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Introduction

The need has long existed for a capability to obtain
reliable information over large geographic areas in a timely
manner. Such a need is present in many discipline areas. The
past few years have seen a marked increase in the awareness of
our needs for accurate land use planning, and the accompanying
realization that our existing capability to obtain accurate and
up-to-date land use information is not adequate to meet society's
current and future needs. Because of the very rapid changes in
the condition of agricultural crops and the influence of crop
yield predictions on the world market, the need for accurate,
timely information is particularly acute in agricultural informa-
tion systems. It is for these reasons that, as remote sensing
technology had developed over the past few years, the potentials
for using this technology have received wide-spread attention.

In examining the possibilities for using remote sensing
to help obtain accurate and timely information involving land
use mapping and agricultural resources, one must review the
advantages and disadvantages of the various remote sensing
instrumentation and analysis techniques, so that the user needs
can be met with the most efficient system possible.

Use of Multispectral Scanner Data

Land use mapping and agricultural information systems
both require data from large geographic areas. It is rather
obvious that high flying aircraft or satellites can collect
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enormous quantities of data over vast geographic areas in a
relatively short period of time. Such masses of data can be
collected with a variety of sensor systems, each of which has
its own particular advantages as well as disadvantages. However
the reduction of such data into useful information appears to
be a rather difficult problem, particularly if the information
is required in a very short time frame. Therefore, a key factor
developing a system which best meets the user needs appears to
be the data reduction techniques.

One such technique that has been developed involves the use
of digital computers and the application of pattern recognition
theory to multispectral scanner data obtained by aircraft or
satellites. This technique was conceived and has been developed
by the Laboratory for Applications of Remote Sensing (LARS) at
Purdue University to enable machine-assisted mapping and tabula-
tion of earth surface features over large geographic areas in a
timely manner (3, 4).

Multispectral scanner data has been primarily utilized because
it can be easily quantified and subsequently processed by digital
computer techniques, and also because the data format is ideally
suited for pattern recognition analysis. In essence, the multi-
spectral scanner allows one to measure the amount of energy
reflected or emitted from a particular area on the ground (as
"seen" by the instantaneous field of view of the scanner system),
and the amplitude of the signals in the various wavelength bands
can then be developed into a measurement vector, or what has
frequently been referred to as a "spectral signature". (See
Figures 1, 2, and 3). Such a measurement vector quantitatively
defines the spectral characteristics of the material in that
particular area on the ground. A key factor then, involves develop
ment of a technique whereby one can train the computer to recognize
the spectral characteristics of all of the earth surface features
of interest to the user (as contained in these measurement
vectors) and to accurately identify each of these materials in the
entire set of data obtained.

The essence of such automatic processing of remote sensor
data involves a man/machine interaction, whereby the man will
train the computer (utilizing data collected over a limited
geographic area), and then the computer will continue to map
and analyze data collected over a large geographic area at a
much faster rate than would be possible for the man if he were
using normal image interpretation techniques.

Considerations in Automatic Data Processing

There are a number of key elements involved in the use
of ADP for analysis of multispectral scanner data. One
of the first questions encountered is: "What type of
categories or classes of material should the computer be
trained to recognize?" Basically there are two conditions



which must he met hy each class involved in an analysis of
remote sensor data using pattern recognition techniques:

•The class must be spectrally separable from all other classes.

•The class must be of interest to the user or have informational
value.

In working with multispectral scanner data, one soon finds
that often the classes of informational value cannot be spec-
trally separated at certain times of the year. One reason for
this is that various species of green vegetation have very
similar spectral characteristics even though their morphological
characteristics may be quite different. The need for a class
to be both separable and have informational value therefore leads
to two quite different approaches in training of the computer
system.

The first approach involves the designation to the computer
system of locations in the data where the.earth surface material
is known and has informational value (i.e. a certain location
in the data contains corn, another soybeans, another wheat,
water etc.) This "training sample" approach has been used
quite effectively for agricultural and land use mapping
analysis (1, 4). One must be constantly alert, however, to
recognize situations in which two classes may be of great in-
formational value and interest, but which cannot be separated
spectrally. In such situations these classes can be combined
if there is a sound, logical reason for doing so (e. g. wheat
and oats could be combined into a class defined as small grains,
but wheat and soybeans could not be logically grouped).

