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Preceding page blank 
ABSTRACT 

'Vhistler propagation in the magnetosphere is studied in detail to 

find aecurate and economical means of determining the path latitude' and 

the '~lectron concentration along the path from whistler parameters f 
n 

(nosl~ frequency) and t (travel time at the nose). Longitudinal propaga­
n 

tion in field aligned whistler ducts of cold plasma is assumed, and the 

eartil t s magnetic field is approximated by a centered dipole. The effects 

of whistler propagation in the earth-ionosphere waveguide and through the 

conjJg'ate ionospheres are treated as small perturbations. Several al ter-

nativE' methods are described so that the most economical method may be 

chos':m depending on the desired accuracy and the availability of a com-

puter or a calculator. 
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NOMENCLATURE AND NOTATION 

speed of light in vacuo (2.9978 X 1010 -1 
cm sec ) 

electronic charge 

electron mass 

proton mass 

Boltzmann's constant 

acceleration of gravity 
at sea level 

permitivity of vacuum 

mean earth's radius 

dipole latitude 

dipole colatitude 

geocentric distance 

McIlwain's parameter 

magnetic dip angle 

altitude 

arc length of field line 

electron concentration 

electron tube content 

electron gyrofrequency 

plasma frequency 

whistler nose frequency 

(1.6021 X 10-
19 

coulombs) 

(9.1066 X 10-
28 

grams) 

(1837 m ) 
e 

(1.3805 X 10-16 erg deg- l ) 

(980.67 cm 
-2 

sec ) 

(8.854 x 10-
12 

farads 

(6370 km) 

-1 
m ) 

nose frequency corrected for dispersion due to the 
ionosphere 

whistler travel time at nose frequency 

travel time at nose corrected for dispersion due to the 
ionosphere. 
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I. INTRODUCTION 

A • I NT RODUCTI ON 

Nhen storey successfully explained whistlers in 1953 as radiation 

from liLghtning propagating from hemisphere to hemisphere along geomagnetic 

lines of force, he also discovered that an equatorial electron concentra­

-3 
tion of _ 400 cm at a geocentric distance of 3 R was required to explain 

E 

the observed whistler dispersion [storey, 1953]. This was the first evi-

dence of such large electron concentrations far beyond normal F2 layer 

heights, and it opened a new region of interest for exploration which 

later came to be called the protonosphere, magnetosphere or plasmasphere. 

SincE then whistlers have provided a powerful and unique tool for probing 

this rlo'mote region of space, and much progress in our understanding of the 

morptology and dynamics of the inner magnetosphere has been made through 

grourrl-based whistler observations. 

The discovery of nose whistlers [Helliwell ~., 1956] added the 

possibility of determining whistler path latitude and permitted more de-

ta:L1E,d studies of plasma distribution in the magnetosphere [Smith, 19601. 

This led to the discovery of the plasmapause [Carpenter, 1962, 1963] and 

latel' to detailed descriptions of its dynamical behavior and to measure-

mentE: of electron concentration profiles inside and outside the plasma-

pause [Carpenter, 1966; Angerami and Carpenter, 1966; Carpenter, 1970; 

Park and Carpenter, 1970]. More recently, the whistler technique has 

been used to measure cross-L motions of thermal plasma in the plasThasphere 

[Carpenter and Stone, 1967; Park and Carpenter, 1970; Carpenter et al,197l] 

and coupling fluxes C?f ionization between the protonosphere and thE iono-

sphere [Park, 1970]. 

- 1 - SEL-'71-0 58 



As the whistler technique finds more applications in magnetospheric 

research, there is a growing need for simple means of processing the data 

and for improvements in accuracy. This report describes various ways of 

deducing information on path latitude and electron concentration from 

whistler nose frequency and travel time at the nose. The whistlers are 

assumed to be received on the ground. When the nose is not visible on a 

spectrogram, the nose frequency and travel time at the nose can be extra­

polated from the visible portion of the whistler trace by the techniques 

such as those developed by Smith and Carpenter [1961], Dowden and Allcock 

[1971] and by Bernard [1971]. 

This work is an extension of the work of Angerami [1966], who refined 

the whistler technique by obtaining empirical support for a diffusive­

equilibrium model of the field-line distribution of electrons inside the 

plasmapause and an idealized collisionless model outside the plasmapause. 

The basic approaches and formulations used here are similar to his, and 

many of the ideas for improvements developed out of conversations with him. 

For the theory of whistler propagation and other background material, 

the reader is referred to a book by Helliwell [1965] or a review paper by 

Carpenter and Smith [1964]. For a detailed development of models of 

electron distribution along geomagnetic field lines, see Angerami and 

Thomas [1963] and Angerami [1966]. 

Figure 1 shows an example of a multi-component whistler train. At 

the top is a frequency-time spectrogram of a recording from Eights,Antarctica. 

The causative sferic is identified and marked t = O. The middle panel 

shows a tracing of three nose whistler components, while the bottom panel 

is a sketch of their field line paths. The purpose of this report is to 

develop methods of determining accurately and economically the path latitude 

SEL-71-058 - 2 -
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by a sferic at t = o. The middle panel is a tracing of 3 whistler com­
ponents and the causative sferic. The bottom panel is a sketch of cor­
responding field-aligned propagation paths in the magnetosphere. 
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and electron concentration along the path from whistler parameters f and 
n 

t . 
n 

B. THE WHISTLER INTEGRAL 

In the case of longitudinal propagation of a whistler wave, the refrac-

tive index ~ is given by 

(1.1) 

where f is the wave frequency, f the plasma frequencY,and f the 
p H 

electron gyrofrequency. If ~ » 1, calculations can be greatly simpli-

fied by neglecting the 1 inside the bracket. This is a good approximation 

inside the plasmapause, where plasma frequencies are relatively high. For 

-3 
example, assume an equatorial electron concentration of 100 cm at L = 4 

(fp = 90 kHz and fH = 13.5 kHz.) At f = 0.5 f
H

, ~ ~ 25 and the error 

introduced by neglecting the 1 is less than 0.1%. In the plasma trough 

region beyond the plasmapause, the error is larger because of low plasma 

densities there. Angerami [1966] examined in detail the validity of this 

approximation when applied to 'knee whistlers' propagating just outside 

the plasmapause. He found that on an occasion when the equatorial electron 

-3 
concentration was as low as 2 cm at L = 4, the above approximation 

introduced an error of ~ 40% in the calculated electron concentration. 

When electron concentrations are that low, errors due to other factors 

which are negligible under normal conditions also become serious (see 

Chapter 6). For extremely low electron concentrations, all sources of 

error including the 1 in Eqn. (1.1) should be carefully evaluated. 

The refractive index is then written as 

SEL-71-058 - 4 -



and the group refractive index as 

The -:ravel time of a whistler wave propagating along a geomagnetic field 

line is 

1 
t(f) = -2c f ds (1.2) 

wher'~ c is the speed of light in free space and ds is an element of 

path length along the field line. The integral is over the entire length 

of t:1E' field line path. If a centered dipole approximation is used for 

the 3arth's magnetic field, fR is a simple function of s (see Appendix) . 

In order to express f as a function of s, however, it is necessary to 
p 

adopt a model of the plasma distribution along field lines. Since the 

exact distribution along a field line at a given time is not known, the 

choi CE~ of a model is somewhat arbitrary. The resul ts, however, are re-

mark ably insensitive to the choice of models as will be seen in the next 

chapter. 

1rhe solutions of Eq. (1.2) show that t has a minimum value t at 
n 

some frequency f for all reasonable models of f 
n p 

In other words, Eq. 

(1.2) describes the shape of a nose whistler. Our task is to establish 

quant:Ltative relationships between (f , t ) and (fR' f ), so that the 
n n p 

infcrmation in the whistler path latitude and on electron concentration 
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along the path can be determined from observed whistler parameters. The 

integral in Eq. (1.2) can be evaluated analytically only for extremely 

1/2 simple models of fp' i.e. fp = constant or fp cr fH (gyrofrequency 

model). For more realistic models adopted in this report, numerical 

techniques must be used. 

Because of the gyrofrequency term in Eq. (1.2), electrons at low 

altitudes such as in the ionospheric F2 region make a relatively small 

contribution to the total integral, in spite of their large concentrations. 

It will be shown in Chapter 6 that if the plasma is in diffusive equili-

brium along magnetic field lines, nearly 80% of the propagation delay 

occurs within 30
0 

of the magnetic equator. For this reason, whistlers 

can be used to measure electron concentrations near the equatorial plane 

with great accuracy, without a precise knowledge of concentration profiles 

in the F region and the topside ionosphere up to several thousand kilo-

meters. Further discussion on this point follows in Chapter 6. 

C. AN OUTLINE OF STRATEGY 

This section contains an outline of the methods of attacking the 

problem and of the organization of the remainder of this report. 

As pointed out in the previous section, the ionospheric F2 region, 

with its large electron concentrations and great variability, makes a 

relatively small contribution to the whistler integral. Therefore, the 

conjugate path segments through the F region will be treated as a small 

correction term. An arbitrary boundary is drawn at 1000 km altitude, and 

the path of integration in Eq. (1.2) is divided into the 'ionospheric' 

part below 1000 km and the 'magnetospheric' part above (this will serve 

as the definition of the ionosphere and the magnetosphere throughout this 

report, unless otherwise stated). Equation (1.2) is then rewritten as 

SEL-71-058 - 6 -



1 
t(:E) == -

2c f 
mag 

1 
ds + 

2c 

(1.3) 

The two integrals are illustrated schematically in Figure 2. The dashed 

curvE~s land 2 represent the ionospheric and the magnetospheric contri-

butions, respectively, and the solid curve 3 is the sum of the two. The 

rela';ive contribution by the ionosphere is exaggerated for the purpose of 

illuntration. An actual whistler with observed f and t would have f' 
n n n 

and -;' if it had traveled through the magnetospheric path only. 
n 

In Chapter 2, the ionosphere is ignored, and methods are developed 

to obtain the whistler path latitude and electron concentration along the 

path from f' and t'. In Chapter 3, the ionospheric part of Eq. (1.3) is 
n n 

cons:_dered, and methods are developed to obtain f I and t' from f and t . 
n n n n 

If t :Ls measured from the sferic on a whistler spectr~ram (see Figure 34), 
11 

the :;ubionospheric propagation time must be taken into account. This is 

discllssed in Chapter 4. Chapter 5 summarizes the results with step by 

step instructions for calculating magnetospheric parameters from f and 
r 

t. In Chapter 6, uncertainties in the whistler method are discussed in 
n 

deta:ll and a few suggestions are made for future improvements. Fi nally 

for pu:rposes of easy reference an appendix presents a collection of formulas 

and graphs involving some frequently used parameters of a dipole geomagnetic 

field. 
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II. CALCULATIONS AND RES~LTS 

A. OUTLINE OF THE CHAPTER 

In this chapter, we consider whistler wave propagation in the magneto-

sphe,e from 1000 km altitude in one hemisphere to the 1000 km level in the 

conjlg'a te hemisphere. We assume that the magne! osphere is symmet ri cal 

about the equator and write 

1 
t(f) = 

c 

equator 

I 
1000 km 

f 
P ds (2.1 ) 

Several different models for the distribution of f along field lines will 
p 

be adopted in the next section. With a model for f , the integral in Fq. 
p 

(2.1) can be evaluated numerically for a given magnetic field line. Thl' 

wave frequency f is varied in search for the frequency f' which gives the 
n 

minimum time delay t'. This is repeated for different magnetiC field lines 
n 

(1. = 2,3,4, etc., L being McIlwain's parameter [McIlwain, 1961] and 101' 

different models of plasma distribution along till' field lines. From these 

res~lts, relationships will be found between the whistler parameters f' 
n 

and t' and the parameters of the medium, Land f 
n p 

The results will be 

prese:r1tted in various forms so that, depending on the desired accuracy, the 

whistler path latitude and the electron concentration along the path can 

be cetermined by the most economical means. 

We will briefly examine the properties of Eq. (2.1) and justify in 

advE.nce the form in which the results are presented in Sections 2-D, E 

and G. Calculations in the next section will show that f' is approximate1\' n ' 

proportional to the minimum electron gyrof'requency along the propagation 

path, f , 
Heq 

so that 
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f 
Heq 

Kf' 
n 

(2.2) 

where K is a quasi-constant that varies slowly with £1 and models of 
n 

f. The L-value corresponding to f for a dipole field can be easily 
p Heq 

obtained from the relation, 

L =(:Hoeq
) 1/3 

Heq 
= 

(

' 8. ;36XIO 5) 1/3 

Heq 

(f is the electron gyrofrequency at the earth's equator and its 
Hoeq 

numerical value given above corresponds to a magnetic field strength of 

0.312 gauss.) Since the bulk of the whistler propagation delay occurs 

in the equatorial region where fp and fH are slow functions of s, Eq. 

