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(Other symbols defined in text as needed)

a Constant in potential energy term
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c Low frequency sound speed
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E Energy of each system of an ensemble

E Energy barrier for molecular jump

E Energy barrier for molecular jump in the a

direction

vn



f Component of a body force

f Collision frequency
c

F Helmholtz free energy

g . Component of the metric tensor

G* = G1 + iG", complex shear modulus

G High frequency shear modulus

h Planck's constant

k Boltzmann's constant
/\
k Thermal conductivity

& Molecular spacing

fi, Molecular spacing in an arbitrary reference state

H Molecular spacing in the ci direction

m Mass of a molecule

M* = M1 + iM", complex longitudinal modulus

n Index for variation of potential energy with volume

n Particle density

N Number of molecules

p Probability for a molecular jump

p.. Pressure tensor

P Thermodynamic pressure

P, Kinetic contribution to the thermodynamic pressure
&

P Maximum pressure in the Hertzian regionm

P Potential contribution to the thermodynamic

pressure

Vlll



Q Configurational partition function

_r Position vector

R Gas constant

R Real part of the shear impedances

s Unstrained length of line in a direction

s Length of line in a direction

S.. Component of the stress tensor

t Time

T Temperature

T Component of the translational temperature tensor

T Mean temperature

u. Component of velocity

v Volume per molecule

v Volume required for a molecular jump

v,. Free volume

v. Free volume for the center of a moleculef c

w Component of the random velocity

W Average molecular speed

2c Coordinates in deformed material

X Coordinates in undeformed material

X Imaginary component, or reactance, of the shear
S

impedance

Z Complex shear impedance
S i

Z Canonical partition function
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a Absorption coefficient

Y Ratio of specific heats

Y Elongation in a direction

6. Kronecker delta

e. Molecular strain tensor

e Determinant of e. + <$.

9. Component of the deviatoric translational

temperature tensor

< Molecular strain relaxation time

X Gap size between molecules

U Viscosity coefficient

U Mean viscosity coefficientmean J

v Component of the molecular gap tensor

5 Displacement

II.. Potential stress tensor

p Density

CT. . Deviatoric stress tensor

T Translational relaxation time

T Collision time

T. Component of the rate of change of strain energy

<)> Potential energy in cell

$ Total lattice potential energy
Jhj

y Dimensionless slope of the variation of the energy

barrier with molecular spacing



u Frequency

a).. Component of vorticity

Subscripts (unless otherwise specified among the main

symbols)

e Equilibrium

m Melting point value

o Mean value

a A principal direction. There is no summation

over this subscript
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A GENERAL RELAXATION THEORY OF SIMPLE LIQUIDS*

by Mati Merilo and E. J. Morgan

CHAPTER I

INTRODUCTION

The liquid state is still the least understood of

the three states of matter. The behavior of gases at

low pressures can be well explained in terms of kinetic

theory (Ref. 1). This is possible because the molecules

of a dilute gas are so widely separated that they are

unaffected by molecular forces, except, for very brief

encounters or "collisions".

Solids are affected strongly by intermolecular

forces. However, because they possess an ordered struc-

ture with the only motion of the molecules occurring as

thermal vibrations, the mathematics required to analyze

them is still tractable.

Liquids,' due to their close spacing, are character-

ized by strong interactions between molecules, yet they

do not possess long range order, hence neither of the

basic simplifications applicable to solids or gases can

be used over the entire liquid range.

Above the critical pressure, it becomes impossible

-to—distinguish between the liquid" and gaseous s'tates".

This has led to the approach of viewing liquids as dense

gases, and much formal work on statistical mechanics and

*Work supported by the National Aeronautics and Space Administration
under grant NGL 36-003-064 and the National Science Foundation under
grant GK-02866.



kinetic theory has been done from this viewpoint.

(Refs. 1, 2, 3).

Near the melting point, the molecules of a liquid

exhibit close packing similar to the solid case. The

difference between the two states concerns the molecular

arrangement. In a crystalline solid the molecules

vibrate about their centers, which are located in a

regular geometrical pattern or space lattice. Therefore

solids are said to possess long-range order. In a

liquid, there is still a tendency for the molecules to

exhibit ordering, however, this order does not persist

beyond a few molecular diameters. This short range

order has led to attempts to approach liquid theories

from the solid side. Notable among these are the cell

(Ref. 3) and hole (Ref. 4) theories.

The dynamical behavior of fluids has been described

with a good degree of success, for over a century, by

the Navier-Stokes equations. However, when flow times

become comparable to the times required for molecular

processes, the equations are hopelessly inadequate.

This problem was first encountered in measurements of

absorption and dispersion of sound waves in gases. Good

agreement between experiment and theory was finally

provided by relaxation theory (Ref. 5) which was first



proposed by Herzfeld and Rice (Ref. 6).

The basic premise of relaxation theory is that a

finite time is required for excess energy in any one

mode to redistribute itself among the other modes. Thus

relaxation theory splits up the overall energy equation

into separate equations for each mode and couples these

equations by relaxation terms. Applying this concept to

sound waves propagating through a gas, we see that energy

is first imparted to the gas molecules as translational

kinetic energy. After a number of collisions, this

excess energy in the translational mode is redistributed

among the rotational and vibrational modes. This process,

known as thermal relaxation, leads to absorption in

excess of that predicted by classical theory which con-

siders only viscosity and conduction.

Relaxation like behavior has also been observed in

liquids, and in many instances the same relaxation

mechanism as was found in gases has been found to apply

(Refs. 7, 8). These liquids are sometimes known as

Kneser liquids. A further type of thermal relaxation in

liquids is caused by the perturbation of molecular equi-

librium between different species, brought about by

temperature variations.



In addition many liquids, primarily the associated

liquids, display a relaxation caused by volume changes.

The prime example of this is water, which shows excess

absorption at 4°C. This absorption cannot be thermal in

origin since at this temperature c = c , and therefore

adiabatic compression and rarefaction waves are also

isothermal. For this reason the excess absorption in

water has been attributed to the presence of both loose

and close packed structural forms. The equilibrium

amount of each structure is perturbed by changes in

volume, and thus this process is referred to as a

structural relaxation (Refs. 8, 9).

Relaxation equations for liquids have also been

written from purely phenomenological viewpoints to

explain the viscoelastic behavior of substances. These

are rheological equations of state which have been used

to describe non-Newtonian flow, normal stress effects,

and the propagation of ultrasonic shear waves. These

theories are based on the suggestion by Maxwell (Ref. 10)

that the behavior of a fluid can be described in terms of

a relaxing solid. Oldroyd (Refs. 11, 12) has written

general rules for formulating rheological equations of

state, and has found that the simplest equations which

are linear in stresses and include terms of second degree



in stresses and velocity gradients taken together,

possess eight arbitrary constants. Though equations

obtained from strictly phenomenological grounds can

describe many observed phenomena, their main weakness

is that there is no connection between the molecular

properties of the fluid and the arbitrary constants

required to describe the continuum behavior. This is

in contrast to the relaxation theory of gases where a

knowledge of molecular properties is used to obtain the

relaxation equations.

It is clear that any theory which hopes to describe

the dynamical behavior of liquids must in some form /

include relaxation effects.

The purpose of this research is to relate the

relaxational behavior of liquids to their molecular

properties. The approach adopted is to evaluate the

thermodynamic properties of the system by statistical

mechanics, and to account for dissipative processes by

relaxation from non equilibrium states towards equilib-

rium. This approach is valid as long as the deviation

of the radial distribution function from its equilibrium

value is small (Ref. 13),_and th_i_s_will be ass umed, to, be

the case in the following analysis.



CHAPTER II

THEORETICAL ANALYSIS

In the analysis that follows, two ideas are essen-

tial and will receive further attention. One is that a

liquid can, to a certain extent, support a recoverable

shear strain, and thus a "molecular strain" tensor can

and will be defined. This is possible because a finite

time is required for a liquid to come to equilibrium

following some disturbance, even though this time may be

extremely short.

The other important concept is that the random

velocity, and thus the translational kinetic energy, of

molecules can be a function of direction (Ref. 14). With

a slight modification of the definition of temperature,

this leads to the possibility of defining a "transla-

tional temperature tensor".

Both of these concepts will be used to write the

stress tensor as a function of temperature and molecular

spacing. Further, since both the strain and temperature

will be related to the strain rate through relaxation

equations, the stress will-show relaxation effects, and

be a function of the strain rate.



2.1 Concept cf Strain in a Liquid, and the Molecular

Strain Tensor

A liquid, which is in static equilibrium with its

surroundings has a uniform distribution of molecules

throughout its volume. Thus we say that the radial

distribution function, which specifies the number of

molecules to be found at any distance from an arbitrary

reference molecule, is spherically symmetric. If, as

the result of some disturbance, the distribution function

deviates from spherical symmetry, it will take a finite

time for molecular collisions to bring the distribution

back to its equilibrium value. Another way of viewing

this is to note that as a result of some disturbance the

average spacing between molecules can vary with direc-

tion .

It is possible to draw some analogies between a

liquid with a distorted radial distribution function and

a strained solid. In discussing solids, Love (Ref. 15)

states that "the state of strain is entirely determined

when we know the lengths in strained and unstrained

states of corresponding lines". Thus for a solid, in

principal axes of a cartesian system, a strain tensor can

be defined in terms of extensions of material line



elements, or fibers, along the principal directions. If

s is the initial unstrained length of a line in the aoot

direction, and s is the strained length, the elongation

of the fibre or line is defined as

oct

There is no unique measure of strain (Ref. 16), and in

fact any function of y can be used provided that it

vanishes for y =1, reduces to the infinitesimal strain

tensor for ly - ll « 1, and is dimensionless. As a1 'a '

result, many measures of strain appear in the literature.

Some of the more common ones are (Ref. 16):

Cauchy measure

eaa

Hen cky measure

eH = in y
cm a

Green measure

G
eaa =

2 - 1

plus many others associated with the names of Swainger,

Alamansi etc. ...



For a liquid, if the length of the material line,

or fiber, is replaced by the average distance between

molecules in a particular direction, it is possible to

describe the distortion of the radial distribution

function in terms of the changes in molecular spacing

along principal axes. We can then define a "molecular

strain" tensor in principal axes, a, as

where i is the average distance between molecules in

the a direction and £ is the average molecular spacing

at the local density. Since this tensor is expressed in

principal axes of the deformed material, it can be

related to the Cauchy deformation tensor (Ref. 17), £,

by

where £ is the molecular strain tensor, and ̂  is the unit

-%tensor. The tensor ^ is convenient because the prin-

cipal values are exactly the principal elongations, how-

ever, in axes other than principal axes, the terms of the

J:_en_s_o_r are considerably more dif f icult__to— evaluate --i»n -----

terms of the deformation gradients. In fact, the compo-

nents are in general complicated infinite series in



displacement gradients (Ref. 17).- -The change in volume

during a deformation is expressed by

-*
dV = det (c) dV .o

Since the molecular strain refers only to distortion,

and not to dilatation the condition

det (6* + ej) = 1 (2.3)

must be satisfied.

2 . 2 The Stress Tensor

From the kinetic theory of dilute gases, the pres-

sure tensor can be expressed as

= n (m w± Wj

where the subscripts refer to the axes of a cartesian

coordinate system, n is the number density, m is the mass

of the molecule, and w is the random, or peculiar,

velocity. The usual kinetic theory definition of

temperature is just

T =?k< Wi Wi) <2'4>

where k is the Boltzmann constant.

