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ABSTRACT

The existence of a solution defined for all t and possessing

a type of boundedness property is established for the perturbed non-

linear system y = f(t, y) + F(t,y). The unperturbed system

x = f(t, x) has a dichotomy in which some solutions exists and are

well behaved as t increases to «> and some solution exists and

are well behaved as t decreases to -°o. A similar study is made

for a perturbed nonlinear differential equation defined on a half

line, say R } and the existence of a family of solutions with

special boundedness properties is established. Finally, the. ideas

are- applied to the study of integral manifolds. Examples are

given.
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1. INTRODUCTION

'The following is a study of the system

(1) Y = f(t,y) + F(t,y),

which is regarded as a•perturbation of the nonlinear system

(2) . x=f(t,x).

We impose hypotheses on (2) which guarantee the existence of a

bounded solution (or a family of bounded solutions) and prove that,

under conditions on the perturbation terms, such solutions are also

present in (l). Results of this type have been obtained by May [11]

and Harbertson and Struble [8] for nonlinear systems and Coppel [3],

Hallum [6], [7] and Hale [U], [5] for perturbations of linear

systems. The present work removes certain hypotheses from the past

results and introduces function spaces which allow new types of be-

havior to be studied.

Theorem 1 concerns the case when (l) and (2) are defined

for all t and give the existence of particular solutions defined

on R. Theorem 2 covers the case when the systems are defined on

some half line t > a and concern the presence of special solutions

on this interval. Theorem 3 extends the above ideas to integral

manifolds. Examples are discussed.



• 2. NOTATION AND GENERAL SETTING

*

Let p and q be nonnegative integers with p + q = m > 0,

let I be an interval of the type I = {t > a) (a may be -°°),

let D , (t), Dp(t) be continuous nonsingular p X p and q X q

matrices respectively on I and for 0 > 0 define

Pn = {(t,x) in i x R: ID <

We assume

! ftp = Ut,x) in I X Rq: |D?(t)x| < a}

that (2) may be written in the form

! =

' >

where for some a > 0, f, is a continuous function on ft., into

R , f~ is a continuous function on ftp into R , where f.. and

f2 have continuous partial derivatives in x.. and Xp

respectively and f,(t,0) = 0, f2(t,0) = 0. For (T,a ) in ft ,

(T,a2) in ftp we denote the solutions of (3) such that

X-.(T) = a -XP̂ T) = a2 by x (t, T, a ), x2(t, T, a^} . We assume that

for some 0 < r < o and (f,a ) in ftT, (T, a ) in ftl^, x (t, T,

exists for t > T and Xp(t, T,a2) exists for a < t < T.

&
For convenience when a is in R we will use norm



4-T".

| a| = max {|a.|} where i = 1,2,..., &, a. is the i component of-

a. Then for a in RP, a2 = R
q, a = col(a ,a2)

| a| = max [ | a, | } \ a2| }. Let BJj be the continuous functions y on

I into R^ with |D, (t)y(t)| < r and B2 be the continuous func-

tions y on I into Rq with |D2(t)y(t)| < r.

We denote the matrix ŷ  (t/T,a.) by $. (t; T,a.), i =-1,2,
i

and assume that F.. and Fp are continuous functions on

. „ N sn TV -Ri . I T\ ( + \Y \ <*v It! f-h^-vl <"vlj} X,} Xp^ in J. x n . | U-^T>J X-, I v. y^ | Up^ o^Xp| ̂  j;

into Ir and R respectively.

3. SYSTEMS DEFINED ON R

In this section we consider the case when I = R. We note

Y* V
the unperturbed system (3) has a solutiont,in B, X B?, viz.

x.. =0, Xp = 0. We seek hypotheses on the perturbed system

*i= ^W + ̂ ypy^
Jo ? * M o/ ? * T ^ ? ^

Y Y*

which guarantee the existence of a solution (y1,y2) in B, x B2 .

