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SUMMARY

The utilization of minimum dis-
tance classification methods in remote
sensing problems, such as crop
species identification, is considered.
Minimum distance classifiers belong to
a family of classifiers referred to as
sample classifiers. In such classi-
fiers the items that are classified
are groups of measurement vectors
(e.g. all measurement vectors from an
agricultural field), rather than in-
dividual vectors as in more conven-
tional vector classifiers.

Specifically in minimum distance
classification a sample (i.e. group of
vectors) is classified into the class
whose known or estimated distribution
most closely resembles the estimated
distribution of the sample to be
classified. The measure of resemblance
is a distance measure in the space of
distribution functions.

The literature concerning both
minimum distance classification pro-
blems and distance measures is review-
ed. Minimum distance classification
problems are then categorized on the
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basis of the assumption made regard-
ing the underlying class distribution.

Experimental results are presented
for several examples. The objective of
these examples is to: (a) compare the
sample classification accuracy (%
samples correct) of a minimum distance
classifier, with the vector classifi-
cation accuracy (% vector correct) of
a. maximum likelihood classifier; (b)
compare the sample classification
accuracy of a parametric with a non-
parametric minimum distance classifier.
For (a), the minimum distance classi-
fier performance is typically 5% to
10/2 better than the performance of the
maximum likelihood classifier. For
(b), the performance of the nonparame-
tric classifier is only slightly
better than the parametric version.
The improvement is so slight that the
additional complexity and slower speed
make the nonparametric classifier un-
attractive in comparison with the para-
metric version. In fact disparities
between training and test results sug-
gest that training methods are of much
greater importance than whether the
implementation is parametric or non-
parametric.

INTRODUCTION

A fairly common objective of
remote sensing in connection with earth
resources is to attempt to establish
the type of ground cover on the basis
of the observed spectral radiance.
The examination of systems capable of
achieving this objective shows that a



certain duality of system types exists.
Landgre~be refers to the two types as
image-oriented systems and numerically-
oriented systems. The duality exists
primarily for historical reasons as a
consequence of the independent develop-
ment of photographically oriented and
computer oriented technology. The
primary distinction between the two
system types is that in image oriented
systems a visual image is an essential
part of the analysis scheme while in
numerically oriented systems the
visual image plays a secondary role.
In Fig. 1 the location of the "Form
Image" block in relation to the
"Analysis" block characterizes the two
system types.

In numerically oriented remote
sensing systems it is frequently pos-
sible to design the data collection
system in such a manner that classifi-
cation becomes a problem in pattern
recognition. This situation prevails
if one attempts to study earth re-
sources through the utilization of
multispectral data-images. The term
multispectral image (i.e. without the
modifier data) is used to refer to one
or more spectrally different superim-
posed pictorial images of a scene.
The modifier data is added to indicate
that images are stored as numerical
arrays as opposed to visual images.

To obtain a multispectral data-
image of a scene, the scene in question
is partitioned on a rectangular grid
into small cells (pixels) and the
radiance from each pixel for each wave-
length band of interest is measured
and stored. The set of measurements
for a pixel constitutes the measure-
ment vector for that pixel. A multi-
spectral data-image for a scene is
simply the complete collection of all
measurement vectors for the image.
The spatial coordinates (i.e. row and
column number) of each pixel are of
course also recorded to uniquely
identify each measurement vector.
Fig. 2 depicts the situation.

The methods used to generate
multispectral data images can conven-

iently be divided into two categories.
In the first category, film is used to
record the image. The film is subse-
quently scanned and digitized to pro-
duce a. data-image. The multispectral
property is obtained either by scanning
several images photographed through
different spectral windows, and over-
laying the data; or by utilizing color
film and separating the spectral com-
ponents during the scanning procedure.
In the second category the image is
generated electrically and stored in
an electrically compatible form,
usually on magnetic tape as either an
analog or digital signal. The electri-
cal signal to be stored can be gener-
ated by a number of different systems*,
the multispectral scanner and return
beam vidicon probably qualify as the
two most common examples. For the
scanner the multispectral property is
obtained by filtering of the spectral
signal collected through a single aper-
ture prior to recording, or by the
superposition of several unispectral
images collected through different ap-
ertures .

As already stated, pattern recog-
nition techniques can serve as the
basis for affecting classification of
multispectral data-images. Much of
pattern recognition theory is formu-
lated in terms of multidimensional
spaces with the dimensionality of the
space equal to the dimensionality of
the vectors to be classified. This
vector dimensionality is, of course,
determined by the number of attributes
or properties of each pixel to be con-
sidered in the classification (e.g.
number of spectral bands). Classify-
ing a multispectral data-image by
classifying the observation vectors
from such an image on a pixel-by-pixel
basis falls naturally into this common
pattern recognition framework. In con-
trast to this vector-by-vector approach
there are classification schemes which
collectively will be referred to as
"sample classification schemes". In
such schemes all vectors to be classi-
fied are first segregated into groups
(i.e. samples) such that all the vec-
tors in a group belong to the same



class. The whole group of vectors is
then classified simultaneously. The
minimum distance method considered is
one such classification scheme.

In utilizing sample classification
schemes two distinct problems can be
identified. The first is concerned
with partitioning the measurement vec-
tors into homogeneous groups, while
the second is concerned with the
classification of these groups. Ex-
cept for the comments in the next
paragraph consideration is restricted
to the second problem.

It frequently occurs for multi-
spectral data-images that many of the
adjacent measurement cells belong to
the same class. For example in an ag-
ricultural scene each physical field
typically contains many pixels. In
fact it is precisely this condition
that prompts the investigation of sam-
ple classification schemes. In such
situations the physical field bounda-
ries serve to define suitable samples
for problems like crop species identi-
fication, and it is in this context
that sample classifiers might also be
referred to as per-field classifiers.
It is apparent that for the situation
just described one method of automat-
ically defining samples is to devise a
scheme that automatically locates phy-
sical field boundaries in the multi-
spectral data-imagery ' . For the
minimum distance classification results
presented later, physical field bound-
aries will actually be used to define
the samples, but the field boundaries
are located manually rather than auto-
matically. A second and perhaps more
promising approach to the problem of
defining samples is via observation
space clustering. In this approach
vectors from an arbitrary area are
clustered in the observation space, and
all the vectors assigned to the same
cluster constitute a sample irrespec-
tive of their location in the arbitrary
choosen area. In this case the term
fields no longer seems appropriate
and consequently the term sample class-
ifier is preferred over the term per-
field classifier.

