Information Note 050572

Multispectral Data Compression

Through Transform Coding

and Block Quantization

P. ). Ready
P. A. Wintz

The Laboratory for Applications of Remote Sensing
Purdue University




LARS Information Note 050572

MULTISPECTRAL DATA COMPRESSION
THROUGH TRANSFORM CODING AND
BLOCK QUANTIZATION!

Patrick J. Ready
Paul A. Wintz
. TR-EE 72-2
May, 1972

Published by the
Laboratory for Applications of Remote Sensing (LARS)
and the
School of Electrical Engineering
Purdue University
Lafayette, Indiana 47907

1This work was supported by the National Aeronautics and Space
Administration under Grant No. NGL 15-005-112.



TABLE OF CONTENTS

LIST OF TABLES ..ttt iiienenennseseransasnanns
LIST OF FIGURES . ...ttt iiiietteesssnneacnennnns
0 2 Y
CHAPTER I - INTRODUCTION .. ... ¢t irnensnnacnncnnnnns
1.1 The Need for Data Compression ........ececesvs.
1.2 Transform Coding and Block Quantization .......
1.3 The Two Data SOUTCES .....iveveenvnonnnanaonnns
1.4 Statistical Description of the Multispectral
SOUTCE ...t tiiitiiirienenonsenooanensansnnanenns
1.5 Basic System Structure ........ccoeeeeveenscess

'CHAPTER II - ERROR CRITERIA, SAMPLING AND QUANTIZATION,

2.1 Definition of the Error Criteria ..............
2.2 The Rate Distortion Function ......c.cvveueeunnes
2.3 Sources Of ETTor .......ciieererencocesnssnnnns
2.4 The Karhunen - Loéve Transformation ...........
2.5 The Fourier and Hadamard Transformation .......
2.6 Equivalent Matrix Transformations .............
2.7 Applications to the Hadamard and Fourier

Transformations .........ccieiieenecennenncnnns
2.8 Quantization .......c.ceetererencescncansancnes
2.9 Minimization of the Total System Error ........
2.10 The Markov Source - An Example ................
2.11 Selection of the Optimum Block Size ...........

CHAPTER III - EXPERIMENTAL RESULTS PART I - AIRCRAFT

SCANNER DATA .. ittt ittt iitenensossnsnnsansassnss
3.1 Introduction and Description of the Source
3.2 The Spectral Dimension and Principal

Components . ....iiieiernenancsesssasosesesnanes
3.3 The Spectral Dimension and Fourier Components
3.4 Data Compression in the Spectral Dimension
3.5 The Two Spatial Dimensions .......cccievevvnnnnn
3.6 The Three Dimensional Source ......c.cieeeeeens
3.7 Conclusion and Comparison of Results .,.........

T11




iv

Page
CHAPTER IV - EXPERIMENTA] RESULTS PART II - SATELLITE
72 S 98
4.1 Introduction and Description of the Source .... 98
4.2 The Three Test Regions .......ceeeveeveneacenns 99
4,3 Statistical Characterlstlcs of the Three
REZIONS . iiiiiinettiennnineeeeneoensacnannannn 102
4.4 One and Two Dimensional Encoding .............. 106
4.4.1 Region A ... ittt iiiiernensscananannns 106
4.,4.2 Region B ...ttt irronrcnncnnns 113
4.4.3 Region C ...ttt ereeeneesceonsennnnss 116
4.5 Comparison of Data Rates Over the Three
B 03 - 1 £ - 118
4.6 Three Dimensional Encoding ...........ccvvunn.. 120
4,7 Principal Component Images .....ccvevvennnnnns 122
CHAPTER V - DISCUSSION OF THEORETICAL AND EXPERIMENTAL
RESULTS .....cccvecenen ceecaoae Gttt ececresriennsnnes 125
5.1 Theoretical ReSUlLS .....v.veeernnncossccnnnnns 125
5.2 Principal Component Imagery and Feature
SeleCtion ....iiiieirtieirirrcenctnesesioreeanns 126
5.3 Encoder Performance Based on Mean Square Error. 126
5.4 Encoder Performance Based on Classification
ACCUTACY ..iveevncannns cescerenaneaenn I Y
LIST OF REFERENCES ..... teseseseseenenes cessens cessesss 128
APPENDICES

Appendix A - Mean Square Error as a Function of

Position Within the Data Block ........ Crreseecas 134
Appendix B - The Optimum Block Size ............ cees 139
Appendix C - Bit Distribution for the K-L Encoder .. 147




Table Page
3.1 Spectral Channels and Their Corresponding
Wavelength Bands ..........iiieeiiienrnennnnnnns 49
3.2 The Six'Spectral Eigenvalues ..... et e 61
3;3 The Fourier Coefficient Variances .....cceeeeeee 63
3.4 Features Used for Classification ......ccveveuen 66
3.5 Integer Bit Distribution Over the K-L
Coefficients t.vieeriieiieeoeenoneooensocnasanss 86
3.6 Re-Ordered Spectral Channels ..........cvieuvens 91
4.1 The Four Film-Filter Combinations ........cc0... 98
4.2 The Three Test Regions .....eiieveecensssanncans 99
4.3 Region StatisticCs ....viiereerncsceooionnsannnns 102
4.4 Percent of Total Variance Contained in Each
Transform Coefficient .........veteeeeeoconoenns 116
Appendix
Table
c.1 Bit Distribution for the K-L Encoder and 1x1x6
Data BloCKS ..iviiieeeerereeeonoeesnasnanssscnnes 147
Cc.2 Bit Distribution for the K-L Encoder and 1x64x1

LIST OF TABLES

Data BloCKS . ivitiiiieteeeescoassnveosncancanses 148



vt

LIST OF FIGURES

Figure Page
1.1 Panchromatic Photograph of the Aircraft Scanner

Data Set ... ..ttt innnesosenssnsnnns 6
1.2 The Satellite Data Set (.59-.715um) ............. 7
1.3 The Multispectral Vector Source .........covcvnnes 8

1.4 System Diagram of the Transform Coding - Block
Quantization Data Compression Technique ......... 11

2.1 The Karhunen - Loéve Transformation with N=2 .... 23

2.2 The ith Lloyd - Max Non Uniform Quantizer W1th

M oS i it ot aoeeononesoaesstsosssnessonoecassssessas 34

1
2.3 Optimum Number of Samples Versus Data Rate for

the Markov SoUTCE . ......titeerenrenononnnooonnans 42
2.4 Bit Distribution Over the n o+ Quantizers for

the Markov Source .......... P . 44
2.5 Data Rate Versus Percent Distortion for the Markov

SOUTCE ittt it vnnotooeoneencsoessanocsnassesosnasessns 45
3.1 The Aircraft Scanner Data Set ......ccvevvneonnns 51
3.2 Ground Resolution Points and Their Associated

Channel VeCtorS ....veeeeencennennne ceeceneaann .. 54
3.3 First and Second Order Spectral Statistics ...... 55

3.4 The Six Principal Component Images for the
Aircraft Scanner Data Set .........iiiieevevnennn 59

3.5 The Six Fourier Component Images for the Aircraft
Scanner Data Set ..........iiiiiiiierinernnennnns 64

3.6 Classification Accuracy Versus Number of Features
Using the Spectral, Fourier, and Principal
ComponentsS .....ieeerieesnsececsescesesoscaansanens 67



Figure

3.7

3.8

3.9

3.10

3.11

3.12

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

Vit

Page
Data Rate Versus Percent Distortion Using the
1x1x6 Data Block .......iiiiviinnereencenconnnens 69
Reconstructed Channel 2 Image Using the K-L
Encoder at Three Different Data Rates (1x1x6
Data BloCKS) voiiveeeeeseeneooooonanannons e 71

Error Image Between the Original and Reconstructed

Channel 2 Image Using the K-L Encoder (1x1x6

Data BloCKS ) tiiitiiiieineneeeeeeceoonoonncsnonnns 73
The N Two DimensioﬁaIFSpectral Images ........... 74
Normalized Inter—Line and Inter-Column

Autocorrelation Functions .........ccievveeennnen 75
One and Two Dimensional Spatial Data Blocks ..... 77

First Column of the 8x8x1 Data Blocks
Covariance MatriX .....veieeereeeennnoaenonannoens 78

Data Rate Versus Percent Distortion Using the
1x64x1 Data Blocks .............. e ereceseenesans 79

Data Rate Versus Percent Distortion Using the
8x8x1 Data BIoCkS .......ivevrerncensocnnsnnsoanans 80

Comparison of the One and Two Dimensional Data
Blocks with the Original Spectral Image ......... 82

Reconstructed Channel 2 Image Using the K-L
Encoder at Three Different Data Rates (1x64x1
Data BloCKS) i vetereeennensacsccocnnconcsononsaes 83

Reconstructed Channel 2 Image Using the K-L
Encoder at Three Different Data Rates (8x8x1l
Data BlOCKS) tivieeeeeeneeeaaooosesosoonssssnncns 84

Error Images Between the Original and
Reconstructed Channel 2 Image Using Two
Different Data Blocks and the K-L Encoder ....... 85

Reconstructed Channel 2 Image Using 8x8x1 Data
Blocks with the Fourier and Hadamard Encoders

At R = 2.0 i ittt titetreensssoseanensasesononess 87
Percent Correct Classification Versus Data Rate

Using 8x8x1 Data Blocks ........iiiiieienonronan 88
The Three Dimensional Data Blocks .........cccc0 90



viii

Figure Page

3.23 First Row of the 8x8x2 Data Block
Covariance MatriX ....eceeeees seeeossenn Ceeceeannn 92

3.24 Data Rate Versus Percent Distortion Using
the 8x8x2 and 1x64x2 Data BlockS ......ceveveecnn 93

3.25 Data Rate Versus Percent Distortion Using
the K-L Encoder and Various Data Blocks ......... 9§

3.26 Data Rate Versus Percent Distortion Using
the Optimum and Non-Optimum K-L Encoder with

the 1x64x]1 Data Blocks .....ciiiiievinrecnceennns 96
4.1 The Original Three Spectral Images ......co00cee. 100
4.2 The Three Test Regions ......ccieeeevenesnces ces.. 101

4.3 The Three Test Regions of Maximum Resolution .... 103
4.4 Histograms of the Three Regions ......cevceeueenn 104

4.5 First Column of the 8x8x1 Data Block Covariance
Matrix for Regions A, B, and C. .......cccvvvvnn 105

4.6 Data Rate Versus Percent Distortion Using
the 8x8x1 Data Block Over Region A ...... ceeesess 107

4.7 Reconstructed Channel 1 Image Using the K-L
Encoder at Three Different Data Rates (8x8x1
Data Blocks) ® ® ¢ ¢ & ¢ & & 0 0 s s 0 0 ® ® & 6 0 0 5 2 0 ° 0 00 s e e e e 109

4.8 Error Image Between the Original and Reconstructed
Channel 1 Image Using the K-L Encoder (8x8x1
Data BloCKkS) .eiveveensvoorsccosanssssassnsacanas .. 110

4.9 Reconstructed Channel 1 Image Using 8x8x1 Data
Blocks with the Fourier and Hadamard Encoder at
R=1.0 ® 8 6 & 9 & & & O & 5 0 O 0O S SO S BB O P GBS S s e 0 a0 s @ o s ° 111

4.10 Data Rate Versus Percent Distortion Using the
K-L Encoder and Various Data Blocks Over
Region A ................ ® 8 & & 0 6 & 0 2 0 6 0 6" O B P S e G e” 112

4,11 Data Rate Versus Percent Distortion Using the
8x8x1 Data Block Over Region B ......... cecaraas 114

4,12 Reconstructed Channel 1 Image Using the 8x8x1
Data Blocks and the K-L Encoder Over Regions
Band C .....ccvevn cesene ey 115



Figure
4.13 Data Rate Versus Percent Distortion Using the
8x8x1 Data Blocks Over Region C ....ccceveenenns
4.14 Data Rate Versus Percent Distortion Using the
Optimum and Non-Optimum K-L Encoder (8x8x1
Data Blocks) ® & o 0 & 8 & 00 ® & @ % 8 9 © 0 ¢ S O 4 O 0 O 8 @ s e %0 0o
4.15 Reconstructed Channel 1 Image Using the
Non-Optimum K-L Encoder Over Regions B and C
(8x8x1 Data Blocks) ¢ & & 0o 0 06 & 0 5 v & 0 ® & o & o @ 0 8 0 ¢ 0 0 s 0
4.16 The Three Principal Component Images ...........