A second approach to training the computer system involves
"clustering" of the data, in which case one simply designates an
area or a number of different areas in the data to the computer,
and then designates the number of spectral classes into which
this data should be divided. The computer can then be programmed
to designate which areas in the data belong to which spectral
classes and proceed to classify and map these results. The user
must then simply relate the classification output to known surface
observation data, and in essence determine what materials actually
represent each of the different spectral classes (e. g. spectral
Class 1 is wheat, Class 2 is bare soil, etc.) The difficulty
with this system involves the determination of the number of
spectral classes present and the fact that the classes of most
interest often have subtle spectral differences while many of
the other classes present in the data may be easily separated
spectrally but be of little informational value or interest to
the user. Experience at LARS has indicated that a combination
of the two systems seems to be the most satisfactory and most
effective procedure to follow.



Another subject that often arises in ADP of remote sensor
data involves two rather different concepts used in the "training
sample" approach discussed above. These two concepts could be
termed the "data bank" and the "extrapolation mode" for obtaining
data to be used in the training procedure. In the "data bank"
approach, the concept is to have many sets of spectral signatures
available in computer storage. Such a "data bank" would include
signatures for all different cover types of interest. When a new
set of remote sensor data is obtained, one simply selects the
signatures for the cover types of interest from the existing
"data bank", and, using these as training samples, classification.
The advantage is a great reduction in the amount of time required
to train the classification processor as to the characteristics
of the spectral signatures involved in each new set of data.
Such a system would be highly desirable and, in theory, could
work under certain selected sets of conditions. However, in
the real world situation, such a concept does not appear to be
practical in most cases. The reasons for this involve the
temporal effects upon the spectral characteristics of the
earth surface features which are measured and which one is
attempting to classify. Many studies have shown that the spectral
characteristics of different types of vegetation change drastically
as a function of time, both for a given growing season and from
one year to the next. Plant maturity causes a nearly continuous
change in spectral characteristics of agricultural crops. For
instance, what is often measured early in the growing season is
the amount of bare soil in the proportion to the amount of green
vegetation present in the instantaneous field of view of the
scanner, rather than a unique spectral signature of the different
crop species. Since the farmer must depend upon weather
conditions to govern the date of planting for the various crop
species, the heights of the corn (and therefore the canopy
coverage and the vegetation/soil relationship) will be quite
different from one year to the next as of the same date on the
calendar. The weather conditions governing the germination and
rate of growth of the vegetation after planting are also important,
and will cause considerable variation in spectral response
throughout the growing season and from one growing season to the
next. There are also difficulties in determining differences in
atmospheric attenuation from one flight mission to another, and
in being able to calibrate sensor data to a high degree of
radiometric precision (2).

In view of such problems of variation from one flight
mission to the next, it would seem that an extrapolation mode
is much more logical for obtaining spectral data with which to
train the computer for the classification task. In this case
one simply uses the data collected under the existing atmospheric
conditions and conditions of plant maturity, stress, growth,
etc., abstracts the training samples from this data and then
proceeds with the analysis task.



A Computer-Aided Analysis System for Remote^ Sensor Data

The following paragraphs describe the primary analysis system
developed by the Laboratory for Applications of Remote Sensing,
as an illustration of one technique that has been developed to
allow automatic data processing of remote sensor data. Perhaps
one should start by pointing out that the term "automatic data
processing" is somewhat of a misnomer, in that there is a
definite requirement for a very close man-machine interaction
throughout the analysis sequence. Therefore, it would be much
more correct to call it a "computer-aided analysis" of remote
sensor data.

A digital computer system has been used at LARS because
of the ease and flexibility in developing the system as a
research tool and in interfacing with the multispectral scanner
data. Experience has shown that a general purpose digital
computer has proven very effective in these developmental phases
of an analysis system. .However, it appears probable that in an
operational system of the future, a general purpose digital
computer would not be used, but rather, a special purpose
digital computer (which can obtain near real time computational
speed) or possibly a hybrid analog/digital system would be more
likely to be utilized.