It is apparent that sample class-
ification schemes cannot be used in all
situations where a vector-by-vector
approach is possible. A basic require-
ment is that the data to be classified
can either be segregated into homogen-
eous samples or occur naturally in
this form. Where the minimum distance
scheme can be applied it intuitively
has several potential advantages over
a vector-by-vector classifier; in
particular it is potentially faster
and more accurate.

It seems logical that provided
the time required to automatically de-
fine the samples is not too great, then
sample classifiers should be faster
than a vector-by-vector classifier.
This is of considerable importance in
utilizing a numerically oriented remote
sensing system to survey earth re-
sources because a characteristic of '
such surveys is the tremendous volume
of data involved. One would also an-
ticipate that the vector classification
accuracy (% vectors correctly classi-
fied) for vector-by-vector classifiers'
would be lower than the sample classi-
fication accuracy (% samples correctly
classified) for sample classifiers.
The reason for this is that in sample
classifiers all the information con-
veyed by a group of vectors is used to
establish the classification of each
vector, whereas in vector-by-vector
classifiers each vector is treated
separately without reference to any
other vector. In a sense sample class-
ifiers utilize spatial information be-
cause vectors are classified as groups,
which naturally have some spatial ex-
tent. No spatial information is used
in vector-by-vector classifiers, con-
sequently, sample classifiers should
perform better since spatial informa-
tion is certainly of some value.

MINIMUM DISTANCE CLASSIFICATION

Problem Formulation

In a certain sense minimum dis-
tance classification resembles what is
probably the oldest and simplest ap-



proach to pattern recognition , namely
"template matching" . In template
matching a template is stored for each
class or pattern to be recognized (e.g.
letters of the alphabet) and an un-
known pattern (e.g. an unknown letter)
is then classified into the pattern
class whose template best fits the un-
known pattern on the basis of some
previously defined similarity measure.
In minimum distance classification the
templates and unknown patterns are dis-
tribution functions and the measure of
similarity used is a distance measure
"between distribution functions. Thus
an unknown distribution is classified
into the class whose distribution func-
tion is nearest to the unknown distri-
bution ir terms of some predetermined
distance measure. In practice the dis-
tribution functions involved are usu-
ally not known , nor can they be ob-
served directly. Rather a set of ran-
dom measurement vectors from each dis-
tribution of interest is observed and
classification is based on estimated
rather than actual distributions .

It is necessary to define more
precisely what constitutes a suitable
distance for minimum distance classi-
fication. Mathematically the terms
"distance" and metric are used inter-
changeably. For our purpose it is con-
venient to distinguish between the two
terms. In essence all that is required
for a well-defined minimum distance
classification rule is a measure of
similarity between distribution func-
tions which need not necessarily pos-
sess all the properties of a metric.
The term distance refers to any suit-
able similarity measure; the term
metric is used in the normal mathemat-
ical sense. More specifically a metric
on a set S is a real valued function
6(.,.) defined on S X S (X indicates
cartesian product) such that for arbi-
trary F,G,H in S

(a)

(c)
(d)

(2)

6(F,G) >. 0 1
5(F,F) =0 2
If 6(F,G) = 0 then F = G 3
6(F,G) = S(G,F) U
6(F,G) + 6(G,H) >. 6(F,H) 5

A distance, as used herein, is defined
to be a real valued function d(.,.) on
S X S such that for arbitrary F,G,H in S
at least metric properties a,b(l) and
usually b(2) and (c) hold. For theoreti-
cal proofs it is in fact often desire-
able to require that d be a true metric
while in practical application such a
restriction is usually not necessary.

Not only are distances between
individual distribution functions of
interest but since each class could
conceivably be represented by a set of
distribution functions the distance
between sets of distributions is also
of interest. Definition 1 defines the
distance between sets of distributions.

Definition 1 - Let the distance
d(F,G) be defined for all F,G, in A,
where A is an arbitrary set of cdf's
of interest. If Aj_ and A2 are non-
empty subsets of A then the distance
d(Â , A2) between the sets AI and A2
is defined as

d(A1> A2) = Inf d(F,G)

Note that Definition 1 applies to
finite and infinite sets of distribu-
tion functions. Of course, if the sets
are finite then taking the infimum is
equivalent to taking the minimum.

Futhermore , if each set consists
only of a single distribution function
then the distance between the sets is
precisely the distance between the
distribution functions. The distance
between a distribution function and a
set of distribution functions is also
included as a special case. It is
necessary to make some comments about
the usage of the notation d(F,G) .
Some of the distance measures consid-
ered are expressed in terms of prob-
ability density functions (pdf *s)
rather than cumulative distribution
functions (cdf's). The convention
adopted is that the notation d(F,G) is
still used and referred to as the dis-



tance between cdf s, even though the
distance is expressed in terms of the
densities of F and G (i.e. in terms of
f and g) .

The minimum distance classifica-
tion scheme can now be formally defin-
ed. It is convenient to use a decision
theoretic framework for this purpose.
In general to specify a problem in this
framework it is necessary to specify:

(a) Z - the sample space of the observ-
ed random variable .

(b) £2 - the set of states of nature;
that is, the set of possible cdf's of
the random variable. If the function-
al form of the cdf is known, then Q
can be identified with the parameter
space.

3g

(c) A - the action space; that is the
set of actions or decisions available
to the statistician.

£d) L (a,F) - loss function defined on
AXQ which measures the loss incurred if
Fcfi is the. true state of nature and
action aeA is the action taken.

The general formulation of the
minimum distance problem in this frame-
work follows :

(a) Z = E (q-dimensional Euclidean
space )

(b) n = [ f i , n , . . . . , f i ] vhere
is the set of possible distribution
functions for the ith class, i = 1, 2,
• • • y it •

(c) A = [alt &2» ..., a.] where a^ is
the decision to decide the random sam-
ple' to be classified belongs to the
ith class, i = 1, 2, ...,k.

