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ABSTRACT

Electrostatically accelerated microparticles are used to perform
simulated micrometeoroid impact cratering experiments in oligoclase.
Impact craters were obtained using iron, lanthanum hexaboride, and
silicon as the projectile materials. Each particle material was impacted
at normal incidence and at 30° and 60° oblique angles. Tabular data for
all impacts are presented and central crater pit diameter normalized to
particle diameter and the total spall diameter normalized to particle
diameter are plotted vs impact velocity for nine particle/angle com-
binations and three crystal orientations. Impact crater characteristics
are photodocumented as a function of impact velocity for the nine
particle/angle combinations and three crystal orientations in oligoclase
and at fixed impact velocity for six other minerals.
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1.0 INTRODUCTION

Since the first Apollo team returned from the moon with lunar
samples, investigators have been reporting the existence of numerous
impact microcraters in the surfaces of the rocks and spherules which had
been exposed to the lunar surface environment. The objective of this
program has been to act as a supporting study and to provide additional
information regarding cratering characteristics in lunar-like materials
to that already existing in the field. Hopefully, the information
obtained would aid investigators in their analyses of microcraters found
in the lunar samples. Specifically, the goal was to perform a detailed
set of controlled laboratory experiments in earth-type minerals with pro-
perties similar in nature to those found on the moon. The goal of such
experiments is to generate a "catalog" of impact crater photographs
arranged so as to convey as much information as possible regarding the
relationship between observed crater details and the parameters of the
target and impacting particle.

Toward this end, impact experiments have been conducted utiliz-
ing iron, lanthanum hexaboride, and silicon as the impacting particle
materials. For the target material, a piece of oligoclase single crystal
was selected as being a closely representative mineral. Impacts were
obtained at three different angles of impact for each of the three
different particle materials. In addition, craters were obtained at
fixed impact velocity in six other common minerals using iron particles.
Impacts were also obtained at three different crystal orientations for
silicon particle impacts on an oligoclase target.

A description of the accelerator facility and the experimental
arrangements used is given to provide a foundation for the data to be
presented. This is followed by a comprehensive accounting of the numeri-
cal data obtained and such relationships as was found to exist. The final
data presented is a rather large collection of scanning electron micro-
scope crater photographs including a group for each set of conditions
studied.
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2.0 DESCRIPTION OF THE MICROPARTICLE FACILITY

2.1 The Van de Graaff Accelerator and Associated Apparatus

Before presenting the cratering data obtained during the course
of the subject program, a description of the experimental facility is
given in order to acquaint the reader with the electrostatic techniques
employed to generate high velocity microparticles. This description
should also serve to illustrate the advantages of electrostatically
accelerated particles and also the limitations imposed upon the experi-
menter by their use.

One of the two experimental arrangements used is shown in the
block diagram of Figure 2-1. The source of microparticles in this
arrangement is a two million volt Van de Graaff generator, shown as a
block at the left of the figure, in which the high voltage terminal has
been modified to accept microparticle charging and injection equipment].
Particle charging is accomplished by electrically agitating a supply of
the microparticles thereby causing some to come into contact with a
small tungsten electrode held at a high positive potential. Contact
with the electrode causes the particle to rebound with a high positive
charge and surface electric field strength of about 109 volts per meter.
The rebounding particle then enters the accelerator tube of the Van de
Graaff where it is accelerated by the positive potential of the Van de
Graaff terminal.

The final velocity obtained as the particles exit the Van de
Graaff is dependent upon the total accelerating potential, the material
used, and the geometry of the particular particle. The upper velocity
limit is dependent upon the electronics used since it is generally
detection limited by signal-to-noise considerations. For most metallic
materials, or materials having volume resistivities less than about 107
ohm-centimeters, the size range 0.1 to 5.0 microns can be accelerated to

final velocities in the range from 1 to 50 km/s. The final velocity is
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inversely proportional to particle size with the higher velocities being
obtained only with the smaller particles. Particle injection may be con-
trolled over a wide range of output particle flux. At the lower limits
it can be made essentially a single shot device while at the upper Timits
the output particle flux can be raised to several hundred per second.

Particles exiting from the accelerator first pass through a
magnet assembly where ions, which may have been produced by the charging
process, are removed. A particle position detector2 then provides a
means for locating the particle "beam" axis in order to align the system.
(This detector will be described in more detail later.) The particles
next pass through two detectors, spaced apart a carefully measured dis-
tance, and the transit time over this distance is measured. The time
separation of the two detector signals is analyzed by a TRW Systems
Model 3212 PV2 Time Interval Selector and Dual Proportional Delay

Generator3.

This unit provides two functions: first, it provides an output
pulse to a particle deflector when the measured transit time falls within
the bounds of some predetermined time interval. Normally, with no signal
applied to the input of the particle deflector high voltage electronics,
all particles are deflected by a bias voltage on a pair of parallel
deflector plates and are not allowed to continue downstream toward the
experimental area. A signal from the Time Interval Selector removes the
bias voltage for a time just sufficient to allow the selected particle
to pass. This first deflector pulse, which removes the bias voltage on
deflector assembly #1, would normally occur when the particle is detected
at the second timing station approximately at the position labeled X],
in Figure 2-1. Second, the Time Interval Selector contains proportional
delay generators which produce two trigger pulses at adjustable multiples
of the actual measured transit time. By proper adjustment of the multi-
plication factors, these pulses can be made to appear when the selected
particle is at two arbitrarily selected points downstream, independent of
particle velocity.
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The first of these pulses is used to remove the bias voltage on
deflector assembly #2 which would occur when the selected particle is at
position X2. (The reason for a second deflector system is to prevent
high velocity particles from "leaking" through the selector system when
it is set for lower velocities. With the two deflector arrangement, a
fast particle can quickly pass through the first deflector while it is
open for a slower (longer transit time) particle. However, the faster
particle will find the second deflector still closed and will therefore
be def]eéted out of the experimental area.) As in the case of deflector
#1, the pulse remains on deflector #2 for a time just sufficient to allow
the selected particle to pass. The second proportionally delayed pulse
is used to trigger an oscilloscope and/or recording equipment so that the
parameters of the selected particle are recorded as it passes through
a sensitive particle detector4. This trigger pulse is generated as the
selected particle passes the point X3 just prior to entering the particle
detector and target area.

The foregoing paragraph has indicated the sequence of events
when particle velocity (transit time) is the only parameter being selected.
Provisions also exist to allow simultaneous selection, within certain
bounds, of the electrical charge on the particle. The selection of both
velocity and charge is equivalent to mass selection. The mass-velocity
characteristic of the electrostatic accelerator is governed by the con-
servation of energy equation 1/2 m v2 = q Va’ where m is the mass of the
particle, v is the particle velocity, and Va is the accelerating voltage.
From this, m=2 g Va/vz. Therefore, if both q and v are constrained
to lie within some predetermined limits, then m must also 1ie within

some specified range.

When both charge and velocity selection is employed, the three
output pulses from the Time Interval Selector are inhibited by control
gates under control of a coincidence gate unless the particle charge lies
within the preselected limits. If the selected charge is found to exist
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at the time a particle passes position X], the charge selector puts out
an output pulse. If the Time Interval Selector has found that the same
particle meets the transit time requirements then it begins its sequence
of three output pulses. The first pulse occurs at the time the particle
is at position X] and will therefore be in coincidence with the output
pulse from the charge selector. The coincidence gate will then fire
thereby activating the control gates for the Time Interval Selector out-
put pulses. These three pulses then pass through and perform the pre-
viously described functions. The net effect of the system is a particle
beam at the area of the target chamber having closely controlled mass
and velocity limits.

2.2 The Linear Accelerator

A TRW-developed linear accelerator (linac) has been used for
most of the data which will be presented 1ater5’6. The advantage of the
linac over the Van de Graaff accelerator is that a substantial increase
in mass is realized from the additional acceleration voltage.