One of the first requirements in designing an analysis
system involved development of a capability for interfacing with
the multispectral scanner data contained on the magnetic tapes.
Since the data is originally collected by the scanner system in
an analog mode, it must first be digitized for use with a
digital computer system. A procedure was thus developed to assign
a number of each scan line of data collected, and then to assign
a sample designation to each digitized data point along the
individual scan lines. Thus an X , Y coordinate system could be
developed for any set of multispectral scanner data or digitized
photography available for analysis.

Image Display

To most effectively interface with the digitized data,
a map-like display of the scanner data in one or more wavelength
bands is necessary, so that the user can work with the data
when it is in an image format. At present, we accomplish this
using one or two techniques. First is an alphanumeric printout
in which the individual elements in the digitized data are
displayed using a standard line printer, and utilizing different
alphanumeric symbols to represent certain levels of radiance
measurements. An example of this is shown in Figure 4. The
researcher may then specify X, Y coordinates for particular areas



of interest to him in his analysis task, such as training areas,
test areas, portions of the data to be classified, etc. The
details of the programs and how they function in order to
obtain this type of printout are contained in the literature (4)
and so will not be repeated in this paper.

A second method of displaying the imagery is through the
use of a special purpose digital display unit as shown in
Figure 5. This device presents a cathode ray tube (CRT) display
of individual wavelength bands of imagery. Through the use of
a light-pen the researcher may then select the areas of interest
(Figure 6) and the X, Y coordinates so designated are
automatically punched into a deck of data cards. It should be
noted that the X, Y coordinates defined for a particular area
using one wavelength band of data are equally valid for all
other wavelength bands available on the data tape (perhaps
as many as 24 wavelength bands with a new NASA scanner system).

Statistics Processor

The system which we developed to actually analyze multi-
spectral scanner data is called LARSYSAA and is subdivided into
four sections. These include 1) statistical analysis, 2) wave-
length band or "feature" selection, 3) pattern classification,
and 4) results display (Figure 7).

The LARSYSAA statistics processor can provide several types
of outputs for use in the analysis of the data. These include
histograms of individual fields or groups of fields which have
been designated a class (Figure 8a § b), tables showing the means and
standard deviations for data in individual fields or classes and
correlation matrix tables (Figure 9), multispectral response
graphs (Figure 10), and statistics data decks used in the classi-
fication. The multispectral response graphs represent the
relative amplitude of the reflected or emitted energy in each
of the wavelength bands involved in the analysis. The mean
plus or minus one standard deviation is plotted in a linear format,
thereby causing the length of the line to give some indication
of the statistical quality of the data in that wavelength band.
By comparing several different cover types in each of the
various wavelength bands involved, one is able to obtain some
indication of relative reflectance or emission for the different
materials involved, as a function of wavelength. It should
be noted that at this point in the data processing there is
no correlation indicated between wavelength bands.

Wavelength Band Selection

Experience has showed that when working with many wavelength
bands and a large number of categories to be classified, maximum



overall accuracy in classification can be obtained by utilizing
all wavelength^bands available. However, this requires a marked
increase in computer time. Frequently, only a slight increase
(2 or 3%) in accuracy of classification is obtained when using
12 wavelength bands as compared to only 4 or 5 wavelength bands.
It is therefore ̂ frequently desirable to reduce computer time
by utilizing only 4 or 5 wavelength bands in the classification
procedure. The question becomes: "which combination of'only
four or five wavelength bands would be the optimum subset
to utilize in classification?" (Out of 12 wavelength bands
available, there a\re 485 possible combinations of 4 wavelength
bands.) To aid the researcher in quantitatively selecting
the optimal subset,\ a selection processor has been devised which
measures the separability between all possible pair-wise
combinations of cover type materials and then assesses the
average and minimum \separability for all possible combination
of wavelength bands (Figure 11). Thus, the researcher is able
to obtain a indicatio\n of the optimum combination of wavelength
bands to utilize in any particular classification task.

Classification Processor

The classification^itself utilizes a pattern recognition
algorithm involving a Gaiussian maximum, likelihood scheme.
This is a relatively simple pattern recognition algorithm
and has been used successfully at LARS by many different
researchers. As indicated previously, there are a large number
of pattern recognition algorithms which could be utilized, but
this one has been found to|be adequate for analyzing many
different sets of data collected under a variety of conditions
and being analyzed for a large number of potential user
applications, including lamd use analysis, agricultural species
and soils mapping, forest clover mapping, geological and hydro-
logical features analysis, land others. In the classification,
each resolution element or Idata point is assigned to one of
the classes designated by tlVe analyst, and these results are
then stored on magnetic tape. The researcher can then display
these results in a variety o\f ways.