(d) L(a,F) = 0 if
was taken

L(a,F) = 1 otherwise.

and action

A decision rule is a function de-
fined on Z and taking values in A. The
minimum distance decision rule is given
by definition 2.

Definition 2 - Let Y be the vector
of all sample observations. The mini-
mum distance decision rule DMD'•&»•* is
DMD(Y_) = a± (I.e., decide the random
sample to be classified belongs to
class i) in case

d(FH, A(i)

J = N, A(J>)
Where A is the set of cdf's select-
ed to represent the ith class and %
is a sample-based estimate 6f the cdf
of the random sample classified.

Several items in definition 2 re-
quire clarification. The vector Y in-
cludes not only the random sample to
be classified, but also any other ob-
servations used in the classification
procedure. For example, if training
samples are used for each class, these
are included in Y. The sets A^i) also
require comment. A^' may be the set
of all possible.distributions for
class i (i.e. A^; = fi(i') or it may
be a subset of n'i) or the sample-
based estimates of a set cdf's select-
ed to represent class i. Finally the
term sample-based estimate is used to
refer to any estimate of a cumulative
distribution function or its corre-
sponding density which is based on a
random sample from the distribution in
question. A number of suitable esti-
mators exist^ and the present formula-
tion does not restrict the type of
estimator. Later attention will be
focused on distance measures based on
densities. In the parametric case the
densities will be estimated by esti-
mating the parameters describing the
densities (parametrically estimated
pdf's). In the nonparametric case den-
sity estimates will be based on histo-
grams (density histogram estimation).
To obtain a density histogram estimate
of a pdf the observation space is
partitioned into square bins and the
probability.density estimate in any
bin is the percent of vectors used to
estimate the density which fall in the
bin.

A number of special cases of the
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above formulation are noty considered.
These special cases are basically a
consequence of making different as-
sumptions regarding J2, and A = [Â 1',
A<2), ..., Â k)]. In Type I problems
the sets of distribution functions re-
presenting the classes are assumed to
be known sets. Actually, this pro-
blem is not of great interest from a
practical point of view, since class
distributions are not normally known,
but it is interesting from a theoreti-
cal point of view because of its rela-
tive simplicity.

Type I - The fl
cdf's

(i),

Case (a) The sets

Case (b)

s are known sets of

are infinite and

e sets, p
) = n(i)

are finite and

Case (c) The sets
cdf/class) and A

Type II problems differ from Type
I problems in that the possible dis-
tribution functions for each class are
known to be q-variate distributions
but are otherwise unknown. Consequent-
ly, all distributions used in the mini-
mum distance decision rule must be est-
imated. Since in practice only a
finite number of estimated distribu-
tions can be utilized this factor must
be considered in formulating the pro-
blem. If the sets of states of nature
(e.g. the flUJ's) are infinite the
infinite sets must somehow be replaced
by a representative finite set. A
similar attitude must be adopted if it
is known a_ priori that the sets ft(i)
are finite but it is not known precise-
ly how many distribution functions each
n\i) contains (e.g. how many subclasses
of wheat are there?); or even if the
precise number is known, it may not be
known how to obtain a random sample
for each distribution function (i.e.
how are samples representing different
subclasses of wheat selected?). Final-
ly, in the finite case, even if a ran-
dom sample for each distribution func-
tion of interest can be obtained,

their number may be so large that for
practical reasons it may be desireable
to use a smaller number of representa-
tive distributions. Thus , the need
arises for a method to select a repre-
sentative set of distribution func-
tions from a larger (possibly infinite)
set. To do this assign a distribution
H*U) to Wi), i - 1, 2, ..., k. That
is the events to which probability
mass is assigned by H*'*' are sets of
distributions in ft'1). To select a
random set of cdf's from J^1' (i.e. to
select a random set of training sam-
ples for the ith class) is now equiv-
alent to selecting a random sample
from H*^1).

The above formulation is rather
complicated in that a distribution over
a space of functions is involved. This
complexity can be avoided by restrict-
ing consideration to a parametric fam-
ily characterized by s real parameters.
Making the logical assumption that a
one to one correspondence exists be-
tween cdf's in f̂ 1' and points in the
parameter space e(i)(=Es), it is ap-
parent that assigning a distribution
H*(i) to n(̂ ' is equivalent to assign-
ing some other distribution H^i' to
the parameter space e'i'. Consequent-
ly, in the parametric case rather than
deal with H*'i', which is a cdf on a
set of distribution function, only H(i)
which is a cdf in Es need be consider-
ed.

It is perhaps, worthwhile to re-
state the above ideas in terms of mul-
tispectral data-imagery from an agri-
cultural scene before stating them in
a more formal manner. In the interest
of simplicity and since it is the case
of primary interest assume that the
true q-dimensional distribution of the
' radiance measurements from each field
belong to the same parametric family
which can be characterized in the para-
metric space Es. This family may have
a finite or infinite number of members
(i.e. subclasses). Further assume that
all the fields in a class (e.g. wheat)
can be described by a suitable distri-
bution H'*' over the parameter space.
A set of training fields for each class



is selected at random. Because of our
formulation this is equivalent to se-
lecting a random sample from the para-
meter space according to the assumed
distribution over the parameter space
for that class (i.e. Ĥ 1'). For each
of the randomly selected training
fields the radiance measurements are
used to get an estimated cdf • for that
field. In this way estimated cdf's
for a representative set of training
fields are obtained for each class.
An unknown field is then assigned to
the class that has a training field
whose estimated cdf is nearest to the
estimated cdf of the unknown field.
Since the problem as stated is parame-
tric, one would normally, though not
necessarily, use parametrically esti-
mated cdf's .

Type II problems in which the
o,(i)'s are unknown are now formally
described. While prime interest is
centered in the case where fi is a para-
metric family this restriction is not
imposed in stating the problem. The
description of Type II problems is com-
plicated by the fact that, the descrip-
tion of the sets A'1' is rather in-
volved.

