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ABSTRACT

The fabrication of a photodiode transistor image sensor ar-

ray in silicon, and tests on individual elements of the array are

described. A design for a scanning system for an image sensor ar-

ray is described.

The spectral response of p-n junctions was used as a techni-

que for studying the optical-absorption edge in silicon

Heterojunction structures of Sb?S,, - Si were fabricated. A

system for measuring C-V curves on MOS structures has been built.



I. INTRODUCTION

Solid state image sensors consist of arrays of radiation

sensors connected by address strips to scan generators and coup-

ling circuits. These permit the interrogation of individual ele-

ments to generate a video signal. During the past year research

on solid state image sensors sponsored by NASA has been in pro-

gress in the Department of Electrical Engineering at the Univer-

sity of Rhode Island. The objective of the program has been to

investigate novel designs for solid state image sensing arrays.

This involves both the study of photoeffects in materials and de-

vices to evaluate their suitability for sensor arrays and the de-

sign of novel structures compatible with feasible fabrication

technology»

This report describes the progress achieved thus far. The

main emphasis has been on arrays using silicon technology.

Section II contains a discussion of the operating principles,

fabrication procedures and tests on individual elements of a novel

design for a photodiode-bipolar transistor array in silicon. The

design of scanning circuits which are being built for use with

this array is given din Section III. In studying the optical pro-

perties of silicon, it was found that the measurement of the

spectral response of p-n junctions provided a very valuable tech-

nique for studying optical absorption at very low absorption

levels. The results obtained are given in Section IV and a paper

based on these results (to be published in Physical Review) is

given as Appendix I.

Work on the photoeffects in heterojunctions made up of



Si - Sb?S_— Au sandwiches is reported in Section V. The results

on these samples were not reproducible and the cause was probab-

ly due to contamination of the silicon surface. An MOS-capaci-

tance measurement system has been set up to study this problem.



II. PHOTODIODE BIPOLAR TRANSISTOR ARRAY

a* Principle of Operation

Each, element in a solid state photosensor array must have a

photosensing device, a switch to allow individual addressing and,

preferably, an amplifier to increase the sensitivity . The most

successful approach to date has been the utilization of a silicon

phototransistor as the element. The collector diode of the tran-

sistor is used in the photon flux integration mode as the light

sensor. The emitter diode is used as the switch. In addition to •

the gain due to storage, further amplification is achieved by the

transistor action in the device. Arrays have also been fabricated

using a photodiode as the sensor and an MOS transistor as the

switch. In practice there are just arrays of MOS transistors, the

source diode acting as the photosensitive junction.

Sensors in which the photodiode doubles as either source

junction or collector junction are attractive in that they pro-

vide structures which readily lend themselves to integration into

densely packed arrays. However, the dual function of the diode

leads to limitations on the performance of the array. A design

which would permit greater flexibility in individually optimizing

the performance of sensor, switch and amplifier in the element is

shown in Figure 1. In the figure the equivalent circuit for a few

of the elements of the array is shown. The basic element.con-

sists of a photodiode and a bipolar transistor. The peripheral

blocks represent scanning circuits which will be discussed later

in Section III.
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The operation of the element in the array is as follows. A

combination of + V., volts on the column and 0 volts on the row
D

selects one element. The photodiode is reverse biased and the

depletion layer capacitance C is charged through the emitter of"

the transistor, as illustrated in Fig. 2. This constitutes the

base current of the transistor and results in an amplified signal

current in the collector circuit. At all times other than the

scanning time, the combination of voltages are such that the

photodiode remains isolated, and acts in the usual storage mode.

In the interval between scans, the charge on C gets depleted

through the reverse current of the photodiode and this charge is

replaced in the next scanning period.

The video signal can be extracted from the array either from

the common collector or from the emitter. In the latter case one

would use a commutator to connect each row in turn to the video

amplifier, as is indicated symbolically in Figure 1 by the row

switching circuit. One advantage of having two points for getting

the signal is as follows. When the array is being scanned row by

row, the high speed switching transients from the pulses on the

columns appear at the emitter and the collector load resistors

via the base-emitter and base-collector capacitances respectively.

The signal, on the other hand, appears in opposite phase at these

two points. By feeding both outputs into a suitable differential

amplifier^ it is possible to improve the signal to switching

transient ratio in the video signal.
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b. Fabrication of photodiode-transistor image sensor

The fabrication of these arrays in silicon is compatible

with conventional integrated circuit technology. A schematic

integrated circuit layout for making these structures is shown

in Figure 3« The basic processing steps are as follows. A deep

P-type well is diffused into an n-type substrate in the region

where the photodiode is to be formed. A shallow p-diffusion is

made in the transistor region. The next step is an n-diffusion

to form the emitter of the transistor and the cathode of the photo-

diode. Metallization with row and column busbars completes the

fabrication.

The array permits great flexibility of design in that the

diode and the transistor are formed separately and the fabrication

of each can be optimized for the particular use of the array being

considered. In order that the leakage currents and junction ca-

pacitances of the transistor be smaller than those of the photo-

diode, the area occupied by the transistor should be much smaller

than that occupied by the photodiode. The metallization of the

rows can be used to pervent the incident light from falling on the

transistor region.

Several units have been fabricated. The fabrication included

all diffusion steps; the final metallization steps have not yet

been done. In making these arrays the geometry of the masks used

has not-been optimized. It was considered more advantageous in _

the present stage of the program to use. commercially available

inexpensive masks rather than make expensive custom-designed ones.

Various standard masks, having squares and rectangles of different
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2sizes on 20 mil centers were used . The patterns thus covered

the entire wafer, and coarse masks were used to isolate sections

having 16 x 16 elements.
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The following is a step by step procedure for the fabrica-

tion of the photodiode-transistor image sensor. The masks used

are standard sizes with .020" centers and are all negative (clear

images). The cleaning procedures used and referred to below are

described in detail at the end of the fabrication procedure. A

detailed description of the photolithographic method using the

AZ-1350J photoresist is also presented. The wafers used are re-

ceived polished and cleaned from the manufacturer.

