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A THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE

LINEAR AND NONLINEAR IMPULSE RESPONSES

FROM A MAGNETOPLASMA COLUMN

by
Norman Charles Grody

Goddard Space Flight Center

1. INTRODUCTION

The study of laboratory plasmas has received increased attention within the past few years be-
cause of its application to the areas of space and nuclear science. Microwave scattering from plasma
columns has been investigated with increasing detail, resulting in a better understanding of the inter-
actions between charged particles and electromagnetic radiation. Correlation between experiment and
theory has been increased by improvements in experimental techniques and advances in theory.

Although many contributions have been made, there are a number of questions unanswered,
particularly those concerning the nonlinear plasma response to excitation. Unlike the linear response,
to which superposition applies, the nonlinear response generally exhibits different plasma properties
depending on the form of excitation used. Herein is reported the study of the linear and nonlinear
responses of a magnetoplasma to an impulsively applied electric field.

The impulse response has always been recognized as a valuable tool for studying the properties of
physical systems. However, because of practical limitations, little experimental work has been done
involving the impulsive excitation of a laboratory plasma. The use of sharp, baseband pulses (10~9 s)
as an experimental tool for plasma studies was first employed by Schmitt in 1964 (References 1 and 2).
Later, Baldwin, Henderson, and Hirshfield (Reference 3) also did some work with baseband pulses.
However, the strengths for the impulses used ranged from 40 mV in Schmitt's work to about 5 V in
the experiments of Baldwin et al., and nonlinear effects were never studied.

To excite the plasma at the nonlinear level, large peak pulse voltage must be employed. A special
pulse generator1 was developed for this purpose and was used throughout this experimental investiga-
tion. This generator, called a "bouncing-ball generator" (BBG), is capable of producing baseband
pulses with pulse widths of 120 ps at the 3-dB points and peak voltage greater than 1 kV into a 50-ft
load. Because of the availability of this device combined with the utilization of a very fast sampling
scope, the nonlinear investigation became feasible. In fact, much of the concern involving signal-to-
noise ratio, stability of the system, sensitivity, resolution, etc., proved to be unfounded by the
measurements made.

'P. Pleshko and I. Palocz: Memorandum M-6, School of Engineering and Science, New York Univ., 1969.



Impulse excitation has many advantages over other forms of excitation when studying plasmas.
The following list indicates a few of the important reasons why this form of excitation was chosen for
studying the plasma dynamics.

(1) The impulse response serves as a simple method for displaying and analyzing the plasma
properties.

(2) At the linear level, the impulse response can be used to obtain the response to other forms of
excitation by applying the well-known convolution principle.

(3) At the nonlinear level, the large-amplitude sharp BBG pulse is preferred over continuous
microwaves because high-power microwaves result in ionization of the atoms and electron
heating, which alter the background plasma density and temperature.

(4) Most of the measurements and observations can be made very quickly (<20 ns) after the
application of the impulse. This period is usually short compared to the electron-neutral
collision time, thus enabling one to study phenomena predicted by "collisionless" theoretical
models.

These items are used to full advantage throughout this work.

Experiments have recently been performed by Sindoris, Grody, and Cheo (Reference 4) using the
BBG to observe the plasma responses (with and without a static magnetic field). In this study more
detailed measurements of the time responses were obtained and used to identify the oscillations and
relaxation properties of the plasma. The linear impulse responses appeared as modulated, damped
oscillations, the modulation being produced by the magnetic field. For the BBG voltages exciting the
electrons to initial velocities greater than 108 cm/s, the nonlinear plasma responses exhibited both an
increase in oscillation frequency and stronger damping with increasing excitation. To identify the
physical mechanisms characterizing these linear and nonlinear responses, the experimental results are
compared with theory.

The linear impulse responses are shown to correlate with those predicted by the linear theory of
a cold, inhomogeneous plasma. This theoretical model was studied by Baldwin and Ignat (Reference 5)
for an isotropic plasma column and by Henderson (Reference 6) for a magnetoplasma. However, their
work was primarily concerned with the plasma responses to continuous microwaves and was extended
in this study using approximate techniques to include impulse excitation. At the nonlinear level, the
experimental results, i.e., increased oscillation frequency and damping, are shown to be in agreement
with the nonlinear theory proposed in this report.

Theoretical Background: Impulse Response of a Cold Magnetoplasma

A magnetoplasma consists of charged particles of various species interacting with each other in the
presence of a static magnetic field. The following is a brief account describing the time development of
the cold-plasma response to an impulsively applied electric field directed transverse to the static
magnetic field.

Impulse excitation results initially in the separation of electrons from a relatively fixed, neutraliz-
ing ion charge background. The electron motion is prescribed by the space-charge restoring force



resulting from the fixed ions and the additional force caused by the static magnetic field. In the
absence of any thermal motion, these forces cause the electrons to orbit about their initial positions.
The resulting stimulated emission of radiation from the plasma has been studied and the following
plasma characteristics discerned:

Considering a linear, homogeneous, cold magnetoplasma, the emitted radiation appears as one or
two undamped (i.e., neglecting radiation and collisional dampings) oscillations depending on the mode
of excitation. Inhomogeneity in either the ion density or magnetic field produces a continuous spread
in electron orbital periods, resulting in the damping of the plasma response because of phase mixing.
This form of linear damping was first described by Baldwin and Ignat (Reference 5) for an isotropic
plasma and by Henderson (Reference 6) for a magnetoplasma. Greenwald (Reference 7) showed that
for conditions easily attained in the laboratory, damping resulting from inhomogeneity can exceed
that due to radiation and electron-neutral collisions.

In addition to these linear effects, the plasma displays nonlinear behavior for large impulse ampli-
tude. In particular, nonlinearity resulting from plasma inhomogeneity damps the plasma response be-
yond the linear damping value. The nature of this nonlinear damping mechanism has been indicated
by Leavens and Leavens (Reference 8) and also by Schneider and Bers (Reference 9) and is briefly
described.

The plasma boundary contains a relatively low ion density with a large spatial gradient. This re-
sults in the formation of strong electron bunching at the boundary, followed in time by multistream-
ing (electron crossover or overtaking). The multistreaming acts to damp the plasma response because,
once it starts, it eventually spreads throughout the plasma removing the phase coherence among the
different electrons. Because of the amplitude dependence associated with the streaming velocity of
propagation, the damping is inherently nonlinear.

The nonlinear response of a plasma to impulse excitation is analyzed in Section 2, where the
following properties are noted: For a given time, it is the electrons that previously had not participated
in multistreaming that contribute largely to the plasma response. These electrons are generally found
near the central region of the plasma where inhomogeneity is small and plasma density is high. Con-
sequently, the nonlinear plasma response arises predominately from the higher frequency orbital elec-
trons, resulting in an increase in oscillation frequency in addition to an increase in damping.

The experimental results are compared with this cold-plasma theory.

Experimental Background: Pulse Excitation of a Laboratory Plasma

Until recently, most experimental investigations used continuous microwaves for studying plasmas.
The application of pulse excitation as an experimental tool has been employed only recently, following
the development of fractional-nanosecond pulses and sampling scopes capable of detecting them. The
following survey describes some of the contributions made by other investigators using this form of
excitation.

Initial work involving pulse excitation of plasmas besides that of Schmitt (References 1 and 2)
was performed by Hill and Kaplan (Reference 10) in 1965. They applied short (10-ns) microwave
pulses having 15-W average power to nonlinearly excite an afterglow plasma immersed in a slightly
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Figure 1 -Configurations for plasma excitation, (a) Antenna, (b) Waveguide, (c) Parallel plate.

depended nonlinearly on the applied pulse amplitudes.

Following the discovery of echoes, other investigators (References 1 1 to 14) began studying their
propels To identify the plasma nonlinearities. This study incorporates single-pulse techniques to
frstigate thi hnear and nonlinear plasma properties; the studies referred to in the following para-

graphs are related to the problems discussed in this research.

Br.ce, Crawford, and Harp (Reference 1 5) performed experiments with _a J
incident to an afterglow plasma placed in waveguide as shown m Figure Ib. The linear
e ponse was re orded for different magnetic field inhomogeneities, plasma densities and neut d

nressuresTo exhibit the effects of magnetic field inhomogeneity, inhomogeneaty m plasma density,

for the collision's regime in which inhomogeneity effects become important.

tapulse excitation of a nonmagnetoplasma was performed by Baldwin,
field (Reference 3) to observe the Unear response. An afterglow discharge was used with the

tion was made of the damping observed.

.«.,-, „-, — — — •



phenomena are not predicted by existing theories (References 11 to 14) and a new mechanism is pro-
posed in Section 2 to account for these effects.

Experimental Techniques

Experiments were conducted to examine the linear and nonlinear impulse response of a low-
pressure, continuous-discharge argon magnetoplasma. Unlike the previously mentioned experiments,
a fractional-nanosecond baseband pulse having a maximum of 1860 V peak from the BBG was applied
to excite the plasma at the linear and nonlinear levels. For all practical purposes, this excitation is
equivalent to an impulse and is referred to as such. Detailed measurements were made displaying the
impulse responses; the following is a brief description of the experimental setup and the results
obtained.

The plasma column was placed between the plates of a broadband parallel-plate transmission
structure, and a uniform static magnetic field was directed along the column axis as shown in Figure
Ic. This orientation of applied pulsed electric field E and static magnetic field BO is used exclusively
throughout this work. The plasma parameters pertinent to the experiments performed are/ </
and v <^f' where/c,/ and v are the electron-cyclotron, plasma, and electron-neutral collision fre-
quencies, respectively. These parameters are controlled independently by varying the static magnetic
field, plasma discharge current, and argon neutral pressure, respectively.

The plasma was impulsively excited by the fractional-nanosecond baseband pulse propagating
along the parallel-plate structure that was properly terminated with negligible reflections. A broad-
band directional coupler was used to separate the low-voltage impulse response from the larger excita-
tion pulse. (Details are given in Section 3.) The impulse response was then transmitted through the
coupling port and observed on a sampling scope, or an accompanying X-Y recorder.

The impulse responses of the structure with and without the plasma on are shown in Figure 2 on
the same voltage and time scales. Also shown is the power spectrum determined from the plasma
impulse response.

In the absence of any plasma, / = 0, the leakage of the excitation pulse through the coupling
port was observed followed in time by the smaller residual reflections due to the cable connectors,
glass plasma tube, etc. Excitation of the structure with the plasma on resulted in plasma oscillations
that were easily distinguished from the leakage and residual reflections. These measurements were
performed using a low-level (50-V) pulse and for the plasma parameters indicated. Additional impulse
responses obtained for different plasma parameters are discussed in Section 4.

The impulse response of the magnetoplasma generally appeared as a modulated, damped oscilla-
tion and is compared in Section 4 with the linear theory of a cold, inhomogeneous, cylindrical magneto-
plasma. This behavior was further displayed by Fourier analyzing the time responses using a digital
computer to obtain the power spectrum.

The appearance of the two (split-dipole) resonances in the spectrum was originally obtained from
microwave scattering measurements by Tonks in 1931 (Reference 16) and in the 1960's by Messiaen
and Vandenplas (Reference 17) and also by Crawford et al. (Reference 18). However, their
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(c) Power spectra determined from the plasma impulse
responses.

measurements are not as readily interpreted as those of this study because they were made by sweep-
ing plasma current (consequently changing the plasma density profile) for a fixed microwave fre-
quency. In particular, for studying the damping and frequency shift due to inhomogeneity in plasma
density, it is desirable to obtain measurements for a fixed discharge current and varying excitation
frequency. Such a series of experiments was performed in this study, with the plasma current as a
parameter, and is described in Section 4.

The preceding impulse measurement of Figure 2 was obtained using a low-voltage excitation pulse,
resulting in the linear impulse response of the plasma. The nonlinear impulse response was obtained by
applying larger excitation. Figure 3 shows the impulse responses for 50- and 1600-V peak pulse



amplitudes Vpk for the same overall system gain. The plasma parameters were the same as used pre-
viously. It is observed that larger excitation results in a stronger damped response with a small increase
in the oscillation frequency. This nonlinear behavior is also exhibited in the power spectra determined
from the time responses with a computer. The spectra shown in Figure 3 display the two resonances,
although the linear spectrum (V . = 50 V) contains sharper resonances appearing at slightly lower
frequencies than the nonlinear spectrum (V k = 1600 V). Additional nonlinear impulse responses and
their spectra are presented in Section 4.

One objective of this work is to compare the observed nonlinearities with the nonlinear theory of
a cold, inhomogeneous plasma.

2. THEORY

The theory concerns the linear and nonlinear responses of a magnetoplasma to an impulsively
applied electric field. The analysis entails solving both the dynamical equations for particles and
Maxwell's equations subject to appropriate initial and boundary conditions. This general description
results in a set of coupled, nonlinear equations for the plasma constituents. To simplify the analysis,
assumptions are made that are later correlated with experimentally observed results.

Throughout this discussion, the thermal properties of the plasma are neglected, resulting in a
cold-plasma description. The theoretical results are summarized below, and are applied in Section 4
to explain the measurements made.

To obtain an analytical solution for the plasma response, simple geometry and plasma conditions
are considered. The equations for a cold, inhomogeneous magnetoplasma slab are developed and the
linear results of this theory are presented and shown to be in agreement with those of Henderson
(Reference 6). The linear impulse response is observed to appear as an oscillation that damps because
of phase mixing resulting from inhomogeneity.