Type II - The
of cdf's

are Unknown Sets

Case (a) - The sets fi(i) are infinite
in number and h^' = P,M.(i). The sets
J2M-^' are now described. First a set
of population cdf's corresponding to a
representative set of Mi training
fields for class i, i = 1, 2, ..., k
is selected. Let %. 'i' be this set
for the ith class. """That is__nM. U) ,-i-s.
a random sample of size MI for~ &*»*•'.
A sample-based cdf is then obtained
for each cdf in flMi^' for i B 1» 2,
..., k. The resultant set of sample-
based estimated cdf's is OM̂ *). For

the case where parametrically estimat-
ed cdf's are used QM^ *' can also be
considered to be a random sample of
size Mi in the parameter space accord-
ing to a distribution Ĥ '.

Case (b) - The sets fi(i) are finite and
A(i) = o(i) or A^) = P,Mi

(i) "(i)- If

the Jr1^ are finite sets (i.e. finite
number of subclasses) then it is de-
sireable to let A^1' = , where
fi is the set of sample-based esti-
mated cdf's for the ith class. In
cases where the resultant number of
subclasses is impractically large and/
or only a random set of M^ training
fields is available it is necessary to
let A^1) = %. (iJcftU) and proceed as
in case (a) . .

Case (c) - The set fi
cdf per class) and A

Distance Measures

= F(I) (Single
= F]\j(i).

The importance in statistics of
distances between cdf's has, of course,
long been recognized; according to
Samuel and Bachi" their use appears
.to fall into two broad categories .

(a) Used for descriptive purposes.
For example, as an indicator to quanti-
tatively specify how near a given dis-
tribution is to a normal distribution.

(b) Use in hypothesis testing, which
is, of course, a special case of de-
cision theory.

There is a tendency for distance
functions sufficiently sensitive to
detect minor differences in distribu-
tion functions (i.e. category (a) use)
to be somewhat involved functions of
the observations, with the result that
their use as test statistics in hypoth-
esis testing has been limited because
of the complicated distribution theory.
On the other hand, distance functions
whose theory is simple enough to be
readily used as test statistics often
do not distinguish distribution func-
tions sufficiently well. Since in
minimum distance classification inter-
est is naturally centered on good dis-
crimination between distribution func-
tions, therefore distance functions
that fall into category (b) are nor-
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mally used. Since the appropriate
distribution theory for hypothesis
testing is then in general not known
it is impossible to theoretically
compute probability of error, but it
may be possible to establish reason-
ably tight upper bounds. The approxi-
mate probability of error can of
course be determined experimentally.

The literature abounds with refer-
ences to distance measures and no at-
tempt will be made to give a complete
bibliography. A representative sample
of distance measures is given in Table
1. This Table includes the most widely
used distance measures because of their
obvious importance, as veil as more ob-
scure distance measures whose applica-
tion to the present problem appears
•reasonable. In addition a few miscel-
laneous distance measures have been
included to give an indication of the
variety of distances that have been
suggested. The distances included in
this Table are: Cramer-Von MisesT,8,
9AO, Kolmogorpv-Smirnov11'12^,^
Divergencel3.l4.15 Bhattacharyyal5»l6,
Jeffreys-Matusita-^»!** >171 Kolmogorov
Variationall5.18,19, Kullback-Leibler
15»20, Swain-Fu21, Mahalanobis22>23,
Samuels Bachi°, and Kiefer-Wolowitz2^.
The references cited are by no means
comprehensive. In selecting the re-
ferences the attempt has been made to
cite only the original source in
addition to survey papers. The paper
by Darling?, Sahlerl° and to a cer-
tain extent Kalaithl5 fall in this
latter category.

Most of the references cited are
concerned only with the univariate
forms of the distance measure. With
the exception of the Samuels-Bachi
distance, the extention to the multi-
variate forms is quite natural. Since
it is the multivariate forms that are
of interest, these, rather than the
more common univariate forms, are given
in Table 1. For the Samuels-Bachi dis-
tance multivariate forms other than
the one presented may be possible.

Table 1 also contains information
regarding the metric properties of the

distance measures when used in conjunc-
tion with three families of distribu-
tion functions. The families consider-
ed are: C, the family of q-variate
absolutely continuous distribution
functions; MVN, the family of q-variate
normal distribution functions; and
MVNj;, the family of q-variate normal
distribution functions with equal co-
variance matrices. Since MVN and MVNj;
are subsets of C it is, of course,
true that a metric -in C is also a
metric in MVN and MVNj;. A metric in
MVNj need not, however, be a metric in
MVN or C.

Because of the importance of the
multivariate normal distribution, ex-
pressions for the distance between two
such distributions are given in Table
2 for each of the distances measured
in Table 1 in those instances where the
expressions are known.

The distances listed in Table 1
are discussed in the references cited
and no attempt will be made to discuss
them except for some general comments
pertaining to their use in minimum
distance classification.

Since a large variety of distance
measures is available, the problem nat-
urally arises as to which distance mea-
sure to use in a given problem. Unfor-
tunately, no complete answer to this
question is presently available, but
some general comments are possible.
The distribution-free properties* that
make the Cramer-Von Mises and
Kolmogorov-Smirnov distances so popu-
lar in the univariate case do not apply
in the multivariate case. Since it is
the multivariate case that is of inter-
est these distances lose their special
appeal. Intuitively a distance like
the Kolmogorov-Smirnov distance does
not appear to be as good a distance

* In the univariate case the distribu-
tion of the Kolmogorov-Smirnov and
the Cramer-Von Mises distances between
two estimated distribution functions is
independent of the underlying distri-
butions being estimated, provided
appropriate estimators are used.



Table 1

Multivariate Forms of Distance Measures and
Their Metric Properties

Metric in
Name Form C MV.N MVNr

1.