Figure 2-2 is a block diagram of the linac and its associated
components. A particle exiting from the Van de Graaff accelerator
passes first through the first and second detectors shown in the figure
which comprise a time-of-flight range. The transit time of the particle
is analyzed by a velocity (transit time) discriminator. If the detected
charge signals have the preselected time separation they are allowed to
pass through to the frequency generating system. This system converts
the transit time information of the selected particle to a switching
frequency to be applied to the drift tube structure of the linac. The
output signals from the frequency generator are conditioned by several
sets of electronics and are finally applied to the bus bars of the drift
tube assembly as shown in the figure. Before acceleration begins, the
entire structure is at ground potential. A delaying function in the .
frequency generator causes the first pulse to appear on the bus bars at
the time the selected particle is in the central region of the first
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drift tube. As the particle emerges. from the first tdbe it experiences

an accelerating electric field.due to the 100 kV potential existing
between tubes 1 and 2 for the case illustrated in the figure. The
switching frequency has been chosen so that the polarity of the potentials
on the two rails will reverse when the particle is in the center of the
second tube. This process then continues until the particle has traversed
a total of 92 gaps. The total accelerating voltage is then the initial
injection voltage of the Van de Graaff plus that obtained in traversing
the 92 gaps of the linac.

When the linac is employed for high velocity impacts, the target
chamber and the firal position detector preceding the target chamber are
removed from their position shown in Figure 2-1 and placed to the right
of the diagram in Figure 2-2. The particle beam exiting from the selec-
tion apparatus previously described is then allowed to enter directly
into the linac timing electronics. After the particle has undergone
acceleration, a convenient timing signal (not shown in the figure) is
provided by the frequency generating system which signals the time at
which the particle will exit the linac and enter the final detector and
target chamber.

Although the linac has a design goal of 10.8 million volts as
the net accelerating voltage, it was limited for the purposes of this
program to a net of approximately 6.0 million volts. Prior to its use
on this program, the linac had sustained considerably damage to its inter-
nal drift tube structure due to high voltage arcing. A complete dismant-
ling of the drift tube structure and polishing of all drift tubes was
necessitated before the machine could be restored to service. This
operation although not difficult is nevertheless time consuming. As a
result, the linac was operated cautiously at a moderate voltage level so
as not to risk a further delay which prolonged high voltage arcing might
necessitate.
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The penalty for the lower operating voltage was slightly less
than a factor of 2 in particle radius at any given velocity. It can be
shown that for constant surface field strength (a reasonable approximation
for the contact charging method used) the particle radius varies directly
as the accelerating voltage at any fixed velocity. Therefore, if the
machine could have been operated at full potential the particle radius
would have been larger by the ratio of 10.8/6.0. It was felt that the
gain in particle size did not warrant the risk of possible further delays.
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3.0 EXPERIMENTAL PROCEDURE

3.1 The Target Chamber

Since the program required a large number of impacts at both
normal and oblique incidence, a target chamber was used which would per-
mit a change in impact targets as well as a change in the angle of impact
while the target remained under vacuum.

Figure 3-1 illustrates the target chamber preceded by the final
particle position detector. The chamber consists of an approximately
four inch diameter pipe with ports mounted at right angles to the center-
line through which the particles could pass. End flanges on the pipe
provide support for an axially mounted rod which passes through O-ring
seals in both end flanges. The center section of the rod was replaced
by a mounting block machined with a flat surface sufficiently far off the
axis of the rod so that a target could be mounted thereon and have its
top surface lie on the centerline of the support rods. When mounted in
this manner, the target can be rotated for oblique impacts without chang-
ing the impact point of the particle beam centerline. An angular index
head (not shown) was affixed to the flange in the lower part of Figure 3-1
so that the angle of impact could be precisely determined.

A change in position upon the target surface or a complete change
in targets could be accomplished by axially sliding the rod. The external
portion of the rod in the lower part of the figure was scribed with posi-
tion indexes. Corresponding index marks upon the flat mounting surface
of the target holder permitted correlation of impact points upon the tar-
get surface with the external index marks. The impact position could
then be read easily from outside while changing the impact site.
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3.2 Identification of Impact Craters

Correlation of individual impact craters with the impacting
particle and measurement of the particle parameters just prior to
impact is accomplished by use of the particle position detector shown
in Figure 3-1. This detector is located in close proximity to the impact
target surface,

As can be seen from the figure, a particle traversing the detec-
tor from left to right first passes through two tubes, the first of which
is grounded and the second which is electrically connected to the input
of a sensitive preamplifier. The particle then traverses a set of
parallel plates one of which is grounded while the second is connected to
the amplifier input. This set of parallel plates is followed by a second
set of plates mounted orthogonal to the first set and connected in the
same manner. The particle then passes through a third tube which is con-
nected to the amplifier input and finally out through a fourth tube which
is gkounded.

While the charged particle is traversing one of the tubes essen-
tially all the particle charge is induced on that tube. When traversing
a set of plates the induced charge is determined by the proximity to a
given plate. When the particle passes near the surface of the active
plate essentially all the charge is induced on the active member and
virtually zero on the grounded member. When it passes near the grounded
member the converse is true. Therefore, the geometry shown forms a detec-
tor which is capable of indicating the relative coordinates of a particle
which traverses its length. A typical oscilloscope waveform is shown in
Figure 3-1b. Passage of the particle through the detector guarantees
impact upon the target surface.

The transit time through the detector provides a means of
determining the impact velocity while the magnitude of the charge signal
determines the total particle charge. Hence, the mass of the particle

12
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may be calculated from a knowledge of the velocity, charge, and accele-
rating voltage. Since the parfic]e material is generally known, and
therefore the material density, an apparent radius may also be calculated.
This calculated radius is quite accurate for spherical particles, but
subject to considerable error for irregularly shaped particles as will

be shown later. '

3.3 Data Acquisition Procedures

Two different approaches were used to obtain the cratering
data. The first approach was on a statistical basis. For these experi-
ments the Van de Graaff accelerator was utilized which has a relatively
high flux (several per minute) throughout most of the velocity range of
interest. The particle parameter selection equipment previously des-
cribed was then used to limit the particles striking the target. The
boundary 1imits used were typically + 5 percent on impact velocity, and
+ 10 percent on particle charge which is equivalent to £ 20 percent on
particle mass.

Typically, several hundred particles having closely controlled
parameters would be allowed to impact in a selected target area. Such
a large number of craters located in a small area (5 mi]]imeter52 or less)
are relatively easy to find. Crater parameters are then obtained by
selecting several craters arbitrarily and measuring these to obtain
average characteristics. Likewise, a large number of the impacting
particles may be measured during the bombardment phase to obtain average
particle characteristics. '

Most of the data to be presented were obtained using the linear
accelerator which provides about a factor of four increase in particle
diameter over that obtaiped from the Van de Graaff at any given velocity.
The linear accelerator is a single shot device with a maximum repetition
rate of about one per minute. Since a large number of craters would be

13
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necessary for the statistical approach requiring long accelerator running
times, it was felt that less time would be required if each individual
crater was correlated with the particular impacting particle which formed
it. This technique uses more search time in locating each crater, but is
more than offset by the savings made in accelerator running time. 1In
addition, the exact parameters of the particle and resulting crater would
be known.

Typically, the procedure was to impact about three particles
into each‘one-quarter inch square site on the target. The coordinate or
position information available from the oscilloscope trace of the final
particle position detector was then used to correlate the craters found
with the impacting particles. Although the particle beam diameter is
one-quarter inch where it strikes the target, the approximate position
of the crater can be located within about a one millimeter diémeter area
by using the information obtained from the particle position detector.

A11 craters formed from particles accelerated by the linac were
located by use of an optical microscope and the approximate coordinates
obtained from the particle position detector signal. After all impacts
were correlated with the corresponding particle detector signal, the
craters so located were subsequently marked with small droplets of RTV
silicon rubber. When marked in this manner, the approximate location of
each crater could be easily found by the Scanning Electron Microscope
(SEM) microscopist.

3.4 The Target Material

Except for a few craters in each of several miscellaneous
minerals to be described later, all data were obtained using targets cut
from a piece of oligoclase single crystal originally measuring about
2.5 x 3 x9 cm. This sampie was No. MLQ-10-67 from Muskwa Lake, Ontario,

Canada and was supplied for use on the subject program by Dr. E. C. T. Chao

of the U. S. Geological Survey.

14
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The oligoclase sample was first encapsulated in epoxy in order
to provide strength for the thin target specimens which would be sliced
from the crystal. A total of seven slices having a thickness of approxi-
mately 2.5 millimeters were cut from the sample with the cut running
parallel to the (010) face. This face was clearly shown on the sample by
the trace of the composition plane of the albite twinning. Five of these
seven tragets were used for data appearing later in this report and have
been given the code designation of 52, S3, S4, S5, and S6. These five
targets then have impact surfaces which are parallel to (010).

In order to vary crystal orientation, two other target specimens
were cut from the sample. The first of these with the code designation
S10 was cut parallel to the prominent cleavage face (001). The second
was cut from the sample at approximately 45° to both (010) and (001) and
parallel to the line of intersection of (010) and (001). This target has
been given the designation S9.

