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TWO-PHASE CHARGE-COUPLED DEVICE

By W. F. Kosonocky and J. E. Carries
RCA Laboratories

SUMMARY

A charge-transfer efficiency of 99.99% was achieved in the fat-zero mode of operation

of 64- and 128-stage two-phase charge-coupled shift registers at 1.0-MHz clock frequency.

The experimental two-phase charge-coupled shift registers were constructed in the form of

polysilicon gates overlapped by aluminum gates. The unidirectional signal flow was accom-

plished by using n-type substrates with 0.5 to 1.0 ohm-cm resistivity in conjunction with a

channel oxide thickness of 1000 A for the polysilicon gates and 3000 A for the aluminum

gates. ;The operation of the tested shift registers with fat zero is in good agreement with the

free-charge transfer characteristics according to a model described in this report. The charge-

transfer losses observed when operating the experimental shift registers without the fat zero
are attributed to fast interface state trapping. The analytical part of the report contains a
review backed up by an extensive appendix of the free-charge transfer characteristics of CCD's

in terms of thermal diffusion, self-induced drift, and fringing field drift. Also, a model was

developed for the charge-transfer losses resulting from charge trapping by fast interface states.

The proposed model was verified by the operation of the experimental two-phase charge-

coupled shift registers.



I. INTRODUCTION

Charge-coupled semiconductor devices (refs. 1-7) consist of closely spaced MOS capaci-

tors pulsed into deep depletion by the clock phase voltages. For times much shorter than that

required to form an inversion layer of minority carriers by thermal generation, potential wells

will be formed at the silicon surface. The minority-carrier charge representing the information

will be stored or confined in these potential wells. The propagation of the information is ac-

complished by clock pulses applied to the electrodes of the successive MOS capacitors (i.e.,

charge-coupled elements), resulting in a motion or spilling of charges from the potential wells

that become shallower to the potential wells that become deeper. Such propagation of signal

into the successive minima of the surface potential produces a shift register for analog signals

having signal transfer efficiency approaching unity. Such analog shift registers may be used for

various signal processing applications such as the electronically variable delays or self-scanning

photosensor arrays. However, by adding simple charge-refreshing stages (refs. 2-4) a charge-

coupled shift register for digital signals can be constructed.

If the charge-coupled structures are formed with symmetrical potential wells, at least

three clock phases are required to determine the directionality of the signal flow. The use of

more than three phases may be dictated by either the construction design symmetry, as in

the case of a four-phase silicon gate overlapped by aluminum structures, or special signal cod-

ing schemes in which more than one bit may be propagated in one clock cycle. One important

feature of the three-phase system is that it may be used for a bidirectional charge-coupled

channel in which the flow of information may be reversed by reversing the timing of two of

the three phase clocks.

Two-phase operation requires that the charge-coupled structures be formed so that the

potential wells induced by the phase voltage pulses are deeper in the direction of the signal

flow. In this case, as one phase voltage is lowered, the resulting potential barriers force a

unidirectional signal flow. It should be noted that a one-clock operation can also be obtained

in a two-phase charge-coupled shift register if a proper dc voltage is applied to one of the

phases (ref. 2). Furthermore, a true single-phase or a Uniphase charge-coupled structure (ref. 8)

can be formed by replacing the de-biased phase by a structure involving a fixed charge in the

oxide. Such structures could be formed by the use of ion-implanted barriers (ref. 9) or by

variation of the fixed oxide charge for the formation of the asymmetrical potential wells.

Charge-coupled devices can be constructed with any of the following three techniques:

(1) Single metallization using p-MOS or n-MOS processes for three

phase CCD's.



(2) Polysilicon-aluminum structures for two-phase and multiphase CCD's.
(3) Single metallization with ion-implanted barriers for two-phase or Uniphase

CCD's.

The most conventional process and the one used to make our first charge-coupled cir-

cuits is the thick-oxide p-MOS process (refs. 2-4). The major limitation of this process is the

etching of the separation between the gates which should be no larger than about 0.1 mil in

order to control the surface potential in the resulting gap. The operation of n-MOS CCD's on

the other hand, can be less sensitive in the interelectrode spacings because of the presence of

positive charge usually present in thermally grown SiC^ channel oxides.

The sealed-channel polysilicon-aluminum structures described in this report are the most

compact structures that can be fabricated with more or less conventional layout rules. The

self-aligning-gate construction of these devices allows fabrication of charge-coupled structures
with gate separation comparable to the thickness of the channel oxides as well as having the
channel oxide always covered by one of the metallizations. Another important advantage of

the silicon-gate process is that it provides a very simple method for the construction of two-
phase CCD's.

The two-phase CCD's described in Section III employ two thicknesses of channel oxide
oxide for the formation of the asymmetrical potential wells needed for the unidirectional

flow of signal. Another approach by which similar two-phase operation can be achieved is by

introduction of ion-implanted barriers into regions of the substrate under the gates of the
charge-coupled structure (ref. 9). The advantage of the two-phase CCD's with the ion-implanted

barriers is a simpler processing requiring only one metallization. The other feature of these
devices is that they normally operate in the so-called "bias-charge" mode described in Sec-
tion III.

The analysis of charge-transfer characteristics of CCD's in terms of free-charge losses and

losses due to the trapping by fast interface states are described in Section II. Section III deals

with the construction and operation of two-phase charge-coupled shift registers made in the

form of polysilicon gates overlapped by aluminum gates.



II. CHARGE TRANSFER ANALYSIS

A. Free Charge Transfer in CCD's

1. Introduction. — The utility of CCD's for various applicatipns depends to a great extent

upon the two interrelated questions of how fast and how completely can charge be transferred

between adjacent potential wells. When interface state trapping is ignored, the answers to

both of these questions are known if one knows how much charge remains in the transferring

potential well as a function of time because this is essentially transfer efficiency vs. frequency

information. An outline of the free charge transfer analysis which yields such information is
given in this section; a more detailed discussion can be found in Appendix A.

There are three separate, conceptually identifiable mechanisms, or "driving forces," which
cause charge to move from one potential well to an adjacent one of lower energy (see Figure 1).

The first is thermal diffusion due to the random thermal motion of the carriers which causes

charge to move from regions of higher concentration to regions of lower concentration. The
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Figure 1. Cross section of three-phase CCD. Charge transfers from under
center electrode to the right. The surface potential in the ab-
sence of signal charge as calculated by computer is shown in
lower half.



second mechanism is due to the repulsion of the like-charged carriers which make up the sig-
nal and is referred to as "self-induced drift." It is basically a drift mechanism where the electric
field is produced by the charged carriers themselves. The third mechanism is referred to as
"fringing field drift." Here the electric field arises from the externally applied clock voltages.
In the following discussion it will be shown that fringing field drift can appreciably speed up

the charge-transfer process and, in appropriately designed CCD structures, can result in highly
efficient transfer (TJ = 99.99%) at 10-MHz bit rates (neglecting interface state trapping).

2. Thermal Diffusion. — Strictly speaking, the time decay of charge remaining in the trans-

ferring potential well due to thermal diffusion alone depends upon the initial charge concen-

tration profile. However, a Fourier analysis (ref. 10) of the problem indicates that the decay
approaches an exponential one for long times with a decay constant T^ given by

rth = L2/2.5D (1)

where L is the center-to-center electrode spacing and D is the diffusion constant.In this prob-

lem it is assumed that a potential barrier prevents charge motion in the reverse direction while

the receiving potential well serves as a perfect sink for carriers in the forward direction. Thus,

if the carriers were not charged and thermal diffusion were the only transfer mechanism, the

total number of carriers remaining in the transferring well as a function of time N|.o^.(t) would
be given by

-(2.5D/L2)t
NtotW = Ntot(°)e (2)

The most important controllable parameter here is L, but even for reasonably small values of
L thermal diffusion is rather slow. If we define t^ as the time required to reach 99.99% trans-
fer efficiency and f^ as the corresponding clock frequency for two-phase operation,
f4 = l/(2t4), then

3.7L2

(3)

or



Thus, for L = 10 Mm and D = 6.25, f 4 is just 8.4 x 105 Hz.

3. Self-Induced Drift. — The drift of the carriers under the influence of the electric field

produced by the signal charge itself is an important effect at carrier concentration levels

above ~ lO^cm . There are at least two different methods of approaching this problem

(see Appendix A). Both lead to the same conclusion; i.e., the charge reamining decays

hyperbolically in time according to the following equation:

= Ntot(°)

where

n

C_Y is the oxide capacitance per unit area (F/cm^)
o

(i is the field effect mobility (cm^/(V-sec)
q is the electronic charge (C)

o
nQ is the initial uniform carrier concentration (cm"^)

A hyperbolic time decay is very fast for short times (t < 100 to), but becomes comparatively
slow for long times. It can be shown that after t = 1.6 T^n, the decay due to thermal diffusion

proceeds faster than that caused by self-induced drift. Thus, self-induced drift is a very fast

process effective in transferring the first 90-99% of charge. It becomes ineffective, however,

in attaining transfer efficiencies of 99.99%.

4. Fringing Field Drift. — A third mechanism which can have a dominant effect on charge

transfer, especially at low concentration levels, is fringing field drift. The fringing fields re-

ferred to are the electric fields at the Si-Sio2 interface along the direction of charge transfer

which arise from the externally applied clock voltages. In other words, the fringing field at

any point along the interface is the slope of the surface potential there (see Figure 1).

Fringing field magnitudes have been calculated by an approximate analysis and computed

numerically for the case of closely spaced electrodes. They depend upon the electrode length,

the clock voltage magnitude, the oxide thickness, and the substrate doping density. The

minimum value of the fringing field occurs at the center of the transferring electrode and is

given by



E'FMIN = 6.5
5Xd/L

5Xd/L (7)

where X Y is oxide thickness, V is 1A of the total clock pulse voltage, L is the gate length, and
O A.

Xd is the depletion depth at the center of the transferring electrode. For the closely spaced

electrode structures studied it was found that the average fringing field magnitude is twice

the minimum value, so that the time required for a single carrier to transit across the length of

the transferring gate, the single carrier transit time T^., is given by

3

13MXOXV

5Xd/L

5Xd/L

4

(8)

However, our computer studies have shown that it takes longer than one T± to remove

all of the charge from the transferring gate. Because of the combined effects of the nonuni-

form fringing field and the thermal diffusion which tends to oppose charge transfer, the total

remaining charge decays exponentially in time with final decay constant TJ. Further, it was

found for the closely spaced gate structures studied that rj was equal to one-third T^., and since

an analytical expression is available for T^., [Eq. (8)] the decay rate due to fringing field drift

can be calculated. The time t^ required to reach TJ = 99.99% is given by

3L
(9)

For doping densities lower than ~ 10 and gate lengths less than 1 mil, the fringing field

drift mechanism significantly speeds up the transfer of the last few percent of charge.