Wafers: n-type, 1 fi-cm, phorphorous doped, <111>

orientation, ~010" thick, ~1.25" in diameter.

Clean: Procedure A

Oxidize: 45-min., 1200 C furnace temperature, wet N,,

method, 80 C water temperature, 150 cc/min

N bubbling through water subsequently mixed

with another 200 cc/min N prior to entering

furnace. Line is heated to prevent conden-

sation of water vapor carried by the gas be-

fore entering furnace. Estimated oxide thick-

ness 0.395 (i.

Apply AZ: .320" x .320" windows.
Photoresist: ^ J

Etch: 3.5-min. in 5:1 buffered HF.

Clean: Procedure B

Oxidize: 5̂-min., 1200 C furnace temperature, wet N_

method," 80 C water temp., 150 cc/min N_

bubbling through water bath mixed with a-

nother 200 cc/min N.
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Apply AZ: Open deep well windows. They are 15 x 15

mils2 windows except in one corner a 5 x 5

mils2 area is not opened (See figure). Ap-

ply photoresist also in the back of the wafer

so that the oxide will not allow Boron to

diffuse in that side.

Etchs 4-min in 5:1 Buf. HP.

Clean: Procedure B

Activate: the BN type M slices used for B deposition

for one hour, 950°C furnace temperature,

1000 cc/min 02 flow. This step is performed

in the Boron deposition furnace and at the

same time as wafers are prepared for deposition

Deposit BJ 10-min, 850°C furnace temp., 380 cc/min N?.

a : 160-170 n/Q. This is the surface resistance
s

measured at different points on a test wafer.

The test wafer is treated identically to and

simultaneously with the sample wafer.

Transfer: wafers to drive-in furnace (same as oxida-

tion furnace) without removing from hood or

in any way treating wafers. Blow off .any

dust on test wafer with forced dry N£ gas.

Drive-in: 0̂-hours, 1150°C (l200°C in the future)

furnace temp., 200 cc/min O£ plus 800 cc/min

N for the first 17 hours and no Og for re-

maining 23 hours.
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Estimated! oxide thickness over deep well 0.575p.

(inferred from etching time and oxide color

of test wafer).

p l 1̂ 0-160 n/pon test wafer. The value of p
s * s

for the deep well is assumed to be the same.

2
Apply AZ: Open 5x5 mils base region at the corner

left covered during opening of deep well.

Again cover back side with photoresist.

Etchi 8-min., 5:1 Buf. HF.

Clean: Procedure B

Activate: BN slices as described above.

Deposit B: 10-min., 850 C furnace temp., 380 cc/min N .

New test wafer inserted,

p : 160-170 n/D
S

Transfer: wafer to drive-in furnace without any treat-

ment .

Drive-in: 1-hour, 1200 C furnace temp., wet N_ bxida-.l

tion used, 80 C water temp., 150 cc/min N?

bubbled through water mixed with another 200

cc/min N before entering furnace.

Estimated: oxide thickness over base O.k25\i. Oxide

color gold.

p : 600-680 fl/Q on test wafer.

Apply AZ: Open photodiode windows over most of the area

: of deep well. In the figure it is the area

enclosed by the dotted line.

Etch: 8 min., 5:1 Buf. HF.

Clean: Procedure B
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Deposit
Phosphorous: 10-min, 850 C furnace temp., 6 cc/min Ar,

bubbled through room temperature ^,

mixed with 15 cc/min 02 plus 800 cc/min Ar

before entering furnace. Allow 1 min. after

inserting wafer in furnace before turning on

Ar bubbling through POC/6.,, while other gases

are on.

p x 128 fl/O on test wafer with deep B diffusion.
s

Transfer i wafer to drive-in furnace without any treat-

ment .

Drive-in: 2-hours, 1100 C furnace temp, wet N2 oxida-

tion, 80 C water temp., 150 cc/min N bub-

bling through water mixed with 200 cc/min N

before entering furnace.

p I 60-80 n/Q on test wafer with deep B diffusion,
S

Estimated: oxide thickness 0.52|J.
p

Apply AZ : Open 2x4 mils emitter windows.

Etch: 8-min, 5:1 Buf. HF.

Clean: Procedure B

Deposit P: 30-min., 1000 C, gases as previously des-

cribed. Turn Ar bubbling through POC^ O.5

min after insertion of wafer in furnace.

p : 7 fi/D on second test slice.
•3

Soak: wafer in clean 5:1 Buffered HF for 10 sec -to

remove phosphosilicate glass. Rinse wen

with distilled water and dry.



U5-min, 1000°C furnace temp., wet N, oxida-

tion, 80°C water, 150 cc/min N, bubbled and

mixed vith 200 cc/min V

i 5 n/Q on second test slice.

Measured by bevel^s wafer and staining.

Deep veil Xj ~^ ^

Photodiode xj -1

Transistor Base
Collector xj ~
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Cleaning Procedures J

A. l) Soak 5-min Aqua Regia (l HNO^: 3 Hc^

2) " 5-min 5°/° HF

! 3) n 5-min in hot 2 H.,0 I 1 H.,0., : 1

4) '« 5-min in hot 2 H.,0 « 1 HgO,, : 1

5) " 1-min 1 H20 il HF (50°/°)

6) After each cleaning step overflow rinse in deionized

tap water for 2-min.

7) Rinse well with distilled water.

8) Blow off water from back side of wafer with forced

dry Nggas.

9) Place back side of wafer on spinner and spin at 5000

rpm for 60 sec. to dry wafer.

10) Quickly transfer to boat and insert in furnace.

B. This procedure follows application of AZ-1350J photo-

resist.

1) Rinse wafer with acetone from wash bottle

2) Soak 5-min in hot acetone

3) Transfer to a clean beaker with hot acetone and soak

5-min.

4) Transfer to beaker overflowing with deionized water.

(Do not allow acetone to evaporate for it may leave

residue on wafer).

5) Soak 5-min in fresh 1 HgSO^ : 1 HNO^

6) Overflow rinse 2-min in deionized water.