1z

Page

117

119

121
124




ABSTRACT

Transform coding and block quantization techniques are
applied to multispectral data for data compression purposes.
Two types of multispectral data are considered, (1) aircraft
scanner data, and (2) digitized satellite imagery. The
multispectral source is defined and an appropriate mathe-
matical model proposed.

Two error criteria are used to evaluate the performance
of the transform encoder. The first is the mean square error
between the original and reconstructed data sets. The second
is the performance of a computer implemented classification
algorithm over the reconstructed data set. The total mean
square error for the multispectral vector source is shown to
be the sum of the sampling (truncation) and quantization
error.

The Karhunen-Loéve, Fourier, and Hadamard encoders are
considered and are compared to the rate distortion function
for the equivalent gaussian source and to the performance of
the single sample PCM encoder. |

The K-dimensional linear transformation is shown to be

representable by a single equivalent matrix multiplication
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of the re-ordered source output tensor. Consequences of
this result relative to the K-dimensional Fourier and
Hadamard transformations are pfesented.

Minimization of the total encoder system error over the
number of retained transform coefficients and corresponding
bit distribution for a fixed data rate and block size is
considered and an approximate solution proposed. Minimi-
zation of the sampling error over the data block size for
the continuous source is also considered.

The results of the total encoder system error problem
are applied to both an artifically generated Markov source
and to the actual multispectral data sets.

The Karhunen-Loéve transformation is applied to the
spectral dimension of the multispectral source and the
Tesulting principal components are evaluated as feature
vectors for use in data classification.

Experimental results using the transform encoder and
several different (i.e., one, two, and three dimensional)
data blocks are presented for both the satellite and aircraft
data sets. Performances of the encoders over the three test

regions within the satellite data are evaluated and compared.



CHAPTER 1
INTRODUCTION

Remote sensing of the environment is rapidly becoming
a major area of research for engineers and scientists
throughout the world [1,2]. Satellites and high altitude
aircraft provide ideal platforms from which earth resources
data may be gathered. The data is gathered in the form
of several spectral images of a particular‘area of the
earth under observation. Each image represents the spatial
distribution of electromagnetic energy as seen through a
given spectral window. Information about a particular
area is obtained through the study of the spatial and
spectral characteristics of the data for that area. Tem-
poral characteristics are also useful, but are not consid-
ered in this study. A source producing data in the above

manner is defined to be a multispectral source [3,4,5].

1.1. The Need for Data Compression

Due to the extremely large volumes of data generated
by a multispectral source three major problems require
attention. The first is the potentially wide bandwidth
required to- transmit data from a remote sensor to a data

collection center, as in satellite transmission to a




ground station. As the quantity of data transmitted in a
given amount of time increases so does the required
bandwidth,

The second problem is the actual physical storage of
multispectral data. The value of gathered data never van-
ishes since one cannot always predict with certainty the
future applications of the data. Data libraries soon be-
come unreasonably large as the quantity of stored data
increases.

The third problem is the increasingly large blocks of
time required for man/machine analysis of multispectral
data. The three dimensional nature of the data makes it
quite difficult, especially for the human analyst, to
efficiently use the large amounts of information provided.

The application of appropriate data compression
techniques to the data can significantly reduce the sever-
ity of the above three problems. Data compression reduces
the quantity of data to be transmitted in a given amount
of time and thereby decreases the required transmission
bandwidth; Secondly, multispectral data can be stored in
the compressed state and reconstructed upon user request,
resulting in more efficient data storage.

Thirdly, analysis can sometimes be performed on the
compressed data, thereby reducing the amount of data the

human or machine analyst must process.




Since it is not possible to anticipate the needs of
future users of the data, it is important that any data
compression technique be information preserving. That is,
the technique should not destroy more than what has been
determined to be the maximum acceptable information loss.
In addition, the data compression technique should be
capable of efficient combression of the several different
kinds of data (i.e., vegetation, desert, mountains, etc.)
that a multispectral sensor might encounter over changing

terrain.

1.2. Transform Coding and Block Quantization

The data compreésion technique analyzed in this study
is that of an appropriate orthogonal transformation of
each realization of the multispectral source output, fol-
lowed by quantization of some subset of the transform
coefficients. The most frequently reported application of
this technique is in the area of one dimensional speech
processing and two dimensional image processing [6], and
has been investigated by several authors, most notably
Kramer and Mathews [7], Huang and Schultheiss [8], Pratt
et al [9], and Habbi and Wintz [10]. A general descrip-
tion of past and present advances in image processing is
given by Huang, et al in [11] and by Wintz in {59]. Ex-
tensive bibliographies on data compression and bandwidth
reduction have been compiled by Wilkins and Wintz [12],

Pratt [13], and Rosenfeld {14].




Applications of transform coding and block quantization
to the three dimensional multispectral source have yet to
be reported by any authors, although Haralick and Dinstein
[15], and Crawford et al {16] used a one dimensional spec-
tral transformation for data clustering purposes. A non-
transform coding approach (i.e., data omission, low pass
filtering with mixed highs, etc.) applied to multispectral
data is reported in [17], and some work with two dimen-
sional transform coding of multispectral data by Silverman

is given in [18] and Haralick et al in [48].

1.3. The Two Data Sources

The two principal sources of multispectral data,
satellite and aircraft mounted scanners, are studied sepa-
rately. This is done in order to provide results more
representative of each, in that enough significant statis-
tical difference may exist in their outputs to warrant
the separation. One major source of the difference is
the vastl} different altitudes from which the data is gath-
ered. Aircraft data is typically gathered at an altitude
of from one half to eight miles while satellite data is ob-
tained at altutudes of approximately 100 miles and more. The
-satellite data thus (1) may not have the spatial resolu-
tion of the aircraft data, (2) may contain more variations
in ground structure and cover within a given time and

spatial period than the localized aircraft data.




For example, Figures 1.1 and 1.2 are images from the two
data sets on which most of the experimental results of this
study are based. The satellite data contains vegetated
areas, desert; and mountainous regions. In contrast, the
aircraft data contains a large percentage of vegetation,
some bare soil, and a rather small percentage of roads and
buildings. (The panchromatic photograph shown in Figure 1.1
was taken in late May. The aircraft scanner data used in
this study is from the same physical area, but gathered

approximately one month later.)

1.4, Statistical Description of the Multispectral Source

The assumption is made that both the aircraft and satel-
lite sensors may be adequately modeled by the source shown in
Figure 1.3. The source is time discrete and amplitude con-
tinuous. Each realization of the source output is the ensem-
ble of real numbers X1 Xgs evey Xy o The output is thus
an N-dimensional vector X in Euclidean N-space.

The elements of X may be the spectral intensity of an
area on the ground as measured through N different wave-
length bands (channels), or X may represent the spatial
variation of reflected energy within a given wavelength
“band, or X may be some combination of the above two inter-
pretations. This generality in the definition of the

source output vector X is useful in the analysis which

follows.



Figure 1.1. Panchromatic Photograph of the Aircraft
Scanner Data Set.



Figure 1.2. The Satellite Data Set (.59-,715um).



Multispectral '
Source ®

Figure 1.3. The Multispectral Vector Source,



In any case, X is assumed to be a random vector having

mean U

U = E{X} 1.1
and NxN real, symetric covariance matrix c

C = E{X-1) (x-1)%} 1.2

The variances of the {xi}rg=1 are given by the diagonal

elements of'g. Thus

- 2 = 2 y =
E{(xi ui) } oxi, i 1, 2, ..., N 1.3

The average source output eﬁergy is then

E, = £(]|X-Ul|?} 1.4a

It is further assumed that U = 0 for the multispectral
source. This represents no restrictions on the source
since X can be forced to have zero mean by subtracting U.

No assumptions are made regarding the joint probability
density fﬁnction for the elements of X, although it is re-

ported in [19] that the jointly Gaussian assumption is a
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reasonable approximation for several applications in pattern
recognition.

The elements of X are, in general, correlated and
successive realizations of X may also be correlated (i.e.,
the source has memory). It is this memory or source
redundanéy that is the motivation for transform coding of

the source output X.

1.5. Basic System Structure

The system diagram of the transform coding block
quantization technique used in this study is presented in
Figure 1.4,

The output of the transform encoder is the n-dimensional
random vector (n < N) of real numbers Y. This output is
obtained by pre-multiplying the source output vector X by
the nxN transform matrix T. The matrix transform T is
chosen based on its ability to pack a large percentage of
the total output variance ES into as few elements of Y as
possible. This property of the transformation is discussed
in Chapter 2.

Since (1) the time-bandwidth product of any physically
realizable means of data transmission is finite and (2) the
storage capacity of data libraries is limited, the n-vector
Y must be quantized to a finite number of levels per vector

element. The output of the bank of n quantizers Y* is

therefore a distorted version of the input vector Y.
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The vector Y* is transmitted or stored, depending on
the application of the system. In either case it is assumed
that no error occurs in transmission or storage retrieval.
Thus the input to the decoder is again Y*.

In some cases, to be discussed later, user analysis of
the multispectral data may be carried out using Y*. 1In
ofher cases the original source output X is of interest.

The vector i is an estimate of X obtained from Y* by the
transform decoder. This is accomplished by premultipiying

Y* by the transpose of T

A useful system produces an estimate g that is a
reasonable approximation to the original source output X
when measured by some error criteria meaningful to the
various users of the data. At the same time the useful
system must produce a significant reduction in transmission

bandwidth or data storage requirements.



CHAPTER 11

ERROR CRITERIA, SAMPLING AND QUANTIZATION

2.1. Definition of the Error Criteria

Two criteria are used in this study as a measure of
the fidelity of reproduction of the original source out-
put X. The first is the mean square error between X and
i denoted by d. "It is the expected value of the square

of the Euclidean distance between X and'i.

d = E{||X-X]]2) 2.

The percent mean square error is also used

dp = (d/Es)fIOO% A | : 2.

where Eshas been previously defined in equation 1.4 as
the average vector source output energy.
The second error criteria is percent classification

accuracy. This measure reflects the ability of the data

13

user (man or machine) to distinguish between pre-selected

. classes within the reconstructed data set. It is defined

_ to be the number of data points correctly classified into

‘a preselected number of categories, divided by the total

number of data points considered (X100%). The classifica-

tion results presented in this study are the result of
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automatic point by point classification by computer [20].
It may be, however, that the results are also indicative
of the performance of human ''classifiers', such as photo-
interpreters, etc. Thus an attempt is made to measure the
usefulness of g as compared to the original X in the anal-
ysis of multispectrally imaged areas. The ability of a
data user to gain information about a particular area from
each spectral band (image) transmitted or stored is criti-
cal. A particular spectral band having a relatively low
distortion as measured by the mean square error criteria d,
but distorted in such a way as to be useless for classifi-
cation purposes is not an acceptable situation. It is
therefore suggested in this study that a consideration of
both error criteria, mean square error and classification

accuracy, gives a reasonable indication of the effects of

multispectral data compression on data quality.