5. Expected Performance. — The speed-efficiency performance expected for CCD's, neglect-
ing interface state trapping, depends most strongly upon gate length and substrate doping.

The importance of each is most clearly apparent when we plot the t^ time (7? = 99.99%) vs.

gate length for various doping densities, as seen in Figure 2. The dotted line is the t^ time

given by Eq. (3) for thermal diffusion and represents the longest time required in any case.

The solid lines are found from Eq. (9) while the data points represent computer simulation

results of Appendix A. It is clear from Figure 2 that fringing field drift can ensure very
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complete free charge transfer for reasonable gate lengths (< 10 jim) and doping levels
(< lO^cm"^) at bit rates of 10 MHz or even higher. Thus, we must conclude that free charge

transfer will not place any serious limitation on CCD performance. It is likely, however, that
trapping of signal charge in fast interface states will limit operation. This subject is discussed

in the next section.

B. Trapping Effects in Fast Interface States

1. Introduction. — Surface and interface states have influenced the development of solid

state electron devices since the days of copper-copper oxide rectifiers in the late 1800's
(ref. 11). For example, the bipolar transistor was probably developed only because surface

states prevented the early realization of the field effect transistor, a much simpler transistor

8



concept first proposed by Heil (ref. 12) over ten years before Bardeen and Brattain's bipolar
transistor (ref. 13). It was not until Atalla, et al. (ref. 14) demonstrated the passivation prop-
erties of SiOo layers on silicon surfaces in 1959 that interface states were reduced to a level

which permitted fabrication of MOS field effect transistors. This marked the beginning of the
MOS integrated circuit, which is only today beginning to exert a significant impact in the

electronics industry. It is to be anticipated that once again in the area of charge-coupled de-

vices, interface states will play a very important role.

In this section the effect of fast interface state (FIS) trapping upon CCD operation will

be discussed. First the definition and characterization of FIS's will be outlined, followed by

a formulation of the general problem and evaluation of the rate constants involved. A simpli-

fied, intuitive solution is then presented. Finally, a more exact expression for the fast state

loss in the case of constant background charge (bias charge), varying background charge (fat

zero), and small signal are presented in integral form.

2. Characterization of Fast Interface States. — Fast interface states exist in the silicon forbid-
den gap at the silicon-insulator interface and can exchange charge rapidly with the silicon con-

duction and valence bands. The time constant for charge exchange varies over many orders of
magnitude depending upon the energy of the states; thus, some are faster than others. But the
ability to communicate with bands defines them as "fast." Slow states, on the other hand, exist
further into the insulator and change their occupation levels with time scales of hours and

days (ref. 15).

As was shown by Tamm (ref. 16) and Shockley (ref. 17) fast states arise fundamentally
from a quantum-mechanical point of view because of the abrupt termination of the silicon

lattice periodicity. From a chemical viewpoint, the surface states can be thought of as caused
by the dangling or unsaturated silicon bonds at the surface. Other factors which can cause

fast states are chemical impurities, work damage, and stresses induced by thermal expansion
mismatch between the insulator and silicon.

Fast states are characterized by two parameters:

O -I

(1) Their number per unit area per eV of energy, Ngs, in (cmr-eV) . This density

may vary in energy.

(2) Their capture cross sections for electrons and holes, an and a_, respectively,
C\ "

in cm . These quantities may also vary with energy, but are generally assumed

to be constant.



Several different techniques have been devised for measuring fast state densities, all involving

the MOS capacitor. They include capacitance-voltage (C-V) slope, C-V vs. temperature [Gray-

Brown technique (ref. 18)] and conductance-voltage (G-V) technique (ref. 19). These methods

are reviewed by Sze (ref. 20).

Measurements on the thermal SiG^-Si system indicate that fast state densities range from

10 to 10 (cm -eV) depending upon oxide growth conditions, silicon orientation, and

annealing procedures (refs. 20-21). Generally, the density is a minimum near the center of the

gap gradually increasing to peaks about 0.1 eV above and below the two bands (ref. 19). (Ill)

silicon surface orientation results in about one order of magnitude more fast states than (100)

(ref. 18) while steam-grown oxides have lower fast state densities than dry oxides (ref. 19). A

500° C heat treatment step after aluminum deposition in hydrogen gas reduces fast state den-

sities to the 1010 (cm2-eV)"1 level (ref. 22).

Capture cross sections for electrons have been measured to be between 10 ° and

10 cm , independent of energy and of most growth and annealing parameters. ap values

range between 2 and 4 x 10"17 cm2, (ref. 19).

3. General Formulation of Interface State Model. — The model which has been assumed

consists of a uniform (or slowly varying) density in energy of interface states, denoted Noc,• DO

which exist at the Si-SiC>2 interface. These states will trap free electrons or holes at a rate

proportional to the number of free electrons or holes and the number of empty or filled

states, respectively. The states will emit or de-trap electrons or holes at a rate proportional

to the number of filled or empty states, respectively, and the Boltzmann factor appropriate

for the energy of the states (ref. 20). Thus, the rate of change of occupation of the fast states

at any given energy level e below the conduction band is given by

dnss
gs

- ( e - e ) / k T
- k3nssPs + k4(Nss - nss> e

where n is the number of occupied states in (cm-eV) ,
DO • i

N00 is the interface state density in (cm2-eV)~l,
DO

nc is the density of free electrons at the surface in cm"2,
o

p_ is the density of free holes at the surface in cm"2,s

e is the energy of the states below the conduction band edge,

10



eg is the energy width of the forbidden gap,
k is Boltzmann's constant,
T is absolute temperature, and

ki, ko, kg, and k^ are constants. Their values are discussed in a later section.

In principle, if we know how nc varies with time, then by using Eq. (10) we can solve
o

for n as a function of time and energy. By integrating over energy, we find the total amount

of trapped charge as a function of time. By comparing the total number trapped at the be-

ginning of the transfer-in period with that trapped at the end of the transfer-out period we

obtain the total number of carriers lost into interface states for each transfer. This procedure

can be used to calculate the interface state loss vs. CCD clock frequency.

From a practical point-of-view, however, certain simplifying assumptions must be made.

One simplification results from the nature of CCD operation. In normal operation CCD's are

biased into deep depletion and remain there because any thermally generated charge is con-

stantly being swept away by the CCD charge transfer action. Therefore the density of major-

ity carriers at the interface is extremely low and for an n-channel device this means that ps,

the density of free holes at the surface, is negligible. Therefore, the third term of Eq. (10)

may be neglected, yielding

dnss

dt
klns + k4 e

-(eg-e)/kT"

- k2nss e

-e/kT

In steady-state dn /dt = 0 for all energies so that
SS'

nss

N- ^2
1 +

ss k
(12)

klns + k4 e

-(eg-e)/kT

By setting nss/Nss = V6, we can define a quasi-Fermi level, er>:

-(eg-eQ)/kT -eQ/kT (13)
klns + k4 e = k2 e

11



-(eg-eQ)/kT,
When k-^Hgg » k4 e

k2
= kTln- (14)

klns

Whenk1ns«k4e'(eiTeQ) /kT

eg 1 R4 eg
e0 = -s- - — In — « —. (15)
Q 2 2 k2 2 V ;

This means that when ng is greater than (k4/k-^)exp(-6g/2kT), the quasi-Fermi level €Q will

be in the upper hah* of the gap as given by Eq. (14), and emission of holes can be neglected.

However, when n is lower than this value €Q will tend toward center gap, and hole emission

is no longer negligible. As CQ tends below center gap, hole emission fills the states faster than
19electron emission can empty them. Since, as shown in a later section, k^/k-i « 10 '

(k4/k-^)exp(-eg/2kT) « ICPcm . In the following analyses it is assumed that ng is greater

than this value and therefore CQ is determined by ng [Eq. (14)].

If the number of occupied fast states at any energy is perturbed from its steady-state

value, or if the value of n§ changes, thereby forcing a new CQ, ngs will approach its new

steady-state level at a rate given by

-e/kT
- k2Anss(t) e (16)

where An (t) is the difference between the actual n and the steady-state n appropriate

for the new value of ng. Integrating Eq. (16), we have

An^t) = Ansg(0) e" t/T (17)

where
T =

klns+k2e
-e/kT

(18)
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If the change in n is an increase, then CQ moves higher in the gap, and essentially all the
states between the old and new eq's have to be filled. Since at the energies of interest

and

T f m= — (19)
klns

If the change in ng is a decrease, then all states between the old and new CQ must be
empty, and in this case e < €Q; thus,

1 e/kT
'empty = ^ e (20>

/_ e /2kT)
Provided n > k^/kj e 8 } the states will fill exponentially with time constant
1/k-. n . The empty time will vary an order of magnitude for every 0.06 eV change in energy

11 11(at room temperature) and since k« = 10 , empty times vary from ~ lO"-11 sec near the band
edge to ~ 10"2 sec near midgap. Fundamentally speaking, it is this property that states can
fill faster than they can empty which causes loss of charge into fast interface states.

4. Determination of Rate Constants. — The basic rate Eq. (10) includes constants ki through
k^. The following discussion estimates the values of these constants for the Si-SiC^ case.

k-^ represents the probability per unit time that a given free electron will be trapped by
any one trapping site. In the bulk trapping case ki is the volume swept out by a trap with

O

cross section a traveling at the thermal velocity v^, or av^ with units cm /sec. However, for
the case of interface state trapping this expression is not valid. For one thing, the units are not
correct. Actually, the interface trapping case is probably easier to visualize than the bulk case.
Electrons confined in the inversion layer at the surface collide with the Si-SiOo interface with
some average frequency v. Each time an electron collides, it has the probability of being trap-
ped by a particular interface state of a, since the total area here is unity. Thus, the probability
per unit time of one electron being captured by one empty interface state is av. Since a has
been measured for Si-SiOn fast states (ref. 19), it remains to estimate the value of v.

In a given energy interval de located an energy e above the conduction band, the time
between surface collisions rc(e) is given by

13



2W(e)

where W(e) is the width of the inversion layer at e, and vv(e) is the x-directed velocity of elec-
A.

trons at e. Assuming equipartition of energy, v (e) can be written as

2qe

e is given in electron-volts, and m* is the effective mass. The inversion layer width can be

estimated using the maximum field in the silicon ES as

W(e) = - (23)
o

The number of carriers at each energy, assuming nondegenerate conditions, is

(24)

N(e) is the three-dimensional density of states in the conduction band, ej is the Fermi level

and kT is in units of eV.

The average frequency of collision with the interface is then obtained by integrating

l/Tc(e) weighted by n(e) over energy and dividing by the total number of carriers:
/ •

oo

n(e)de

n(e)de
0

By making the substitution u = e/kT, we have

0
v = — - (25)
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* du
6m*kT

-
J e~u
J

v = - - - - (26)

u1/2e-udu

(26)

. F
6m*kT

At room temperature,

v = 1013 (E/105 V/cm) f m/m*Y/2 sec'1 (27)

1 3Thus, carriers strike the interface approximately 10 times a second for m* = m and peak
e 1 c o o

silicon fields of 10 V/cm. Since k-^ = 0^, for cross sections of 10 cm , k-^ = 10 . kg will
be of the same form except that the hole effective mass and cross section must be used.