Results Display

Two major results display formats are used. The first involves
an alphanumeric map-like printout on the line printer, in which the
user has selected symbols for! each of the different classes of inter-
est, such as C for corn, S for soybeans, F for forest, W for water,
etc. (Figure 12). He may then compare these classification results
to aerial photography or maps \indicating known agricultural
situations or land uses and determine in a qualitative way the
accuracy of the classification\results. Problem arises, however,



when it becomes desirable to attempt the classification again
with a different combination of wavelength bands or spectral
classes. For this reason, a more quantitative evaluation
procedure was devised that utilizes "test areas". In this
procedure, the analyst designated (at some time before the
actual classification in order to eliminate possible biases)
a number of locations in the data where the cover type of
the earth surface feature is known. The X, Y coordinates of
these test areas are determined and one is able to obtain
a table to the classification results for each of the
individual test areas and for all test areas in combination.
Figure 13 shows an example of such a classification table.
Such tables can also be obtained for the training fields,
in which case one is simply examining the results to determine
whether or not there is a possibility to ebtain spectral
separation between two cover types of interest.

The table showing classification results for test areas
is primarily an indication of the degree of reliability of the
classification result. It. is possible, for example, for the
analyst to have specified to the computer a very atypical
set of fields on which to train for the classification task.
In such a case, the classification accuracy for the training
fields could be quite high but the overall classification
throughout the flightline would be rather poor. This would then
be indicated by a gross difference in accuracy in the training
class classification results and test classification results.

.If the classification results are accurate, the analyst
can also designate the entire flightline area as a test area
and obtain a table which would give an indication of the amount
of ground cover present in that flightline area for each of
the different cover types classified. This could be expressed
as a percentage of the total area or, by knowing the altitude
of the aircraft and by applying factors to correct for scanner
geometry distortion, one could obtain the table expresses as
acreages of the different cover types.

Thus, the opportunity exists to obtain results from this
type of classification either in a map format or in a tabular
format. The need exists for both types of results formats to
be available to various user groups.

Further Considerations and Future Needs in ADP
of Multispectral Scanner DaTa

Only the spectral component of the data analysis problem
has been discussed thus far. However, as previously indicated,



the differences in spectral characteristics between one species
of green vegetation and another have been found to be rather
subtle at many times during the growing season. Of considerable
importance are the changes in spectral characteristics of
designated species at various times during the growing season.
For example, in mid-July it is quite difficult to spectrally
differentiate between corn and soybeans in that they both
represent a solid canopy of green vegetation. However, two
weeks later, after the corn is tasseled, enough of a difference
in spectral response exists to obtain a much more reliable
classification result. It therefore becomes quite important
to take advantage of selected times during the growing season
when different cover types of interest offer rather distinct
and perhaps unique spectral characteristics. For example,
in late June in central Indiana wheat is the only crop species
having a rather golden brown appearance, and therefore produces
a set of spectral characteristics quite different from the
surrounding green vegetation. This would indicate that the
time period in which remote sensor data is collected should be
carefully selected to optimize the opportunity for spectral
differentiation of the particular cover types of interest.