7) Soak 10 sec. in clean 5°/o HF

8) Overflow rinse 2-min in deionized water

9) Rinse well with distilled water
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10) Blow off water from back side of wafer with, forced

dry N gas.

11) Place back side of wafer on spinner and spin at 5000

rpm for 60 sec for final drying.

12) Quickly transfer to boat and insert in furnace.



.17

Application of AZ-1350J positive working photoresist

1) Dry: oxidized surface or have fresh oxide

grown on wafer.

2) Spini 5000 rpm, 30 sec.

3) Apply AZl from bottle and cover wafer, but do not

allow photoresist to overflow.

k) Spin: 5000 rpm, 30 sec., 30 msec acceleration.

Estimated photoresist thickness ~1|J.

5) Bake: 5-min, 150-180°F on hotplate.

6) Expose: 8-sec. using the Kulicke and Soffa Model

682 mask aligner equipped with 200 watt

mercury vapor source.

7) Develop: 30-sec in 1 HgO : 1AZ-1350J developer. 15-

sec mild agitation and 15-sec. soak in

clean developer.

8) Overflow
rinse: in deionized water 2-min.

9) Rinse: with distilled water

10) Dry: by blowing back side with N^ gas, placing

in spinner and spinning at 5000 rpm for

60-sec.

11) Note: multiple exposures are permissible. Steps

6 through 10 may be repeated several times

until desired pattern is obtained.

12) Post bake:" 5-min, 150-180°F on hotplate.

13) Rinse: wafer with distilled water before etching.

This step removes the possibility that air

may be trapped inside the pattern causing in-

complete etching.
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Fig. 4 Microphotograph of beveled and stained wafer,
showing junction depths in the photodiode-
transistor element.
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Fig. 6 Microphotograph of surface of processed silicon
wafer. A Nomarski attachment was used in the
microscope to enhance the contrast.
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Figure k is a microphotograph of an element of the array.

The wafer has been lapped at a 2 angle, and stained, to bring

out the junctions. The deep and the shallow regions of the p-

type well and the emitter and photodiode n-regions are clearly

visible. The scratches and defects are due to the lapping pro-

cess. This photograph corresponds to the sketch of Fig. 3«

The actual geometry being used for the more recent units

is shown in Fig. 5. This differs slightly from the pattern of

Figures 3 and k in that a larger area of the wafer is used for

the photodiode, thus increasing the sensitivity of the array. A

microphotograph showing the plan view of a portion of the array

is given in Figure 6. The slight distortions in the picture are

due to the Nomarski differential interference attachment which

was used in the microscope to enhance the contrast between the

various regions of the pattern.

c. Tests on Image Sensor Elements

As mentioned earlier, the metallization steps in the fabrica-

tion have not yet been successfully completed and hence scanning

tests of the array have not yet been attempted. Tests on in-

dividual elements of the array were performed by using a wafer

3
prober to make contact to the emitter and diode area of an ele-

ment. It was desired to make tests which would give data on the

performance of the element when in an array. For this purpose

the circuit model shown in Figure 7 was used.

In Figure 7 four of the NXN elements of an integrated silicon

array are shown. The voltages are such that element "A" is cur-

rently addressed. All other elements are in the storage mode.

The transient and signal voltages appear across the emitter load
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resistance R_, and collector load resistance R . R is the source
32j . C S

output resistance and R- denotes the transistor base resistance.

C , is the photodiode junction capacitance and C, and C, the based DC be

to collector and base to emitter junction capacitances. Because

of the difference in area C >>C, and C ,»C, . the equivalentd DC d be .

circuit seen by the source is then as shown in Figure 8.

With the experimental values of some of the parameters in the

figure and a few simplifying approximations, an analysis of the

loading effect of the other elements on the element being tested

can be calculated.

The tests were therefore conducted with these effects being

simulated by external components. The diagram of the final cir-

cuit used for the pulse tests is shown in Figure 9« The choice

of the values of R_, Ĉ ,, R and C would simulate well the per-
Oi Hi C C

formance of an element in a 10 x 10 array.

Figure 10 shows tracings from an oscilloscope face during

the test of a typical element. The driving pulse was a square one

which had an amplitude of 1.1 volts and a duration of 1.2 flsec.

The bottom two tracings of Figure 10 (a) show the emitter amd col-

lector transient voltages without any light falling on the photo-

diode. The transients are in phase as expected. The upper two

traces were taken with the photodiode illuminated.

One of the principal features of the present array is that the

signal to noise ratio can be greatly improved since both the above

voltages are available. By inverting and amplifying one of the

outputs and adding it to the other, the transients cancel while the

signals add. The trace of Figure 10 (b) has been obtained in this

way. The gain in signal to noise ratio is apparent in the figure.
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III. SCANNING CIRCUITS

A system for scanning image sensor arrays and displaying the

video signal was designed. The design is specifically for the

photodiode-bipolar transistor array, but has enough flexibility

that it can easily be adapted for other arrays which may have dif-

ferent scanning requirements.

Figure 11 shows the overall system. A fast shift register

provides the column scanning pulses and a slow shift register the

row scanning pulses. A set of clamping circuits and separate

switches have been provided between the registers and the array.

These will enable any polarity pulses with any D.C. level between

-10V to +1OV to be applied so that the system can be used for other

types of arrays. Details of the synchronization which is control-

led by a master oscillator are shown in Figure 12. Pressing the

scan button loads the correct starting inputs to the shift re-

gisters. When the scanning starts, the shift registers act as

ring counters. The sequential scan of the array continues until

the reset button or the master switch is used to stop the register.

The synchronization of the pulses can be understood from the timing

diagrams of Figures 13 and ik. Figure 13 shows the timing diagram

just after pressing the "Scan" switch; the timing diagram after

initiation and completion of 1? cycles is shown in Figure 1^.

Signals taken from the horizontal and vertical counters go to D/A

converters as shown in Figure 15 and the output from the converter

positions the beam of an oscilloscope display (Tektronix type 604).