Cramer-Von Mises W = {/"(OU) - F(x))2dx)2 lea Yes tea

JColjnogorov-Smirnov K » Sup \G(x) - F(x_) | lea Yes lea

Divergence J = /"^(~-'(f (x)-g(x) )da Mo «o les

Bhattacharyya Distance B « -Ln/~(r(x_)g(x_)) dx No So Yes

Distance~MatU8ita M " t/"'"̂ ? " /f (x.) )2dx)2 Yes Yes Yes

n?̂ !?°I°V Varlati°nal K(P) • riP.B(x)-P,f(«)l*L Yes Yes Yes

Kullback-Leibler f- , .̂ ., . .
., v. I*, • J kit /**.) f(x;dx No No YesNumbers fg ' '-'~\' *— — •

Swain-Fu Distance . T • „ .I6 No No Yes

IE,-!' I2 (q+2) 2
here D = ( . JT ~ 11 rj-)

1 -g f g

i

Mahalanobls Distance A • {(u -v. )tl~i(i>-IL,'> )2 "es

i

Samuels-Bach! Distance U = (/1[F"1(a)-o":L(a) Jdo)2 No No No
0

— i
where F (a) » Inf{c|Q nQ ̂ 0}

q
and (J » (x| I x <c), Q » (x|F(x)>a)

1=1 1 °

|e"lx'dx . Yes Yes Yes

Notation

(1) F, G are multlvariate cdf's with densities f, g; means u_, p ; covariances lf, Z ;
and prior probabilities p , p . "^ 8

(2) /"() d£ designates a multivariate integral.

(3) For Mahalanobis distance F and G are normal with means p_^ and \i and have common
covariance I. ~̂

CO || designates the absolute value or vector norm.

(5) t designates the transpose.
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Table 2

Distances Between Two Multivariate Normal cdf's

Name

Divergence

Bhattacharyya
Distance

Jeffreys-Matusita
Distance

Distance

J =

-1 x det(|[Zf+Z ])

{det(Z )det(Z

g

g

Z -Z

Kullback-Leibler
Numbers

8wain-Fu Distance

Mahalanobis
Distance

fg

det(Zf) 1

g

where D = {-
g

{(iL.-V̂ v̂ '̂̂ vy

Notation

(1) t means transpose

(2) det means determinant

(3) tr means trace

The normal distributions involved have means and u and covariance matrices Z and Zu
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measure as those involving integration
over the whole space. It is also more
difficult to compute in parametric
situations then some of the integral
relations. The Samuels-Bachi distance
suffers from a similar computational
disadvantage.

The Divergence, Bhattacharyya dis-
tance, Jeffreys-Matusita distance,
Kolmogorov variational distance and
Kullback-Leibler numbers all belong to
a class of distance measures which can
be written as the expected value of a
convex function of the likelihood
ratio*. In fact Ali and Silvey •* have
shown that the expected value of any
convex function of the likelihood ratio
has properties that might reasonably be
demanded of a distance measure. In
addition Wacker^ has shown that in fea-
ture selection such distance measures
have a weak relationship to the prob-
ability of error. Kalaithl5 proved .the
same relationship for Divergence and
the Bhattacharyya distance. Since the
class of distance measures under dis-
cussion is based on pdf's there is
probably a tendency for these distances
to reflect differences in pdf's rather
than cdf's.

Of the distances based on likeli-
hood ratios the Bhattacharyya distance
seems to have been gaining in favor.
The prime reason for this is apparently
the close relation between probability
of error and Bhattacharyya distance,
as well as the relative ease of com-
puting Bhattacharyya distance in theo-
retical problems. Other properties of
the Bhattacharyya distance which en-
hance its prestige as a distance mea-
sure have been pointed out by Lainiotis

and Stein^T. A property of consid-
erable theoretical utility is the close
relation between the Bhattacharyya dis-
tance B, the Jeffreys-Matusity distance
M and the affinity p namely

and
p(F,G) = C»(f(x)g(x' 10

M = 2(l-p)l/2 = 2(l-e-B)l/2
Where
B = -Lnp

8

9

* The likelihood ratio of densities
f(x) and g(x) is f(x)/g(x).

Because of the above relationships
minimum distance classifications made
on the basis of the Bhattacharyya dis-
tance, Jeffreys-Matusita distance or
affinity all yield identical results,
and consequently have identical proba-
bility of error.

The Jeffreys-Matusita distance is,
however, a metric in a much larger
class of distributions (see Table l).
This means that theoretical derivations
regarding probability of error can be
made using the metric properties of
the Jeffreys-Matusita distance in this
larger class, and the results are ap-
plicable if classification is effected
using Bhattacharyya distance or affin-
ity as well. This property has been
used extensively by Matusita.

While no strong preference for
any distance measure can presently be
demonstrated the theoretical properties
of the Bhattacharyya distance suggests
that it might be a reasonable choice
and the experimental results presented
later are based on this distance mea-
sure.

Minimum Distance Classification And
Probability of Error

Considerable literature exists on
the minimum distance method with
Matusita^°~35 and Wolfowitz3"~39 being
the chief contributors. Wolfowitz's
work is concerned primarily with esti-
mation while much of Matusita's work
deals with the decision problem. Con-
tributions have also been made by Gupta
1+0, Cacoullous^1'1*2, Sirvastava^S and
Hoeffding and Wolfowitz1*1*.

In considering minimum distance
decision rules a common requirement is
to insist that by using arbitrarily
large samples the probability of mis-
classifying a sample can be made ar-
bitrarily small. This is the notion
of consistency and it is a reasonable
demand if the pairwise distance be-
tween all the sets of distributions
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associated with each class is greater
than zero or

d( n(i), n(J)) > o
for all i, j = 1, 2, ..., k; i ̂  j 11
In parametric problems in which some
distribution is assigned to the para-
meter space the condition specified by
11 is equivalent to requiring that
there is no overlap of regions of the
parameter space associated with differ-
ent classes.

It has been shown1*0 »3'*'1*1* that
any minimum distance classification
problem for which equation 11 holds is
consistent (probability of misclassi-
fication approaches zero as sample
sizes approach infinity) provided the
distance and distribution estimator
utilized satisfy certain conditions.
These conditions are that the distance
used must be essentially a metric
(metric property b(2) need not hold)
and that for the particular distance
measure and estimator used, the prob-
ability that for the particular dis-
tance measure and estimator used, the
probability that the distance between
the true and estimated distribution
can be made arbitrarily small is one
for infinite sample size. Further it
is shown that certain distances and
estimators satisfy these conditions.
In particular in the normal case these
conditions are satisfied by using para-
metrically estimated densities and the
Bhattacharyya distance35. Similar con-
sistency results are not known for
density histogram estimators. The
known properties of consistency are
summarized more rigorously and in
greater detail by Wacker^.