10



However, this definition can be extended such that a

translationai temperature tensor can be defined as

This leads to an equation of state for an ideal gas

(Ref. 14)

P±j » P R T (2.6)

where p is the density and R is the gas constant. The

traditional temperature then is just one third of the

first invariant of the temperature tensor.

Similar equations of state can be written for a

liquid, incorporating the effects of the attractive

forces and the finite size of the molecules.

Since directionally dependent molecular spacings

and temperatures must, if not acted upon by external

forces, eventually equalize, we see that we are in fact

dealing with a non-equilibrium situation. The usual

approach in studying non-equilibrium statistical

mechanics is to investigate the change of the distribu-

tion function towards canonical form as a solution of the

time dependent Liouville equation. The main problem, so

far, has been to calculate the distortion of the equilib-

rium radial distribution function for specific non-



uniformities. Due to the complexity of methods based on

the Liouville equation, there is not yet available a

complete theory of simple non-uniform liquids that leads

to results which can unambiguously be compared with

experiment. With the hope of achieving mathematical

tractability this approach is abandoned in favor of a

simpler, more intuitive procedure. To describe the

directionally dependent temperatures, Morgan and Kern

(Ref. 14) hypothesized that the non-equilibrium distribu-

tion function could be specified by a quasi-Maxwellian

distribution which has the property that it is an

equilibrium distribution in each direction taken sep-

arately. In this way it is possible to talk about

thermodynamic quantities as functions of direction. From

this viewpoint, the irreversibility of the flow arises

from the coupling of the different directional modes by

relaxation terms, and allowing the system to return

towards the isotropic equilibrium distribution.

The results obtained by Morgan and Kern, for the

directional dependence of temperature, are used here.

Further, we postulate a quasi-equilibrium molecular

spacing in the principal axes of deformation, an assump-

tion which allows us to use the powerful techniques of

equilibrium statistical mechanics. There are two

12



distinct but equivalent procedures which may be applied. -

One calculates the thermodynamic properties through the

partition function, and the other through the radial

distribution function. The former approach will be used

here.

There are a number of ensembles which are used for

thermodynamic calculations, depending on what the inde-

pendent variables are, and the types of contact the

systems make with the surroundings. It can be shown

(Ref. 18), however, that away from critical regions,

where fluctuations in thermodynamic properties are small,

the ensemble to be used can be chosen for mathematical

convenience. Generally, the simplest and therefore most

commonly used one is the canonical ensemble.

The canonical partition function is

1
\

k?j - (2'7)

where N is the number of molecules, V is the volume, and

\
E. is the energy of each system of the ensemble. The

summation is taken over all systems of the ensemble.

Once the partition function is known, it is possible to

obtain all the thermodynamic properties from it*. r In"

particular, the Helmholtz free energy is given by

F = - kT in Z . (2.8)

13



From this, the thermodynamic pressure can be expressed

as

P _ .
-

The term pressure will only be used for the case of an

unstrained liquid. When the liquid is strained, since

the molecular strain is recoverable, elasticity theory

can be used. Truesdell (Ref. 19) has pointed out that

there really is no satisfactory thermodynamical treatment

of the foundation of elasticity theory, therefore it is

necessary to postulate that a stress tensor obtained

from an "elastic potential" or "strain energy" is in fact

equivalent to the stress tensor obtained from the prin-

ciples of mechanics. When this is done, the elastic

potential for an isothermal deformation is given by the

Helmholtz free energy (Ref. 19), and the stress tensor,

S., can be expressed as

• - - -

Here x is the displacement or deformation gradient
» K-

defined by

3XK

where X and x are coordinates in the undeformed and

14



deformed material respectively. In principal axes we can

relate the molecular spacing to the displacement gradient

with the expression

,a

where i is the equilibrium spacing in some arbitrary

reference state. Thus it is possible to relate the

stress tensor, through the Helmholtz free energy and the

partition function, to the molecular properties of the

liquid.

2. 3 The Momentum Equation

The momentum equation is used in its usual form

where u is the velocity component, and f is the compo-

nent of any body force in the i direction. The comma

refers to covariant differentiation, and the material or

substantial derivative is defined as

y\ • JL • * r\ • JL • • ~ _Da . _ 9a . . k . i . .
"j- ~ ••J' + u a

15



2.4 The Molecular Strain Relaxation Equations

Equations which express relationships between the

stress tensor and the kinematic variables, such as

velocity and acceleration, at any point of the body are

called rheological equations of state. Since the stress

^
tensor can be expressed in terms of the molecular strain

tensor and the temperature tensor, the relationships

connecting these tensors to the strain rate tensor can

properly be called rheological equations of state. These

equations describe the properties of an arbitrary material

element moving as part of a continuum and as such must be

independent of the frame of reference.

An arbitrary fluid element in motion is continuously

translating, rotating and deforming, however, the stress

in the element should only be affected by the strain. If

this were not the case, the stress distribution would be

a function of the rigid body motion even if inertia and

body forces were neglected. To avoid the effects of

rigid body motion, the physical behavior should be

expressed in a coordinate system which is rotating and

translating with the element. The only motion which

would be seen in this system is a pure deformation, and

thus strain and relaxation effects could be more easily

16



expressed. It is not very convenient to solve problems

in this system, however, thus the results should be

transformed into standard Eulerian coordinates. To sum-

marize, the procedure to follow is to state a physical

law, or hypothesis, in a coordinate system following a

fluid element, and then to transform this to a fixed

coordinate system for solving problems.

This transformation is easily accomplished by

replacing the time derivatives appearing in the moving

system by the Jaumann derivative defined as (Refs. 12,

20)

° . '
... .i.. . ,Dt 3t .i..,k

(2.13)

Da' '.^ ' _ 9 a ° . ' , k . . 1 . v m • • J • v ' 1 . . m .— .1.. = -— .i.. + u a.J - X w. a J - ) GJJ a .*• i .m. . *• m . i . .

where £ denotes that the summation over m must be per-

r »
formed for each covariant index and £ denotes the same

for each contravariant index. The vorticity is defined

in the usual manner as

The Jaumann derivative can also be written in terms of

the more familiar material -derivative- It is -------

Da' ' ' D a * : * r m . .J. r'j ,.m. ,* -,c^.i.. = .1.. - I W a -I co a (2.15)

17



where the extra terms account^ for the rotation of the

fluid element. It should be noted that for a scalar

quantity the last two terms of equation (2.15) vanish,

and the Jaumann derivative reduces to the common material

derivative.

The strain of a body can be described by the rela-

tive motion of two points when the rigid body motions

have been removed. This motion can be considered to

consist of three strains along the principal axes of the

strain-rate tensor. Thus it can be shown (Ref. 21) that

if 6s is the distance between the points, its relation-

ship with the strain-rate tensor is just

-= -r— a = d (no summation) (2.16)os Dt aa
a

where d is the aa component of the strain-rate tensorota • . •• • f... .
de f ined as

This equation, as it stands, shows that a medium with a

constant strain rate imposed on it can deform, or strain,

indefinitely. However, the molecular strain, except for

the case of pure dilatation can not. This is because the

molecular strain depends only upon the mean configuration

of molecules about a given reference molecule, irrespec-

18



tive of the identity of the surrounding molecules. Thus

when two molecules are separating from each other because

of a strain-rate, and another molecule moves between

them, the strain is effectively relieved since the new

neighbor determines the radial distribution. Upon cessa-

tion of the strain-rate, the radial distribution function

will after a finite time revert back to its spherical

symmetry, and thus the molecular strain will relax to

zero.

If in equation (2.16) the length 6s is replaced by

the average distance between molecules in the ot direc-

tion, £ , extra terms must be added to account for the

relaxation behavior. We shall postulate that the relaxa-

tion can be expressed by terms which are linear in the

deviation from equilibrium. We further make the assump-

tion that the molecular spacing in one direction can be

a function not only of the strain rates in the same

direction, but also of those normal to it. Then, in a

cartesian system, in principal axes of the strain, we

can write

Dt
V*x a -aa y a -s.a z

(A-B)d + B(d + d + d )aa xx yy zz (2.18)

19



where K is the relaxation time for the equilibration of

molecular strain and A and B are coefficients for the

effects on molecular spacing caused by direct and normal

strain rates respectively. One would expect that for

simple liquids cross strain effects should be small, thus

A should be much larger than B. We see that when

H = & = Si , the relaxation term is zero. However, when
x y z

there is a difference in spacing in different directions,

relaxation will occur to decrease this inequality. In

terms of the molecular strain tensor, equation (2.18) can

be expressed as

F f

where C; . is the inverse of (e. + 6 ). It is evaluated

from the expression

C1 = -1 C2.20)
J e

where E is the cofactor of the element e. + 6. in the
* •?

determinant (e~! + 6.) = £. In an arbitrary coordinate

system equation (2.19) becomes

1 j.i D^ , 1 D^\
2 Pk Dt ^k Dt 1 < 3p Dt

= (A-B)dij + Bgij d , (2.21)

20



and if we lower j, set i = j and contract we get

d}" (2.22)

But from equation (2.3) we have e = 1, therefore

equation (2.22) becomes

+ (A + 2B) d£ = 0 , (2.23)

and for this to satisfy continuity we must impose the

condition

A + 2B = 1 . (2.24)

Since we expect that A » B, A should be almost unity

and B should be close to zero.

2.5 The Energy Relaxation Equations

If in a stationary gas the random translational

kinetic energies of the molecules are unequal in dif-

ferent directions, molecular collisions .would eventually

redistribute the energy until the inequality vanished.

Differences in the temperatures would thus relax to zero.

Morgan and Kern.(Ref- 14) have shown from a kinetic

theory analysis that in principal axes of the strain

rate, separate energy relaxation equations can be written,

for a gas, in each of the principal directions. In a

21



cartesian coordinate system where a represents any prin-

cipal direction, their expression with their simplified

conduction terms is

pc (DT (T - T ) + (T - T ) + (T - T ) )v i aa , aa xx aa yy aa zz I(i

\ Dt

= S u + - (k T ,) , (2.25)aa a,a 3 aa.i ,i

where T is the relaxation time for energy exchange

between translational modes, c is the specific heat at

constant volume, and k is the thermal conductivity. It

should be noted that if the three equations in the three

principal directions are added, the usual energy equa-

tion for an ideal gas is recovered. The form of the

energy equation for this case is contingent on the fact

that the internal energy for an ideal gas is a function

of temperature alone. If, as is the case for a liquid,

the internal energy depends also upon the density and

the strain, the form of the energy equation is altered

by the addition of several new terms.

The usual form of the energy equation is

p Jl = + (kT ) + Slj u (2.26)Dt ,i ,i j , i

where E is the internal energy per unit mass.
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For E = E(p,T,£..), the left-hand side of equation (2.26)

can be expanded as

DE _ | 9E
Dt Up

...

11 S! 3E-

(2.27)

If we make the assumption that for small strains

p,e
ij

3E

and

= c (2.28)

3E

T e
' ij

i
-

P
(2.29)

and if we define II as

(2.30)

then, if we also make use of the continuity equation the

left-hand side of equation (2.26) can be rewritten as

= PC
DT

v '-(If) k Dt C2.31)

Equation (2.30) is seen to define a stress tensor whose

elastic potential is just the internal energy.