Figure 16 shows a two-stage video amplifier (using a [iA 733) which

enables the summation of the emitter and collector video signals

with individually adjustable gains. The output of this amplifier
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will go to the z-axis of the display oscilloscope.

Various parts of the scanning system have been breadboarded

and tested. It is anticipated that the entire system could be

put on two printed circuit boards.

The final design will have to be decided in conjunction with

the metallization of the wafer in order to provide for the inter-

connections between the array and the scanning circuits.
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IV. OPTICAL ABSORPTION EDGE IN SILICON

The use of extrinsic photoconductivity in silicon for de-

tecting infrared radiation with sensor arrays implies the use of

heavily doped silicon. Preliminary experiments were made on get-

ting high Boron concentrations using the Boron mitride deposi-

tion and diffusion process* Junction depths of 20(i were achieved

with reasonable uniformity.

The spectral response of p-n junctions was investigated as a

possible simple way of characterizing heavily doped samples. Ex-

periments with lightly doped samples were initially made in order

to evaluate the method. It was found that this measurement pro-

vides a very valuable technique for studying optical absorption at

very low levels. This is due to the fact that in this case the

absorption is directly related to the measured photocurrent,

whereas in reflection or transmission measurements the absorption

is the small difference between two large measured quantities.

The experiments led to some new information on the optical-

absoption edge of silicon. These were written up in a paper which

has been accepted for publication by "Physical Review". A pre-

print of that paper is given in Appendix I.
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V. HETEROJUNCTION STRUCTURES

Sandwich, structures having evaporated Sb2S and gold layers

deposited on a silicon wafer were fabricated. The samples were

prepared in an NRC 3H^ vacuum coater which has the following

attachmentsi

l) A carousel with six boats which enables films of different

materials to be successively deposited without breaking the vacuum.

?) A quartz crystal oscillator for monitoring the thickness

and rate of deposition of the films.

3) A jig which enables mechanical masks to be moved under the

substrate, so that the successive evaporations can be made in de-

sired geometrical patterns on the substrate.

Masks were made which allowed the fabrication of Si-Sb S^-Au

sandwiches with a semitransparent gold electrode. The external

contact to the thin gold film was made by a thick gold film which

was insulated from the silicon by an oxide layer. Thus the cur-

rent-voltage characteristic across the structure could be measured

with light incident through the substrate. The masks were de-

signed such that four units were made on a single 3/kn diameter

silicon wafer.

The current voltage characteristics of one sample in the

dark and when illuminated with a tungsten lamp, with the light

incident through the gold, are shown in Figure 17•

However, measurements on different samples with n- and p-type

substrates of varying resistivities gave non-reproducible results

as regards the direction of rectification and the light sensitivity.
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Various experiments were tried to locate the cause of this

irreproducibility. At the moment it seems that contamination of

the silicon surface is responsible for these effects. In the fab-

rication procedure the first step is the growing o'f an oxide on

the silicon wafer, and etching away the oxide in the areas where

the Sb S_ is to be deposited. This step is needed for providing

the stand-off insulation between the heavy gold connection to the

top of the Sb S and the silicon substrate. We believe that it is
^ 3

impurities introduced during the oxidation process which give rise

to erratic surface conditions on the silicon wafer.

This hypothesis was suggested by measurements on MOS-capacitor

structures which were fabricated in the system. The capacitance-

bias characteristics of such structures were measured on a Boon-

ton Capacitance Bridge, Type 75-C, and indicated the presence of

a very large density of surface states.

The oxidation system was subsequently thoroughly cleaned, and

modifications made. Recent samples of MOS capacitors made in the

system have shown much better characteristics.

It was felt that it would be worthwhile to build a system for

quick, routine measurement of capacitance-bias characteristics on

wafers to aid in improving the processing steps. Figure 18 shows

the system which has been assembled for this purpose, using a

Boonton Capacitance Meter, Model 71CR. Figure 18 (a) shows the

block diagram of the system and Figure 18 (b) the slow ramp gen-

erator for applying the bias.
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VI. SUMMARY AND SUGGESTIONS FOR FURTHER WORK

The fabrication of a 16 x 16 element photodiode bipolar

transistor array in silicon and tests on individual elements of

the array have been described. A scanning system for the array

was designed and breadboarded. The spectral response of p-n

junctions was used as a technique for studying the optical absorp-

tion edge in silicon. A system for measuring C-V curves on MOS

structures has been built, to be used for evaluating the Si-SiO,,

interface produced in our system.

The immediate steps suggested by the progress made are:

1. Complete the metallization steps in the fabrication of

the array.

2. Build the scanning system, giving particular attention

to interfacing with the wafer.

3. Perform scanning tests of the array and optimize the

fabrication procedure for two kinds of applications.

a) Sensitivity

b) High speed addressing

4P Make measurements to enable characterizing heavily-doped

silicon by the spectral response of photoconduction.

5. Continue the work on silicon-Sb_S,.-metal sandwiches with

the improved cleaning techniques for the silicon surface.

The long term objectives - devising arrays using heavily

doped silicon, and heterojunctions for infrared sensing arrays,

should be made according to the success achieved in items

and (5).
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FIGURE CAPTIONS

Fig. 1. Equivalent circuit for a photodiode-bipolar transistor

image sensing array.

Fig. 2. Operation of a photodiode-bipolar transistor element.

Fig. 3» Example of an integrated circuit design for a photo-

diode transistor element.

Fig. 4. Microphotograph of beveled and stained wafer, showing

junction depths in the photodiode-transistor element.

Fig. 5. Complete drawing of one element of the photodiode-

- transistor image sensor. This pattern is slightly dif-

ferent from those of the previous figures.

Fig. 6. Microphotograph of surface of processed silicon wafer.

A Nomarski attachment was used in the microscope to

enhance the contrast.

Fig. 7. Equivalent circuit model for tests on the array.

Fig. 8. Equivalent circuit seen by the source when addressing

one element in the array.

Fig. 9« Circuit used in tests on single elements of th?array.