These specimens were then metallurgically polished through
several steps with the final step using 0.05 micron abrasive compound.
In order to facilitate identification of target impact sites for the bom-
bardment phase and for the photographic phase, the polished surface of
each specimen was ruled with lines at one-quarter inch intervals with a
diamond scribe to form one-quarter inch square impact sites. Generally,
20 impact sites were obtained in this manner on each of the previously
described targets. For ease of identification, each of the squares
obtained were numbered by scribing the surface. With each target marked
in this manner, it is relatively easy for the microscopist to determine
his viewing position upon the surface, or conversely, to locate a parti-
cular crater upon the surface when given the site number and relative
coordinates within the site.

15
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Our first attempt at crater Tocation using an optical microscope
was only partially successful. It was found that the oligoclase is semi-
transparent in thin sections and is filled with numerous color centers
which hampered location of the damage site created by an impacting particle.
At high magnification (100x to 500x) the surface was difficult to find
even where a rough texture existed. As a result, craters on the first
impact specimen could only be found where a large amount of surface
damage resulted from the impact. This occurs only at relatively low velo-
cities where large particles are available.

To circumvent this difficulty, the target surface was coated
with a 100 to 125 A film of aluminum by using vacuum deposition. At
this thickness, aluminum films transmit only about 10 percent of the inci-
dent light at a wavelength of 5000 37. By bottom lighting the sample,
any break in the film could be detected with relative ease and yet the
film was still sufficiently thin to allow the underlying mineral struc-
ture to be viewed if desired. It is felt that the 125 K film of aluminum
does not materially change the cratering characteristics of the impacting
particles since this thickness represents only about 5 percent of the
diameter of the smallest particle observed in the reported data.

In addition to the oligoclase, six other minerals were bombarded
during the course of the program. Targets were cut from the minerals
without regard to crystal orientation and were metallurgically polished
by the same procedures used for the oligoclase targets. The exception
to this was biotite mica which was cleaved along a cleavage plane in
order to obtain a smooth surface for impact. Since the targets would be
bombarded with a large number of particles in a small area and the
craters could therefore be easily found, the aluminum coating was not
required and was therefore not used.

The minerals used and their sources were as follows: Biotite
Mica from Silver Crater, Haliburton County , Ontario, Canada; Diopside
from Yates Mine near Otter Lake, Quebec, Canada; Hedenbergite from

16
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Yerington, Nevada; Ilmenite from near St. Urbain, Quebec, Canada; Monti-
cellite from Crestmore Quarry near Riverside, California; and Orthoclase--
source unknown.

3.5 Particle Materials

The particle materials used to obtain the reported data were
iron, lanthanum hexaboride (LaBG), and silicon. SEM photographs of these
three materials are shown in Figure 3-2.

Figure 3-2a shows the iron particles with index marks spaced at
2 microns separation. This material is commonly referred to as carbonyl
iron powder obtained from General Aniline and Film Corporation. The
manufacturers specifications are 98% iron (minimum), 0.8% carbon (maximum),
and 1.2% oxygen and nitrogen (maximum). The material density is assumed |
to be that of pure iron, 7.8 gm/cm3. These particles are formed by
depositing iron from a vapor state, and hence form quite spherical
particles which are particularly well suited for electrostatic acceleration.

Figure 3-2b is an SEM photograph of the silicon powder which was
used. The spacing of the index marks is 5 microns. This material was
obtained from Cerac, Incorporated of Butler, Wisconsin. The manufacture
of the particles is a proprietary process of Cerac, but apparently involves
some form of grinding procedure since the particles can be seen to be
quite irregular in shape. An irregular shape factor is unfortunate for
cratering studies since the geometry of the impacting particle is never
known very well. The material density is assumed, for apparent radius
calculations, to be that of pure silicon, 2.33 gm/cm3.

Figure 3-2c is an SEM photograph of the lanthanum hexaboride
particles. Index marks are shown at 5 microns separation, This material
was also obtained from Cerac and is similar in shape to the silicon.

The density of the particle material is assumed to be 2.61 gm/cm3 for
apparent radius calculations.
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FIGURE 3-2.

SEM Photographs of Iron, Silicon, and
Lanthanum Hexaboride Particles. Spherical
iron particles are shown in (a) with

index marks at 2 micron separation.
Silicon particles are shown in (b) and
lanthanum hexaboride in (c) with index
marks at 5 microns separation



4.0 EXPERIMENTAL RESULTS

4.1 Quantitative Data on Cratering Parameters

4.1.1 Iron Particle Impacts on Oligoclase and Miscellaneous Minerals

4.1.1.1 Normal Impacts on Oligoclase

In order to convey as much of the program results as possible to
the interested reader, all numerical cratering data and associated
particle parameters have been tabulated in addition to certain graphical
presentations to follow. These are presented below.

The data obtained for normal impacts of iron particles on oligo-
clase are presented in Tables 1 and 2. Table 1 contains data from indi-
vidually correlated particle and crater combinations while that in Table 2
is the result of a statistical approach where average characteristics at
a fixed velocity are found. Table 2 will be included in the next section
along with data from several other mineral specimens having the same
particle impact parameters.

The data in each table begins with a crater designation which is
a code number identifying the particular crater being measured. For
example, the first line in Table 1 is for crater number $4-13-C. The
number states that this is crater C in site number 13 located on Target S4.
The crater designation numbers have been included so that numerical data
may be readily found for each of the many crater photographs found later
in this report.

Table 1 contains data for normal impact of iron particles on
oligoclase where each crater has been correlated with the particle which
formed it. In this case, individually calculated values are obtained for
the velocity, mass and radius of the impacting particle. The data are
listed in the order of increasing velocity.
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Since the crater pit and spall area are not generally circular,
a minimum and a maximum diameter are listed for each. The minimum and
maximum diameters for the central pit and the spall area were normalized
to the calculated diameter of the impacting particle and are listed in
the rightmost four columns of the table.

A general characteristic of electrostatic particle accelerators
may be seen in this and other tables to follow which is that mass and
radius decrease with increasing particle velocity. Note also in the
column of normalized dimensions for Ds/d that observable spallation ceases
for the impacts tabulated around 7 km/s and that only cracks are observed
at higher velocities.

The data in Table 1 are presented graphically in Figure 4-1.
The figure is a plot of crater diameter normalized to particle diameter
vs particle velocity. The triangular data points are the data from
Table 1. The light triangles nearer the bottom of the figure are for the
normalized central pit diameter (Dp/d) while the darker triangles nearer
the top of the figure are for the normalized spall diameter (Ds/d). In
each case, a maximum and a minimum value have been plotted and connected
with a vertical bar. The circular data points are for average normalized
pit and spall diameter from 6 impacts in oligoclase at 3.06 km/s. These
data will be presented in Table 2 but are included on this graph since
the data are for normal impacts of iron particles on oligoclase. The
average mass of a particle in this set is 2.24 x 10']4 kgm which is about
1/10 the mass of the particle in Table 1 at 3.08 km/s. Since a slightly
smaller Dp/d and Ds/d ratio are obtained a possible size effect is indicated.

Impacts which produced cracks without spallation have been so
indicated by a circle with enclosed dot appearing at the appropriate
velocity near the bottom of the figure. Likewise, craters without spal-
lation or visible cracks are indicated by a small square placed at the
impact velocity.
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4.1.1.2 Normal Impacts on Miscellaneous Minerals

Several different minerals including oligoclase were bombarded
with particles having closely controlled parameters in order to obtain
average characteristics at a fixed mass and velocity. The particle
selection and data acquisition procedures were previously described in
Sections 2.1 and 3.3.

A total of seven different minerals were impacted with particles
at about 3 km/s. These target materials and their source were described
in Section 3.4. In each case, the selected impact site was bombarded
with approximately 500 particles. Particle transit time and charge were
recorded on 15 tc 20 particles out of each set of about 500. The particles
recorded were photographed at arbitrary intervals throughout the bombard-
ment phase on each of the seven minerals. In this manner, a total of
125 particle detector waveforms were recorded each of which provided
sufficient information to calculate the mass and ve]ocity of the particu-
lar particle photographed. These recorded data were assumed to represent
a good statistical sampling of the impacting particles for the seven
mineral samples.