If we further define the tensor 0 ^ by
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sij = .pg + a C2.32)

where P is the the rmo dynamic pressure for the unstrained

material at the local mean internal energy and density,

the energy equation becomes

where k is the thermal conductivity and

£
2

P.T "
(2.34)

is the rate of change of strain energy. Except for the

strain energy term, equation (2.33) is a common form of

the energy equation (Ref. 21). We now assume that it is

possible to write energy relaxation equations for a liquid

which are analogous to equation (2.25) derived from

kinetic theory by Morgan and Kern. We propose the

equation

il 3T"̂  - e^ 1^

-'tt}im + (od + .)
 (2-35)

which reduces to equation (2.25) for an ideal gas, and

can be transformed into equation (2.33) by lowering j,

setting i = j, and contracting.
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It is sometimes convenient, particularly for

isothermal flows, or when conduction can be neglected,

to use a non-dimensional deviatoric translational

temperature tensor.
ij

, defined by

where

T = i Tk3 k

(2.36)

(2.37)

With this definition we see immediately that

(2.38)

This tensor is useful in that it expresses deviations of

temperatures in different directions, rather than the

actual temperatures. As such it is analogous to the

strain tensor which expresses deviations from the

unstrained conditions. Using this definition the energy

relaxation equations can be rewritten as

pc TK v e

3

Z/9 30 (g " 1 * 0

Dt T T e

J) DT

Dt

+ i ,m
(2.39)
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It should be noted that these equations do not consider

vibrational and rotational energy modes, and should

transfer between these and the translational modes be

important, relaxation equations connecting these modes

should be used.

We have in this chapter expressed twenty-one

equations which, in principle at least, can be solved

for the twenty-one unknowns describing a general flow

problem. The equations consist of six molecular strain

relaxation equations, six energy relaxation equations,

six stress equations and three momentum equations. The

unknowns are six components each of the molecular strain,

the temperature, and the stress tensors and three

components of velocity. Before a solution to these

equations can be obtained, however, it is necessary to

evaluate the partition function, and to do this a model

for the liquid must be chosen. This will be done in the

next chapter where the cell theory approach will be used.
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CHAPTER III

THE CELL THEORY APPROXIMATION

To obtain solutions to the equations derived in

Chapter 2, it is necessary to evaluate the partition

function for a large system of interacting molecules, a

task which at present is quite unfeasible. This diffi-

culty is what led Eyring and Hirschfelder (Ref. 22), and

Lennard-Jones and Devonshire (Ref. 23) to attempt to

simplify the evaluation of the partition function by

introducing cell theory. Though the theory was orig-

inally proposed as a result of an intuitive approach,

Kirkwood (Ref. 24) has placed the theory on a sound

statistical mechanical basis by obtaining the partition

function for the cell model by successive approximations

of the exact partition function.

3.1 The Basis of Cell Theory

The physical arguments leading to the adoption of

cell theory emphasize the similarity of the liquid struc-

ture to that of a crystalline solid. In a "crystal,= the

molecules are located in a regular geometrical pattern,

and therefore the crystalline solid is said to exhibit

long range order. In a liquid, for high densities and
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for temperatures far below the critical point, X-ray

diffraction studies have shown that short range order,

extending over a few molecular diameters, still exists.

Since the mean molecular spacing is not much greater than

the diameter of the molecule, it can be assumed that a

molecule is confined to a "cell" or cage consisting of

its immediate neighbors. This is a reasonable assumption

for thermodynamic calculations provided that the mole-

cules occupy their cells for time periods which are large

compared to the time between collisions. A molecule

which is restricted to move in its cell, can thus be

regarded as an independent thermodynamic system. If it

is assumed that the system is homogeneous in the sense

that each molecule in a cell is representative of all

other molecule-cell combinations, then the partition

function for a system of N molecules can be obtained by

taking the Nth power of the single molecule partition

function. In terms of the Helmholtz free energy, this

just means that the total free energy is N times the

free energy of one molecule in one cell.

In spite of the number of approximations, the cell

theories have had outstanding success in obtaining

qualitative and, to a lesser extent, quantitative agree-

ment with experimental thermodynamic properties. It is
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possible to achieve varying degrees of complexity with

cell theories, depending on whether the number of mole-

cules is put equal to the number of cells, whether

single or multiple occupancy of the cells is permitted,

and depending on the form of the intermolecular potential

which is chosen.

3.2 Evaluation of the Partition Function and the

Thermodynamic Properties

To facilitate the mathematics, the simplest form of

cell theory will be used here. We assume that there are

N molecules occupying N cells, with only single occupancy

permitted. Attention will be focused on only one mole-

cule, which is allowed to move, while the remaining mole-

cules are assumed to be fixed in their equilibrium posi-

tions in a quasi-crystalline lattice. The free molecule

or the "wanderer" is restricted to move within its cell,

where the potential is assumed to be uniform. Thus the

potential energy can be expressed as

*L
<J> = — Cwithin the cell)

4> = °» (outside the cell)

where $ is the total lattice potential energy of the
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molecules in their equilibrium positions. It is gener-

ally expressed as a function of the specific volume.

The canonical partition function, defined by

equation (2.7), can be written as a product of terms

including the translational kinetic energy and the

potential or configurational energy. Thus

Z, . „. . Q (3 .2 )kinetic

where 3_N
2

Z kinetic
2TTmkT

h 2
(3.3)

h is Planck's constant. The configurational partition

function for N particles is

QN(V,T) = |r I [ exp }- —^ — dr . ...dr;
N N! Jv' "

Jv I kT \ L N

(3.4)

where ^. is the radius vector of the i'th molecule,

$(r, . . . ._rN) is the potential energy of the system in

configuration (jr. . . . .̂ N) and the integrations are carried

out over the volume V. Utilizing the cell theory assump-

tions, the configurational partition function for one

molecule in its cell is

(3 '5)
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where _r is the position vector of the molecule in its

cell. Since 4> is assumed to be uniform

Ql ' vfc exp(- kl) (3-6)

where vf is the free volume available to the center of

the wanderer in its cell. The conf igurational free

energy for one cell is then

FI = <f> - kT An vfc C3.7)

and for N particles in N cells

F.T = $_ - NkT An v,. (3.8)N L fc

If it is assumed that the immediate neighbors

making up the cell are fixed in their lattice positions,

then for a face centered cubic lattice the volume per

molecule is

v - A3//2 (3.9)

where A is the distance between nearest neighbors. The

free volume available for the center of the moving

molecule has a very complicated shape, however, the error

introduced is not large if the volume of the largest

sphere which fits inside the actual free volume is taken

as the free volume (Ref. 25).
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Then

vr = 4 *U-d)3 C3.10)f c 3

where d is the hard sphere diameter. When the lattice

is strained, the relative distances between the molecules,

and the shape of the free volume are altered. Choosing

cartesian axes x, y, and z, coincident with the principal

axes of strain for the lattice, the sphere representing

the free volume is distorted into an ellipsoid of volume

where

vc = vX X X (3.11)fc 3 xx yy zz

A E (1 + e H -d . (3.12)
aa v aa e

Thus X represents the size of the gap between the

molecules in the a direction.

To evaluate the partition function, it is necessary

to choose an expression for the interaction potential

between molecules. There are many forms of the inter-

molecular potential currently in use, giving good descrip

tions of gas viscosities, second and third virial coeffi-

cients, thermal conductivities and other properties.

Unfortunately, since the functions used are only empir-

ical representations of the true interactions, the

parameters required to describe them depend on the
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property being measured. As an example, the parameters

of the Lennard- Jones (6-12) potential required to describe

gas viscosities are different from those required for the

second virial coefficients. At present, there does not

appear to be any potential function which allows consist-

ent information about intermolecular properties to be

derived from various physical properties. In view of

these uncertainties, a simple form of the potential will

be chosen, which does, nevertheless, represent to some

extent the actual behavior.

It has been shown (Ref. 3) that a good approximation

to the lattice potential energy is given by a function of

the form

(3.13)
v

For a liquid which is being strained, . plausible expres

sion which reduces to the above form for no strain is

a
9 = - 3. + —r— +

x y z

(3.14)

where

a' = 2n/2 a (3.15)

and £ , £ , , £ represent the molecular spacing in thex y z

principal x, y, and z directions respectively. It is now

possible to evaluate the desired thermodynamic properties.
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The stress tensor can be obtained in principal axes as

follows,

aa
aa

3F

a
(3.16)

Substituting for F from equation (3.8) we get

kTa aa £t c a

a
(3.17)

where the effect of temperature variation with direction

has been included. When the derivatives are evaluated,

-9

the stress becomes simply

aa
pRT 1 + -r-

aa X,aa

na
n+1 3n

(3.18)

aa

For the case of zero strain, and n = 1, we get

- S = P = pRTll + T - ~aa ^ XJ 2
(3.19)

which is one form of the Eyring equation of state

(Ref. 4). The identical expression for pressure can be

obtained by assuming no strain and using the relation

|) (3.20)

A closer look at equation (3.19) indicates that in the

low density limit, the equation of state for an ideal gas
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is recovered. The reason for this behavior is that for a

system of non-interacting particles, the introduction of

partitions affects the free energy and the entropy, but

not the pressure or the internal energy (Ref. 3). Thus

equation (3.19) is correct in the high and low density

limits, though it can be expected to be in error in

between .

The stress and the pressure may be expressed as the

sum of kinetic and potential terms. The kinetic contribu-

tion is a consequence of the motion of the molecules in

their cells, while the' potential term results from the

potential energy of the molecules located at their respec-

tive cell centers. Thus the kinetic pressure is

P. - pRTJl + yj (3.21)
K. I. AJ

and the po ten t ia l pressure is

v

For small strains, the potential term of the stress

tensor can be linearized so that equation (3.18) becomes

= __ _ _ __
S = - p'RT 1 + T

H-P+ P (l-3ne ) . (3 .23)eta aa \ pv aa'

We now de f ine a non-dimensional gap tensor , , v , as
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The inverse of v. can be obtained from

-1. N1

(3.25)

where N*" is the cofactor of v| in det(V-|) = V.

The stress tensor can then be written in arbitrary

coordinates as

-1 -1

+ P Cgij-3neij) C3.26)

It is often more convenient to use the deviatoric

stress tensor defined in equation (2.32) and to write it

in terms of the deviatoric translational temperature

tensor defined in equation (2.36). Equation (3.26) can

then be rewritten as

-1

* (3'27)

-1

36



To find an expression for H.., which was defined by

equation (2.30), we must first determine the internal

energy, E. This is most easily accomplished by using

the Gibbs-Helmholtz equation

E . , - T (|f)v (3.28)

From the partition function which was obtained

earlier, the free energy is

3NkT } +

f c L

and the internal energy becomes simply

E = -| NkT + $L

(3.30)

= c T + $.v L

Using the definition for II.., we have in principal

cartesian axes that

naa = —k^ C3.3D

which tiirns out to be simply the potential part of the

stress tensor
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and for no strain

P
P '

 (3'33)

3.3 The Relaxation Times

In the preceding chapter, two relaxation times were

postulated, one for equilibration of translational energy

and the other for equilibration of molecular spacing, but

no indication was given of how they may be obtained. The

time required for equipartition of translational energy

for molecules of equal mass should be of the order of the

collision time. Morgan and Kern (Ref. 14) have shown

that in a gas the translational relaxation time is just

(3.34)

thus if the kinetic theory result for the viscosity of a

hard sphere gas is used, it is found that

T = 3.813 T (3.35)c

where T is the collision time. It will be assumed thatc

the same relationship between the relaxation and collision

times will apply for a hard sphere liquid.