The constants kn and k^ are the attempt-to-escape frequencies of trapped electrons
and holes, respectively, with the same meaning as for bulk traps. By using detailed balance
arguments for the bulk case, it can be shown that (rief. 23)

k2 = NcvthCTn
and (28)

k4 = NvvthCTp

Using 1019 for NC and NV, 107 for vth, and an = 10~15 and ap = 10"17, kg = 1011, and
k4=109sec-1.

In summary, the four constants in Eq. (10), k-^ through k^, are given by

,2cm"
sec

(29)
^ 10-4 (E/105) (m/m;) , -2

15



5. Simplified Model. — In order to obtain an intuitive and straightforward solution to the

question of the net charge remaining in traps after passage of a signal, certain simplifying

assumptions have been made. First, it is assumed that a charge, ng Q, is always present in the

potential well. This establishes the occupation level before the signal charge arrives. Secondly,

it is assumed that the signal charge is transferred into the well instantaneously at t = 0 and

transferred out instantaneously at t = (l/2f) (two-phase operation). In addition, it is assumed
that the magnitude of the signal is large enough to cause nearly all of the interface states to
fill completely in times short compared with the period of operation. Since Tf^i = (l/k-.n )
and ^ = 10~2, this implies ng > 2 x 108 cm'2 for Tfill = (l/2f) at 1 MHz, and for p-channel
devices, ps > 2 x 1010 at 1 MHz. At 10 MHz a somewhat larger signal level is required to
satisfy this quick-filling assumption.

With these assumptions, it only remains to calculate the trap occupation at one-
half a period after the free charge is transferred out, because virtually all charge released prior
to this time will be able to rejoin the signal charge in the next potential well down the line.
Since the excess trapped charge empties exponentially we can express the occupation at
t = (l/2f) as

Nss e (30)

where fss(ng Q) is the Fermi function appropriate for the zero level charge, ng Q.

, . !_
f
SS(ns,o = £T

1+
klns,o

and

r(e) = "ke (32)

Since ngs at the beginning of the transfer-in period (t = - —) was determined by ng Q, we
have

nss

16



The total number of carriers remaining behind in interface states is therefore

f r ~\NT ^nn = I n - f IN p-(l/2fre) _f M df IRA)
^LOSS J |_ ss'^ss e rssiNssJ ae (a*>

0
A further assumption which permits simple evaluation of this integral is that the

quasi-Fermi levels define sharp cutoffs in occupation; i.e., all states above €Q are empty, all

states below are full. Furthermore, in the emptying process, using Eq. (20) we define the

energy where the states have emptied to 1/e of their initial level as the sharp-cutoff energy

as follows

e1/e = kT In (k2t) (35)

With these assumptions and Ngs assumed constant in energy, we can simply write

the number of carriers lost as

NLOSS = Nss e1/e (t = -gH - e Q ( n s ) (36)
L_ \ / J

NLOSS = kTNssln ( T^V") 07)

Figure 3 schematically follows the derivation of Eq. (37).

The loss per transfer is seen to increase with NSS and f, but decrease as ng increases.

The expression also predicts zero loss when

(38)

which defines a cutoff frequency f_ as

(39)

When this condition is satisfied, the zero level charge is high enough so that the states are

normally filled to an energy where the empty time is fast compared with the clock period;

i.e., by t = -oj the states have emptied as much as they are going to.

This condition of absolutely zero loss is physically highly improbable and comes

about mainly because of the unrealistic sharp-cutoff approximation used to aid in the evaula-

tion of the integral of Eq. (34). When Eq. (34) is calculated numerically, the results indicate
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that the losses do not go to zero quite so rapidly as suggested by Eq. (37). Rather, at fre-

quencies below f , the number of carriers lost starts to depend linerarly upon f according to

Figure 4 shows a plot of NT ogg/kTN vs. f/fQ. The solid line is the sharp-cutoff approxi-

mation [Eq. (37)] while the dotted line joins the computer-calculated points.

The most important loss quantity for comparison purposes is the fractional loss
e0, the fraction of the signal charge lost at each transfer.

o

NLOSS
-
SIG

Since Nj^Qgg is independent of signal level provided NgjQ is large enough to cause rapid
filling of all states, we expect interface state fractional losses to be inversely dependent upon

signal level.

The expressions derived thus far have been for the loss experienced by a single signal

pulse. However, if signal pulses arrive periodically so that sufficient time has not elapsed for

the interface states to reach the occupation determined by the zero-level charge nc _., the
s>,u

occupation level at the beginning of the transferrin period will be determined by the time

since the last pulse, nzero/f , where nzero is the number of clock pulses since the last signal

pulse, or the number of zeros. Then using Eq. (35) to express the energy to which the states

have decayed, the number lost in the case of periodic pulses can be written:

PERIODIC PULSE = kTN /. k2nzero _ ±2\
LOgs

 K1JNss \m f m 2 f / K1JNssmzn

using the sharp-cutoff approximation. This will only be valid provided

. , .
<eQ (ns,o)

or when (43)

'zero^ 2fQ

6. Fat Zero Operation. — So far, only a large signal model with a constant background charge

has been considered. A constant background charge is unrealistic when complete emptying of

the well occurs every cycle. To ascertain the occupation level of fast states in the presence of
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a "fat-zero" of concentration ng o which is completely removed every half cycle one must
find the occupation profile such that the total number of carriers trapped during one-half
cycle is the same as the number released during the next half-cycle, or

# trapped while
fat zero present

# released while
fat zero absent

The occupation at the beginning of a transfer-in period is then

l/2fr -f /f
e - e

(45)

where
1 e/kT

(46)

Assuming the signal level is large enough to rapidly fill all states completely, the total loss
from a signal pulse into all energy levels is then

NLOSS = f (N :T)
(47)

NLOSS ' Nss
0

- l/2f- (r Vl-
(48)

This integral has not yet been evaluated, and it appears that the losses for fat zero opera-
tion should have a different frequency dependence than those when a constant background
charge exists.
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7. Further Model Refinements. — All calculations made to this point assume that the signal
is large enough to cause essentially complete filling of all fast states in a time short compared
with period of operation. When this is not the case, i.e., for the small signal case, the states
fill only partially while the signal charge resides in the well. Between t = - ^- and t = 0, the
states fill exponentially from their initial value toward their new steady-state value according

to

(t (49)

where

= f (n ) NissV11
S'' .ssv s' ss (50)

and

= fss(nS)0) Nss (51)

for constant background charge or Eq. (45) for fat zero operation. Note that transfer-in be-
gins att = --^-.Att = 0 the occupation will be :

(52)

After t = 0, when the signal charge is removed, this occupation will decay toward Nct,f Jn ..)
So SS SjO'

for the case of constant background charge or toward zero for fat zero operation. The total
loss for each case is thus

constant Q
background
charge

7

f ss (- ̂ ) + - n (53)

-NssfssK,o)[ e T - Nssfss(ns,o) de
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g
NLOSS = / ]nss(-^) + nss(°°) -nss (-
fat zero L\

de(54)

Neither of these integrals has been evaluated at this time.

Another refinement which must be made to properly account for actual fast state losses

in CCD's concerns the shape of the potential wells which are storing charge. The expressions

for loss derived so far show strong dependences upon the background charge level. If the

potential wells do not have a constant surface potential at all points, then the small amount

of background charge or fat zero will accumulate in the regions of lowest potential leaving

other areas devoid of charge. The larger packets of charge representing signal will see portions

of the well which have had little or no background charge. A complete interface state loss

model must take this effect into account.

23



III. TWO-PHASE CHARGE-COUPLED SHIFT REGISTERS

A. Two-Phase Charge Coupled Structures

1. Types of Two-Phase CCD's. — The charge-coupled devices initially described by Boyle and

Smith (ref. 1) require three or more phase clocks to obtain the directionality of the signal

flow. However, for most applications such as self-scanning photosensor arrays or digital shift

registers, high packing density and better performance may be achieved with two-phase

charge-coupled structures. As illustrated in Figure 5, the asymmetrical potential wells or

TWO THICKNESSES
OF CHANNEL OXIDE

• D-C OFFSET VOLTAGE

FIXED CHARGE IN
CHANNEL OXIDE

ION INPLANTED
BARRIER

\n
Figure 5. Types of two-phase charge-coupled structures.

barriers in the surface potential, needed to provide the directionality of the information flow

for the two-phase operation, can be achieved by incorporating into the charge-coupled struc-

tures one of the following features:

(1) two thicknesses of the channel oxide,

(2) dc offset voltage between two adjacent gates powered by the same

phase voltage,
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(3) two levels of fixed charge in the channel oxide, or

(4) ion-implanted barriers (ref. 9).

The first three of the above two-phase charge-coupled shift registers can be conveniently

implemented by self -aligned, closely spaced structures in the form of polysilicon gates over-

lapped by aluminum gates (refs. 2-4). In this section we will describe specifically the con-

struction of two-phase CCD's with two different thicknesses of channel oxide for polysilicon

and aluminum gates that were used as the test devices in the experimental part of this study.

However, in view of the self -aligning characteristic of this structure and the available two-
layer metallization, basically the same construction can be used to implement two-phase CCD's
employing a dc offset voltage between the adjacent polysilicon and aluminum gates powered
by the same phase voltage pulse train. The externally introduced dc offset voltage, however,
can also be replaced by a difference in fixed charge in the channel oxide between the poly-
silicon and the aluminum gate. Such fixed charge can be introduced either by injection of
charge under one set of gates or by fabricating the devices with different types of channel
oxide under the two other sets of gates. The deposited SigN^ and A^Og are examples of
two other types of channel oxides that can be used for this purpose in addition to the

thermally grown S iC .

2. Fabrication of Experimental Structures. — The fabrication of the test devices is illustrated

in Figure 6. The substrate used was 1.0 to 0.5 ohm-cm n-type silicon with <111> orienta-

tion. As shown in (a) the p+-diffusion and the field oxide for these devices were prepared

following a standard thick-oxide p-MOS process. Boron nitride deposition at 1000°C was used

as the doping source for the p+-dif fusions. The field oxide was made as a combination of

7000-A steam SiO2 grown at 1100°C followed by 5000-A deposited SiO2- The next sequence

of the process step, as shown in (b), consisted of thermally growing approximately 1000-A-

thick channel oxide, depositing the polysilicon film, and defining it into the polysilicon

gates. Then as shown in (c) a second layer of channel oxide is thermally grown for the alumi-

num gates to a total thickness of 3000 A . This last step also results in the formation of an
insulating layer over the polysilicon gates which is approximately 2500-A thick. Finally as
shown in (d), the device structure was completed by opening contacts to the p+-dif fusions
and the polysilicon gates, depositing about 10,000-A -thick aluminum, and defining it into
the aluminum gates.