2.2. The Rate Distortion Function

Using the mean square error criteria described in
Section 2.1 an information rate may be associated with the
multispectral source based on the concept of average mutu-
al information [21, 22]. The average mutual information
I(X, i) between X and i is defined to be the average

information provided about the event

Source output = X 2.3
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by the occurrence of the event
Transform decoder output = X 2.4

In terms of the expectation operator, I(X, g) is defined
“to be
. P(X|X)
I(X, X) = E{loga (———)} bits | 2.5
P(X) -

where P(X) is the joint probability density function for X,
and P(Xli) is the conditional probability density function
for X conditioned on the event 2.4,

That I(X, i) is a measure of the mutual information
between X and g is evidént since (1) if X and i are statis-
tically independent (i.e., knowledge of i gives no informa-
tion about X) then P(X|X) = P(X) and I(X, X) = 0, (2) if
the event g implies X (i.e., knowledge of g completely
specifies X) then P(Elg) = 1, and

E{log, ( 1 )} bits 2.6a

1(X, X) >

H(X) bits 2.6b

where H(X) is the entropy or self information of the source.
The rate distortion function for the multispectral

source R(d) is defined by
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R(d) = inf {I(X, X)} bits | 2.7a
P(X|X)eS,

where 84 is set of all conditional probability density

functions P(&,i) such that
d > ”P(g(_,i)llx_-illzdzdi 2.7b

as in 2.1. Since the infimum is over all conditional
densities in Sd, the rate of the source is a function of
the source statistics and not the transmission channel
or the storage technique.

The rate distortion function as defined in 2.7 is
derived for the Gaussian vector source with memory by
Berger [22] Chapter 4, by Bunin in [23], and by Kolmogorov
(for the time and amplitude continuous source) in [61].

R(d) is given parametrically by the equations

1 m e) A‘I:
R(d) = log, (—) bits/vector element 2.8a
W o €

[~9
L}

N
Ir;+ em(e) , 2.8b

i=m(e)+1

where the Ai’ t=1, 2, ..., N are the ordered (A;>A;>¢-<>

AN) eigenvalues of the NxN source covariance matrix C and
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m(e) is an integer such that

AL>A >Deeed>) 2.8c

>000)Am N

1”22 () €2 m(e)+1

If e>A then R(d) = 0.

1’
The rate distortion function defined in 2.8 is a lower
bound on the rate realizable by the block quantization
scheme of Figure 1.4 (assuming a Gaussian input) since it
is shown in [22] to be the lower bound for any coding scheme
applied to the stationary Gaussian vector source with
memory. Since no assumptions are made regarding the source
density function, 2.8 becomes an upper bound on the rate
distortion function for the multispectral source. It
nevertheless serves as a measure of the efficiency of the
block quantization technique. It is recognized however
that in reality the multispectral source, whether aircraft
or satellite, is not a Gaussian source (although it does

have memory), and as such has a rate distortion function

uniformly less than that of 2.8.

2.3. Sources of Error .

The two sources of error in the system of Figure 1.4
are (1) the transform encoder (for n<N), and (2) the quan-
tizer. That this is true may be shown in the following
manner for the mean square error criteria. First, define

the mean square quantization error dq
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dq = E{|[Y-Y*[[?} 2.9a
n
= Y E(y.-y*)? n<N 2.9b
i=1 't -

and the "sampling' error due to the transform encoder

E{)]X-T Y] %} 2.10a

o
]

ECX-TT) T (X-T') } 2.10b

Bringing the transpose inside the parenthesis gives

d, = ELx"-Y'T) (X-T"Y)) 2.11
or
dg = EOOX-XTHY-Y XY PTT YD 2.12
t,.t

However, TX = Y, X' T~ = Yt, and TTt = where In is the

In’

nxn identity matrix. Thus 2,12 becomes
d_ = E{X"X-Y"Y} 2.13a

2.13b

"
Il ~12
txy
iy
s
N
| —

]
~
b=y
—~
o
N
—
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Define o; = E(y;), the variance of the random transform
i
coefficient Y;- Then 2.13 becomes

N 2 T :
d_=Jo. - Jo 2.14
. LTy
It is easily shown (see [24]) that for the class of trans-

formations considered in this study (i.e., orthogonal

transformations)
N N
2 = 02
Z %x .Z Ys | 2.15

Thus 2.14 may be written

? 2
d_ = g 2.16
5 i=n+1 Vi .

Therefore the error due to the transform encoder is equal
to the sum of the variances of the N-n discarded transform
coefficients y;» t=n+l, n+2, ..., N,

It is next shown that the total error d as defined in
2.1 is the sum of the sampling and quantization error.

That is

d = dg+d, A 2.17a
N 2 n )
= + E{(y,-y* 2.17b
i=g+loyi izl O vi))
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Expanding 2.1 gives

= E{(X-Thy") P (x-Tty*)} 2.18a

(=9
I

xeyatrrtys) 2.18b

~ -

| =

Recall that TX = Y and X'T® = Y%, and Y*'y = Y'y*. Thus
2.18 becomes
d = E{Xx*x-2y*tysyrtrrtys) 2.19

Changing from vector notation to summation of the vector

elements gives
ERRCAPRLE 2.20

n
That ] y#*? = X*tTTtX* is true since TT® = I_. Rearranging
i=1 * i -

terms in 2.20 gives

TR RO P R e
d =E X5 + (y.-y*¥)* - y:°- y: + Yy 2.21a
i=1 ¥ ¢=1 * 7 i=1 Y {=17% =1""%
N2n2n 2
= E{zlxt -.Z y: +.g (y;-vH } 2.21b
1= =1 1=1

Bringing the expectation inside the brackets gives

N n n
d =] E{xI} -] E{y}} + ] E{(y,-y)?*} 2.22
i=1  * ¢=1 Y ¢=1 7
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Using the results of 2.14 and 2.15, 2.22 becomes

N n
d= J o2 + 7 E{(y.-y")?*} 2.23a
i=n+1 Vi i=1 L
= dS + dq 2.23b

which is the desired result.

2.4, The Karhunen - Loéve Transformation

A discussion of the three transformations used in the
data compression system outlined in Figure 1.4 is presented
in this and the following section.

Several authors have shown that the linear transforma-
tion which minimizes the sampling error ds for the corre-
lated vector source with positive definite covariance matrix
is the Karhunen - Loéfe (K-L) transformation (see Kramer and
Mathews [7], Palermo, et al., Appendix I [25}, Wintz and
Kurtenbach [26], Koschmann [56], or Loeve [29]). It is
further shown in [8] to possess the added benefit of mini-
mizing the quantization error dq. The K-L transformation
is also referred to as the eigenvector transformation, prin-
cipal component transformation ([27] and Chapter II of [28]),
or simply as the optimum transform.

The K-L transformation is an orthogonal transformation
determined by the second order moments of the source. In

this sense it is source dependent. It is this adaptation
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to the source that gives the K-L transformation its unique
ability to minimize the total error d. The transformation
itself is a rotation of the source output X in N-space to
a more favorable orientation with respect to the measure-
ment co-ordinate system. This more favorable orientation
‘is one in which the average energy Es of the source is.
redistributed over the co-ordinates such that a larger
percentage of ES is distributed over fewer co-ordinates.
Figure 2.1 demonstrates this rotafion for the two dimen-
sional case (N=2). It is evident from Figure 2.1 that the
K-L coefficient Yy has larger variance than either x, or

X If variance is considered to be a measure of informa-

5-
tion content, as it is in mean square error rate distortion
analysis, then knowledge of y, conveys more information

than does knowledge of either x. or X,. For larger values

1
of N it is often the case that a rather small number of
transform coefficients contain a large percentage of the
total source variance (energy) ES. This packing of the
source variance provides a means of reducing the number of
coordinates required to reconstruct the original source
output vector within a given error. Those transform coef-
ficients having small variance are neglected (replaced by
their mean values, which are constrained to be zero).

The K-L transformation is the unique orthogonal

transformation that diagonalizes the source covariance

matrix C.
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The Karhunen - Loéve Transformat

Figure 2.1.
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tcTt =

where the Ai, =1, 2, ..., N are the eigenvalues of C and

their order is chosen such that

Alikz ...iAN | 2.25

From 2.24 it is evident that the rows of T are the N

normalized solutions to the characteristic equation
Cv. = A,v. t =1, 2, ..., N 2.26

The covariance matrix for the transform coefficients is

YY) = E(TX(TOY) 2.27a
= E(TXX'T") 2.27b
= TcTt 2.27¢

~ .~

Since TCTY is the diagonal matrix of 2.24 the transform

~ o~

coefficients are uncorrelated and their respective variances
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are given by the ordered eigenvalues of C. The application
of the vector Y as a feature vector in pattern recognition
is discussed in [30] and is considered in this study in

section 3.2.

2.5. The Fourier and Hadamard Transformations

The two additional transforms considered are the Fourier
and Hadamard transforms. Both are non source dependent in
that the set of N orthonomal basis vectors is fixed regard-
less of the source characteristics. Some variability in
these transforms is possible through an appropriate defini-
tion of the source output dimensionality K. For example in
image processing it is advantageous to define the source
to be two dimensional and use the two dimensional Fourier
or Hadamard Transforms. As described in later sections, the
multispectral source is defined to be a three dimensional
source and the three dimensional Fourier and Hadamard trans-
forms are used. Consideration of the source dimensionality
allows the encoder to take advantage of correlations exist-
ing between neighboring points in each dimension defined.

Several authors have applied the Fourier and Hadamard
transforms in studies of two dimensional block quantization
encoders. Landau and Slepian [31], Pratt, Kane, and Andrews
[9], Kennedy, Clark, and Parkyn [32], Huang and Woods [33],
and Habbi and Wintz [10] have reported results.

The rows of the Fourier Transformation matrix are the
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sampled, harmonically related sine and cosine functions.
The rows of the Hadamard matrix are the discrete version
of an Nth order set of orthogonal Walsh functions [34,35,

36].

2.6. Equivalent Matrix Transformations

The usual technique‘used to perfofm a K-dimensional
discrete linear transformation (Fourier, Hadamard, etc.)
is the performance of K one-dimensional transformations -
one in each dimension defined for the source. For example
the two dimensional Fourier transform (K=2) would be ob-
tained by pre and‘post_multiplying the Nl-xN2 source output
.”matrix" [X]N N by the leNl matrix Il and the Nszz

1’72
matrix Iz respectively

™ _
[Y] =T, [X]y 7T 2.28
NisN, — 110NN, =2

It is now shown that a K-dimensional transformation may
be obtained by a single equivalent matrix multiplication of
the re-defined source output.

First the source output tens X is

t P or [ ]NI,NZ, cees Ny
re-arranged into a N-dimensional (N = NlNZ"'NK) vector

X by sequentially ordering the elements of [X]N N

1, oo oy

by varying the outermost indices first. For example in

K

two dimensions (K=2) with N1 = N2 =2
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X

X
[X]Z,Z = 1,1 1,2 2.29

X2.1 2,2

and X is therefore

For the K dimensional source an element of the transform

coefficient tensor [Y]N N N is given by
1272 " 'n

o . ?1 ?2
1’ ’1‘ 14 )1’ - —
1°°2 n Zl—l Zz—l
§K X1 1 2. % 1.t 0t 2.31
1g=1 “1°F200 etk 1l 2042 Yklx :
where the ti ;. are elements of the transform matrix Tj
., ~

i3
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[ ¢ t £,
1.,1 1.,2 ,N.
J ) J ) 1 J
ty. 1.
J° 3
'Ej: . ’ j=1,2,.o.,x
IN.,1. tN. LN,
| J° ) o . e ] {J 2.32

If the elements of [X]N' N
1* 72

according to the outermost index rule given above, then

-+, Ny are re-arranged

the transform coefficient tensor [Y]
Nl’ NZ’ cens NK becomes

an N element vector (N = N; - N, » « » Nyi) with elements

where

m = Z1 + (Z2 - 1)N2 + (Z3 - 1)N3 + ..t (ZK - 1)NK

2.34a

no=i,+ (i, - DN, + (i - DINg + ..+ (£ - 1INy

2.34)b

and
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2.35

It is important to note that for each value of m, m=1, 2,

., N there exists one and only one possible set of integer
values for the Zi’ =1, 2, ..., K. The same is true for n
and the ij’ j=1, 2, ...,.Kf

Rewriting 2.33 gives
Y =TX 2.36

where vectors Y and X are the re-arranged transform and out-
put tensors respectively, and T” is the new equivalent trans-

formation matrix with elements t M= 1, 2, ..., N;
3

n’l, 2, s oy N;N=N1N2'QQNK.