(2.1) can be roughly approximated by a simple algebraic equation, 

t(f) = 
f 

peq 

( 

3/2 

l-~-) 
Heq 

where f is the plasma frequency at the equator, and Sl the path length 
peq 

between 1000 km altitude and the equator. At the nose frequency 

follows from Eq. (2.2) that the quantity inside the parentheses 

f', it 
n f' 

n 
1 - f 

Heq 

is very nearly constant. Since Sl is roughly proportional to Land 

f ex 
Heq 

-3 
L we can wri te 

( 

5 \ 1/2 

t ' (f ') ex n eq L } 
n n f' 

n 

where n is electron concentra~ion at the equator. For a given field line 
eq 

SEL-71-058 - 10 -



distrIbution model, n is proportional to electron concentration nt 1000 
eq 

km altitude n
l

. Therefore, we can also write 

(
' 5) n L 1'2 

t'(f') 0: _1 __ ' 
n n f' 

n 

The above two equations can be written 

and 

n 
eq 

f't,2 
n n 

Keq 7 ( 2 .:n 

(2.4 ) 

where K and Kl are quasi-constants varying slowly with f' and electron 
eq n 

concentration models. 

A very useful parameter in studying the magnetosphere is tube contl'nt, 

the total number of electrons in a tube of force. For the purpose of 

2 
deflni.ng tube content the tube of force is chosen to have I cm cross-

sectional area at 1000 km altitude and to extend to the dipole equatorinl 

plale. Tube content is then 

where n is the electron concentration and A the cross-sectional area (If 

the tube of force. The integral extends from 1000 km altitude to thv 

equator. Since most of the tube volume is near the equator, we expect 

tube content to be roughly proportional to n A S. Since S is rOllg hI \ 
eq eq 

I 3 ,I 
proportional to L, and A 0:: -f- a: L , ~ varies roughly as n L 

eq ·T eq 
Heq 

- 11 - SEL-71-()5R 



Using Eq. (2.3), we write 

K 
T 

fIt 2 
n n 
L 

(2.5) 

where KT is again a quasi-constant. In Eq. (2.2) through (2.5), the K's 

are nearly constant so that once they are evaluated accurately as a func-

tion of fl and for various electron concentration models, their value Can 
n 

be read from graphs or approximated by empirical formulae with a high de-

cree of precision. 

B. ELECTRON CONCENTRATION MODELS 

Four different models of electron distribution along magnetic field 

lines will be used in the next section. Angerami and Carpenter [1966J 

compared whistler results with electron concentrations at 1000 km altitude 

measured by the topside sounder aboard the Alouette I satellite, and found 

that a diffusive equilibrium model is a good approximation inside the 

2 3 -3 
plasmapause where equatorial electron concentrations are 10 -10 cm 

Outside the plasmapause, where equatorial electron concentrations are 

o 1 -3 
10 -10 cm ,collisions may not be sufficiently frequent to establish 

a diffusive equilibrium distribution. Angerami and Carpenter [1966J showed 

that outside the plasmapause, an idealized collisionless model was more 

appropriate than diffusive equilibrium model. However, the choice of an 

appropriate model for low concentration regions remains to be put on firm 

ground. 

The idealized collisionless model to be used in this report probably 

represents an extreme case as compared to most circumstances that occur 

outside the plasmapause. The actual distribution may fall somewhere be-

tween a diffusive-equilibrium and collisionless distribution. Because of 

the dynamic nature of the plasmapause region, some flux tubes undergo 

SEL-7l-058 - 12 -



large fluctuations in electron concentration, and the field line di:otJ'ihu-

tion must change accordingly. For example, during magnetic storms 'I'hen 

the rlasmapause moves inward, a collisionless model may temporarily be 

adeq\'iate to describe the low concentration region outside the storm-time 

p lasnlapause. During the recovery phase, the depleted flux tubes fill 

gradually from the ionosphere, and the field line distribution must become 

mo::L' like a diffusive equilibrium distribution as the electron conccntra-

tion increases. For a distribution that might exist during the transition, 

we w.ll consider a hybrid model in which the plasma is assumed to be in 

o 
cliffl1s:~ve equilibrium from 1000 km altitude up to 30 in dipole latitude, 

but no coll.isions are allowed within 30
0 

of the equator. 

-4 
In the fourth model to be considered, n cr r along a field line, 

\Iher,? r is the geocentric distance. As pointed out by AngeramL [1966], 

this model closely approximates the collisionless model adopted herc. a 11(1 

it hH: the adVantage of computational simplicity. There now follows a 

description of each model and the abbreviations by which each mode] will 

be identified throughout this report. 

1. Diffusive Equilibrium (DE model) 

Detailed treatment of the problem of a multi-component plasma in 

hydrostatic equilibrium along geomagnetic field lines can be found else-

where in the literature (see, for example, Angerami and Thomas [19133] OJ' 

Angerami [1966]). Here we adopt Angerami's [1966] formulation as I.;-i Il'n bl 

his Eqs. (2.4) through (2.7).* The electron concentrahon is gi\'cn hI" 

----'--:---~7'"'":-----:--~---*Angerami stated in a private communication that his Eq. (2.7b) is in 
error and should read 

a 1 _ 1 
R 

2 
I' 

ii 0 

2g 
o 

- 13 -
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[~ 
1/2 

n n
l c' l exp (- :i~ "1 

1 

(2.6) 

2 
2 r

l 0 (2 2 
2 cos2~1) z = r

l 
- -- - r cos ~ - r

l r 2g
1 

(2.7) 

H. 
kT 

= 1 m
i

g
l 

(2.8) 

where 

F fractional abundance of ionic species 

r geocentric distance 

o = angular rotational speed of the earth 

g acceleration of gravity 

~ dipole latitude 

k Boltzman's constant 

T = temperature 

m = mass 

The subscript i refers to the ith ionic species + + + (0 , He and H ), and 

the subscript 1 refers to the reference level at 1000 km altitude. Figure 

3 illustrates the coordinates and the symbols used in Eqs. (2.6) through 

(2.8). The geopotential height z takes into account variations of gravi-

tational force with distance and the centrifugal force due to corotation 

of the plasma with the earth. The centrifugal force term becomes impor-

tant only for L > 6 [Angerami, 1966]. For simplicity, it is assumed that 

the magnetospheric plasma corotates with the earth at all latitudes of 

interest here. At high latitudes, particularly outside the plasmapause, 
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-

c;~8 -~r----~" 
\ 
\ 
\ , 

"­ "-
" 

-o ,.. 
CT 

.... Q) -

15 

E 
~ 

o 
o 
o 

-
... 

.... -



this may not be a good assumption. The effects on the field-line distri-

bution of plasma of centrifugal force associated with convective motions 

in the outer magnetosphere need further investigation. 

Equations (2.6) through (2.8) show that electron concentration de-

pends on the temperature and the ionic composition at the reference level 

as well as on geometric factors. We will adopt several different combina-

tions of the temperature and ionic composition at 1000 km altitude as 

summarized in Table 1. It is assumed that T = T = T. and that T is con-
e 1 

stant with altitude. Since whistlers essentially measure electron con-

centrations near the equator, it is preferable to normalize n to the equa-

torial concentration rather than to the concentration at the base of the 

magnetosphere. Equation (2.6) is rewritten as 

~n [f ~ exp ( - ~i) ':eil 
n 

eq 
Sil exp ( - Zeq) L:: 

i H. 
1 

(2.9) 

where the subscript eq refers to the dipole equator. Figure 4 illustrates 

how electron concentration varies along lines of force for different L-

values according to the DE-l model (see Table 1). The distance along the 

field line S is measured from the equatorial plane, and the terminal points 

of the curves correspond to the base level at 1000 km altitude. Near the 

base level, 0+ and He+ concentrations decrease rapidly with altitude and 

H+ soon becomes the major ion. Beyond that point, electron concentration 

varies slowly with distance because of the large plasma scale height. If 

the temperature or ionic composition is changed, the curves in Figure 4 

remain essentially unchanged at distances more than a few hundred kilo-

meters above the base level. The only significant changes in electron 

SEL-71-058 - 16 -



TABLE I. PARAMETERS OF DIFFUSIVE EQUILIBRIUM MODELS 

----
Composition at 1000 km. 

Abbreviation + + + Temperature 0 H lie 

----

DE- 1 1600
0

K 90<"r 80'r r,(,· c.. ( 

DE- 2 3200 90 8 " L. 

DE- 3 1600 50 40 HI 

DE- 4 800 50 40 10 

- 17 - SEL-71 -0 58 
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distribution occur where 0+ and He+ concentrations are important. 

2. Collisionless Model (CL model) 

~e adopt the formulation of Angerami [1966] for the distribution of 

a pre,ton-electron plasma along lines of force above 1000 km al ti tude under 

the jnfluence of gravitational force, a charge separation electric field. 

and centrifugal force due to corotation with the earth, but not the effE'cts 

of collisions between particles. The concentration is given by 

n (2.10) 

wher2 B is the magnetic field strength and z and H are given by Eqs. (2.7) 

and (2.8), respectively. Eliminating n
l 

in Eq. (2.10), 

n = n 
eq 

(2.11) 

_ 0 
We assume a constant temperature of 3200 K for both electrons and pro-

tonE. Figure 5 shows the normalized electron concentration as a function 

of c:istance along lines of force for several L-values. The CL model 

differs from DE models in presenting a much faster variation in electron 

concentration with distance, particularly near the equator. 

-4 
3. n cr. r Model (R-4 model) 

This model approximates the collisionless model very closely. and 
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has t1€ advantage of being much simpler. 

4 -4 
n nlr l 

r (2.12) 

or 

4 -4 
n n r r (2.13) eq eq 

4. Hybrid Model (HY model) 

This model combines a diffusive equilibrium model and a collision-

less model. + + + We apply DE-2 model (90% 0 , 2% He and 8~ H at 1000 km 

and T := 3200
0

K) from 1000 km al ti tude up to 300 
dipole lati tude and CL 

model + 0 0 (collisionless H and electrons at 3200 K) from 30 to the dipole 

equa10r. This is an attempt to recognize the fact that when the magneto-

spheric concentrations are low, the plasma may not be in diffusive equi-

librium, but at the same time, it is unrealistic to assume no collisions 

down to 1000 km altitude, as is done in the CL model. The electron con-

centration according to this hybrid model is illustrated in Figure 6. 

The models described above are listed on page xi for quick reference. 

C. CALCULATIONS 

Eq. (2.1) is rewritten as 

1 
t(f) == 

c 

f 
p ds d'" 

~ 'f' 
(2.14) 

wherO) It> is the magnetic latitude, and ¢l the magnetic latitude at lOOO km 

altitude. For a dipole field (see Appendix). 

r 
2 

r L cos ¢ 
o 

and 

- 21 -

dr 
d(5 

2r L cos0 sinO 
o 
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Figure 6. A plot of normalized electron concentration 
in a format similar to that of Figure 4 but 

according to a hybrid model (see the text for details) . 
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so tlla-: 

ds 

ct?> + 1'
2]1/2 2 ) 1/2 

= roL cos~ (1 + 3 sin ~ 

The ?lectron gyrofrequency can be expressed as (see Appendix) 

= f Hoeq 

2 ) 1/2 (1 + 3 sin ~ 

(2.15) 

(2.16) 

where f is the electron gyrofrequency at the earth's equator, or 
Hoeq 

8.7::6 X 10
5 

Hz. Tli-e plasma frequency is 

f 
P 

d. (2.17) 

where Q is a constant, and ~(~) represents various electron concentration 

modE'ls described in the previous section. The upper limi t in the integl'a-

t:LOIl ~)l is obtained from the relation 

(
1'1)1/2 

cos~ = -­I r L 
o 

(2.18) 

Using Eq. (2.15) through (2.17), Eq. (2.14) can be written as 

t(f) = 8 

where R is a constant. 

~J(~, f) d~ __ S n 1/2 1(f) (2.19) 
eq 

For a given field line, say L = 4, ~1 is evaluated to the nearest 

o 
evetl tenth of a degree (the maximum error in ~1 is then 0.1 ). The in-

tegral is evaluated numerically by Simpson's rule with 6~ = 0.1
0

, and by 
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iteration, we search for the wave frequency f' which gives the minimum 
n 

value of the integral r(f'). The iteration is continued until the error 
n 

in f' is reduced to less than 0.2%. This procedure is repeated for various 
n 

L-values and various electron concentration models. The results are tab-

ulated in the second column of Tables 2 through 8 in the next section. 

Following the reasoning given in Section 2A, we express the numerical 

results in the same form as in Eqs. (2.2) through (2.5). The values of 

various K's are also tabulated in Tables 2 through 8. 

Eq. (2.19), 

'when expressed in the form of Eq. (2.3), yields 

K 
eq 

5 
L 

The electron concentration at 1000 km altitude is easily calculated from 

n and the electron concentration model A(¢): 
eq 

Kl and K are then related 
eq 

Kl = 

The tube content is 

N = T 

by 

K eq 

¢l 

Ia 

A<¢l) 

n A 

2 
f 't' 

n n 

5 
L 

ds d¢ 
~ 

(2.20) 

2 
where A is the cross-sectional area of a tube of force with 1 cm area at 
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1000 km. It is inversely proportional to the magnetic field strength and 

can be written as 

3 [1 + 3 sin
2

¢1 ]1/2 6 [ + 3 Sin2(\] 1 '2 

=( ~ J -1-+-3-s-1-' n"""""2-¢- = [ ~~:~J ~~-+--::3~S-1:-· n-ci-::r--

ds 
~ is given by Eq. (2.15). Substituting these and n 

Eq. (2.20), 

1/2 

n ~ (0) into eq . 