3. Description of Experimental Devices. — Three arrays of charge-coupled devices were made
in this study. The first experimental device successfully operated with a two-phase 12-stage
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Figure 6. Construction of the experimental charge-coupled devices.

shift register, CCD-3. The construction of this device is illustrated by the photomicrograph

in Figure 7 and the cross-sectional view in Figure 8. As shown, this device has nominally

0.7-mil-long polysilicon electrodes and 0.3-mD-long aluminum electrodes that add up to

2 mils per stage. The channel width for these devices is 10 mils.

The photomicrographs of CCD-6 and CCD-5 arrays are shown in Figures 9 and 10.

The CCD-6 array contains 16- and 32-stage shift registers with 2.0-mil-long stages, and 32-

and 64-stage shift registers with 1.2-mil-lcng stages. The CCD-5 array consists of 32- and
64-stage shifters with 2-mil-long stages, and 64- and 128-stage shift registers with 1.2-mil-long
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Figure 9. Photomicrograph of CCD-6.
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Figure 10. Photomicrograph of CCD-5.
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stages. The construction of the two types of shift registers having 2.0- and 1.2-mil-long

stages is illustrated in Figures 11 and 12, respectively. It should also be noted that the

general layout of all experimental devices followed the same design patterns except for the

variations in number of stages and the differences in the output circuits that are illustrated

in Figures 8,11, and 12. As shown in these figures, all of the devices have the same input

stages consisting of a source diffusion S-l and input gates G-l and G-2. Separate electrical

access has also been provided to the polysilicon and aluminum electrodes of each phase; i.e.,

</>-l(poly), 0-l(Al), 0-2(poly), and 0-2(Al). In addition to the variations in the width of the

channels and length of the gates for the coarser and finer structures, the three different

structures illustrated by Figures 8, 11, and 12 have variations in the design of the output

stages. In each case the output can be detected as the current flow out of the drain diffusion

D-l or as a voltage change resulting from the charge signal introduced on the floating diffu-

sion that, in turn, controls the gate voltage of a 3-mil-wide output MOS device with a source

S-2 and drain D-2. In the case of the structure shown in Figure 11, three electrodes, G-3,

G-4, and G-5, are externally available for controlling the signal flow in and out of the

floating diffusion. However, only two electrodes, G-3 and G-4, are externally accessible in the

case of the structures shown in Figures 8 and 12.

The test devices were mounted in 28-lead ceramic packages and the two types of bonding

diagrams used for the experimental samples are illustrated in Figures 13 and 14.

4. Operation of Two-Phase CCD's. — Assuming essentially zero fixed charge in the channel

oxide, substrates with relatively large doping concentrations are required to obtain a sub-

stantial difference between the surface potential under the polysilicon gates and the potential

under the aluminum gates powered by the same phase voltage. The operation of such a

device is illustrated in Figure 15, showing a computer solution for a two-phase structure with
1 f\ Q

substrate doping concentration of NQ = 10 cm and channel oxide thickness of 1000 A

and 3000 A under the polysilicon and aluminum gates, respectively. Since in this case the

potential barrier formed under the aluminum gate with respect to the surface potential

under the polysilicon gate of the same phase is not constant as the phase voltage changes.

The maximum amount of charge signal that can be stored and transferred will depend to

some degree on the waveshapes of the phase voltages. These waveshapes may be symmetrical

with equal rise time and fall time [see Figure 16(c)], nonoverlapping, or overlapping. In the

overlapping case, illustrated in Figure 15, the transfer of charge is preceded by the condition

in which both phase voltages are minimum. If we can assume that the signal charge will be

originally contained in the potential well indicated by the phase-1 gate, then as the phase
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Figure 13. Bonding diagram for the CCD-5 64-stage
shift register with 2-mil stages.
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Figure 14. Bonding diagram for the CCD-5 128-stage
shift register with 1.2-mil stages.
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voltage (p^ is changed from 0 j = -25 V to 0^ = -10 V, and the surface potential is raised from

the dotted line to the solid line, the charge signal is transferred to a new potential well on the

right side under the phase-2 gate. This mode of operation for two-phase charge-coupled de-

vices will be referred to as the "complete charge-transfer" mode.

The complete charge-transfer mode operation is again illustrated in Figure 16 by two

profiles of the surface potential. In this case at time t^, the charge signal is accumulating in

the potential wells under the phase-2 gates; and in the second half-cycle the charge signal will

be transferred to the potential wells under the phase-1 gates.

^

V,

->

w/,
1

4 ^
NSIO (b)

(C)

Figure 16. Complete charge-transfer operation of two-phase CCD.
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Another mode of operation of two-phase charge-coupled devices is illustrated in

Figure 17. In this case a barrier in the surface potential under the aluminum gates is so high

that the potential wells under the polysilicon gates can never be completely emptied. In

other words, the surface potential under the polysilicon gates powered by the minimum phase

voltage is lower than the surface potential under the aluminum gates powered by the maximum

phase voltage. This mode of operation will be referred to as the "bias-charge" or "bucket-

brigade" mode. The bias charge Ngj^g illustrated in Figure 17(b) represents the background

charge always present under the gates accumulating or storing the charge signal. In the steady-

state operation of such charge-coupled shift registers, the bias charge will be maintained by

thermal generation process.

(a)

f
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T
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i
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t
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(C)

Figure 17. Bias-charge (bucket-brigade) mode of
operation of two-phase CCD.
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The transition from the complete charge-transfer mode to the bias-charge mode of

operation can take place by increasing the dc bias level on the phase voltages. The presence

of positive charge in the channel oxide in the case of n-channel devices will also increase

the barrier under the aluminum gates above the values indicated for the example shown in

Figure 15. The bias-charge mode of operation of two-phase charge-coupled shift registers

is very similar to the operation of bucket-brigade (ref. 21) shift registers. In the bucket-

brigade case the bias-charge regions are replaced by floating diffusions; otherwise, the oper-

ation of these two types of shift registers is very similar.*

As was generally known in connection with the operation of a bucket-brigade shift

register (refs. 21, 22), a two-phase charge-coupled shift register can also be operated with one

of the phases dc biased at a voltage halfway between the minimum and the maximum volt-

age applied to the other phase. This "one-phase" operation, or rather one-clock, is illustrated

in Figure 18 and experimentally demonstrated by the waveforms in Figure 32. A uniphase

charge-coupled structure (ref. 5) requiring only one set of externally controlled gates requires

that the de-biased phase shown in Figure 18 is replaced by a built-in bias in the structure

which may be obtained by the presence of fixed charge in the channel oxide.

B. Experimental Testing of Two-Phase Devices

1. Test Setup. — The circuit used for the testing of the experimental two-phase shift registers

is shown in Figure 19. The input signal is introduced into the shift register under the control

of dc bias voltages Eg and EQ_Q and an input pulse Vm. The phase voltage clocks 0-1 and

0-2 are applied with dc bias E ,. The output gate G-3 is connected to the phase voltage 0-1,

and the output gate G-4 is biased at a voltage EQ T-J which is less negative than the drain bias

voltage EQ. The output signal is sensed directly as current Ij-j_^ or as a current lp.2- The value

of Ij)_2 is related to the potential of the floating diffusion that, in turn, controls the gate of

the S-2—D-2 MOS device. Since the potential of the floating diffusion is inversely proportional

to the charge signal (refs. 2-4), the Ij-,.2 current represents the charge signal. The detection of

the output by means of the current ID_2 provides a large output voltage at lower output

impedance.
The substrate is grounded and a dc bias is applied to the phase electrodes. This simplifies

the testing since all biases relative to substrate can be read directly. Typical values of the

dc bias voltages are: E, = EQ.D = -10VandED = -30 V. Table 1 lists the equipment

actually used in the reported tests. »

*For more discussion of this subject see pp. 17-19 in Ref. 2.
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Figure 18. One clock operation of two-phase CCD.
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TABLE I

Test Equipment

Function Equipment

1. 0-1,0-2 (see Figure 18)

2. V IN

3- E0'EG-S'Es)EG-D'ED

4. Miscellaneous triggering,
counting, and gating

5. Counter for spacing inputs

Textronix Pulse Generator, Type 115

E-H Research Pulse Generator, Model 123

Hewlett-Packard 721A Transistorized
Power Supply

Textronix Pulse Generator, Type 115

Hewlett-Packard Pulse Generator,
Model 214A

Rutherford Pulse Generator, Model B16

RCA CD4004AE

7 Stage COS/MOS Binary Counter

2. Loss Measurement Procedures. — In order to measure fractional loss per transfer, one must
know: (a) how much charge is lost, (b) how much charge was originally in the signal pulse,
and (c) how many transfers occurred. When only electrical inputs are possible, i.e., optical
inputs are not available, the number of transfers is fixed by the length of the device, and the
determination of the original amount of charge in the signal pulse is not always straightforward.
For example, if a single "1" pulse of amplitude po is put in the input and the eN product
(e is the fractional loss per gate and Ng is the number of gates) approaches unity, by the time

the pulse reaches the output it will be spread over many different pulses, all with reduced

amplitude. It is then very difficult to determine the original signal amplitude. The procedure

we have used to circumvent these difficulties consists of applying a string of consecutive

"Is", to measure the step or pulse response of the shift register. Even in the face of sizable

losses with eN products exceeding unity, provided the string of "Is" is long enough, the

output signal amplitude will reach the original input value. This occurs because a pulse well

removed from the leading one receives the losses from the preceding pulses which are just
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enough to match the losses it suffers. Thus, as the number of "Is" in the string increases, the

output amplitude increases until it saturates at the amplitude at the input. Then the sum of

the trailing pulse amplitudes which follow the last "1" constitutes the total amount of charge

lost by that last "1" as it passes through all the stages of the shift register. Since the last

"1" is always maintained at full amplitude (by losses from previous pulses), the losses it suffers

are easily analyzed in the case where the loss is a fixed fraction of the total charge, i.e., for

free charge loss. This analysis is shown in Appendix B.

Thus, for free charge losses, provided the string of "Is" is long enough to provide full

amplitude, the total loss eNgpo is found by adding all the trailing pulse amplitudes. Alternately,

the attenuation of the leading "Is" which will be symmetrical with the trailing edge can be

totalled. Thus,

* - -

See Appendix B for notation. Note here that since 2pj(N ) is proportional to po, e does not

depend upon pQ and the relative shape of the output pulse stays the same as the pulse ampli-
tude is changed.

On the other hand, as discussed in a previous section, the fractional loss into fast inter-

face states eg is inversely proportional to the signal amplitude. Another feature of fast state

loss is that the attenuation of the leading edge of the pulse train is not symmetrical with the

trailing pulse amplitude. Since the release times of the fast states vary over many orders of

magnitude, the charge lost into fast states is released over a large number of trailing pulses

with the amplitude of the j™1 trailing pulse having an amplitude of

kTNssNgln(-ffrJ (66)

However, the leading edge is attenuated by an amount required to fill the states at each gate.