Theorem !„ Assume that we have



t
/ •|D1(t)*1(t,s,y1(s))F1(s,y1(s),y2(s))|ds < r,
—oo

(5) • .
/ |D2(t)*2(t,s,y2(s))F2(s,y1(s),y2(s))|ds < r,

Y Y
for all t in R and (y,,y2) in B' x B'. There is a solution

(y1(t),y2(t)) of (U) defined for.all t and (y,,y2) is in

*r X -RTBl X B2'

Proof; For each positive integer k, let B, he the set of func-

tions (y-,,yp) where y and y map [-k,k] continuously into

RP and Rq respectively. For y = (y^ y2) in Bfc let

|y| = max {sup |D (t)y (t)|, sup JD (t)y2(t)|},
t t

then (B,, ||) is a Banach space and B^T X B,T is a closed convex
J& 1 £-

subset. (The functions in B]| X fiJ are here restricted to [-k,k].)

y y
On B, x Bp we define the transformation T by Ty = u where

t
û t) = / ®1(t,s,y1(s))F1(s,y1(s),y2(s))ds,

~ K.

&
Up(t) = -/ <J)p(t, s,y (s))Fp(s,y (s),y (s))ds,

t

for -k < t < k. It is an easy exercise to check that Schauder's

fixed point applies so there is a function y in B^ X Bp

defined for -k < t < k with Ty = y. We have



= F1(t,y1(t),y2(t)) + / H1(t,s)F1(s,y1(s),y2(s))ds,
-k

t
H2(t,s)F2(s,yi(s),y2(s))ds,

where

df.

M^ = -5T

i - 1,2. Here we have used the well known ([3], page 22) theory of

the variational equation. Also

=/ |i[f1(t,x1(t,s,y1(s)))]ds,

H1(t,s)[y1Cs) - f1(s,y1(s))]dsj

and a similar expression holds for
• For i = ̂ 2 and

wi(t) = y±(t) - fi(t,yi(t)) - Fi(t,y1(t),y2(t)),

we obtain

(T)

w (t) = / H (t,s)w (s)ds,
-k

Hp(t,s)w_(s)ds,



•which implies 'w (t) = 0, Wp(t) = 0. Consequently y = (y,,y2) is

a solution of (4), -It < t < k in B^ X B^.

Let {y(t, k)) be a sequence of fixed points of T onIc— x
Y* Y

B* X BO (restricted to [-k,k]). The following statements show-

there is a function y in B^" X B£ and a subsequence {y(t,rO}!°

such that

(8) Ijjn yCt,!̂ ) = y(t),
i k -> oo

and the limit is uniform on compact t intervals.

There is a subsequence {y(t,.n,,)} converging uniformly on
i -"-K

[-1,1] since the original sequence is uniformly bounded and each

function satisfies (U) on this interval. Similarly, there is a
»

subsequence (y(t,n2k)}̂ =1 of the sequence ty(t,nlk)}™=1 con-

verging uniformly on [-2̂ 2], In this way we obtain a chain of

subsequences {y(t, n.,)} converging uniformly on [-j,j]. Put

y(t,n.) = y(t,n,,) to obtain (8). Since each y(t,ru) is a solution

of (h) so is y.

May [11] gives a similar theorem when D,(t) = I, Dp(t) = I;

however he requires the additional hypothesis of a Lipschitz condition

in z on $(t,s,z)F(s,z). The essential difference in the proofs is

that we define T using a finite limit k and use functions on

intervals [-k,k]. The proof that the fixed point y satisfies (U)

reduces to the fact (7) implies w..,Wp = 0, an easy observation when

k is finite.



Hallum [6], [7] and Hartman and Onuchic [9] introduce the

matrix D(t) = g(t)l in studies of a perturbed linear system on a

half line. Here g(t) is a continuous nonnegative functions.

Condition (5) is restrictive on the linear parts in x of

the f-ijfp functions. Suppose, for example, f-, (t,x..) = A,(t)x..

+ h(t,x,) where h(t,x..) = o(|x.|) uniformly in t as x.. -> 0.

Let X, (t) be a fundamental matrix of solutions for x = A, (t)x..,

then since $(t, s,0) is a solution of z = f (t,0)z, Z(T) = I,
X

we see (U) implies, in particular,

t 1
/ |D1(t)X1(t)X1

±(s)F1(s,0,0)|ds < r.
— CO

t
(Theory concerning systems with hypotheses / |x(t)X (s)|ds < K

-co •

is given by Coppel [5].) If, in addition, A., (t) = 0 we see

F,(s,0,0) must be integrable.