Another approach which also utilizes temporal data involves
data collection from more than one time during the growing
season and then combine, or overlay, one set of data on to
another to obtain a set of multispectral and multitemporal
data. Such an approach offers many distinct advantages. For
example, even though wheat may offer a unique and characteristic
spectral signature in late June, the .agricultural user may
desire to obtain a map of wheat acreages much earlier in the
growing season. By collecting data in early fall, very little
of the area overflown would be in bare soil except for fallow
fields and those being prepared for planting wheat. Bare soil ,
however, is not positive evidence that the area will be planted
in wheat. In the early spring, the wheat is lush and green,
while most of the surrounding areas are in bare soil or pasture
land which also would be lush and green. Therefore, wheat
does not display a unique spectral signature in either the
fall (when other areas also look like bare soil), or in the
spring when other areas also are in a lush green vegetative
condition. However, by combining data from the two seasons, if
there is an area that is bare soil in the fall and bare soil
again in the spring, it is not wheat; if it is green vegetation
in the spring but is also green vegetation in the fall, again
it would not be wheat. Only those fields displaying spectral
characteristics of bare soil in the fall and green vegetation
early in the spring should have a high probability of actually
being wheat. From the pattern recognition standpoint, the
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classification algorithm is simply utilizing data in a
measurement vector and it makes no difference whether such data
is.a vector comprised of data from different wavelength bands
at one ^.ime of the year, or data from the same wavelength
band at several times of the year, or a combination of data from
several wavelength bands from several times of the year. By
using such a multispectral and multitemporal analysis procedure,
one ought to be able to obtain more accurate classification
accuracies much earlier in the growing season than would be
possible utilizing multispectral data alone. However, accurate
overlay of different data sets is not a simple problem,
particularly if different geometric configurations are involved.

In addition to using spectral and temporal data, there
appears to be strong evidence that a need exists for making
use of the spatial data contained in scanner imagery. This
is similar to using textural information in photointerpretation.
For example, examination of aerial photography indicates that
it is quite easy to distinguish between forested and agricultural
lands because of the coarser texture of the forested areas.
Such a texture is created by the individual spectral characteristics
of the sun-side of tree crowns, the shaded side of tree crowns,
shadow areas between the tree crowns, etc. Analysis of the
spectral characteristics of leaves of various tree species has
revealed that frequently they are spectrally very similar to the
spectral characteristics of agricultural crop species. This
similarity has been confirmed in the analysis of multispectral
scanner data, laboratory DK-2 spectra, and field spectral
analysis results. By utilizing the spectral characteristics not
only of an individual resolution element but also the surrounding
resolution elements, and taking advantage of the spatial distri-
bution of the multispectral data, it would appear that one should
considerably increase the accuracy of ADP classification results.
A great deal remains to be done to develop these techniques
into a usable system, but I am convinced that such development
will offer a considerable increase in capability for automatic data
processing of remote sensor data. Because larger resolution
elements will utilize the average spectral response over larger
areas, it would appear that there are some situations in which
a coarser resolution in the multispectral scanner data (i.e.
data obtained from the Earth Resources Technology Satellite
system) would offer considerable advantage for increased accuracy
in the use of ADP techniques on remote sensor data.

The primary limiting factor for ADP in the future will
involve the degree of sophistication in classification required
by the user, in relation to the degree of natural variability
encountered over large geographic areas. Numerical analysis
techniques can achieve a great deal of speed, and are therefore



11

ideally suited to analysis problems involving large quantities
of data, hut will probably need to be limited to relatively
simple analysis situations. Therefore it is necessary to
consider the degree of sophistication required in an analysis
procedure and the amount of data requiring analysis before
concluding that either automatic data processing or manual
processing is the best approach for any particular information
requirement.

Summary and Conclusions

When one considers current predictions concerning population
growth and compares them to the existing conditions of our
natural resources, it becomes obvious that a great need exists
for obtaining accurate up-to-date information concerning our
resource base. Only by providing our resource managers with
the type of information that they require can we hope that
they will be able to carry out their jobs effectively and
efficiently. Remote Sensing has already been proven a useful
tool in several areas of application and management of our
natural resources and it would appear that the potential appli-
cations for remote sensing are nearly unlimited.

The application of ADP techniques to multispectral scanner
data has been proven feasible. It seems apparent that such
techniques will be necessary in the future if we were to take
full advantage of our ability to collect data at frequent
intervals over vast geographic areas. Future developments in
the handling of temporal and spatial data as well as spectral
data should b,ring about significant improvements in automatic
data analysis techniques. •
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Figure 5 LARS Digital Display Unit



Figure 6 Illustration of Digital Scanner Data Showing
Locations of Training Areas
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Figure 11 Table Showing an Example of the Feature Selection/
Separability Portion of the LARSYS Program
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Figure 12 Alphanumeric Printout "Map" Showing the Classification
Results Using Four Wavelength Bands and the Following
Cover Types: Forest (M), Water (1), Forage (=),
Corn (I), Soybeans (/)
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