Fig.10. Output signals from test element. The horizontal scale

is 0.2 ^sec/division, the vertical scale is different

for different traces.

Fig.11. Block diagram of scanning system for solid state image

sensor arrays".

Fig.12. Start and clocks synchronizer for scanning system.

Fig.13. Starting timing diagram just after pressing the "scan"

switch.

Fig.lU. Timing diagram seventeen cycles after initiation of scan.
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Fig.15• Horizontal counter and D/A converter.

Fig.16. Differential video amplifier circuit.

Fig. 17. Current-volt age characteristics of a Au-Sb-S.,-silicon

sandwich, in the dark and when illuminated.

Fig.18. Block diagram of CV measuring system for MOS capacitors.

The lower diagram gives the details of the slow ramp

generator.
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FINE STRUCTURE IN THE OPTICAL ABSORPTION EDGE OF SILICON*

C. Anagnostopoulos and G» Sadasiv
Department of Electrical Engineering

University of Rhode Island
Kingston, Rhode Island 02881

Details of the structure in the indirect op-

tical absorption edge of silicon were studied by

measuring the dependence of the photocurrent in

p-n junctions on the energy of the incident pho-

tons. The measurements were made at room and

higher temperatures for photon energies 0.75 &V

< hv < 1.08 eV. The sensitivity of the method

enabled high resolution measurements in the ab-

sorption tail. At room temperature, thresholds

were found at ~ 0.91 eV, 0.99 eV and 1,026 eV.

The derivative of the response showed extensive

fine structure in this tail. The TO and LO phonon

assisted transitions to the ground and excited

state of the exciton, previously reported in the

phonon emission region, were seen here with phonon

absorption occurring around 1.05*1 eV and 1.065 eV.

There was additional structure in this region whose

origin is not known.
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I. INTRODUCTION

The optical absorption spectrum near the indirect band

gap of silicon was measured by Macfarlane, McLean, Quarring-

ton and Roberts (MMQR)» The absorption arises from indirect

allowed transitions with momentum being conserved by the emis-

sion or absorption of a phonon. The electron-hole pairs cre-

ated may either be unbound or exist as exciton.3 with binding

energy €(n), where n denotes the n n exciton level. The

theory for the spectral dependence of the absorption coef-

2ficient ex for such transitions was developed by Elliott .

A summary of the theory and an analysis of the experimental
3

results can be found in the extensive review by McLean .

The agreement between theory and experiment wast in

general, excellent, but there were a few discrepancies.

The experimentally determined value of 5»5 meV for £(l) -

€(2) led to an estimate of ~ 7 meV for the exciton Rydberg,.

whereas the value calculated from theory by McLean and Lou-

don was 1^ meV» Another discrepancy involved the absence

of any contribution from the longitudinal optical (LO) and

longitudinal acoustic (LA) phonons, although transitions

aided by these phonons are allowed. Finally, the experi-

mental results showed absorption at photon energies lower

than the minimum threshold energy for one-phonon aided

transitions. The value of of in this absorption tail was
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very small and could not be accurately determined from the

transmission technique used by MMQR.

K
Dean et al measured absorption and luminescence at

low temperatures and obtained results in substantial agree-

ment with MMQR. The higher resolution they b.ad enabled them

to see additional structure near the thresholds which they

attributed to splitting of the ground state of the exciton

by valley-orbit interactions. Recently, Shaklee and Nahory

presented results from wavelength derivative type experi-

ments which indicated that the energy separation between the

ground and first excited state of the exciton was 11.0 JH

0.2 meV, and the binding energy of the exciton was 1Z(..7 _+

0,2| meV, In addition they pointed out theoretical reasons

that preclude valley-orbit splitting of the exciton ground

state. They identified the additional structure near the

threshold for absorption of a photon with the emission of a

transverse optical (TO) phonon as due to LO phonon assisted

transitions. These results were later confirmed by Evangel-

isti et al in low temperature electroabsorption measure-

7ments . '

In this work we have investigated the dependence of the

photocurrent generated in silicon p-n junctions on the energy

of the incident photons. The ratio of the photocurrent to

light intensity was measured and corrected to give the response

R for constant photon flux. R was taken to be proportional to
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the absorption coefficient ct, which is true as long as the

incident light is weakly absorbed. This point is discussed

further in Section II. The sensitivity of the present method

arises from the fact that or is directly related to the meas-

ured photocurrentt whereas in transmission or reflection ex-

periments it is related to the small difference between two

large measured quantities* The method proved particularly

useful for measuring accurately the absorption tail. Meas-

urements were also made in the TO phonon absorption region,

i«.e» where the absorption of a photon is accompanied by the

absorption of a TO phonon*

The results can be summarized as follows:

(1) At room temperature there are three prominent

thresholds in the absorption tail. The first, which is not

too well defined, occurs at 0.91 ©V, the second at 0.99 eV

and the third at 1.026 eV. The latter two were observed by

MMQRo The first lies beyond their range of measurement,

(2) The dependence of or on the photon energy following

the latter two thresholds is not in agreement with that found

by MMQR. This is due to the fact that there are a number of

other lesser thresholds present.

(3) In the region from 1.015 eV to 1.0i|5 eV the results

are accurate enough to permit-numerical differentiation of

the data to get the derivative of the response. The deriva-

tive plots show fine structure which has not previously been

seen.



The threshold energies and temperature dependence of

tx suggest that two and three phonon processes give rise to the

absorption tail. The fine structure indicates that the phonons

participating are not just from the F point and A symmetry

direction of the Brillouin zone, but from throughout the zone*

(5) In the TO phonon absorption region our experiments

show that there is more structure in the absorption coeffi-

cient than accounted for by the theory,. Furthermore it is

evident from our data that the fine structure, in the region

following TO phonon aided transitions to the ground state of

the exciton, has been the source of disagreement in previous

determinations of €(l) - €(2), The value of €(l) - €(2) we

find is in excellent agreement with that found by Shaklee

and Nahory .