(2.21) 

The integral is evaluated numerically by Simpson's rule with ~¢ o 
0.1 , 

and the results are expressed in the form of Eq. (2.5), 

D. TABULATION OF RESULTS 

f't,2 
n n 
L 

(2. ;)) 

The results of the calculations are listed in Tables 2 through ~ lor 

various electron concentration models. These tables represent numerical 

relationships between (f', t') and (L, 
n n 

n
eq

, n , :l' ) for selected L-valu(s. 
1 T 

The tables can be stored in a computer, and corresponding relationships 

for intermediate values of L can be calculated by interpolation. Para-

bolic interpolations involving t' and log (f') are usually satisfactory 
n n 

E. GRAPHICAL PRESENTATION OF RESULTS 

In this section, the results of calculations are presented in various 

graphical forms whose usefulness depends on desired speed and accuracy. 

In Figure 7, f' is plotted versus L for a diffusive equilibrium model and 
n 

SEL-71-058 - 32 -
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collisionless model. The differences among various DE models and the 

difference between the CL model and the R-4 model cannot be resolved on 

plots of this scale. The curve for the hybrid model would lie about mid-

way between the two curves shown. 

Figures 8 through 11 can be used for a quick determination of n 
eq 

and N from f' and t'. Figures 8 and 9 represent a diffusive equilibrium 
T n n 

model, and Figures 10 and 11 a collisionless model. Again, the differences 

among various DE models and the differences between the CL Model and R-4 

Model are too small to be shown in plots of this scale. It is not prac-

tical to obtain n
l 

directly from f~ and t~ in the manner of neq and NT' 

The reason is that n
l 

depends sensitively on the electron concentration 

model, and thus will require a large number of graphs, each corresponding 

to a different model. An alternative approach is to obtain n
l 

from n 
eq 

Figures 12 and 13 show the relationships between n ,n
l 

and N 
eq T 

for various electron concentration models. 

As pointed out in Section 2A, a greater precision can be achieved by 

the use of quasi-constants K, Keq' KI and K
T

. Figures 14 through 21 show 

plots of various K's versus f' for various electron concentration models. 
n 

These values of K's are then used in Eqns. (2.2) through (2.5) to calcu-

F. OVERLAY METHOD 

For a quick estimate of L, nand N directly from a whistler spec-
eq T 

trogram, transparent overlays have been devised as illustrated in Figures 

22 and 23. These overlays are for a diffusive equilibrium model, but 

similar overlays can be easily constructed for other models from the re-

suIts in the previous section. The differences among various DE models 

SEL-71-0 58 - 34 -
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Figure 9. Curves of constant tube content for a diffusive equilibrium model. 
The format is similar to that of Figure 8. 
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Figure 12. A plot of the ratio between the electron concentra­
tion at 1000 km altitude and the equatorial concen­

tration as a function of L for different field-line distribution 
models. 
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Figure 13. A plot of the ratio between the tube content and 
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of L for different field-line distribution models. 

40 



~
 

.....
. 

K
 2.

 8
8

 LI
L

lL
L

 I
IJ

II
IL

II
II

I 
tl!

I!l
II'

1f
 1

 U
ll
li
l :

II!
 1

 'IU
llll

lO
l!l

ltl
 

I 
IL

l 
L

L
W

L
I[

[l
U

I!
I]

!I
'[

J!
I[

[U
 !l

UlI
J[J

lI!
ll!

~ju
OUU

=I-
--)

J 1
 U

L
 !l

U
 i~

mll
IlL

',g
iJ'

l; 
'I

 I
n

:1
 +~

.I:
!!p

m 
H
+
t
t
~
 i 
it

 
p,

 I ,
It:

 I;
J+

Y:
::H

i l
it

: '
1t

!:
+r

if
':

tl
ii

~H
I 

I j
 
I :

 ! I
 !

 1
:::

1 
i!

 ;!
l;
rt
r:
Jt
ij
LJ
Jt
lr
t"
~i
l!
l!
J:
lj
tL
::
J 

:J
::

I:
:i

l'1
L

l:
t:

:t
L

l.
t;

.;
,,

l :
;~I

~::
t:j

,,:
!I:

;;;
l 

I 
r 

I 
I 

'.
' 

, 
'HI

 Ii
:
 I

 I
 

I 
, 

I
I
:
' 

11
1'

11
 

I 
I 

I 
I
I
·
 I

 I
 ,

.:
, 

,I
! 

I ,
·1

1
' 
:
.
"
.
' 

I 
: 

I 
i 

I 
I 

: 
, 

I 
I 

I 
. 

I. 
I 
I:

 
I 
II

II
I 

,I
: 

I '
. '

I 
I 
'rtf

: ~ 
11

1
1

1
'1

 
,1

1
,,

'1
,1

' 
I 

' 
I.

 t 
: I

 
: 
_~

--
T-

t-
I 

, 
I 

, 
,I

 
I
:
' 
I'

 
, 

I'
 
,
I
 .. 

: 
I 

I 
II

 '
 :

 ,
I
' 

I 
" 

,I
 ,
"
'I

Q
4

 

W1
t~

t
t
-

""
t,

,·
 

.tf
.tl

"ll
.tt

tit
~';

-;'
" 

ti'
."'

:~"
"!'

." 
·-

1
, 

t-I
 '

l"
tt

r'
+f

fi
:'

l·
'~

ll
~"

I'
 r

rr
 

I'
t 

",
,~
 ,

.,
,.

;:
 
-
,
-

,
-
_

.
,
 

T
e

:'
 
~"

 •.
 -,

 
.
,
.
,
 

: 
. 
I
i
"
 

"i
'c

,,
·'

 
.j.

 
! 

I 
'.

 
,
I
 

I 
I
,
 

II
! 

I 
I 

. 
I 

I 
' 

, 
II:

 I 
,1

 
I 

I
.
,
 

I
,
 

, 
. 

, 
j 
I
:
"
 

j 
~
'
 

• 

='.
tf#

-. rtf
ffit

l:~:
 he

n.·
 UI

 j 
;;~

ry~
 ~.~. 

:;;, -
'~.

 +~
IU
' 'ill 1 : f

it 
Lf.L

! 1
'1 

[,!
 l~

l, ~
niff

i'l ·
 !1,r

;IT
 I
j
 lf

f~
t 

h+
\h
l~
f~
: h

l~~·:
'.tri

1-,
~_~b

~::,
'I4-

l. 
+

-
. 
-~
 

I'
· 

:i
j 

i"I
··,

1,
 

,.:
: 

fli
lt:

::
I]

I!
I'I

: 
1 

i 
I 

I
i
:
 

',
h

 
It

',
,!

;,
" 

If-
; 

',,
11

1 
.!

-
-

If+
t~~

; 
'~

l:
:.

:h
..

,:
 
I
.
c
,
 t

:l 
+

 
,+

.J
 

'tT
' 

·1'
, +

"' 
','r

 1
1·\

f+ j
, 

,1
"'1

'1 
·'1 

'-
-i

i 
i-i

-
r 

'h
I
 r:

:j
l"

I'
r-

~t
hl

 
'I:

'~·
I 

'I
"'

; 
I 

' 
,
.
_

.
-
f
 
""

"'
~ 

'-
.
 '
:-

.:
 .
.
 , 

"
f
 

2 
8

4
 

i+
':

-
~ 

11
+ 

~t
tl

+t
++

 "
h

 
If

 
tl

tl
:,

1
1 1

 
.. 

r
, 

h
'I

' 
-tf

· 
rt

1
r,

 ,
i-

I!
 

t:l
~i·

i-t
 

:,
n

 
T

l,;
-t

, 
tt

lr
1

-1
 

I 
I 

II
 

I 
it

-
I
'
 

':: 

• 
.1

-+
++

, 
'~
;t
#"
lt
ti
'h
, .. !

I.
-l

-'
 

I'P
;'~

 
'.'

 '
 .. 

11
\-t

 
r'I

'I.
'1

I :.:
.r.

;:~
:-:

n: 
U+

 
iIL

r!;
u~~

:'e
-T+

 :
1+

 t
 :

ntt
;TR

~ 
rli.

l: 
[t-

i::
:,"

:::
 

•. ~rc
~:;;

;:6l
., 

r;
, 

I 
, 

'i
I'

 
rt

 
'ill

 I
 

1 
. 

It
 

r-
t-

H
t-

H
 

' 
't,

,·t
t-~

 
I 

", 
"',

1'
" 

'-
t'

 
. 

+r
 

, .
. 

r:
T:

~I
".

 
-;.

 e
~ 

II
. 
~,

~ 
m

 ,
 

,'
, 

, il
r;

·r
 

'I 
_

.'
 

-i--
i--

-
.
~
i
 
"~

'U
ln

:T
 

fIT
 

.L
j 
"
,
.
 

, 
j
.
,
 

, .
. 

,~,
 .

'.'
 \
~ 

1 
I 

i 
I
I
;
 

, 
I 

I 
,I

 t 
,r

l 
Ii

i,
' r

t 
it

t 
1 

II
' 

, 
" 

, 
" 

" 
, 

t±t
t±t

l 
' "

 
" 

j 
U

_L
 

.
.
C

;
 
:+

l"1
 

1+1
 

ili
i' 

1 
" 

'.
 

r'
T

;-
;'

 
~
 .

'. 
I~
 

-1-
1. 

m:
\T

~ 
J~. 

IT
erI

 
W'

 
.t

:,
 

1
1

,-
l~j

lgl
';'

11 
H-

t 
t+ 

!+l
~;;

 
'':

'Ct
~" 

"'
:;

1
,·

 :.
r 

I 
.'

 
! 

' 
.U

U 
1 

~ 
I 

"
I
 

II
 1 

:.
..

, 
~ 

I 
, 

, 
, 

. 
.•

 
~. 

f.
~ 
~
 

*t
~d

+,
::

J 
,0

'lt
 

. 
,t 

, F
' 

-1
+ 

,C
; 

i"~
th:

± 
H

 i
'
 

,"
 

H
 -

' ,
HI

 t' 
' 

'.
' 

.
.
 ,.;

8! 
'M

-
,
I
,
 

I 
"
,
 

I 
1

'1
. 

;
.
!
:
,
'
 

I!
 

I 
I 

, 
'.

 
, 

rltH
 I

:~:
 ~j

.t +
 " 

"~
1 

. 
rm

'-' 
L 

f:~
~ 4

H
 ~4
 .~

 11
i±H

+ 
t' 

l+
tE

 
_f

_ 
-i 

~H
 r
:'

 1
, 

~ T
' 

; 
,,

',:
!)

 
--" 

"-'-
"-

L-i
lt:

:li
;',

~fi
J:n

+ P
'H

l 
I~;

t~ 
~ 

.: 
L 

r-t
r 

it:
 1

 Jil
l flt

1 
iJ:i

t,H+
~: J

t
, 

t
'
_

l
 :

 
ti

 ,
 "

 ,J
"
 

. 
:"1 

m
 IrT

IC
 

,H
GI

t\ 
t\::-

,
I
I
I
 

l'
I:
I~
l;
I,
',
T:
~'
~;
H"
H'
H-
Hi
I:
;~
I:
';
!I
" 

r'
 

i-
j·
·t
t1
I:
Ti
!i
+7
r~
~~
~ 

j 
I
,
,
' 

'l
if

+
 

,"
, 

'i
 

1,
h~

:1
 

I
'
 

, +
--+

+ 
++
+H
+t
tf
~:
! 

t'
~~
t'
 

H
i L

f~; 
;~'

lhi
, 

-' 
l~
it
!1
' 

' "
 

;Iii
 e

J-
H

 i;
 

, !
, 

'!
E

 ' 
H

 . ..fJ
18'

1Y
1 

Ft
ffi

 -ii
-tt

l±
! 

' li'
C

 
[1

, 
HH 

'i
. 

,fI
T!

' H
: iT

 PI
, 

f--
1:

jJq
il 

~ 
t~

~.
ff

i 
.~

' 
(1

1
 
~ f

 
_, 

L 
t1 

Hr'.
 
m

 F'
, 

+
 R 

2 
7

6
 ,

j 
T'

-'
~T

P:
HI

4H
 
~
,
 

:
;
j
.
;
I
,
~
!
r
'
-
:
-

t-H
lli

., 
[.p

" 
f
"
' 

tll
f 

'-
I'

 
~
,
+
"
 

",
,0

 ,
itl

 
.~

·e
l 

• 
' 

k~
.L

~ 
I
'
,
 

, 
'1

1
.i

.'
 

l 
.. 

" 
'"

'T
' 

II
I!

. 
I:

' 
tt

tM
it

 
'1

+
 

-I
I 

1,
,1

" 
~'
 

+
,.L

il
L

 i
t,,

;.c
· 1

+
,:

'.'
 

f-i
-J

--
+-

-lI
.ii

!+
ttH

+ 
I .