It is the property of consistency
described in the previous paragraphs
which makes the minimum distance deci-
sion rule potentially so attractive.
In essence consistency says that if
the condition specified by 11 is satis-
fied, and if sufficiently large samples
are used then the probability of mis-
classifying a sample should be very
small. Unfortunately in classifying
multispectral data-images two problems
arise.

(1) The number of distributions asso-
ciated with any class is very large
(perhaps almost infinite) and it is
not practical to attempt to store all
possible subclass distributions as is
essentially assumed in deriving the
consistency result described.

(2) It appears that the condition of
equation 11 is frequently not satisfied,
or 'at least that distributions from
different classes are often so nearly
alike that the number of samples re-
quired to distinguish them is impract-
ically large.

When the condition specified by
equation 11 is violated to the extent
that ft(i) and ft(j) overlap on a set of
non zero probability then the minimum
distance decision rule can obviously
no longer be consistent; in this situ-
ation the probability of misclassify-
ing a sample will be finite regardless
of sample size. Under these circum-
stances, except for the simple para-
metric example treated by Wacker^,
essentially no results are available.

RESULTS

Three different classifiers were
used to obtain the experimental re-
sults. These classifiers are known as
LARSYSAA, PERFIELD and LARSYSDC.
LARSYSAA is a vector-by-vector classi-
fier based on the maximum likelihood
decision rule'*5j while PERFIELD and
LARSYSDC are minimum distance classi-
fiers utilizing the Jeffreys-Matusita
or equivalent (Bhattacharyya) distance.
LARSYSAA and PERFIELD are based on the
Gaussian assumption and utilize para-
metrically estimated pdf's while
LARSYSDC utilize density histograms to
estimate the pdfs. All three classi-
fiers assume equal subclass probabil-
ities and operate in the supervised
mode*.

* Supervised refers to the fact that
samples whose classification are
known are available to "train" the
classifier.



Two examples are discussed. The
first example compares the sample
classification accuracy (% samples
correct) of a parametric with a non-
parametric minimum distance classifier.
The second example compares the vector
classification accuracy (% vectors
correct) of the parametric maximum
likelihood classifier LARSYSAA with
the parametric minimum distance class-
ifier PERFIELD. The data used in both
examples are essentially the same but
as subsequently described the training
procedures differ considerably.

The two examples discussed are
problems in species identification of
agricultural fields. In this context
it is usually logical to assume that
all the measurement vectors from a
given physical field belong to the
same class. This assumption was made
in defining samples for the minimum
distance classifiers and in determining
the classification accuracy of the max-
imum likelihood classifier. In other
words, for the minimum distance class-
ifiers each sample to be classified
represents a physical field, while for
the maximum likelihood classifier all
vectors from a field are assumed to
belong to the same class.

The data for the examples to be
discussed has 13 spectral bands and
was collected by the University of
Michigan Scanner. For ease in refer-
ring to different spectral bands the
wavelength channel number correspon-
dence of Table 3 is utilized. The
data was collected at an altitude of
3000 ft., between 9:^5 and 10:U5 a.m.
E.D.T., on June 30, 1970, from Purdue
University flightlines 21, 23 and 2U
respectively. The exact location and
orientation of these flightlines, which
are located in Tippecanoe County,
Indiana, is shown in Fig. 3. The
flightlines extend the 2U mile length
from the north to the south end of the
county and are roughly equally spaced
in the east-west direction. Since the
scanner geometry is such that at an
altitude of 3000 feet the field of
view is roughly 1 mile, the area cover-
ed by the three flightlines, approxi-

mately 72 square miles, is about 1/7
of the total area in the county. The
scanner resolution and sampling rate
are nominally three and six millira-
dians respectively. This means that
at nadir the scanner "sees" a circle
about 9 feet in diameter and that the
spacing between adjacent pixels is
about 18 feet. Since the scanner reso-
lution and sampling rate are indepen-
dent of look angle the distance between
adjacent pixels is approximately 30%
larger at'the edge of the scanner's
field of view with a corresponding
change in the shape and area "seen" by
the scanner. At the sampling rate in-
dicated there are 220 samples across
the width of a flightline and each
flightline contains 5000 to 6000 lines.
This means each flightline contains
somewhat more than 10° pixels of which
10% to 20$ are typically used for test
purposes.

For both examples four principle
ground cover categories are considered;
wheat, corn, soybeans and other.
Although the other class includes a
considerable variety of ground cover
most of the agricultural fields in
this category are either small grains
(other than wheat) or forage crops.
There are also some bare soils and
diverted-acre fields. Some natural
categories such as trees and water are
also included in this class. .For most
of the subcategories for the class
other ground cover is fairly complete,
but the spectral properties of the
ground cover are quite variable from
field to field within a subcategory.
Most of the wheat in the flightline
was natyre abd readt for

was mature and ready for harvest. In
fact some portion of it had already
been harvested. For corn and soybeans
the crop canopy at flight time was
such that the ground was not covered
by vegetation when viewed from above
and consequently the radiance is
greatly influenced by the soil type.
This fact makes it difficult to dis-
criminate corn and soybeans at this
time of year and consequently high
classification accuracies are not to



be expected, especially since corn
and soybeans constitute a considerable
fraction of the ground cover.