Therefore, when measuring fast state loss, the attenuation of the leading edge is totalled and

divided by PoNg to find eg.

Figures 20 and 21 demonstrate the behavior of free charge loss and fast state loss,

respectively, as signal amplitude is varied. Note symmetrical appearance of free charge loss
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i A s e c

Figure 20. Oscilloscope photographs of input pulses and Ip_2 current
(traces are offset to align with one another) for 64-stage
device at 3 MHz with fat zero operation. Three different
photographs show how the free charge losses scale with
signal amplitude.
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Figure 21. Oscilloscope photographs of input pulses and Ir>2 current
for 64-stage device at 3 MHz without fat zero. As signal
level decreases more leading edge pulses are required to fill
fast states.
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and the manner in which it scales with signal amplitude. Fast state loss, however, is not

symmetrical and has a total fixed loss independent of signal so that as signal is reduced the

fractional loss increases considerably.

C. Loss Measurements

Figures 22 through 25 show typical waveforms for the four different length devices

tested both with and without fat zero. The top oscilloscope photograph shows the two

negative-going clocks along with the Vjj^ pulses. The negative V^ pulses occur when 0-1 is

"on" or negative. For tests shown in Figures 22 and 23 the output is shown as the detected

current IQ.^. Both IT-J_•, and Ij)_2 a16 shown for the tests illustrated in Figures 24 and 25.

Note the loss of the leading pulses in the case without fat zero with the absence of a build-up

of the trailing zeros. This is due to fast state loss. The presence of charge signal results in re-

duction of the detected current. In Figures 24 and 25 note that the inversion of Ij-j_2 pulse-

current is less when signal charge is present.

Figure 26 presents the measured losses with and without fat zero as a function of

frequency for a 128-stage, 1.2-mil/stage device. The dotted line through the "no fat zero"

points represents a fit to Eq. (37) derived in a previous section with Ngs = 8 x 10 (cm -eV)

and fQ = ^- - = 10 sec . This implies r\s Q = 2 x 10 cm. Assuming a thermal genera-

Q o
tion rate of 10 A/cm , the average thermally generated background charge would be

4 x 10 cm, remarkably close to the value inferred from Figure 26.

The dotted line through the "with fat zero" points represents exponential decay below
9 2e = 10 with a thermal diffusion decay constant L /2.5D = 64 nsec, appropriate for L = 10 /nm

o 9
and D = 6.25 cm /sec. Above e = 10 the dotted line represents the self-induced drift hyper-

9
bolic decay tQ/(t + tQ) where tQ = L CQX/1.57 nqnQ. The tQ of 0.85 nsec was determined by

fitting the data and for an oxide thickness of 1000 A implies a /uno product of 1.6 x 10

(V-sec)"1. The nnQ product for a full well of nQ = 1012 and n = 250 cm2/(V-sec) would be

2.5 x 10 (V-sec) . This excellent agreement with the free charge transfer analysis described

in an earlier section indicates that we can use this analysis with confidence for CCD perfor-

mance prediction and design.

Figure 27 is a similar loss vs. frequency plot for a 12-stage device. Here fQ is higher,

probably due to inadequate shielding of ambient light which would increase n _ and there
9 '

fore f Here the fast state density is ~ 2 x 10 (cm -eV) . Further confirmation of the
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lov/div

V I M

111

NO FAT ZERO
7 =95.6

ID-I \OjJLA/div

WITH FAT ZERO

TI > 99.9

I0H

Figure 22. Typical waveforms for CCD-3 12-stage shift register at
1 MHz. Top photograph shows clocks and input pulses.
Second photograph shows Ij)_i without fat zero and the
third with fat zero.
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NO FAT ZERO
77 = 99.9 Vo
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Figure 23. Typical waveforms for CCD-6 32-stage
shift register at 1 MHz.
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Figure 24. Typical waveforms for CCD-6 64-stage
shift register at 1 MHz.
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Figure 25. Typical waveforms for CCD-5 128-stage
shift register at 1 MHz.
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basic assumptions in the interface state model is found in the next three figures. Figure 28
shows the inverse relationship between fractional loss and signal level which confirms the

fixed loss independent of signal level predicted by the model. Figure 29 shows the fast state
loss eg as a function of number of "Os" between the string of "Is". This curve follows the

prediction of Eq. (42) and is a strong argument for the exponential dependence of empty
times. The slope which is proportional to NSS yields a value of 1.9 x 10^ (cm^-eV)'^for the
same device as in Figure 27. The straight line of the data indicates that the interface state
density is uniform over the energy range represented; i.e., empty times from 4 to 100 /usec

which correspond to energies above the valence band of 0.33 to 0.42 eV. This slope method

is a very convenient way of measuring Ngg since the input signal repetition rate can be varied
over a wide range without disturbing the basic operation of the CCD.

-I

<

O

-3
IO

tOO KHZ
CCD—3

FULL WELL

IO IOO IOOO

SIGNAL LEVEL ARBITRARY UNITS

Figure 28. Fractional loss per transfer vs. signal level.
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Figure 29. Fractional loss per transfer vs. log number
of "Os" separating the string of "Is".

Figure 30 shows how the loss per transfer decreases over several orders of magnitude as

the level of the fat zero is increased. The maximum loss at low fat zero levels seen in the figure

was determined experimentally by introducing no fat zero. This also is predicted by the fast

state loss model and is strong evidence of its validity.

Figure 31 illustrates the difference in transfer efficiency obtained for the two models of

operation discussed earlier: complete charge transfer and bias charge operation. In both cases

fat zero is present so that the losses observed are of a free charge transfer nature. As seen in

the figure the amplitude of the first trailing pulse is reduced considerably when the bias on

the aluminum gates is increased so as to obtain complete transfer operation.

Figure 32 shows oscilloscope photographs which compare normal, no fat zero operation

(a) with the case of one-phase or one-clock operation (b). For one clock operation, 0-2 clock

has been removed and the dc bias on 0-2 gates has been increased to midway between the

0-1 clock swings. 0-1 amplitude was not changed. Note that now about only one-half the
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signal is seen because the potential wells are reduced in depth. The loss of additional leading
edge pulses in the one-clock operation is due to the reduced signal and is symptomatic of
fast state losses as discussed earlier.

Finally, Figure 33 illustrates the analog delay line operation of a 128-stage shift register.

The potential of the input diffusion S-l was modulated by a sine wave as shown in the top

trace of each photograph. The output, delayed by 128 /^sec, is shown as unfiltered ^r\-2 m

the top photograph and after filtering with a 30-kHz low-pass filter in the lower photograph.

The modulation frequency, 23 kHz, was such that, after delay of 128 /usec and when in-

verted by the output amplifier, the output signal is in phase with the input signal. This

operation shows the linearity of the CCD shift register and demonstrates its potential appli-

cation as an analog delay line.

-2
IO

LJ

0
DC
UJ -3
Q. IO

0)
10
0

Z -4
Q 10

h
0
<
IT
k

-5
IO

CCD-6
64 STAGES
1.2 mi I /STAGE

,c54 id"3 ,d2
KD I

FAT ZERO ( FRACTION OF FULL WELL)

Figure 30. Fractional loss per transfer vs. amount of fat zero.
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Figure 31. Oscilloscope photographs showing Ij)_2 current for bias
charge mode of operation and complete transfer mode.
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Figure 32. Oscilloscope photographs showing normal two-clock
operation (top) and one-clock operation (bottom)
with 0-2 returned to dc.
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Figure 33. Analog delay line operation of 128-stage device.
S-l is sine-wave modulated at 23 kHz. Top photo-
graph shows unfiltered IQ.2 while bottom shows
filtered I . -
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IV. CONCLUSIONS

The operation of two-phase charge-coupled shift registers in the form of polysilicon

gates overlapped by aluminum gates has been demonstrated. Three test arrays were designed

and fabricated.that included shift registers up to 128 stages long (without signal refreshing

stages). The unidirectional signal flow in the experimental shift registers was accomplished by

using n-type substrates with resistivity of 0.5 to 1.0 ohm-cm in conjunction with channel

oxide thicknesses of 1000 A for the polysilicon gates and 3000 A for the aluminum gates.

Charge-transfer efficiency of 99.99% per gate was achieved in the operation of the two-

phase charge-coupled shift registers operating with a constant circulating charge — the fat
zero. These results were found to be in good agreement with the expected charge-transfer ef-
ficiency resulting from incomplete free-charge transfer. The tests of the experimental charge-
coupled shift registers showed that without fat zero, the charge-transfer losses are mainly due
to ,the charge trapping by the fast interface states of the Si-SiOg interface.

A theoretical model was developed for the analysis of the interface state losses. A simp-
lified solution of the interface state losses as a function of clock frequency was found to be
consistent with the measured losses of the first "1" in the string of "Is" for no fat zero oper-

ation. The interface loss model also predicts that without fat zero the charge-transfer loss due
to the fast states should be proportional to the logarithm of the number of "Os" between the

strings of "Is". Such tests are proposed as a convenient method for measurement of the fast in-:

terface state density. The interface losses obtained in the operation of the tested charge-coupled

shift registers correspond to a density of fast interface states of about 10 (eV-cm ) , which
is consistent with the silicon substrates with (111) orientation used for these devices.

A comparison of the complete charge-transfer mode and the bias-charge or bucket-

brigade mode of operation of the experimental two-phase charge-coupled shift registers showed

that at 1.0-MHz clock frequency the complete charge-transfer mode is about 10 times more

efficient than the bias charge mode. At higher clock frequencies, such as 10 MHz, the two

modes of operation were found to have about the same charge-transfer efficiency. Both of
these results were obtained with fat zero operation.
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APPENDIX A

FREE CHARGE TRANSFER IN CHARGE COUPLED DEVICES*

by

J. E. Carries, W. F. Kosonocky and E. G. Ramberg

ABSTRACT

The free charge transfer characteristics of charge-coupled devices are analyzed in terms of

the charge motion due to thermal diffusion, self-induced drift, and fringing field drift. The

charge-coupled structures considered have separations between the gates equal to the thickness

of the channel oxide. The effect of each of the above mechanisms on charge transfer is first

considered separately, and a new method is presented for the calculation of the self-induced

field. Then the results of a computer simulation of the charge-transfer process which simul-

taneously considers all three charge motion mechanisms is presented for three-phase charge-

coupled devices with gate lengths of 4 and 10 jum. The analysis shows that while the majority

of the charge is transferred by means of the self-induced drift which follows a hyperbolic

time dependence, the last few percent of the charge decays exponentially under the influence

of the fringing field drift or thermal diffusion, depending on the design of the structure. The

analysis shows that in charge-coupled devices made on relatively high lesistivity substrates,

the transfer by fringing field drift can be very fast, such that transfer efficiencies of 99.99% are

expected at 5- to 10-MHz bit rates for 10-jum gate lengths and at up to 100 MHz for 4-jum

gate lengths.

