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THE EFFECT OF ANGLE OF ATTACK ON

THE BUCKLING OF MARS ENTRY AEROSHELLS

By Gerald A. Cohen
Structures Research Associates, Laguna Beach, California

SUMMARY

The buckling modes of four optimized Mars entry aeroshell
configurations at angle-of-attack loadings have been calculated. The
configurations treated (120° and 140° blunted sandwich and ring-stiffened
cones, the 140° ring^-stiffened cone being a prototype Viking aeroshell)
were obtained in previous studies. The anlysis is based on experimental
pressure distributions and was performed with the aid of a buckling
digital computer program which treats general asymmetric linearized
prebuckling states of branched shells of revolution. Only zeroth and
first harmonic pressure components are treated, these being constructed
from windward and leeward meridian pressure data at a Mach number of 4.63.

The results showed a rather small effect of the unsymmetrical
pressure component on buckling for angles of attack up to 15°. For
example, for the Viking aeroshell, the effect of the n = 1 load component
is to reduce the critical normal shock stagnation pressure by only 3.9%
and 6.3% for angles of attack of 10° and 15°, respectively. Comparison
of the results for the 120° cones to previous results indicates that the
common procedure of basing the design on a symmetrized pressure
distribution of the windward meridian is a conservative approach.

INTRODUCTION

In references .1-3 several .optimum.aeroshells designs are synthesized
for a Mars entry capsule. In.,each .case the structural weight is
minimized.with respect to.buckling failure of the aeroshell based on
assumed axisymmetric pressure distributions. In reference 1, 120°
sandwich and ring-stiffened cone designs are synthesized using .the
symmetrized pressure distribution of the windward meridian obtained
from theoretical flow field calculations at 9° angle of attack. In
reference 2, a 140° sandwich cone is synthesized using a calculated
pressure distribution for zero angle of attack. In reference 3, a 140°
ring-stiffened cone for the Viking mission is synthesized using simply a
uniform pressure distribution.



Recently, a computer program has been developed for the bifurcation
buckling analysis of shells of revolution subjected to general asymmetric
loads (designated as SRA 101 in refs. 4 and 5). The purpose of this

_.s.tu.dy_ts__tj)_r_eanaly2e_, with the aid of this new program, the above-
mentioned aeroshell designs using more realistic pressure distributions
resulting from expected angles of attack at peak dynamic pressure during
entry from a Martian orbit. Specifically, an angle of attack of 10° is
considered for the 120° designs and the 140° sandwich design, and 10°
and 15° are considered for the 140° ring-stiffened Viking design.

SYMBOLS

D base diameter

n circumferential harmonic number

p local pressure

ps normal shock stagnation pressure

s meridional distance measured from pole of spherical
nose cap (figs. 2-8) or from base ring (figs. 9-12)

a angle of attack

AEROSHELL CONFIGURATIONS AND LOADS

In figure 1 are shown the four configurations treated. Further
details of these designs are given in references 1, 2 and 3. For the
designs of reference 1, only the low temperature (300°F), low ballistic
coefficient (0.32 slug/ft2) 120° conical designs are considered. Of
the two aeroshell designs of reference 3, only the light (35 Ib) base
ring design is considered. In contrast to the 120° cone and 140°
sandwich cone designs (refs. 1 and 2), which have a 19 foot base diameter
and a bluntness ratio (spherical nose radius to base radius) of 0.25,
the 140° ring-stiffened Viking cone (ref. 3) has an 11.5 foot base
diameter and a bluntness ratio of 0.50.

The experimental pressure distribution for blunt 120° cones at a
Mach number of 4.63 and 10° angle of attack was taken from table III of
reference 6. Experimental pressure distributions for blunt 140° cones
at a Mach number of 4.63 and 10° and 15° angle of attack were taken
from table IV of reference 7. Data for the windward and leeward
meridians (reproduced here in fig. 2) was used to calculate zeroth
and first harmonic pressure loadings, all other harmonics being ignored.



For each of these harmonics, linearized prebuckling states for a
normal shock stagnation pressure ps of 1 psi were calculated by the
computer program SRA 100 (ref. 5). In this calculation the pressure
loading is reacted by the distributed inertial loads of the aeroshell
accelerating in a rigid body mode. The critical value of the normal
shock stagnation pressure was then calculated for this asymmetric
prebuckling state by SRA 101.*

RESULTS

19 Foot Aeroshells (Refs. 1 and 2)

In general, for blunt aeroshells the buckling response of the
shell section forward of the payload ring is negligible. Therefore,
the computer models of the 120° cones and the 140° sandwich cone
extend only from the payload ring to the base ring. For these cones,
estimates of the payload and nose section masses were lumped into
the payload ring by the artifice of increasing its mass density.
Also, the resultant force and moment of the pressure distribution
on the nose section were applied as effective loads at the payload
ring. In all cases, the stiffness of the payload attachment was
neglected.