The nonlinear impulse response is then discussed. Applying the theory developed for cold,
inhomogeneous magnetoplasmas, two radically different nonlinear mechanisms are observed and are
treated separately in the text. Because of the anharmonic electron motion, the plasma response
exhibits a decrease in oscillation frequency with increasing impulse amplitude. Nonlinearity also
appears in the form of electron bunching, followed in time by electron crossover (multistreaming or
overtaking) which randomizes the electron velocities. This phenomenon is shown to appear initially at
the plasma boundary where inhomogeneity is maximum, spreading throughout the plasma with an
amplitude-dependent propagation velocity. Because the fluid equations used are invalid after electron
crossover occurs, numerical results are used to show that the plasma response damps nonlinearly and
increases in frequency with increasing impulse amplitude. A comparison is made between the two
nonlinear mechanisms, showing that the second form dominates in general. This observation is borne
out by experimental results.

The effects due to cylindrical geometry, which is the experimental geometry used, are examined.
It is observed that unlike the slab geometry, a cylindrical, cold magnetoplasma supports a dipole mode
of excitation. This results in a linear impulse response consisting of two oscillations, which, for a
homogeneous plasma, are separated by the electron-cyclotron frequency. This interference between



the two oscillations produces a modulated oscillatory response. Just as for the one-dimensional case,
inhomogeneity causes a linear damping of the response because of phase mixing. However, it is
shown using approximate techniques that the additional degree of freedom results in a more heavily
damped response. The linear results are extended to the nonlinear regime by referring to the results
for slab geometry.

Equations for a Cold, Inhomogeneous Magnetoplasma Slab

In this section, the equations for a cold, inhomogeneous magnetoplasma slab are derived. The
derivation is similar to that developed by Davidson and Schram (Reference 1 9) for a homogeneous
plasma. The plasma is exactly described in the zero-temperature limit by the following fluid equations:

-«g(r,0 + V-/i e(r ,Ov e(r ,0 = 0 (1)

^ + ve(r, 0 • V ve(r, 0 = - ^- [E(r, 0 + \e(r, t) x BQ(r)] . (2)

Equation 1 is denoted as the continuity equation for the electrons, where ng is the electron den-
sity and \e is the electron velocity. The dynamical equation for an electron is prescribed by Equation
2, where E is the electric field as seen by the electron and BO is the static magnetic field. In the elec-
trostatic approximation, the electric field is derivable from a scalar potential, so E = - V4>. The signif-
icance of this approximation is discussed in the section, "Linear Equations for a Cylindrical, Cold
Magnetoplasma."

Poisson's equation then supplements Equations 1 and 2:

«,-(r)] (3)
eo u ' J

where nf.(r) is the ion density. The ions are considered relatively fixed compared to the electrons, and
merely constitute a neutralizing charge background.

Equations 1 and 3 are combined, eliminating n

a i
- I + ve(r, 0 V • E, e- I + ve(r, 0 V • E(r, 0 - - n.(r)ve(r, 0=0 (4)

where I is a unit dyadic.

Equations 1 , 2, and 4 represent a set of coupled, nonlinear equations for the plasma constituents
ne , \e , and E. The solution of these equations subject to appropriate initial and boundary conditions
gives the plasma response.

To obtain an analytical solution, a one-dimensional plasma slab is treated as shown in Figure 4,
where the plasma constituents are functions of x and t. Inhomogeneity in the background ion density
is considered to vary along the x direction. The static magnetic field is in the z direction and is also
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(8)

where Equation 8 is obtained from Equation 4 after integrating with respect to x (from -b to x).
Equation 5 is deduced from Equation 1, and Equations 6 and 7 are a result of Equation 2. Although
these results are simpler than the original set of equations, various techniques must be employed to
obtain analytical solutions at the nonlinear level.

Equations 5 to 8 are in Eulerian coordinates (x, t) where x and t are independent variables. These
equations become simplified when the Lagrangian coordinates (XQ , r) are introduced as new independ-
ent variables (see Reference 19); that is,

where

T= t

~" *

X= I v
x

Jo

(9)

As shown in Appendix A, this transformation has the effect of replacing the convective derivative,
d/dt + vx d/dx, by the local derivative, a/3r. The transformation physically represents a change of
the fixed x, t coordinates to X, r coordinates following the electron motion from an initial point XQ.



The following trajectory equation is then obtained:

3r2 •r ') dX' (10)
m

where x' = X' + XQ and X(xQ, r) is the electron displacement in the x direction from its initial position
XQ. The parameters up(x) and coc(x) are the plasma and electron-cyclotron frequencies, respectively,
and are defined by the equations

(ID

to be
The electric field in the plasma EX (XQ , T) and electron density ne (XQ , r) are shown in Appendix A

m C)
— I
e Jo

(12)

(13)

where, in the case of impulse excitation, the initial electron density ng(xQ, 0) is the ion density n.(xQ).

Equation 10 describes the electron displacement X(xQ , T) from an initial point XQ due to an
externally applied excitation. This equation could have been derived by considering the plasma com-
posed of elementary electron sheets (Reference 20), where X(xQ , T) is the sheet displacement from its
equilibrium position XQ . (A typical electron sheet is shown in Figure 4.) The motion of the sheets is
characterized by the space-charge restoring force resulting from the fixed ions and the additional
force of the static magnetic field.

Equations 1 0 and 1 2 describe the space-time development of the electric field in the plasma
caused by an externally applied excitation. To obtain the field in Eulerian (laboratory) x, t coordi-
nates, XQ and X(xQ , T) must be transformed back to x, t. This requires the solution of the nonlinear
algebraic equation

=X , (14)

which can only be solved numerically. For the inverse transformation to be unique, it is required that

— X ( x n , T ) > - \ . (15)

10



The physical significance of this condition is discussed in the following: Considering Equation
13, it is seen that the electron density becomes large (i.e., electron bunching appears) as the denomina-
tor approaches zero. Following bunching, the electrons begin to cross over as is determined by the
inequality (d/dxQ)X < - 1. Equation 15 defines the'XQ, T coordinates for which there is no overtaking
of electrons. When the inequality of Equation 15 is not satisfied, the electron density becomes nega-
tive and the use of the fluid equations for describing the processes following electron bunching be-
comes invalid. The effects of bunching at crossover and the more important randomization following
crossover were observed in the numerical simulation work of Schneider and Bers (Reference 9). In a
later section of this report, a simple mechanism based on these observations is proposed that is capable
of explaining the essential experimental observations of nonlinear impulse responses of plasma columns
(with or without magnetic fields) made in this work and in the earlier reported work (Reference 4);
i.e., the increase of oscillation frequency and damping.

It is seen that the nonlinearity in the plasma results in a nonlinear trajectory (Equation 10) for
the electrons, in addition to the singular behavior (i.e., shock formation) of the electron density. The
effects of these two mechanisms on the nonlinear impulse response is discussed later.

Linear Impulse Response

For small amplitude of excitation, the electron displacement ̂ (*0, 0 from its equilibrium posi-
tion XQ is small. Equations 10 and 12 are linearized by substituting for x' the linearized value XQ .
Also, the transformation equation 14 is linearized resulting in the following linear equations:

9 " —£ext (16)
me

me ,
: e x t + — w j (*)*(*, 0, ( I V )

e

where

is the upper hybrid frequency.

For an excitation in the form of a 5-function pulse, that is,

the linear trajectory equation (Equation 16) has the solution

(19)

where u = (e/m£)Et is the electron velocity developed initially from an externally applied pulse of
amplitude E and effective width t .

11



The potential V(t) developed across the parallel-plate configuration is obtained from Equation 19
in conjunction with Equation 17; that is,

where the plasma response V ,(f) is the following well-known result (Reference 6):

m.
sin uh (*)/ dx. (21)

The solution of Equation 21 depends on the particular form of density profile and magnetic-field
variation in the plasma. For a homogeneous plasma,

mg C0p
Kp l(0=2fl sinuh t , (22)

e wfc

which is an undamped oscillation at the upper hybrid frequency. To display the effects of inhomoge-
neity on the plasma response, one can apply stationary-phase integration to Equation 21 and obtain
the following asymptotic response:

Et sin [u)h(xn)t-
— , (23)

m k'/j (•*•«) |(3OT/9xm )k^0cn)| l'm tl'm

where the stationary-phase points xn exist where (d/dx)(jJh (x) = 0. The integer m denotes the order of
the lowest nonvanishing derivative wh (x) evaluated at the stationary-phase points.

Hence, the plasma response consists in general of a series of oscillations at frequencies determined
by the extremes of the upper hybrid frequency and is damped according to r1/™ . For the important
case of a homogeneous magnetic field and an inhomogeneous background ion density, in general there
is one stationary-phase point located at the center of the slab where the density is maximum. In this
case, the response appears as a single damped oscillation. The asymptotic response oscillates with a
frequency coh (0) and damps with a rate depending on the shape of the density profile near the center
of the slab. Considering the class of profiles given by

' XN \
(24)

a I

where N is an integer, the damping varies as r1^, where it is seen that the damping increases with in-
creasing inhomogeneity; i.e., forN decreasing.

The inhomogeneity is also increased by increasing to (0). The spatial variation of the density
profile (as defined by AO is fixed by the type of discharge employed (Reference 21), whereas the peak
density (proportional to to (0)) increases with discharge current. For a low-temperature afterglow
plasma, the profile is approximately parabolic, N = 2; whereas a continuous dc discharge produces a

12



quartic profile, N = 4. The experiments performed in this study incorporated a continuous dc dis-
charge and measurements were made (and presented in Section 4) for different discharge currents.
From Equation 21 it is found that increasing w (0) results in a stronger damped response. This is
first recognized by considering a nonmagnetoplasma and substituting Equation 24 into Equation 21,
so that

(25)
K0 Jo

where
me

x
u= — ,

a

Thus, for a specific profile TV the response appears as a damped oscillation that is a function of
the normalized time T = co (0)t/2n. Hence, the response damps with increasing time / or for increas-
ing peak plasma frequency/ (0) = cj (0)/2?r, as mentioned before. This same form of reasoning can
be applied to the magnetoplasma, showing the increase in damping due to increasing cj p(0). The
damping due to inhomogeneity in plasma density has been observed experimentally by Sindoris,
Grody, and Cheo (Reference 4) by measuring the impulse responses of the plasma (with and without
magnetic field) for different discharge currents.

The relaxation mechanism resulting from Equation 2 1 is due to the phase mixing from the spread
in plasma and electron-cyclotron frequencies. The integral is generally referred to as a phase-mixing
integral and displays the asymptotic behavior shown by Equation 23. Asymptotically, the response
oscillates or "rings" at the frequencies o^ (xn ) as determined by the extremes of co^ (.x). This oscilla-
tion results because the phase mixing at these points proceeds more slowly than in the rest of the
plasma.

A more complete picture of the linear plasma response is presented in a later section, where the
effects due to cylindrical geometry are considered.

Monlinear Impulse Response

A primary objective of this study was to experimentally and theoretically investigate the non-
linear plasma response to impulse excitation. The following sections discuss the analysis of the
nonlinear equations for the slab geometry. The analysis was developed in a manner that would ex-
plain the results of experiments performed; i.e., both frequency and damping are increased when
higher amplitude excitations are used. The results are later expanded to include the effects due to
cylindrical geometry, the experimental geometry used.
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As previously described, nonlinearity exists because of the electron motion in an inhomogeneous
plasma. The nature of the nonlinearity was shown to appear as two distinctly different phenomena;
i.e., anharmonic electron motion and electron bunching followed in time by multistreaming. Gould
and Blum (Reference 22) analyzed the two-pulse response incorporating the effects of anharmonic
electron motion; the results were later used to explain the existence of upper hybrid echoes (Reference
14). This same mechanism is analyzed in the following section to show its effect on the single-pulse
response. The additional nonlinear effects due to electron bunching and multistreaming are employed
to obtain the resulting impulse response. Comparisons are made of the two nonlinear responses,
showing that the effects due to multistreaming generally dominate.

Anharmonic Oscillations

As evident from Equation 10, inhomogeneity associated with either the ion density or magnetic
field results in a nonlinear trajectory. To exhibit the nonlinearity due to inhomogeneity, the param-
eters <jOc(x) and W2(x) are expanded about the point Xg:

' X+ -

(26)

The coefficients ojp0 , to
2,^ , and C0p0" are the plasma frequency squared and its first and second deriva-

tives evaluated at XQ , respectively. Similarly, coC() , U'CQ , and u"Q are the electron-cyclotron frequency
and its derivatives evaluated at X .

Substituting the first three terms of Equation 26 into Equations 10 and 12 produces

ext (27)

m

(28)

where to/, = v WPO + Wc0
 IS ^e uPPer hybrid frequency evaluated at XQ . The nonlinear parameters a

and 7 are defined as

2 '+ -co2'ho 1 co

and depend on inhomogeneity.

co co
,'2

(29)
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The first-order perturbation solution (Reference 23) of the nonlinear trajectory equation (Equa-
tion 27) for impulse excitation is

X(xQ, t} = sin cot
co.

(30)

where the nonlinear frequency coefficient K is

K =
1

16

"37

k
5
3

/ « Y 1
L )
\ V .