Table 3

Correspondence Between Channel Numbers
and Spectral Bands

Channel Number

1
2
3
1*
5
6
7
8
9
10
11
12
13

Spectral Band
(Micrometers)
0.140-0. 1*1*
0.1*6-0.1*8
0.50-0.52
0.52-0.55
0.55-0.58
0.58-0.62
0.62-0.66
0.66-0.72
0.72-0.80
0.80-1.00
1.00-1.1*0
1.50-1.80
2.00-2.60

While the particular training pro-
cedure used in each example is differ-
ent some general observations are pos-
sible . It is evident that some of the
variables which affect radiance tend
to be constant within a physical field,
but vary from field to field. Such
variables are usually related to farm
management practices and include such
factors as variety of species, fertil-
ization rates, crop rotation practices,
etc. Also the variability in soil type
can normally be expected to be greater
between fields than within fields.
Consequently it is not uncommon for
all data from one field to be fairly
"uniform11 but still be quite different
from the data from another field; even
though the class (species) is the same
in both fields. In terms of probabil-
ity densities the density from each
individual field might reasonably be
approximated by a normal distribution;
'in that it is typically unimodal and
reasonably symmetrical* but the data
from several fields combined frequent-
ly exhibit severe multimodality.
Under these circumstances, in order
that the Gaussian assumption is approx-
imately satisified (for classifiers
making this assumption), subclasses

are usually defined for each main
class, such that the distribution for
each subclass is unimodal. Perhaps
if data from a sufficient variety of
fields could be combined for a given
crop species a unimodal distribution
would result for each main class and
the definition of subclasses would not
be necessary, even for a parametric
classifier. The class distribution in
this case would naturally be broader
than the distribution of any "subclass"
of which it is composed. It is pre-
sently not known in the above situation
whether better classification is
achieved with parametric (Gaussian)
classifiers by using many subclasses
whose distribution are relatively nar-
row, or using fewer subclasses with
broader distribution. In practice
there appears to be a tendency toward
the definition of many subclasses. In
nonparametric classifiers it should of
course not be necessary to define sub-
classes as there is no need for densi-
ties to be unimodal.

On the basis of the above discus-
sion a fairly general parametric model
which at least qualitatively behaves
much like the actual multispectral
data results when every field associat-
ed with each main class is considered
as a potential subclass. The varia-
tion in distribution parameters from
field to field is accounted for by a
distribution over the parameter space.
This is precisely the problem; pre-
viously formulated at Type II case (a).

Example 1 - Parametric vs Nonparametric

The .classifications performed for
this example can be segregated into
the four categories shown below.

1) Classifications with the parametric
classifier PEFFIELD
a) Every training field treated as a
subclass.
b) Data from all training fields for
each principle class combined (no sub-
classes) .

2) Classifications with the nonpara-
metric classifier LARSYSDC
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a) Every training field treated as a
subclass.
b) Data from all training fields for
each principle class combined (no sub-
classes ).

In the classification procedure
each flightline was treated as a sepa-
rate data set. The training and
classification method is described for
one flightline with other flightlines
receiving similar treatment. Initial-
ly test and training data must be de-
fined. Every field of any significant
size whose classification had been de-
termined by field observation was in-
cluded as a possible test or training
field. These fields were segregated
into the four principle classes.
Roughly 10$ of the fields in each class
were then selected at random to serve
as training fields. The remaining
fields were used as test fields. Table
h gives a break down of the number of
test and training fields for each
flightline. After the training fields
had been selected the subclass or class
densities were estimated and stored.
The test fields were then classified
on the basis of their estimated densi-
ties by the minimum distance rule. The
computations to estimate a density
function for PERFIELD are substantially
simpler than for LARSYSDC since for
PERFIELD only the mean and covariance
need.be estimated while for LARSYSDC
the density histogram must be generat-
ed. A bin size of 5 was used for the
density histograms in PERFIELD. (The
data ranges was 0 to 256). Only 3 of
the 13 channels were used in perform-
ing the classifications. These were
selected in a more or less arbitrary
manner, although it was known that the
selected set (1,8,11) were among the
better subsets of channels.

Table U

Number of Test and Training Fields
Number of Test(Training) Fields

Flight- Soy-
line Total Wheat Corn beans Other

21 218(22) 23(2) 79(8) 57(6) 59(6)
23 1UK15) 18(2) 58(6) 55(6) I0(l)
2U 156(18) 19(2) 52(6) 1*3(5) U2(5)

The results of the classification
are shown in Fig. 1*. Rather than pre-
sent the classification results for
each flightline individually the per-
formance averaged over the three
flightlines is given. The results
therefore give some indication of the
classification accuracy one might ex-
pect on the average for this type of
data for the training method used. In
view of the random nature of the train-
ing procedure it is felt that this is
a more meaningful presentation than
quoting the results for each flight-
line individually.

Example 2 - Maximum likelihood vs Mini-
mum Distance Classification

For this example the data from
flightlines 21, 22, and 23 was classi-
fied using:
a) The parametric maximum likelihood
classifier LARSYSAA.
b) The parametric minimum distance
classifier PERFIELD.

The training procedure in this
case is considerably different than
the procedure for Example 1. In this
case small areas approximately one
acre in size were selected from flight-
lines 21, 23, and 2k on this basis of
a sampling scheme. The sampling
scheme simply used every nth acre in
the flightline belonging to the class
in question as a "training acre".
The data from the acres selected in
this manner was used to train the
classifier. In this manner 59 wheat
acres, UU corn acres, 23 soybean acres
and k6 other acres were selected. The
sampling rate n was different for the
various principle classes. If every
training acre were treated as a sepa-
rate subclass a total of 172 subclasses
result. This number exceeds the capa-
bilities of the classification pro-
grams. Consequently it was necessary
to reduce the number of subclasses to
a reasonable number. This was accom-
plished by means of a clustering pro-
gram which groups together the acres
within each principle class whose esti-
mated pdf's are similar . As a result
of this grouping the number of sub-
classes defined for the principle
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classes: Wheat, Corn, Soybeans and
Other were U, 10, 6 and 10 respective-
ly. Density histogram estimates of
the resulting k wheat subclasses are
shown in Fig. 5. Note that even after
clustering considerable evidence of
multimodality still exists, particu-
larly for the first subclasses. In
fact in some channels the contribution
of all h acres assigned to subclass 1
are clearly evident. It is possible
that this data should have been segre-
gated into a greater number of sub-
classes. After the subclasses had
been defined by clustering the statis-
tics (means and covariance) were com-
puted for each subclass. The feature
selection capability of LARSYSAA^^ vas
then used to select the "best" U of the
13 channels for classification. This
selection is based on the average di-
vergence between all possible subclass
pairs, excluding subclass pairs from
the same class. On this basis channels
2, 8, 11, and 12 were selected. Using
these channels both the training acres
as well as the test fields were class-
ified both with LARSYSAA and PERFIELD.
The classification results for the
training acres are shown in Fig. 6
while the results for the test fields
(again averaged over the 3 flightlines)
are shown in Fig. 7-

Discussion of Experimental Results

It is suggested that in evaluating
a classifier a reasonable index of com-
parison is the overall average classi-
fication accuracy. This performance
index has the advantage that it gives
an indication of the classification
accuracy that might be expected from
the classifier for similar data and
training procedures. For a relatively
small data set, it is usually rela-
tively easy to devise a training pro-
cedure or classifier which superfici-
ally looks superior but whose apparent
superiority disappears when results
are averaged over a number of data
sets. A disadvantage of the suggested
performance index is the necessity to
do a reasonable number of classifica-
tions .