The collision time for a liquid is a very difficult

quantity to determine. Herzfeld and Litovitz (Ref. 5)
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have shown that collision times computed under various

assumptions for some common liquids disagree by factors

of up to thirty. In view of this uncertainty, the col-

lision time will be calculated using a convenient though

relatively simple approach. The average collision fre-

quency for molecules in a liquid can roughly be expressed

as

f
c = IT-

 + li-+lf- (3-36)x y z

where c is the component of the average random speed of

the molecules in the a direction. By the component of

the random speed we mean the component of the absolute

value of the random velocity. Since the velocity distri-

bution in a liquid, as in a gas is Maxwellian (Ref. 33),

the average speed is

W = /S?± (3.37)

At equilibrium, the average speed is independent of

direction, thus the component of the speed in any direc-

tion is obtained by averaging the component for the

velocity vector varying over all angles, thus

ca = -—- W (3.38)

The spacing is also uniform at equilibrium, thus the

39



collision time can be expressed as

*c = T- = fix^i <3-39>c *

When the liquid is strained, the spacing between

the molecules in different directions is altered and, as

may be seen from equation (3.36), the collision frequency

is changed.

The ratio of the equilibrium to the strained

collision frequency is

f 3c/X

r*-c—c—~ (3-40)
c -^ + -2- + -5-

It will be shown later that in most liquids T « K, and

therefore 0 « e < V . Since the molecular speeds

vary as the square root of the temperature, the effect

of strain on the collision time is much greater than the

effects of the temperature variations. Thus it can be

assumed that the molecular speeds have their average

value even in the strained liquid, and

Y*- = — 1 — (3.41)

xx yy zz
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In any axes

T f 3 HI .
C3.42)

ce c v

where the invariants of the gap tensor are

LIv = l(Vi Vj " Vj Vi) C3.43)

and

IIIV = detlv^I . (3.44)

The structural relaxation process is considerably

more complicated than the thermal one. When a material

is strained, the separation between molecules is altered.

The size of these separations fluctuates continuously

such that at some time a vacancy large enough to accom-

modate a molecule is formed. When a molecule jumps into

this available space the strain is relieved. Therefore

it is possible to identify the relaxation time for mole-

cular strain with the time required for a molecular jump.

Two conditions are required for a jump to occur.

First, there must be a sufficiently large volume avail-

able, and second, the molecule must have enough energy to

leave its position and surmount the potential barrier

formed by the neighboring molecules.

Chung (Ref. 26), using statistical mechanical argu-
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ments has derived the expression for the jump probability,

p . , as

exp s
kT (.3.45)

where EV is the energy required for the molecule to jump,

and v is the required volume. Note that the free volume,

vf, here is not the same one used in deriving the equation

of state, but is instead the difference between the

actual and close packed volumes per molecule.

Since during the traverse of a sphere into a neigh-

boring vacancy, the travelling sphere makes on the

average three glancing collisions (Ref. 27), it is poss-

ible to write for the molecular strain relaxation time

3r

or

3T exp
v

kT

v
V

(3.46)

(3.47)

Brummer (Ref. 28), and Gubbins and Tham (Ref. 29)

have shown that the energy required for a jump is a strong

function of the density of the fluid. This is to be

expected since a molecule must squeeze through the

extremely steep repulsive potential of its neighbors. In
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a strained liquid then, where a molecule sees a density

varying with direction, the total jump probability is

obtained by integrating over all directions. Thus

pPj ATT 2 kT kT kT

v
0 ' s in<}>d<j>di j> C3.48)

vf(<|>,40

where <J> and ^ are the angles measured in spherical

coordinates.

3.4 Limitations of the Simple Cell Theory

Although cell theory has been shown to give a useful

description of the liquid state, there are nevertheless

several limitations introduced by the many assumptions

which are made.

One of the main problems is that cell theory is

really a description of the solid state, introducing a

degree of long range order which does not exist in a

liquid. The introduction of cells implies that mole-

cules in one cell do not affect molecules in neighboring

cells and thus correlation effects are neglected. Both

of the above assumptions lead to predictions of entropy

which are too low, since order has artificially been
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introduced to the system.

The supposition that the virtual lattice, defining

the equilibrium molecular positions, expands uniformly

with volume appears to be incorrect. X-ray and neutron

diffraction studies have shown that there is no appre-

ciable change in the nearest neighbor distance when the

volume is altered. This implies that the volume change

should be attributed to the decrease in the number of

molecules in the first coordination shell. Cell theory

can be improved here by introducing a larger number of

cells than molecules (Ref. 30), and allowing for multiple

occupancy (Ref. 31).

The range of applicability of cell theory is limited

by the specification of the cell center as the preferred

position for a molecule. Calculations for molecules with

a Lennard-Jones (6-12) potential indicate that at reduced

density
;

p* = nd3 < 0.69 (3.49)

where n is the molecular number density, there is a

potential maximum at the center of the cell (.Ref. 32).

Since for this case the ground state no longer corres-

ponds to a regular arrangement of molecules, it is

difficult in this range to justify cell theory. If the
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energy of the molecule is less than the energy of the

central hump, the effect would be for molecules to

cluster, and in a sense behave like larger more compli-

cated molecules.

A common problem for theories of the liquid state

arises when the potential contributions to the pressure

become of the same order as the thermal or kinetic terms.

Then it becomes necessary to subtract large terms of

equal magnitude, leading to a magnification of any errors,

Physically the effects of this delicate balance are shown

dramatically by the phenomenon of critical opalescence,

an occurrence which is brought about by large scale

fluctuations in density. The density fluctuations are

in turn a manifestation of the formation of clusters by

attractive forces and their subsequent dispersion by mole-

cular collisions. The clusters are found to contain of

the order of millions of molecules (Ref. 33). Clustering

to a lesser extent must occur in liquids even away from

the critical point, thus, in particular, near the satura-

tion curve the cell theory cannot be expected to be

accurate.

;~"= "Th;e= 1-imit at tons ~ impos=ed" by t=he- adop t=ion =of—ce 14- -

theory must be kept in mind when interpreting the

solutions obtained for various problems.
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CHAPTER IV

SOME SOLUTIONS AND COMPARISONS WITH EXPERIMENTS

The problem with the present equations, as with most

Theological equations of state, is that they are too com-

plex to solve for any but the simplest of flows. The

general approach in problems of rheology is to postulate

a flow pattern, and then attempt to calculate the stress

pattern necessary to maintain this flow. This procedure

is used because the inverse problem of calculating the

flow from the stress pattern, while difficult for

Newtonian flow, becomes quite impracticable for more

complicated flows.

4.1 Steady Shearing Flow at Low Strain Rates

Consider a flow such that in cartesian coordinates

the velocity field is given by

u = Dy
x

u = u = 0y z

(4.1)

where D is called the rate of shear. The coordinate

system is shown in figure (1).

Since the flow is described in cartesian coordinates,
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it is no longer necessary to differentiate between the

covariant and contravariant components of the tensors.

Also, the metric tensor can just be replaced by the

Kronecker delta.

For this flow, the strain rate and vorticity tensors

can be represented by

and

(4.2)

(4.3)

0

D / 2

0

0

-D/2

0

D / 2

0

0

D / 2

0

0

0 "

0

0

0

0

0

respectively. The flow is further assumed to be steady

3t = 0 (4.4)

isochoric (constant volume)

kk
(4.5)

and isothermal.

It is instructive to solve the equations at first

for the case

P -" 0,
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since then ths terms of the strain and deviatoric temper-

ature tensors are small, and the relaxation equations can

be linearized.

Equation (2.21), describing the relaxation of mole-

cular strain, becomes

Z?£i1 3£H " 6i1 £kk_ij + H 1.1 = (A.B)di + 6ij B ^ , ( 4 .6)

since for low shear rates, and thus small strains

In terms of the individual components we can write for

i = x, j = x

(e - e ) + Ce - e )
-De + _-S - ZZ - ** - ^5_ = o , (4.7)

for i = y, j = y

(e - e ) + (e - e )
D e + —21 « 2^ ^_ m o f ( 4 > 8 )

for i = z, j = z

( e - e ) + ( e - e ) = 0 , ( 4 .9 )v zz xx zz yy ' v '

and for i= x, j = y

f Uxx - =y y) + - (A-B) f . (4.10)
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The z axis remains a principal axis, therefore the

off-diagonal terms with a z component are all zero.

When the expression obtained from equation (4.9) for e

is substituted into equations (4.7) and (4.8), the

latter become identical. This happens because the mol-

ecular strains are not independent, but must satisfy

equation (2.3). For small strains this gives

zz

e " = e + e + e
xy xx yy zz

(4.11)

Solving equations (4.7), (4.9), (4.10) and (4.11), the

components of the molecular strain tensor can be

expressed by the array

A-B
J 2

fA-B , ,) fKD\2 KD
I 6 ' 1}(3 } 3

KD CA-B ,
3 [6

0 0

see that the magnitude of the

termined by the dimensionless

0

)M2 oJN °

(A-B) fKDl2
1 6 j[3 j

•

. (4.12)

molecular strain is

product KD, a number

which essentially expresses the ratio of the time

"re'qurrecl f or mo'l e~cii l°a"r re a"r r a'ng ernen t txf" t he" t i'me "s c a Ire

of the imposed fluid deformation. Using this number we

are in a position to state that a requirement for a
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shear rate to be considered s-low Is that the condition

KD « 1 must be fulfilled. For most simple liquids under

normal conditions, K is extremely small, generally being
_ 8

less than 10 seconds.

Another important point to note is that the shear

strain is of order <D, while the normal strains are of

order (<D)2. This means that the expression obtained for

volume changes in linear theory (Ref. 17),

dV - dV
£dV kk •

o

cannot be used even for small strains, since e is ofxy

the same order as e. , . This is the reason for the e2kk xy

term appearing in equation (4.11).

The linearized energy relaxation equation can be

written as

PC (DQ4 . 36. _, ) P_ De
(4.14)

T ( T Dt 1 9 T
V

where it has been assumed that the dissipation term is

of order D2, and can thus be neglected. This assumption

is verified a posteriori. In terms of the individual

components, equation (4.14) can be expressed as,
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for i =« x, j = x

xx 3 xy pcyT
TD exy (4.15)

for i = y, j = y

e + eyy 3 xy pc TK v
TD exy (4.16)

for i = z, j

9 - 0 ,zz

and for i = x, j = y

e + (e - e )xy 6 xx yy

(4.17)

pc TK v
(£xx

1
pc

3P

v ^T'v

TD
2

(4.18)

The equations for i ^ j and either i or j =• z, become

identically zero since z remains a principal axis. From

equations (2.38) and (4.17) we find that

e = - exx yy (.4.19)

With this substitution equations (4.15) and (.4.16) become

identical. This happens because, to this order, the

overall energy equation is satisfied trivially by the

specification of isothermal and isochoric flow.
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The solution for the translational temperature

tensor becomes

VTD)
1T~J

TD
3

0

2 TD
3

- N2
13 J

0

0

0

(4.20)

The deviation of the translational temperature from

isotropy is determined by the dimensionless product TD,

which expresses the ratio of the time required for

thermal equilibration to the inverse of the strain rate.

TD plays the same role in the energy relaxation equation

as KD does in the molecular strain relaxation equation.

The stress field required to maintain this flow can

be obtained from equation (3.27). With the present

approximations, in terms of the individual components we

have for the shear stress

a = - P. 0 + f P. - 3n P Exy k xy IX k pi xy

and for the normal stresses

(4.21)

a - - P,. 9 + I*- P, - 3n P^)e_ + 4 P,.(6.... - V....)Exx , - ik xx I A k T ,pj xx A k xy xy xy

(4.22)
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Id t da = - P, 9 + T P. - 3n P e + - P. (9 - v )eyy k yy (\ k pj yy X kv xy xy xy

( 4 . 2 3 )

a = (4 P, - 3n pfe . ( 4 . 2 4 )zz [A k pj zz

Substituting the solutions obtained for 9. and E^.

the shear stress becomes

xy 2pc .
V ^ ' V

and the normal s t resses become

a = !!k_flP) flD) 2
 + A^B IVB + jl fd p _ 3n p 1 f K R ^ 2

xx 2pc 8T I 3 ' 2 L 6 J U k PJ I 3
T j V ' Y ^ r ^ V

A-L u „ i A-O r i . " i .-^ . •*• i wi i --^ f .,T>. / / o f t )
6 A * k | _ 6 . - . v, ,v

a
yy

A-B c[
6 A

and

^^ [1 Pk - 3n PJ |^| . ( 4 . 2 8 )

Since the" shear "rate is low, we have"

TD « 1

and KD « 1
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Thus the normal stresses can be seen to be of higher

order than the shear stresses.

