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PART 1: CONCEPTUAL MODEL

1.1. PROBLEM DEFINITION

Large-scale applications of remote sensing for the purpose of preparing
crop estimates, natural resource inventories, disaster assessments, etc. for
a given geographic region will, in general, involve questions of sampling, since
complete coverage of the total geographic region and subsequent analysis of data
collected with complete coverage appear technically and economically infeasible.
This is true regardless of whether an aircraft, or a satellite is involved, and
it applies equally to photography, multispectral measurements, radar, etc. Thus,
even if remote sensing provided completely accurate data, estimates (of crop
acreage, natural resources, extent of disaster, etc.) for the total region under
study will be subject to an error, the so-called error of estimate. This error
arises due to the fact that inferences based on selected observations within
the region are drawn regarding the characteristics of the total region.

It is the purpose of this discussion to present a conceptual model (in
Part 1) and an empirical application (in Part 2) of the relationship between
the manner of selecting observations (i.e. the sampling scheme) and its ef fect
on the precision of estimates (i.e. the magnitude of the error of estimate)
from remote sensing. Because of technical and practical considerations, a
sampling scheme which suggests itself as being useful is a three-stage sampling
scheme. \J The first stage in this scheme is flightlines, the second stage
is segments within flightlines, and the third is units within segments. In
general, it can be expected that the various stages contribute differentially
to the error of estimate. Also, the contribution from the various stages to
the error of estimate is affected by the number of observations in each of
the stages (i.e. the subsampling ratios). For instance, an increase in the
number of flightlines to be analyzed may be both costly and difficult to execute
but decrease the variance of the overall estimate little. On the other hand,

JL/ The statistical concepts presented here are not new (cf [1] and [2]) .
They are merely adapted to the problem of remote sensing applications.
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an increase in the number of segments per flightline may increase costs and
difficulties of analysis little but may have considerable influence on the
precision of the estimate. Thus, an arbitrary mix of number of flightlines,
segments within flightlines, and units within segments may result in high costs
of operation as well as poor estimates. An understanding of the effect of sub-
sampling ratios on the precision of estimates is, therefore, important for
most remote sensing applications, particularly those of large scale.

1.2. PROBLEM CHARACTERISTICS AND ASSUMPTIONS

It is assumed that remote sensing is used to estimate a population
characteristic (such as acres of a particular crop) in a well-defined geographic
region. The flightlines are assumed to be of equal length. Similarly, seg-
ments 2_l within each flightline are of equal size, units within each segment
are of equal size, and there is an equal number of units in each segment an an
equal number of segments within each flightline. Flightline locations are
random within the region, as are segment locations within the flightlines and
unit locations within the segments._3/

Finally, if a measurement error is present, it is assumed to be constant
and/or is random, normally and independently distributed with a mean zero and
a standard deviation of a .

1.3. THE VARIANCE MODELS

In order to ahcieve our objective of investigating the effect of subsampling
ratios on the precision of estimates from remote sensing, it is necessary to
develop the variance of the estimate in question. We shall do so for both
measurement (continuous) and attribute (binomial) data. But first we shall dis-
cuss the question of how the measurement error affects the variance.

2Y A "segment" is a sampling unit of specific size (i.e. 1 mile by 10
miles) within a flightline.

3/ If "ground observations" are used to "train" the computer or photo-
interpreter, it is assumed to be given. That is to say, a certain
classification accuracy is assumed, and the relationship of the amount
of ground truth to training, and the level of training to precision
of estimates are not explicitly considered in the statistical model
to be presented.
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1.3.1. The Measurement Error

In remote sensing measurement errors are encountered due to deficiencies
in the measuring device, deficiencies in data analysis, etc. Thus, the variance
estimates should include a measurement error component.

Let us assume that the relevant mathematical model for the measurement error
present in the system under study is

U.3,1) Y ± a = G.f g ± + e . a

Where Y
ia = value of item obtained in the ath repetition,

G = true value of the item,

g. = constant bias ,

e. = random component.