The equivalent matrix T is now shown to be an ortho-

gonal matrix, From 2.34 and 2.35

N ?1 N, gx .
t- t°* = cee ) t., 4 t*, t

mzl m,n m,l’l z1=1 Zz=1 ) ZK=1 7’1,11 Jl)zl 'LZ,ZZ
t# cee t. . t* 2.37a

Jpety Tyolg Itk
= Nl t. t{: Nz t. t’.‘ coe

2,°1 i1, 3100 1,51 1ysly 31,
]
t. t? 2.37b

1,51 *xrlx Ikl
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where * indicates the complex conjugate.
The orthogonality of the original transformation

matrices Ij’ j=1, 2, ..., K requires that

N
IP t t# =65, |
) Z Z X b = ¢ o o .
where 6i . is the Kronecker delta. Thus 2.37 becomes
pf P
%‘ R
to _to*. =6 . 2.39a
NEPRRLFLALER IS
Similarly it may be shown that
N . s
e t. = .
n§1 tm,nj,n T °m,j 2.39b

From 2.39 it is evident that T is an orthogonal matrix,

which is the desired.result.

2.7. Application to the Hadamard and
Fourier Transforms

An interesting consequence of the results of section
2.6 is that the equivalent matrix for the K-dimensional
Hadamard transform is again a Hadamard matrix - the NxN,
(N=N1N2"' NK) Hadamard matrix. That this is true may be

seen from equations 2.35 and 2.39, The entries of T” must
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be % (l/N)K/2 from 2.35. This and the orthogonality of T~
(2.39) combine to require T to be the Nth order Hadamard
Matrix.

The equifalent matrix for the K-dimensional Fourier
Transform, though an orthogonal matrix, is not the Nth order
Fourier transform. This is shown by an example. |

.Consider the two-dimensional Fourier transform (K=2)
of equation 2.28. The two transforms, one for each dimen-

sion of the source, are given By 2.32 with

1 2w .= ... N,
t, g = = exp|T=(65-1) (24-1) I BREEERRRTRY
i*ti Ny YN 1.=1,2,...,N.
j j

j=1,2
2.40

and from 2.35
m=1,2,...,N
t” = t. t.

m,n - Tiy,ly Tl n=1,2,...,N 2.41

The following relationships from equation 2.34 are true

m= 1= Zl=1, ZZ=1 n = 1=> ,i1=1’ i2=1
2=> 1,=2, 1,=1 => 9,72, i,=1
Nj=> 1;=N;, 2,1 Ny=> i1=N;, 2,=1
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m = N,+l=> [

1 1=1, l1,=2 n = N1+1=> i1=1, Zz=2

2

N e=> 7.=N., 1.=N N => i =N, ©,=N,

2.42

Using the above relationships between m, n, il, iz, ll’

1, and equations 2.40 and 2.41 gives the entries in the

2
equivalent Fourier matrix with K=2

.
tm,n

'1-1)(11-1)] .

]
p—

o

be]

=)

3

~~

)

2 T
———eXp 7 ,-1)(1 -1)] 2.43a
N [Nztz 2

1 27 27

= —Lexp |2, 1) (1 -1#E0(2,-1) (2,1

/NN [1 e P j

2.43b

where the relationships between the indices is provided by

2.42.

2.8. Quantization

The remaining source of error in the data compression
system of Figure 1.4 is the quantizer. Its function is to
map the infinite set of possible n-vectors Y into the finite
set of n-vectors Y*, and thereby allow a finite time - band-

width product or finite storage requirements.
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The quantizer used in this study is the optimum non-
uniformly spaced output level quantizer described by Max
in [37] and Lloyd in [38], and generally referred to as the
Lloyd-Max quantizer. This quantizer is optimum in the
sense that the output levels are chosen such that the mean
square quantization error (dq of equation 2.9) is minimized,
assuming a normally distributed input. The input to the
quantizer is the vector Y. Quantization is achieved through
a bank on n quantizers, one for each Yi» i=1, 2, ..., n.

The output of the quantizer is coded for digital transmission
or storage by assigning a binary code word to each output
level. The natural code is used in this study, although
other codes have been investigated by Hayes and Bobilin [39],
and Wintz and Kurtenbach in Chapter 3 of [40].

The Zth quantizer is referred to as an m. - bit quan-
tizer, reflecting the fact that it has Zmi possible output
levels, and that each output level is coded with m. bits.
Figure 2.2 is an example of the <th m, bit quantizer with
mi=2. The quantizer assigns the output value y$=vj when
u._1<yiiuj. In practice the y; are normalized to have unit

J
variance and the uj and v. given in [37] for m, < 5 and in

J
[40] for 6 < m. < 9 are used.
Results presented in [8] and [26] show that the quanti-
zation error for the ith quantizer with a Gaussian input

may be closely approximated by
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d a g2 C ™ , 2.44

9 :th quantizer Vi

where a; is the variance of the transform coefficient Y;

t 1/4

and C is a constant equal to 10 , Or approximately 1.78,

2.9. Minimization of the Total System Error

The results of section 2.3 show that the total system
error d is the sum of the quantization error dq and the

sampling error dS where, as in 2.14

. o |
= - 2
dS ES .Zloy. 2.45

and the total quantization error d-q is the sum of the error

due to each of the n quantizers
dg = 1 og c 2™ - 2.46

Combining 2.45 and 2.46 gives the total error

n n
= E_ - 2 2 T2y 2.47
d s ‘210Y- + .éloy. i a
E h -2m
= - 2 - ;
< ] 02 (1-c"?7%) 2.47b

i=1 V3
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It is evident from 2.47 that the total error is a
function of (1) n- the number of transform coefficients
retaiqed, and (2) m, - the number of bits assigned to the
1th quantizer. The sampling error decreases with increas-
ing n while the quantization error increases with n. It
is desirable to find that value of n and resulting bit
‘distribution’{mi}2=1 which minimizes the total error d.
The following minimization problem is stated and an approxi-
maté solution is presented.

Problem: Given that a finite number of bits, say M,

are to be distributed in some manner to n

Lloyd-Max quantizers, i.e.,

2.48

determine the optimum number of samples n
(ordered according to decreasing variance)

and corresponding bit distribution'{mi}2=1
that minimizes the total system error d=dq+dS
of equation 2.47

The problem may be re-stated consisely as

min E -

(n,m) { °

02(1-c‘2mi) 2.49

R o }=]
(S

z
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with the constraint
n
A Z m. = Mb 2.50

where the subscript on the coefficient variance o; has
_ i
been omitted. By definition (equation 1.4) Eg is ‘a constant

and

n B
E > izlcé(l-c 2m:y 2.51

with the equality when n=N and My+=. An equivalent problem

is then

n
max I o2(1-c72") ‘ 2.52
(n,mi) 1=1

subject to

Im, =M 2.53
Treating the m, and n as continuous variables and introducing
the undetermined Lagrange multiplier X gives the following

set of equations

2.54a

[}
(=]

n . n
(1) 5%—[1{ 62(1-C72M3) + 2 § m.]
- jle=1 * - i=1 *
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n n
(2) Sl leia-cT™) +x fm =0 2.54b
i=1 i=1 * |
n
(3) Im =M 2.54c¢
i=1

Equation 2.54a represents n equations while 2.54b and c
represent one equation each. There are then n+2 equations
and n+2 unknowns (n, X, {mi}2=1).

‘Carrying out the partial differentiation indicated in

2.54a gives

f
o

o;(zlnC)c'zmj + A= 2.55

Similarly 2.54b becomes

o;(l-C-zmn) + am_ 2.56

L}
(=]

by approximating 2.54b with

n

n
2 Icz(i)(1-c'2m(i))di + A[m(i)di =0 2.57

1 : 1

to give 2.56.
Solving for mj in 2.55 gives

-2A0?2
_ 1 2.58
mj = 7logC[_X_-L]
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where A=1n(C). Substituting 2.58 into 2.54c

o5 2.59

2
1 J

=3

1 -2
Mp = zlogg [T] ;

Solving 2.59 for A and substituting the result into 2.58

gives
' 1
1 o? CZMb n
mj = flogc J R 52 2.60a
=] L
n
= %-logcoJ + ;E - %H .Zilogcog 2.60b
1=

Evaluating 2.60 at j=n and substituting into 2.56

1
n p—
2 |n 2AM n
o2 -|.L % | 1+1n(oz)+ =L - L ] 1n(e2){=0 2.61
3‘7M;‘ =1 °
C

The value of n satisfying 2.61 and the corresponding bit
distribution given by 2.60 represent the approximate solution
to the minimization problem described earlier. The solution
is approximate since the {mi}2=1 and n are assumed to be
continuous variables while in reality they may take on only
integer values. The approximate solution is achieved in the
following manner: Given the NxN transformation T the trans-

form vector Y is created by the transform encoder. The
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number of bits per vector element (i.e., the rate R) is

specified. Thus

Equation 2.61 is then used to determine the value of n

which most closely satisfies the equality. That is

1
n n

= min .(_72 - l1=1 z (1 + 1]‘1(0'121) +

The nopt determined by 2.63 is then used in 2.60 to compute

the resulting bit distribution over the n=n Lloyd-Max

opt
quantizers. The values of the m generated by 2.60 are not,
in general, integers. The integer values must therefore be
chosen according to some rule. The rule used in this study
is the following: (1) round-off each m. to the nearest
integer, (2) if the resulting rate RI exceeds or is less than
the specified rate R then either: (a) remove bits, one at a

time from all possible Y; and choose those which result in

the smallest increase in d, or (b) add bits, one at a time
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to all possible Yi and choose those which result in the
largest decrease in d.

It is noted that equation 2.60 for the bit distribution
is also the solution to the less restrictive minimization
problem considered in [8] and [40]. In that problem Mb
and n are fixed, and the best set of m, is the desired re-

sult. The solution is again 2.60.

2.10. The Markov Source - An Example

As an example of the sampling and bit distribution
procedure described in the last section the time discrete,
zero mean, one dimensional (K=1), unit variances, station-
ary, Gaussian Markov vector source (N=100) is considered.
The elements of the source covariance matrix g are then

o

c. . = exp(-ali-j|) 2.64

LR

Sin;e o;i = 1, the Ci,' are also the correlations between
the X .

The transformation T is chosen to be the 100x100 K-L
transformation, implying that the variances of the transform
coefficients are the eigenvalues of C.

Figures 2.3, 2.4 and 2.5 summarize the results obtained
with the above source definitions and @ = 0.05. Figure 2.3
shows the optimum number of samples determined by 2.63 as

a function of the data rate. The lower curve represents the

actual nopt used after applying the bit distribution rule of
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section 2.9 since some m. become zero when the integer
constraint is imposed. Figure 2.4 is the resulting bit
distribution over the nopt Lloyd-Max quantizers as deter-
mined by 2.60 with data rate R = 1;0 bits/vector element.
The step-wise curve represents the results of the integer
bit distribution rule. As a result only 24 samples are

retained as gpposed to n = 32 determined by 2.63.
|2% o

pt
Figure 2.5 is a plot of the data rates achieved with the
Markov source using the above results and the transform
coding, block quantization scheme of Figure 1.4. The lower
curve is the theoretical lower bound for the Gaussian
Markov source (i.e., its Rate-Distortion function). The
two curves are relatively close, the actual rate being
higher by a factor of only approximately 1.25 over the dis-
tortion range considered. Also included are the data rates

achieved using single sample [58] quantization of the

original source output, referred to as standard PCM.

2.11, Selection of the Optimum Block Size

In section 2.9 the total system error d is minimized
over n and the m., with My and N fixed. The problem of
selecting the optimum block size for the K-dimensional source
is now considered.