For a dilute gas, because of the wide separation

between molecules, the attractive forces become negli-

gible, and

f « i .

The stress field then becomes simply

a = P ̂  (4.29)
xy 3

a -p (A.30)
xx

o y y--pp£[ (4.31)

a =0 (4.32)
zz

This is seen to be identical to the results obtained for

a Maxwell fluid (Ref. 46). Though the strain rates

required to generate them would be extremely high, these

results indicate that normal stress effects can be

expected in gases as well as in liquids.

Normal stress effects in gases have also been cal-

culated by Morgan and Kern (Ref. 14), who obtained off-

diagonal terms of the stress tensor in axes coincident
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with the principal axes of the strain rate tensor, and by

Truesdell (Ref. 34), who did a kinetic theory analysis of

Maxwell molecules. Reiner (Refs. 35, 36) claims to have

measured normal stress effects in air, however, there is

still some question concerning the interpretation of his

results (Ref, 20).

The result for the shear stress, equation (.4.25),

indicates that for slow shear rates the behavior of the

fluid is Newtonian, with a viscosity

a

D

The first term represents the kinetic contribution and is

proportional to the square root of the temperature. This

is identical to the kinetic theory result for a gas com-

posed of rigid elastic spheres. .

The second term is a combination of kinetic and

intermolecular force contributions and decreases expo-

nentially with temperature. For most liquids it is

expected that the gas type contribution to the viscosity

is small and that therefore the second term dominates the

f.irst .^ The viscosity^ can then be re^presenteTd as
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A-B
^Pk - 3n %|Tc

y = exp

2 kT kT
+ 1

kT
C4.34)

an expression which is very similar in form to the hybrid

equation for viscosity advanced by Macedo and Litovitz

(Ref. 37). Their equation,

rE v
exp kT + Y (A.35)

where y is a correction factor required to correct for

the overlap of free volume, was proposed to combine the

desirable aspects of the free volume theory of Cohen and

Turnbull (Ref. 38) with the reaction rate theory of

Eyring (Ref. 39), both of which have proven to be very

successful in predicting the behavior of different liquids

Considerable success has been achieved by the application

of the Macedo-Litovitz equation to the temperature and

pressure dependence of a wide variety of liquids, both

organic and inorganic. The main difference between the

Macedo-Litovitz equation and equation (4.34) arises in

the pre-exponential factor, which for the Macedo-Litovitz

equation is an adjustable parameter. A table, listing

the values of E and v /vf required to fit the viscosity

of many liquids, is presented by Macedo and Litovitz.
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From these values it can be seen that the exponential

term is in general very large, and that for most liquids,

therefore, < » T. This justifies the neglect of the gas-

like term in the viscosity of liquids.

It is important to note that the expression obtained

for viscosity, particularly the pre-exponential term, is

subject to all the previously enumerated limitations of

cell theory and the equation of state. Further, it is

necessary to account for the fact that the hard sphere

volume is not a constant, but decreases with increasing

temperature, since more energetic molecules can approach

each other more closely than those with low energy.

Equation (A.34) has been applied to two oils, for

which the variation of viscosity and density have care-

fully been measured over a wide range of pressure and

temperature: These are oils 17-D and 29-F of the ASME

Pressure Viscosity Report (1953). The main reason for

choosing these particular oils was because of their sim-

ilarity to the oils used by Crook (Ref. 40) and Smith

(Ref. 41) in their elastohydrodynamic lubrication exper-

iments which are discussed in the next section. The mol-

ecules of the oils are certainly not spherical, however,

the presence of large proportions of cyclic hydrocarbons,

such as the napthenes and the aromatics, could make this
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a reasonable first approximation. jZhe success of the

Cohen and Turnbull equation, which is a special case of

equation (4.35) in describing the viscosity data of high

molecular weight hydrocarbons to within the accuracy of

the experimental data is certainly encouraging in this

respect.

The molecular weight of oil 29-F was not avail-

able, consequently, it was estimated by the method of

Hirschler (Ref. 42), to be approximately 440. The index

n, for the variation of the potential energy with volume

was taken equal to one, since this has been found to be

a good approximation for many liquids (Ref. 3). It was

further assumed that the cross-strains produced by the

strain rate are small, and therefore A was put equal to

one and B to zero.

The energy barrier, E , and the close packed

volume, v , were not known, and were therefore treated as
o

adjustable parameters. It has been found (Ref. 29) that

E is an increasing function of density, and that v

decreases with increasing temperature, accordingly,

simple linear relationships displaying these characteris-

tics were used.

Gubbins and Tham (Ref. 29) have shown a reduced

plot of the "activation energy", E , as a function of the
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volume for several liquids, and their curve, together

with the points obtained for the two oils, is presented

in figure (2). For the oils, the pour point parameters

were used for the reduction of the data since the melting

point parameters used by Gubbins and Tham were unavail-

able. Nevertheless, the agreement of the values for the

oils with those obtained for other liquids is quite good.

The experimental and calculated variation of vis-

cosity with temperature and pressure is shown for the two

oils in figures (3) and (.4) . The agreement is very good,

except for high temperature and low pressures, which is

precisely the region where cell theory cannot be expected

to apply.

4.2 Steady Shearing Flow at Arbitrary Strain Rates

The analysis presented in the previous section is

applicable to infinitesimally small strain rates. When

the restriction, KD « 1, is removed, the equations are

no longer linear. In this case we can expect that the

stress will, no longer be linear in the strain rate, and

thus the flow will be non-Newtonian.

Non-Newtonian behavior has been observed in liquid

crystals (Ref. 43), colloidal suspensions (Ref. 44),
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polymer melts and solutions (Ref. 45), and mineral oils

in elastohydrodynamic CEHD) lubrication (Ref. 46). The

theory, as developed so far, cannot be expected to hold

for the first three cases, since for liquid crystals and

polymers the molecules are extremely complicated and

orientation effects play a large role, and for colloidal

suspensions the flow of the particles making up the

suspension must be considered (Ref. 47). There is hope,

however, that the high shear rate flow of mineral oils

can be described adequately by the present theory. This

hope is reinforced by the success achieved in describing

the oil viscosities over a wide range of temperature and

pressure.

The elastohydrodynamic problem consists of the

combination of the elastic deformation of the lubricating

surfaces and the hydrodynamic behavior of the lubricant

film. The shape of the film is determined by the defor-

mation of the contacting surfaces, and since this film is

generally very thin, the strain rates are extremely high.

Figure (5) shows the shape and thickness of the lubricant

film between two discs, measured by capacitance tech-

niques (Ref. 40). The thickness is seen to be constant

to within 10% in the region where the discs are deformed

or in the Hertzian band. The ratio of the length of the
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contact area to the film thickness is of order 100, and

the width of the area is often 103 to 10** times greater

than the film thickness. The extremely high pressures

encountered raise the viscosity of the oil in the contact

zone by factors of 101* or more, thus reducing the escape

of lubricant from the sides and front. These considera-

tions indicate that the EHD flow of lubricants can be

approximated quite well by plane Couette flow.

To analyze this flow, we make the same assumptions

as in the previous sections, except that we remove the

restriction <D « 1. Also, since it was shown that the

viscosity of the liquid is primarily determined by the

molecular strain, the energy relaxation equations are not

considered .

The molecular strain relaxation equations now

become

for i = x, j = x

) (1 + e ) D e +e (1 + e ) (e -e )yy zz xy xy zz 2 yy xx

(e - e ) +• (e - e )
+ — SE - ZZ - ™ - «_ . o (4.36)
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for i = y, j = y

(1 + e )(i+e ) D e ' + e U + e )(e -e )xx' v 2.7.' xy xyv zz 2 yy xx'

(e - e ) + (e - e )
+ — V- - 55 - Z2 - «_ . o (4.37)

f o r i = z , j = z

(e - £ ) + ( £ - e )
55 - Z2_ = o (4.38)

and for i = x, j = y

3e
(1 + e )(2 + e + e ) (e - e ) + — . = z Dzz xx yy 4 xx yy K 2

(4.39)

Substituting the expression obtained for e from
z z

equation (4.38) into equation (4.36) and (4.37) makes

the latter equations identical for the same reason which

was discussed in the previous section, therefore we again

use equation (2.3).

With some algebraic manipulations, the equations to

be solved can be written as

e = (e + e )/2 (4.40)zz xx yy
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and

(1 + e ){(l+e )(l+e ) - e2 } • 1 . (4.43)zz l xx yy xy '

In these expressions, K is still a function of the mole-

cular strain, and this relationship is yet to be deter-

mined .

Gubbins and Tham (Ref. 29) give the following

description of the jump of a molecule into a neighboring

hole. In figure (6), for the molecule at 1 to jump to 3,

it is necessary to overcome the energy barrier at 2

caused by the steep repulsive potentials of the neighbor-

ing molecules. This barrier is clearly a function of the

molecular spacing in the directions normal to the direc-

tion of the jump. Thus for a jump to occur in the z

direction, the energy required should be a function of

tne spacing in the x and y directions. A plausible

assumption would be that E depends on the area of the

gap as seen by the jumping molecule and thus the varia-

tion of E can be expressed as a function of the product

i I . In principal axes, a, we can then write for smallx y

strains that

63



a ve

\ dE
_e_ v
>. di aa (4 .44 )

where dE /d£ can be determined from figure C2).

For pure shear, a sphere is distorted into an

ellipsoid whose axes correspond to the principal axes of

strain. We therefore assume that the energy required for

a jump in a particular direction is also distributed

ellipsoidally. Hence we can write

dE

cos 2<j>

[s in 2 4>cos 2 '

7T71T7

sin <J>sin 2 iJ>

(1 + £3)
(4.45)

* * *
where EI, £2, and £3 are the principal strains obtained

from the roots of the equation

£ - I££ - llee -

The invariants of the tensor (.£. . + ^^4^ are

x£ -

(4.46)

II

and

IIIe = de t ( e ± j
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This expression for E(tj>,i)j) can be used in equation (3.48)

to integrate for the jump probability over all direc-

tions. Similar arguments can be used to determine the

change in the probability of finding sufficient free

volume for a jump, as a function of direction, and the

same ellipsoidal distribution is used for v /vf(4>»^) in

equation (3.48).

Equations (4.40-43) can be solved numerically to

obtain the strains as a function of < D, where K is thee e

molecular .strain relaxation time for the unstrained

liquid.

The solutions are obtained by the following proce-
_ it

dure. First, a small value for K D, typically 10 , is
6

chosen, and the strains are computed with the low strain

rate assumption, equation (4.12). These strains are used

as a first approximation in solving equations (4.40-43)

by a Newton-Raphson technique for systems, where KD is

assumed constant. With the new strains, a new KD is

calculated from equations (3.46) and (3.48) and compared

with the previous KD. If the two values for KD are close,

it is assumed that the method has converged to the

required solution, if not, the new value "for icD is used"

to obtain another approximation to the strains. This

procedure can be continued until convergence is obtained.
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When a higher KQD is chosen next, the previous solution

is used as the first guess for the strains.