As an example take p = 1, q = 0 and consider the system

(9) y = a(t)y - Z b (t)y2i+1 + F(t,y),

where a(t) is a'continuous function on R to be further restricted

later, the b.(t), i = 1,2̂ ..., are continuous nonnegative functions

on R, the series Z b.(t)y converges to a continuous function

with continuous partial derivative in y given by E b.(i;)y ,

2
and the function F is continuous on R and will be further

specified later. We take as the unperturbed system,
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00

x(t) = a(t)x - E b ."N 2i+1
. i=i i

then the variation equation is

z = [a(t) - E b

Consequently,

t
/ a(s)ds

- |*(t,T,r)| < eT

Case 1. Suppose a(t) = -1 (or any negative constant).

Then for D(t) = 1 we have that if there is a a > 0 such that for

continuous functions y(t) with | y(t) | < a,

I e-(t-s)|F(s,y(s))|ds<a,

then (9) has a solution y* defined for all t with |y*(t)| < a.

We notice here the nonlinearities E b.(t)y are "harmless".

This observation shows the nonlinear theory allows much larger bounds

for some systems than the corresponding linear perturbation theory

gives (Coppel [3], page 137). It is interesting to note that for

a(t) as given in Coppel [3], page 73, the above conclusions also

hold. In this case the basic linear system is not exponentially

stable.



Case 2. Sometimes the form of the linear term dictates the

D(t) .function. Suppose a(t) is given by

a(t) =

2t

-1
t + 2 -1 < t.

Then it is easy to see there is a k > 0 so that for .

D(t) = k/(,|t| + 2), / D(t)*(t,s,y(s))ds is bounded, say by M,
-co

for all t and continuous functions y. If there is a a > 0,

So y in B.. implies |F(t,y(t)| < cr/M then .(8) has a solution

y* defined for all t with |y*(t)| < a(| t| + 2) /k. Other

choices for a(t) will give decreasing D(t) functions as t -»«

Case 3. The form of the perturbation term may dictate a

D(t) function. Suppose a(t) = -1 and F(t, y) = h(t)k(t,y) where

h(t) =
e t < 0,

e"S t > 0.

Then



et/2,
/ '

t < 0.

\ + te""5, t > 0,

consequently a natural choice for D(t) is

10

2e-t t<0,

D(t) =

2te
-t t > 0.

In most instances the solutions of (3) and consequently

*-i>*2 are no^ ̂ nown precisely. However, as in the example above, it

may be possible to obtain information which implies the hypothesis

of Theorem 1. Consider the following situation in which, for con-

venience, we assume q = 0, and suppress the subscript 1 notation.

Suppose D(t) is given and there are positive numbers a,K, a set

ft C R-P and a continuous real valued function X on R such that:

(a) for s in R, | yj <|D~1(s)|a, x(t, s, r) lies

in ft for t > s;

(b) n[f (t,x(t))] < X(t) for all continuous functions
X ~~~

• x from R to ft;

t t
(c) D(t) / exp / X(u)du ds < K.

-oo s

We notice that for y in B , | y ( s) | < j D ( s) | a, hence
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x(t, s,y(s)) i's in ft for t > s. By a well known result .(Coppel

[3.]j page 58) condition (b) implies

t
|*(t,s,y(s))| < exp / n(f [u,.x(u, s,y(s))])du;

hence condition (c) together with a boundedness assumption on F

will imply inequality (5) in Theorem 1.

U. SYSTEMS DEFINED ON A HALF LINE

In this section we consider the case a finite. We note

the unperturbed system may have a family of bounded solutions on

t > <X We seek hypotheses 'on the perturbed system (k-) which

Y y

guarantees the existence of a family of solutions in B, x Bo-

Theorem 2. Assume that we have

t
/ |D1(t)*1(t,s,y1(s))P1(s,y1(s),y2(s))|ds < r/2,

(10)
oo

/ |D2(t)*2(t,s,y2(s))P2(s,y1(s),y2(s))|ds < y,
"t

V Y"
for all t in R and (y-,,yo) in B, X B2- Further assume that

for some A > 0 and | a, | < A, a., in IT we have

(11) D1(t)x1(t,a,a1)| < r/2.
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Then for | a | < A, a in RP there is a solution (y-,(t),y2(t))

of (*0 defined for t > a, (y-y) is in B X E and

Proof: For each positive integer k > a, let B, be the set of

functions (y-,,y2) where y and y map [a, k] continuously

into RP and Rq respectively. On B^T X B2 restricted to [a,k]

we define the transformation T by Ty = u where

t
= X-j^Ct^a^a^ + / ̂(t, s,y1(s))F1(s,y1(s),y2(s))ds,

• k
= -I $2(t, s,y2(s))F2(s,y1(s),y2(s))ds,

for a < t < k. As before such a transformation has a fixed point

which is a solution of (U), The family of such fixed points
»

(a < k < <») has a convergent subfamily which converges to a func-

tion (y-,,yo) satisfying the conclusions of the theorem.