The calculated average velocity for the 125 events is 3.06 *
.11 km/s where the error shown is * one standard deviation. The maximum
recorded velocity for the set was 3.45 km/s and the lowest recorded
velocity was 2.83 km/s. The calculated average mass for the set is
(2.24 + .24) x 10714 kg. The maximum calculated mass was 2.83 x 1074 kg
while the lowest was 1.59 x 10']4 kg. The calculated average radius for
the particles is 0.88 = .03 microns. The highest calculated radius was

-14

0.936 microns and the lowest was 0.786 microns. The error limits given
on mass and radius are also * one standard deviation.

Table 2 contains the data for normal impacts of iron particles on
oligoclase. Six craters were photographed and measured. The columnar
data are in the same format as that used for Table 1 with the exception
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that average values are listed for each. Tables 3, 4, 5, and 6 contain
similar data for normal impacts of iron particles on diopside, biotite
mica, hedenbergite, ilmenite, monticellite, and orthoclase. In each
case average values are listed for Dp, Ds, Dp/d, and Ds/d. Table 6A
summarizes the average values found for each of the seven minerals bom-
barded. For each mineral, the published values for specific gravity and
hardness are shown.8 The hardness values are for Moh's scale.

4.1.1.3 O0blique Impacts on Oligoclase

The data acquired for 30° to normal oblique impacts of iron
particles on oligoclase are presented in Tables 7 and 8. The first
table is the data collected at 3.06 km/s. The impacting particles in
this group have the same parameters as those used for the bombardment of
the miscellaneous minerals listed above. As before, six craters were
photographed and measured to obtain the values shown for the central pit
and spall data. Again, average value for each column is shown near the
bottom. Since oblique impacts result in elongated craters, the measured
Qalues of the central pit diameter and the spall diameter have been made
along the direction of impact (length) and perpendicular to the direction
of impact (width).

Table 8 contains data for 30° to normal oblique impacts where
each individual crater was correlated with the particle which formed it.
The data are arranged in ascending order of impact velocity and extends
from 2.45 to 27.9 km/s.

The values for Dp/d and Ds/d in Tables 7 and 8 are presented
graphically in Figure 4-2 plotted vs particte impact velocity in the
same manner as was done for the normal impacts of Figure 4-1. Note that
all impacts obtained produced spallation at 30° to normal while the nor-
mal impacts obtained above 7.5 km/s produced no spallation. The triangu-
lar data points are the data from Table 8 while the circular data points
are the data from Table 7.
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TABLE 8
DATA FOR 30° OBLIQUE IMPACTS OF IRON PARTICLES ON OLIGOCLASE

NORMALIZED DIMENSIONS
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CRATER DIMENSIONS
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ia
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i
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10~
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CRATER DIAMETER/ PARTICLE DIAMETER
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FIGURE 4-2. -Ckater'Diameter/PartQCIé Diamefer vs Particle Velocity

for 30° to-Normal Impacts of Iron Particles on Oligoclase.
Normalized central pit diameter (Dy/d) is plotted in the
lower part of figure while normalized spall diameter (Dg/d)
is plotted in the upper part of figure.
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Tables 9 and 10 show the data obtained for 60° oblique impacts
of iron particles on oligoclase. Table 9 shows the average data obtained
for six measured craters at 3.06 km/s using the statistical approach
previously described. The data in Table 10 are for craters which were
individually correlated with the impacting particle which formed it.

The table is arranged in ascending order of impact velocity as before.

The values for Dp/d and DS/d in Tables 9 and 10 are presented
graphically in Figure 4-3 in the same manner as was done for Figure 4-2.
The triangular data points represent the data in Table 10 while the cir-
cular ones represent the data in Table 9. Note that spallation occurs
for all impact velocities on this graph.

4.1.2 Lanthanum Hexaboride Particle Impacts on Oligoclase

A11 lanthanum hexaboride particle impacts were obtained using
the linear accelerator and a single shot approach. Each measured crater
listed in Tables 11 and 12 has been individually correlated with the
particle which produced it. The format of the data is the same as that
used for the previously described iron particle impacts.

Table 11 is the data for normal impacts. The data are arranged
in ascending order of impact velocity and extend from 1.46 to 22.9 km/s.
The values found for Dp/d and Ds/d have been plotted vs particle impact
velocity in Figure 4-4. As before the light triangles are for values of
Dp/d while the dark triangles are for values of DS/d. Impacts which did
not produce observable spallation are so indicated by a small square
located at the appropriate velocity. Note that a large number of these
low density particles did not produce spal]dtion.

The data for oblique impacts of lanthanum hexaboride particles
are contained in Table 12. Only a limited number of oblique impacts
were obtained due to an equipment failure in the particle accelerator
facility. Time and budgetary limitations did not permit the bombardment
phase with LaB6 particles to be extended once the facility had been
restored to an operational status.
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CRATER DIAMETER/ PARTICLE DIAMETER

FIGURE 4-3.
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Crater Diameter/Particle Diameter vs Particle Velocity

for 60° to Normal Impacts of Iron Particles on Oligoclase.
Normalized central pit diameter (Dp/d) is plotted in the
lower part of figure while normalized spall diameter (Dg/d)
is plotted in the upper part of figure.
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CRAITEK DIAMLEIER/PARKITICLE DIAMETER
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FIGURE 4-4. Crater Diameter/Particle Diameter vs Particle Velocity
for Normal Impact of Lanthanum Hexaboride Partices on
Oligoclase. Normalized central pit diameter (D?/d) is

plotted in the lower part of figure while norma

ized

spall diameter (Dg/d) is plotted in the upper part of

figure.
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The data in Table 12 for both 30° and 60° oblique impacts are
presented graphically in Figure 4-5. Again Dp/d and Ds/d have been plotted
vs particle impact velocity. Note, as for the normal impacts of LaB6,
that a considerable number of the impacts failed to produce observable
spallation.

4.1.3 Silicon Particle Impacts on Oligoclase

4.1.3.1 Normal Impacts at Different Crystal Orientations

The data contained in Table 13 are for normal impacts of silicon
particles on oligoclase with the target surface parallel to the (010)
plane as for all previous oligoclase targets. These data extend from
2.40 to 22.4 km/s and are arranged in ascending order of impact velocity
as before. The data of Table 13 are shown graphically in Figure 4-6 in
the same manner as done previously. The values for Dp/d and Ds/d are
seen to differ only slightly from those obtained for normal impacts of
lanthanum hexaboride which is not surprising since the dehsity of the
two materials also differs only slightly.

Table 14 also contains data for normal impact of silicon
particles; however, here the target surface has been cut at 45° to both
the (010) and (001) planes. Figure 4-7 is a graphical presentation of
these data. Note that, although the normalized central pit diameter
(Dp/d) is essentially the same as in Figure 4-6, the normalized spall
diameter Ds/d is noticeably larger for this target.

Table 15 contains data for normal impact of silicon particles
on a surface parallel to the (001) plane. Figure 4-8 is a plot of Dp/d
and Ds/d for these data. The values of Ds/d are slightly less than those
obtained for either of the other two crystal orientations (Figures 4-6,
and 4-7).
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CRATER DIAMETER/PARTICLE DIAMETER
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FIGURE 4-7. Crater Diameter/Particle Diameter vs Particle Velocity
for Normal Impact of Silicon Particles on Oligoclase,
Target Surface at 45° to (010) and (001). Normalized
central pit diameter (D_/d) is plotted in the lower part
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4.1.3.2 Oblique Impacts

The data for 30° to normal oblique impacts of silicon particles
on oligoclase are shown in Table 16. These data extend from 2.31 to
20.6 km/s and are arranged in ascending order of impact velocity. The
target surface is parallel to (010) as is true for Table 17 which follows
and all other oligoclase targets except two presented in Section 4.1.3.1.
‘The data of Table 16 are presented graphically in Figure 4-9 in the same
manner as was done previously. The values of Dp/d and Ds/d are seen to
be substantially the same as those found for normal impacts shown in
Figure 4-6.

Table 17 contains 60° to normal oblique impact data. These data
are graphically shown in Figure 4-10. There are a considerable number of
the 60° to normal impacts which did not produce observable spallation.
These have been so indicated by small squares placed at the appropriate
velocity. Note that all impacts above 12 km/s produced no abservable
spallation and that the value of Ds/d is substantially less at the lower
velocities than was obtained at normal and 30° to normal impact.
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4.2 Photographs of Impact Craters in Minerals

Three different particle materials were used during the course
of the program to impact oligoclase at three different impact angles.
In addition, two different crystal orientations of oligoclase and six
other minerals were used with one particle material. The result is
eighteen sets of crater photographs with each set displaying somewhat
different characteristics. These photographic data have been arranged
according to particle material with the different impact angles, crystal
orientations, and target materials subgrouped under these major headings.