1

CO.
"o

(31)

The electron motion is sinusoidal (neglecting smaller higher order harmonic terms) with an ampli-
tude-dependent frequency of oscillation. This anharmonic motion of the different electrons leads to a
nonlinear plasma response that will now be investigated.

The potential across the parallel-plate structure is given by Equation 20. At the nonlinear level,
the plasma response is written as

(32)

which is obtained using Equation 28 (omitting the smaller harmonic terms) and applying the relation-
ship dx = (dx/dxQ) dxQ. The limits of integration are determined from the transformation in Equa-
tion 14, substituting the coordinates ±a for x.

Neglecting electron bunching, i.e., dX/dxQ > - 1, and xQ(±d) = ±a, the following simple result is
obtained:

m

sin co(x;v )t dx , (33)

where the zero subscripts are omitted.

This equations is similar to the linear response given by Equation 21, except for the amplitude-
dependent frequency term co(x; u ). The nonlinear response is a result of the phase mixing of the
anharmonic electron oscillations. This leads, asymptotically, to a plasma response having a shift in
frequency with impulse amplitude about the upper hybrid frequency. The damping is unchanged from
that of the linear response; i.e., it decays as r1/"1.

For a homogeneous magnetic field, the frequency shift depends on the inhomogeneity in plasma
density. From Equations 30 and 31, the frequency shift is

15



"I" (34)
co, 16 co?

where co^ and co2 " are evaluated at the stationary phase point corresponding to co' = 0. This position
is at the center of the slab where the density is maximum. Consequently co" < 0, and there is a nega-
tive frequency shift; i.e., the oscillation frequency decreases with increasing impulse amplitude or
initial velocity v .

The frequency shift given by Equation 34 is generally small. To estimate its magnitude, a
parabolic density profile is considered as given by Equation 24 with N = 2 . Considering a nonmagneto-
plasma having a maximum plasma frequency of 2-n X 109 rad/s and a slab width of 1 cm, then for an
initial velocity of 109 cm/s the frequency shift is less than 1 percent, agreeing with the numerical
evaluation of Equation 33.

Having shown the frequency shift to be small, the stronger nonlinear effects due to electron
bunching and multistreaming are next considered.

Multistreaming Effects

As previously described, the fluid equations predict the formation of electron bunching followed
in time by electron crossover (or multistreaming). The condition dX/dxQ = - 1 defines the time t for
which an electron having initial position XQ overtakes an adjacent electron. Using the approximate
linearized trajectory given by Equation 19, the crossover condition becomes

(sin co. t- co, t cos co, t ) = \ . (35)
CO,2

Expanding the bracketed terms for co&n t < 1, one finds

(36)

where in the opposite limit, co/,0 1 > 1 , keeping only the second term in brackets, then

,
"O

r= - — . (37)

Equation 36 gives the approximate crossover time for those electrons near the plasma boundary
where the density is low, whereas Equation 37 is applicable in the central region where the density is
much larger. Considering a homogeneous magnetic field, the crossover time is longer in the central
region where co = 0 than near the boundary where the density gradient is larger.
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Figure 6—Density in a tapered slab.

The coordinates JCQ , ^ as obtained from Equation 35 are determined approximately using Equa-
tions 36 and 37; the results are shown in Figure 5. A nonmagnetoplasma is considered having a para-
bolic density profile where co (0) = 2?r X 109 rad/s and a = 1/2 cm. Initially, crossover appears near
the boundaries (the symmetrical half is not shown) at a time given by Equation 36. At later times,
crossover occurs among electrons within the plasma volume, for which Equation 37 gives the cross-
over time as determined by only the adjacent electrons. Electron crossings approach the center asymp-
totically, at a rate that is dependent on the impulse amplitude or initial velocity vp.

To develop the basic concept behind the proposed mechanism for the multistreaming, the simula-
tion work by Schneider and Bers (Reference 9) mentioned earlier is first reviewed. They performed
computer experiments to describe the electron motion for a nonmagnetoplasma slab having the density
profile shown in Figure 6. The plasma was modeled using 50 electron sheets, each being characterized
by the trajectory of Equation 10 (GJC = 0) prior to sheet crossover and corrected following crossover.
The sheets were initially placed at their equilibrium positions XQ and were perturbed by a uniform
displacement 5. This is a different form of excitation than the one with which this study is concerned;
i.e., initial velocity, although the electron motion has similar behavior.

Figure 7 displays the electron (sheet) motion for an initial displacement 8fa - 0.02. Crossover
appears initially at the boundaries and later in time within the plasma volume. The electron motion
exhibits random behavior as a result of rapid electron crossings. It is observed that for short time, the
scattered electrons appear to propagate toward the center slower than the movement of the crossover
region (i.e., shock front). For this time period, crossings exist among adjacent electrons and the cross-
over coordinates are determined by the equation dX/dxQ = - 1. At longer times, the scattered electrons
move ahead of the shock front causing a randomization of electrons in the center of the plasma slab.

The effect of larger initial displacement, 8/a = 0.06, is clearly exhibited in Figure 8. Compared
with the results in Figure 7, there is in this case a quicker randomization of the plasma electrons.
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Figure 8—Electron sheet trajectories; initial displace-
ment 5/a = 0.06.
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This occurrence of electron randomization after crossover can now be considered when explain-
ing the observed positive frequency shift and increased damping in the nonlinear impulse response of a
plasma column.

The plasma response Vpl(r) is approximated by obtaining only the contribution due to the non-
random electrons that appear in the central region of the plasma as shown in Figure 5. This is a reason-
able assumption because the scattered electrons randomly mix quickly, leaving only the nonrandom
electrons (which have near-linear behavior) to contribute to the plasma response. To obtain the
response, the linear response given by Equation 21 is modified as follows:

(38)

where the upper limit a in Equation 21 has been replaced by the crossover position as given by Equa-
tion 35. To simplify the analysis, a nonmagnetoplasma is considered having a parabolic density profile.
Using Equation 37 to obtain approximately the upper limit, Equation 38 becomes

- u2 sin(^/l- u22irT)du , (39)

where

Equation 39 gives the nonlinear impulse response for the plasma under consideration. The inte-
gral is a function of the normalized time T and contains a nonlinear parameter |3. The numerical eval-
uation of this response is shown in Figure 9 for the initial velocities of I08 and 109 cm/s, where
fp(0) = I09 s-1 andfl = 1/2 cm.

The smaller excitation results in a response comparable to the linear response given by Equation
21. For/ (0)r > 1, the response approaches its asymptotic behavior; i.e., it oscillates at the maximum
plasma frequency/ (0) and slowly damps according to r1/2. This asymptotic behavior is also ob-
served for the larger excitation; however, the initial damping is much larger because of the more rapid
decrease in the upper limit; i.e., random mixing. Also noted is that there is a larger initial frequency
of oscillation for the larger excitation. This is a consequence of random mixing, which reduces the
number of low-frequency oscillating electrons (which are located near the boundaries) contributing to
the plasma response resulting in a net increase in response frequency.

Further discussions concerning these nonlinear effects are presented in the discussion of the
results due to cylindrical geometry.
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Comparison of Anharmonic and Multistreamirig Effects

As mentioned earlier, the inhomogeneity in
plasma density gives rise to two distinct non-
linear mechanisms, which result in different
plasma responses. The two forms of nonlinear-
ity have been identified as (1) that due to the
nonlinear trajectory for the electrons and
(2) that caused by the singular behavior (i.e.,
shock formation) of the electron density result-
ing in electron crossover. The nonlinear trajec-
tory equation (Equation 27) resulted in anhar-
monic motion for the electrons, producing a
plasma response that displays a negative fre-
quency shift; i.e., the frequency of oscillation
decreases with increasing impulse voltage or
initial electron velocity. It has also been shown
that the electron crossover, which begins at the
plasma boundaries and propagates toward the
center of the volume, acts to randomize the
electron motion. Considering that only the
coherent (nonrandom) electrons contribute to
the plasma response, it was found that the
response displays both an initial increase in oscil-
lation frequency and increasing damping for
larger impulse amplitude or initial velocity. This

nonlinear behavior is consistent with the experimental results reported earlier (Reference 4); i.e., the
theoretical and experimental responses both display an increase in frequency and damping with excita-
tion. This proposed mechanism represents one basic contribution of this study.

Linear Equations for a Cylindrical, Cold Magnetoplasma

The cold-fluid equations are analyzed for a cylindrical magnetoplasma column excited by a trans-
verse electric field as shown in Figure 10. Unfortunately, the additional dimensions complicate the
nonlinear analysis; thus only the linearized equations are considered. To estimate the nonlinear be-
havior, reference is made to the previous one-dimensional results and the added effects of cylindrical
geometry.

Analysis of the linear interaction of a transverse electric field with a cold, cylindrical magneto-
plasma have been performed with varying degrees of clarity and completeness by a number of authors,
whose approaches differ according to their backgrounds and motivations (References 1 to 3, 5 to 7,
and 15 to 18). These studies are deficient for purposes of this analysis because their results are not
readily applicable to the problem of obtaining the impulse response of the plasma, which is the central
topic of this investigation.

Figure 9-lmpulse responses of a nonmagnetoplasma
slab for different excitation amplitudes,

I - (x/a)2].
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Figure 10—Cylindrical plasma geometry.

To begin the analysis, Equations 1 and 2 are
considered, which are linearized by defining a
suitable background level and seeking solutions
having small deviations about the background.
The ne\g and vg • V ve-type nonlinearities are
neglected by assuming small deviations about the
background ion density o(.(r) and considering
(9/9r)vg > ve * Vvg, respectively; thus the follow-
ing linear equations are obtained:

9
- ne(r, 0 + V • n/(r)ve(r, t) = 0 (40)

d_

dt

= [E(r, 0 + ve(r, 0 x BQ(r)] . (41)
e

Upon taking the Fourier transform ((3/90 «—* <M of Equations 40 and 41, it is found after some
algebraic manipulations that

= -— V- [K-E(r ,co) ]
e

(42)

e /co
r,co)= [K-E( r , (43)

The tensor quantity K is given by the following matrix description:

K- -iK~ 0

K =

where

4

CO

- co

0.

0 K.

(44)
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CO CO2 - CO2

and the parameter

is the plasma frequency and coc = (e/me)BQ(r) is the electron-cyclotron frequency.

Equations 42 and 43 and the linearized Maxwell equations form a complete description for deter-
mining the electromagnetic fields associated with the plasma for weak excitation. The linearized,
transformed Maxwell equations are—

f*>s s^/

Vx H(r, co) = koe0E(r, co) - en.(r)ve(r, co) (46)

r**

V> E(r, co) = n (r, to) (47)

V- H(r, co) = 0 , (48)

where the linearization was carried out in the V x H(r, t) original equation in which ng\e was replaced
by the linear term n{ve.

Substituting Equations 42 and 43 into Equations 46 and 47 results in

VxH( r , co) = /coeQ e • E(r, co) (49)

V-e • E(r, co) = 0. (50)

The term e = I - K is the dielectric tensor of the magnetoplasma and has the following matrix
description:

0

e = -iv e 0 (51)

0

where
"

e n = l ~
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Equations 45, 48, 49, and 50 comprise the complete set of linear equations for the electro-
magnetic fields E and H. To simplify the analysis, the quasi-static approximation is used, i.e.,
V x E = 0, to obtain the fields. The problem is then formally equivalent to the electrostatic problem
with E = - V<$>, and from Equation 50 is obtained

= 0 . (52)

This equation is a familiar one in plasma physics and has been applied to many problems to deter-
mine the characteristic resonances and steady-state behavior of plasma structures. Transient effects,
which are important in the linear experiments, are next discussed.

Linear Response of a Homogeneous Magnetoplasma

Before considering an inhomogeneous magnetoplasma, the response of a homogeneous plasma is
analyzed. In this case, Equation 52 reduces to the familiar potential equation V 2 $ = 0 inside the
plasma. The dielectric properties of the plasma come to play only at the boundaries.

Referring to Figure 10, the potentials in regions 1 and 2 have the following general forms:

oo

\ r~n (An cos Bn sin « ext

(53)

$2 = r» (A' cos n4> + B' sin n<t>) ,

where, assuming a dipole mode of excitation,

*ext = -

Ei =

COS

(54)

This is the lowest possible mode of excitation for the geometry under consideration and is dominant
when b > a because then the electric field is nearly uniform and polarized in the x direction for dis-
tances far from the plasma column.