 ."
 ii

i 
." 

f+
' 

11+
 

'''
:' 

" 
'-

-"
'.

~"
:'

Il
 
rr
;-
~~
""
i;
"[
1t
+ 

'c
;~

:~
' 

H
 

' 
"
I
 

,I
!:

:'
 H

-c 
•
.
 , 

t+
-"

;:-
H

i";
.(.

1r
 +

1 
it'

 
li 

~L
 fI

-
"I

f.
l 

'I-
--h

+-
:--

I 
t1~

1~l
rr~

i; 
ti1

~ ~
b,
r;
ti
 

'~;
" 

+.:
: II

 
I~

 
1 

wi,
 :

H)
+1

 ,;
r ~

"W
 :I

:::
~ 

t-
T

 
' 

r-r
-:-

' 
r-

, 
,r

r'
lI

 
I 

T
+

 
P

T'
I'!

 
I
' 
r
~
l
T
T
T
T
l
 

m
-

tM
-:

,'
lt

t'
 

I 
~
 

, 
I,

 
T

i,
 

I
:
 

' 

-
,
:
 
,
.
 

: 
I 

:ii
 

il 
;t 

r,rtJ
 t

+'~
 

Iii
 

""l
fIt;

 .
~ 
;.

i~
'j

i.
Hl

 W
" 

Ii·
 

ti ;
,.

 ill
 

( 
t,I.

 
"H

~,
 

, 
. 
~ 

, 
fl 
,l

~h
l"

 .. 
"::

;::
F 

I--
l--

-'-
-i-

-'t
-i-

~ 
il
l 

, 
.. 

:.,
: 

r-m
 f1

\1 
~
 '
':

--
+

--
'1

' 
.7

1'
 

JI 
r~
 

Ht
 

' 
:; 

++
11 

'1
'1

;
' 

'" 

2 
7

2,H
t 

'T
 

:t
-[

 
,
I
l
l
,
 
.
:
i
l
i
!
;
'
~
I
o
i
o
H
t
-
-
,
 

t:t
ll!

+
 

"
i
1

'
!
'
 +

+t
,:+

 W
' 

rJ
-T

+
L

 
. 

! 
' 

. 
' 

' 
,
I
 

I 
, 

" 
, 
.
'
 

~I
 

.1
 

'l
.~
 

L 
' 

. 
I 

I
-
!
~
 

~ 
~.
 

• 
I 

! 
I
i 

'I
:
 

,:
~.

,-
"-

:-
,I

'S
ct

-j
h 

:'
Ll
\!
tr
~,
,;
, 
~
·
I
 

'I 
"~

~4
 

t
,
 

-; ..
. t.

H
H r:+-

HiJ
 
i~

 
Lc

::. 
.. ~
, 

~.
.'

 
r
T

T
T

 
T

T
T

 
-C

-" 
"
,
:
 ttt

;'-,r
 ,

h
i,

 
,,

' 
,..

...
...

. 
f'!

' 
L

' 
, 

.
"
'
_

 --
--

, 
L

"
 

' 
.•

 ~
 

,
,
'
 

,,
:"

"
 
~~

. 
I
T

 
. 

,1
1 
~
.
L
"
 

':
;-

;1
 

,
c
,
.
 

r'
"
 

~ 
,,

'i
r
: 

j,
 

! 
,
"
,
 
"'-

--'
-+

"+
+ :.e-

1
, 
4~

' 
"+

t:;
 

ij
',

.<
' 

rT
-

-r
r 

T: 
II

 
t+ 

. 
I 

I 
1 
~
n
 

. 
~ 

, 
, 

' 
.~I

. 
, 

1
"
' 

,-
T

-+
 

: 
I 

I 
I 
'~

;-
,
"
 
~-

~.
 

~
L
t
~
 +

'-7
 

+t~
 l
:
.
w
,
~
~
~
"
 

-I-
-

+1-
-

it
 

'
\
1
.
;
:
~
,
'
 :
:
-
+
-
~
 -H

i 
. 

, 
I 

;: 
•.

. 
r:~

' 
e-

,. 
--t

!.p
 r

;.!
' I

t;;
 

Hi 
.: 

'
I
 

;l
( 

h' n
i'
 

~.
' 

" 
'r 

H
i 

:tr
U;

 
i"

,
 

-
: c

i 
I 
iid

ftl
: 

"~
ii
 -

e
',

 .
..

..
 

2 
6

8
 " 

. 
'I
-'
-t
~"
 

iii
i 

pi
 

t, 
it 

.. 
,I

i"
 

t--
L-

H+
 

l-!
t 

,"1 
fT: 

1;
1:

, 
-i

·-
'f

' 
:e

l;
,"

'-
' 

· 
: -

-
: i

+H
im

 ;n
 ,

1
, 

dl
=f

:t 
rr

:i,
 

'F
·
 
'
]
,
 

• 
f--

t 
, 

''1
' 

tt 
L 
,
I
'
,
 

-'
 
f+

.~
; 

i l; 
i'

 
I-r

-f[-
::;:

r:: 
tL

 '
:. 

~e-
, .

 .:
 

, 
,'

,.
 
"
."

, 
.,

' 
~
 

, 
'" 

t' 
1-1

-" 
" 

1-
+ 

"d
-t
HH
l-
'-
:;
;:
,~
l.
gh
r,
 

•.
 :j:

I"
" 

r 
-
i
f
'
 

" 
,
~
 
'-
W+
f~
,I
-;
~l
;[
ff
; 

Ll
;'

H+
;~

 t 
'.

' 
.
.
 

I--
l--

' 
Y

 
~'

:'
:~

T'
 

·
,
,
,
1

 
ri'

l' 
, 

' 
'r

m~
j~

,"
;4

:;
r~

Lc
!'

f'
::

~ 
...

...
.L

L
 

f::+
, 

". 
"
.
"
 

't
· 

f' 
,r

T
ij
r 

"
I
' 

I
f
 

.r+
+t+

tt++
 ~!

1f"
i q

;
;
,
 

f 
l
P

:
i
H

 q
 

fP
'IW

tm
tfF

 
r
' 

,
,
:
:
 

f 
'IP!

 
~=

~I
 

2.
64
R:
~ 

[ 
i+

rm
+:

4:
q 

Ih~
 TiD

 
crt

ln 
:~ 

tH
 ~

rf 
It 

ir:R
!i t

+~ 
rtf

 :
'i 

ir--
;, 

" L .. ~ 
Ha

P a
; 

" r' 

f--
2

.6
0

 

tT
ltm

" nT
4 rili 't',l+

rffi;
 rir

 
.w.

 
J 

J. 
i 

' 
H

i 
it 

'~r~
:-TU

: l
~] i

¢~
k~
 , 

[.
1

-.
. 

-
. 

. 
+1

T-
l-
+t

++
~l

 it
T 

.j.~.
 

+~
 

4
-
'
 

'
:
 ,T

 r
~~

~ 
~~

Hr
L 
~,
~~
 II

 

H
H

 
j 
d 

i rM
 Iti

tr 
, 

. 
~ 

t 
;
h

, 
'~

i'
 t 

-:
 
~~
 

, 
! 

It
 [

 
+t
t~
r 

~~
tt

tT
j 

.. ~~
~t
 

Ii
 

'tt
;' 

'. 
,'t·

'" 
• 

h
' 

41'
 

I 
II 

iJ
l:

 
'~

t-
:"

'~
'-

';
-

:-.
...

 .
,
' 

P
I
 

'I
"
 

I 
I:

.,
 

U+
 

1. 
,'J

 
L 

" 
~r

 
IT

 
,I

i,
 

~;.
 
"
.
 

rr
:-
~ 

... .
.... 

I
'
 

! 
, 

; 
I 

I 
4' 

I 
, 

I 
.'

 
, 

I]
 
11

1~
.;

 
l 

__
 ,

 
.,i

,t:
-

_ 
ilt

.lt
tlI

1f
±t

PJ
j 

,11
11

 
,
-
H

 Ii 
+

i'
. 

]w
" 

~ 
,I;

ll+
l"h

t 
"t

 
!1

l
r ,r

hlr
dH

H 
T

Il 
1

1
',

1
 

I
I
I
 

Ii
: 

'-
: 

'
"
I
 

t4
t"
1l
tt
tr
tt
tt
tt
f~
fr
l ~
:
 

. t
it
tt
t1
tW
lt
rr
tt
t4
~~
'l
i 

10
2 

10
3 

10
4 

10
5 

f~
 (

H
z)

 

F
ig

u
re

 
1

4
. 

A
 
p

lo
t 

o
f 

K
 

v
e
rs

u
s 

f
l.

 
-
~
-
-

D
E

-l
 

_
_

_
_

 
D

E
-3

 
_

_
_

_
 
-
-

_n
 _

_
_

_
 D

E
-4

 
D

E
-2

 



K
eq

 

.L
 

N
 

2
5

 

2
3

 

21
 

17
 10

2 

tP1
11

1 

!rtf
 

F
ig

u
re

 
1

5
. 

11 
i:tH

Hll 
nH

~,
 

H1
4'1

.t:+
;!ti

t 
."f

fi~
 

HH
lf
tl
~h
 

10
3 

10
4 

10
5 

f~
 (

H
z)

 

A
 p

lo
t 

o
f 

K
 

v
e
rs

u
s 

f
l.

 
-
-
-

D
E

-l
 

e
q

 
n 

-
-

D
E

-3
 

-
-

-
-
-
-

D
E

-4
 

-
-
-
-

-
-
-
-
-

D
E

-2
 



oJ
::. w
 

9
.4

 •• 
I 

I 
I 

• 
I 1

IIII
IIlU

llll
Ul

UI
IllU

llll
llm

m
m

m
u!

lllu
m

::::
+:

:1
-ll-

IP
:n

:w
::w

:m
:W

IlfI
II!1

11
11

11
11

1I
l+

I1
:m

m
1lm

llll
llll

++
=l

++
+l

+l
+4

+t
++

+r
HH

++
HH

4m
H+

++
4!

!4
W

Rl
l\\l

Illl
lI 

-
-

. U
±

±
iJ

 II
I!

 1I
II
tt
lt
ll
ll
ll
ll
!I
II
II
II
II
I'
Ml
li
tI
Jt
jt
JJ
tt
tt
ll
t!
tl
t=
l-
t-
i:
tt
LI
lL
tt
tt
tl
tt
tt
tt
tt
1t
1t
tt
tt
t1
tt
nm
l_
!m
tl
1l
nT
tl
ln
rl
ln
m+
mm
mm
m:
m+
I:
-l
Wl
+~
 

-
ll
il
ll
ll
ll
ll
ll
ll
ll
l"

-
lI

II
II

II
II

lI
'1

I1
1

1
1

1
 

I 
I 

I 
I 

I 
I 

I 
I 

1
1

1
1

1
1

1
1

'1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

:l
ll
ll
ll
ll
il
l:

ll
ll
ll
ll
!l

I_
L

_
L

_
L

_
L

_
.l

1
 
j
L
l
l
1
1
-
J
;
.
l
~
~
_
J
i
-
I
'
U
!
.
l
i
-
1
~
l
l
 
'.

"
'l

l.
,.

lI
l1

l1
 ..

..
 'U

U
Ll

 

9
.2

 

9
.0

 

- (, 
8.

8 

x - ~8
.
6
 

8
.4

 1
-[ 

8.
2 

8
.0

 
2 

10
 

-
-T

 
1-

-r
 

-
I 

I 
I 

I 
"
I
 

I'
 

I 
: 
,I

 
I 

I 
" 

I 
1

,'
1

 
"
i 

I 

+
1

 
II

 
11

11
11

1 
1

ft
: 

I-
1

m
 
i-

Ii
! 
",

:tl
 :1

11
 

1m
 • 

II
 

I 

t-H
 

it--
I 

! Ht
ttltH

llH
Hl 

10
3 

10
4 

10
5 

~
I
 

, 
•
•
 _

\
 

Tn
 
\n

Z
I 

F
ig

u
re

 
1

6
. 

A
 p

lo
t 

o
f 

K
 

v
e
rs

u
s 

f
'.

 
-
-
-

D
E

-l
 

T
 

n 
-
-
-
-

D
E

-3
 

-
-
-

-
-

-
-
-

D
E

-4
 

-
-

-
D

E
-2

 



.4
 

.4
 

K,
 

·1 
:
1
~
 

TJ
jct

r+
 

. 
1

' 
'I

il
"'

-I
" 

I
~
 

n 
'
"
 

I 
' 

_ 
ill:

 
' 

~. 
Tf

Tj
nT

'n
"1

~:
' 

"n
 

'f
il
l,

 
'.

 
.
'
:
.
 ~.~

'::J
 

' 
"
I
' 

" 
" 

" 
. 

1
2

0
0

 

~l!
"""

'''
1 

'
"
 

, 
"
''
''
''
''
'"

 
.
)
:
 

,' 
__

 ~I,:
:.,,~

~ 
mT

; TlrT
T'T

I[1j]
" 

I f 
,I 

,',
 

__ 
, 

,_ 
=r

ice
r! 