Since the system under study is one where each item is measured only once,
the error (g.^ + e.a ) can be combined into a single term, eict, thus simplifying
the model to

(1 '3-2> Yia = Gi + £ia

IF the above model (1.3.2) holds, IF the sample is a random sample, and
IF we are dealing with an infinite population, then the variance of estimate
(to be developed below) will remain valid although no measurement term appears
explicitly in the variance definition. However, if we are dealing with a
finite population and the measurement error is not explicitly considered, a
biased estimate, approximately equal to oe /N will be the result (where N is
the number of members in the population) . _4/

In either case, the resulting variance will be the variance for the biased
mean.

1.3.2. Variance of Estimate of the Mean for Measurement Data
and Three-Stage Sampling

The observation y is assumed to be of the form

y. ., = "Y + u . + v . + w' i ij ijk

47 cf. [-2], p. 305 ff.
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where Y is the overall mean, Uj_ represents a component associated with the flight
line and is constant for all segments within the flightline. The component v^
represents a variation from segment to segment within the flightline, and w^^
represents a variation from data point to data point within the segment. The
variates u.^, v^ and w^j^ are assumed independently distributed with mean zero.
The variates have variances of SF, So, and SD, respectively (F for flightline,
S for segment, and D for data points). The population to be studied contains
a finite number of NF flightlines, Ng segments within each flightline, and ND

data points within each segment. Finally, a sample of nF, ng, and nD observa-
tions are randomly chosen for flightlines, segments, and data points,
respectively. Then the variance of the sample mean is _5_/.

(1.3.3)
N NSNF NDNSNF

An unbiased estimate of V(y) in (1.3.3) is obtained from the sample
as follows:

( 1 3 4 ) v
C }

1 f(N -n ) 2 (N -n ) n 2 (N -n ) n
(v) = - I — - — — '1 _ - _ — ' — -S9 + _ - _ - __ F-
" nFnSnD t NF NS NF ND NF

2 2 2
The variances S1 , S_ , and S are computed from the sample as follows:

d.3.5)
t-t /"+*t-t /"+* «s »nsnp i (yi-y}

d.3.6)

(1.3.7)

E I ,- a ,2
"p i j <yi:f yA)
nF(ns-l)

I I I
=i j k

- ,2

5J If the values of N , N , and N can be considered infinite, or, alternatively,
if the ratios of n_/N_, n /N and n_/N_ can be considered negligible, the

r r o o u \j
finite population correction factors (f.p.cls) can be omitted and the
expression for the variance of the sample mean will reduce to

H 2 2 2
v(y) = - +

n
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Where 1 = 1 , . . . , n

j — 1> .. ., n

k = 1, ..., n

and

yijk) /nD

y±)/nF

1.3.3. Variance of Estimate of the Mean for .Binomial Data and
Three-Stage Sampling

In many remote sensing applications the analysis is such that every
unit in the population falls into one of two classes, for example C (=corn)
and 0 (=other). Thus:

Number of units in C

Population

A

Sample

a

Proportion of units in C in

Population

P=A/N

Sample

p=a/n

By means of a simple device .it is possible to apply all of the models
and formulas developed above to this situation. Suppose, for the moment, that
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we are dealing with a simple random sample and single-stage sampling. Define
y-^ as 1 if the observation is in C and as 0 if it is in 0. For the population
we then obtain

N
(1.3.8) Y = I yi

N
Z vi

(1.3.9) and Y = ^~~ A_ = p

n
£ y.

(1.3.10) y = n

Consequently, the problem of estimating A and P can be regarded as that of
estimating the total and mean of a population in which every y^ is either 0 or
1. Thus, we can start -out with the usual variance formulas in order to develop
the variances for proportions. Without actually developing them 67, we write
for the population

and for the sample (assuming a finite population)

(1.3.12) v

In order to transform (1.3.5), (1.3.6), and (1.3.7) into formulas which
are useful for subsampling for proportions, let us proceed as follows:

Let a.. = £ v i jk> "wnen vijk is eitner
1-1 k

zero or one, depending on whether it falls into 0 ("other") or C("corn"), then

6/ See Cochran [2], p. 32 ff.
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(1.3.14)

(1.3.15)

- 7 -

a±j/nD = (J yljk)

=» P± = (2 P±j) M
J

y =4 P = (£ p.)
i

>
Compare

definitions
immediately

following
1.3.7

Then

(1.3.16)
2

Sl =

— = 2
nn I (Pi = p)

S D i
(np - D

(1.3.17) = nD i J (?ij ~ P± > :

(1.3.18)

Substituting the above definitions into (1.3.3) - or (1.3.4) - will yield
the desired variance, v(p) .