The order of presentation will be by decreasing particle density
which is iron, lanthanum hexaboride, and silicon. A brief description
will be given with each set of photographs which will include impact
parameters as well as typical crater characteristics where such can be
noted.

In order for the reader to have complete information regarding
the impact parameters, each crater photograph will be accompanied by its
unique crater designation number so that numerical data concerning the
crater or impact particle may be readily found in Tables 1 through 17
in Section 4.1. Recall that the tables are organized according to
particle material, impact angle, target material, and finally in terms
of increasing velocity.

Al11 crater photographs in this report were taken by scanning
electron microscope using secondary electron emission as the imaging
source. In order to enhance the photographic quality of the crater photo-
graphs obtained, the target has been generally tilted by some angle less
than 30°. The tilt angle is measured from the target surface normal
vector and defines the angle at which the observer views the target sur-
face. To achieve the tilt angle, the target is rotated about an axis
running left-right through the center of the photograph. The target
surface at the lower edge of the picture is raised from its normal
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position sufficient to cause the target surface to move through an angle
equal to the tilt angle. The tilt angle for each photograph will be
included in the figure caption where the photo appears.

4.2.1 Iron Particle Impact Craters

4.2.1.1 Photographs of Normal Impact Craters in Oligoclase

The impact velocity range for this set of photographs extends
from 2.75 to 11.5 km/s. The photos are arranged in the order of increas-
ing impact velocity. Each crater photograph has been given a set of
index marks whose spacing indicates the approximate magnification. The
spacing of the index marks for each crater photograph will be given in
the figure caption where the photo appears and will not be given in the
text of the report.

Figure 4-11a shows the impact crater obtained at 2.85 km/s. Here
one sees extensive development of spall plates; however, only a small
fraction of these have been ejected from the surface. There has been no
attempt made to distinguish between spall plates developed and those
ejected. Generally speaking, only a few of the spall plates formed are
ejected. In the quantitative section (4.1) the spallation dimensions
given refer to the total damage area where well developed spall plates
exist. In Figure 4-11a the central pit lip structure is small and
partially broken away. Below this the impact particle can apparently
be seen still residing in the crater.

The velocity of impact increases from Figure 4-11a through h.
The crater shown in (h) was formed at an impact velocity of 5.47 km/s.
There is essentially no ejected spall at this velocity although there is
still an extensive development of spall plates. Note that a well defined
1ip structure exists on all impacts except (b) at 3.08 km/s which has
spalled away. Also note that the extensive production of droplets within
the central crater which adhere to the walls of the crater. The size of
the droplets generally increase with impact velocity and their absolute
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FIGURE 4-11.

(f)

Photographs of Craters from Normal Impacts of Iron Particles on Oligoclase, 2.86 to 5.47 km/s:
(a); crater S4-13-D, 2.86 km/s, 10 micron index marks. (b); crater S4-13-B, 3.08 km/s, 10 micron
index marks. (c); crater S4-13-A, 3.33 km/s, 5 micron index marks. (d); crater S4-14-B, 4.09 km/s,
5 micron index marks. (e); crater S4-14-A, 4.39 km/s, 5 micron index marks. (f); crater S4-15-B,
4.44 km/s, 10 micron index marks. (g); crater S4-15-A, 4.82 km/s, 5 micron index marks.

(h); crater S4-15-C, 5.47 km/s, 5 micron index marks. A1l have 20° tilt angles.
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number diminishes. This will be more apparent when the higher velocity
impacts of this set are viewed. In (f) is a photograph which is a good
example of the tendancy for the target to fracture along the cleavage
planes of the crystal.

Figure 4-12 is a continuation of the photographic set of normal
impact of iron particles on oligoclase. The velocity of impact ranges
from 6.16 km/s in (a) to 11.4 km/s in (h). It can be easily seen that
the extent of spallation is decreasing to where it has essentially vanished
at the higher velocities. Note also that the droplets mentioned previously
grow in size as the impact velocity is increased from (a) through (h).
In (f), (g) and (h) there appears to be only one massive droplet near
the bottom of the crater pit. The lip size relative to the pit diameter
increases slightly. The surface pattern seen around the crater in (e)
through (h) is the result of the thin aluminum film being ejected from
the surface.
4.2.1.2 Photographs of Craters from Normal Impact on Miscellaneous
Minerals
Figure 4-13 contains photographs of six craters in oligoclase
produced by particles with controlled parameters. The average impact
velocity was 3.06 + .11 km/s. These data are described quantitatively in
Table 2. These craters show very close agreement as to central pit
diameter. The impacting particles are apparently still stuck in the
craters shown in (c) and (d).

Figure 4-14 contains six impact crater photographs formed in
diopside at 3.06 km/s. There is very little 1ip structure seen in these
photos which is due to the 1lip being carried away by spallation. A well
developed crystal structure is evidenced by the cleavage planes exposed
by spallation,
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(f) (9)

FIGURE 4-12. Photographs of Craters from Normal Impacts of Iron Particles on Oligoclase, 6.16 to 11.4 km/s:
(a;; crater S4-15-D, 6.16 km/s. (b); crater S3-1-C, 6.99 km/s. (c); crater S4-14-C, 7.11 km/s.

(d); crater S3-17-B, 7.53 km/s. (e); crater S3-17-A, 7.87 km/s. (f); crater S3-18-B, 8.74 km/s.
(g); crater S3-18-A, 9.37 km/s. (h); crater $S3-19-A, 11.4 km/s. (a) has 5 micron indexes, all
others have 2 micron indexes. A1l have 20° tilt angles.




(a) (b) (c)

(d) (e) (f)

FIGURE 4-13. Photographs of Craters from Normal Impacts of Iron Particles on Oligoclase at 3.06 km/s: (a) through
(f) correspond to craters S5-3-1 to S5-3-6, respectively, all with 2 micron index mark separation
and 20° tilt angle. 59




(a) (b) (c)

(d) (e) (f)

FIGURE 4-14. Photographs of Craters from Normal Impacts of Iron Particles on Diopside at 3.06 km/s:
(a); crater D-1. (b); crater D-6. (c); crater D-7. (d); crater D-8. (e); crater D-9. (f); crater D-11.

A11 have one micron index separation and 25° tilt angles. 60




17433-6002-R0-00

Figure 4-15 shows six craters in biotite mica produced at the
same 3.06 km/s average velocity. The crater structure is made very
interesting in these photos due to the laminar structure of the mica.

The impacting particles are believed to be in the bottoms of the crater
pits. A considerable amount of melt is in evidence by the number of drop-
lets seen on the crater walls.

Figure 4-16 illustrates the craters obtained in hedenbergite at
3.06 km/s.. Note that more extensive spallation occurs with this material
and that a considerable fraction of the spall plates developed are ejected
from the surface. Again, droplets may be seen on the interior of the
crater.

Photographs of six craters in ilmenite are shown in Figure 4-17.
Again, the impact velocity was 3.06 km/s. Much less spallation occurs
in this higher density material. No lip structure is seen probably
because it has been spalled away. Also, there is very little evidence
of melt in the crater.

Figure 4-18 contains photographs of six craters in monticellite
formed at an impact velocity of 3.06 km/s. Whatever 1ip structure which
may have been developed has been spalled away for the six craters shown.
In addition to the small amount of spall around the central pit, much
larger spall plates have been developed which apparently run quite deep
into the material.

Figure 4-19 shows the results of six impacts in orthoclase at
3.06 km/s. Very large spallation plates were developed for each of the
impacts shown. A well defined 1ip structure is present on all craters
and large numbers of droplets may be seen in the interior.

4.2.1.3 Photographs of 30° to Normal Oblique Impacts on Oligoclase

Particles having the same parameters as those used on the several
minerals just described were also impacted into oligoclase at 30° to
normal. Photographs for six of the craters produced (at 3.06 km/s) are
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(d) (e) (f)

FIGURE 4-15. Photographs of Craters from Normal Impacts of Iron Particles on Biotite Mica at 3.06 km/s:
(a) through (f) correspond to craters B-1 through B-6, respectively, all with 2 micron index
mark separation and 25° tilt angle. &




FIGURE 4-16.