, 
,',

 !'
 ,

 "
,,

 '
" 

c
..

'-
_

,
 

"
.
 

, 
, 

' 
"
"
"
"
,
 

" 

=
!=

it 
, .

 
; 

"
"
 

'
I
I
.
,
.
.
,
 

:-+
+,

 
'.

,'
 

I 
I
,
 

I
'
 

I 
::

1
, 

1
"1

1
" 

_ 
I-

'_
f!

+
j 

"
T

 
, 

"
"
 

, "
 

'"
 

'..
 

, 
, 

, "
 "

"
 

'0
" 

" 
, 

, 
'+.

1:
:.' 

-
;,C

1 
, 

"I
"I

:i
ti

" 
-" 

'h
i; 

I
'
,
:
 

I
i
i
 

_
, 

d:
 '

I 
'
q

_
 

.
.
 

't 
-

'''
;''

1:
 -:

T 
~:.; ,

 
IT

 L 
if;

 
,,

,"
 ,

 
, 

I"
, 

, 
;, 

:,r
l, 

, 
'"

 
i
i
"
 

. 

IO
O

O
b

:-
'..

 
,'

i:
 

'1;1
1 

1'
]:I

'II
1'

."
j,,

, 
"
:
'1

,
 -'

-p
' 

'"
'"

I 
I! 

I 1
,1:

 1
r'
,
 

I 
y,

 :,
g,

 
, 

, 
, 

:,'
 

"f
I"

 
'
"
 

'"
 

""
;' 

'I
 

, 
,,

! 
"" 

, ,.
 '. 

' 
"
,j

 
:-_+~t':

if'; 'I 
+;1

1 
::1

 ;jll;ttf'
~;jjl:~l 

! ~ rlr
~;1 :"

, 
_ 

+', 
:Irh:;

i~ I,
 

i'T
 

'lIT
 Ii 

Ilj':,jl
::~I:: 

i:r
:L

" 
'::'1

 
-"

r'
 

'j
t
,
 

'l
li

1 

j'
I+

, 
"
I
J
l
j
'
,
l
 
-4~

, '
-
I
 

I'
 

, 
I:

i 
"
,
I
 

:1:
 ,

:'" 
G

l 
'j
' 

I
; 

"
"
,
 

'1
1

11

,,
",

 
,
I
 

,~
 

I'
 ::

1:' 
';

, 
'f

 
",

 
..

 
,1

 
+F~'I:

;;~ 
"I

,"
 :

'n
.' 

H
iP

 
:I!'i,''

'''''~'f
'rk.'' 

: 
""

"V
':

" 
~
 "

J
' 

',,;II,~
;, tJl

~~' ~
 

800~:
:TT;-

;-i f
lf 

i I~I ':1
' ,i

'! :
'I'[(

!1I
 H

 '1[
' :i!li'l~ 

"I 
"
''
''
-
"
.
 

, 
rr:.~

 '~
'" 

"~I ','"
" 

" 
i,

"
 

',I
: 

liii
, B

leb
 

';"
[f,

 
~ 

,,
' 

,,"
 

" 
, 

'"
''
''
''
 "

"
!
 

"
, 
,,~

, 
"
'"

 
, 

" 
,,~

, 
, 

'I 
~,-'-t 

I.
' 

I i
i"

" 
II

 
ll
i 

lilj'"
" 

-I~r 
1:

l"1
'1-

.. ,.
 

II
 

I 
;~j'_'!"

 I 1
-', 

, 
I 

" 
" 

~r 
r'r~}jl

" ~ 
~-0

 t'T
 IT

I 
'11

W 
til

l 
H-i

l 
r: 

I'll 
ti 

"J
i I

II 
+-r

r 
' 

I 
, 

',
' 
~ 

" 
"
'!

:
 '

 
, 

"i~:l 
~h ," 

. i 
h

: 
'" 

IL;~l~ 
: '

 " 
I':

 I 
[1 

I 
',

i l
 

I!' 
"
i,

 
II" 

IIH
'!,; 

'
'
'
'
'
"
,
 '
,
'
 

!"
'!

' 
~ 

v:
:"

 
"'

 
I 
I,

 
, I

" 
I" 

! ,
 : 

", 
I
' 

, 
" 

'1
.1 

, 
, 

"
,
'
 

,I
I,

 
I 

I"
, 

. 
"
I
I
. 

,_ 
~ 

6001
=+~1

 I', 
[li,1

j !r:
llnrrH

iij:!f
[ilI~i

iil 
ml'

; 
IlL;:;

:N;l'I
oi~il'

 :
' 

I
' 

"I
I 

~,' j: 
:'i;t'

~ll~:;
>lE=,=

 
I!

 
,",

 '
" 

'"
""

1
" 

"1 
"~

"~
I 

, 
"f,

 
" 

';;,
,,,,

,, 
"
,,

, 
~.lJ 

' 
~
 ,!: 

,: 
i'fn

 ",;1
 I'!

" :
 I' l

'I!
lj!

! 
,I:: 

I~: i'i!,
 

: i
 
i!

! 
~:I. :

i'
, 

' ,
 

~"';
;'c-

" 
~, 'i.

 
,i ",

!:,
,:' 

t 
I:h

I 
':

'I
T

' 
; I 

; II
' 

If'
 'i

 I;~ !
 Ii 

H:
 

" 
, 

j' 
I"~ C "

,,
' 

,;
" 

I, 
' 
',

"
"
_

,
,
 i'

:,
:1

 
,'

" I
,,'

 
.,:::

\8 
40

0)
1:

 
I
i
:
 ;-~ ;:

 ~ "t
 

Ii 
~I:lttl ':

 f 
,f 

·~r I, 
,!C

T:
" 

I 
,: 
n

;:
 ,

,-
~ 

_ 
'-" "<

", 
' ;1':

 I !
llj 

I,>
:I!

:'; 
!~rJ 

" 
:I

, 
',

' 
,,'

 
Ii

i:
 

"i
i.

" 
,-

H
 

, 
, I

,: 
. 

" 
I c

-
"
 "

I 
"'

" 
''
'e

c
 J 

""T
'~ 

I,,: 
I,

!'
I'

 
,","~ 

"
"
"
"
"
,
'
 

" 
"
,
 

"
"
 

,,
"
,,

!
 

.~ t~
tf~ +

tTn
:! 

"'W
li 

II' 
ii,

 I;
': D

' ir
,t! 

! 
Ii

,: 
~,41"

 i!!! 
iT

;'
",

 
,,;

,, 
" 

1
,1

 
1liiI!

~~I;r"
c"~": 

'T
T

 I
lj'j

d:
" 

IF
;!"

 
fi 

+:; 
il
il
ti

' 
'1

""
,.

··
",

·,
 i

 
" 

, 
'",~

"F".
i-"'

-"-"
_ 1"

,i!
lI"

 
'c

ci
'J

ti"
, 

"'''
'm

e 
' 

, 
" 

I 
, I

 ' 
'I

' !h
; '"

"',
 

,'!
 

rli,
" 

, 
, 

"
'T

T
"
 

"
,
'
 ,

 ,
 

. 
"
h

I!
, 

,. 
, 

" 
0

1
-

+'
: m

T
I'

 "
H

 '"1
1! 

' ,'
I, 

,," 
"i

r '
] 

'l
 I

T
T

 
"
II

!:
 

1'1
' il

l" 
"if

i=
 -~ _ 

, 
:' l~: 

l1R~iR
i~ 1o: tHi

;,;;
atn

, 
2

0
 

b;
 l:n

 
HB

 ,::
1\ 

'r
iJ 

lit
t!

: ,
I" 

~';:;, -+ "
&

+
-'

 
4+ it

: j 
'l+

! l!~~i 
le"10~t

~~. 
L 

: 1
 ~I i;nt1

4+~~1 ::
IEmlt~h

~: ~Ei
 .. 

r'::;-
':"t-~

~rrfH-
, 

j-
t 
t',

!i
 

'l'J
dj

 ~Hi+
lliH~

lti1±
H-r 

,t
 J

.jt#
+ 
~*Itt,

 ti" I
EIHtli

,~",~I
:,f 

, 
~. 

, 
f+

, 
+1

1m
; 

III
, 

" 
"',

~ 
ctt

lf'
 

iT
~"

 
W

" '
" 

t 
.,

11
 

T
I
 

1= 
T

r 
rf-

++
++

t±t
ttit

-r 
r;i 

;'1
,ilH

 1+
+ 

[iH!l
j,m;:

~m: 
1'

:1
 I

i 
, 

' 
" 

10
4 

=t
++

 It
 H

f!t
H

H
tt 

I+t!
 '

t 
i1

t r
H 

I 
'l
l 

" 
IO

~ 
O~
-t
i+
 

10
2 

10
5 

f~
 (

H
z)

 

F
ig

u
re

 
1

7
. 

A
 p

lo
t 

o
f 

K
l 

v
e
rs

u
s 

f
~
.
 

-
-

D
E

-3
 

-
-

-
-
-

D
E

-4
 

D
E

-l
 

-
-

-
-
-

D
E

-2
 



, ,1-:'­
, , j--

" 1--, 

:,' ,:, , --

--:- +-, 

± 

~~ 1::-::: ,,-, !=;= 

t------- ~r- -----r-----+-

1-' 

~~-'~ _ -:~L~J._ , 
, :--+:=-,-,-,+-'1-' !-!-!-!-++++++-Itt+t-t\'++, 
-;-~-Lt-'-~-t-:-t-t-++f+t-t-++-Itt+t-t-f.:T-H 

46 

-: 

1-=:t--
:;--'--

0 

If) 

0 

5:J 

I 

'<:t' 
I 

0:: 

....:I 
C,) 

-N 
:c - ~ - 'H 

.. c til 
'+- ;:l 

til ... 
(j) 
;> 

0' 
(j) 

::.:: 
'H 
0 

+> 
0 
~ 
0-

<t: 

(j) 
~ 

(j) ... 
;:l 
b.O 

OM .... 



...:l 
() 

-N 
::I: -:...C ~ ~ 

'H 

Ul 
;::l 
Ul 
..... 
ill 
;> 

~ 

'H 
0 

+' 
0 

.-1 
P. 

<t: 

00 
.-1 

Q) 
..... 
;::l 
bJ:; 
·rl 
r:r.. 

· C\J 

45 



.J:
:,. 

-.
..)

 

8.
5 

8
.0

 

~
 7

.5
 

o )
(
 - ~7
.
0
 

6.
5 

6
.0

 

5.
5 

2 
10

 

It 

10
! 

L
li
ll
H

li
ll
li
li
iU

 
tt,

 

f~
 (

H
z)

 
10

4 

iH
i Jj

i 

F
ig

u
re

 
2

0
. 

A
 p

lo
t 

o
f 

K
T 

v
e
rs

u
s 

f
~
.
 

-
-
-

C
L 

-
-
-

R
-4

 
-
-
-

-
-
-
-

HY
 

Ii
 10

5 



"" :JJ 

12
 

10
 

-
"-'-

-'1
 

If
) 

8 
0 )

(
 - ~-

6 
, :

 I 
,I 

r 
I 

I 
I 

4 o 10
2 

tif
t 

F
ig

u
re

 
2

1
. 

l.I~'
. ' 

yT
l!:

pc

W
 

I 
,'

: 
I 

:
' 

I 
I
,
 

i 
: 

I 

'T
 i l-+

-rl 1 

-t
+"
-+
++
+m
t-
++
tr
J-
~-
+"
""
"'
~H
-

'I
 

. 
1

1
 

\-,
 

1 
i 

+
-+

-+
-H

 

10
3 

10
4 

lO
S 

f~
 (

H
z)

 

-
-
-

R
-4

 
-
-
-
-
H

Y
 

A
 
p

lo
t 

o
f 

K
 

v
e
rs

u
s 

f
'.

 
1 

n 
-

C
L

 



..,. <.
0 

n
eq

 
D

E 

10
1
10

2 
10

3 
10

4 

20
 

I 
I 
li

"'
~ 

~ 
\: 

'"
 

" 
l 

I 
\\

 \
\\

\.
 

\..
 
"

,
 ........

. 
~
 
~
 

----
----

----
---

10
 -1 

0
1

 0 

~
~
~
~
 

----
-==

==
-==

==
= 

I 
I 

2 
3 

4 

F
ig

u
re

 
2

2
. 

A
n 

o
v

e
rl

a
y

 
d

e
s
ig

n
e
d

 
to

 
b

e 
u

se
d

 
o

n
 
w

h
is

tl
e
r 

s
p

e
c
tr

o
g

ra
m

s
. 

T
h

e 
v

e
rt

ic
a
l 

s
c
a
le

s
 

a
re

 
fr

e
q

u
e
n

c
y

 
in

 
kH

z 
(
le

f
t)

 
a
n

d
 
L
-
v
a
l
u
~
 

(
r
ig

h
t)

, 
an

d
 

th
e
 

h
o

ri
z
o

n
ta

l 
s
c
a
le

 
is

 
ti

m
e
 

in
 

se
c
o

n
d

s.
 