1.4 PREDICTION OF THE VARIANCE OF ESTIMATE FOR VARIOUS
SUBSAMPLING RATIOS

We not only desire to evaluate the precision of estimates for a given
sampling scheme, but we are perhaps even more interested in sampling and sub-
sampling ratios which are different from those that have been used hitherto.
This information is important for planning future experiments and applications
of remote sensing on the same type of population.
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From the model in (1.3.2) we can predict the variance of y for different
sampling and subsampling ratios. ]_/

Suppose in the initial experiment we had values of n , n , and n ,
respectively, then the variance was

s 2 s2 s2
SF Ss SD

V(y) = nF Vs Vs'H)
i i

If these values are changed to n_, n_ , and n , respectively, the variance of
the sample mean becomes

2 2 2
' = SF SS SD

(1.4.2) V (y) = -4- + -^—r-+ , T .
nF "F nS

2 2 2
In order to utilize this approach, sample estimates of SF, S , and S

are required. These may be obtained from the analysis of variance of the
sample data as shown in Table 1.4.1 for measurement data. Each of the
variance componenets S^, S^, and S^ can be estimated from its mean square and
the one just below. 8/ For example

S2 - S2

,2 _ f2 _ ^D
"

_7/ In the interest of expediency we shall omit all f.p.c.'s from (1.3.3)
whenever it is being used in the following discussion. It should be
noted that omission of the f.p.c.'s merely results in more conservative
variance estimates.

8/ In practice, variance components may turn out to be negative either
because the model employed is not relevant or because of the nature of
the sampling distributions of variance components (cf [3] and [5],
p. 194 ff). j
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Table 1.4.1 Analysis of Variance for Three-Stage Sampling.

Degrees of
Source of Variation _ Freedom _ Mean Square _ Estimate of -

V — "2
Between flight lines G^-D s?=nSnp i(yi"y) S^-Hir J_ / - * DD D S S D F

*
I I - - 2

Between segments n (n -1) s^= °D i j^yij~yi^ SJT
within flight lines n_(n -1) D

F S

n Lt Li Lj

Between data points n n (n -1) s = i j k \J 1 1-1. Jj */ q
J. I IV i I O

within segments nja C11 D

While the above discussion utilizes expressions (1.4.1 and 1.4.2) which
.relate to measurement data, a translation to binomial data can readily be
made on the basis of discussion in Section 1.3. The relationships in (1.4.1
and 1.4.2) hold, only the computational procedures changes.

1.5. OPTIMAL SAMPLING AND SUBSAMPLING FRACTIONS

These depend on the relationship expressed in (1.3.3) or (1.3.4),
respectively, as well as on the cost function relevant to the system. The
following cost function is proposed: 9/

(1.5.1)

9/ This is a highly simplified cost function and should be considered as
~~ being illustrative only.
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= total cost ($) of collecting and analyzing data

= cost of flying a flightline of a given length and width

= cost of collecting data over a segment of a given length and
width

D = cost of analyzing a data point of a given length and width

S = cost of storing the (analyzed) data point

r = cost of retrieving the results from a data point.

For a given authorized total cost (= available budget) we desire to
select values for n , n , and n such that V(y) (or V(p) is minimum. This is
a problem of constrained minimization, and we shall write

(1.5.2) V(y) +A (C-cF.nF-...-rD.nD.ns.nF) = 0

where X Lagrangian multiplier

or, substituting (1.3.3) into (1.5.2),

d.5.3) JVV. 4 -~~ . .