Calculated critical values of ps (psi) are shown in the table
below, in which a represents angle of attack and n represents circum-
ferential harmonic number. Buckling mode harmonics for which the
normal displacement amplitude is greater than 1/2'of 1% of the
amplitude of the dominant harmonic are given in parentheses. Also
shown are previous results from references 1 and 2.

a = 10°
a = 10° (n = 0 and n = 1

(n = 0 pressure pressure a = 9° a = 0°
Aeroshell component only) components) (ref. 1) (ref. 2)

120° Sand. Cone 7.228 (2) 7.221 (2,3) 6.69 (2)
120° R.S. Cone 7.10 (5) 6.90 (2-8) 6.38 (5) -r-
140° Sand. Cone 5.22 (6) 5.02 (3-8) — 5.88 (5)

The results from reference 1 are based on nonlinear buckling
analyses using an axisymmetric pressure distribution with meridional
variation equal to that of the windward meridian calculated at 9°
angle of attack. The nonlinear effect for the 120° cones is small,
and comparison of figure 11 of reference 1 with figure 2 shows that,
in spite of differences in Mach number, specific heat ratio, and
angle of attack, the two pressure distributions are very much alike.

*Dead pressure loading.was assumed.



This comparison therefore suggests that the procedure of designing
the shell on the basis of the windward meridian pressure distribution
is conservative.

The result shown from reference 2 is based~on a nonlinear pre-
buckling analysis using a calculated axisymmetric pressure distribution
at zero angle of attack. As shown, the present linear results are
below that nonlinear result. This is due to the beneficial effect
of the prebuckling nonlinearity, as noted in reference 2.

The corresponding prebuckling stress resultants (for ps = 1 psi)
and the normal displacements of the buckling modes are shown in figures
3 through 8. In these figures, the meridional distance s is measured
from the pole of the spherical nose cap, and the curves start at the
payload ring and terminate at the base ring. It may be of interest
to note that for large angle cones such as these, the n = 1 shear
stress resultant and meridional stress resultant amplitudes are
approximately equal in magnitude. (In figures 3, 5 and 7, the curves
for these two variables are practically indistinguishable.) Also,
since the pressure loading has an axial plane of symmetry, there exist
uncoupled symmetric and antisymmetric buckling modes. However, in
all cases studied, these two buckling modes are essentially identical.
As has been noted in reference 1, the inextensional buckling mode for
the 120° sandwich cone (figi 4) results because in this case the base
ring is slightly undersized.

Viking Aeroshell (Ref. 3)

For this design, the payload ring is considerably farther aft
than for the 19 foot designs. In this case the payload attachment
radius is 0.487 of the base ring attachment radius, whereas the
corresponding ratios are 0.30 for the 120° cones and 0.35 for the
140° sandwich cone. In contrast to the preceding analyses, it was
therefore thought desirable to model at least part of the shell forward
of the payload ring. On the other hand, the blunt cone models used
in references 6 and 7 had a bluntness ratio of 0.25, so that strictly
speaking the experimental pressure data does not apply to the Viking
shell with a bluntness ratio of 0.50. In view of these considerations,
the shell was modeled from the base ring up to the cone-sphere juncture.
The experimental pressure at a parallel circle on the conical part of
the wind-tunnel model is assumed to apply to the computer model at
the corresponding parallel circle with the same ratio of radius to
base radius.* Because negligible buckling response is expected in the
deleted spherical portion, simple support boundary conditions were
imposed at the artificial edge created in the model.

*For the computer model, the base radius was taken as the base ring
attachment radius, i.e., 64.6 in. .



Because of the large number of rings in the aeroshell and limitations
due to current dimensioning of the computer programs involved, it was
convenient to redistribute in the computer model several rings over
the stringer-stiffened section of the shell. As noted in reference 1,
a similar redistribution of rings was necessary in the model of the
120° ring-stiffened cone. Although this redistribution changes the
local instability characteristics of the aeroshell, it has negligible
effect on its general instability mode.

Calculated critical values of ps (psi) and corresponding buckling
mode harmonics for this model are shown in the table below.*

n = 0 pressure n = 0 and n = 1
Angle-of-attack component only pressure components

10° 4.85 (6) 4.66 (4-9)
15° 4.89 (6) 4.58 (4-9)

The corresponding prebuckling stress resultants (for pg = 1 psi)
and the normal displacements of the buckling modes are shown in figures
9 through 12. In these figures, the meridional distance s is measured
from the base ring and the curves terminate at the cone-sphere juncture.
The large discontinuity in the prebuckling stress resultants (figs. 9
and 11) occurs at the payload ring (s =35.2 in). As expected, the
buckling response forward of the payload ring is very small.

CONCLUSIONS

A newly developed computer program has been used to calculate the
buckling modes of four blunt conical aeroshells, including a,prototype
Viking aeroshell, at angle-of-attack loadings. Two essential conclusions
emerge from this study.

(1) For angles of attack up to 15°, the effect of the unsymmetrical
prebuckling component is rather small. For the Viking shell,
this component reduces the critical pressure due solely to the
axisymmetric component by only 6.3% at 15° angle of attack.

(2) The procedure of the designing the aeroshell based on the
symmetrized pressure distribution of the windward meridian
appears to be conservative. For the 120° conical aeroshells,
calculations using this procedure (ref. 1) underestimated the
critical pressure by roughly 7.5%.

*For uniform pressure loading reacted at the payload ring, a critical
pressure of 4.73 psi (based on linear prebuckling) is given in reference 3.
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