T
h

e 
s
lo

p
in

g
 

c
u

rv
e
s
 

r
e
p

r
e
se

n
t 

c
o

n
st

a
n

t 
v

a
lu

e
s 

o
f 

eq
u

a
L

u
ri

.a
l 

e
le

c
tr

o
n

 
c
n

n
c
c
n

tr
:1

ti
o

n
 

a
ss

w
n

in
g

 
d

if
fu

s
iv

e
 

e
q

u
il

ib
ri

u
m

 
d

is
tr

ib
u

ti
o

n
 
o

f 
p

la
sm

a
 

a
lo

n
g

 
f
ie

ld
 

Il
n

e
s
. 

-
2

.5
 

-
3

 

r -4
 

-
5

 
-
6

 

5 



10
12

 
N

T
 

D
E 

2
0

 
I,

 ,
,"

 
\' 

\" 
\' 

'\
 

l 

F
ig

u
re

 
2

3
. 

A
n 

o
v

e
rl

a
y

 
d

e
si

g
n

e
d

 
to

 
b

e
 

u
se

d
 

o
n

 w
h

is
tl

e
r 

sp
e
c
tr

o
g

ra
m

s.
 

T
h

e 
v

e
rt

ic
a
l 

s
c
a
le

s
 

a
re

 
fr

e
q

u
e
n

c
y

 
(
le

f
t)

 
an

d
 

L
-v

a
lu

e
 

(r
ig

h
t)

, 
a
n

d
 

th
e
 
h

o
ri

z
o

n
ta

l 
s
c
a
le

 
is

 
ti

m
e
 
in

 
se

c
o

n
d

s.
 

T
h

e 
s
lo

p
in

g
 

c
u

rv
e
s 

re
p

re
s
e
n

t 
c
o

n
s
ta

n
t 

v
a
lu

e
s 

o
f 

tu
b

e
 

c
o

n
te

n
t 

a
ss

u
m

in
g

 
d

if
fu

s
iv

e
 

e
q

u
il

ib
ri

u
m

 
d

is
tr

ib
u

ti
o

n
 

o
f 

p
la

sm
a
 

a
lo

n
g

 
fi

e
ld

 
li

n
e
s
. 

-
2

.5
 



canna. be resolved on figures of this scale. The horizontal bars ~11 the 

edges of the figure show L-values, and the sloping curves represent con-

stant values of nand N. These overlays are designed to be used on 
eq T 

35 mm Rayspan records with 0-20 kHz per 30 mm vertical scale and 20 mm 

per second of real time horizontal scale. An overlay may he placed (Iver 

a spectrogram with the t = 0 line on the causative sferic. The L-value 

and values of neq or NT can be read directly from the position of the 

whistler nose on the spectrogram. This method neglects corrections fo)' 

dispersion in the conjugate ionospheres (Chapter 3) and Jor sub-ion()spheric 

propagation time-(Chapter 4). This is not very seriolls. however. because 

the two corrections tend to cancel one another and because of the I"_'la-

tively poor precision inherent in this method. ~s mentioned in the pre-

viow: section, n
l 

depends sensitively on electron concentration models and 

woulc require a large number of overlays. It is therefore preferable to 

obtain n
l 

from neq using Figure 12. 

An important advantage of this method is that it permits a quick 

identificatIon of any structures in n or N profiles from a train of 
eq T 

nose whistlers. For example, if n is constant ~ith L in some part of 
eq 

the rmgnetosphere penetrated by whistlers, the train of corresponding 

no::;e!; will follow a n = constant curve in Figure 22. Electron c('·ncen­
eq 

trat.on profiles in the magnetosphere frequently exhibits complex ftruc-

ture:, such as those reported by Park and Carpenter [1970). These f.trllc-

ture:, can be easily identified on whistler spectrograms with the aie! of 

the Jverlays. 

G. ~MPIRICAL FORMUlAS 

As shown in Figures 14 through 21, K, KCq' KT and KI val'y on1.\" slow1\ 

with 1" 
n 

These quaSi-constants can be approximated by various Clll'VC 
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fitting techniques to achieve desired accuracy. For slide rule calcula-

tions, they can be approximated by constants. For the DE-l model, the 

following approximate formulas can be used: 

Formulas 

f 2.7 f' 
Heq n 

5 1/3 

L (8.;4X10 ) 

Heq 

(f.t. 2
) 

neq 
24~ 

L
5 

"C~t~2 ~ N 8.6xlO L 
T 

and for the CL model, 

SEL-71-058 

Formulas 

f = 2.3 f' 
Heq n 

n 
eq (

f' t' 2 ) 
lO~ 

5 
L 

9 n n 
(

f't'2) 
7.9xlO --L-

- 52 -

Maximum Error 
2.5 < L < 7 

1.1 '70 

0.4 

7.6 

5.4 

~5 

Maximum Error 

2.5 < L < 7 

7.6'70 

2.5 

35.9 

7.8 



TheSE' approximations by constant coefficients are reasonably good for 

diffusi.ve equilibrium model, but they lead to somewhat larger errol's in 

the case of the collisionless model. In particular, an attempt to use a 

cons1:ant coefficient Kl for the collisionless model may lead to errors as 

largp as a factor of 4. 

For machine processing, a parabolic approximation of the following 

form gives high accuracy with a reasonable amount of computation. 

K == (2.22) 

wher'~ F == loglOf~ and the a's are constants. The coefficients a ,al,a 
o 2 

can :w obtained from a least squares fi t to the values of the K's in 

Tables 2 through 8. Tables 9 and 10 give the results of a least squares 

fi t for the range 2.5 < L < 7 for the DE-l model and R-4 model. respec-

tively. The last column in the tables shows the maximum error due to this 

approximation in the range 2.5 < L < 7. 
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III. CORRECTIONS FOR DISPERSION IN THE IONOSPHERE 

A. OUTLINE OF THE CHAPTER 

We use f and t to denote the whistler nose frequency and travel 
n n 

time at the nose observed after propagation through the ionosphere and the 

magnetosphere. Because the ionosphere has great variability, but rela-

tively small effects on whistler propagation, we have chosen to account 

for the ionosphere by making 'corrections' to the observed f and t , 
n n 

obtaining quantities f' and t' which would result from propagation through 
n n 

the magnetosphere only. Once f' and t' are obtained, the path latitude 
n n 

and the electron concentration along the path in the magnetosphere can be 

calculated by one of the methods described in the previous chapter. The 

purpose of this chapter is to examine in detail effects of the ionosphere 

on whistler propagation and to develop methods for obtaining f' and t' 
n n 

from f and t . 
n n 

B. WHISTLER DISPERSION IN THE IONOSPHERE 

The whistler travel time through the conjugate ionospheres, or the 

second term in Eq. (1.3) is 

t . (f) 
Cl 

1 
2c f 

ci 

f 
p 

ds 

where the subscript ci refers to the two conjugate ionospheres. The 

integration extends through both ionospheres below 1000 km altitude. Sev-

eral simplifying assumptions and approximations will be used in this chap-

ter in treating ionospheric effects on whistler propagation. Some of them 

are justified partly on grounds that the ionospheric contribution t . to 
Cl 
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the total whistler travel time is small (typically less than IO~). 

f 
Since 'f « 1 in the ionosphere, we can wri te 

H 

D .- t . 
Cl Cl 

1 
2c f 

ci 

f 
p ds 

7" 
H 

(3.1) 

The :}uantity D is called dispersion, and Eq. (3.1) shows that the clisper-

sion in the ionosphere is independent of wave frequency. The dispersion 

is additive, so that 

DCi = (Di)northern 

hemisphere 

+ (D.) th 
1 sou ern 

hemisphere 

In the remainder of this section, we will compute D. from the ionospheric 
1 

parameters. 

Assuming a horizontally stratified ionosphere and neglecting curva-

turEs of magnetic field lines, we write 

D. == 
1 

I 
2c sin 6 f 

f 
P 

fl/2 
H 

dh (3.2) 

whE·re 6 is the magnetic dip angle, and h is the altitude. If we [u1'th('r 

neglect small changes in latitude as we move along inclined magnetic fiele! 

l:lnE's, f can be expressed as 
H -3 

Whel"e f is the electron gyrofrequency at h = 0 and at the lati tude of 
Ho 

inb'rest. Substituting this into Eq. (3.2), we obtain 
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D. 
1 

1 

sin Ii 
J ( h) 3/2 

fp 1 + r 0 dh (3.3) 

Equation(3.3) has been evaluated numerically for several electron concen-

tration profiles at L = 4 where f 
Ho 

6 
1.57 y 10 Hz and sino = 0.957. The 

ionosphere was assumed to be a simple a-Chapman layer described by 

n 

z 

n 
max 

h-h o 
H 

exp\ 1 
I 2 

1 [1 - z - exp(-z) l\ (3.4) 

where n is the maximum electron concentration and h the height of the 
max 0 

maximum concentration. Three different profiles corresponding to scale 

height H = 50, 75 and 100 km have been considered. Figure 24 illustrates 

the three profiles with h = 300 km and n adjusted so as to involve the 
o max 

same height-integrated content. The results are summarized in Table 11. 

Table 11 shows that the dispersion does not depend sensitively on the 

shape of the electron concentration profile. A comparison between the 

constant n case (A, B and C) and the constant integrated content case 
max 

(D, E and F) shows that the dispersion varies more with the content than 

it does with n 
max 

In estimating D. it is therefore preferable to use 
1 

integrated columnar content information obtained from Doppler shift mea-

surements or Faraday rotation measurements of satellite beacon signals. 

Since about two thirds of the integrated content is above the F layer 

peak, topside sounder results are preferred over bottomside sounder results. 

The desired information on the ionosphere near a whistler path of interest 

is usually not available, particularly in the case of satellite data, and 

SEL-71-058 - 58 -



- E ~ w
 

0 :::>
 

CJ
1 

r 
\P

 

r ....
.J « 

r
-
.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
_
r
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
_
.
r
_
-
-

! 

o 
E

 
F 

1
0

0
0

 

8
0

0
 

6
0

0
 

4
0

0
 

2
0

0
 

0
' 

I 
I 

I 
I 

! 

10
2 

10
3 

10
4 

10
5 

10
6 

10
7 

EL
EC

TR
O

N
 

C
O

N
C

EN
TR

A
TI

O
N

 
(c

m
-3

) 

F
ig

u
re

 
2

4
. 

A
 
sk

e
tc

h
 

o
f 

m
o

d
el

 
e
le

c
tr

o
n

 
c
o

n
c
e
n

tr
a
ti

o
n

 
p

ro
fi

le
s
 

in
 

th
e
 

io
n

o
sp

h
e
re

. 



TABLE 11. IONOSPHERIC DISPERSION 

Scale 
n Columnar D. 

max -3 Conte!:~ 
1 

height (el em ) 
(el em ) 1/2 

(km) (sec ) 

A 50 10
6 

2.06 x 10
13 

4.43 

B 75 10
6 

3.08 x 10
13 

6.31 

C 100 10
6 

4.01 'X 10
13 

7.72 

D '50 10
6 

2.06 X 10
13 

4.43 

E 75 6.68 X 10
5 

2.06 x 10
13 

5.17 

F 100 5.13 X 10
5 

2.06 X 10
13 

5.53 
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an t:1 w~rage' ionosphere must often be used. 

The following formulas are offered for estimating D. from columnar 
1 

content N or the F2 layer critical frequency f F2. 
o 

D. 
1 

D. 
1 

0.7 f F2 
o 

(~: . 5) 

12 2 
In the above equations, N is in units of 10 el/cm and f F2 in MHz. A 

o 

typical value of D . (for two conjugate ionospheres) may be 8 during the 
Cl 

day and 4 during the night near solar-cycle minimum. The corresponding-

val~eB for solar cycle maximum may be 16 and 8. 

The values of f and sino in Eq. (3.3) vary with magnetic latitude. 
Ho 

HOWEver, in the principal range of whistler propagation 2 < L < 7 they can 

be regarded as constants, because their variations are not important com-

parE'd to the uncertainties in electron concentration profile usually en-

countered. The height of the F layer peak makes little difference in the 

calculated value of D.. A change in h by 200 km resul ts in a change of 

only ~~ 5% in D .. 
1 

1 0 

C. CALCULATIONS AND RESULTS 

The whistler time delay is written as 

t (f) 1/2 Gn eq + D . (3.7) 
Cl 

The first term on the right hand side is the magnetospheric part from 

Eq. (2.19), and the second term the propagation delay in two conjLgate 

ion,)spheres. Equation (3.7) is evaluated numerically by the same procedures 
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used in Section 2C in search of the minimum time delay. In the present 

case, however, f depends on nand D . as well as on the whistle) path 
n eq Cl 

latitude. The dependence of f on n for constant Land D . is illus-
n eq Cl 

trated schematically in Figure 25. The two dashed curves A and B repre-

sent the first term in Eq. (3.7), or the travel time through the magneto-

sphere. The two whistlers propagate on the same magnetic shell, and hence 

exhibit the same f'. The travel time for curve B is assumed to be 9 times 
n 

as large. The curve marked C represents the travel time through conjugate 

ionospheres, or the second term in Eq. (3.7). The solid curves are the 

result of adding ~ to A and B. Evidently the effect of the ionosphere on 

f is less for larger magnetospheric electron concentrations. It is also 
n 

apparent that the larger the value of D ., the larger its effect will be 
Cl 

on f . 
n 

The calculations of f are repeated for variations in either D . ,t', 
n Cl n 

or L while the other two are held constant. The values of D . used are 
Cl 

D. 2,4,8,16 and 32. The results of such calculations for L ~ 2.5, 4 
Cl 

and 6 are shown in Figures 26 through 28 where the quantity (f -f') if' is n n n 

plotted against D . for several values of t'. The quantity (t -t') is also 
Cl n n n 

calculated from Eq. (3.7) and plotted in Figures 29 and 30. 