Differentiating (1.5.3) with respect to nF, ag, and nD, respectively, and
setting the resulting equations equal to zero will result in a set of three
equations which, when solved, will yield the optimum values in
and nn . Sample estimates for s s,

"Opt c o
computation is discussed in Section 1.3.

the optimum values in n^ , ng t,
and S£ will have to be used. Their

By solving the set of equations resulting from a differentiation of (1.5.3)
repeatedly for different values of C, a performance function may be traced out,
showing the relationship between the magnitude of the variance and an ever
costlier data collection scheme. It is hypothesized that this relationship
will have the general form of a hyperbola (See Figure 1.4.1). The area above
the performance function (in Figure 1.4.1) may be termed the "irrational region",
since an improvement can always be achieved for a situation such as represented
by point A in Figure 1.4.1, for a given cost, C, be rearranging the subsampling
ratio so that a movement out of the "irrational region" onto the performance
function occurs. The result will either be a smaller sampling error, V(y) ,
for a given cost, C, (a downward movement onto the performance function) or a
lower cost, C, for a given size sampling error, V(y), (a leftward movement
onto the performance function.
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PART 2. EMPIRICAL ESTIMATES

2.1. OBJECTIVES

In Part II of this paper, an empirical evaluation of the precision of
remote sensing estimates of the "acreage of corn in a given region" will be
developed. The effect of various subsampling ratios on the precision of
estimates will also be investigated empirically.

2.2. THE DATA

2.2.1. Site of the Experiment

The site of the experiment from which the data are taken is that of the
"Intensive Study Area" of the 1971 Corn Blight Watch Experiment (CBWE). This
area is comprised of the western-most portion of the state of Indiana, a region
which is approximately forty (40) miles wide (in an east-west direction) and
extending over the entire (north-south) length of the state (see Figure 2.2.1).

i

2.2.2. Source of Data

The data used for deriving empirical variances of estimate of corn acreage
are the multi-spectral scanner data 10/ collected on Mission 43 M of CBWE.
(See Appendix Table and also Table 4, Appendix E, Multi-spectral Data Reliability
Analysis, [4]. These data were collected over thirty (30) randomly selected
segments. Each of these segments was approximately 1 mile wide and 10 miles
long. Data for all segments were collected with identical instruments and
identical techniques. However, data collected over fifteen of the segments were
analyzed by the University of Michigan and its data analysis techniques. The
other fifteen segments were analyzed by LARS and its data analysis techniques.
The location of the "Michigan Segments" and "Purdue Segments" is shown in
Figure 2.2.1.

10/ Photographic data are also available for this site and could have been
used.



- 13 -

228

wi!ii4>y>p20i

0202 B
k

§204 ft
(]206 B

(1207u nU208

209 Q

210J]

0212

1211
13 1 0214

215U R
U216

21711
U Jl8

D219 1

[J221 ^

\ ll
§ 1J223

0225 §2:

0226 r

13 227

r203

:205

[
;

; Intensive :
; x— ̂  Study
I. \ Area>g

220

222

1 /
b~^^

- Michigan Segments

- Purdue Segments

Figure 2.2.1



- 14 -

2.3. EVALUATION OF DATA

2.3.1. Editing of Data

The data were first examined for consistency. As a result, segments 210,
226, and 228 were eliminated from further analysis.

(a) Segment 210 was eliminated because its area of 7.2 square miles
was considerably smaller than the planned 10 square miles for
each segment.

(b) Segment 226 was eliminated because its area of 14 square miles was
considerably larger than the planned 10 square miles for each segment.

(c) Segment 228 was eliminated because its "planimetered acres" were
considerably lower than those for other segments which had a
smaller stated "segment area" (in sq. miles), an obvious inconsistency.
(Further examination of this particular segment revealed that the
segment was an island in the Wabash River.)

2.3.2. Testing for Differences between Michigan Segments and Purdue Segments

The original intent was to utilize data from the 27 segments (30 minus
those three eliminated because of inconsistencies). However, because of the
differences in analysis techniques there was reason to hypothesize that the data
from the Michigan and the Purdue segments have to be viewed as coming from
different populations. Therefore, it was necessary to perform appropriate tests
before pooling the Michigan segments with the Purdue segments. This was
accomplished by testing independently for differences in proportions and differ-
ences in variances between the Michigan and the Purdue segments 11/

(a) Difference between Variances of Estimate: The hypothesis tested was

Ho : °M = °P

a = .05

1/3.569 = .280
(l-.5a ) (12,13) ' (.5a)