Once the required strains have been obtained, the

stress field can be calculated from the following

expressions.

xy

xx

yy

4 Pv ̂  - 3nPA k v p

A (1 + d/A) I v

v vyy zz

\)xx zz
A (1 + d/A)

(4.47)

- 1 - 3nP e (4.48)p xx

- 1 - 3nP e (4.49)J P yy
and

zz A (1 + d/A) v
I Z Z

- 3nP e
p z z

(4.50)

It is convenient to non-dimensionalize the stresses by

dividing them by the expression

^ 1 p 3nP6 i_A k p
C4.51)

where G^ is later found to be the limiting high frequency

shear rigidity. For a Newtonian fluid the dimensionless

shear stress is just given by

KD

3 ' (4.52)
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The numerical solutions obtained for the variation

of shear stress with shear rate are compared with

Dyson's (Ref. 46) interpretation of the EHD lubrication

experiments performed by Smith (Ref. 41) and Crook

(Ref. 40).

Smith's experimental apparatus consisted of a motor

driven cylindrical roller in contact with a spherical

roller which was allowed to rotate freely in ball

bearings. The axes of the two rollers could be skewed

relative to each other, thus varying the sliding speed

between them. Measurements of the axial force on the

spherical roller were used to determine the frictional

force. Heating elements inside the housings of the

rollers, and a thermocouple in the air space near the

point of contact of the rollers were used to maintain and

regulate the temperature of the system. The film thick-

nesses were not measured, however, Dyson calculated them

using the approximate theory of Grubin (Ref. 48). He

estimates that this theory should be sufficiently

accurate to give the film thicknesses to within a' factor

of three.

Dyson further introduced corrections to the exper-

imental points for temperature variations in the contact

zone, determining what the results would have been if the
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conditions had been isothermal.

Crook performed his experiments by loading together

pairs of discs, and measuring the frictional force as

the sliding speed was varied. The film thicknesses were

determined from the measured capacitance between the

discs, and the surface temperatures were measured with

thermocouples. Dyson also corrected Crook's results for

thermal effects.

There is yet another correction which must be made

before the calculated and experimental results can be

compared, and that is to account for the variation of

pressure in the contact zone.

It can be shown that under high loads, the pressure

distribution in the contact region during EHD lubrication

is very close to that which would exist for static

loading with no lubricating film. This "Hertzian" pres-

sure distribution is given by

P - P [1 - —I (4.53) .
I b2J

where b is the half width of the contact region. Using

Grubin's assumption that the viscosity variation with

pressure is nearly exponential,
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V = v exp(BP) (4.54)o

where 0 depends only on temperature, it is possible to

develop a relationship between the mean effective vis-

cosity, and the viscosity at the maximum Hertzian pres-

sure. The ratio between the two can be expressed as

mean J Q
(4.55)

exp($Pm)

The experimental results were all adjusted to the condi-

tions prevailing at the maximum Hertzian pressure, which

were also the conditions for which the calculations were

performed.

The properties of the mineral oils studied by Smith

and Crook were not available, therefore the oils showing

the greatest similarity to the actual ones used were

chosen from the ASMS Pressure Viscosity Report (.1953) .

Oil 17-D of the report was chosen to be representative of

Smith's oil, while Crock states that oil 29-F was most

similar to his.

The experimental conditions were all out of the

range of the ASME data, however, some cases were close

enough for a reasonable extrapolation to be attempted.

For this reason some of Smith's high pressure data could
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not be compared with the theory. The most difficult

quantity to find an extrapolated value for is

i dE

"ztr ~dl (4.56)

which is required to evaluate the change in the jump

probability due to the molecular strain. From figure (2)

we see that E rises very rapidly as V/V is decreased,

consequently it is extremely difficult to extrapolate to

small values of V/V . This problem is compounded further
m

by attempting to determine an extrapolated value for the

slope of the curve. For this reason, ¥ is treated as an

adjustable parameter in the calculations. The values for

the hard sphere diameters and close packed volumes are

obtained from the relationships used to fit the low shear

rate viscosity data. The conditions of the experiments,

and the quantities used for the calculations are shown in

Table I.

The experimental results obtained by Smith and Crook,

for the variation of shear stress as a function of strain

rate are shown plotted in dimensionless form in figure

(7). Since the theory shows that in addition to being a

function of the dimensionless strain rate, K D, the

stress also depends upon the dimensionless quantities
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V, d/A, Ev/kT. and Pk/3nP , it is surprising that the

results appear, within the scatter of the data, to fall

on a single curve. This is particularly unexpected in

view of the dissimilarity of the two oils used in the

experiments and the fact that yet two other oils were

used for the reduction) of the data. This result may be

fortuitous since the data plotted in .dimensional form is

originally close to a single curve, however, reduction

to dimensionless form reduces the range of scatter from

a factor of three to a factor of two, or roughly thirty

per cent.

The general features of Smith's results may be seen

in figure (8) where the data obtained using steel rollers

is plotted in dimensional form. An increase in the pres-

sure at constant temperature or a decrease in the temper-

ature at constant pressure raises the stress level at

which departure from Newtonian flow occurs. The behavior

of the stress level is similar to that of G^, therefore

non-dimensionalizing the stresses with G^ can be expected

to bring the results together, though there is no a priori

reason for expecting them to collapse onto a single curve.

The experimental conditions for all but the lowest

pressure and highest temperature were too far out of the

range of the ASME data to permit extrapolation with any
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degree of confidence, accordingly, only this case is

shown in dimensionless form in figure (9). The calcu-

lated curve, together with the value of ¥ required to

match the data is also displayed, and the fit is seen

to be quite good.

In figure (10) Smith's results for a spherical alu-

minum free roller rolling on a cylindrical steel driven

roller are shown. These results indicate that the shear

stress at which departure from Newtonian flow occurs is

independent of the rolling speed, even though, as has

been discussed by Dyson, the rolling speed does affect

the apparent viscosity. The reason for this behavior is

still not understood. The calculated curve can again be

fitted quite well to the measured data.

Crook's results, together with calculated curves for

his average conditions, are shown in figure (11). Since

these measurements were taken over a much narrower range

of strain rates than Smith's, the effect of the scatter

is much more pronounced.

In figure (.12) we show the calculated results for the

change in shear stress when some of the non-dimensional

parameters are varied. A decrease in the values of Y,

E /kT and d/X produce an increase in the dimensionless

stress at which departure from Newtonian flow takes place,
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however, the variation of E /kT and d/X, throughout the

entire range encountered in the experiments, is insuffi-

cient to shift the calculated results out of the range of

scatter of the data. This indicates that, in this range,

the stresses are fairly insensitive to changes in E /kT

and d/X, and that the largest variation occurs as a

result of changes in ¥. Altering the ratio of the kinetic

to potential pressure is found to have a negligible effect

on the calculated results. The value of ¥ required to

match the experimental data is a strong function of the

values of G used to non-dimensionalize the stresses,
OO

thus any inaccuracies in G^ produce a corresponding error

in ¥.

Neither Crook nor Smith attempted to measure normal

stress effects, nevertheless, since the theory predicts

their presence, the calculated results are indicated in

figure (13). In general, we see that a and o are

both negative, suggesting that the flow causes an increase

in the mean compressive stress. Further, since

(o - a ) > 0, the fluid is in tension along stream-

lines and in compression normal to the stream lines along

"five velocity gradient, when compared to the mean normal

stress. Since a is a factor of approximately a hundredz z .

smaller than either a or O , the relative magnitude ofxx yy &
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the stresses are very similar to those obtained for a

Maxwell fluid. This resemblance to a Maxwell fluid is

also shown by the low shear rate results, where it is

seen that the normal stresses depend on the square of the

strain rate. Changes in E /kT have very little effect on

the normal stresses, however, decreases in T and d/X lead

to an increase in their magnitude at the corresponding
I

strain rates.

The variation of molecular strain with strain rate

is shown in figure (.14). The magnitude of the strains,

for all the cases considered, is always less than 10

indicating that the small strain assumption should be

valid for an entire range of flow. The stress, however,

is a function of V = 6 + (1 + d/X)e , which for

large values of d/X can become large. Thus it is neces-

sary to evaluate e without making the small strain

assumption.

We can conclude that the present theory is capable

of describing non-Newtonian behavior in a hard sphere

fluid. In this theory the decrease in apparent viscosity

with increasing strain rate can be caused by two effects.

One is the increase in the jump probability of a molecule

in a strained fluid, which takes place at high densities

and high strain rates. This mechanism is characterized
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by a high value of ¥.

The other is that as the strain rate increases, the

strain eventually reaches a limiting value. When this

value is reached, an increase in the strain rate no

longer causes an increase in the potential term of the

stress tensor. This mechanism, as can be seen from

equation (4.47) is characterized by a low value of

(d/X)(P./3nP ).
K. p

There is yet another mechanism which could be

responsible for non-Newtonian behavior of liquids, but

since it entails the addition of some more assumptions,

it has not been included in the present theory. In

associated liquids it is possible that the rate of making

and breaking of hydrogen bonds is a function of the mol-

ecular strain or the strain rate. Since the jump prob-

ability of a moLecule is dependent on whether or not it

is hydrogen bonded to others, a decrease in the number of

bonded molecules can lead to a decrease in the apparent

viscosity of the liquid. Similar arguments could very

well apply to any liquid whose molecules form clusters.

The sizes and the number of clusters could be dependent

on the strain rate,- and -since a molecule in a cluster

would probably have a smaller jump probability than a

free molecule, a decrease in the size and number of
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clusters would lead to a decrease in the apparent

viscosity .

4.3 Oscillatory Shear Flow

Consider the propagation of plane oscillating shear

waves in a liquid. Let x be the direction of motion of

the liquid and y be the direction of propagation of the

shear wave. Assume that the amplitudes of the oscilla-

tions are sufficiently small that products of perturba-

tion quantities may be neglected. Then the equations

describing the flow can be linearized to give:

the molecular strain relaxation equation

3e 3e . _ 3uxy , xy _ A-B _ x ... .
8t + K ~ 2 9y ' C4'57>

the energy relaxation equation for no conduction

89 39 3P 5£

v

the momentum equation

8u 3a
X XVp-n = -§r. • (4-59)

and the stress

O = - P. 6 v [4 P. - 3nP ]e . C4.60)xy k xy A K p xy '
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Assume that any perturbation quantity Q, varies as

Q = Q expCiwt + m*y) (4.61)

where to is the angular frequency and m*, is defined as

m* 5 - a - — ' . (4.62)
c

Here a is the absorption coefficient and c is the

propagation velocity. It is further convenient to let

K' = K/3 (4.63)

and

T' = T/3 . (4.64)

The equations which must be solved then become

iwe + e /<' = =- m*u (4.65)
xy xy i x

3P

iwpu = m*5 (4.67)xy

and

a - - P. 8 + [!•?.- 3nP ]e (4.68)xy k xy X k p xy

Solving equations (4.65) and (4.66), we find that

, T> ra*u

-xy ~ 1 T
X . N(4.69)
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and

v p v

Substituting the expression for the stress, (4.68), in

the momentum equation (4.67), and then using the expres-

sion obtained above for e and 6 we getxy xy °

1 »3Pk f3P) io)T' 3PkPp A-B me'
m p J2pc l 9 T l 1 + i(JT ' pc T 2 1 +J * v

In practice the quantity measured in oscillating shear

experiments is the shear mechanical impedance, Z ,
S

defined by

Z = -££ = R + iX . (4.72)
s u s s

X

From the momentum equation we get

which can be evaluated in terms of the fluid properties

by using equation (4.71). Another commonly used quantity

is the shear modulus, G, which is obtained from the
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equation of motion for an elastic solid,

p lii = G lii t ' (4.74)
9t2 9y2

where £ is the displacement in the x direction. To

account for dissipation, G is made complex, and solving

for oscillatory motion, equation (4.74) gives the complex

shear modulus

G* = pfi^]2 = G1 + iG" (4.75)

which can also be obtained from equation (4.71). The

real and imaginary parts of the shear mechanical imped-

ance can then be expressed as

f! \ 2 T

\y I I
/ J

and

R2 . H2- ; 1 + £r + iS (4.76)
s 2 1

*I - "r- U1 + (£}*} -1J (4'77)

For a Newtonian fluid, the equation of motion is

^ 3t M 9y^

and for oscillatory motion this yields

(4.78)
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fiu)}2 iuu . (4.79)

W = P

Comparing this expression with equation (4.75) we see

that for a Newtonian fluid

G* = icoy ( 4 . 8 0 )

which is pure ly imaginary .