Suppose that, in addition to line 2 of inequality (10), we

have a system such that

t
(12) / |D1(t)a.1(t,s,y1(s))|ds < T*

for all y.. in B^j. Then appropriate boundedness conditions on F,

will give line 1 of inequality (10). Inequality (12) for D,(t) = I

gives a type of exponential stability to x(t,o,,a ) if

f (t,x,) = A,(t)x . -Coppel [3], page 68, proves that there is a

constant N such that
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In this case inequality (ll) is not an added restriction but merely

defines notation. Corresponding theorems are given for general

D(t) by modifying Hallutn [6], page 255-6. Brauer [1], gives a

theorem in the direction for nonlinear functions f-,(t, x..) which

could again be modified to include D(t).

5. INTEGRAL MANIFOLDS

In this section we consider the system

0 = h(0,t,z) + H(0,t,y,z,e),

(13) y = f(t,y) + F(0,t,y,z,e),

z = eg(z) + eG(0,t,y,z,e),

where (0,y, z) is in R X Rm x Rn and where hypotheses will be

introduced to insure the existence, for small e, of an integral

manifold of solutions. The form of the system and the hypotheses

given'are motivated by previous work by Hale [4], [5] and Harbertson

and Struble [ 8]. Such problems arise in the "method of averaging"

introduced by Kryloff and Bogoliubov [10] (see also [2]) and studied

extensively by many.

The ideas introduced in the previous sections of this paper

are applied to the study of (13). A treatment of such a system



without the D matrix has "been given in [8]; however our treatment

improves the allowable bounds for the perturbation. In addition,

the form of the 6 equation has been changed to allow a larger class

of examples. Such an example is given at the end of this section.

It is possible to present this theory for the case where f

is split into two functions, f = column(f.., fp) as was done in the

preceding sections. Correspondingly the g function (i.e., the z

equation) can also be split into two pieces, one which is well

behaved as t -»«*>, the other well behaved as t -» -°° (see [8]). In

order to present these ideas without unnecessary clutter we will not

make these decompositions of the y and z equations. It will be

clear how the hypotheses must be altered to obtain a corresponding

theory with the dichotomies present in the y and z equations.

Let D(t) and E(t) be continuous norisingular mxm

and n x n matrices respectively on R and for o = (a , cTp) in

R X R we define

= {(t,y,z) in Rn: |D(t)y| < a^ |E(t)z| < ^,

) in R1+m: |D(t)y| < a^,

,z) in R1+n: |E(t)z| < a2),

and consider the following hypotheses. Let 0 in R x R and

e > 0 be given.
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(1) h is a continuous function from R X ft? into R .
a p

H, F and G are continuous functions from R x ft X [0,e ] into

R , Rm and R respectively, f is continuous on ft , has a con-

tinuous derivative in y and f(t,0) =0. g is continuous on R

and has continuous derivatives in z. There is an co = (ox, ,ov,,... ,o> )I7 d' ' m

in R such that h, H, F and G have period CD. in 6..

H, F, and G vanish for 6=0 and | h| < C , | H| < C2 on their

domains. '

(2) The solutions of y = f(t,y), y(t) = a, (T,a) in ft ,

are denoted by y(t, T,a) and we assume for some 0 < a* < c,

a*y(t,T,a) exists for t > T when (T,a) is in ft, . We denote by

$(t,T,a) the matrix -s^ . '7 ' oa

(3) The solution of z = g(z), z(0) = b, b 'in Rn. is

denoted by z(t,b) and we assume z(t,b) exists for t > 0. We

denote by A(t,b) the matrix -sr .