F( .5a) (12,13) = 3.525

ll/ This represents a relatively weak test. However, as will be seen below,
the test did distinguish between the two sets of data. Tb.ua, a more
complex and powerful test would have added little for the purpose at hand.
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,2 =where cr£ = variance of estimate for Michigan segments
M
f\

o£ = variance of estimate for Purdue segments

2
v., = sample estimate of a.. = .000283
M M

2
v = sample estimate of a = .000721

Therefore,

F - 0/o - .000721/. 000283 = 2.547

Since

it is not possible to reject H : o = a_.
o M r

(b) Difference between Proportions; The hypothesis tested was

V \ - "p

a = .05

3(.5a) = H- 1.96

II = proportion of area in corn in Michigan segments

Up = proportion of area in corn in Purdue segments

P = sample estimage of IL^ = .1514

P = sample estimate of II = .2900

Therefore,

= ?M " PP _ .1514 - .2900 = _ .1386
Z °CP -P ̂  " -0009 " .0009

v M 7}

= _

i f
where a- - = 1 n(l-II) ( -^ + ~ ) = . 0 0 0 3

v M" P' 1 M P
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and n =
EE EE
mi yim + pj 7jp
nM

1.502.444
7,268,439

= .2067

where

Since

g >

nM

nP

Yim

Y.
JP

'(.5a)

the hypothesis H :

number of data points in Michigan segments

number of data points in Purdue segments

value of ith observation in mth Michigan segment

value of jth observation in pth Purdue segment

II = II must be rejected.

2.3.3. Further Examination of the Difference between Michigan and Purdue
Segments

Rejection of the HQ: IL. = lip necessitates the conclusion that the multi-
spectral data from the Michigan and the Purdue segments may not be pooled for
purpose of this analysis. However, before proceeding with separate analysis
for either the Michigan or Purdue segments, it is important to examine whether
II differs from lip because &£ differences in analysis techniques or because
or true differences in the proportion of land in corn in the areas where the
two sets of segments were located. If the latter is the cause for the difference,
then neither set of segments alone is useful for producing estimates for the
entire Intensive Study Area.

To examine this question, "ground observations" for each set of segments
were compared to each other as well as to the multi-spectral data of the
respective set of segments. While no formal statistical tests .were made, data
in Table 2.3.1 indicate that estimates from "ground observations" agree well
with estimates from multi-spectral data for the Purdue segments. However, a
substantial downward bias appears to be present in the multi-spectral data for
the Michigan segments. Therefore, only Purdue segments will continue to be
used in the following analysis.
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Table 2.3.1. Comparison of Estimates from Ground Observations with Estimates
from Multi-spectral Scanner (MSS) Data for the Michigan and
Purdue Segments

Source of
Es timate

Ground
Observations

MSS Data

Michigan Segments _,
Confidence

P v(p) Interval* cv(%)

.2377 .001108 - 14

.1514 .000283 .1159 -.1875 11

Purdue Segments
Confidence

P v(p) Interval* cv(%)

.2745 .001739 - 15

.2900 .000721 .2328-. 3472 9

*P + t.05 V v(p(P)

2.4. THE VARIANCE OF THE ESTIMATE

2.4.1. Delineation of Flightlines

The segments in the Intensive Study Area were not selected on a flightline
basis. Instead, they were selected on a random basis. In order to permit an
analysis of the effect of different subsampling ratios on the precision of the
estimate from a t'nree-stage sampling scheme (flightlines, segments within flight-
lines, and data points within segments), hypothetical flightlines had to be
constructed fromi the available data. Such construction of hypothetical flight-
lines assumes that "movement" of segments onto flightlines will not destroy
the validity of the data.

Figure 2.4.1 shows that three (hypothetical) flightlines were used. This
figure also shows the necessary "movement" of each of the four segments per
flightline into the respective flightlines.

2.4.2. Computation of the Variance

The computation of the variance of estimate and the variance components
for each of the stages follows the procedure which is described elsewhere
(see [lj). 12/ The results are summarized in Table 2.4.1.