For a loss- f ree solid,

G* = pc2 (4.81)s

which is real. Here c is the propagation velocity of
S

the shear wave.

According to the present theory, the complex shea

modulus is given by

r . - _ a i i ' A - B d „" ~ ' -

3Pk Pp A-B q j K ' c o T ' (1 - C O K ' O J T ' )- =^ r — 5
P ° V T 2 ( 1 + W 2 K ' ) ( 1 + U 2 T

and

G il _ J c*. i u i
- TT 1 TT:2 DC

3P P, k p A-B ox'COT ' ( C O K * + COT ')
•*• ... ^r~ ^ ;

P C V T 2 (1+ U ) 2 K ' 2 ) ( 1 + W
2T
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Taking the low frequency limit, we find that

ca -> o
G* ...-' «• i «•>• i _t . «. — "!«„ i _ T» i . - f ( A SA}

2 pcvi9TK
 l ' 2 IX Pk

and comparing this to equation (4.33) we see that

This expression is the same as equation (4.80), thus in

the low frequency limit our theory predicts Newtonian

behavior.

In the limit of high frequency, we get

lim G* 3 Pk
w -> °° 2 pc

which is real, and independent of frequency. Thus in

this limit, our theory predicts that the fluid behaves

like an elastic solid.

The highest frequencies which can presently be

obtained by experiment are in the neighborhood of 1 GHz,

_ 1 3
and since T' is; of order 10 seconds, the terms

involving the product tot ' are very small. The molecular

strain relaxation times of many liquids are of order 10

or greater, thus these relaxation effects can be measured,
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The measurable complex shear modulus is

0

_1.
2 t 2

J K , .

2 ,2

+ W Z K '

ox1

1 +(J2K
t 2

(4.87)

which describes exactly the behavior of a single relaxa-

tion time Maxwell fluid whose infinite frequency shear

modulus is

e-• Vl?'k - 3»P,J • (4-88)
With this result, the low frequency, or low strain rate,

viscosity can be expressed as

p = G T' . (4.89)oo

The very high frequencies required to study molecular

relaxation processes can best be obtained by utilizing

piezoelectric crystal transducers. Mason et at. (Ref. 49)

developed a technique for obtaining the shear mechanical

impedance of a liquid by measuring the reflection coeffi-

cient of an incident shear wave at the crystal-liquid

interface. This method has been employed and modified by

many others to perform experiments on a wide variety of

liquids (Ref. 9).

So far only two liquids have been found which conform

to the single relaxation time behavior predicted by both

82



the present theory and the Maxwell fluid model. These

are molten zinc chloride (Ref. 50) and boric oxide

(Ref. 51). The measurements on boric oxide were carried

out over a wide range of temperatures, and it was found

that above 800°C the fluid exhibits single relaxation

time behavior, while below this temperature the width of

the relaxation region increases with decreasing tempera-

ture .

Up to the present time, all other liquids, on which

oscillatory shear experiments have been performed,

exhibit a relaxation region which is broader than that

predicted for a single relaxation time process. This

behavior has generally been analyzed by postulating that

the viscoelastic behavior can be represented by the summa-

tion of discrete single relaxation time processes, and

then determining the spectrum of relaxation times

required to fit the data. As has been pointed out by

Barlow et al. (Ref. 52), this procedure does not yield a

unique distribution, nor does it give a physical descrip-

tion of the process. As an alternative approach, Barlow,

Erginsav and Lamb (Ref. 53) have suggested that the shear

mechanical---impedance -of a--v-iscoel-as=fri-c=-liq=ui-d="Can ̂ be====

represented by a parallel combination of impedances

characterizing a solid and a Newtonian fluid. This
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procedure has had a fair degree of success in describing

the relaxation behavior of some fluids. A comparison of

the results obtained, for the real and imaginary parts of

the shear mechanical impedance, using this model and the

single relaxation time theory is presented in figure (15),

An attempt at a physical explanation for the width

of the relaxation region has been provided by Litovitz

and McDuffie (Ref. 54) who in a qualitative way attribute

it to the requirement of cooperative motion of neighbor-

ing molecules to provide the free volume necessary for

molecular rearrangement.

Another possible explanation for this behavior could

be the effect of molecular clusters in the liquid. At

high temperatures the number and sizes of the clusters

would be small, meaning that all the molecules would

essentially be free. This would lead to a single relax-

ation time behavior. As the temperature is decreased,

the number and sizes of clusters would increase, making

the liquid a mixture consisting of a wide range of

cluster sizes. This would lead to a spread in the range

of the relaxation region with decreasing temperature, as

observed in BaOa.

There does not yet appear to be a satisfactory quan-

titative physical explanation of the width of the visco-
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elastic relaxation region.

Barlow and Lamb (Ref. 55) have experimentally

studied the behavior of three lubricating oils possessing

high, medium and low viscosity indices. All of these

exhibited a relaxation region which was broader than that

predicted by single relaxation time theory, however, it

is of interest to see how well the present theory pre-

dicts the magnitude of the limiting high frequency shear

modulus, G^. The viscosities, at 30°C, of the high,

medium and low viscosity index oils were respectively

3.54, 2.08 and 4.52 poise, while those of oils 29-F and

17-D were 1.6 and 0.12 poise. Thus we would expect oil

29-F to be more similar to the oils used by Barlow and

Lamb than oil 17-D, and thus provide a better comparison.

Using the values of d/X obtained by fitting the low

shear rate viscosity data, the calculated results for G^

were 7.2 x 109 and 3.9 x 109 dyne/cm2 for oils 29-F and

17-D respectively. The measured values obtained by

Barlow and Lamb were 7.0 x 109, 7.8 x 109 and 7.0 x 109

dyne/cm2 for the high, medium and low viscosity index

oils in that order. Since there were no adjustable

parameters in the calculation of G^, these results must

certainly be considered to be encouraging.

Comparing the experimental results for oscillatory
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and steady shear flows it has-been noted (Ref. 46) that

departure from Newtonian flow occurs at much lower strain

rates for the latter case than the former. This feature

cannot be explained on the basis of the Maxwell model

since the values of G required to describe the two flows

by this model differ by a factor of about 103. The pres-

ent theory, however, can account for this disparate

behavior on the basis of the difference in magnitude of

the molecular strains encountered. One consequence of

this is that the behavior of a liquid under conditions of

steady shearing flow cannot, on the basis of the present

theory, be deduced from oscillatory shear experiments.

4.4 Absorption and Dispersion of Longitudinal Waves

Consider the propagation, in the x-direction, of

plane longitudinal periodic waves of infinitesimal ampli-

tude. In most liquids, excluding the liquid metals whose

thermal conductivities are high, the effects of conduc-

tion are very small compared to the effects of viscosity

(Ref. 5). Further, when the period of the sound wave is

large compared to the relaxation times of the fluid, the

effects of viscosity and thermal conductivity on the

absorption add linearly. Therefore, to simplify the

analysis, thermal conduction is ignored.
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The equations which must be solved are then

continuity

molecular strain relaxation

9e 3e . ̂ 0

57 r A ̂ , <«.9i>

energy

energy relaxation

_ _
3t T pc T 8x " pc T 3t T Dt

v *• y p • v

momentum

Du

and the dynamical equation of state

r , \ P
S = - pRT - 1-+ ~ f .+-- p - . C4- .95)x x x x I X I f - , N 3 n \ . * . j -> j

^ xxj Cl + e )v xx
- • • - * • = - - - p'-+- Q " • - - '

XX
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and

We now write the local equilibrium quantities as

T - T Cl + 9) (4.96)o

p = pQCl + s) (4.97)

where the subscript o refers to the mean values, and 0

and s are much less than one. The derivative of S withxx

respect to x, can then be written in terms of the deriv-

atives of the perturbation quantities, and the momentum

equation can be expressed as

is _ 3P> 10 _
3t " o3p 3x

IT'K -3nP 1-[A ko poj

3e
- PL. -a22 + T PU - 3nP -a25 • (4.98)ko 3x |_A . ko poj 3x

If we now let the perturbation quantities vary as

Q = Q exp(m*x + iut)

and make the substitutions K ' = K/3 and T1 = T/3, the

algebraic equations which must be solved are:

continuity

io)s = - m*u , (4.99)
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molecular strain relaxation

e•~ xx 2 ~i t0£xx + ^ = I (A-B)m*u x , (4 .100)

energy

PC 10)0 = - m*u , (4.101)
P

energy relaxation

9 o C^T,I 3P

xx ' T' pc I9T! p c T
o v v ' p o v o

and momentum

P iwu = - P 4£| m*S - T |^ m*0 - P. m*6
o x o^PJT °19TJ k xx

[f- P. - 3nP 1:|_A ko Poj+ h— P. - 3nP m*e . (4.103)1 \ ko poJ xx v '

The solutions for the perturbation quantities are easily

found to be

S = " [i^lu- ' (4.104)

_
p c l 3 T l liuj
O V *• ;D^ ;

(4.106)
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and

3P' fm*]~U "
JK> ___ e

xx pc I d T i . „ . _ . . . _ , I i u j x P0
C

V 0 I+ICOT' x x

(4.107)

Substituting these expressions into equation

(4.103), and separating the real and imaginary parts, the

complex longitudinal modulus

• z (4.108)

can be expressed in terms of physical quantities as

2P

x P -3nP ! -- (4.109)
ko po

and

?P r N 7P P
^ r —^ MT1 , ko r po , . O J T ' C O K ' ( C D T ' + U J K ' )

,2 P c T tA~ ;

T ' O V O

I'd r. -JnJt po-I- -5- (A-B) f P. -3nP —^ (4.110)3 (\0 ko
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The low frequency sound speed is

2 = lim M'
co w-»-o p

T
(4.111)

T
' o v

Using standard thermodynamic relations this can be

rewritten in the familiar form

l (4.112)

where Y is the ratio of specific heats

If we make the approximation

« 1
w

a condition fulfilled by most liquids (Ref. 9), the

propagation velocity can be expressed as

c2 = £- , (4.113)
o

and looking at equation C4.109) we see that velocity

dispersion is predicted. Since at the present time

measurements cannot be -pe-r-formed at /frequencies of com-

parable magnitude to the collision frequencies in liquids,

the terms involving OJT are small and the measurable

velocity dispersion is given by
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O 3

_

X kO
(4.114)

which using equation C4.88) can be rewritten as

C2 = C2 + ±_^
o 3 po

(4.115)

This is the result for a viscoelastic fluid with no bulk

viscosity (Ref. 56).