There is an N > 0 such that on its domain

|h(e,t,z) -n(e*,t,z*)| <

There is a continuous function Jj(t, e) on R x [0, e ] decreasing

to 0 as e -» 0 such that on its domain

|H(9,t,y,z,e) - H(8*,t,y*,z*,e)l

+ |y-y*| + |z-z*|).
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There is a continuous function v (e) on [0, e ], v (0) =' 0 and

a. continuous function A(t, s) for s < t such that on its domain

|*(t,s,y)F(0,s,y,z,e) - 0(t,s,y*)F(0*, s,y*,z*, e)|

< VQ(e) A(t, S) (| 0-0*| + | yy*| + I z-Z*| ) .

There is a continuous function 8(t, s), s < t, such that on its

domain

|A(e(t-s),z)GC0,s,y,z,e) - A(e(t-s), z*)G(0*, s,y*, z*,e)l

< 5(t,s)(|e-0*| + |y-y*| + |z-z*|).

(5) There are positive constants M, K,, K2 and

e. (0 < e < e ) such that

t ' t
/ A(t, s)exp / L(u, e^du ds < K^
-oo S

t t
/ 8(t, s)exp / L(u, e^du ds < K2, t in R,
-oo s

where L(u, e) = (2M+l)̂ (u, e) + (M+l)N.

For" 0 < TJ_ < Op 0 < T2 < o2, r = (r̂ r̂  we define ST

to be all v = (v-.,Vp) where vn(0,t) is continuous from R

into Rm with |D(t)v (0,t)| < r-,, where v2(0,t) is continuous

from R into R with | E(t)v2(0, t)j < r2 and where v ,v2
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have period co in 9 and satisfy Lipschitz conditions in 9 with

constant M. For v in S we define HV(0,t, e)

= H(0,t,v.,(e,t), v2(0,t),e) and F
V, GV similarily. We assume for

some f the following conditions hold:

(6) There are continuous functions V^CO*^^ on [0,ê ]

V,(0) = V2(0) = 0 so that ' . •

t
/ |D(t)a.(t,s_,v1(0(s),s)F

V(0(s),s,e)|ds < v̂ e),
—oo

t
e / |E(t)A(e(t-s), v2(0(s), s))G

V(0(s), s,e) | ds < V2(e)

for all v in S and continuous functions 9 from R into R .

(7) For any continuous function 0 from R into R and

v in Sr let

t
P0v(t) = / 0(t,s,v1(0(s),s))F

V(0(s),s,6)ds
— oo

t
= / A(e(t-s), V2(0(s),s))G

V(0(s),s,e)ds.

For any e in [0,6..], fixed we assume

"V*

are o(| t-t*| ) uniformly for v in S and 0 continuous from

R into Rm.
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Theorem ?. Assume that conditions (l) - (7) are satisfied. For e

sufficiently small Ihere are functions (v (0,t), v2(0,t) in Sr

such that y = v (0,t), z = v2(0,t) is an integral manifold of (13)

V" -y
jproof; For v in S let | (t, T,0 ) be the solution of

e = h(e,t,v2(e,t)) + H
v(0,t,e),

The right side of the equation is Lipschitz in 0 with constant

L(t, e) and is bounded by C, + C0. A routine use of Gronwall's

inequality gives

(15).

(|0o - 0*|

for T > t and 0 < e < e . Let k be a positive integer and let

B- be the functions (v (e,t), V2(0,t)) mapping R̂  x [-k,k]

continuously into (R ,R ) with period co in 0. Then S

restricted to [-k.k] is a closed convex subset of B, . For v
K.

in ST define Tv(0,t) = (ŵ t), Wg(8,t)) by

t
w (e,t) = / »(t,s,v (r(s,t,e),s)FV(r(s,t,0),s,e)ds
X X-k

t
w (0,t) = e / A(e(t-s), v (eV(s,t,0),s)GV(r(s,t,0),s,6)ds



for 0 in R , -k < t < k. TV exists by (6) since D,E are

nonsingular. Since the right side of (l̂ ) has period o> in 0

we note £ (s, t,0-Ku) = £ (s, t,0) + o>; consequently TV has period

CD in 0. For e stiff iciently small V..(e) < r-,, V2(e) < r2

and hence | D(t)w1(0, t)| < rp |E(t)w2(0,t)| < T2. We have

t
<Vo(e) / A(t,s)[2M+l]U

V(s,t,0) - |V(s,t*,0*)lds
-k

and a similar equation for Wp(0,t). By (15) and condition (5) we

have the family TS is equicontinuous in (0,t) and for t = t*

above for e sufficiently small | w. (0,t) - w. (0,t)| < M| 0-0*| ,

i = 1,2. Note the condition on e is independent of k.