12/ Minor modifications were made to account for variability in the number
of data points per segment.
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Table 2.4.1. Analysis of Variance for a Three-Stage Sampling Scheme in Remote
.Sensing (Three Flightlines - n_, = 3; four segments per flightline
-ns = 4; 199,675 data points per segment -nD = 199,675).

Source of Variation

Between flightlines

Between segments within
flightlines

Between data points
within segments

Degrees of
Freedom

2

9

2,396,101

Mean Squares
(ns's)

1,558.5

3,726.6

.2005

Estimates of -

SD+VS+V/F

S2 + n S2

SD

In this experiment the f .p.c. cannot be ignored. Therefore, the variance
of estimate follows directly from (1.3.4) and (1.3.13)-(1.3.18). Given
Np = 44, Ng = 26, ^and NJJ = 31,948 x 10-^, then the sample value of the variance
of estimate is 13/

v(p) = .0006957.

O O ft

The variance components Sp, Sg, and D can now be estimated from each mean
square and the one just below. However, g? turned out to be negative. 14/
If it can be assumed that observations within flightlines are random samples
from a normal population, then a test on the intraclass correlation coefficient,
Ho:p=0 becomes equivalent to H
(cf. [5], p. 194ff.):

0. Such a test was executed as follows

H • S2 -V SF ~

a = .05

F.95(2,9)
= 4.26

F = M§^
^s

1,558.5
3,726.6

13/ Had the f .p.c. been ignored, v' (p) =» .0006504. Compare this to v(p)= .00072
(Table 2.3.1) where v(p) was computed under the assumption of a simple
random sample and where the f .p.c. was ignored.

14/ This "is not only possible but likely in a design such as this."
See [3].
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Since F < F'gr/2 q) »
 Ho cannot be rejected. Therefore, the variance

components utilized in the subsequent analysis are as follows:.

4 - °
S^ = .0187

O

S = .2005

2.5. EFFECT OF SUBSAMPLING RATIOS ON
PRECISION OF ESTIMATES

The formula (2.5.1) was evaluated for various values of np, ng , and n .
The results are shown in Figures 2.5.1-2.5.3. 15/

Perhaps the most striking observation is that collection and analysis of
a large number of data points within segments does not improve the precision
of estimate in this particular application. While on the average nearly 200,000
data points were actually analyzed in the experiment, our calculation shows
that this did not improve the precision of estimate over that which is derived
from n'p = 50,000, given certain values of n'p and n'g. Indications are that
a considerably smaller number of observations within segments would be satis-
factory (see Figure 2.5.1).

2
Because Sp turned out to be zero in this analysis, the graphs in Figures

2.5.2 and 2.5.3 are merely mirror images. However, both graphs show that the
gain in precision of estimates levels off relatively quickly, and the collection
of even more data - unless without cost - is likely to become uneconomical
rapidly.

15/ For an explanation of the underlying rational and a definition of
variables see Part 1 of this paper, in particular equations 1.4.1 and
1.4.2.
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2.6. CONCLUSIONS AND IMPLICATIONS

Results from this study are not nearly as important because of what they
show regarding the precision of estimate for Mission 43M as they are because
of what they suggest as required analyses in order to assure future practical
and economical applications of remote sensing. Some of these requirements
are as follows:

V
(1) The statistical theory and model employed here are of the rather

standard variety (only insignificantly modified for the application at hand)
and make certain assumptions about the measurement error involved. These
assumptions are to date untested and may or may not hold. Even if they hold,
the results obtained here are at best an unbiased variance about the biased
mean. Furthermore, the distribution of variance components in multistage
sampling applications to remote sensing needs further study. The fact that in
this study the hypothesis Sp = 0 could not be rejected does not rule out the
possibility that the computed value for Sp was negative because of an irrelevant
statistical model.

(2) This study, in not permitting rejection of the hypothesis that
Sp = 0, points out that we need to develop organized approaches to the use of
a priori information. In retrospect, it appears obvious that, given the
cropping pattern in the westernmost 44 mile wide strip of Indiana, the collection
of sample data over 12 segments in one flightline should yield an estimate as
precise as that obtained by collecting data over 4 segments in each of 3
flightlines. But how can this be determined prior to the experiment? It is
actively possible that the appropriate use, of a priori information (e.g. census
data) could provide the needed insights and basis for designing more efficient
experiments. Perhaps an approach similar to the one used in "Project Chitter [6]
would be fruitful.