On the basis of average classifi-
cation accuracy and the training pro-
cedures used there is no evidence that
the parametric minimum distance class-
ifier is superior to the nonparametric
classifier. Neither is there any evi-
dence that using a relatively large
number of subclasses improves classifi-
cation accuracy on the average. This
is contrary to expectations.

Actually when each field is
treated as a subclass one would expect
the nonparametric classifier to per-
form better than the parametric class-
ifier only if the Gaussian assumption
was seriously violated for the various
training or test fields involved.
Futhermore, for the nonparametric
classifier to exhibit any real advan-
tage the nonnormal structure of the
data must bear some resemblence from
field to field (e.g. modes must appear
in same relative positions). Since the
nonparametric classifier does not ex-
hibit any superior performance neither
of the above factors apparently occur
with any consistency.

When the data from all the train-
ing fields is grouped one would expect
that the data would be multimodal and
that the nonparametric classifier would
be much superior. The basic fallacy
in this reasoning appears to be that
although the class distributions are
multimodal the samples to be classified
are usually unimodal. In other words
the distribution of any sample to be
classified is not really a random sam-
ple from the distribution of any class .
Instead it simply tends to account for
one of the modes in the class distri-
bution. Futhermore, there is no appar-
ent way of rectifying this situation
within the constraint of minimum dis-
tance classification.

The fact that the parametric
classifier does so well (comparatively)
when no subclasses are considered
attests to the robustness* of the

* A robust classifier is relatively
insensitive to the underlying assump-
tions about the distributions involved.
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Gaussian assumption in minimum distance
classification.

It must be recognized that in
assessing a classifier factors other
than the performance index considered
are of importance. One other factor
that should be considered is the con-
sistency of the results. That is, how
near to the average can one expect to
get for any given classification. The
variance in the average performance is
a measure of this consistency. In this
regard, although the number of classi-
fications is small, there is evidence
that the nonparametric classifier is
better than the parametric version and
that for the parametric classifier the
variance in average performance is in-
creased by combining the data from
many fields. This small advantage
hardly warrants the additional complex-
ity of the nonparametric implementa-
tion.

The results comparing the minimum
distance and maximum likelihood class-
ifiers show fairly conclusively that
in general the sample classification
accuracy of minimum distance classi-
fiers is higher than the vector class-
ification accuracy of maximum likeli-
hood classifier of the same data.
This is true for both the test and
training data. It is recognized of
course that the quantities being com-
pared are by nature somewhat different
but nevertheless they represent the
natural method of expressing the class-
ification accuracy of each classifier
individually and do afford some measure
of comparison. This result agrees with
expectations although a greater improve-
ment might have been anticipated.

It is convenient to define the
difference between the sample classi-
fication accuracy and the vector
classification accuracy as the improve-
ment factor. The exact value of the
improvement factor depends on the par-
ticular data but qualitatively it is
obvious that for Type II case (a) pro-
blems the improvement will be very
small or non existent both when the
separation of the parameter space

densities for all classes is large
(one can't improve a high vector class-
ification accuracy much) as well as
when no separation exists (subclasses
of different main classes can then not
be distinguished by either classifier).
The experimental evidence suggest that
for moderate overlap of the parameter
space densities the improvement factor
will be of the order of 5% to 10%.

In concluding it should be men-
tioned that no comparative computation
times have been given. The fact that
the experiments involved a number of
different programs, two computer sys-
tems (one in a time sharing mode) and
the inherent dependence of processing
time on the Classification Parameters
and on the manner in which the data
is stored (data retrieval time is by
no means negligible) makes it virtual-
ly impossible to give meaningful com-
parative times. Suffice it to say
that to classify a typical flightline
time would be measured in fractions of
an hour to hours on an IBM 360 System
Model UU, and that PERFIELD is the
fastest classifier, followed by
LARSYSDC and LARSYSAA in that order.

CLOSURE

Although only two examples have
been presented numerous other classi-
fications have been performed on simi-
lar data and the results generally
support the results presented. Even
considering only the classification
discussed the volume of data involved
is quite substantial and is certainly
adequate for a reasonable test.

For the type of data considered
two basic conclusions appear reason-
able.

(l) The classification accuracy of a
nonparametric minimum distance classi-
fiers, utilizing density histograms
for estimating pdf's, is on the average
not any larger than the classification
accuracy of the parametric (Gaussian)
classifier based on parametrically
estimated pdf's. The variability in
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performance of the nonparametric class-
ifier appears somewhat smaller. Since
the parametric classifier requires less
storage and is faster than the nonpara-
metric classifier the latter classifier
is not an attractive alternative.

(2) The average sample classification
accuracy of a parametric (Gaussian)
minimum distance classifier is larger
than the average vector classification
accuracy of a miximum likelihood vector
classifier. Ignoring the problem of
sample definition the minimum distance
classifier is faster and is an attrac-
tive alternative to the maximum like-
lihood classifier in situations where
it can be utilized.

The disparity between test and
training results for both minimum dis-
tance and maximum likelihood classi-
fiers is much greater than the differ-
ence due to classifier type or the
specific implementation. This suggests
that given the present state of the art
greater improvement in classification
accuracies will probably result from
investigations intended to improve the
training procedure than from investi-
gation of classifier types.
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