(6) Finally, participation of LO phonons in the absorp-

tion process, first recognized by them in the region of phonon

emission, is further confirmed in these experiments in the

region of phonon absorption,

II. EXPERIMENTAL DETAILS

Commercially available large area silicon p-i-n photo-

diodes and epitaxial n—on-p wafers were used. The n epi-

taxial layer was either phosphorous or arsenic doped and its

thickness was approximately 15n» The substrate was always

boron doped and its thickness was of the order of 2^0\i, The

resistivities of the epitaxial layer and the substrate were
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the same in each, sample and ranged in value between 1 and

10 ft cm for different wafers. The measurements were made

with the samples at room temperature and at higher tempera-

tures*

A tungsten lamp, chopper and a double—grating monochroma-

tor with a spectral bandwidth of 0,5 nm wore used to provide a

chopped light beam, A beam splitter was used at the exit slit

to irradiate the sample and a reference thermopile* The volt-

age developed across a load resistor connected across the

sample was measured with one lock-in amplifier and the output

from the thermopile on a second lock-in amplifier. The ratio

of the outputs from the two lock-in amplifiers was measured

with a ratiometer and recorded. This reading was multiplied

by I/A to give R the response at different wavelengths for con-

stant photon flux. The illumination level was kept low enough

that the photocurrent varied linearly with light intensity,~ R

is then proportional to the total number of electron-hole pairs

created within an effective collection region near the junction.

The reasons for taking R to be proportional to or are as

follows. In traversing a distance Z the light is attenuated

from intensity I to l(/) where l(/) = I exp (-otZ), In the

region of interest ot is less than 1 cm" , and with wafer

thickness of 250^, we have at « 1, Hence IQ - J.(l) *~ TO&£

and the light absorbed in the effective collection region is

proportional to cc, We assume the quantum efficiency to be
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indepen.dent of photon energy* This assumption is substantiated

by tbe photoconductive measurements made on germanium by Moss
o

and Hawkins » They found that in the absorption tail their

calculated absorption coefficient from photoconductive meas-
Q

urements was identical to that obtained by Macfarlane et al

from transmission measurements. In the present work the fact

that the response is proportional to the number of photons ab-

sorbed in the effective collection region and is Independent

of diode parameters was experimentally verified by shining the

light through either surface of the wafer. Despite the large

asymmetry of the junction depth relative to the sample sur-

faces, the response obtained was identical. There were five

room temperature measurements of the response in the region

from 1*015 eV to 1,045 eV, These included the p-i-n diode and

several different epitaxial wafers. All runs gave results

which were the same to within a multiplying factor.

The monochromator which was used in the experiments had

a linear wavelength scale. Where extreme accuracy was re-

quired the data points were taken by manual setting of this

scale. The derivative spectrum was obtained by taking the

difference between the responses at wavelengths separated by

1 nm» This gave AR/AA. rather than AR/Ahv , but for small

ranges of A. one ±9 proportional to the other. The value of

1 nm for AX was chosen for highest resolution consistent with

•discrimination against noise.
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A number of steps were taken to make sure of the genuine-

ness of the structure seen in the derivative plots. The cor-

rectness and linearity of the monochromator scale were checked

by measuring persistent lines and doublets in atomic spectra*.

The accuracy and reproducibility of the settings was found to

be better than 0.02 nm. Effects due to the grating and beam

splitter were eliminated by using a near-infrared transmitting

filter and polarizer in front of the entrance slit of the
t

monochromator* This was verified by repeating the experiments

with a second thermopile or a Ge photodiode in place of the

sample*, In neither case was any structure observed* The use

of several different samples has already been mentioned* Fin-

ally the samples were heated and measurements made at tempera-

tures 10 to 50 C above room temperature. Large changes in

the shape of the absorption curve are not expected for such

small temperature changes and, since the energy gap decrease's

with temperature, all genuine structure should appear dis-

placed to longer wavelengths* All structure discussed in Sec-

tion III showed this expected behavior. Incidentally, there

was no structure found that was caused by the system*

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. The Absorption Tail

The method was useful for photon energies below 1.077 eV.

•
At higher energies or and R are no longer linearly related be-

cause of the large value of Qt and the large background results



in loss of sensitivity. The only information beyond 1,077

that was obtained was the energy at which onset of transitions

to the ground state of the exciton occurred with the simul-

taneous emission of a TO phonon. This threshold gave an

easily identifiable peak in the AR/AA. versus A. curve, and oc-

curred at 1,1692 eV. The peak due to the onset of transitions

to the ground state of the exciton involving the simultaneous

absorption of a TO phonon was easily established and occurred

at l»0538eV. The average of these two energies gives the

room temperature (296 K) exciton indirect gap, i.e, the energy

gap minus the exciton binding energy, as 1.1115 +. °»5 eV, Half

of the spacing between the two peaks gives the TO phonon en- '

ergy to be 57*7 i 0,5 meV, These values are in excellent

agreement with previous results,

A semi-logarithmic plot of the response against photon

energy in the region of the absorption tail is shown in. Fig*" 1,

There is a measurable response at 0,775 e^, and it increases

by about an order of magnitude on going to 0,90 eV, Not

much can be said about the shape of the curve in this region,

as the signal was too small to be measured accurately. The

signal was Just above the noise level at the low energy end

and was determined with about 6 percent accuracy at 0,90 eV,

Towards higher energies the response rises sharply, with

clearly observable thresholds at 0,91 eV and 0,99aeV, Various

simple expressions were tried for describing the response be-

tween these two thresholds. The formula



-9-

R = 1|.9 + 1.09 x '+ 0,56 exp x (l)

with, x = 3(hv-hv ), 3 = 6? eV" , and hVQ = 0.925 eV gave a

good fit to the data in the region between 0,925 eV and 0»983

eV» According to this formula the response is an exponential,

superimposed on a background consisting of a constant and a

linear term* The data in this region at T = 331 K was fitted

b y . . .

R = 10.8 + 2.30 x + 1.20 exp x (2)

~1
where p was again 6? eV , and hv was 0.916 eV» The shift

of 9 meV in hv is in agreement with the change in the energy

gap due to the rise in temperature. The latter was measured

from the shift of the TO absorption peak and was 9 meV. It is

of interest to note that the raising of the temperature in-

creased the response by a factor of about 2.15» as is evident

from Eqs. (l) and (2).