The boundary conditions at the plasma/vacuum interface r = a are

ar x E2 = ar x Ej

or

30

(55a)
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and

E2 =

or

-— <S>~ + ie. • $ 2 = r*i •*" r\v A

(55b)

Substituting $1 and $2 into the boundary equations and applying the orthogonality properties
for sinusoidal functions, it is found that

B ' n =a- 2 »B n ,
(56)

Solving for the mode amplitudes, it is noted that only the n = 1 (dipole) amplitudes are non-
vanishing:

^2 _ C2 _ i

=a2

^= -2 -

=-2a2 '0

*i =-2 '*/•

(57)

The electric field inside and outside the plasma can be derived from the potentials f f r j and $2,
respectively, using the relationship E = - V$. The following equations result: Inside the plasma (region 2),

E9 = E + Ev , (58)

= 2Er

'0
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Outside the plasma (region 1),

F = F + F f\Q~\fil X V ' (•>")

i 2e_, sin
E x = E i + E \ - \ -^—^ (cos 20-

W (l+e^-e^

The electric field in the plasma is uniform, whereas the scattered field outside the plasma varies
with angular position and polarization. For 0 = 0°, the scattered field polarized in the x direction of
the incident field E{ is

E,

In the quasi-static approximation, Equation 60 represents the scattering coefficient r(w)
(Reference 24), and for 0 = 0° is a measure of the backscattered radiation from the plasma. Substi-
tuting e^. and e into Equation 60, then

where

The scattered radiation varies with excitation frequency, having resonances at O}R and <^L and an
antiresonance at CJQ . For a nonmagnetoplasma, the spectrum of scattered radiation degenerates into a
single resonance at CJQ. In the language of plasma physics (Reference 16), the double-peaked spectrum
is appropriately classified as a split dipole resonance, whe'reas the single resonance obtained in the
absence of a magnetic field is defined as a dipole resonance. The term dipole refers to the mode of
excitation.
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These results are different from those determined for the slab geometry as indicated by Equation
22 which, when transformed, becomes

2a(me/e)vp

"p
' (62)

which is related to the scattered radiation from the plasma slab.

The difference between the two results (Equations 61 and 62) is due to the dipole mode excited
for the cylindrical plasma that is not supported for slab geometry.

Upon taking the inverse transform of Equation 6 1 , the impulse response is obtained for the cylin-
drical plasma:

r(0=|-J (sin UR t + sin co, t) , (63)
\ I I\ ±j

which may also be written as

"c
Y(t} = [-] cos — t

W v/co2+(wc/2)2 2
sin (64)

Unlike the slab impulse response given by Equation 22, this equation consists of two oscillations that
interfere to produce a modulated oscillatory response.

The scattered radiation and impulse response given by Equations 61 and 63, respectively, contain
no damping mechanisms. The following list indicates the damping mechanisms that were neglected in
the previous analysis:

»\
(1) Radiation damping was neglected when using the quasi-static approximation.

(2) Damping caused by electron-neutral collisions was neglected.

(3) Phase-mixing damping resulting from inhomogeneity was also omitted by considering a
homogeneous plasma.

Of these three mechanisms, the damping produced from inhomogeneity in plasma density is
dominant for the experimental conditions employed.

Damping resulting from radiation has been compared with that due to inhomogeneity in plasma
density by Greenwald (Reference 7). Equations 45 and 49 were numerically analyzed to obtain the
radiation spectrum for a magnetoplasma excited by a uniform plane wave as shown in Figure 10. Com-
paring these results with those of the electrostatic problem given by Equation 52, it was concluded
that radiation damping is negligible compared with the damping caused by plasma inhomogeneity for
the condition kQa < 0.5, where kQ is the free-space wavenumber and a is the column radius. In this
study, a 0.5-cm column radius was used and the maximum frequency observed was below 1.0 GHz, so
that kQa < 0.1, which is well below the condition necessary to neglect radiation damping as compared
with damping resulting from inhomogeneity.
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The effect of electron-neutral collisions is to elastically scatter the electrons by transferring
momentum from the electrons to neutrals. This process is incorporated mathematically in the electron
equation of motion by adding the term v\e to the left side of Equation 41. The quantity v represents
a phenomenological electron-neutral collision frequency and alters the dielectric terms e.. (Equation
51) so that

zz coco

co or -

CO CO2 - CO2

(65)

where co = co - iv\ and Equation 61 becomes

co2(coco- co2)

\r/ [(co-coc)co- -co 2 ]
(66)

The inverse transform of Equation 66 results in an exponentially damped response according toe 1/2yf

and oscillates with a waveform similar to that given by Equation 64. Because the experiments per-
formed in this study were carried out within a time scale of 20 ns and for a collision frequency of
about 30 MHz, collisional damping is of negligible importance compared with the stronger damping
resulting from plasma inhomogeneity.

Effects Due to Inhomogeneity

In this section, an approximate theory of the linear and nonlinear impulse response is developed for
an inhomogeneous cylindrical plasma. The important effects due to the combination of cylindrical geom-
etry and inhomogeneity are illustrated.

It has been determined that inhomogeneity results in linear damping of the impulse response because
of phase mixing, and at the nonlinear level it causes increased damping with increasing oscillation fre-
quency due to random mixing. These linear and nonlinear phenomena are further explored in this section
for cylindrical geometry using the information gained from the previous theoretical sections.

The linear behavior is first considered and Equation 52 is analyzed to obtain the scattered radiation
outside the plasma. Unfortunately, the exact solution can only be found numerically; however, an approx-
imate analytical solution is obtained that illustrates and identifies the effects of inhomogeneity for a cylin-
drical plasma. This analytical formulation is further expanded to obtain the nonlinear plasma response.
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Linear Response

Equation 52 is rewritten as follows:

V2«f>(r, co) = V-P(r , co)

P(r, co) = K • E(r, co)

(67a)

(67b)

where the term P physically represents the in-
duced polarization in the plasma and depends on
the internal electric field E = - V3>. The poten-
tial of Equation 67a can then be expressed in
terms of the area A integral

Figure 11—Cylindrical coordinate
system. ,co) = /

JA
G(r, r')v'« P(r', (68)

which is evaluated throughout the cross section of the plasma cylinder shown in Figure 11. The kernel
G is the Green function and is the potential at r due to a line of unit charge located at r'. It is given by

G(r,r') = --
27T

(69)

R2 = r2 + r'2 - 2rr'cos (4> - &') .

Using the identity V'GP = P • V'G + GV; • P and the divergence theorem, Equation 68 becomes

r, co) = /
Jo

G(r, r')P(r', co) • a
ra

lad*'-I I
Jo Jo

P(r', co) • V'G(r, r>' dr' d<t>' . (70)

The first integral evaluated around the cylindrical surface does not contribute because co and conse-
quently P is zero at the plasma boundary. Hence, Equation 70 reduces to

'27T _n ^3>(r, co) = - / / P(r', co) • V'G(r, r')r dr'd<j>' .
Jo Jo

The polarization P as defined by Equation 67b is written in cylindrical coordinates:

(71)

where

cos 0 -

sin

- Kjy) sin 0'

- K ) c o s 0 ' .

The electric fields^ and E in the plasma are approximated using Equation 58 and replacing
the dielectric terms e{. by their spatially varying counterparts. After substituting the field components
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given by Equation 58 into Equation 72, it is found after some algebraic operations that
\

COS0' -
i2e. r<t>

sin 0'

P =•
rr r<t>

- 2
sin 0' +

tie.
>0

COS0'

(73)

where the dielectric terms e,.. are given by Equation 51 with co = top(r') and coc = <^c(r'). These results
are approximate in the sense that they only indicate local spatial variations in polarization and do not
display any directional changes due to inhomogeneity.

The remaining term V'G in the integral of Equation 71 is obtained using Equations 69:

1 ( \
V'G= a![r '-rcos(0-0')] -a ' r s in(0-0 ' ) .

0.rrJ?2 I '

(74)

Equations 73 and 74 can now be substituted into Equation 71 to obtain an approximation to the
potential outside an inhomogeneous plasma. To simplify the evaluation of the integral, the potential
is determined for r > r', so that R = r in Equation 74. It is also considered that variations in plasma
density and magnetic field are only dependent on r, so that e., = e..(r'). For these conditions, the 0'
integration is easily carried out, resulting in the following simple equation:

, W) = —

,2 _ -2 _

/- COS 0 r' dr' - r sin rin0 /
Jo (1 +

/2c.
r' dr' (75)

This equation reduces to the solution for the homogeneous plasma when e.. are considered con-
stant terms. The backscattered electric field is obtained from the relation E = - V<E> and setting 0 = 0°.
It is then found that

r(w) =_ r iL
r2Jo (1 +d + O2-d

(76)

where after substituting e.. into Equation 76 the final equation becomes

r' dr'

where

(77)
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Equation 77 reduces to Equation 61 for a homogeneous plasma, where COQ, CJR , and co^ are treated as
constants. By taking the inverse transform of Equation 77, the following impulse response is found:

sin r' dr . (78)

Equation 78 contains a phase-mixing integral whose structure is similar to the plasma-slab equa-
tion (Equation 21) except for the r term appearing in the integrand. The similarity between the two
integrals can be further seen by considering a homogeneous magnetic field and making the substitution
r'2 = u so that

1 COC fa2

— cos — t I
r2 2 Jo

F(0 = — cos — t I , sin /wjUV") + { —) t d u . (79)

The integral in Equation 79 is equivalent to Equation 21 if co (x) and COA(X) are replaced by
co (-y/x)/y/2~ and^/co2(>/x)/2 + co2/4, respectively. Hence, for the class of profiles given by Equation
24, the cylindrical plasma response damps asymptotically (see Equation 23) as t~2^N. This damping
rate is stronger than that for slab geometry t~ l^N, indicating the influence of geometry on damping
resulting from inhomogeneity in density.

This phenomenon is illustrated in Figure 12 where the numerical solutions of Equations 21 and
79 are shown on different normalized voltage and time scales. A nonmagnetoplasma is considered
having a parabolic density profile. It is seen that the slab response decays asymptotically as r1/2,
whereas the cylindrical plasma response damps according to t~1. The oscillation frequency for the
cylindrical plasma is lower than that for the slab geometry; i.e.,/ (0)/>/2 and/ (0), respectively.

Because the experimental cylindrical plasma has the addition of a uniform magnetic field along
the column axes, the magnetoplasma response is of interest. The response given by Equation 79 is
shown in Figure 13 for a uniform magnetic field, where the ratio of electron-cyclotron frequency fc

to frequency/Q(0) =/ (0)A/2 is indicated. To simulate more closely the density distribution found
in the plasma, a quartic profile (N - 4 in Equation 24) is used rather than the more inhomogeneous
parabolic distribution. These responses appear as modulated oscillatory waveforms damping
asymptotically as r1/2.

Although the previous results were determined from an approximate analytical theory, the
results agree in behavior with the work of Henderson (Reference 6) and Ignat (Reference 25). They
have numerically evaluated the electrostatic equation (Equation 52) to obtain the radiation spectrum
for an inhomogeneous cylindrical plasma with and without a magnetic field. Because the former
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theory agrees qualitatively with the more exact numerical results, it will be now extended to obtain
the nonlinear response.

Nonlinear Response

The nonlinear response is obtained following the procedure described earlier for the slab geome-
try. Thus, the nonlinearity resulting from multistreaming is determined by altering the linear equation
(Equation 78) as follows:

. _L f' f'•
isr2 Jo Jo

2
0

COS

X/co2 + (coc/2)2

c

2
/•' dr (80)

where r£ is the electron-crossover position. The <j>' integration (which was previously carried out
(Equation 75)) must be left variable in this expression because the crossover position depends generally
on /•' as well as 0'.

31



The electron-crossover coordinates may be obtained in general from the uniqueness condition
concerning the transformation from Eulerian to Lagrangian coordinates. This condition may be ex-
pressed in the form

/= det

1 +
dxr

bX,
1 +

1 +

= 0 (81)

where / is the Jacobian defining the transformation and Xl, X2, and X3 are the electron displacements
(in directions 1, 2, and 3), each being functions of the initial positions XQI , XQ2, and XQ3. In the case
where the electron motion varies in only one direction, Equation 81 reduces to the simple result
dX^ /d^Oj + 1 = 0. This condition was used previously to obtain the electron-crossover position for
the one-dimensional slab geometry. As shown later, this same equation is adequate for a cylindrical
nonmagnetoplasma and will be used to determine the crossover position for this plasma.

For cylindrical geometry, the linearized (transformed) electron velocity is obtained from Equation
43, where the term K • E = P is given approximately by Equations 73 for an inhomogeneous plasma. In
the case of a nonmagnetoplasma, the polarization is in the x direction resulting in the following
equations:

v(r, t) = ax v cosco(r)f

(82)

where v = (e/m^E^ is the initial electron velocity due to an applied pulse of amplitude E. and width
t . The corresponding electron displacement from an initial point r0 is given by

r ^(r 0 , t )=l v(r0,t')dt'
Jo

(83)

Note that the initial position rQ and electron position r are interchangeable for small displacements
from equilibrium. Substituting Equation 83 into Equation 81 produces the crossover condition, which
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in rectangular coordinates is

- + 1 = 0

or

(sinoj0 /-coQf coso>00= 1 , (84)

where

Equation 84 is similar to that found for the plasma slab (Equation 35); the main difference lies in
the additional spatial dimension in to , which exists for the cylindrical plasma.

As in the plasma-slab case, the crossover position is determined from Equation 84 for o>01 > 1.
For a parabolic density profile, the equation then becomes

(85)
i \ a i i-t ' '

a

where T = /Q(0)r andj3 = /0(0)(2a/i;p).

The nonmagnetoplasma response is given by Equation 80 with OJC = 0; that is,

- u2 2irT)u dud<t> , (86)

where ro = co0(0)(fl//-)2.

The numerical evaluation of this equation is shown in Figure 14 for the initial velocities 108 cm/s
and 109 cm/s, where /0(0) = 109 s"1 and a = 1/2 cm. The nonlinear behavior is comparable to the
results obtained for slab geometry (Figure 9); i.e., increased excitation produces stronger damping and
increased initial frequency of oscillation.