If the source is defined to be K-dimensional and if the
maximum number of elements in X is fixed at N (due to hard-

ware constraints, processing time limitatjons, etc.), then
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the question arises as to how many elements in each of the
K-dimensions of the source should be selected. In other
words, éhoose Nl’ NZ’ ceey NK to minimize the sampling error
dS with the constraint Nl-Nzn-NK‘= N. The problem may be
re-stated using 2.14

N , n \ ‘
min .Z o’ - .2 o’ 2.65
. K =1 zél 1
subject to
K
I Ni = N ' 2.66
=1

An approximate solution to the above problem is presented

in Appendix B under the following assumptions

(1) The source is time and amplitude continuous,
(i.e., X becomes the continuous pfoce;s
x(tl’tZ""’tK)' |

(2) The source statistics are stationary.

(3) The K-L sampler is used, i.e.,

Ny N, Ny
y, = [ [ x(£), ()dr 2.67

7
0 0 0
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where the ¢i(£)are eigenfunctions defined below.
The results of Appendix B show that the proper choice

of the'{Ni}i.(=1 that minimize d, must satisfy

N, A 62 (t:N.)dt = N A.62(t:N.)dt” 2.68
”{j=g+1 3= L j=g+1 3T ==
1 . A

where { and t° are defined in Appendix B and the ¢i(-) are

1
the eigenfunctions of the integral equations

Ny N2 Nk

A0, (0) = ceo | R(E-TIO, (1)dx 2.69

and R(t-t) is the source autocorrelation function.
Equation 2.68 may be simplified if the kernel R(t-1) is

separable [41], i.e., if

K
R(t-1) =1 Ri(ti-ri) 2.70
Then 2.68 becomes

I ae: (N vi,z 2.7
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where

Although 2.68 and 2.71 are not explicit expressions for
the Ni’ a trial and errof search could be used to select
the best set. It is noted however, that for each new value
of Ni the appropriate set of eigenvalues Xi and eigenfunc-

tions ¢i must be computed.



CHAPTER III

EXPERIMENTAL RESULTS PART I - AIRCRAFT SCANNER DATA

3.1. Introduction and Description of the Source

The results achieved using aircraft scanner data and

the transform coding-block quantization system of Figure 1.4

with the sampling and quantization methods described in

Chapter II are presented in this chapter.

The data source

is the digitized output of an airborne multispectral scanner

flown over predominantly agricultural areas in the midwest.

The scanner itself [3,42] is an analog device sensitive

to the electromagnetic energy emited or reflected from the

particular area to which it is focused [52].

tivity is restricted to several adjacent spectral bands or:
"channels'". The following is a list of the spectral chan-

nels and their corresponding wavelength bands for the data

set discussed in this chapter.

Table 3.1. Spectral Channels and Their Corresponding

Wavelength Bands.

This sensi-

Channel Wavelength Band (um)
1 0.40 0.44
2 0.62 0.66
3 0.66 0.72
4 0.80 1.00
5 1.00 1.40
6 2.00 2.60
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The altitude at which the scanner is normally flown
(& 3000 ft. A.G.L.) constrains the ground resolution to an
approximately circular area having a diameter at nadir of
n 9 feet. The width of a typical data set (flightline) is
approximately one mile. The sampling rate used in the digi-
tization of the scanner data is such that the one mile width
yields up to 444 samples per line. Flightline lengths are
of course variable, but typically vary from one to twenty-
five miles. One square mile of aircraft scanner data as
described above contains on the order of 2x10% samples per
channel.

The specific data set chosen for analysis is shown in
Figure 3.1. This same area is shown in Figure 1.1 via pan-
chromatic photograph. The data was gathered over Tippecanoe
County, Indiana on the morning of June 30, 1969 at an alti-
tude of 3000 ft. The entire flightline (PFL24) is 24 miles
long while the section analyzed and shown in Figure 3.1 is
approximately 0.9 miles by 0.7 miles (384 samples by 293
samples per channel). This section of the flightline is
representative of the remaining.ZS miles, and is quite
typical of other aircraft scanner data sets taken over agri-
cultural terrain. Areas of high and low spectral and spa-
tial detail are represented as well as irregular field
boundaries, roads, diagonal fields, etc.

Results obtained using the data compression scheme of

Figure 1.4 are presented in the following sections. The
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multispectral source output is transformed using the
Karhunen-Loéve (K-L), Fourier and Hadamard transformations
in various combinations of the three dimensions of the
source. In addition, the choice of which transform coeffi-
cients to retain and the corresponding bit distribution over
fhe quantizers are optimized as described in section 2.9.
Thelrate versus distortion curves achieved with each of the
three transformations are compared to each other and also to
(1) the rates achieved with standard single sample quanti-
zation (standard PCM) and (2) the theoretical minimum rates
realizable assuming a gaussian source (i.e., the rate-
distortion function described in section 2.2, equation 2.8).
The first and second order statistics of the data set
are also presented in this section. The three dimensions
of the source, the two spatial and one spectral, are consid-
ered for use with the one, two, and three dimensional

transformations.

3.2. The Spectral Dimension and Principal Components

Each ground resolution point has an associated N-
dimensional vector X whose elements are the N spectral chan-
nel intensities for that particular point. This concept is
shown in Figure 3.2. The elements of X are, in general,
correlated and each channel typically has a different mean
~and variance. This is evident in the six spectral images of
Figure 3.1. The actual means and variances are given in

Figure 3.3 along with the spectral correlation matrix.



Figure 3.2.

Ground Resolution Points and their
Associated Channel Vectors.
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Mean
Variance

0.90

0.90
-0.39
-0.36

0.73

Figure 3.3.
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Channel
1 2 3 4 S 6
73.0 93.3 79.3 111.0 150.8 83.2
287 1136 1094 795 746 345
1.00
0.98 1.00
-0.45 -0.54 ' 1.00
-0.41 -0.50 0.89 1.00
-0.78

0.80 -0.46 -0.40 1.00

Correlation Matrix

First and Second Order Spectral Statistics.
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The source output vector X is input to the transform
encoder where it is pre-multiplied by the K-L, Fourier or
Hfadamard transformation matrix and then quantized. The out-
put of the quantizer is then transmitted or stored. However
with the spectfal definition of the source output a special
significance may be given to the quantizer output Y* when |
the K-L transformation is used. The significance lies on
the fact that Y* may be used as a feature vector in the
maximum likelihood classification of spatial characteristics
(various types of vegetation, water, etc.) within the data
set [30,43,44,45]. When used in this manner Y* (or Y) is
commonly refered to as the vector of principal components.

The feature vector usually used in classification of
multispectral data is the channel vector X. However it has
been found experimentally that a subset of the elements of
X offen gives classification results as acceptable as those
obtained with the entire vector [20,46]. This is due to
the fact that the correlations existing between channels
reduces the number of channels having non-redundant
information.

The choice of which subset of the elements of X to use
as features is generally a difficult problem. The solution
is usually based on a combination of (1) statistical inter-
class distance measures resulting from an exhaustive search
of all possible combinations of the elements of X to form

a subset of given dimension [19,47], and (2) an intuitive
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selection based on previous experience with perhaps similar
data.

The principal component vector Y* offers a possible
solution to the feature selection problem. As discussed in
section 2.4 the elements of Y* are uncorrelated. In addition,
the total variance of any ordered subset of the element of

Y* is greater than the total variance of the same number of

elements of X [30]

where the summation of the 02 is over any n values of .

X.
(A

The effects of the quantizer are ignored (i.e., y; = yi*),
since it is assumed that if Y* is to be used as a feature.
vector the quantization will be so fine as to produce
negligable error.

If variance is considered a measure of information
content, then the feature set {yi}g=l is at least as good
as, and in general better than, any n-member subset of
elements from X as indicated by 3.1.

An additional favorable characteristic of Y is the
fact that in the visual analysis of a multispectrally
scanned area the analyst is limited to the observation of
one spectral image at a time. However some areas may not

produce significantly different responses in the particular
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spectral channel chosen. A compromise must be made and a
channel that is good on the average for the area of interest
is selected. Some features will then be less distinguish-
able than if the best channel for these particular features
had been chosen. The variance-packing property of the K-L
transformation provides a new image in Y1 having variance
greater than any of the original spectral channel images

i.e.

| v
Q
~
[ o
]
—
'V
N
-
L]
L]
L]

-
2z
w
.
(3]

0-2
71 X:

This indicates that on the average more data variability
(information) exists in the Y1 image of the area of interest
and that visual analysis of the Y1 image_may therefore be
more productive. |

The six (N=6) principal component images of the origi-
nal data set of Figure 3.1 are presented in Figure 3.4
(i.e., yl*, yz*,..., y6* with m. = 8 Vi). As described in
section 2.4 the K-L transformation is composed of the eigen-
vectors of the source covariance matrix. The 6x6 spectral
covariance matrix for the aircraft scanner data set yields

the following K-L transformation
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0.25797 -0.55725 0.56553 -0.35458 -0.32652 0.26599
0.18572 0.36388 0.24356 0.61212 0.62068 0.11763
T = | -0.08914 -0.21988 -0.15659 -0.18867 0.23038 0.91133
~ 0.01575 0.03032 0.06466 -0.67578 0.67360 -0.29022
' 0.93811 -0.31709 -0.13615 -0.02113 -0.01910 -0.00768
-0.10350 -0.63817 0.75737 0.08281 0.03090 -0.02462

3.4
where the rows of T are the eigenvectors of C ordered as
described by 2.25. The corresponding spectral eigenvalues

are

Table 3.2. The Six Spectral Eigenvalues

A1 Ao Az A4 Ag Ag
3209.9 931.4 118.5 83.88 46.0 13.4

Each principal component (transform coefficient) Y; is
a linear combination (weighted sum) of the original six
spectral channels. The weights associated with each channel
are given by the column entries of T. For example the first
principal component image has the greatest weights associ-
ated with channel 2 (0.62-0.66um) and channel 3 (0.66-
0.72um), two of the three channels in the visible wavelength
band. The second principal component image favors channel 4
(0.80~1.00um) and chanﬁel 5 (1.00-1.40um), the two channelé
in the reflective infrared band. The third component image
has greatest weight associated with channel 6 (2.00-2.60),
the only channel in the thermal infrared region. These

same trends are supported by a comparison of the principal
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component images (Figure 3.4) with the original spectral
images (Figure 3.1). It is also evident that the variances
(eigenvalues of C) of the principal component images decrease
rapidly as evidenced by the grey, low detail appearance of

component images 3 through 6.

3.3 The Spectral Dimension and Fourier Components

The Fourier component images of the aircraft scanner
data set are also of interest. They are obtained by trans-
formation of the spectral channel vector X by the appropriate
6x6 Fourier matrix I (The Hadamard matrix of order 6 does
not exist[9] and thus prevents consideration of the Hadamard
component images in this particular six-channel case. Hada-
mard images based on 12 channel data have béen produced how-
ever, and are quite similar to the 12 Fourier component
images) .

The 6x6 Fourier transformation matrix 1is

1/v72 1/vZ2 1/72 1/vZ 1/v/7 1/v/7
0 /3 V3 0 -V3 -3
2 2 _ 2 2z
1 1 1/2 -1/2 -1 -1/2 1/2
T = —= 3.5
- V3 1 -1/2 -1/2 1 -1/2 -1/2
0 /3 -/3 0 -/3 3
2 2z 2 2
/vZ  -1/v2  1/YZ  -1/YvZ  1/YI -1/V2
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where the rows of T are ordered by decreasing component

variance as shown in Table 3.3.

Table 3.3. The Fourier Coefficient Variances

o? o2 ol ol o’ o’
yl yZ YS Y4 yS y6

1218.8 1199.8 1017.2 486.8 421.1 59.3

The first Fourier image is proportional to the mean value
of the total spectral response for the area. Each original
spectral channel is weighted equally. Emphasis on specific
wavelength bands begins with the second image. These
weights, however, are non-source dependentland would be the
same for any six wavelength bands. The six Fourier images
are presented in Figure 3.5.