1. INTRODUCTION

Because charge-coupled devices (refs. A-l, A-2) are analog shift registers with no mecha-
nism for gain, the attainable charge transfer efficiency, TJ, (the percent of charge transferred

from one gate to the next) is extremely important. In order to achieve practical devices of

several hundred stages, extremely low loss per gate is required; e.g., a one hundred stage three-

phase device with an overall efficiency of 90% must have a single gate transfer efficiency of

99.97%.

*To be published in the June 1972 issue of IEEE Trans. Electron Devices, Vol. ED-19.
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There are two basic mechanisms which degrade transfer efficiency. The first is the incom-
plete transfer of free charge because insufficient time is allowed for transfer. The second is

the trapping of charge in fast interface states. This appendix is concerned only with the anal-
ysis of incomplete transfer of free charge.

In this study, the time required for free charge to transit from one potential well to the

next has been determined by numerical solution of the continuity equation in which all the

factors which cause charge motion have been simultaneously considered. This work was un-

dertaken to determine the fundamental limitations on charge transfer efficiency imposed by

the free charge transfer process and to determine the optimum device configuration for

maximum transfer efficiency.

The three mechanisms which cause charge motion (thermal diffusion, self-induced drift,
and fringing field drift) are discussed in Section 2, including a new method for calculating the
self-induced electric fields. The results of the numerical solutions of charge transfer along with
the associated charge and field profiles are presented in Section 3. The two methods for cal-
culating the self-induced fields are compared in Section 4, and a discussion of the results and
conclusions are presented in Section 5.

2. TRANSFER MECHANISMS

In the analysis of charge motion in a charge-coupled device (CCD) it is convenient to

identify two sources of electric field at the interface along the directions of charge propaga-
tion: the fringing field Ep(y,t) due to externally applied potentials on the gate electrodes and

the field change due to the presence of the signal charges themselves, the self-induced field

Es(y,t). Thus, if it is assumed that the field effect mobility p. is independent of electric field,

the electron particle current density jn(y,t) may be written as the sum of three terms:

jn(y,t) = -n(y,t)MEF(y,t) Fringing Field Drift

=-n(y,t)AtEg(y,t) Self-Induced Drift (57) •
9n(y,t)

= -n—=j^ Thermal Diffusion

where n(y,t) is the carrier concentration of electrons (cm ) in the inversion layer, y is the
direction of charge propagation along the interface, and D is the diffusion constant.
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The continuity equation:

3n(y,t) .
8t 9y

(58)

describes the decay of charge, but an analytical solution including all of the terms in Eq. (57)
is somewhat difficult. Consequently, in this section the three mechanisms will be considered
separately in order to gain insight into their basic features. Numerical solutions considering
all terms of Eq. (57) simultaneously will be presented in Section 3.

a. Thermal Diffusion

Kim (refs. A-2, A-3) has treated the transfer of free charge due to thermal diffusion. As
derived in Supplement I, a Fourier analysis of the thermal diffusion process shows that for
an initially uniform carrier concentration n , the carrier profile n(y,t) remaining under the
transferring electrode approaches the following expression asymptotically in time

4no Try / rr2Dt Y
n(y,t) = cos—- exp — (59)

ir 2L V 4L2

and the total number of carriers remaining at time t, N^o.(t), by

8 / rr2Dt

7T \ 4L2

(60)

Aside from a small fraction of charge which decays very quickly, the decay of the total charge
n

due to thermal diffusion is exponential with decay constant r^n of I/72.5D.

b. Self -Induced Drift, Gradient Method

Self -induced drift occurs because of the electric fields induced by the signal charge itself.
The magnitude of the self -induced fields directed along the Si-SiC^ interface, Eg, was first
described by Engeler, et al. (ref. A-4) by taking the gradient along the interface of the surface
potential <j>s. In this approximation 0 is calculated for the one-dimensional MOS capacitor
and is assumed to be proportional to the signal carrier concentration n. Thus, if the oxides
capacitance CQX is much greater than the depletion layer capacitance, one can write
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(61)

where 0 is the surface potential of an empty well. Thenso

q dn
Es(y,t) = -^- — (y,t) (62)

^ oy

The particle current is then given by

. Mqn(y,t) 3n(y,t)
(63)

This is equivalent to a diffusion current with a concentration-dependent diffusion coefficient.

The continuity equation is given by

_ n(y,t) - n (y , t ) (64)
3yox OX

If the carrier concentration n(y,t) is separable into a product function h(y)g(t), then as shown

in Suppl. II, the total charge remaining will decay according to the following asymptotic

expression

Ntot<°) t + to

where

L2coxt0 = - ^ (66)

Note that tQ depends inversely upon the initial carrier concentration nQ.

When the charge level drops to the point where the average carrier concentration n,,..0 is
dVc

such that

^ n = n (67^ave \- i
Cox
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the self-induced fields will be reduced to the level of thermal fields and further decay will be

due to thermal diffusion. The time t-^ required to reach the condition of Eq. (67) can be

expressed as

=1.6 rthth 1
kT Cox

(68)

Since in most cases, _q
kT Cox « 1, the transition from self-induced drift to thermal dif-

fusion occurs, in the absence of any fringing field drift, after a time approximately equal to

the thermal diffusion time constant L2/2.5D.

c. Self-Induced Drift, Integral Method

Another more exact method of calculating the self-induced fields along the Si-SiOn in-
terface will be referred to as the integral method. In this approach, the electric field along the

Si-SiC>2 i^erface due to an infinite line charge, also at the interface, is calculated by the
method of images for the case where the Si is an infinite dielectric with no space charge region.

(See Figure 34(a) and Suppl. III.) The contributions of each line charge-element which makes

up any charge distribution (with spatial variations along the direction of the field and infinite

extent perpendicular to it) are then summed by integration and the desired field is determined.
Equation (69) gives the expression which for most cases must be evaluated numerically.

Es(y) =
ire

L2-y

/

p(y)ydy

y2

_y-Li

2e 1-e

l + e

n-1
L2-y

/ p(y)ydy
(2nx)

(69)

where e = e-^le^-

The case of a uniform charge concentration of length L can be evaluated analytically as

shown in Suppl. Ill and the results provide useful insight into the question of self-induced

field magnitudes. Equation (70) gives Eg(y) for Si-SiO2 for a uniform concentration nQof
length L.

E.(y) = 1.8 xlO3 V/cm (70)
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Figure 34. (a) Cross-sectional view of a line charge at a dielectric interface and
near a ground plane. The total y-directed field at the dielectric
interface is determined by integrating over all the line charge
elements which make up the actual charge distribution,

(b) Shape function S(y/L, 2XQ/L) for any uniform charge distribution
of length L. The field magnitude for the Si-SiO£ interface is
(n0/10n)1.83 x 103 S(y/L, 2XQ/L) V/cm.

Eg(y) is directly proportional to n0, but the relative shape of Eg(y) is independent of nQ.

S(y/L, 2XQ/L) is defined in Supplement III and is plotted in Figure 34(b). Strictly speaking,

for a perfect step function charge profile, S(0, 2XQ/L) -> «>. However, for most of the cases

encountered in our charge transfer studies where the charge profile is rounded, a maximum

value of S was four or five for a 2XQ/L ratio of 0.1. Using S = 4 in Eq. (70) provides a very

simple expression for the maximum self-induced field magnitude for approximately uniform

charge profiles given by
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Ecmax = 7.2 xlO3
b

V/cm (71)

This expression provides a simple, approximate relationship between self-induced field mag-

nitudes and the charge concentration.

The integral method also allows one to calculate how charge will arrange itself within a

potential well. For example, charge placed in a square well with no externally induced electric

fields in the interior will tend to crowd at the edges of the well due to the mutually repulsive

properties of like charges similar to the arrangement of charge on a conducting disc in free

space (ref. A-5). The results of a computer solution of this effect using the integral method

[Eq. (69)] to calculate Eg(y) is shown in Figure 35. The well is not exactly square — the walls

have a finite slope — which accounts for the low charge concentration near the edges. How-

ever, the bottom of the well is flat over the majority of the region and the cusping of charge

is due to the self-induced fields. The gradient method cannot be used to solve this type of

problem.
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x
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Figure 35. Cusping of charge stored in a square potential well due to
self-induced fields calculated by the integral method.
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d. Fringing Field Drift

The drift-aiding fringing field along the Si-SiC^ interface arises because the surface
potential at any point is determined not only by the electrode directly above but also by
adjacent electrodes. An analytical expression for three-phase CCD fringing fields (ref. A-6)
and computer solutions for both two and three phase fringing fields have previously been
presented (refs. A-6, -7). These results indicate that in a certain range of gate lengths and sub-
strate doping levels, the single carrier transit time (the time a single carrier would take to

i
transit the length of the gate under influence of the drift-aiding fringing field) is small enough
to indicate that fringing field drift may greatly aid the transfer process.

The numerical solutions to be discussed in Part 3 indicate that under the influence of
fringing field drift and thermal diffusion, the relative charge profile becomes fixed or station-
ary and decays exponentially. When the spatial dependence of the charge profile becomes
independent of time, n(y,t) can be expressed as a product solution, and for the exponentially
decaying case can be written as

n(y,t) = h(y) exp (- t/rf) (72)

where

= J
0

Tf is the final decay constant of the total remaining charge. Neglecting self -induced effects,
the continuity equation becomes

d2h(y) dh(y)
'

dy
+ — - + - h(y) = 0 (74)

dy \ dy

where VT = kT/q.
Solution of this equation subject to the boundary conditions

dh(y)
Mh(0)Ep(0) + D —Hi = 0 (75)
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and

//h(L)EF(L) + D
dh(y)

dy
= — I h(y)dy

0

(76)

allows one to determine h(y) and T* . Only a numerical solution for a general Ep(y) appears
possible.

From Eq. (74) it is clear that when Vrj. = 0, at the peak of charge where

dh(y)

dy
= 0

dE

dy~
peak

(77)

This has been substantiated by numerical solutions.
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Figure 36. Final decay time of total remaining charge T£ vs. temperature as
determined by computer simulation for 4-jum gates and 10^5 cm
doping.
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Numerical solutions also show that the charge will decay exponentially even at zero

temperature, but increasing temperature causes T£ to increase. Thus thermal diffusion acts to

hinder fringing field drift. Figure 36 shows TJ vs. T for one particular fringing field configura-

tion studied numerically.