(d) (e)

Photographs of Craters from Normal Impacts of Iron Particles on Hedenbergite at 3.06 km/s:
(a) through (f) correspond to craters H-1 through H-6, respectively, all with 2 micron index
mark separation and 25° tilt angle.
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(a) . (b)

(d) (e) (f)

FIGURE 4-17. Photographs of Craters from Normal Impacts of Iron Particles on Ilmenite at 3.06 km/s: (a) through
(e) correspond to craters I-1 through I-5, respectively. (f); crater I-7. A1l have one micron
index mark separation and 25° tilt angle.




(d)

FIGURE 4-18.

(e) (f)

Photographs of Craters from Normal Impacts of Iron Particles on Monticellite at 3.06 km/s:
(a) through (f) correspond to craters M-1 through M-6, respectively. (c) and (f) have one micron
index marks while (a), (b), (d), and (e) have 2 micron index marks. A1l have 25° tile angles.
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FIGURE 4-19. Photographs of Craters from Normal Impacts of Iron Particles on Orthoclase at 3.06 km/s:
(a) through (f) correspond to craters 0-1 through 0-6, respectively. (a) has one micron
index marks, all others have 2 micron index marks. All have 25° tilt angle. 66
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shown in Figure 4-20. These craters show a remarkable degree of consistency
in the crater morphology. The direction of particle impact is from

right to left on all oblique impact crater photographs. The particle

impact direction and approximate angle may be easily deduced from the

crater photos. Note that very little lip structure appears at the point

of first contact and that spallation is clearly biased "downstream" as

would be expected.

Representative examples of the data contained in Table 8, which
are impacts at 30° to normal in oligoclase, are shown in Figure 4-21 and
4-22. The eight craters shown in Figure 4-21 span the velocity range
2.45 to 4.93 km/s and are arranged in order of ascending velocity. Exten-
sive spallation occurred for all impacts in this figure. Note that the
spall is biased "downstream" (toward the left) in all cases and that the
degree of obliqueness of the particle impact is shown quite clearly by
the angle at which the remains of the central pit enter the target.
Spherules from the impact may be seen around several of the craters being
most prominent around the crater in (c) which was an impact at 2.95 km/s.

Figure 4-22 shows more 30° to normal oblique impacts. The impact
velocity of this group ranges from 5.93 km/s in (a) to 27.9 km/s in (h).
Spallation clearly diminishes with increasing velocity in this group.
However, this may be a size effect and not a velocity effect since the
size of the impacting particle diminishes dramatically with velocity.
In Figure 4-22a, b, c, d, and e a large amount of spallation is present
and is clearly biased in the direction of particle impact. In (f),
(g), and (h) it is no longer obvious that these impacts are oblique. The
outline around the crater is the result of the aluminum film being spalled
away. The three higher velocity impacts exhibit a large melted 1ip
structure and what appears to be smooth interior walls.
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(d)

FIGURE 4-20.

(e) (f)

Photographs of Craters from 30° to Normal Oblique Impacts of Iron Particles on Oligoclase at 3.06 km/s:
(a) through (f) correspond to craters S5-2-1 through S5-2-6, respectively. Al1 have 2 micron index
mark separation and 20° tilt angles.
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(f) (9)

FIGURE 4-21. Photographs of Craters from 30° to Normal Oblique Impacts of Iron Particles on Oligoclase, 2.45 to
4.93 km/s: (a); crater S4-10-B, 2.45 km/s, 5 micron index marks. (b); crater S4-10-A, 2.52 km/s,
2 micron indexes. (c); crater S4-17-C, 2.95 km/s, 2 micron indexes. (d); crater S4-8-A, 3.21 km/s,
one micron indexes. (e); crater S4-3-A, 4.22 km/s, 2 micron indexes. (f); crater S4-17-D, 4.35 km/s,
one micron indexes. (g); crater S4-5-A, 4.38 km/s, one micron indexes. (h); crater S3-6-A, 4.93 km/s,

one micron indexes. A1l have 20° tilt angles.




(f) (9)

FIGURE 4-22. Photographs of Craters from 30° to Normal Oblique Impacts of Iron Particles on Oligoclase, 5.93 to
27.9 km/s: (a); crater S3-6-C, 5.93 km/s. éb;; crater S3-11-A, 6.76 km/s. (c); crater S3-13-B,
e)s

8.35 km/s. (d); crater S3-10-A, 12.0 km/s. crater S3-15-B, 13.1 km/s. (f); crater S4-1-C,
23.4 km/s. (g); crater S4-1-D, 23.4 km/s. (h); crater S4-1-E, 27.9 km/s. (b), (c), and (h) have
2 micron indexes, all others have 5 micron indexes. Al1 have 20° tilt angles except (f), (g), and

(h) which have 12° tilt angles.
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4.2.1.3 Photographs of 60° to Normal Impact Craters in Oligoclase

Figure 4-23 shows six craters produced by particles impacting
at 3.06 km/s and at 60° to the target surface normal. These are the
photo set for the data in Table 9. Increasing the angle of impact has
materially reduced the degree of spallation which is biased strongly
downstream. The shallow impact is easily deduced from the central pit
structure.

Representative examples of the 60° oblique data of Table 10
are shown in Figures 4-24 and 4-25. Figure 4-24(a) shows a crater pro-
duced at 1.91 km/s while (h) shows an impact at 5.20 km/s. The inter-
vening craters are arranged in order of ascending impact velocity.
Almost no droplets are visible in (a) but are quite evident in the
remaining pictures. Spallation is clearly biased downstream as for the
previous set.

Table 4-25 covers the velocity range 6.57 to 26.1 km/s. The
craters clearly show evidence of an oblique impact up to (e) which is
9.42 km/s. The craters shown in (f), (g), and (h) are all in the 20 km/s
range and do not show as much of the oblique impact characteristics as
do the lower velocity impacts.

4.2.2 Lantnanum Hexaboride Particle Impact Craters in Oligoclase

4.2.2.1 Photographs of Normal Impact Craters

Representative crater photographs from the data set of Table 11
are shown in Figures 4-26 and 4-27. Figure 4-26 covers the velocity range
from 1.46 km/s to 5.12 km/s. A much Tower degree of spallation is
immediately evident from these low density particle impacts. Also the
general irregularity of the particle shape can be seen in several of the
photographs. The well defined 1ip structures and droplets seen for the
iron particle impacts are not present here.

71




FIGURE 4-23.

(d) (e) (f)

Photographs of Craters from 60° to Normal Oblique Impacts of Iron Particles on Oligoclase at
3.06 km/s. (a) through (f) correspond to craters S5-1-1 through S5-1-6, respectively. Al1l have
2 micron index mark separation and 9° tilt angles.
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(f) (9)

FIGURE 4-24. Photographs of Craters from 60° to Normal Oblique Impacts of Iron Particles on Oligoclase, 1.91 to
5.20 km/s: (a); crater S4-16-B, 1.91 km/s. (b); crater S4-16-c, 2.35 km/s. (c); crater S4-16-A,
2.64 km/s. (d); crater S4-11-A, 2.71 km/s. (e); crater S4-9-A, 3.16 km/s. (f); crater S4-4-A,
4.23 km/s. (g); crater S4-4-B, 4.50 km/s. (h); crater S3-12-A, 5.20 km/s. (b), (c), and (h) have
2 micron index marks, all others have 5 micron indexes. (d) has a 15° tilt angle, all others have

20° tilt angles.




FIGURE 4-25.

(f) (9)

Photographs of Craters from 60° to Normal Oblique Impacts of Iron Particles on Oligoclase, 6.57 to
26.1 km/s: (a); crater S3-7-C, 6.57km/s. (b); crater $3-7-B, 6.85 km/s. (c); crater S3-14-A,
9.08 km/s. (d); crater S3-14-B, 9.37 km/s. (e); crater S3-9-A, 9.42 km/s. (f); crater S4-2-A,
20.6 km/s. (g); crater S4-2-B, 23.7 km/s. (h); crater S4-2-C, 26.1 km/s. (a) has 5 micron indexes,
(f) has one micron indexes, and all others have 2 micron indexes. A1l have a 20° tilt angle.



(f) (9)

FIGURE 4-26. Photographs of Craters from Normal Impacts of Lanthanum Hexaboride Particles on Oligoclase, 1.46 to
5.12 km/s: (a); crater S2-2-A, 1.46 km/s. (b); crater S2-2-B, 1.73 km/s. (c); crater S2-1-A,
2.44 km/s. (d); crater S2-2-C, 2.67 km/s. (e); crater S2-1-B, 2.99 km/s. (f); crater S2-3-A,
4.49 km/s. (g); crater S2-3-B, 4.91 km/s. (h); crater S2-3-C, 5.12 km/s. (a), (b), (d), and (e)
have 5 micron indexes, all others have 2 micron indexes. (c) has a 14° tilt angle, all others

tilted at 20°.