D. EMPIRICAL FORMULAS 

Although f' and t' can be obtained from f , t and D . with the aid 
n n n n Cl 

of graphs illustrated in Figures 26 through 30, such a process is obviously 

cumbersome and time-consuming. In this section, we construct a few simple 

empirical formulas to approximate the results of the previous section. 

We expect from the earlier discussion that the difference between f 
n 

and f' would increase with D . and decrease with t , so we try an equation 
n Cl n 

of the form 
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f - f' 
n n 

f' 
n 

y' 
D . 

Cl 

t 
n 

It i!; found that y' is nearly constant for a given L-value, but that it 

decrpases with increasing L. 
-1/3 

Since L IT f and f is roughly propor-Heq , Heq 

tional to f , we write 
n 

f - f' 
n n 

f' 
n 

D . 
Cl 

(3.8) y 

Equation (3.8) with a constant y is a good approximation to the results 

of the previous section for a wide range of f , t and D . 
n n Cl 

Empirically. 

the best value of ) is found to be 0.17 for DE models and 0.15 for the CL 

or R-4 model. Thus, 

f' 
n 

for DE models, and 

f' 
n 

f 
n 

1 + 0.17 (D ./t f 1/3) 
Cl n n 

f 
n 

1 + 0.15 (D ./t f 1/3) 
Cl n n 

(3.9) 

(3.10) 

for the collisionless model. The error in f' due to the above approxima­
n 

tior. is plotted in Figures 31 and 32 against D . for a range of values of 
Cl 

t' B.nd L. The fact that the per cent error is generally larger for larger 
11 

D . and for smaller t' means that the approximation by Eqs. (3.9) and (3.10) 
CI n 

is t,etter when the ionospheric part of the whistler dispersion is relatively 

small" For all realistic values of D . and t'. the error in f' is less 
Cl n n 

than _~ 3%. Several curves that surpass the 3'10 error level in Figures 31 
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and 32 correspond to extremely low electron concentrations in the magneto-

sphere. For example, the solid curves marked t' = 0.2 sec are approaching 
n 

the theoretical low limit of 0.18 sec which is the propagation time along 

the length of an L = 4 field line in free space. When electron concentra-

tions are that low, errors due to other sources become more important than 

the error due to the empirical formulas given by Eqs. (3.9) and (3.10)(see 

Chapter 6) . 

We now consider expressions for t'. From Eq. (3.7), 
n 

t "'"' t' + D . f -1/2 
n n Cl n 

t' 
n 

+ D . 
Cl 

f' -11' 2 
n 

Figure 33 is similar to Figure 25 except that the ionospheric dispersion 

is exaggerated in order to illustrate details near the nose frequency. It 

is evident in the figure that t - t' 
n n 
-1/2 

but slightly greater than D . f . 
Cl n 

t' 
n 

t - D . 
n Cl 

f
,-12 

is slightly less than D . 
Cl n 

A compromise is thus made: 

(3.11) 

Equation (3.11) approximates the results of the previous section with less 

than 1 msec error for wide ranges of f , t and D .. 
n n Cl 
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IV. SUBIONOSPHERIC PROPAGATION 

The whistler travel time is usually measured with respect to the 

causative sferic on a whistler spectrogram, and it is necessary to account 

for the travel time of the signals in the earth-ionosphere waveguide. 

Figure 34 illustrates the geometry and the appearance of the sferic on a 

frequency-time spectrogram. At the top of the figure, Rand T represent 

the locations of the whistler receiver and the sferic. respectively. A 

sferic often shows a small dispersion and a sharp low frequency cutoff as 

illustrated at the bottom of the figure. The cutoff occurs at the earth-

ionosphere waveguide cutoff frequency which is 1.67 kHz for a lossless 

waveguide with a height of 90 km. The reader is referred to Helliwell 

[1965J for more detailed discussion of the dispersive effects of the 

earth-ionosphere waveguide. In this chapter, we estimate the subionospheric 

propagation time of the lightning signals that reach the whistler receiver. 

We will use t to denote the whistler travel time through the ionosphere 

and the magnetosphere and ~ to denote the travel time of the whistler mea-

sured on a spectrogram with respect to the sferic. 

We consider a simple case in which the lightning, whistler duct and 

the receiver are all in a magnetic meridional plane. The distance travl'lcd 

by the direct wave can be written 

(4.1) 

where ¢ and ¢ are the magnetic latitude in degrees of the sferic and thr' 
T R 

receiver, respectively. The sign of the latitude is positive in both the 

northern and the southern hemispheres. The subionospheric distance tra-

veled by the whistler wave is 
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1ir 

a 
-tw = 180 (4.2) 

whe]~e ~D is the lati tude of the end points of the whistler duct. The 

cor~ection necessary for the subionospheric propagation is then 

(4.3) 

where c is the speed of light in a vacuum. Using Eqs. (4.1) and (4.2). 

the following equations are obtained: 

t - T = 6.65 X 10-4 
~D sec for ~ > ¢D and 0 > ¢D (4.4) 

T 'R 

6 .65 ~ 
-4 

~R sec for ¢ ¢D and 0 < ¢ t - T = 10 '> (4.5) 
T R - D 

6.65 
-4 

¢R for ~T ¢D and PR ¢D t - T X 10 sec <: > (4.6) 

t - T= 6.65 X 10-4(¢ + ¢ - ¢ ) for ¢ <: ¢ and ¢ < ¢D (4.7) 
T R D T D R 

For whistler receivers at high latitudes, ¢R is usually larger than 

~~D ' and therefore, Eq. (4.4) or Eq. (4.6) would apply. For ¢D = 60
0 

(L 4) , t - T may vary from O(¢T = 0) to 0.04 sec (¢T = 60
0

) depending 

\~T Since ~T is usually not known, a constant value of t - "= 0.03 sec 

ma:' be used for all medium to high latitude whistlers as a first order 

co:~rection . 

If we remove the assumption that the sferic and the duct lie in the 

same meridian plane as the receiver, the distances }~D and -tw should be 

gr?at circle distances. However, in view of the fact that no means of 

id?ntifying the location of sferics and the longitude of whistler ducts 

are available at present, we will not consider such refinements here. 
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f 

t-----T"n t 

t=O 

Figure 34. The sketch at the top shows a whistler mode and a wave-
guide mode propagation paths of lightning signal from 

its source T to the receiver R in the conjugate hemisphere. The bot­
tom sketch shows how the received signal appears on a frequency-time 
spectrogram. The wave-guide mode signal shows the effect of the wave­
guide cutoff at low frequencies. 

76 



V. SUMMARY 

In this chapter, we briefly summarize the procedures for determining 

thl' path latitude and electron concentration along the path from the 

wh:.s·:ler parameters f and t . . n n 

1. Scale f and T from whistler spectrogram. 
n n 

:2. Make corrections for subionospheric propagation as discussed in 

Chapter 4 to obtain t . 
n 

Typically, t 
n 

- , + 0.03 sec. 
n 

3. Decide on a magnetospheric electron concentration model to be 

used. 

4. Estimate dispersion in the two conjugate ionospheres D , as dis­
Cl 

cussed in Chapter 3. 

5. Make corrections for the ionospheric dispersion to obtain f' and 
n 

t' as follows: 
n 

(a) for diffusive equilibrium models (DE-l through DE-4) 

f' 
n 

t' =:: t - D , 
n n Cl 

f 
n 

0.17 D ') Cl 

t f 1/3 
n n 

en : f~) -1/2 

(b) for col1isionless models (CL and R-4 models) 

t' 
n 

f 
n 

f' =:: 
n 

(

0.15 DCi) 
1+ 1/3 

t f 
n n 

t - D , 
n Cl 

- 77 -

( 5.1) 

(5.2) 

(5 3) 
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6. L, n ,N and n
l 

can be obtained from f' and t' bv one of the 
eq T n n' 

following methods depending on the desired precision and availa-

bility of a computer or a calculator. 

(a) L, neq and NT are read off the graphs in Figures 7, 8 and 0 

for DE models and Figures 7, 10 and 11 for the CL model or R-4 

model. n
l 

is obtained from n using Figure 12. 
eq 

( b) Calculate L, n ,N and n
l 

using the following formulas 
eq T 

f 
Heq 

L 

n 
eq 

NT 

n
l 

K f' 
n 

( )'13 
8.736/ 10

5 

Heq 

f' t,2 
n n 

K 
5 eq 

L 

f' t,2 
n n 

KT L 

f' t,2 
n n 

Kl 5 
L 

( 5,4) 

( 5 , 5) 

( 5,6) 

(5,7) 

(;-),H) 

using the values of K, Keq KT and Kl obtained from Figures 14 through 21. 

(c) Use Eqs. (5.4) through (5.8) above. but obtain the values of 

2 
K's from empirical formulas of the form K = a

o 
+ alF T a 2F whel'l 

F = 10gIOf~. The coefficient a's are given in Tables 9 and 10 fell 

the DE-l model and R-4 model. 
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VI. UNCERTAINTIES IN THE WHISTLER METHOD 

A. INTRODUCTION 

In this chapter, we discuss uncertainties in the whistler method des-

crib('d in this report. A few general remarks will be followed by more de-

tailed examination of various sources of error. 

As mentioned earlier in Chapter 2, whistlers are most sensitive to 

the c:onditions at the top of the propagation path. To illustrate this, 

we r,~turn to Eq. (l.2). At the nose frequency, 

t 
n 

1 

cf 1/2 
n 

f 
f 

P 
f 3/2 

n - -) 
fH 

ds 

From the results of Chapter 2, fn ~ 0.377 f
Heq 

for diffusive equilibrium 

models, so t is approximately proportional to 
n 

f 
f 

P 

f 1/2(1 - 0.377 
H 

Figure 35 is a plot of the value of the integrand, 

I 

f 1/2 
H 

f 
P 

0.377 

ds 

norn~lized to the equatorial value, as a function of distance along lines 

of 10rce for several L-values. The DE-l Model was used for the electron 

dis1ribution along field lines. The terminal point of each curve corre-

sponds to 1000 km altitude, and the circle on each curve to 30
0 

dipole 

lat:.tude. The whistler time delay is proportional to the area under the 

cur'le, and it can be seen that nearly 80% of the time delay occurs wi thi n 
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~ 30° of the equator. The sharp 'hooks' in the curves are due to rapid 

increases in electron concentration near the base of the magnetosphere. 

If a diffusive equilibrium model with different parameters (temperature 

and ionic composition) is used, there are changes in the shape of the 

'hocks', but little effect at distances greater than 1000 km from the base 

of the magnetosphere. 
f 

For collisionless models, f ~ 0.41 f ,and the 
n Heq 

quartity I = 

f 1/2 
H 

p 
has been calculated at several 

0.41 

L-vElues and is plotted in Figure 36. In this case, - 60% of whistler 

propag;ation delay occurs wi thin 30
0 

of the equator. Because of these 

fact.s, electron concentration near the equator as measured by the whistler 

tecllnique is remarkably independent of assumed electron distribution along 

fieJ.d lines. On the other hand, electron concentration near the base of 

the magnetosphere depends sensitively on assumed models. 

Information on electron concentration in the magnetosphere usually 

invl)l ves extrapolation along magnetic field lines by assumed models. For 

example, electron concentration measured near the base of the magnetosphere 

by incoherent backscatter radars, satellite-borne sounders or probes can 

be?xtrapolated to the equatorial plane. When computing magnetospheric 

tub? content, however, the whistler technique has the advantage of measuring 

ele2tron concentration accurately near the equatorial plane where most of 

the tube volume lies. 

We now examine more quantitatively various sources of uncertainties 

in the whistler method. 