3. COMPUTER SIMULATION RESULTS

In order to better understand the interaction of the various transfer mechanisms in typi-

cal charge-coupled device structures, the complete continuity equation has been solved nu-

merically using both the integral method and the gradient method for calculating self-induced

fields; Both 4-/jm and 10-pim gate lengths were considered as well as doping levels of 2 x 10
-I r o

and 10-L°cm"°. Oxide thickness and electrode separations were 2000 A in all cases (ref. A-7)

(see Figure 37). Three-phase devices were assumed and the fringing field profile was deter-

mined numerically for the case where the transferring electrode potential was midway between

the blocking and receiving electrode potentials. The voltages used were 2,7 and 12 V in all
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Figure 37. Cross-sectional schematic of basic configuration studied by computer
simulation along with the surface potential for the 10l5cm-3 doping
case.
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cases. In actual practice, the transferring electrode potential will be changing from 12 to 2 V

during the transfer process, but incorporating this into the solution unnecessarily complicates

the problem. If anything, the electrode voltage configuration used probably underestimates

the speed of transfer due to fringing field drift.

In the 4-jum gate studies, an initial uniform charge distribution of 4.6 x 10 cm was

used. No cusping occurred because fringing fields balanced the self-induced fields so that a

uniform concentration was maintained. In all cases the mobility was assumed to be constant
f\

and equal to 250 cm /V-sec. All transfer times will scale inversely with mobility.

The configuration studied in most detail was the 4-pm gate, 10 doping case. The over-
all charge decay versus time results using the integral method are shown in Figure 38. For
times less than 500 psec the charge decay is dominated by self-induced drift. The dotted line
shows how self-induced drift proceeds in the absence of any fringing field. This decay would
eventually become exponential (after one thermal diffusion time of 10 nsec) with decay con-
stant of 10 nsec. However, the fringing field drift causes the transfer to progress at a faster
rate.

The single carrier transit time, rtr, given by

L
dy

J- %(y)
o

is 400 psec for this configuration. Clearly, the charge does not transit the sample in 400 psec.

One of the main reasons for this is the retarding effect of the self-induced fields on the left

half of the transferring region. The self-induced field profiles for various times are shown in

Figure 39. Also shown is the drift-aiding fringing field. The self-induced fields remain as high
as the minimum fringing field for up to 600 to 800 psec for this case and this tends to hold
back the charge. Consequently, the charge remains well spread out over the entire gate region
for times much longer than T^.

The charge profiles are shown in Figure 40. After approximately 800 psec the fringing
fields dominate and self-induced effects are negligible. The charge profile then tends to drift
to the right under the influence of the drift-aiding fringing field and one might expect it to
continue to drift entirely out of the region into the receiving potential well. However, this

does not happen, but rather the charge profile becomes stationary at approximately-1400 psec
and decays exponentially thereafter.

73



I I

NTOT^)/NTOT(0) VS. TIME

(INTEGRAL METHOD)

1.94/iqNo

ND
SI0

XOX*2000A

dGAP=2000A

N0=4.6xlO

T S | O ° P S

t0UTO«FFs|000°Ps

UJ

500 1000
TIME IN psec

1500

Figure 38. Normalized total remaining charge vs. time for 4-;um gate length and
l()15cm-3 doping. The dotted line indicates how the charge transfer
would proceed in the absence of fringing fields.
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Figure 39. Self-induced field profiles (calculated by the integral method) at various times for
the same problem shown in Figure 37. Solid line fields cause charge motion to left
(hinder transfer), dotted line fields cause charge motion to the right (aid transfer).
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Figure 40. Charge profiles for various times during the same problem shown in
Figure 37. The dotted line traces the charge peaks.
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This occurs basically because the fringing field is not uniform but has large negative
gradients on the right side of the region. The final decay time for this case is 100 psec. As
noted in Part 2, the T£ should be approximately

dEF(y)
rf

peak,
forVT = 0 (79)

In this case this quantity is 115 psec, which compares favorably with the actual T^ of

100 psec.

As expected, decreasing doping density with the resultant increase in fringing field mag-

nitude results in faster transfer. Figure 41 compares the charge decay curves for 10 ° and

2 x lO^cm'^ doping. The higher fringing fields result in more complete transfer at all times

and reduces the time t^ required to achieve 17 = 99.99% from 1.46 nsec to 1.125 nsec. In the

absence of fringing fields, approximately 53 nsec would be required to achieve i\ = 99.99% by

means of self-induced drift and thermal diffusion alone.

Figure 42 shows charge decay results for the lO-^m gate case: both 2 x 10 and 10
10 9doping. Here the initial charge level was small, approximately 10 cm , so that no self-

induced effects are apparent. Here again the final decay is exponential and transfer is mate-
rially aided by the higher fringing fields of the lower doped substrate.

10 9The results for the four cases studied (nQ = lO^cm"*) are summarized in Figure 43
which shows the total charge remaining vs. time normalized by the single carrier transit time.
All four cases with widely varying transit times generally follow the same curve with

rf a 1/3 rtr (80)

and the time t^ to achieve 77 = 99.99% of

t4 = 4 rtr (81)

These relationships apply only at room temperature where fringing field drift dominates
the final transfer of charge. When rtr is greater than Tth, thermal diffusion dominates and rf

will be rtn. The time required to reach 17 = 99.99% when thermal diffusion dominates t^1 is
given by
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<? = 'th I6-7 - loe F^) ~ 5'5 Tth
\ '-'nv '

t = r 6.7 - log — ] = 5.5 r,h (82)

4. GRADIENT METHOD VS. INTEGRAL METHOD FOR SELF-INDUCED
FIELD CALCULATION

Since an alternative method of calculating the self-induced fields, the integral method

(Part 2), has been introduced, the natural question of comparison with the gradient method
arises. The most meaningful comparison involves the electric fields and overall charge transfer

results for the two different methods. The degree of agreement between the gradient and inte-

gral methods for calculating self-induced field magnitudes depends upon the charge profile.

Almost no agreement is obtained for the uniform charge concentration; the gradient method

predicting zero field except at the edges, while the integral method prediction is given by
Eq. (70) and Figure 34. Figure 44 shows a comparison for a charge profile which was picked
at random during a computer simulation of charge transfer in a 4-j/m gate case. To the left
where the self-induced fields hinder charge transfer, the integral method predicts higher fields,
while on the right, where self-induced fields aid charge transfer, the integral method fields
are lower. Thus, the integral method should predict slower charge transfer than the gradient
method and, in fact, comparison of the charge transfer rates using the two methods tends to
bear this out. Figure 45 shows the overall charge decay vs. time for the 4-jzm gate 10 cm"*'
doping case using the two methods. As expected, the integral method is slower with approxi-

mately twice the total charge remaining at any given time. However, because self-induced

drift is important for only the first decade or so of charge transfer in what is essentially an
exponentially decaying process, there are no significant time differences in the overall charge
transfer characteristics for the two methods. In view of the fact that the integral method takes

much more computer time, the gradient method is probably better suited for certain numeri-
cal solutions.

On the other hand, the integral method is required to accurately calculate charge profiles

in storing potential wells and express the self-induced field magnitude as a function of the

charge concentration rather than charge gradient.

5. DISCUSSION AND CONCLUSIONS

Equations (80) and (81) provide a rough estimate of the free charge transfer performance
at room temperature for three phase charge-coupled structures which have strong drift-aiding
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Figure 44. Comparison of the self-induced fields calculated by the integral and
gradient methods for charge profile picked at random during computer
simulation of charge transfer in 4-jnm gate case. Charge concentration
profile is shown at top. Negative of fringing field is also shown for
comparison purposes.

fringing fields — at least for the closely-spaced electrode structures studied. Larger gaps be-

tween electrodes will change the fringing field profile and may lead to relationships which

differ from Eqs. (80) and (81). Based upon Eqs. (80) and (81) the expected performance of

closely-spaced, three-phase CCD's for various gate lengths and doping densities can be assessed

based on knowledge of the fringing field profile alone, since this determines T+¥. Reference

A-6 describes an analytical solution for three-phase fringing field magnitudes and presents a

relatively simple expression for the single carrier transit time (again probably valid only for

closely spaced CCD structures) given by
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Ttr =
6.5MXOXV

5Xd/L

5Xd/L
(83)

where V is the pulse voltage, X j is the depletion width at the center of the transferring elec-

trode, and the other symbols have their usual meaning. The time to achieve r? = 99.99%

(t^ as 4r tr) is a reasonable figure of merit since this is consistent with devices with several

hundred gates. Based upon Eqs. (81) and (83), Figure 46 shows t4 vs. gate length for various

doping levels. The points show the values predicted by computer simulation. Also shown by

the dotted line is the t^ predicted by thermal diffusion, Eq. (82), assuming nQ = 5 x 10-^cm"^.

When the t^ based upon fringing field considerations exceeds the thermal diffusion value, the

latter time applies. In other words, the thermal diffusion t^ is the longest time required for

7? = 99.99% for any configuration. Figure 46 clearly shows the advantage to be gained in speed

by using low doped substrates to maximize the fringing field — especially below 15-/um gate
lengths. Noteworthy is the 10-MHz operation predicted for 10-Mm gates and 100-MHz
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Figure 46. Time required to achieve r? = 99.99% vs. gate length for
various doping levels. The thermal diffusion line is the
maximum time required in any case.
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operation predicted for 4-/zm gates. It must be kept in mind, however, that these predictions

are based only upon the consideration of free charge transfer effects. No interface state trap-

ping has been considered and this effect could possibly limit the transfer efficiency and fre-

quency of operation to lower values than those predicted by Figure 46.

However, it is clear from these results that fringing field drift can be the most important
transfer mechanism in appropriately designed CCD structures. Ironically, fringing field drift

is also the most difficult mechanism to analyze, requiring numerical solutions to determine

the charge decay characteristics. The relationships of Eqs. (80) and (81) were obtained for
closely spaced electrodes and other configurations may give different results.

It is also clear from this study that in CCD structures which have strong drift-aiding
fringing fields the transfer of free charge is sufficiently fast so that it should not be a factor
in device design or operation. More specifically, incomplete transfer schemes such as "fat
zero" operation (ref. A-8) do not appear necessary from a free charge transfer standpoint.
However, such schemes may be useful in reducing surface state losses.

In conclusion, the three mechanisms causing free charge transfer in CCD's have been dis-
cussed. A new method for calculating self-induced fields as a function of charge concentration

has been presented. A numerical solution of the charge transfer process shows that self-induced

drift dominates during short times, but the majority of transfer is controlled by fringing field
drift which is fast enough for 10-MHz operation with 10-^m gates and 100-MHz operation with
4-j/m gates, provided interface state losses are negligible.

Supplement I: Charge Transfer by Thermal Diffusion. — The charge transfer due to thermal

diffusion alone can be determined by means of Fourier analysis of the charge profile (ref. A-9).