(3) Subsampling ratios and their effect on precision of estimates need
to be examined. This study points out strikingly that there is the temptation
to' oversample in some stages without resulting gains in precision (albeit
with increasing costs of data storage and analysis).

(4) To date we know nothing about the relationship between costs,
subsampling ratios, and precision of estimates. Yet, it would seem less costly
to collect data over twelve segments in one flightline than to collect data
over four segments in each of three flightlines. But how much less costly,
and what is the trade-off in precision?

(5) Similarly,.we know little about the technical and physical diffi-
culty of collecting data in various ways. How much easier is it to collect
ground truth on one flightline versus several flightlines? How much easier
is it to collect "good" data over one flightline versus several? Given the
presence of a broken cloud cover, what is the effect on the quality of data
from a few large segments versus a large number of small segments?
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(6) It is not possible to generalize from the results of this study to
other applications. Instead, similar analyses are required for other types
of applications (eg., estimation of acres in corn at different times during
the season, estimation of acres in other crops, estimation of degree of insect
and disease infestation).

(7) It is unlikely to be practical to develop a unique sampling scheme
for each application. Instead, various applications may have to be viewed in
terms of joint costs and joint products. Existing theories of joint costs and
joint products and associated optimization procedures should be explored
for their relevance.

(8) If resources are limited (as they always are), allocation of resources
over time for taking samples (i.e. what time periods reflect important change)
must also become an integral part of the analysis. For instance, changes over
time in corn blight levels would, in all likelihood, affect the variance and
the optimal sampling scheme. On the other hand, "acres in corn" may not be
affected by passage of time between planting and harvesting.

(9) When remote sensing is done by aircraft, a sampling scheme such as
the three-stage sampling scheme used in this analysis appears useful. How-
ever, there is no ji priori reason why the same model should hold for remote
sensing by satellite, when the satellite sequentially covers the entire region
to be studied. Perhaps a simple random sample is more appropriate under such
circumstances. Also, when time of overflight can no longer be controlled, the
question of the extent to which a broken cloud cover can be used as the
sample selection device becomes an interesting and important one.
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APPENDIX

Appendix Table 1. Mission 43M (August 9, 1971,) Multispectral Scanner Data from
the Intensive

Michigan (M)

Segment No.
(1)

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

or
Purdue

Segment
(2)

M
M
M
M
M
P
P
P
P
P
M
M
M
M
P
P
P
P
P
M
P
M
P
M
P
M
M
P
M
P

Points
(P) in

Segment
(3)

387890
301087
298075
379556
332032
158885
233153
225342
165708
130511
289830
306366
245800
262840
154467
207218
246752
208094
181745
244795
224446
282812
194361
221671
195930
409600
264795

91457
261700
161521

Study Area.

Pet. of
Segment

Classified
as Corn

(4)

12.57
15.56

8.31
20.86
19.00
35.87
36.98
44.59
43.84
21.67
11.80
13.64
19.65
16.33
24.80
18.31
26.37
26.02
14.81

8.96
35.64

8.42
20.64

2.72
27.42
12.80
23.42
60.44
29.86
21.23

Acres of
Corn

(Ground
Truth)

(5)

1537
2191
2831
2892
1888
2665
3404
3679
2324
1092
2272
2330
1716
1247

864
1278
1758
318
996

97
2362

338
994
201

2125
887

1490
997

1684
871

Planim.
Acres

of
Segment

(6)

7970
6569
6858
7720
7780
5285
7973
7558
6059
4790
6935
7650
6094
5232 .
5750
6932
8030
7022
5946
5774
5835
6000
6749
5120
7275
9121
6774
3857
5855
5535

Segment
Area

(Sq. miles)
(7)

12.0
10.0
11.5
11.0
12.0
9.0

12.0
12.0
9.0
7.2

10.5
9.5

10.0
9.0
9.0

10.0
11.5
10.5
9.0
8.5
9.0
9.0
8.5
9.5

10.5
14.0
9.5
8.0
8.5
8.5