B. UNCERTAINTIES DUE TO THE ASSUMED ELECTRON CONCENTRATION MODEL 

For given f' and t', Eqs. (5.4) through (5.8) can be written in dif-
n n 
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" 

fcrential form as follows: 

~f 
~ cIJ< 

f K 
Heq 

L 
1 
3 

\f 
U Heq 
-f--

Heq 

1 
3 

The ~K'S in the above equations represent differences between electron 

concentration models, and their values can be obtained from Figure 14 

through 21. For a whistler with observed f , f' depends somewhat on the 
n n 

electron concentration model used (see Eqs. 5.1 and 5.3), but this is a 

sma:.l effect and will be ignored. An example given below illustrates the 

a 0<" + effl?c ts of changing the model from DE-2 (3200 K, 9 Ie 0 , 

to)E;--3 (1600 oK, 50% 0+, 40% H+. 10% He +) for a whistler wi th f' 
n 

Fran Figures 14 through 17, we obtain 

- 0.012, 
~K eq 

K 
eq 

61<1 
- 0.027 and - 0 17 

5 kHz. 
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substitution of these values into the above equations yields 

,6L 
L 

- 0.004, 
tn eq 

n 
eq 

== - 0.091, 
,6n

l 
- 0.031 and - 0.19 

It is seen that NT and n are relatively insensitive to changes in model, 
eq 

whereas n
l 

is more model-dependent. 

C. MEASUREMENT ERROR 

We assume that measurement errors in f and t result in the same 
n n 

percentage errors in fl and t'. Since the K's in Eqs. (5.4) through (5.8) 
n n 

are only very slow functions of fl, we further assume that the K's are 
n 

constant within the range of measurement errors in f. Equations (5.4) 
n 

through (5.8) can then be written in differential form as 

M Heq ---
f 

Heq 

6L 
L 

6n 

n 

6N 

eq 

eq 

T 

NT 

~nl 

n
l 

SEL-71-058 

2 

2 

1 
3 

~f I 

n 
-f-

'
-

n 

(o~t ) 

(6t~ ) 2 -- + t I 

n 

(6t~ ) 4 
t' + 3 

n 

(6:: )+ 8 
3 

8 e:t) 3 

(~) 

(6:t) 
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• 

In routine scaling, measurement errors can be easily maintained below 

~ 3% for f' and ~ 1% for t'. Equations (6.1) through (6.4) show that a 
n n 

I':; error in t' causes a 2% error in computed n , Nand n
l

. An error of 
n eq T 

3'7" in f' causes a 1% error in the computed L-value, a 4% error in Nand 
n T 

8~ errors in nand n
l

. With high quality whistler traces and sufficient 
eq 

care in scaling, measurement accuracies can be improved over the figures 

quoted above. 

D. UNCERTAINTIES DUE TO THE IONOSPHERE 

Uncertainties in ionospheric dispersion appear as uncertainties in 

fl and t'. From Eqs. (5.1) and (5.3), we can write 
n n 

6f' 
n 

-f-'­
n 

A,f' 

-0.17 

1/3 ,,,,DCI' 
t f 

n n 

for DE models and 

'- n -0.15 

f ~ = t f 1/3 
~D , for collisionless models, 

CI 

n n 

Fron Eq. (5.2) 

At' 
~ n 

Tt 
n 

1 
1/2 6D

ci 
t f 

for both DE models and 
collisionless models. 

n n 

Eqwltlons (6.1) through (6.4) can then be used to estimate uncertainties 

in L, n eq' NT and n l · 

As an example, consider a whistler propagating in the plasmasphere 

(DE rrodel) with f = 6 kHz (L _ 4) and t = 1 sec. An overestimate of 
n n 

6f' 6 t ' 
D , by 1 sec -1/2 results in ~ = -0.009 and ~ _ 0.002. Substi tuti ng 

CI f t' 
n n 

the3e values into Eqs. (6.1) through (6.4), we obtain 
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6L 
L 

0.003, 
t,n 

eq 
-0.028, -0.016 and == -0.028 n 

eq 

In addition to uncertainties in D ., the empi.rical approximation of 
C1. 

Eqs. (5.1) and (5.3) introduces small errors in f'. The magnitude of this 
n 

error depends on magnetospheric parameters and D , (see Section 3D) and can 
C1. 

be estimated with the aid of Figures 31 and 32. 

E. UNCERTAINTIES DUE TO SUBIONOSPHERIC PROPAGATION 

Whistler propagation in the earth-ionosphere wave guide has negligible 

effects on f unless f approaches the wave guide cutoff frequency of 
n n 

_ 1.6 kHz. Corrections for subionospheric propagation, however, must be 

made to time delays measured on a whistler spectrogram. As discussed in 

Chapter 4, the amount of correction necessary is typically ~ 0.03 sec with 

uncertainties of ~ 0.015 sec due to uncertainties 
t,t' 

ning. For tn = 1.5 sec, this corresponds to t~ 
t,n t,N An. n eq T ~ 1. 

(6.2) through (6.4), 
n 

eq 

F. SUGGESTIONS FOR FURTHER WORK 

~ 0.02. 

in the location of light-

~ 0.01, and from Eqs. 

A number of simplifying assumptions were made in this study in order 

to facilitate calculations and arrive at simple recipes for routine process-

ing of whistler data. It was also necessary to use several models for 

electron distribution along geomagnetic lines of force. When a need arises 

for improved accuracy in whistler methods, these models and assumptions 

must be re-examined critically. 

As mentioned previously, there is empirical evidence in support of a 

diffusive equilibrium model inside the plasmapause under normal conditions. 

Outside the plasmapause, however, the idealized collisionless model used 

SEL-71-058 - 86 -



here "is probably extreme, and the actual situation may be better repre-· 

sented by a model falling between the collisionless model and the diffu­

sive equilibrium model (see Section 2B). Banks, et al (1971) recently 

pointed out a theoretical possibility that a low plasma pressure outside 

the l'lasmapause following a magnetic storm may cause the ionospheric plasma 

to flow upward at supersonic speeds. The field line distribution of plasma 

may he very complicated under such circumstances. More detailed theoreti­

cal and experimental studies are needed to improve the electron concen­

trat Lon models used outside the plasmapause. 

The expression for refractive index used in this study is for a cold 

plasma, and it is further simplified by neglecting the additive 1 in Eq. 

(1.1) on the assumption that plasma frequency is much higher than electron 

gyrofrequency. These assumptions need further critical examination outside 

the plasmapause, where electron concentrations are low and the temperatures 

are hicgh. 

Another important simplification made in this study is the use of a 

dipcle magnetic field. At large L values and during magnetic dist~rbances, 

the earth's magnetic field is distorted significantly by the solar wind, 

and the ring current. A detailed investigation should be made of whistler 

proI>al~ation in distorted magnetic fields and the possibility of detecting 

suct distortions by the whistler technique. 

An improvement is desired in estimating subionospheric propagation 

t:lme and correcting for the effect of wave guide dispersion on nose fre­

quency when the nose frequency is close to the wave guide cutoff frequenc\'. 
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APPENDIX. DIPOLE GEOMETRY 

A. MAGNETIC FIELD STRENGTH 

In a centered dipole approximation, the earth's magnetic field 

strength is given by 

3 2 1/2 
B = 0.312 (r /r) (1 + 3 sin 0) 

o 
gauss (A. l) 

where ¢ is the latitude, r the geocentric distance and r the mean radius 
o 

of the earth, 6370 km. Figure 3 illustrates the dipole geometry and the 

symbols used. The electron gyrofrequency is given by 

1 Be 
211 m 

5 I 3 2,{ 1/2 
8.736 X 10 (r ;r) (1 + 3 sin\U) Hertz 

o 

(A.2) 

Figure 37 shows the equatorial field strength B (and f ) plotted against 
eq Heq 

r ,while Figure 38 shows the latitudinal variation of the field strength 
eq 

at the earth's surface B . 
o 

B. L-VALUE 

A dipole field line is described by 

r 

2 
cos 0 

r 
o 
2 

cos ¢ 
o 

(A.3) 

where the subscript 0 refers to the earth's surface. In a dipole, 

McIlwain's L parameter is 

L 

r 
eq 
r 

o 

1 
2 

cos 0 
o 

- 88-

(A.4) 
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to a centered dipole model. 

89 



(/
) 

(/
) 

:::
l 

0 <.!
> 

(,
D

 
co

 
0 

~ -
<

 
~ 

~ -
. 

-
L 

~--
+ -

-+ 
t·

 
-~
..

 
.\--

--
j 

-
r 

t
:
 

-;
 I

t
·
 
"
,
 

I 
J,

 
I 

_ 
. J

 .
' 

+
'
 

~ 
• 

t 
~ 

• 
, 

'"
 

, 
'
"
 
"
"
i
"
I
'
!
 

:1
' 

, 
,
:
'i
'L

t
·
·
,
 
J.

L.
i,

.~
, 

..
 

:, .r
. r.j.

i.i 
l:I

.+
f; 

'; 
i j

 lU 
I.lj·

.; 
.-.~ r

iJ1
l .. i

ll'
; d

.i
t .

' 
t
~
f
I
W
~
 

~-'.:: 
.:

:"
--

--
1

 
:+;~li

f-fill
, J

 !t f)! 
J 

'lr
Tt

 r
 it

 in'H
 _J

td#
JT.

. 
Ft+

 H:t
H·~~

~ •. 
:.::

 ••
.. -

L 
."

 
t-~ 

l
l
!
·
 

1 
lj·

f·
 .

 -; 
f-

i 
1 

,,1
+

+
 

t j
. 
i 

" 
..

. 
f 

: ~
 

I 
-

l
' 

,
'
I
 .
j
.
 

j 
I'

 
r-t

-t-
H

 
, 

i 
, 
.
.
 _

 
, 

_ 
..

 ~ _
__

__
_ 

, 
, 

0.
61

 
.. 
~
 

j 
ti

l 
,I

 .
• 

L\
 

"
,
'
 

f-t
 

. 
,t

it
t-

rH
-l

-T
t 
ti

 
I--=

l:±
.;.,-

."W
----

.---
---'

 
: .:

.; 
~j j,:

 :, i r
.i-f

j' I
 

~ ! 11
 n!·

i j·· 1: 
l~'

Htl
H 

~J'
 I~

· .
 ,. '

1 
~:~ 

·t=l
 

. m4
--~~

~,~~
 ~.

 ='-:'.~
; '~.' 

~.~ 
t:

tl
jJ

j 
ti

lf
i
t .! 

-. 
[1

'1'
11

 
+-t

-
_ 
ttR

#Y
 I

 
,'.,

.--
1:

::_
 

'.:.
::-

= _
_ =

._, 
: i

ii 
j 1

1 
j 

IH
II 

II 
~i
jl
jl
Hd
 

1:
 1,

 :
'1

,1
 

I 
.)

4
' 
ff

,t
i 

I 
H-d

:±i
~1'

· 
~-'

 --
' 

0
.5

 

L
A

T
IT

U
D

E
 

(d
eg

re
e)

 

I 
....

.. ·
-
-
-
t
.
~
.
-
-
~
 

-
J
.
-
-
-
-
-
-
-
·
~
-
T
 

-
'
-
~
:
-
-
t
-
-
-
·
7
-

F
ig

u
r
e
 

3
8

. 
A

 
p

lo
t 

o
f 

a 
d

ip
o

le
 

m
a

g
n

e
ti

c
 
f
ie

ld
 

s
tr

e
n

g
th

 
o

n
 

th
e
 

e
a

r
th

's
 

s
u

r
fa

c
e
 

a
s 

a 
fu

n
c
ti

o
n

 
o

f 
la

ti
tu

d
e
. 



• 

If tile reference level is changed to 1000 km altitude, ~l can be substituted 

for () by using Eq. (A.3) and we obtain 
'0 

L 

Figu.re 39 shows plots of ¢o and ¢l versus L-value. 

C.)IP ANGLE 

The radial and tangential components of B are given by 

B 
r 

3 
0.624 (r /r) cose 

o 

3 
0.312 (r /r) sine 

o 

These vector components are related to dip angle 0 by 

tano = 
B 

r 
2 cote 2tan¢ 

(A.5) 

(A.6) 

(A.7) 

FigLre 40 is a plot of /) as a function of ¢. The horizontal scale at top 

is the L-value at the earth's surface. 

D. LENGTH OF FIELD LINES 

The arc length along a dipole field line between the equator and 6 

can be written as (see Helliwell [1965]) 

S 
1 

27'3 
r 

o 
2 

cos ~ 
o 

(x + sinhx coshx) (A.8) 

where sinhx /3 si~¢. By substituting sinhx 
x -x 

(e -e )/2 and coshx 
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Figure 40. A plot of the dip angle as a function of latitude for a dipole field. The 
horlzontal scale at the top shows dipole L parameter. 

93 



x -x 2 ~ 
(e + e )/2, and using the identity cosh x - slnh-x 

be rewritten as 

r 
o 
2 

cos ¢ 
o 

l. Eq. (A. K) (' a II 

(A.9) 

Figure 41 shows a plot of the arc length measured from the dipole equator 

as a function of latitude for several L-values. Figure 42 shows t/w arc 

length from the equator to the 1000 km level S, plotted against L. 

E . TUBE VOLUME 

We define V as the volume of a tube of force with 1 
2 

cm cross-

sectional area at 1000 km and extending to the' equator. We wri te 

7",or 
1000 km 

and use Eqs. (A.l) and (2.15) to obtain 

4 4 
r L 

o 
-3-

r
l 

The integration yields 

SEL-71-058 

(1 + 3 . 2" ) 1/2 
SIn l' 
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Figure 41. A plot of the arc length of the earth's dIpole field lines as a 
function of latitude for several L values . 
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