Although there is a packing of variance as with the
principal component images, the Fourier image variances do
not decrease as rapidly. In terms of the complex Fourier
transform, the second and third images are the imaginary
and real parts of the complex second harmonic coefficient
'respectively. Similarly the fourth and fifth images are
the real and imaginary parts of the complex third harmonic
coefficient. The sixth image is the real part (the imagi-
nary is the negative of the imaginary part of the second
harmonic, and is therefore redundant and not retained) of

the complex fifth harmonic coefficient.
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Computer classification results using (1) the spectral
channel vector X, (2) the K-L coefficients or principal
components, and (3) the Fourier coefficients are presented
in Figure 3.6. A gaussian maximum likelihood decision
rule is used to classify selected areas of the data set
into one of six classes (various types of vegetation, roads,
etc.). The sixth class is a null class into which all
points having classification error probabilities greater
than a specified threshold are placed. All points in the
nu11 c1ass are considered errors and are used as such in
computing classification accuracy. Training of the class-
ifier is based on 1.3% of the total data set, and test
results are based on classification of 16.2% of the total
data set.

The abscissa in Figure 3.6 is the number of features
(n) used in the classification. For each value of n an
exhaustive search is conducted to determine the n-member set
of features from X and Y giving the highest percent correct

classification results. The features used are given below.

Table 3.4. Features Used for Classification

n K-L Channel Fourier

1 1 2 3

2 1,2 3,5 1,3

3 1,2,3 2,5,6 1,2,3

4 1,2,3,4 1,2,5,6 1,2,3,4

5 1,2,3,4,5 1,2,3,5,6 1,2,3,4,6

6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6
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The above list and Figure 3.6 point out the featurc selec-
tion advantages inherent in the K-L or principal component
transformation. For each value of n the first n principal
components are the best selection. This is obviously not

‘the case with the original spectral chahnels. The Fourier
components are apparently not quite as consistant as the

principal components, although (with the exception of n=1)

the '"first n" selection rule is close to being correct.

3.4, Data Compression in the Spectral Dimension

In the last section the vector Y or (Y*) is discussed
in terms of pattern recognition and data interpretation. In
this section it is but one step in the over-all_(spectral)
data compression system of Figure 1.4. It is the input to
the bank of n Lloyd-Max quantizers. The choice of n and
the number of bits m, assigned to each quantizer is dis-
cussed in section 2.9. The application of those results to
the channel vector X is presented in this section.

The data rates achieved using the K-L and Fourier
encoders are shown in Figure 3.7. Also included are the
theoretical lower bound R(d) for the gaussian source, and the
actual data rates achieved using single sample encoding
(standard PCM) of the source output vector X. The number of
transform coefficients retained and resulting m, are listed
in Appendix C. The K-L encoder lies below the Fourier

encoder, while both are below standard PCM. However the
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Fourier encoder represents a relatively small improvement
over standard PCM. A rate reduction by a factor of oniy 20%
is realized for the distortion range considered (as compared
to a factor of about 50% for the K-L encoder). This poor
performance of the Fourier encoder is in general agreement
with the results of fhe last section where the six Fourier
images are presented (éee Figure 3.5). It is evident from
the images that the variances of the Fourier coefficients
decrease slowly indicating that little variance packing has
been accomplished.

Images representing the reconstructed output i of the
spectral daté compression system are presented in Figure 3.8.
An interesting effect is noticeable as the data rate
decreases. For low data rates (i.e., around 0.5 bits/vector
element) spatial features distinguishable in some of the
original channels become visible in channels where they were
originally not distinguishable. This effect can be seen in
Figure 3.8 where a small field to the immediate left of the
bottom road intersection is not visible in either the origi-
nal channel 2 image or the reconstructed image at 2 bits/
vector element, but does become visible in the 1.0 and 0.5
bit/vector element images. With low data rates the recon-
structed source output vector i tends to lie in the same
direction in N-space as the first row Y of the transfor-
mation matrix T. Any deviation the original X may have from

that direction is lost as the data rate decreases. In



71

"(SYo01g elBQ 9X[XT) S93BY BIBQJ IJUSIIFFI(Q ¥31Yy]
3 I9poduyg T-) 9yl 3urs) oa8ew] Z [AUUBY) PIIONIISUOIIY

"8°¢ @andty

S'0 =1

0°Z =Y




72

addition the magnitude of g in the direction of Y is deter-
- mined by the projection of X onto 1. If one or more ele-
ments (channels) of X are relatively large then K-El may be
dominated by these elements. The field discussed above is
quite bright in channels 4 and 5 and thus becomes visible
in the reconstructed channel 2 image (%2) at low data rétes.
An "error image' between the 1 bit/véctor element image
and the original channel 2 image is shown in Figure 3.9.
It is the square of the difference between X and i for each
resolution point. Black represents 0 error and white repre-
sents a squared error of 255 or greater. It is evident that
mostlof the error occurs over the roads and buildings and

relatively little error is present in the vegetated areas.

3.5. The Two Spatial Dimensions

In contrast to the definition of a spectral N-vector
associated with each ground resolution point as described
above, the two spatial dimensions of the multispectral
source output suggest the concept of N-two dimensional
images, one for each spectral channel. This idéa is pre-
sented in Figure 3.10.

Correlations existing in the horizontal and vertical
directions are compared in Figure 3.11 where the estimates
of the normalized source autocorrelation functions (Rx(r) and
Ry(r)) are plotted. Thé Rx(r) curve lies above the Ry(r)

curve for small r. This reflects the fact that the aircraft
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Figure 3.10. The N Two-Dimensional Spectral Images.



Normalized Autocorrelation

Figure 3.11. Normalized Inter-Line and Inter-Column
Autocorrelation Functions.
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scanner gathers data by sweeping out a single horizontal
line at a time. The finite bandwidth of the scanner elec-
tronics tends to correlate adjacent points within a scan
line more than vertically adjacent points.

The spatial transformations applied to the data set
are, for purposes of comparison, one dimensional (horizontal)
and two dimensional (horizontal and vertical). The data is
taken in one and two dimensional blocks as shown in Figure
3.12. As discussed in section 2.6 the two dimensional blocks
are re-arranged into column vectors. The two block-sizes
considered are 1x64x1 (1 vertical point by 64 horizontal
points by 1 spectral point) for the horizontal one dimen-
sional spatial block, and 8x8x1 for the two dimensional
spatial block. The NxN (N=64) covariance matrix is computed
for both data blocks by averaging X Et over each of the six
spectral images. The first column of the 8x8x1l data block
covariance matrix is plotted in Figure 3.13.

Data rates achieved using the above two data blocks and
the data compression system of Figure 1.4 are shown in Fig-
ures 3.14 and 3.15. The K-L, Fourier and Hadamard transfor-
mations are considered, with the gaussian source lower bound
R(d) and the standard PCM encoder also included. The K-L
encoder realizes the lowest data rates for both data blocks,
while the Fourier and Hadamard encoders also achieve rates
substantially below those for standard PCM. In both cases

(1x64x1 and 8x8x1 data blocks) the Fourier encoder gives
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Figure 3.13. First Column of the 8x8x1 Data Block
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lower data rates than the lladamard. The two dimensional
block is more efficient with all three encoders for distor-
tions near 7% and greater. Below 7% the one dimensional
block is best. The number of transform coefficients retained
and resulting m. are listed in Appendix C for the K-L

encoder and the one dimensional data block.

The relative sizes of the 8x8x1l and 1x64x1 data blocks
in relation to the original spectral data set are shown in
Figure 3.16. These images are the result of retaining only
the first coefficient in the K-L encoder and quantizing that
coefficient to 512 levels (mi=9). This is not the manner in
which the 0.141 bit/vector element data rate would be
achieved.

Channel 2 images using the K-L encoder at rates of 2,1,
and 0.5 bits/vector element for the 1x64x1 and 8x8xl data
blocks are presented in Figures 3.17 and 3.18 respectively.
Figure 3.19 is the error image between the original channel 2
image and the reconstructed image at 1 bit/vector element.
As with the spectral data blocks (1xl1x6) most of the error
is found near the roads and buildings. However in this case
the error is due to spatial high frequencies (detail) as
opposed to spectral high frequencies. In the low detail
area the prime source of the error for the two dimensional
encoder is the distortion near the edges of the 8x8x1l data
blocks. (See Appendix A for a discussion of error within

the data block.) Essentially no image degradation is
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noticeable in the 2 bit/vector element image, while some
distortion is evident in the 1 and 0.5 images for both data
blocks. Channel 2 images using the Fourier and Hadamard
encoders at 2 bit/vector element and 8x8x1 data blocks are
shown in Figure 3.20.

The effects of data compression on percent classifi-
cation accuracy are presented in Figure 3.21 for the K-L and
standard PCM encoders using the 8x8x1 data blocks. The two
curves represent the performance of the maximum likelihood
classifier (described in section 3.2) over the reconstructed
spectral images for several different data rates. The per-
formance of the K-L encoder is far superior to that of the
PCM encoder although both converge to 94% correct classifi-
cation for large (> 4 bits/vector element) data rates. The
apparent insensitivity of the K-L encoder to degradation in
classification performance at low data rates is a consequence
of the variance packing property discussed in section 2.4.

At one bit/vector element for example, the PCM encoder allo-
cates only 2 output levels to each element of X. The K-L

encoder however, distributes the 64 bits in the following

manner

Table 3.5. Integer Bit Distribution Over the
K-L Coefficients

t |1 9110 19120 5031 64
m. =1 4
T 7 3] 2 2] 1 1] 0 0
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Fourier Encoder

Hadamard Encoder

Figure 3.20. Reconstructed Channel 2 Image
Using 8x8x1 Data Blocks with
the Fourier and Hadamard Encoders
at R = 2.0.
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Thus the first quantized coefficient may take on one of 128
possible values, the second may be one of 16 values and so
on. The increased number of possible values for yi* (and
therefore i) allows greater class separation within the

data.

3.6. The Three Dimensional Source

The multispectral scanner output is actually three
dimensional - the two spatial dimensions and the spectral
dimension. In order to take advantage of correlations exist-
ing in all three dimensions of the source a three dimensional
data block is defined as shown in Figure 3.22. The results
of sections 3.4 and 3.5 indicate that spatial correlations
are higher than those found in the spectral dimension. For
a given block size N, (N=N1-N2-N3) it is therefore advanta-
geous to include more spatial samples than spectral (i.e.,
Nl,N2>N3). For this reason the three dimensional data block
is chosen to be 8x8x2, 8 vertical samples by 8 horizontal
sample by 2 spectral samples. As described in section 2.6
the data block is re-arranged into a column vector X having
N=8.8.2=128 elements.

From the spectral correlation matrix of Figure 3.3 it is
evident that some pair-wise combinations of channels are more
highly correlated than others. Since the data block is
8x8x2 it is advantageous to arrange the channels into those

pairs having the highest correlation. This is possible since
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all the channels of data are presented simultaneously at the
output of the scanner, and the order in which they are
selected is arbitrary. Based on the spectral correlation

matrix the following channel sequence is selected

Table 3.6. Re-Ordered Spectral Channels

Channel Wavelength Band (um)
1 0.40 - 0.44
6 2.00 - 2.60
2 0.62 - 0.66
3 0.66 - 0.72
4 0.80 - 1.00
5 1.00 - 1.40

From the above sequence channels 1 and 6 are contained in
the same data block, then 2 and 3, and finally 4 and 5. The
first column of the resulting 128x128 source covariance ma-
trix for the 8x8x2 data block is presented in Figure 3.23.
Data rates achieved with the three dimensional data
blocks and the K-L, Fourier and Hadamard encoders are pre-
sented in Figure 3.24. The K-L encoder realizes the lowest
data rate. The Fourier and Hadamard encoders are quite simi-
lar, although the Hadamard is slightly better over the dis-
tortion range considered. This may be due to the relatively
large differences in mean values between the channels as
indicated in section 3.2. All three encoders achieve rates

lower than the PCM encoder for distortion near 1% and greater.
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Also included in Figure 3.24 is the rate versus distor-
tion curve for the K-L encoder using a 1x64x2 data block.
This data block is selected based on the performance of the
1x64x1 block over the 8x8x1l block as presented in section 3.5.
As in the two dimensional case the 1x64x2 block achieves

lower data rates than does the 8x8x2 block (d<5%).