The response between the second threshold and the TO ab-

sorption region is shown in greater detail in Fig. 2. The

top curve is data obtained at 331 K and goes with, the upper

scale; the bottom curve is the room temperature data and goes

with the lower energy scale. The top scale is shifted towards

lower energy by 9 meV relative to the bottom scale to offset

the change in energy gap with temperature} the arrow points

to the TO absorption threshold for both the room and high

temperature data. In the region from 0.99 eV to 1.05 eVt
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MMQR fitted their room temperature data with an expression of

the form

or = a(hv - 0,989)2 U (hv-0.989)
(3)

+ b(hv - 1.021)2 U (hv—1.021)

where hv is measured in eV, a and b are constants and U is

the unit step function,, This implies that the absorption

rises as the square of the energy from thresholds at 0,989 ©V

and 1»021 eV* In trying to fit such an expression to our

measurements one of the problems was to find the correct ex-

trapolation of the response at lower energies and subtract it

from the actual data* The mechanism giving rise to the absorp-

tion below 0.98 eV is not known, and there is some concern

about extrapolating an increasing exponential. For want of a

better procedure it was assumed that the same mechanism con-

tinued to operate beyond 0,98 eV, and the extrapolated value

R , was found from Eq, (l)» Fig, 3 shows the square root of

the difference between the actual and extrapolated values

against photon energy. The bottom two curves are room tempera-

ture data for two different samples, the top curve is for a

heated sample. The energy scale for the heated sample has

again been shifted by 9 meV relative to the scale for the room

temperature data. Between (a) and (b) one can draw approxi-

mate straight lines, with nearly common origin fo^ the three

curves. The threshold thus established is 0,982 eV at room

temperature, as compared to the value of 0,989 eV found by
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MMQR. There is a break in the curve at point (b). This

occurs at 1,0213 eYf and coincides with the second threshold

of Eq. (3).

To a very rough approximation, one can fit the tail in

this region according to the dependence suggested by MMQR.

The agreement, however, is not very good. There are really no

straight line portions in Fig.. 3» There is more structure in

the response than indicated by Eq» (3)o The arrows point to

places where a break is apparent in every one of the curves.

The deviations between the experimental values and the curve

calculated to give the best fit are well beyond the experi-

mental error.

The structure in the response can be seen more clearly

in the derivative plots. As explained in Section II, it was

more convenient for handling the data to choose A. as the in-

dependent variable instead of hv.

In Fig. 1|, AR/AX is plotted against decreasing wavelength

in the vicinity of the threshold at 0.99 ©V.» The top curve is

the room temperature data, and the bottom curve is the data at
;

higher temperature for the same sample. The scales are offset,

as in the previous figures, to facilitate comparison. The

similarity of these curves is evident. It is clear that not

one but two peaks are present. The photon energies correspond-

ing to these peaks are 0.989 eV and 0.99U eV for ihe room temp-

erature data, and are shifted by 9 meV towards lower energies

at higher temperature.
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Fig. 5 shows AR/AX. against decreasing wavelength in the

region from 1.22(i to 1.18̂ . The points plotted are the aver-

age of five runs with each run showing essentially the same

features, while averaging eliminated some of the noise. There

are several features with different and well defined shapesj

the photon energies corresponding to these features are noted

in the figure. It is worth noting that the step increase de-

noted by (a) occurs at 1.0256 eV, which corresponds to point

(c) of Fig. 3. Beyond (h) the derivative is dominated by the

TO phonon peak and its thermal broadening*

The mechanism giving rise to the absorption tail and the

fine structure is not known » We can rule out the effects

of the electric fields in the space-charge region, as the

diodes gave the same results with and without applied bias.

Extensive studies of luminescence spectra of pure and doped

silicon samples at low temperatures have been made by Dean

et al . The structures seen were identified with levels of

excitons bound to neutral impurities, and multiphonon pro-

12
cesses . In the present experiments the impurities are ion-

ized and the energy levels due to bound exciton-ionized im-

13purity complexes in silicon is an open question . One might

expect these to lie near the localized level for a single

carrier around the impurity. The observed energies of the

structure in the present work do not correlate well with the

known levels introduced by the impurities. In addition, the
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fact that As and P doped wafers with resistivities ranging

from 1 to 10 ft cm, and the p-i-n photodiode, gave identical

results suggests that impurity effects are negligible. Thus

although the effect of the impurities cannot be completely

disregarded our results are more in accordance with multi-

phonon effects as discussed below.

The conduction band minima in silicon occur in the [lOOJ

direction of the Brillouin zone, with the magnitude of the

wave vector being about 0,85 times the magnitude at the zone

boundary. The optical and acoustic phonons with this wave

vector are the ones involved in the one-phonon aided transi-

tions} the TO phonon has energy 57 meV and the TA phonon has

energy 18 tneV. It is possible to have two and higher order

phonon aided processes, provided the sum of the wave vectors

of the phonons is equal to the above value. As pointed out by

3
McLean , transitions are possible with the simultaneous ab-

sorption of the above TA or TO phonon and an 0 phonon (i.e., a

zero wave vector optical phonon). The energy of the 0 phonon

is 63 tneV. Two phonon aided transition thresholds would be

expected at 0.991 eV (For TO +0) and at'1.031 eV (for TA + 0)j

these agree approximately with the data of Fig. 3» The ob-

served threshold at 0.911 eV could be attributed to absorption

of three phonons (0 + 0 + TO). The temperature dependence of

the absorption in the region from 0.925 eV to 0.983 eV is in

agreement with this assumption. The probability of the simul-



taneous absorption of three phonons is given by the product

of the occupation numbers n. of each of the phonons, where

n. = [sxp (hu./kT) - l]~ and

k is Boltzmann's constant. From this the ratio of the absorp-

tion at 331 K to that at 296 K is calculated to be about 2*17

as compared to the ratio of 2*15 between Eqs. (l) and (2), Two

, ,, , . , • . , , ,11,12,1!|., 15
and three phonon structure has been previously reported 7 «

Peaks in modulation, tunnelling and luminescence experiments

were identified with combinations of TO, TA, 0 and S phonon

energies, where S is the phonon connecting different conduction

band minima* The detailed nature of the structure in our re-

sults shows that choosing phonons from only some high symmetry

points and directions is inadequate. Calculations of two

phonon effects using a wider sampling of phonons has been done

only for Raman scattering, where the sum of the momenta of the

phonons is zero. The two phonon spectra have been observed

1 f\ ' IV
both in Raman effect and electron energy loss measurements .