Conclusions and Summary

The linear and nonlinear theories of the interaction of electromagnetic radiation with a cold,
inhomogeneous magnetoplasma have been considered. Solutions have been developed in forms appro-
priate to the experimental work on impulse excitation of a magnetoplasma. It is shown that the
essential features of the theoretical results offer an explanation to the experimental observations made
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in this investigation. The damping at the linear level is due to phase mixing of the plasma oscillations.
At high nonlinear levels of excitation, the slight increase in oscillating frequency and the increase of
damping is due to the random mixing that follows the electron crossover.

The basic linear and nonlinear phenomena resulting from plasma inhomogeneity were obtained
by analyzing an inhomogeneous plasma slab. The results of this analysis are clearly shown in Figure 9,
displaying the approximately linear and strong nonlinear impulse responses of a nonmagnetoplasma.
At the linear level the general impulse response is given by Equation 21:

=-L r
e J-a

sin (jo (x)t dx (21)
-a 00,00

For an inhomogeneous plasma, the phase-mixing integral results in a damped oscillatory response,
where the damping is due to the interference among the continuum of sinusoidal oscillations. The
nonlinear response obtained for large excitation is analyzed by replacing the limits of integration with
the electron-crossover position, which is amplitude dependent as shown in Figure 5. This results in a
response displaying larger damping and an initial increase in oscillation frequency for stronger impulse
excitation.
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The laboratory plasma used is of cylindrical geometry and is excited by a transverse electric field
as shown in Figure 10. Plasma inhomogeneity complicates the mathematics for cylindrical geometry
so that an exact solution can only be obtained numerically. An alternate analytical approach was taken
using approximate techniques to obtain useful solutions that can be compared with the results for slab
geometry. At the linear level the impulse response is given approximately by Equation 78,

2 fa CO? CO

T(f) = - I - cos — t
2j; + K/2)2 2

sin r dr , (78)

and appears completely different from that of the plasma slab. The more complex equation is caused
by the dipole mode, which is excited for the cylindrical geometry, and is not supported by the plasma
slab. Figure 13 shows the impulse responses for different magnetic fields, displaying the modulated
oscillatory waveforms resulting from the interference among the dipole split oscillations. The damping
of the responses is due to inhomogeneity in plasma density and is stronger than that found for the
plasma slab. This is illustrated in Figure 12 where the impulse responses of a nonmagnetoplasma are
displayed for cylindrical and slab geometry, both geometries having the same variation in plasma den-
sity. Also observed is the larger frequency of oscillation for the cylindrical plasma as compared with
the plasma slab.

At the nonlinear level, the response for the cylindrical plasma is treated with the same mechanism
applied to the slab; i.e., the upper limit is replaced by the electron-crossover position. Referring to
Figure 14, it is seen that the nonlinear behavior is similar to that found for the slab geometry. The
nonlinear response for a cylindrical magnetoplasma has not been performed; however, it can be argued
that the response should exhibit the increased damping and initially increased frequency of oscillation
as for the nonmagnetoplasma.

These results are applied in Section 4 to explain most of the experimental observations.

3. EXPERIMENTAL DESCRIPTION

The experimental part of this investigation consisted of a series of measurements on the emission
(impulse response) from an argon plasma column excited transversely by a narrow (120-ps, 3-dB width)
baseband electric field pulse. The peak amplitude of this pulse is 1860 V resulting in a field strength'
in the plasma region of about 900 V/cm. As mentioned earlier, the key item that made these experi-
ments possible is the BBG with its combined sharpness and high amplitude. In the following sections,
a description of the experimental setup and its various components is given. The procedures for the
calibration of the overall system and the individual components are also discussed in detail.

Experimental Apparatus

The basic system (part of which is shown in Figure 15) consists of the following principal items:

(1) Plasma and the associated vacuum system

(2) BBG for producing the impulse excitation

(3) Parallel-plate structure for applying the pulse to the plasma
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(4) Helmholtz coils for producing the mag-
netic field

(5) Sampling scope and the associated X-Y
recorder

Consider the system shown in Figure 16,
which corresponds to the center portion of Fig-
ure 15. The geometry is the same as that em-
ployed in Tonks-Dattner resonance experiments
except that a parallel-plate structure is used in-
stead of a waveguide. The impulses from the
BBG (approximately 0.2 ns wide) form a trav-
eling voltage along the transmission line about
6 cm long. When this electric field is incident
on the plasma column (^l-cm diameter), it can
be assumed that an electric field is "turned on"
across the plasma as the leading edge of the
pulse crosses the tube and is "turned off" as the
trailing edge of the pulse passes by. In this
small duration of time, the electrons gain a

velocity (eE/me)t . This sets up oscillations in the plasma, and the stimulated emission generated by
these electron oscillations are observed by the voltage generated across the parallel-plate structure.
This voltage is viewed on the sampling scope and displayed on the X-Y recorder.

TO BBG
AND

OTHER EQUIPMENT

Figure 15—Experimental arrangement (top view).

Plasma

The plasma used in the experiments was a positive-column, hot-cathode dc discharge in argon at
pressures ranging from 0.13 to 1.3 N/m2 (1 to 10 nm Hg). The construction of the discharge tube is
indicated in Figure 17, showing the two thyratron cathodes2 contained in a 2000-ml round-bottom
ringed-neck flask, the 9.525-mm-i.d. precision Pyrex glass tube of nominal thickness 1.5 mm, and the
oxygen-free high-conductivity (OFHC) copper anode which is joined by means of a copper-to-Pyrex-

TO BBG AND
OTHER EQUIPMENT

PLASMA TUBE

TO MATCHED
LOAD

PARALLEL-PLATE STRUCTURE

Figure 16—Experimental setup for plasma excitation.

2Western Electric 354A cathodes were used.
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Figure 17-Plasma tube and associated vacuum/gas flow system.

glass graded seal. The vacuum station consists of a 5-cm oil diffusion pump3 with a 5-cm liquid nitro-
gen trap and has a pump speed of 0.08 m3/s.

Argon was allowed to flow through the discharge tube at a slow rate using a needle valve at the
gas input port, while gas was removed at the output port by the vacuum station as shown in Figure 17.
In this way, contamination of the argon due to outgassing was reduced, because such impurities were
constantly being removed from the discharge tube. A short, large-diameter (5-cm) copper tubing and
flexible bellows were used to join the vacuum station to the discharge tube at the output port. Pres-
sure as low as 1 jiN/m2 (10~5 Mm Hg) was measured using an ionization gage connected to the vacuum
station with the input (gas) valve closed; this corresponds to the minimum attainable pressure for the
system.

A 6.3-V, 20-A filament transformer was used to supply power to the two cathodes which were
connected in series. The cathodes were activated below a pressure of 0.013 N/m2 (0.1 nm Hg) follow-
ing the procedure outlined by the manufacturer, after which the discharge tube was ready for plasma
production. A steady-operating argon pressure, as measured by a thermocouple gage, was attained by
adjusting the needle valve and larger valve at the output port. The plasma discharge power was supplied
from a 300-V, 500-mA regulated dc source connected to the anode and cathodes through a 1000-ft
variable rheostat. Stable plasma discharges were obtained by adjusting the dc voltage and rheostat
setting to produce plasma currents ranging from 30 to 300 mA.

Measurements were made on the background plasma characteristics, including the electron temper-
ature and average electron density. The electron temperature was obtained using the familiar Langmuir
probe method (Reference 26). Figure 18 indicates the data recorded for different argon pressures in
the absence of a magnetic field. The plasma frequency (defined later) was set at 1.1 GHz. These

'A Veeco pump was used.
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temperatures changed with magnetic field; however, because the probe measurements are not very
reliable in the presence of a magnetic field, no data were taken for this case.

A major problem encountered when using continuous dc discharges was the appearance of low-
frequency spontaneous oscillations (termed striations) in the electron density. These oscillations
appear about the average density level and depend strongly on the argon pressure, existing for both
low and high pressures. It was found, by monitoring the density fluctuations using the Langmuir
probe, that the striations were greatly reduced for pressures within the range of 0.3 to 0.7 N/m2 (2 to
5 Mm Hg). For this reason, the measurements of the plasma given in Section 4 are for pressures within
this narrow range at which the plasma is quiet.

The average electron density is given by the following equation:

(87)

where a is the column radius. The density was measured for different discharge currents using a micro-
wave cavity as described in Appendix B. The results are shown in Figure 19 for an argon pressure of
0.33 N/m2 (2.5 Mm Hg). Also indicated in Figure 19 is the (average) plasma frequency computed from
the electron densities as follows:

(88)
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The linear relationship found between the elec-
tron density and discharge current is well known
for such continuous-dc-discharge plasmas (Ref-
erence 18). It should be mentioned that no vari-
ations in electron density were detected for the
magnetic fields used (maximum of 17.5 mT
(175G).

Pulse Generator

A unique part of the experimental system is
the BBG used to excite the plasma. The pulse
generator is a noncommercial unit built by Dr. P.
Pleshko4 and Dr. J. B. Gunn of IBM Watson
Research Laboratories and has the capability of
producing an 1860-V (peak voltage), approxi-
mately gaussian-shaped, baseband pulse having a
3-dB width of 120ps.

The pulse is generated by charging a 4.0-mm
steel ball bearing that is able to move freely in
the gap formed by the split inner conductor of a
coaxial section as shown in Figure 20. (For
additional details see Pleshko and Palocz.4)

Figure 19—Electron density and plasma frequency for

different discharge currents. The ball is charged by making contact with
the input conductor, which is connected to a
15-kV dc supply. Having been charged, the ball

is accelerated by electrostatic forces toward the output conductor, which is terminated by a matched
50-fi transmission Line (not shown in Figure 20). Upon making contact with this conductor, the ball
transfers its charge to the transmission line in the form of a sharp pulse. The electrostatic forces
acting on the ball now reverse its direction and accelerate it back to the input conductor, where
it is recharged. This charging and discharging process is repeated approximately 100 times per second,
resulting in pulses having a very clean waveform and negligible ringing as shown by the measurement
displayed in Figure 21. Also shown in Figure 21 is the normalized voltage spectrum of the BBG wave-
form, which was obtained by Fourier analysis using a digital computer.

The pulse measurement was obtained (Figure 22) by connecting the generator through a 60-ns
(4.4-dB loss) RG9U-B delay line and 70 dB of attenuation to a sampling scope having a high-speed
(75-ps risetime) head.5 A fraction of the BBG pulse was used to trigger the scope, after which the
delayed pulse arrived and was displayed on the scope. The delay line was necessary to allow adequate
time for sampling the BBG pulse. The analog output from the scope was connected to the X-Y
recorder resulting in the display shown in Figure 21.

4P, Pleshko and I. Palocz: Memorandum M-6, School of Engineering and Science, New York Univ., 1969.
SA Tektronix 564 scope was used with a 3S2-S2 sampling head.
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Figure 22-Experimental setup for observation of BBG pulse.
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The frequency spectrum of the BBG waveform was determined by Fourier analysis of a 25- by
38-cm X-Y plot using a digital computer. A total of 300 data points, 6.66 ps apart, was used to com-
pute the spectrum. This technique was employed later to obtain the spectrum for the configuration
used to monitor the plasma impulse response and to determine the spectrum of the plasma responses.
An alternate procedure would be to use an electronic spectrum analyzer; however, such a unit was not
available for measuring the extremely fast waveforms encountered in this study.

Transmission Structure

To transmit the BBG pulse with minimum
distortion, a parallel-plate transmission structure
was chosen in which the plasma column was
placed between the plates as shown in Figure 1 c.
The structure (Figure 23) consists of two copper
plates connected6 to 14-mm air lines. To match
the 50-fi characteristic impedance of the air
lines, the upper plate was partially tapered above
the flat ground plane; the taper was adjusted to ob-
tain a uniform 50-12 impedance along the length of
the structure. The ratio of upper plate width to
separation above the ground plane is approximately
5 to 1, in accordance with transmission line theory
(Reference 27). Microwave reflection and trans-
mission measurements performed between 0.25
and 1.10 GHz showed reflections 31 dB below the
incident power and transmission losses less than 1 dB.

14-mm

CONNECTOR COPPER/UPPER PLATE

COPPER GROUND PLANE ON ALUMINUM BASE PLATE

(b)

Figure 23—Parallel-plate transmission structure, (a) Top
view, (b) Side view.

These measurements were obtained using a sweep generator7 connected to a wideband (20 dB,
0.25 to 1.10 GHz) directional coupler8 which in turn was connected to the transmission structure as
shown in Figure 24. Reflected signals from the structure were transmitted through the coupling port,
detected, and compared with the incident signal after subtracting out the relatively flat, 20-dB cou-
pling loss. Direct transmission through the structure was compared with the input signal to obtain the
insertion loss.

Magnetic Field

A magnetoplasma was obtained by applying a static magnetic field along the column axes, as
shown in Figure Ic. In choosing a field structure, particular concern was placed on obtaining both a
uniform axial and transverse field within the parallel-plate region of 10 cm. To obtain such a field, a
Helmholtz pair was designed and constructed having the dimensions shown in Figure 25. The alumi-
num coil forms are made of 0.4-m2, 0.6-cm-thick face plates, joined with bronze bolts to a 40-cm-o.d.