(f) (g)

FIGURE 4-27. Photographs of Craters from Normal Impacts of Lanthanum Hexaboride Particles on Oligoclase, 6.21 to
22.9 km/s: (a); crater S2-4-B, 6.21 km/s. (b); crater S2-4-A, 6.82 km/s. (c); crater S2-6-D,
9.73 km/s. (d); crater S2-6-C, 10.7 km/s, (e); crater S2-7-B, 13.3 km/s. (f); crater S2-7-C, 14.5 km/s.
(g); crater S2-8-D, 16.1 km/s. (h); crater S2-9-D, 22.9 km/s. (a), (b), and (h) have 2 micron
indexes, all others have one micron indexes. (d) has a 14° tilt, all others are tilted at 20°.
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Figure 4-27 shows craters obtained from 6.21 km/s in (a) to
22.9 km/s in (h). Very little spallation is seen on any of these impacts;
however, a well defined 1ip structure appears at velocities higher than
(b) which was at 6.82 km/s. Strong evidence of "jetting" from the
interior of the crater pit are suggested in (c) and (e).

4.2.2.2 Photographs of Oblique Impacts

Figure 4-28 shows four examples of 30° to normal oblique impacts
of lanthanum hexaboride particles on oligoclase. The impact velocities
of (a) through (d) are, respectively, 2.43, 2.69, 4.25, and 5.31 km/s.
The craters in (b), (c), and (d) are evidently oblique impacts, but none
show the degree cf spallation, crater 1ip, or droplet formation that was
obtained with iron particle impacts.

Figure 4-29 contains photographs of 60° to normal oblique
impacts of lanthanum hexaboride particles on oligoclase. The velocity
range covered extends from 3.08 to 8.18 km/s. The craters in (a) and
(b) at 3.08 and 3.36 km/s, respectively, show evidence that the particle
bounced from the surface. There was almost no spallation for these
impacts and no melt. The light petal-like rings around (c), (d), (e),
and (f) are believed to be the remnants of the aluminum film which was
evaporated onto the surface.

4.2.3 Silicon Particle Impact Craters in Oligoclase

4.2.3.1 Photographs of Normal Impact Craters at Different

Crystal Orientations

Figure 4-30 and 4-31 contain the crater photographs for the data
of Table 12. These impacts were made onto a surface which is parallel to
the (010) plane of the crystal. The velocity range extends from 2.40 to
8.52 km/s in Figure 4-30 and from 9.68 to 22.4 km/s in Figure 4-31. The
silicon particles used for these impacts have an irregular shape as did
the LaB6 particles of the previous section. Spallation was produced on
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(c). (d)

FIGURE 4-28. Photographs of Craters from 30° to Normal Oblique
Impacts of Lanthanum Hexaboride Particles on Oligoclase,
2.43 to 5.31 km/s: (a); crater S2-1-C, 2.43 km/s.
(b); crater S2-6-A, 2.69 km/s. (c); crater S2-8-A,
4.25 km/s. (d); crater S2-8-E, 5.31 km/s. A1l have two
micron index mark separation. (b) has a 14° tilt angle,
all others have 20°.
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(d)
FIGURE 4-29.

(b)

(e) (f)

Photographs of Craters from 60° to Normal Oblique Impacts of Lanthanum Hexaboride Particles on
Oligoclase, 3.08 to 8.18 km/s: (a); crater S2-2-E, 3.08 km/s. (b); crater S2-7-A, 3.36 km/s.
(c); crater S2-9-A, 5.30 km/s. (d); crater S2-9-B, 5.86 km/s. (e); crater S2-4-D, 5.86 km/s.
(f); crater S2-5-A, 8.18 km/s. Al1l have 2 micron indexes and 20° tilt angle.

79



FIGURE 4-30.

(b)

(f) (g)

Craters from Normal Impacts of Silicon Particles on Oligoclase, Surface Parallel to
?3?3‘)’“3‘.’23 :g 8.52 km/s: (a); crater S6-3-A, 2.40 km/s. (b); crater S6-2-A, 4.24 km/s. (c); crater
S6-1-E, 4.90 km/s. (d); crater $6-1-C, 5.16 km/s. (e); crater S6-1-B, 5.93 km/s. (f); crater S6-1-A,
8.25 kr;n/s. (g); crater S6-4-D, 8.52 km/s. (a), (c), and (e) have 5 micron indexes, all others have
D wd mineyn. inrovae - A11 have 3.5° tilt anqgle.




(f) (g)

FIGURE 4-31. Photographs of Craters from Normal Impacts of Silicon Particles on Oligoclase, Surface Parallel to
(010), 9.68 to 22.4 km/s: (a); crater S6-4-A, 9.68 km/s. (b); crater S6-4-B, 12.1 km/s. (c); crater
S6-4-C, 13.1 km/s. (d); crater S6-5-A, 14.1 km/s. (e); crater S6-5-B, 16.8 km/s. (f); crater S6-5-C,
20.6 km/s. (g); crater S6-10-A, 22.4 km/s. A1l have 2 micron indexes. (a), (b), and (c) have
3.5° tilt angle, all others have 20°.
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all impacts with the possible exceptions of Figures 4-30d and 4-31g.
The development of the central pit lip structure cannot be determined
very well since only remnants can be found. Most of the 1ip is spalled
away in all cases where spallation exists. Droplet formation in the
central pit may be seen in Figure 4-30b?, e, f, g and 4-31a, b.

Figures 4-32, and 4-33 contain photographs of the craters which
produced the data of Table 14. These impacts occurred on a target surface
which is parallel to the line of intersection of (010) and (001) and at
45° to both (010) and (001). The velocity range extends from 2.12 to
5.25 in Figure 4-32 and from 5.31 to 12.7 km/s in Figure 4-33. One
immediately notices that more spallation is produced at this target sur-
face orientation. The second point of note is that more droplets are
seen within the crater pits. Figure 4-32a, b, ¢ do not show melt or
droplets; however, all remaining craters in both figures show a large
number of droplets within the crater interior except for Figure 4-33e,
and g. In (e) the central pit has been covered by a small plate and (g)
appears to have a smooth glass lined interior.

The craters corresponding to the data of Table 15 are shown in
Figures 4-34 and 4-35. The impact surface for the set of craters is
parallel to the prominent cleavage plane (001). The velocity range
covered in Figure 4-34 extends from 2.82 to 10.6 km/s while that of
Figure 4-35 extends from 10.6 to 12.4 km/s. The degree of spallation is
less for this orientation than for the 45° cut used in the previous set.
Portions of the central pit lip was spalled away in most cases above
5.60 km/s (Figure 4-34f).

4.2.3.2 O0Oblique Impacts

Figures 4-36 and 4-37 contain the crater photographs for the
data of Table 16. These impacts occurred at 30° to the target surface
normal. The velocity range extends from 2.31 to 8.18 km/s in Figure 4-36
and from 10.5 to 20.6 km/s in Figure 4-37. Note that in Figure 4-36a
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(f) (g)

FIGURE 4-32. Photo%raphs of Craters from Normal Impacts of Silicon Particles on Oligoclase, Surface at 45° to

both (010) and (001), 2.12 to 5.25 km/s: (a); crater S9-4-C, 2.12 km/s. (b); crater S9-4-A,
2.63 km/s. (c); crater S9-4-D, 2.81 km/s. (d); crater S9-4-E, 3.09 km/s. (e), crater S9-3-B,

3.32 km/s. (f); crater S9-3-C, 4.23 km/s. 4?), crater S9-3-A, 5.03 km/s. . _crater ?9 -3-D, 5.25 km/s.
(b), (d), and Zf) have 2 micron indexes, all others have 5 micron 1ndexes A]] have 10° t1Tt angle.




(f) (9)

FIG&RE 4-33. Photographs of Craters from Normal Impacts of Silicon Particles on Oligoclase, Surface at 45° to
both (010) and (001), 5.31 to 12.7 km/s: (a); crater S9-2-A, 5.31 km/s. (b); crater $S9-2-B,
6.10 km/s. (c); crater $9-2-C, 6.90 km/s. (d); crater S9-1-A, 7.72 km/s. ie); crater S9-1-C,
d

7.96 km/s. (f); crater S9-1-B, 9.29 km/s. (g); crater S9-1-D, 12.7 km/s.
indexes, all others have 2 micron indexes. A1l have a 10° tilt angle.

and (e) have 5 micron




(f) (g)
FIGURE 4-34.