3.7. Conclusions and Comparison of Results

The results of Chapter III indicate that correlations
in all three dimensions of the multispectral source are
sufficiently high to warrent the use of a transform coding
scheme as outlined in Figure 1.4. Correlations are lowest
in the spectral dimension and highest in the two spatial
dimensions.

Data rates achieved with the several different data
blocks considered (plus an additional 6x6x1 block) and the
K-L encoder are compared in Figure 3.25. The 1x64x2 block
is best for rates above 0.4 bits/vector element, while the
8x8x2 block is best for rates less than 0.4. The least
efficient data block is the 1x1x6 block - the spectral
channel vector.

The sensitivity of the K-L encoder to varying scene
statistics is examined in Figure 3.26. The two middle curves
represent data rates achieved with the 1x64x1 data block and
the K-L encoder (1) optimized over the region of Figure 3.1

(these rates are identical to those for the K-L encoder in
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Figure 3.14), and (2) optimized over a much larger area (1
mile by 25 miles) of which the area in Figure 3.1 is a sub-
set. The test area for both encoders is that of Figure 3.1.
Although the non-optimum K-L encoder requires higher data
rates than the optimum encoder, both are substantially below

the PCM encoder.
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CHAPTER 1V
EXPERIMENTAL RESULTS PART II - SATELLITE DATA

4.1. Introduction and Description of the Source

In this chapter multispectral imagery gathered on the
NASA Apollo 9 S065 experiment [49] over Imperial Valley,
California (frame No. 3698), is subjected to the data com-
pression system of Figure 1.4. The data is obtained from
images taken by four 70mm Hasselblad cameras mounted in the
Apollo 9 spacecraft window. Each camera has the particular

film-filter combination as listed below

Table 4.1 The Four Film-Filter Combinations

Camera Film Filter Wavelength Band (um)
1 SO0-180 Ektachrome Photon 15 0.51-0.89
Infrared
2 3400 Panatonic-X Photon 58B 0.47-0.61
3 S0-246 B/W Photon 89B 0.68-0.89
Infrared
4 3400 Panatonic-X Photon 25A 0.59-0.715

Images from the above camera-filter combinations were
sampled with a scanning microdensitometer having a 25-micron
aperture and sampling interval of 25 microns [50]. This
sampling rate and the spacecraft altitude of approximately

115 miles gives each sample a theoretical ground resolution
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of 200 ft. at nadir and a sample spacing of 200 ft., (actual
ground resolution is 350 ft. at nadir). The data used in
this study are the quantized (256 levels) samples from the
last three wavelength bands listed above. To be useful in
multispectral analysis the three images must be properlf
overlaid, i.e., each image resolution point must be in
geometrical coincidence in all three channels. This prob-
lem is investigated in [51] and the results applied to the
above three images. The resulting data is then a set of
three geometrically coincident digital images, each repre-
senting the scene reflectance in the 0.47-0.61, 0.59-0.715,
and the 0.68-0.89 um bands. The three images are shown in

Figure 4.1.

4.2. The Three Test Rgg}ons

Three quite different types of terrain are represented
in the images of Figure 4.1 - vegetated areas, mountainous
areas, and desert. It is felt that these three categories
approximate the various types of data that an earth resources
satellite might encounter while orbiting the earth. The
areas chosen to represent the three categories are outlined
in the channel 1 image shown in Figure 4.2. Each region is

designated in the following manner

Table 4.2. The Three Test Regions

Region A - Vegetation
Region B - Mountain
Region C - Desert
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Region B
(Mountains)
Region A
(Vegetation) Region C
(Desert)

Channel 1

Figure 4.2. The Three Test Regions.
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and each contains the same number of data points (384x300
per channel). The three regions are shown at maximum reso-

lution in Figure 4.3.

4.3. Statistical Characteristics of the Three Regions

The mean and variance of Region A, B, and C (averaged

over all three channels) are listed below

Table 4.3. Region Statistics

Mean Variance Standard Deviation
A 85 839 29.0
B 94 375 19.4
c 134 240 15.5

The vegetated region A has the largest variance followed by
the mountainous region B and the desert region C. The

desert area has by far the highest average response while the
mountainous and vegetated region have similar mean values.
Histograms of the data from each region is presented in
Figure 4.4.

The relative variances and spatial correlations existing
in Regions A, B, and C are evident in Figure 4.5 where the
first row of the source covariance matrix resulting from
8x8x1 data blocks is presented. Spatial correlations are
evidently highest in Region C and lowest in the vegetated
region A. This is in agreement with a subjective evaluation

of the three images in Figures 4.2 and 4.3.
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Figure 4.5. First Column of the 8x8x1 Data Block
Covariance Matrix for Regions A, B,
and C.




4.4. One and Two Dimensional Encoding

The data rates achieved using one and two dimensional
spatial data blocks (see Figure 3.12) and the K-L, Fourier,
and Hadamard encoders over Regions A, B, and C are presented
in this section. The number of transform coefficients Yi
retained and the resulting bit distribution over the coeffi-
cient are determined using the results of section 2.9. The
two data blocks considered are the 1x64x1 and the 8x8xl
blocks.

4.4.1 Region A

The data rates achieved with the K-L, Fourier and Hada-
mard encoders over region A are presented in Figure 4.6.
(The relative size of the 8x8x1l data blocks to the areas
encoded is the same as that for the aircraft scanner data
shown in Figure 3.16. However, one data block of the satel-
lite imagery certainly includes more actual ground area than
does the same block of aircraft scanner data.)

The K-L encoder achieves lower data rates than either
the Fourier or the Hadamard encoder, while all three are
substantially better than single sample PCM. As with the
aircraft scanner data the rate distortion function for the
gaussian source is included as a measure of the relative
effectiveness of the various encoders. It is, as mentioned
in Chapter III, an upper bound on the actual rate distortion
function for the multispectral source. The Fourier and Hada-

mard encoders realize similar rates, although the Hadamard
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is slightly better. This may be due to the uniform nature

of the fields within region A, There is little variation
within a given field and a step-like variation between fields.
This type of structure is quite similar to the Hadamard basis
vectors as opposed to the more smooth variations present in
the Fourier basis vectors.

In the 1% distortion region the three encoders are cap-
able of an apporximate 2:1 data rate reduction over standard
PCM. Reconstructed channel 1 images at rates of 2, 1, and
0.5 bits/vector element using the K-L encoder are presented
in Figure 4.7. Little or no distortion is evident at the 1
and 2 bit rates, while the 0.5 bit image contains detectable
distortions.

The error image for the K-L encoder at 1 bit/vector
element is also presented in Figure 4.8. Black represents
no error and white represents a squared error of 255 or more.
The area of large error in the upper-left corner of the
image is due to the reconstruction error encountered over
what is apparently a scratch in the original photograph. The
results of the Fourier and Hadamard encoders using 8x8xl data
blocks at 1 bit/vector element are presented in Figure 4.9.
Both are subjectively reasonable reconstructions of the
original channel 2 image.

The effects of block structure on data rates is shown
in Figure 4.10 where the rates achieved in region A using the

K-L encoder are presented for the one dimensional (1x64x1)
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Fourier Encoder

Hadamard Encoder

Figure 4.9. Reconstructed Channel 1 Image Using
8x8x1 Data Blocks with the Fourier
and Hadamard Encoders at R = 1.0.
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and two dimensional (8x8x1l) data blocks (the three dimen-
sional block is also included and is discussed in section
4.6). The two dimensional block is uniformly better than
the 1x64x1 block over the distortion range considered. This
is in contrast to the results obtained with the aircraft
scanner data where, as described in section 3.7, the one

dimensional 1x64x1 block is better (d>2.5%) than the 8x8x1

block.

4.4.2 Region B

Data rates achieved using the K-L, Fourier and Hadamard
encoders with 8x8x1 data blocks over the mountainous region
B are presented in Figure 4.11. The K-L encoder realizes the
lowest data rate while the Fourier and Hadamard are prac-
tically identical in their performance. This is evidently
due to the low variance and high correlations in region B.
The first few transform coefficients contain essentially all
the average source energy ES for both encoders. All three
encoders achieve data rates substantially below the PCM
encoder. In the 1% distortion range the K-L, Fourier and
lHadamard encoders require approximately 2 bits/vector element
while standard PCM requires 4 bits, giving the transform
encoders a 2:1 rate reduction. A reconstructed channel 1
image using the K-L encoder and 8x8xl1 data blocks at 1 bit/
vector element is shown in Figure 4.12. Very little

distortion is evident.
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Region B (R = 1.0)

Region C (R

1.0)

Figure 4.12. Reconstructed Channel 1 Image Using the
8x8x1 Data Block and the K-L Encoder
Over Regions B and C.
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4.4.3 Region C
Data rates achieved with the 8x8x1l data blocks and the

K-L, Fourier and Hadamard encoders over the desert region C
are presented in Figure 4.13. All three encoders are approx-
imately indentical in their performance. The data in region
C is so highly correlated (see Figures 4.2 and 4.5) that the
first transform coefficient of each encoder contains essen-

tially all the source energy Es'

Table 4.4. Percent of Total Variance Contained in Each
Transform Coefficient

Coefficient
1 2 3 o 63 64
K-L 92.1 0.54 0.43 ot .07 +07

Fourier 92.1 0.41 0.36 e .07 .07

Hadamard 92.1 0.46 0.39 tt S .07 .07

The first Fourier and Hadamard basis vectors are identical,
and both closely resemble the first K-L basis vector (for
this particular data set). Thus the encoders use, in a
sense, the same basis vectors, and the resulting data rates
could be expected to be similar.

The transform encoders do realize rates substantially
below the PCM encoder. As in regions A and B, the improve-
ment is by a factor of approximately 2 in the 1% distortion

region. A reconstructed channel 1 image using the K-L
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encoder and 8x8x1 data blocks at 1 bit/vector element is

presented in Figure 4.12,

4.5. Comparison of Data Rates Over the Three Regions

Data rates achieved over regions A, B and C may be
meaningfully compared on a total error basis, but not on a
(non-adjusted) percent error basis. For example a 1% distor-
tion in region A represent more total error than a 1% distor-
tion in region C. This is because percent error as defined
in 2.2 is a function of the data variance in the region con-
sidered. Total error is not so defined, but is difficult to
interpret. In order to compare the data rates in the three
regions on a percent error basis the "adjusted'" percent
error is defined. It is the total error encountered in a
given region, divided by the average source energy ES from
the vegetated region A. These results are presented in
Figure 4.14.

The encoder used in each region is the '"optimum" enco-
der for that region (i.e., the transformation matrix T, the
number of transform coefficients retained and the resulting
m., are all based on the region covariance matrix). The most
difficult region to encode is the vegetated region A, while
the desert region is the least difficult. This is also true
for the PCM encoder as evidenced by the top three curves.

In a practical, non-adaptive situation (see [53] for a

discussion of an adaptive two dimensional encoder; also [55])
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one encoder would be used for all three regions. The sensi-
tivity of the data rates to encoders optimized over one
region and applied to another is demonstrated in Figure 4.14.
The K-L encoder is optimized over the more difficult region A
and used to encode regions B and C.

The data rates achieved over region B and C are approxi-
mately equal although the region C curve is slightly higher.
Both are.above the data rates obtainable using the optimum
encoder for each region, but both are still below the '"opti-
mized" PCM encoders. These results indicate that it might
be reasonable to design an encoder to efficiently handle a
particular type of terrain designated most important, and
still perform well over statistically different areas. As
an example, the reconstructed channel 1 images from regions B
and C using the region A optimized K-L encoder at 1.0 bits/

vector element are presented in Figure 4.15.

4.6. Three Dimensional Encoding

The three dimensional data block includes correlations
existing in all three dimensions of the multispectral source.
The structure of the three dimensional block is described in
section 3.6 and Figure 3.22.