6 A General Radio GR874 14-mm connector was used.
7 A Gerrald 900 C generator was used.
8A Naida coupler was used.
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Figure 25—Cross sections of Helmholtz coil construction, (a) Side view, (b) Front view.

tubing, 1.3 cm thick and 7.0 cm long. The forms are wound with 20 layers having 20 turns per layer
of No. 8 polyesterine magnet wire. Each coil has an electrical resistance of 1.33 fi at room tempera-
ture and is powered using a 32-V, 40-A regulated dc power supply connected in series with the two
identical coils.

Minimum inhomogeneity was obtained by separating the coils a distance approximately equal to
their average radius of 23.8 cm. Measurements of the central field strength using a Hall probe
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gaussmeter indicated a magnetic field of 1.75 mT/A (17.5 G/A), corresponding to an electron-cyclotron
frequency of 50 MHz/A. This measurement is in good agreement with the following equation, which
was derived from the Biot and Savart law as contained in Reference 28:

327T NI
Bz = , (89)

! 10 • 53/2 R

where / is in amperes, R is in centimeters, and BZ is in millitesla (gauss). BZ is the axial magnetic field
at the midpoint between two single-loop coils, each having NI ampere turns and separated a distance
equal to their radius/?. To apply Equation 89 for the experimental coils, an average coil radius
R = 23.8 cm is used with N = 400 turns, so that we find£z = 1.53 mT/A (15.3 G/A).

Measurements of the field inhomogeneity could not be observed using the Hall probe; thus an
estimate of the axial field inhomogeneity is computed from the equation developed for the single-loop
coils (Reference 28):

A£ 144/z\4

i i • (90)
Bz 125\R)

This expression gives the axial field variation A6 about the midpoint, z/R - 0, with respect to the mid-
point field Bz. Within the region occupied by the parallel-plate structure (z < ±5 cm), Equation 90
indicates an axial field variation of less than 0.3 percent.

The orientation of the plasma, parallel-plate structure, Helmholtz coils, and microwave cavity are
shown in Figure 15. This top view of the experimental setup does not show the microwave absorbing
material placed around the coils to minimize the amount of radiation reflected back into the parallel-
plate structure.

Configuration for Monitoring the Plasma Impulse Response

The impulse responses were monitored using the setup outlined in Figure 26. This configuration
was employed to obtain large detection sensitivity.

The plasma column was placed within the parallel-plate structure, which is terminated at one end
by a matched 50-J2 load and at the other end is connected to a wideband (10 dB: 0.9 to 2.0 GHz)
directional coupler. The BBG pulse incident on the plasma is coupled through the directional coupler
to the sampling scope. Because of the isolation provided by the directional coupler, the sampling
scope only detects the reflected signal from the plasma so that relatively large incident pulses can be
applied without damaging the scope (maximum allowable input of 2 V). Hence, the larger incident
pulse results in larger reflected signals, which are above the level of fluctuations from the plasma and
scope noise, thus increasing the sensitivity for detecting the plasma response.

The variac connected to the BBG power supply is used to vary the peak output BBG voltage be-
tween 1200 and 1860 V without distorting the waveform. To obtain lower peak voltages for weaker
excitation of the plasma, fixed attenuators are connected before the directional coupler, as shown in
Figure 26. The frequency spectrum characterizing the experimental system was determined using the
following technique.
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Figure 26-Experimental setup for monitoring the impulse (BBG)
response of the plasma.
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Figure 27—Characteristics of experimental system, (a) BBG response of system, (b) Normalized voltage spectra.

The BBG was used to excite the system (70-dB attenuation and the high-speed scope head were
used) with no plasma discharge and with the 50-fi load replaced by a short circuit. Figure 27 shows
the pulse after being reflected from the short and coupled through the directional coupler to the
sampling scope. The frequency spectrum of the response was obtained using a computer and is given
by the solid curve in Figure 27b. To obtain the frequency spectrum characterizing the system, i.e.,
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directional coupler, parallel-plate structure, etc., the BBG spectrum of Figure 21b is divided out,
resulting in the dashed curve of Figure 27b. This spectrum is predominately a result of the bandpass
characteristics of the directional coupler.

To obtain the frequency (radiation) spectrum of the plasma, the frequency characteristics of the
directional coupler and BBG (solid curve of Figure 27b) must be divided out. However, for the fre-
quencies observed (0.5 to 1.2 GHz), the variations due to the BBG and directional coupler combina-
tion are less than 10 percent (1-dB power) and can be neglected. Thus, the responses obtained with the
plasma on are accurate measurements of the plasma response because of the wideband properties of the
BBG, parallel-plate structure, arid directional coupler.

As previously mentioned, both the fast BBG pulse (Figure 21) and system response (Figure 27)
were monitored by the high-speed (75-ps risetime) sampling head. However, for the purpose of
monitoring the lower frequency plasma responses, the slower speed (400-ps risetime) sampling head9

was found to be adequate. This latter head did not distort the responses produced by the plasma but
only reduced the sharp spikes (residuals) resulting from the reflections due to the cable connections,
etc. This filtering out of the higher frequency residuals made it easier to identify the plasma response;
and therefore the slower speed head was used rather than the high-speed head.

A circuit exists within the scope to smooth out any scattering of sampled data points due to
jitter in the plasma response such as that caused by fluctuations in plasma density (striations). This
circuit can be connected or removed by setting the smoothing switch to the normal or smooth posi-
tions, respectively. Figure 28 shows the plasma response monitored using the slow-speed head which
was connected for smooth and normal operation. It is observed that the smoothing circuit acts to
average out the fluctuations in the plasma response, making it easier to identify the coherent response
of the plasma.

With the combination of the slow sampling head and the smoothing circuit, the coherent response
of the plasma could be readily examined without performing any additional signal processing. This
reduced the labor involved in determining the digital Fourier spectrum because the residual signals and
scattering of sampled data points were small and could sometimes be neglected without introducing
large error in the resulting spectrum. (The residual signals were monitored with the plasma off and
were subtracted from the response with the plasma on to accurately obtain the response produced by
the plasma.)

It is noted in Figure 26 that a 60-ns delay line was placed between the coupler and sampling
scope.' It was mentioned previously that the delay line was necessary when using the high-speed head
to allow adequate time for sampling the BBG pulse. However, in this case the delay line served a
different purpose. The slow head, which has an internal delay line, does not need any external delay
line for sampling purposes. The delay line was used instead to delay the disturbances from the BBG
that radiated into the scope and distorted the measurements. The delay line provided the time neces-
sary for the radiation to damp before the plasma response appeared.

9The Tektronix 3S76 sampling head was used.
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Figure 28—Plasma response obtained with different samplings,
(a) Smooth sampling, (b) Normal sampling.

4. EXPERIMENTAL RESULTS

The linear and nonlinear magnetoplasma responses to impulse excitation were obtained for dif-
ferent plasma discharge currents, magnetic fields, argon pressures, and peak BBG voltages. These four
parameters were controlled independently and the different impulse responses as well as their fre-
quency spectra were obtained.
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Throughout the following discussion, comparison is made when possible with the theory devel-
oped earlier. As previously noted, the measured impulse response (Figure 2) appears as a modulated,
damped oscillation. It is shown in this section that the impulse response possesses the general charac-
teristics of the linear theory for a cold, inhomogeneous, cylindrical magnetoplasma. This is ascer-
tained by comparing the results observed for different magnetic fields and plasma discharge currents
with those predicted by the theory.

To establish that the damping mechanism is due to phase mixing resulting from inhomogeneity
in plasma density, the impulse responses and their frequency spectra obtained for different plasma dis-
charge currents are compared with the theory. The measurements are presented both with and with-
out a magnetic field; the essential damping features are most easily examined for the nonmagnetoplasma.

The magnetic field acts to modulate and alter the oscillation frequencies of the nonmagneto-
plasma response. These characteristics are exhibited by both the impulse responses and frequency
spectra for different magnetic fields. It is observed that the magnetic field acts to split the single
dipole resonance of the nonmagnetoplasma into two separate resonances as predicted qualitatively
from the linear theory. For weak magnetic fields (<7 mT (<70 G)) the resonance and antiresonance
frequencies compare well with the simpler theory of a homogeneous plasma. However, for larger mag-
netic fields, the measurements show large discrepancies with the theory. The approximate inclusion
of inhomogeneity in plasma density into the theory does not appear to resolve the disagreement for
large magnetic fields.

Scattering measurements were made using low-power microwaves incident to the plasma, where
the reflected and transmitted power was monitored at different frequencies. The primary purpose of
these measurements was to compare the steady-state frequency spectrum with that obtained from the
impulse response of the plasma. As expected, the two spectra are approximately the same, agreeing
with the well-known convolution principle.

The nonlinear impulse response of the plasma was also studied. As previously noted, from Fig-
ure 3, the response for stronger excitation displays larger damping in addition to a small increase in
the frequency of oscillation. This nonlinear behavior is compared with the nonlinear theory of a cold,
inhomogeneous plasma. It is shown that the experimental results have the general features exhibited
by this theory.

The measurements of the nonlinear damping are plotted as a function of the initial velocity
imparted to the electrons by the impulse in voltage. This plot is compared with the damping due to
electron-neutral collisions to show that the damping observed is not due to increased elastic collisions
between electrons and neutrals. This result is important because previously the single-pulse excitation
experiments were only able to observe the nonlinear damping due to electron-neutral collisions
(Reference 15). According to the nonlinear theory which our measurements seem to correlate, the
collisions that are important at the nonlinear level are those involving electrons with electrons in an
inhomogeneous plasma.
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The Linear Impulse Response

As discussed earlier, the technique used for exciting and monitoring the impulse response of the
magnetoplasma employed a continuous dc discharge in argon, and the plasma column was placed within
a parallel-plate structure and alined axially with the magnetic field produced by the Helmholtz coils
(Figure 15). Throughout the measurements, the argon pressure was kept constant at 0.33 N/m2

(2.5 jurn Hg). The plasma response to the BBG pulse was monitored by the method described in Sec-
tion 3. To insure that the plasma was linearly excited, the BBG pulse peak amplitude incident on the
plasma was reduced to 50 V. This was accomplished by inserting 30 dB of attenuation before the
directional coupler (Figure 26). Measurements of the plasma responses were made for different plasma
discharge currents and magnetic fields.
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Measurements for Various Discharge Currents

Figure 29 shows the responses for discharge currents of 0, 100, 150, and 200 mA, corresponding
to plasma frequencies of 0, 1.1, 1.4, and 1.7 GHz, respectively. (See Figure 19.) These responses were

obtained for a fixed magnetic field of 7 mT
(70 G), which corresponds to an electron-
cyclotron frequency of 200 MHz, and are dis-
played on the same voltage (measured by the
sampling scope) and time scales. For the plasma
off, / = 0, the response consists of the small
reflected signals (residuals) resulting from the
cable connections, the glass plasma tube, etc.
With the plasma on, f =£ 0, the responses are
mainly due to the plasma and appear as modu-
lated, damped oscillations.

The damping is stronger for larger plasma fre-
quencies. This same form of damping has also
been observed in similar experiments.performed
on a nonmagnetoplasma (Referenced). Figure
30 shows the responses obtained without mag-
netic field, fc = 0, for the same plasma frequen-
cies. As seen by comparing Figures 29 and 30,
the addition of a magnetic field modulates the
nonmagnetoplasma responses without appre-
ciably altering its damping. The results obtained
without magnetic field compared well (Refer-
ence 29) with the linear theory of a cold, inho-
mogeneous plasma, for which the damping arises
from phase mixing due to inhomogeneity in
plasma density. This same damping mechanism
also functions in the presence of a magnetic
field, although for large homogeneous fields

f. = 1.7 GHz
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Figure 29—Linear impulse responses, fc = 200 MHz.
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such that f c > f , its effect is reduced apprecia-
bly (References 6 and 15). Because the experi-
mental conditions were such that/c </„, no re-
duction in damping was observed for decreasing
plasma frequency or for increasing electron-
cyclotron frequency (to be shown later).

Besides the damping of the responses, a modu-
lation was observed. It is noted from Figure 29
that the modulation frequency (the envelope)
appears to remain unchanged for the different
plasma frequencies, but the higher frequency
oscillation within the modulation envelope in-
creases with plasma frequency. These two results
are compared with the linear theory of a cold,
cylindrical magnetoplasma. A homogeneous
plasma is considered at this point; the effects due
to inhomogeneity in plasma density are consid-
ered later.

As shown in the discussion of the theory, the
impulse response of a cold, homogeneous, cylin-
drical magnetoplasma is given by Equation 64:

\2

ru) = |-) r cos
\rj

X sin

"c
— t

Figure 30—Linear impulse responses, fc = 0.

where COQ = co /y/2. This shows that the re-
sponse consists of an amplitude-modulated oscil-

lation. The modulation arises from the term cos (c*Jc/2)r which, as observed experimentally, is inde-
pendent of the plasma frequency. Also, Equation 64 indicates that the modulated oscillation has a
frequency Y/cj2, + (coc/2)2 which increases with plasma frequency, as observed experimentally.