'The absorption, a, can be obtained from the relation

a) M̂ _

2c3 Po
(4.116)

and it can be seen to exhibit two maxima, one at UK1 = 1

and the other at WT ' = 1. For low frequencies the absorp-

tion becomes

•-! u2

poco

Pko

2pocv

+ ±=£ f- P. -3nP |K6 [A ko po (4.117)

and comparing this to equation (.4.35) we find that

1 co2U
3 p,c;

(4.118)

which is just the classical result for the case of no

heat conduction. We can thus see that the present theory
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predicts a zero bulk, or volume viscosity for a hard

sphere liquid. This disagrees with experimental results

which indicate that monatomic liquids such as liquid

argon (Ref. 57) and several liquid metals (Refs. 58, 59)

exhibit excess absorption. The reason for this discrep-

ancy is that all the relaxation mechanisms have not been

considered in the theory so far.

Generally in nonassociated liquids the major causes

of excess absorption are rotational isomerism and vibra-

tional relaxation, whereas in associated liquids the

effects of structural relaxation are most important.

Structural relaxation has also been suggested to be

responsible for the existence of volume viscosity in

monatomic liquids (Refs. 9, 58, 59). This effect could

arise in the following fashion.

It is well known, through the property of critical

opalescence, that liquids near the critical point exhibit

large, local density fluctuations caused by the continuous

agglomeration and breakup of large clusters of molecules.

These clusters often contain on the order of millions of

molecules. Away from the critical point, clustering

should still occur to some extent in most liquids. The

equilibrium numbers and sizes of the clusters are deter-

mined by the local thermodynamic conditions, and any
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changes in these conditions lead to potential energy

changes due to the varying structure of the liquid. There

is therefore associated with this process a characteristic

time, or structural relaxation time, which describes the

equilibration of the cluster size and number distribution

after a perturbation of the equilibrium conditions. This

process can therefore lead to absorption in excess of

that predicted by the classical mechanisms of viscosity

and conduction.
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CHAPTER V

SUMMARY AND CONCLUSIONS

A relatively simple theory to account for the dynam-

ical behavior of liquids has been proposed, using a mole-

cular viewpoint, to obtain general dynamical equations

similar to the phenomenological relaxation equations

first advanced by Maxwell (Ref. 10). The theory is based

on the concept that in a continuously straining liquid

distortions from spherical symmetry of the average mole-

cular spacing, and the average random translational

energy of the molecules, take place. This leads to the

definition of a molecular strain tensor to describe the

deviation of the radial distribution function from its

equilibrium value, and a translational temperature tensor

to describe the directional dependence of the random

translational energy of the molecules. If all disturb-"

ances are removed from the fluid, the radial and velocity

distribution functions eventually revert to spherical

symmetry at rates characterized by the relaxation times

for each process. The relaxation time for equilibration

of translational kinetic energy has been identified with

the collision time, while the time required to obtain

isotropicity of molecular spacing has been related to the
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time required for a molecule to jump into a neighboring

vacancy.

A dynamical equation of state has been obtained,

using statistical mechanical techniques, by postulating

that directionally dependent, quasi equilibrium, velocity

and radial distribution functions could be written. The

stress tensor has thus been related to the molecular

strain and translational temperature tensors by evalu-

ating the partition function obtained from simple cell

theory and considering the distortion of the free volume.

The equations obtained from the proposed theory have

been solved for the problems of steady shearing flow, the

propagation of oscillating shear waves, and the propaga-

tion of longitudinal waves.

For steady shear flow the solutions indicate that at

slow shear rates the flow is Newtonian, and an expression

for the viscosity of a liquid similar to the very success-

ful Macedo-Litovitz equation is obtained. This equation

has been applied, with good success, to the pressure and

temperature dependence of the viscosity of two lubricating

oils .

At high shear rates, the decrease in apparent vis-

cosity with increasing strain rate observed by both Smith

and Crook (Refs. 40, 41) in their EHD lubrication experi-
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merits, can be described using the present theory. The

reduction in apparent viscosity can be attributed to the

enhanced jump probability of the molecules caused by the

distortion of the radial distribution function from

spherical symmetry. Calculations also predict the exist-

ence of normal stresses whose relative magnitudes are

similar to those obtained for a simple Maxwell fluid.

Under conditions of oscillatory shear, results

obtained from the present theory indicate that a liquid

behaves like a Newtonian fluid at low frequency and like

an elastic solid at high frequency. The relaxation

region between these limits is described by precisely the

same expression as for a Maxwell fluid with a single

relaxation time. Experiments indicate, however, that for

most liquids the relaxation region is in general broader

than that described by single relaxation time theory.

This discrepancy has been attributed to the presence of

molecular clusters. The calculated numerical values of

the high frequency shear modulus for the two lubricating

oils considered in the high shear rate experiments, turn

out to be of the same order of magnitude as-those meas-

ured by Barlow and Lamb (Ref. 55) in oscillatory shear.

The theory which has been proposed also provides a

satisfactory qualitative description of the propagation
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of longitudinal waves in a liquid. At low frequencies

both the sound speed and the absorption are found to have

classical values, and at higher frequencies velocity dis-

persion with a single relaxation time is obtained. The

experimentally observed excess absorption in monatomic

liquids, indicating a non-zero bulk viscosity, is again

attributable to the presence of molecular clusters.

A general feature of all the cases studied so far is

that classical results are predicted for low strain rates,

and that as the strain rate is increased, the behavior of

the liquid becomes viscoelastic. The present theory is,

however, superior to the phenomenological viscoelastic

theories in that the elastic moduli are all expressed in

terms of molecular and thermodynamic properties. Thus

from a qualitative viewpoint a good description of the

dynamical behavior of liquids is provided. Nevertheless,

some discrepancies in the quantitative results exist.

These are due to a large extent to the fact that other

relaxation processes, such as thermal and structural

relaxation, have not been included.

Thermal relaxation effects can be incorporated into

the present theory in precisely the same way as they have
r

been added to the classical theory as described by

Herzfeld and Litovitz (Ref. 5). This is done by adding
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the applicable energy mode to the energy equation and by

writing relaxation equations connecting this mod': to the

other modes between which energy exchange occurs. The

results which have been obtained previously by relaxation

theory are then also applicable to the present theory.

Structural relaxation is at present not nearly as

well understood as thermal relaxation. One promising

approach in trying to gain some understanding of this

process is to view the liquid as a mixture of molecular

clusters of varying density, and defining a distribution

function which describes the probability that a molecule

is located in a cluster with a particular mean spacing.

This method has been used with some success by Kerley

(Ref.60) to describe the thermodynamic properties of

liquid argon and hydrogen. If it would be possible to

relate this distribution function to flow conditions, it

should be feasible to write relaxation equations which

describe the behavior of the clusters under dynamic

conditions, and in such a manner account for the excess

absorption and the width of the relaxation region.

Further improvements which -could ̂ be made to the

theory are to use a better approximation to the partition

function than that provided by simple cell theory and to

obtain a more accurate expression for the collision
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1
frequency in the liquid. Experimentally it would be

useful if high shear rate and oscillating shear experi-

ments could be performed on the same liquid, and if

thermodynamic data and transport properties for this

liquid could be obtained in the high pressure range of

the steady shear flow experiments.
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Figure 1. Coordinate system for steady- shear floow

107



9

8

7

6

Ev

kTm
5

4

3

2

1

Q

i i i i l i

f®V
3
!. 0 OIL 17-Di

~

—

c

c

©

B OIL 29-F
O n-C6H,4
9 CgHsCI
® CS2

* C6H6

e C4H|0
o CH4

A N2

a C02

I»

)

1 —

1 '̂

- ®L —

ya
d«̂fe

^^X> D
 D-n A A ~

1 1 1 I I I

0.8 1.0 12 t, 1.4 1.6 1.8

Figure 2. The energy required for a molecular jump as a
function of volume

108



~ = 1.058-0.173 -
m m

O EXPERIMENT
THEORY

Figure 3.

8

PRESSURE ( I09 dyne /cm2)

The viscosity of Oil-17D as a function of
temperature and pressure

10

109



15 + 31.6 P_

m

1.056 - 0 .162 ~
m

O EXPERIMENT
— THEORY

Id*
2 4 6

PRESSURE ( I09 dyne/cm2)

8

Figure 4. The viscosity of Oil 29-F as a function
of temperature and pressure

110



0 2.5
X

Z 2.0

V)
(/) 1.5

XL
O
X
I-
S
_j

I «-o

2 .5

FROM CROOK (REF.40)

- RECESS ENTRY ~

3 -2 4

(cm x 10 )

Figure 5. Typical film thickness variation

in EHD lubrication

• O
CD-©-©
O

Figure 6. Mechanism of a molecular jump

111



0)

m
a
CO
CO
0)

(0

Vi
CO
(U

CO
CO
a>

t-4
n
o

•H
CO
C
cu
B

•H
13

CU

a
o

•H
4J
to

8

•o
cu
M
3
CO
efl
0)

r-»

a)

3
00

Vl

C
•H
cd
Vl

CO

(1)

n) M-I
> o

c
o

u
c
3

112



- r 11 i i i r I I I I I T T

I i i i i i
Psl <*>,.

O

b

•o
<0
o

•o
e
a

01
4J
CD
n

olT I
c u *»
Ox. w

C
O

«0
O

•H CO

U 01
C .-I
3 f-l

u-i o
(0

rH
CO 0)
CO 01

JJ
CO CO
CO
01 00
n c
•U 1-1
CO CO

3

co e
CO

I4H
O Ps

XI
c
O T3

•H 0)
4J C
<0 i-t

•H CO
>H 4J
eg jo
> o

co

cu
3
00

113



I I I I I I

vO

0
v

X

•to
8
o

CO
CO •

co

O 0)
i-l i-l
4J f-4,
CO O
•H Vi
t-i
CO -̂1
> eu

<u
co -u
CO CO
cu
Vi t>0
•M C
03 -H

CO
H 3
CO
0) J2

X <-•
CO -H

g
'O C/5
cu
4-1 <4-l

CO O

O •-!
•-I 3
(0 CO
O CU

PS
c
CO •

cu

CU CO

3
CO C
CO iH
CU CO
6 M

4J
U-l CO
O

C O
O
to c
i-l O
)~l -H
CO 4J
d. o
H d
O 3

O U-l

cu
u
3
oo

•H

114



I I I I I 1

CNJQ
W .-I
H O so
•< o oo n
,-J CO
E3 i-H H H
O ^
i^> 0 •<. -^
< -^ >
O &« T3 U

O
O

To

O
«x

10a ro..

e
•s
c

•H
e
3

c n
O JZ
•H
4J C
CO o

CO 0)
> 0

4J

CO 01

CO
QJ 00

>-i C
.U -H

cn ui
3

|H

« X
0) iJ
x: -H
in e

C/5
T3
a) >4-i
•u o
CO

i-< 05
3 4J

U r-l
^H 3

CO (0
U 0)

PS

•O 4->
QJ (3

M >H

3
CD C
Cfl M

<D CO
e 

4̂-1

W-l CO

c o
o
CO C

•H C

^ -r*
CO 4-1

a o
E c
O 3

01
i-l
3
00

115



CO

m
CO

c
o

CO

1-1
C3

V.

10

O O
X O
to i-i

u
TJ
d> U-i
•u O
05
.-I U)
3 4J
0 r-t

i-H 3
10 tc
u a>

DS
'a
c
OJ .

<U
•O j->

<U rt
l-i >-i
s
01 C
a -H
a cs
e >-

C O
O
W C

(0 »J
a. a
E c
O 3
a «H

to o
3
00

116



117



figure 13. Calculated normal stresses in steady shear
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