result [54 ,56 ,57]
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APPENDIX B

THE OPTIMUM BLOCK SIZE

Consider the Karhunen-Loeve series expansion of the

K-dimensional random process x(tO defined in Appendix A. The

following problem is examined. Choose the N., t=l,2,»'*,K

that minimize the mean integral sampling error d as defined
c>

in A.17, subject to the constraint

K
n N. = NJ-l J B.I

Introducing the Lagrange multiplier A the problem

becomes the solution to the following K+l equations

K
d + A n N.

i'l i = 1,2,'",K B.2

n N . = N B.3
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Using the results of Appendix A, B.2 becomes

a
IN.

" K
I A . + A n N

j=n+l J j-i »
B.4

or

. .j=n+l i
B.5

The first term in B.5 is now examined. Multiplying

both sides of A.4 by <|>.(t_) and integrating gives
0

Nl NK Nl NK

!***! B.6

The partial derivative of A. is then
J

3 A .
N. N.i.

\ PTTJ R(t-1)<Oj.(t)0>j.(T)dLdt B.7

where -I- is introduced as the multiple integral

N. N. , N.A Nv1 ^-l i+l K

M-I i -i B.8



141

i.e., integration over all N., jfi
0

Carrying out the differentiation in B.7 gives

ax

where

and

' HI "fc'-i'.vwD̂ d-.

N.t

R(t"T)<f> (tU.(T)dT. *
J J *

B.9

B.10

B-n
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Rewriting B.9

N.
i

a** - ff J RCr-i-^-T^^CLJ^ct-.N^dT

\

N. N.
t t t f

24-4- R(t-T)<j> .(T)<}> .(t)dtdt B.12
J J J J t/ J
i t

After some manipulation and using A.4 the three integrals in

B.I2 become

First integral = 4-X .<j>2.(t',N.)<lt' B.13
J J «7 *
i

Second integral = -fx .<}.2.( t',N .)d T' B.14
j J J *

Nl NK

Third integral = 2[ • ••|X .^ .(t)f ,(t)dt B.I5
J J J J J
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Evaluation of B.15 is accomplished using the orthonormality

of the 4) .(t)
J

Nl NK
B-16

or

= ° B'17
'.' i.

Carrying out the differentiation and rearranging terms gives

Nl NK

B.18

Substituting B.18, B.13 and B.14 into B.12 gives

. > . , . - .*(t',N.)«lt B.19a
J J - t - J .7 r7 t.

^

B.19b



Now B.19 may be used in B.5

(

j-TH-lTj J' ' i ^i

or

Since AN is a constant B.21 implies

N *X
j
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' ~ AN_ . „
B.20

-AN

B.22

The set of N.,i-l,2, • • • ,K that satisify B.22 are the
if

desired result. Based on the results of Appendix A the

following interpretation may be given to B.22. First,

rewrite B.22 in the following form

, 0 0 . „

N,4 I x .4>2.(t',N.)dt' - N7| 7 X .<|>2.(t',N7)dt' B.23v). i=n + l 33— i - frJv««*l -7 3 ~ t —
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From A.13

ds(t) - [ A V.(t) B.24

Thus the integrals in B.23 represent the sampling error as

a function of t' in the plane t.=N.. Integrating over t'
— Tr I* -

gives the average sampling error in the plane t.»N..
If Is

Equation B.23 states that the optimum choice of N.,
IP

i»l, 2, •••,!( is such that N^ times the average error in the

t.=N. plane is equal to N, times the average error in the

t^Ny plane.

If the process autocorrelation function is separable,

i.e.

K
R(t-T) = H R.(t.-T-) B.25

then B.23 may be simplified to give

N I X.9« .(N.) = N [ X.e* ,(N )
l= J J > 1 -+ J 3> l

B.26
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APPENDIX C

BIT DISTRIBUTION FOR THE K-L ENCODER

Tables C.I and C.2 below represent integer bit

assignments resulting from the application of equations 2.60

and 2.63 to the aircraft scanner data using the K-L encoder

and 1x1x6 and 1x64x1 data blocks, respectively. The

resulting percent distortions are presented in Figures 3.7

and 3.14.

Table C.I. Bit Distribution for the K-L Encoder
and 1x1x6 Data Blocks

No. Bits

8

7

6

5

4

3

2

1

R = 5 . 0

1

-

2

3

4-5

6

-

.

R*3.0 R=1.0 R=0 .33

-

.

1
_

2

3 1

4-5 2 1

6 3
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Table C,2. Bit Distribution for the K-L Encoder
and 1x64x1 Data Blocks

No. Bits

9

8

7

6

5

4

3

2

1

R-2.0 R=1.0

1

-

2 1

3-5

6-11 2

12-21 3-4

22-26 5-10

27-29 11-20

30-32 21-26

R-0.50 R-0.25 R«0.125

.
_

.

1

1

2 4

3 2

4-8 3 2

9-17 4-9 3-4
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