To obtain a more quantitative comparison, the frequency spectra of the experimental and theo-
retical results are employed. Figure 31 contains the normalized frequency (power) spectra of the .
waveforms in Figure 29. These spectra were determined, as mentioned earlier, by Fourier analysis of
a 25- by 38-cm X-Y plot of the waveforms using a digital computer. A total of 300 data points, 50 ps
apart, were used to compute the different spectra. Each spectrum consists of two separated resonance
peaks at frequencies denoted as/£ andfR and a minimum at a frequency/0. The width of the
resonances, which is a measure of the plasma absorption, broadens with increasing plasma frequency.
This absorption mechanism has previously been identified (from the impulse response measurements)
as due to phase mixing resulting from inhomogeneity in plasma density. Of interest are the
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relationships between the resonance frequencies
fL and fR and minimum position fQ for the dif-
ferent plasma frequencies f . The results are to
be compared with the frequency spectrum ob-
tained from the Fourier transformation of Equa-
tion 64, which was given earlier by Equation 61
and is repeated here:

.f = 1.4 GHz

ff = 1.7 GHz

This theoretical spectrum contains two reso-
nances at the frequencies WL /2n and <JJR /2ir,
where the separation between the resonances is
the electron-cyclotron frequency coc/27r. Also,
the spectrum has an antiresonance, correspond-
ing to minimum scattering of incident radiation,
at the frequency co0/27r, which may be written

The resonance frequencies were also derived
by Crawford et al. (Reference 18), in whose
work the inhomogeneity in plasma density was
included as well as the presence of the glass
(dielectric) surrounding the plasma tube and the
coupling of the capacitor plates to the plasma.

Figure 31-Unear impulse response spectra, fc = 200MHz. A variational theory was applied to approxi-
, mately obtain the resonance frequencies of the

— ^ system. Their results are the same as those
obtained from Equation 61 if the plasma frequency is replaced by the average plasma frequency as de-
fined by Equation 88 (also measured by the microwave cavity technique) and if it is recognized that

0.85 0.95 1.05

FREQUENCY (GHz)

1.15 1.25

the proportionality constant between o>0 and
tive coupling referred to before.

is always less than ecause of the glass capaci-

Hence, the relationships to be correlated with the experimental results are as follows:

~ "L = "c (91)

(92)

(93)

where co /2ir is the plasma frequency measured by the microwave cavity and the constant K is some
value (to be determined experimentally) that is greater than 2.
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Table 1 —Data for linear impulse response spectra, / = 200 MHz.

fp (GHz)

1.1
1.4
1.7

Measured Data

.. \

fl (MHz)

565
752
890

//? (MHz)

750
930

1080

/O (MHz)

650
850
980

Calculated Results

f R - f L
(MHz)

185
178
190

f R - f l ,

fc
(percent)

7.5
11.0
5.0

/O

fp

0.59
.60
.58

^TR
/O

1.00
.99
.99

Returning to Figure 31, it is noted that the distance between resonance peaks fR - fL is slightly
dependent on the plasma frequency f ; the experimental values are given in Table 1. The separation
between peaks varies within 5 to 11 percent of the electron-cyclotron frequency (200 MHz). This is
in agreement with Equation 91 within an 11 percent deviation. Also noted in Figure 31 is the increase
in the minimum position fQ with increasing plasma frequency. The ratio /0//_ is listed in Table 1 and
is seen to vary less than 2 percent for the different plasma frequencies. Hence, this experimental " ;

result compares with Equation 92 when the average value of the constant K is 2.85 (greater than 2).
From Equation 93 it is seen that the minimum position should be at the geometric mean between the
two resonances; i-e.,\/^^//0 = 1. This is shown to be approximately true within a 1 percent varia-
tion for the different plasma frequencies (Table 1).

Measurements for Different Magnetic Fields

The responses as shown in Figure 32 were obtained for the electron-cyclotron frequencies of 0,
100, 200, and 300 MHz; the plasma frequency was fixed at 1.1 GHz. In the absence of a magnetic
field, / = 0, the response appears as an oscillation that is damped because of inhomogeneity in plasma
density. The application of the magnetic field is observed to modulate the nonmagnetoplasma response
without altering its damping. This same result was noted before by comparing the magnetoplasma
responses (Figure 29) with the nonmagnetoplasma responses (Figure 30) for the different plasma fre-
quencies. It was then found that for the condition fc <fp, there is no reduction in damping for
decreasing plasma frequency or (as in this case) for increasing electron-cyclotron frequency.

The responses plotted in Figure 32 are now compared with the linear theory of a cold, cylindrical
magnetoplasma. The comparison is begun, as before, by correlating the experimental results in both
the time and frequency domains with the theory of a homogeneous plasma, using Equations 64 and
61, respectively. (After this presentation, a further comparison is made by incorporating the theoreti-
cal results obtained with inhomogeneity in plasma density included.)

From Equation 64, it is observed that in creased fc results in proportional increases in modulation
frequency, as found experimentally in Figure 32. Also noted from the theory is the relatively un-
changed higher frequency oscillation for the experimental condition fc <f , which is in agreement
with the experimental results.
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Figure 32—Linear impulse responses, fp = 1.1 GHz.
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Figure 33— Linear impulse response spectra, fg = 1.1 GHz.

For a more quantitative comparison, the frequency spectra of the experimental and theoretical re-
sults are again compared. Figure 33 shows the normalized frequency (power) spectra of the responses
shown in Figure 32. These spectra were determined by digital Fourier analysis as was previously employed
to obtain the spectra plotted in Figure 31. With no magnetic field, fc = 0, the spectrum displays a single
(dipole) resonance peaked at 605 MHz (denoted as^j), the shape of which is due to the plasma absorption
resulting from inhomogeneity in plasma density. The effect of magnetic field is seen to split the
dipole resonance into two main resonances at the frequencies previously denoted as/^ andfL , sepa-
rated by a minimum at the frequency /0. According to Equation 61, the spectrum for the nonmag-
netoplasma consists of a single resonance line at frequency CJ0 /2ir. The application of a magnetic
field splits the single resonance into two resonances at frequencies co^ /27T and OJR /2ir and an anti-
resonance at co0/27r. From these theoretical results, the relationships between the measured frequen-
cies fL and/^ ,/0 and/Q', and the electron-cyclotron frequency fc are predicted by

f R - f L = f c (94)
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Table 2—Data for linear impulse response spectra, f = 1.1 GHz.

fc (MHz)

100
200
300

Measured Data

fl (MHz)

575
565
620

fR (MHz)

680
750
815

/O (MHz)

625
650
750

Calculated Results

(MHz)

105
185
195

f R - f L
fc l

(percent)

5.0
7.5

35.0

/o-/o
/6

(percent).

3.3
7.4

19.0

NOTE: / = 605 MHz.

/0 - /o = 0 . (95)

The separation between resonances/^ - fL and the difference between the minimum position and di-
pole resonance /Q - /^ are given in Table 2 for the different electron-cyclotron frequencies. It is seen
that there is less correlation with Equations 94 and 95 as the electron-cyclotron frequency increases.

It was at first thought that the discrepancy for larger magnetic fields was due to possible changes
in plasma frequency with magnetic field. However, accurate microwave cavity measurements of plasma
frequency were made showing no such effects. A second mechanism considered was the distortion
introduced in the spectrum by spurious resonances. These resonances arise from axial propagation
effects (Reference 18) (not included in the theory) and appear as a number of separated, sharp reso-
nances whose frequencies increase with magnetic field. From microwave scattering measurements (to
be described later), the spurious resonances were observed to overtake the main resonances (centered
atfL andfR) producing a distorted spectrum. For the electron-cyclotron frequencies below 250 MHz,
no spurious resonances were observed in the spectrum (0.25 to 1.1 GHz). The first evidence of a
spurious resonance in Figure 33 is seen to appear at 900 MHz for/c = 300 MHz. However, because
this resonance is beyond the main resonances, there is no apparent distortion of the main resonances.

Having eliminated the possibility of large changes in plasma frequency due to magnetic field and
the appearance of spurious resonances produced by the magnetic field, it appears that the discrepancy
observed for large magnetic fields (>7 mT (>70 G) fc > 200 MHz) is due to the inadequacy of the
simple theory used. An attempt was made in Section 2 to include the effects due to inhomogeneity
in plasma density into the cold plasma model. The approximate impulse response as given by Equa-
tion 78 is compared as follows with the experimental responses shown in Figure 32.

Considering a homogeneous magnetic field and inhomogeneous plasma density, the approximate
impulse response of Equation 78 is given by

,2

r(/)= - cos
r2

"c C"

7'J.
OJ0

sin r'dr' (96)

I + K/2)2

. This equation is similar to that obtained for a homogeneous plasma (Equa-
tion 64). The modulation of the magnetoplasma response comes from the term cos (o>0/2)f, which is
where CJQ = cop
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• ° MHz the same as the homogeneous case. The higher
frequency oscillation now appears as a phase-
mixing-type integral, resulting in a damping of
the plasma response due to the inhomogeneity
in density. These effects can be seen from the
plots in Figure 13 which were obtained by solv-
ing Equation 96 on a computer for a quartic den-
sity profile. The different plasma responses are
plotted on the same normalized time scale fQ(0)t
for the different ratios of electron-cyclotron fre-
quency to frequency/0(0) =/p(0)/v/2; i.e.,
/c//0(0). For the purpose of comparison, the
theoretical responses are superimposed on the
experimental responses (Figure 32) as shown in
Figure 34. The initial oscillation frequencies of
the theoretical and experimental responses are
set equal. Also, the amplitude of the theoretical
response was adjusted so that its first negative
peak is approximately equal to that obtained
experimentally. The first negative peak was
chosen rather than the initial peak because of the
initial reduction of the experimental response
due to the finite width of the BBG pulse. In
addition, the frequency /0(0) is equal to 2/3 GHz;
therefore, the parameters/c//0(0) of 0.15, 0.30,
and 0.45 correspond to the experimentally ob-
tained electron-cyclotron frequencies of 100,
200, and 300 MHz, respectively. Having appro-
priately scaled the theoretical responses to the
experimental responses, the similarities between

the two can easily be seen. However, the inclusion of the effect of inhomogeneity has not improved
the discrepancy at large values of fc (300 MHz) mentioned earlier (Table 2); this remains an open ques-
tion for further investigation.

Scattering Measurements

The steady-state responses of the plasma were obtained using low-power microwaves (<0.1 mW)
incident to the plasma and monitoring the reflected and transmitted (scattered) power at different
frequencies. The experimental setup employed was similar to that shown in Figure 24, which was used
to obtain the frequency characteristics of the parallel-plate transmission structure. In this case, the
setup functions to obtain the spectrum of radiation from the plasma, which is within the parallel-plate
structure. Because these measurements would be compared with the linear impulse response spectra,
the 20-dB directional coupler was replaced by the 10-dB coupler used for the impulse response
measurements. Also, the 20-dB attenuators were replaced by 10-dB attenuators.

6 9

TIME (ns)

12 15

experiment ----- theory

Figure 34-Comparison between
experiment.

theory and
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Figure 35—Transmission and reflection measurements, Figure 36—Transmission and reflection measurements.
fp = 1.1 GHz and fc = 0. (a) Transmitted and reflected
power spectra, (b) Normalized reflected power spectrum.

fp = 1.1 GHz and fc = 200 MHz. (a) Transmitted and
reflected power spectra, (b) .Normalized reflected power
spectrum.

As in the previous measurements, the argon pressure was set at 0.33 N/m2 (2.5 /urn Hg). Measure-
ments of the reflected and transmitted power from the plasma were made by using the modified setup
of Figure 24. These results were used to determine the different amounts of power reflected, absorbed,
and transmitted by the plasma. Also, these measurements are used to show the correlation between
the steady-state plasma response and its impulse (BBG) response via the Fourier transform principle.

Figures 35 and 36 show the reflected and transmitted power spectra for the plasma parameters
indicated. The incident power spectra are approximately flat and are four divisions above the baseline.
For the nonmagnetoplasma (Figure 35a) the peak reflected power (600 MHz, at center of the figure)
is 50 percent below the transmitted power and 95 percent below the incident power level. This cor-
responds to 5 percent of the incident power reflected, 45 percent transmitted, and 50 percent absorbed
at resonance by the plasma. As discussed earlier, this resonance absorption arises from phase mixing
due to inhomogeneity in plasma density. This same form of absorption is observed for the magneto-
plasma in Figure 36a (center of figure is 650 MHz) and has been studied extensively (References 6 and
7).

The normalized reflected power spectra are shown in Figures 35b and 36b for the plasma param-
eters indicated. They are now compared with the spectra obtained from the corresponding impulse
responses. The two different spectra cannot be compared side by side because of the slight non-
uniformity of the frequency axes introduced by the sweep generator operation. Hence, comparisons
are made at only discrete frequency points.

Figure 35b shows the spectrum for the nonmagnetoplasma having a plasma frequency of 1.1 GHz
and is compared with that at the top of Figure 33. The impulse response spectrum has its resonance
at 605 MHz whereas the reflected spectrum is at 600 MHz. Also, the 3-dB (half power) width is 75
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MHz for the impulse response spectrum and 72 MHz for the reflected spectrum. The difference be-
tween the two results is less than 5 percent.

The reflected spectrum for the magnetoplasma (Figure 36b) was obtained for the same plasma
parameters as that of the impulse response spectrum (Figure 33, fc = 200 MHz). The minima occur at
approximately the same frequency (650 MHz). The two resonances of the reflected spectrum appear
at 560 and 760 MHz; those for the impulse response spectrum occur at 565 and 750 MHz, resulting in
a difference of less than 2 percent.