Photographs of Craters from Normal Impacts of Silicon Particles on Oligoclase, Surface Parallel

to (001), 2.82 to 10.6 km/s: (a); crater S10-3-B, 2.82 km/s. (b); crater S10-3-A, 3.57 km/s.
(c); crater S10-3-C, 3.58 km/s. (d); crater S10-2-B, 4.96 km/s. (e); crater S10-2-A, 5.03 km/s.

(f); crater S10-2-D, 5.60 km/s. (g); crater S10-1-D, 7.47 km/s. (h); crater S10-1-E, 10.6 km/s.
A11 have 2 micron indexes and 10° tilt angle.




FIGURE 4-35.

(c) (d)

Photographs of Craters from Normal Impacts of Silicon
Particles on Oligoclase, Surface Parallel to (001),

10.6 to 12.4 km/s: (a); crater S10-1-B, 10.6 km/s.

(b); crater S10-1-C, 10.7 km/s. (c); crater S10-2-C,
11.5 km/s. (d); crater S10-1-A, 12.4 km/s. A1l have two

micron indexes and 10° tilt angle.
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FIGURE 4-36.

(f) (9)

Photographs of Craters from 30° to Normal Oblique Impacts of Silicon Particles on Oligoclase,
2.31 to 8.18 km/s: (a); crater S5-13-D, 2.31 km/s. (b); crater S5-13-B, 3.12 km/s. (c); crater
S5-16-A, 4.58 km/s. (d); crater S5-11-B, 4.78 km/s. (e); crater S5-4-B, 5.91 km/s. (f); crater
S5-4-A, 6.53 km/s. (g); crater S5-9-A, 7.55 km/s. (h); crater S5-4-C, 8.18 km/s. (c) has 5 micron
indexes, all others have 2 micron indexes. (c) and (d) have 15° tilt angles, all others have 20°
tilt angle.



(f) (9)

FIGURE 4-37. Photographs of Craters from 30° to Normal Oblique Impacts of Silicon Particles on O]i§oc1ase,

10.5 to 20.6 km/s: (a); crater S6-8-A, 10.5 km/s. (b); crater S6-13-C, 10.6 km/s. (c); crater
S6-13-B, 11.7 km/s. (d); crater S6-8-B, 14.3 km/s. (e); crater S6-6-D, 16.2 km/s. (f); crater S6-6-B,
16.9 km/s. (g); crater S6-6-A, 19.6 km/s. (h); crater S6-6-C, 20.6 km/s. A1l have 2 micron

indexes. (a) through (d) have 20° tilt angle while (e) through (h) have 8.5°

tilt angle.
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at 2.31 km/s only cracks are produced and the "central pit" is in reality
only a depression in the surface. The same is true of (b) at 3.12 km/s.
In (c) at 4.58 km/s a recognizable central pit is beginning to form
complete with sufficient melt to form droplets in the interior. Numerous
droplets may be seen in the interior of all craters up to Figure 4-37b
(10.6 km/s). In (b) the droplets are quite small. At higher velocities
the resolution is either inadequate to detect droplets within the central
pit or else the pit has a smooth interior, the smooth interior being more
likely. The oblique nature of these impacts are much more difficult to
determine from crater morphology than was iron particle impacts. At the
higher velocities, Figure 4-37f, g, h, "memory" of the oblique nature

of the impact is almost totally lost.

Figures 4-38 and 4-39 contain the crater photographs for the
data of Table 17. These impacts occurred at 60° to normal on a surface
parallel to (010). The velocity range for Figure 4-38 extends from 2.18
to 9.08 km/s while that in Figure 4-39 extends from 10.6 to 19.5 km/s.
The first three craters of Figure 4-38 show only depressions in the sur-
face where the central pit would normally be. In (d) at 4.57 km/s a
central pit is developed along with extensive spallation; however, note
that in (e) and (f) only depressions exist again, although some droplets
have formed in (e). The light colored rings seen in (a), (b), (c), (e),
and (f) are believed to be the remnants of the deposited aluminum film.
Notice that spallation has essentially ceased at 10.6 km/s (Figure 4-39a).
These craters are quite elongated and do show a "memory" of the oblique
impact up to the highest recorded data for the set (19.5 km/s).

Attention should be called to Figure 4-39e. It is quite likely,
in the authors' opinion, that the object to the upper right of the crater
is the remains of a "jet" from the central pit of this crater. One may
still observe a projection from the center of the crater. As a final

89




FIGURE 4-38.

(f) (9)

Photographs of Craters from 60° to Normal Oblique Impacts of Silicon Particles on Oligoclase,
2.18 to 9.08 km/s: (a); crater S5-19-A, 2.18 km/s. (b); crater S5-12-C, 3.23 km/s. (c); crater
S5-12-A, 3.66 km/s. (d); crater S5-12-D, 4.57 km/s. (e); crater S5-10-A, 7.18 km/s. (f); crater

S5-15-D, 8.18 km/s. (g); crater S5-5-A, 8.56 km/s. (h); crater S5-5-C, 9.08 km/s.
A11 have 2 micron indexes and 20° tilt angle.



FIGURE 4-39.

(f) (9)

Photographs of Craters from 60° to Normal Oblique Impacts of Silicon Particles on
10.6 to 19.5 km/s: (a); crater S6-14-B, 10.6 km/s. (b); crater S6-9-B, 12.1 km/s
S6-14-A, 12.2 km/s. (d); crater S6-9-A, 14.2 km/s. (e); crater S6-12-A, 17.5 km/s
S6-7-A, 17.9 km/s. (g); crater S6-12-B, 19.3 km/s. (h); crater S6-12-C, 19.5 km/s
A11 have 2 micron indexes and 20° tilt angle,

Oligoclase,
?; crater

2 2c
. (f); crater
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comment, some striking examples of jetting from impact craters were
obtained on a similar program conducted by this organization under
NASA sponsorship where the same particles used herein were impacted
into quartz g]ass.9 Certain of the quartz glass impacts showed long
filaments still attached to the bottom of the crater pit. This jetting
action was only observed in the 18 to 25 km/s range for quartz. It
is believed that Figure 4-39e and Figure 4-27c are two examples of a

similar action for oligoclase impacts.
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5.0 SUMMARY

It is undoubtedly apparent to the reader at this point that
this report contains a voluminous amount of data in the form of crater
pnotographs for a variety of impact conditions. The intent of this
report has been to reproduce herein as much of the acquired data as
might be of use to the reader in understanding the subtle changes that
occur in crater morphology as impact conditions are varied. It has
been a further object of the report to reproduce the photographic data
in a format which would permit a comparative analysis to be made between
a crater having unknown impact parameters and those contained within.
The final goal being to deduce some of the impact parameters from simi-
larities between impact crater morphology.

In summary, we will attempt only to outline some of the gross
differences or noteable similarities observed. For the iron particle
impacts, extensive spallation occursat the lowest observed velocity
(2.86 km/s) accompanied by sufficient melting to form a crater lip
structure and to line the crater walls with droplets. The size of these
droplets are seen to increase while their number decreases with increasing
impact velocity. At 7 to 8 km/s only a few very large droplets are seen
in the crater interior, a prominent 1lip structure has developed, and
spallation has decreased to the point where only radial cracks are observed.
Although it was not mentioned in the body of the report, ten low velocity
impacts were obtained between 0.7 and 1.0 km/s. None of these impacts
produced sufficient surface damage to allow the impact site to be located.

Much less spallation was observed from both the lanthanum hexa-
boride and silicon particle impacts than was seen from iron particle
impacts. At 5 to 6 km/s, normal impact Ds/d for iron has a value of 8 to
9 while lanthanum hexaboride has a value of about 3 and silicon about 3
to 4. However, silicon particles were observed to produce spallation to
much higher velocities than was LaB6 or iron. At 5 to 6 km/s, Dp/d for
iron is about 1.1 while LaB6 is about 1.4 and silicon about 1.2.
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Oblique impacts can generally be recognized as such due to
elongation of the central crater along the direction of impact and by a
"biasing" of the spallation produced toward the "downstream" side of the
crater. For oblique angles slightly off the normal, the above character-
istics do not exist at the higher velocities; however, for large angles
(60° to normal) crater elongation is observed into the 20 km/s range.
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