Data rates achieved using the K-L encoder over region A
with 6x6x3 blocks (6 lines x 6 columns x 3 channels) are pre-
sented in Figure 4.10. Also included are the rates obtained

with the 6x6x1 block. It is evident that the three
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Region B
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Region C

Figure 4.15. Reconstructed Channel 1 Image Using the
Non-Optimum K-L Encoder Over Regions B
and C (8x8x1 Data Block).
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dimensional data block is superior to the other one and
two dimensional blocks for the distortion range considered.
At 1% distortion an approximate 5:1 rate reduction over

standard PCM is indicated.

4.7. Principal Component Images

Although the satellite data analyzed in this study has
only three spectral channels of information, it is of inter-
est to examine the three principal component images. The
images are constructed in the manner described in section

3.2. The data block (1x1x3) is the three element spectral

vector.

The source covariance matrix is

585.2
C= 594.5 1034.5
339.7 348.7 740.0 4.1

yielding the following three eigenvalues and K-L transfor-

mation matrix T

Al = 1689.2, AZ = 512.5, AS = 158.0 4.2
0.527 0.719 0.453
1= -0.082 -0.487 0.870 4.3
0.846 -0.495 -0.197
-




123

The weights given to the original three channels are given
by the columns of T. The resulting three principal

component images are shown in Figure 4.16.
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CHAPTER V
DISCUSSION OF THEORETICAL AND EXPERIMENTAL RESULTS

In this chapter the theoretical results of Chapter II
and the experimental results of Chapters III and IV are dis-
cussed. The transform encoder is evaluated based on the two

error criteria defined in section 2.1.

5.1. Theoretical Results

An approximate solution to the minimization of the
total encoder system error over the number of retained trans-
form coefficients and corresponding bit distribution for a
fixed data rate and block size is presented and successfully
applied to both the Markov source and to the multispectral
data. The optimum number of retained coefficients is shown
to be a function of the variances of the transform coefficients,
as is the resulting bit distribution.

The K-dimensional linear transformation is shown to be
representable by a single equivalent matrix multiplication
of the re-ordered source output tensor. The resulting equi-
valent matrix for the Hadamard transformation is again a
Hadamard matrix. This is not the case for the Fourier trans-

formation, although the equivalent matrix is again orthogonal.
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The selection of an optimum data block size under a

maximum volume constraint is considered for the continuous
source. The solution is in the form of a set of equations
the K dimensions of the optimum block must satisfy, and is
a function of the average error in a particular plane of the

data.

5.2. Principal Component Imagery and Feature Selection

The transformation of multispectral data to principal
components in the spectral dimension is found to be quite
useful in providing an efficient means of data classification
and storage. The first three principal component images (for
the aircraft data) are shown to contain essentially all the
information present in the original six spectral images. For
the three channel satellite data only the first two principal
component images are significant. The six Fourier component
images from the aircraft data are found to exhibit substan-
tially less information packing.

The problem of feature selection is simplified to a
"first n" rule in the transform domain, and the results are
experimentally verified over the aircraft data set. The
results show that the first n transform features are at

least as good as the ''best" n spectral channels.

5.3. Encoder Performance Based on Mean Square Error

The results of Chapters III and IV indicate that corre-

lations in all three dimensions of the multispectral source
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are sufficiently high to warrant the use of a transform cod-
ing scheme. Encoder data rates are lowest for the K-L encoder,
with the Fourier and Hadamard encoders typically performing

at somewhat higher rates. All three encoders achieve data
rates substantially below the standard (single sample) PCM
encoder, and therefore represent significant reductions in
bandwidth and/or storage requirements. Reductions (over stan-
dard PCM) range from approximately 3:1 at 1% distortion to
more than 20:1 at 10% distortion using the K-L encoder over
both the aircraft and satellite data sets.

The area to be encoded is found to be relatively insen-
sitive to the encoder parameters. This result indicates that
it might be reasonable to design an encoder to efficiently
handle a particular type of terrain designated most important,
and still perform well over statistically different areas.

The effects of data block structure are significant in
that the encoder data rates are found to be a function of the

dimensionality of the data block.

5.4. Ehcoder Performance Based On Classification Accuracy

The ability of the transform encoder to preserve class
separability as determined by a maximum likelihood decision
rule is quite good. Very little (=6%) reduction in classi-
fication accuracy is evident for data rates as low as 0.25
bits/vector element using the K-L encoder, while the stan-
dard PCM encoder degrades rapidly (70% reduction at 1.0

bits/vector element).
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APPENDIX A

MEAN SQUARE ERROR AS A FUNCTION OF POSITION WITHIN
THE DATA BLOCK
Consider the K-dimensional zero mean random process x(t)
having the following properties
1) The process is time aplitude continuous, with

x(t) = x(ty, t t

23 s K)
2) The process is correlation stationary [57].
The autocorrelation function is then R(t-T)

and the process variance is
E{x?(t)} = o2
- X
Define the Karhunen-Loéve series expansion of x(t) over

the data block (interval) [Nl’ NZ’ . E g Nn]

x(t) =j§1yj¢j(£) 0<t



where the ¢j(£) are the orthonormal eigenfunctions of the

integral equation

1 Mg

Aj¢j(£) = I - J R(£'1)¢j(l)dl

and the Ai are the eigenvalues of A.4

The random coefficients y; are determined by

Ny

v;= | [ xweswar

Define the mean square sampling error ds(g)

d (1) = E{[x(t)-%(1)]?}
where

n
X(t) =j£1yj¢j ()

Expanding A.6 in terms of A.3 and A.7 gives

do(t) = I E{y.y.}e.(t)e.
<(t) L y;¥ 10, (8¢ (1)

A.
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But
N1 N

Ny
E{yiyj} = E I... J

o My
[oo] x@x@e; @60 azar

N N N
J f I f R(t-T) ¢, (t)¢ (T)dtdt A.9

From A.4 equation A.9 becomes

N N

1 K
E{yiyj} = J...[ Aj¢j(£)¢i(£)d3 A.10

The ¢.(t) are orthonormal. Thus A.10 gives

Ay i=g

J
E{y.y.} = A.11
0 i#J

or

E{yi} = A, A.12
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and the eigenvalues of A.4 are the variances of the Y+

Substituting A.11 into the expression for ds(E) in A.8 gives

©

do(t) = A.02(t A.13
s (1) j=£+1 J¢J(_)

From Mercer's Theorem [57]

02 = Z A¢z(t) A.14
X i=1 Jd Jd —

Thus A.13 becomes

n
0(8) = op - 12030 A.15

Equations A.13 and A.15 are the desired result. They express
the total sampling error as a function of position (t)
within the leNzx .+.XN, data block.

The mean integral square sampling error is

dg = f... f dg (t)dt A.16




ﬁ

Substituting A.13 intoO A.16 gives

N, Mg

d. = x.x...gq’%tdt

o0
= ) X\
j=n+1 J

a familiaTl result [54,56,57].
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APPENDIX B

THE OPTIMUM BLOCK SIZE
Consider the Karhunen-Loéve series expansion of the
K-dimensional random process x(t) defined in Appendix A. The
following problem is examined. Choose the Ni’ t=1,2,°°°,K:
that minimize the mean integral sampling error dS as defined

in A.17, subject to the constraint

K
I N. = N B.1
j=1"Y

Introducing the Lagrange multiplier A the problem

becomes the solution to the following K+1 equations

K

s {ds * A I N p= o i=1,2,""",K B.2
7 -

K

TN, =N B.3
g=1 ¥
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Using the results of Appendix A, B.2 becomes

9 bt K
-1 L A+ AN, =0 B.4
i |j=n+1 Y i=1"Y
or
E BAj N
e A =0 B.5
j=n+1°"¢ N;

The first term in B.S5 is now examined. Multiplying

both sides of A.4 by ¢j(£) and integrating gives

N
[« Rz-Do @10, (Dazar B.6

The partial derivative of Aj is then

N. N.
3. F
oy = )[][5.;_ I R(t-1)¢.(t)¢.(t)drdt B.d
i ¢3¢ T

where { is introduced as the multiple integral

1 N Noag N

1@{...{ [ eof b
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i.e., integration over all Nj’ J#t

Carrying out the differentiation in B.7 gives

R(g'-g',Ni-ri)¢j(g)¢j(£’,Ni)dri +

("o\—f—-‘

S
r—
—_— =

N

[ (R(E‘-l"ti-Ni)q’J‘(T_"Ni)(pJ’(E.) *
N,

[ (D)8, (L)o ()dr; +

[ R(£-1)¢.(£)$j(1)dti]dti]d£’dl‘ B.9
where

t” = (tl---,t °-,tK) B.10

i-1° “i+1°°

and

bi(0) = 5%;[¢j(3)] B.11
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Rewriting B.9

N

A

5“% i f f j RILE™=2 Ny -7y 19, () 4, (7 N D dvde” »
1T 1

1
[ R ot npo N0 (mdrae

¢ (r)¢ (t)dtdr B.12

ot
52
"—-ﬁz

After some manipulation and using A.4 the three integrals in

B.12 become

First integral = {AJ¢;(£‘,Ni)d£’ B.13
1

Second integral = fkj¢;(1',Ni)dl’ B.14
1
N, ¥

Third integral = zf---[xj¢j(£)aj(£)d3 B.15
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LEvaluation of B.15 is accomplished using the orthonormality

of the ¢j(£)

sﬁ-[ '°°I¢;(E)d§l =0 B.16

or

N,
1
fg%jj¢;(£)d£ = 0 B.17
3 1
7 .

Carrying out the differentiation and rearranging terms gives

N
K
I".I¢j(£)¢j(2)d£ = f¢;(£',Ni)d£' B.18
7

Substituting B.18, B.13 and B.14 into B.12 gives

a)\ 2 - - > 3 - 3
i 7 T

A.62(t”,N.)dt” B.19b
frercer e

2
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Now B.19 may be used in B.S5

s 2 » - AN
p5(t",N.)dt” + = (
j"§+1i J¢J(— ’ 1,) - Ni B.20
or
N, 1 +.92(t°,N.)dt” = -AN
tj=n+l. itit—= i B.21
1
Since AN is a constant B.21 implies
N. ] {A.¢%(t',N.)dt‘ =
ti=n+1d V7T VT
N, 1 {A.¢%(E' N,)dt” Vi,l B.22
Z.7'=n*1Z AT

The set of Ni,i=1,2,---,K that satisify B.22 are the
desired result. Based on the results of Appendix A the
following interpretation may be given to B.22. First,

rewrite B.22 in the following form

N T oagerenNpdrt = N T aeietNpar” B. 23
Hlmmel 77T TP Zl'j’“*l ivd Z



o

- 2
d () j'riﬁlxjcbj(;_)

Thus the integrals in B.23 represent the sampling error as
a function of t” in the plane t =N,. Integrating over t~
gives the average sampling error in the plane tiBNi.
Equation B.23 states that the optimum choice of Ni’
t=1,2,+++,K is such that Ni times the average error in the
ti=Ni plane is equal to Nl times the average error in the
tZ=NZ plane.

If the process autocorrelation function is separable,

N. ] A.0%2 .(N.)
1j=n+1 Jd Jdt 1
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APPENDIX C

BIT DISTRIBUTION FOR THE K-L ENCODER
Tables C.1 and C.2 below represent integer bit
assignments resulting from the application of equations 2.60
and 2.63 to the aircraft scanner data using the K-L encoder
and 1x1x6 and 1x64x1 data blocks, respectively. The
resulting percent distortions are presented in Figures 3.7
and 3.14.

Table C.1. Bit Distribution for the K-L Encoder
and 1x1x6 Data Blocks

No. Bits R=5.0 R=3.0 R=1.0 R=0.33
8 1 - - -
- . ) ) -
6 2 1 - -
5 3 - - -
4 4-5 2 - -
3 6 3 1 -
2 - 4-5 2 1




Table C, 2.

Bit Distribution for the K-L Encoder
and 1x64x1 Data Blocks

R=1.0

3-4

R=0.125

5-10

11-20
21-26
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