The Nonlinear Impulse Response

Nonlinear impulse responses were obtained by exciting the plasma with BBG peak amplitudes
(termed excitation voltage) extending up to 1860 V, the maximum BBG output. The experimental
setup employed was the same as that used for obtaining the linear impulse responses (Figure 26). To
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Figure 37-Nonlinear impulse responses for different
excitation voltages, fc = 200 MHz.

01
o

tr
O

1.00

0.75

0.50

0.25

0

= 1140V

Vpk= 1600V

0.4 0.5 0.6 0.7

FREQUENCY (GHz)

0.8 0.9

Figure 38—Nonlinear impulse response spectra for dif-
ferent excitation voltages, fc = 200 MHz.
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vary the excitation voltage in discrete steps, fixed attenuators were connected at the output of the
BBG. Continuous changes in excitation voltage between steps were obtained by adjusting the variac
connected to the BBG power supply.

Measurements were obtained for excitation voltages V . of 33, 3, and 0 dB below the BBG out-
put of 1600 V (set by the variac); i.e., 36, 1140, and 1600 V, respectively. These excitation voltages
were obtained using a 20-, 10-, and 3-dB attenuator and connecting them either at the output of the
BBG or before the inpiit to the sampling scope. This sets the attenuation in the circuit to be 33 dB,
consequently setting the overall system gain (from BBG output to scope input) to a constant value for
the different voltage measurements. Hence, all responses are displayed on the same voltage and time
scales, making it a simple matter to compare them. Any changes observed between the different
responses can be readily correlated with the nonlinearities in the plasma.

The first series of measurements were obtained for an argon pressure of 0.33 N/m2 (2.5 jum Hg)
and a discharge current of 100 mA, corresponding to a plasma frequency of 1.1 GHz. Also, 7 mT
(70 G) of magnetic field was applied, corresponding to an electron-cyclotron frequency of 200 MHz.
The responses are shown in Figure 37 on the same voltage (measured by the sampling scope) and time
scales for the excitation voltages V . of 36, 1140, and 1600 V. The increase in damping for the larger
excitation voltage is first noted. An increase is also found in oscillation frequency for larger excitation.
These same nonlinear features are exhibited by the frequency (power) spectra of the waveforms, as
shown in Figure 38, which were obtained using the same technique employed to obtain the linear
impulse response spectra.

From these spectra it is clearly seen that the increased excitation results in both an increased non-
linear damping and a positive frequency shift. This same nonlinear behavior was observed for a
nonmagnetoplasma (Figure 39) for the same argon pressure, discharge current, and excitation voltages.
The nonlinear damping and positive frequency shift are also shown in the frequency spectra (Figure
40) of the nonmagnetoplasma responses.

It is observed from these experiments that the plasma nonlinearity results in a stronger damped
response with a small increase in the frequency of oscillation. Additional measurements are presented
to display the nonlinear damping as a function of excitation voltage, argon pressure, and plasma fre- '•
quency. Also shown is the nonlinear frequency shift as a function of plasma frequency. In presenting
the data, comparisons are made with the nonlinearity resulting from electron-neutral collisions and the
mechanism developed in Section 2.

From the preliminary measurements shown in Figures 37 to 40, it is noted that the nonlinearity
exhibits the same characteristics with and without magnetic field. Therefore, only the nonmagneto-
plasma responses need to be considered. Experiments were performed (Reference 29) displaying the
nonlinear damping of.the nonmagnetoplasma responses as a function of excitation voltage, argon pres-
sure, and plasma frequency and are referred to in the following discussion.

To obtain a measure of the damping, the 3-dB (half power) spectral widths were used as deter-
mined from the frequency spectra of the different nonmagnetoplasma responses. This damping (fre-
quency) coefficient is compared with that due to electron-neutral collisions in Figure 41. For this pur-
pose, the damping coefficients were obtained for an argon pressure of 0.33 N/m2 (2.5 Mm Hg) and a
plasma frequency of 1.1 GHz and are plotted against the initial electron velocity vg produced by the BBG
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Figure 39-Nonlinear impulse responses for different
excitation voltages, fc = 0.
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Figure 40—Nonlinear impulse response spectra for
different excitation voltages, fc = 0.
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Figure 41-Damping coefficient and collision frequency versus electron
velocity.
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pulse. The values of ve corresponding to different V k were determined from the following equation:

ve =
m 2b

(97)

where 26 = 2 cm and represents the spacing between the parallel plates, and t = 200 ps and is the
effective pulse width determined by the normalized area (Fpk is set to unity) of the BBG waveform in
Figure 21 a. In obtaining the damping due to electron-neutral collisions, the electron-neutral collision
frequency for argon (Reference 30) was employed corresponding to the pressure of 0.33 N/m2 (2.5
Mm Hg) and velocities equal to the thermal speed of 1.7 X 108 cm/s (1.6-aJ (10-eV) plasma) plus the
additional vg resulting from excitation. It is evident by comparing these two curves that the nonlinear
damping is much larger than that produced by electron-neutral collisions. Besides the large difference
in magnitudes, the two curves have completely different characteristics. The nonlinear damping coef-
ficient increases monotonically for larger electron velocities whereas the electron-neutral collision fre-
quency reaches a maximum at about 108 cm/s and decreases for larger velocity.

To further eliminate the possibility of nonlinear electron-neutral collisional damping, measure-
ments of the damping coefficient are compared for different argon pressures. Figure 42 displays the
damping coefficient measured at the linear level (V , = 50 V) and nonlinear level (V . = 1600 V) for
different argon pressures. The plasma frequency was maintained at 1.1 GHz by adjusting the discharge
current for the different pressures. Except for the uniform shift in the damping coefficient, the linear
and nonlinear dampings show the same variation with pressure. The changes observed for the low pres-
sure and high pressure are due to the increase in striations (see previous discussion of the plasma in
Section 3) and appear independent of excitation voltage. If the damping were due to electron-neutral
collisions, the linear damping would increase linearly with pressure, which it does not. Also, according
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Figure 42—Damping coefficient of nonlinear emission versus

pressure.
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to Figure 18, the electron velocity is dependent on pressure, decreasing for higher pressures. Hence, the
effect due to excitation on electron-neutral collisional damping should show a greater difference be-
tween the linear and nonlinear dampings at higher pressures than at lower pressures; this is not observed.

; Having established that the nonlinearity is not a result of the velocity-dependent electron-neutral
collisions, the mechanism developed in Section 2 offers the best explanation of the strong damping
found for larger excitation. In Figure 9, it is observed that there exists a nonlinear mechanism for
damping the plasma response due to electron crossover in an inhomogeneous plasma. Unlike that due
to electron-neutral collisions, this form of nonlinearity results in increased damping with excitation.
Alsb predicted by this theory is a small increase in the frequency of oscillation for larger excitation.
Figure 43 shows the measured frequency shift as found from the frequency spectra (the center fre-
quency (resonance) is used) of the linear (V k = 50 V) and nonlinear (V . = 1600 V) impulse responses
for.different plasma frequencies. Although there is some scattering of data points, the frequency shift
is definitely positive, as predicted by theory, and is small (<20 MHz). Hence, at least qualitatively this
nonlinear mechanism displays the characteristics of our experimental results.

Additional correlation with the nonlinear theory can be observed from the measurements made of
the nonlinear damping for different plasma frequencies. Figure 44 shows the linear and nonlinear
damping for different plasma frequencies at a pressure of 0.33 N/m2 (2.5 Mm Hg). It is observed that
the linear (F k = 50 V) and nonlinear (F k = 1600 V) damping have different behavior as a function of
plasma frequency. The linear damping increases with plasma frequency due to the phase mixing result-
ing from inhomogeneity in density (refer to the theoretical discussion of the linear impulse response
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Figure 43—Frequency shift of nonlinear emission versus
plasma frequency.
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and Reference 29). The nonlinear damping, however, is much larger than the linear values at low
plasma frequencies and approaches the linear damping for larger plasma frequencies. These data sup-
port the nonlinear theory, which resulted in Equation 39 (also Equation 86) indicating an increase in
damping for larger vp or lower fp (0); i.e., for smaller values of the nonlinear parameter j3 = fp (0)(2a/yp).

The results of these experiments indicate the close correlation between the nonlinear impulse
measurements and the nonlinearity determined by the electron crossover in an inhomogeneous plasma.
Both the increased damping and increase in oscillation frequency for larger excitation (or smaller
plasma frequency) are explained by this mechanism.

5. CONCLUSIONS

The experimental part of this research provided new results concerning the nonlinear behavior of
plasmas. The impulse (BBG) responses displayed both nonlinear damping and a positive frequency
shift for initial electron velocities exceeding 108 cm/s.. It was established that the nonlinear damping
is not due to electron-neutral collisions but results from a much stronger form of nonlinearity. A
mechanism was proposed, by considering electron crossover in an inhomogeneous plasma, and accounts
for the experimental observations. This nonlinear model results in an impulse response displaying an
initial increase in frequency together with increased damping for electron velocities greater than 108

cm/s. The nature of the nonlinearity was attributed to the random mixing of the crossed electrons,
which acts to remove their phase coherence.

Experiments were also performed to obtain the linear impulse responses corresponding to excita-
tions below 108 cm/s. These measurements are found to be comparable with the linear theory of a
cold, inhomogeneous plasma in which the damping is due to phase mixing. The magnetic field is seen
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to modulate the nonmagnetoplasma response because of dipole splitting. Theoretical and experimental
results are shown to correlate well for electron-cyclotron frequencies below 200 MHz.
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Appendix A

THE NONLINEAR TRANSFORMED EQUATIONS

The fluid equations (Equations 5 to 8), which represent a set of coupled, nonlinear equations, are
transformed via Equation 9. The transformed plasma constituents n£(x, t), vx(x, t), v (x, t), and
Ex(x, t) are written as ng(xQ, T), VX(XQ , T), v (XQ, T), and EX(XQ, f), respectively, and the operators
b/bt and 3/3* when transformed become (using the chain rule)

_3_ _ _ 3 _ _ _3_

bt br x °' bx

b b/bx
-= , (A2)

where

= f v x r' dr'
Jo

From Equation Al it is noted that the transformation has the effect of replacing the convective deriva-
tive a/3/ + vx a/a* by the local derivative 3/3r. Substituting Equations Al and A2 into Equations 5
to 8 produces

- n (X , r) l + - X(x , T) = 0 , (A3)

b e
— v (x0, T) = - — E (x0, T) - cj (x)y (XQ , r} , (A4)
br x ° m * ° c y o

—

3 ^ e d ;*^— E(x n , T)= — n.(x)v(xn , T)+ — £pvt(r) , (A6)x Q , f x 0 , e x tx u ' x u ext

where the parameters o>c and nf have not been explicitly transformed.
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Employing the relationship 3X/dr = vx (XQ , T), Equations A5 and A6 when integrated with
respect to T yield

P
Vy(XQ ,T) = I

Jo
uc(x')dX' (A 7)

e Cx

- / n.(x')dX' ,
eo Jo

Ex(x0, r) = £ext(r) + - / «,.(*') dX' , (A8)

where x' = XQ + X'.

These equations were obtained for zero initial velocity v and field EX because the excitation
arises from the applied field £ext. Equation A8 becomes Equation 12 where

nf(x)e2

eome

and upon substituting Equations A7 and A8 into Equation A4, the trajectory equation, Equation 10,
is obtained. Also, Equation 13 is derived by integrating Equation A3 with respect to T, and employing
the initial condition ne(xQ, 0) = n{(xQ).
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Appendix B

DENSITY MEASUREMENT

Measurement of the average density is obtained from the frequency shift of a TM 010 microwave
cavity. The standard perturbation solution for the frequency shift A/(Reference 31) gives the density
as

(Bl)

where EQ(r) = /0(x01>'/''c)az and is the electric field of the empty cavity. Here rc is the cavity radius,
X01 is the first zero of the Bessel function JQ, and / = co/2n is the resonant frequency of the cavity.
Collisions are ignored because v <^ co. The frequency shift is independent of the static magnetic field
because the electric field is parallel to the magnetic field in the perturbation solution and fringe fields
due to the end holes of the cavity have been ignored.

In the density measurement, a copper microwave cavity with 6.3-cm i.d., 8.5-cm length, and end
holes of 16-mm diameter is used. The cavity is resonant at 3.65 GHz.

Measurements are made of densities in the range of c«J2/co2 < 1/2 where the perturbation solution
is valid. To reduce the fringe fields, a large value of the ratio of cavity length to end-hole radius
(approximately 11) is used.

The frequency shift measures the integrated density because the electric field is essentially con-
stant for the value of a/rc = 0.15 used in this experiment (a is the plasma radius). If the field is taken
to be constant, which gives a 3 percent error, Equation Bl becomes

(B2)

where

w2(r)rdr . (B3)
P

In Figure 19, the average electron density is obtained from Equation B3 which can be rewritten as
Equation 87. . .

The cavity is excited in the TM 010 mode by a microwave signal generator connected to the input
of the cavity; coupling in and out of the cavity is provided through magnetic coupling loops in the
side walls. Frequency shifts are measured with a wave meter between the output of the cavity and a
crystal detector. In all experiments performed, thejdensity is .constantly, monitored .because any drifts
in density due to pressure variations (during a measurement) can lead to large errors in the plasma
response.
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