The diffusion equation which describes the decay of charge is obtained by substituting Eq.(57)
of the text using only the thermal diffusion term, into Eq. (58) to obtain:

3n(y,t) 92n(y,t)

~ = D-^- (84)

For the case of zero carrier gradient at y = 0 and zero carrier concentration at y = L, a Fourier
expansion yields the following general solution where the coefficients are determined by the
initial carrier profile n(y,0):
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Z 2
ak cos (Xky) exp (- \k Dt) (85)

where

and

k = 0

;r(2k
cos

2L
dy

If the initial concentration is uniform; i.e., n(y,0) = n for 0 <L y <. L, then

(-1)*

( 2 k + l ) 7 T
0< k (86)

and

n(y,t) =
4n0(-l)*

cos
(2k+l) ; r \ 2L

exp -
l)27r2Dt)

(87)

Each of the terms in the sum decay exponentially with a decay time Tk given by

4I/
(88)

The higher order terms decay faster and the charge profile quickly decays to a cosine shape

after which the charge profile is given by

4no nyn(y»t) = cos —
T 2L 4L

(89)

with the total charge remaining after time t given by
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L,

= /

0

n(y,t)dy = JL Ntot(0)exp[-
4I/

(90)

Aside from a small fraction of charge which decays very quickly, the decay of the total charge
n

due to thermal diffusion can be considered to be exponential with decay constant I/Y2.5D.

Supplement II: Approximate Analysis of Self-Induced Drift. — Equation (64) of the text can
be solved numerically but the results do not in themselves provide useful insight into the self-

induced drift process. The numerical results do point out, however, that after a very short

time the decaying carrier profile maintains the same relative shape with all points having the
same time dependence. This implies that the carrier concentration at the surface is separable

into a product solution:

n(y,t) = h(y)g(t) (91)

This removes the partial differentials from Eq. (64) and permits the separation of variables
with each side of the equation necessarily equal to a constant according to

g2(t)

dg(t)
dt

= - A =
d2h2(y)

2COX h(y)
(92)

where A is a constant depending upon the initial conditions. The time dependence is then
given by

g(t) =
g(0)

1 + Ag(0)t
(93)

and the decay of charge is given by the ratio

g(t)
g(0) Ag(0)

(94)
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In order to obtain an estimate for the constant tQ, we note that the continuity equation
can be written formally as a diffusion equation:

jn(y,t) =-Mn(y,t)
dn(y,t)

ox
= -D'eff

9n(y,t)

ay
(95)

with

D'eff
OX

n(y,t) (96)

\

Treating Deff as a constant, we then write down a solution corresponding to Eq. (87), limit-
ing ourselves, however, to the leading term of the Fourier series so as to satisfy the condition

(91):

n(y,t) = h(y)g(t) = n cos —- exp [ - (97)

We then determine the average value of Ag(0) over the electrode length L to find l/tQ:

L
1 1 f I

— =Ag(0) = -- I —
*o L J g2(g2(t)

dg(t)
dt

g(0)dy

g(0) =1

and using Eqs. (95) and (97)

g2(t) 4L2Cox

n.. cos0 2L
(98)

4L3 Cox

Li

/

iry
cos —-

2L
- dy =

2L2C,ox
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Thus,

T2PL Cox
t = (99)
0

This is only an approximate solution but provides insight into the decay process and the

parameters which affect tQ.

Supplement III: Integral Method for Calculating Self-Induced Fields. — Consider an infinite

line charge of X coul/cm along the z-axis located at the interface between two dielectrics which

forms the y-z plane [see Fig. 34(a)]. An infinite ground plane parallel to the dielectric is lo-

cated a distance XQ from the line charge. It is desired to calculate the electric field at the

dielectric interface directed perpendicular to the line charge axis. This will be the self-induced
field due to a line charge element which will affect charge motion in the direction of transfer.

The desired field can be calculated using the method of images, but since charge is re-
dected by both the ground plane and the dielectric interface, an infinite series of image line

charges is required to satisfy all of the boundary conditions. The reflection of a line charge X
through the ground plane results in an image charge -Xn located an equal distance on the

other side of the ground pkne. When reflecting a line charge Xn at -Xn through the dielectric
interface the following rules apply:

An image line charge located at + Xn

e = el/e2

is used along with X to calculate the potential for x < 0. This image charge must itself be

reflected through the ground plane.

An image line charge located at -Xn
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is used alone to calculate the potential for x > 0. The original "real" line charge X located at
2eX = 0 is reflected along with its X' image through the ground plane to form a X-^ = -X ^ +

image at x = 2X0. This charge contributes to the potential in both e^ and e% regions, and is

then reflected by the dielectric interface to form the X-[ image at +2XQ which is used along

with X-^ to calculate potential in e-^ region. The X-[' image at -2XQ contributes to the potential

in e£ region. The Xj image is then reflected through the ground plane to form.-X-^ image at

-3XQ and the process repeats ad infinitum to form two infinite series of image charges.

Using this procedure, the potential for the e-^ region and e% region are given by

-eX l -e
n-1

In
7[x-2(n-l)X0]2

V(x + 2nXn)2 + y2
(102)

2e
2nX0)2+y2 (103)

These potentials can be shown to satisfy the following boundary condition requirements:

Ground plane

2) Continuous potential
at dielectric interface

3)

Continuous normal D at
dielectric interface

lim

r^ 0
me-i I = X Gauss' law at origin

The electric field in question is then given by
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n-1

ay J (104)

This is just the field due to a line charge element. By integrating the contributions of all
the line charge elements which make up a surface charge distribution extending from Li to
L<2 (with variations only along the y direction) the self-induced electric field is determined
and is given by

Eq(y) =
-1

7:60(1 + e)

L2-y

C ff(y)yd
/LI y2

y 2e

1 + e

'1-e

.T+Ti

L9-y

y - LI

o(y)ydy
(2nXn)

2 + y2

(105)

For an arbitrary a(y) this calculation is best done by computer, but an analytical solu-
tion is possible for a uniform charge distribution o which extends from y = 0 to y = L. If
0 = y/L, then

E.(y) = ln<

1 . 11

~2(n-l)X0~

(1-/3)L _

~2(n-l)X0

z,
1 +

2
1 .

T

"2nX0~

- 0L _

-2nXQ

_(1-0)L

£4

I2

J

(106)
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By defining the sum, which does not depend upon aQ, as the shape function,

S(y/L, 2XQ/L), we can write for Si-SiO2

(y 2M q / n o \ fy 2MEc(y) = sl-, J=1.8xlOd( S -, V/cm (107)
sU' + e2) \L' L / VlO11/ \L L /

where n0 = a0/q

Typical S plots are shown in Figure 34(b).
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List of Symbols

A Constant
n

CQX Oxide capacitance per unit area (f/cm^)

D Diffusion constant

Deff Effective diffusion constant associated with self-induced drift.
Deff = Guq/Cox) n(y,t)

Ep/ j.s Fringing field at interface along direction of charge motion (V/cm)

^S(y t) Self-induced field at interface along direction of charge motion (V/cm)

h(y) Function describing the y-dependence of n(y,t) for all t

g(t) Function describing time dependence of n(y,t) for all y

jn(y,t) Electron particle current density

k Boltzmann's constant

n(y,t) Concentration of signal carriers in CCD inversion layer (#/cm?)

nave Average value of signal carrier concentration; i.e.
L

nave = 7~ I "(y^Jdy

0
9

n0 Uniform concentration of signal carriers (cm )

Total number of carriers remaining under electrode at time t; i.e.
L

Total number of carriers under electrode at beginning of transfer process

q Electronic charge

t Time from beginning of transfer process

tQ Characteristic time associated with decay of charge via self-induced drift
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tj Time required for charge to decay to point where self-induced fields are equal
to thermal fields.

t^ Time required to reach 99.99% transfer efficiency

t^1 Time required to reach 99.99% transfer efficiency in the absence of fringing
fields; i.e., thermal diffusion dominates the transfer process

T Absolute temperature (DK)

V Clock voltage

VT Thermal voltage: kT/q

x Direction normal to Si-SiC^ interface

X^ Depletion layer thickness at center of transferring electrode

XQ Gate oxide thickness

y Direction of charge motion

e^ Dielectric permittivity of insulator

e 2 Dielectric permittivity of semiconductor

e Cl/e2

0s(y>t) Surface potential (volts)

0 o Surface potential in the absence of signal carriers; i.e., when n(y,t) = 0

X Line charge density (C/cm)

7? Charge transfer efficiency

ju Field effect mobility

o(y) Surface charge density

Tf Time constant of exponential decay of final remaining charge; i.e., final
decay constant

7^ Exponential decay constant for thermal diffusion

T|.r Single carrier transit time. The time required for a single carrier to drift
the length of the electrode under influence of the fringing field.
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APPENDIX B

TRAILING PULSE AMPLITUDE FOR CASE OF FREE CHARGE LOSSES

(e independent of signal level)

It is desired to find the general expression from the amplitude of the j trailing pulse

after the last "1" in a string of "Is", after being transferred to the i"1 gate, p,-(i), when the

loss at each gate is a fixed fraction e of the charge transferred. It is assumed that the string of

"Is" is long enough for the pulses to reach the full input amplitude, pQ. Consider the first

trailing pulse after the last "1", p-^i). When the last "1" transfers from gate 1 to gate 2, it

leaves behind epo; therefore,

Pld) = epQ (108)

At gate 2, the last "1" leaves behind another epo, and (1 - e) p-^(l) is transferred from gate 1
to gate 2 so that

Likewise,

Pl(2) = 2ep0-e2p0 (109)

Pl(3) = 3e2p0 + e3p0 (110)

By proceeding in this manner, one can establish that the general expression for the first

trailing pulse after i transfers is

P l W " P o 2 ^ 1 ("1)k+1 1 1 1 1 (U1)

k=l

'r\where I I is the binomial coefficientw
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The generalized expression for the amplitude of the un trailing pulse after i transfers

is given by

/ i + j - 1\ /k + j - 2\
(-Dk+1 ek+M (113)

\ k + j - l / \ j -1 /

If this analysis is correct, then the sum of all trailing pulses at any instant in time should be

equal to epo times the number of transfers made by the last "1".

Ng

Total loss = eNp = Pi(Ng-j + l) (114)
5 "

Note that when the last "1" has made Ng transfers, the first trailer is at i = Ng, the second at
6 &

i = Ng - 1, etc., so the index i is Ng - j + 1.

NCT N0-j + l
g^ 8 ^ / Ng \ / k + j - 2\

Total Loss = p0 > > (-l)k+1 ek+M (115)Win j - i /
This double sum is best evaluated by examining the sum of terms in like powers of e, say er.

Ifk + j-l = r, then the second sum is removed and only the k = r + 1 - j term used.

Ng\ / r - 1\

Coefficient of er term = p_ (-l)r~ er
0 -

/ ;• \ r /\j - I/

(116)

N \
g

97



However, provided u =£ 0, the sum:

(117)
\v /

v=0

This is the same as the sum in Eq. (116) for all r except r = 1; therefore, the coefficients of all

terms of er for r > 1 are zero. Thus, as can be seen by evaluating Eq. (116) for r = 1 and j = 1,

the total loss is given by PQeN as required.
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