Schauder's fixed point implies there is a fixed point of T. Let

v be such a point and T,0 be fixed. A repetition of the

argument in Theorem 1 shows 0(t) = |V(t, T,0Q), y(t) = v_L(^
v(t, T,0Q),t),

z(t) = v2(|
V(t, T,0o),t) is a solution of (13).

kFor each positive k let v be a fixed point of T and

let 0k(t,t,0o), y
k(t,t,0o), z

k(t,T,0o) be the corresponding

solutions of (13). If Z is the set of positive integers,

{v̂ (0,t); k in Z) is uniformly bounded and equicontinuous (by

condition (?) on R X [-1,1]) so there is a Z^ C Z so that

(vk(0,t): k in Z,} converges uniformly on R x [-1,1], In this

way we obtain a decreasing sequence Z. = {k,k._,...} such that
0 J J- J*-
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{v (0,t): k -in Z .} converges uniformly on R X [-j,j]. Let
J

ki = kii> ± = 1 > 2 >-"> z = tki}i=i> then (0,*); k in z*i*
converges uniformly on sets of the form R x C, C compact in R.

Let v(0,t) be the limit function. The corresponding sequence

k k k0 ,y ,z also converges uniformly on compact sets in R; thus the

limit functions are solutions of (13). Consequently

y = v]_(e,t), z = v2(9,t)

is an integral manifold of (13).

The usual form for the 0 equation in (13) is 0 = TJ +

H(0,t, y, z/e) where TJ is a constant. We include an example

•which may occur naturally (say by using Newton's equations) in a

mathematical model and show how these equations can be reduced to

the form (13) featuring an h term in the 0 equation which is

not constant. Consider a weakly coupled nonlinear system

x + Px5 = -ex + e2x(t,x,x,y)

y = a(t)y + b(t,y) + 6F1(t,x,x,y)

where the y equation for e = 0 was described in section 3, P
li

is a positive number and F,,X are continuous on R . For e = 0

the first equation can be solved in terms of elliptic functions

sn, dn and en with modulus l/v2. Let x = p en 0,

x = - p N/psn0dn0, then equation above takes the form



Let

21

0 = vp p - eH.. (0, t,y, p),
v

y = a(t)y + b(t,y) + eF-^6, t,y, p),

2 2 2p = - e p s n 0 d n 0 - e G,(0,t, y, p).

1 2 2
T = r^ / sn s dn s ds,

K.0

v(9, z) = z / (sn s dn s - r)ds
0

where K is the real period of the elliptic functions, then -under'

the coordinate transformation given in the method of averaging

([5], Chapters 1̂ -17), p = z + ev(0,z) .the differential equations

become

0 = N/p z + €H2(0,t,y,z,€),

y = a(t)y + b(t,y) + &(9, t,y, z, t),

z = - + e G(0,t,y,z,e).

Relatively mild hypotheses on X, F, give the required smoothness

conditions on Hp, F̂ , G, etc.
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6. CONCLUSION

The use of the D(t) matrices in forming the underlying

function spaces a) allows the asymptotic character of the solutions

of the unperturbed system to "be applied to the perturbed systems

as in Case 2 of the example in section 3 and b) allows special time

dependence of the perturbation to "be taken into account as in Case 3

of the section 3 example. In comparison to the version of Theorem 1

given by May [ 11] our method of proof results in an improvement of

the allowable size of the perturbation; however, our proof does not

reveal any periodic or almost periodic character and does not give

unique solutions

No Lipschitz conditions were used in section k, thus no

study was made of the differences y(t,a,â ) - y(t,a,a*). (Here
»

y(t,o, a-jj is a solution furnished by the conclusion of Theorem 2

with y1(a,a, a-jj = a .) If such conditions are imposed then

asymptotic estimates of these differences can be made. Harbertson

and Struble [.8], (Theorem 2) and Hale [4], (Lemma 2.3) give such
l

estimates for integral manifolds. Even if Lipschitz conditions

are imposed, our method of proof gives slightly larger bounds for

the size of the perturbation at the expense of uniqueness.

We remark here that the hypotheses on the

A(v(e)(t-s),y)G(8, s,y, z) term in Harbertson and Struble [8],

page 271, can include v(e) as a multiplier on the left. This

will allow a larger class of examples.
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