Calculations along these lines for the absorption edge might be

useful in analyzing the present experimental results,

B. TO Phonon Absorption Region

It was pointed out in the introduction that there is some

disagreement in the literature with regard to the fine struc-

ture in the region of TO phonon aided transitions and its
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interpretation. The data obtained in the present, measurements

in this region are shown in Fig, 6 where AR/AA has been plotted

against decreasing wavelength. The solid curve in the figure

is drawn through those features that are seen with the same

shape and relative amplitude in all the results, i.e, differ-

ent runs on different samples. At higher temperatures these

features were present, correctly shifted towards lower energies*

Following the interpretation reported by Shaklee and

Nahory ", we identify the peaks at (a) and (b) as the thresh-

olds for transitions to the ground state of the exciton with

the absorption of a TO and an LO phonon respectively. The

peaks (d) and (e) correspond to the TO and LO phonon aided

transition to the first excited level of the exciton* The

energy separation between the ground and first excited level

of the exciton is found to be 11.9 i 0,5 meV. The energy of

the LO phonon is calculated to be 55»9 ̂  0.5 meV, The values

for the phonon energies and exciton levels obtained are in ex-

cellent agreement with the values found by Shaklee and Nahory

in the phonon emission region.

But there is a discrepancy between theory and experiment.

2
From the theory it would be expected that the derivative of

or would have a -y power dependence on the energy from the

threshold at (a) to about 12 meV away} and a \ power de-

pendence on the energy from a threshold 11^ meV away from (a).

Clearly this is not what happens* Instead at (c)̂  about 6.J*

meV away from (a), there is a step increase in the derivative
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and, neglecting the fine structure, there is an almost linear

increase commencing about 10 meV away from (a). This behavior

is in good qualitative agreement with the results of MMQR*

They interpreted a step-like increase 5»5* meV away from the TO

phonon peak as the onset of TO phonon aided transitions to the

first excited state of the exciton, and the almost linear in-

crease in the derivative commencing about 10 meV away from

the TO peak as due to band transitions. Dean et al found a

step increase about 7»5 tneV from the TO peak with band transi-

tions commencing about 2u 5 meV after the step. They also in-

terpreted the step increase as the onset of TO phonon aided

transitions to the first excited state of the exciton. In

Fig. 2. presented by Shaklee and Nahory the derivative in the

region of TO phonon emission shows a definite increase, though

not step-like, commencing about 7 meV away from the TO peak.

It is clear from their figure and Fig. 6 of the present work

that the increase is not due to background contributions. Fin-

7ally, in electroabsorption spectra of Si a broad negative valley

was observed following the TO peak corresponding to transitions

to the ground state of the exciton.

Shaklee and NahoryTs interpretation of the fine structure

is probably the correct one, as it leads to good agreement be-

tween the experimental and theoretical values of the exciton

levels, and gives the right energies for the peaks in Fig. 6.
•

There are some features in Fig. 6 which do not correspond to
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any peaks noted by Shaklee and Nahory. Some of these, like

the structure near (f), could be due to multiphonon effects.

These effects would be more prominent in the present measure-

ments which were done at elevated temperatures and in the

phonon absorption region. Howevert the increase in the

derivative 7 meV away from the TO peak cannot be due to two

phonon effects or impurity effects. If it were it would ap-

pear symmetrically placed with respect to the exciton indirect

gap» But, as has been pointed out, it has been observed on

the high energy side of the TO peak in all the experiments,

at low and high temperatures, and both in the phonon emission

and phonon absorption regions. It thus appears to be related

to the TO peak, and consequently to the exciton, but at the

moment there is no explanation for it. It is of interest to

note that in transmission type experiments with GaP a crystal

whose band structure is very similar to Si, anomalous fine

structure was also observed for some of the phonon-assisted

transitions .
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FIGURE CAPTIONS

Figure 1 - The photoresponse of silicon p-n junctions in the

absorption tail. For reference the arrow points

to the TO phonon absorption threshold.

Figure 2 — Expanded plot of response versus photon energy in

the region from 0.96 to 1»06 eV» The upper curve

has been shifted by 9 meV towards lower energies

to offset the decrease in energy gap with temp-

- erature.

Figure 3 - Square root of the difference between the actual

photoresponse and the extrapolated low energy

response from Eq, (l)» plotted against photon

energy. The bottom curves are for different

samples at room temperature. The top curve is

for a sample at higher temperature, and has been

shifted by 9 meV to facilitate comparison with the-

lower curves. The arrows point to structures seen

in all the curves*.

Figure 4 - AR/A\ against decreasing wavelength near the threshold

at 0.990 eV (1.250̂ 1). The bottom curve has been

shifted by 9 meV towards lower energies. The peaks

for the top curve occur at ~ 0.989 eV and ~ 0.994
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Figure 5 - AR/AA. showing fine structure in the absorption tail*

The points are experimental values, the line is drawn

through features seen consistently in all runs* The

photon energies corresponding to the arrows are shown

in the figure»

Figure 6 - The derivative of photocurrent with respect to

wavelength for a silicon p-n junction, plotted

against decreasing A., The points are measured

values of AR/AA., the line is drawn through the

features seen consistently in all runs* The

peaks denoted by long arrows correspond to fea-

tures seen by previous investigators. The photon

energies in eV corresponding to the position of

the arrows is shown in the figure.
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