§73-161/0
NASA CONTRACTOR NASA CR-2181

REPORT

NASA (CR-2181

TWO BONDED HALF PLANES WITH
A CRACK GOING THROUGH THE INTERFACE

by F. Erdogam and V. Bz'rz'cz'koglu

Prepared by

LEHIGH UNIVERSITY
Bethlehem, Pa.

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. « FEBRUARY 1973



. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

. NASA CR-2181
4. Title and Subtitle 5. Report Date
TWO BONDED BALF PLANES WITH A CRACK GOING THROUGH THE February 1973
INTERFACE N -
6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
F. Erdogan and V. Biricikoglu NASA-TR-T2-k
10. Work Unit No.
9. Performing Organization Name and Address

501-22-02-01-00

Lehigh University
11. Contract or Grant No.

(Institute of Fracture and Solid Mechanics) NGR 39-007-011

Bethlehem, PA :
13. Type of Report and Period Covered

12

Sponsoring Agency Name and Address

R t
National Aeronautics and Space Administration Contractor Repor

14. Sponsoring Ageticy Code
Washington, DC 20546

15.

Supplementary Notes

16.

Abstract

The plane problem of two bonded elastic half planes containing & finite crack perpendicular
to and going through the interface is considered. The problem is formulated as a system of
singular integral equations with generalized Cauchy kernels. Even though the system has three
irregular points, it is shown that the unknown functions are algebraically related at the
irregular point on the interface and the integral equations can be solved by a method developed
previously. The system of integral equations is shown to yieid the same characteristic
equation as that for two bonded quarter planes in the general case of the through crack, and
the characteristic equation for a creck tip terminaﬁing at the interface in the special case.
The numericel results given in the paper include the stress intensity factors at the crack
tips, the normal and shear components of the stress intensity factors at the singular point on

the interface, and the crack surface displacements.

17.

Key Words {Suggested by Author(s)) 18. Distribution Statement
Bonded materials
Stress intensity factor . - Unclassified - Unlimited

Singular intégral equations

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price”

Unclassified Unclassified L3 $3.00

*
For sale by the National Technical Information Service, Springfield, Virginia 22151




TWO BONDED HALF PLANES WITH A
CRACK GOING THROUGH THE INTERFACE”

BY
F. ERDOGAN AND V. BIRICIKOGLU
LEHIGH UNIVERSITY, BETHLEHEM., PENNSYLVANIA

ABSTRACT

The plane problem of two bonded elastic half planes con-
taining a finite crack perpendicular to and going. through the
interface is considered. The problem is formulated as a system
of singular integral equations with generalized Cauchy kernels.
Even though the system has three irregular points, it is shown
that the unknown functions are algebraically related at the
irregular point on the interface and the integral equations
can be solved by a method developed previously. The system of
integral equations is shown to yield the same characteristic
equation as that for two bonded quarter planes in the general
case of the through crack, and the characteristic equation for
a crack tip terminating at the interface in the special case.
The numerical results given in the paper include the stress
intensity factors at the crack tips, the normal and shear com-
ponents of the stress intensity factors at the singular point
on the interface, and the crack surface displacements.

*This work was shpported by the National Science Foundation
under the Grant GK 11977, and by the National Aeronautics
and Space Administration®under the Grant NGR-39-007-011.



1. INTRODUCTION

In considering the fracture of composite materials, one

" may approach the problem from two different points of view. '

In the first approach the primary interest is in studying and
in estimating the "bulk strength" of the given structure under
a known system of external loads and environmental conditions.
In this type of studies it is usually assumed that the existing
imperfections such as voids, cracks, and inclusions are ran-
domly distributed throughout the composite medium and the mate-
rial is statistically homogeneous. Thus, the very nature of
the problem requires that some kind of a statistical strength

theory be used as a guide in the investigations.

In the second approach to studying the fraqture of com-
posites, one is basically interested in the initiation of frac-
ture from the “localized" imperféctions which are known (or
assumed) to exist in the material. In this type.of studies it
is usually assumed that the composite medium coﬁsists of per-
fectly bonded elastic components and the localized impérfection
may be idealized as a plane crack or as a flat elastic inclu-
sion. The problem of a finite crack lying parallel to or at.

a bimaterial interface in composites with various geometries
was discussed in [1-5]. The similar problem for.a flat inclu-
sion was studied in'[6]. An up-to-day review of the general
fracture problems in composite materials and a Summary of some
of the known results may be found in [7]. The distinguishing

feature of the solutions given in [1-7] as well as the other



known solutions which appeared in literature within the past
decade is that the strength of the stress singularity at the
impgrfection front is -1/2 and, in the case of a crack, the
quasi-static stress state in the neighborhood of the crack
front remains autonomous as the crack propagates. That is,
aside from a slight change in a multiplicative constant known
as the stress intensity factor, the asymptotic nature of the
stress state in the vicinity of the crack front remains

‘unchanged.

On the other hand, when the crack front terminates at a
bi-material interface in the composite medium the strength of
the stress singularity is no longer -1/2 and the angular dis-
tribution of stresses differs considerably from that of a crack
tip imbedded in a homogeneous medium. After reaching the inter-
face, fufther propagation of the crack may be in the form of
(a) a cleavage crack into the second medium (Figure 1), (b) a
debonding crack along the interface, or (c) a "reflected" crack
back into the first medium. The basic problem of a finite
crack terminating at a bi-material interface was discussed in
some detail in a previous paper [8]. [8] also presents a ten-
tative fracture criterion which may be used in predicting the
mode of the fracture propagation (such as (a)-(c), mentioned
above) as well as the level of the external loads initiating
the fracture provided the fracture strengths of the two adjoin-

ing materials and of the interface are known.

In this paper we consider the problem of a crack going
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through the interface into the second medium. From the analyt-
_ical_viewpoint _the unusual_feature of ,Lhe___t!ribl em is ,Ef',@,t_ it
has three irregular points (two crack tips and the intersection
of the crack with the interface) at which the stress state is
generally singular. One of the objectives of the paper is the
development of the necessary theoretical and numerical tech-

niques for handling problems of this nature.

2. THE INTEGRAL EQUATIONS

Consider the plane elasticity problem shown in Figufe 1;
In this paper only the symmetric problem will be considered;'
that is, it is assumed that in the composite medium without
the crack and subjected to the same external loads as the
cracked medium, the planes (r > 0, 6 = w) and (r > 0, 6 = 0)
are free from shear and are écted upon by normal stresses p](r)
and pz(r), respectively. Thus, through a proper superposftion,
the singular part of the problem may be reduced to that shown
in Figure l,Awhere the self-equilibrating crack surface trac-
tions -p](r) and -pz(r) are the only external loads. In the

special case of uniform loading'p] and p, are constant and the

continuity conditions require that s
Pp _ P2
= = T , for plane stress,
1 2
\ .
1 - v]2 1 - vzz ' (1 b)
— P, = ———— P, for plane strain. .,
E] 1 E2. 2

To solve the problem shown in Figure 1 we will first



i 1. | The geometry of the crack going through the
Figure : integface of two bonded elastic half planes.

—
| (ki 1) 2(c2,12)
L r P>
IERKN] 6 1411
b'TIHO' - ag? TV Vb,

Figure 2. Two cracks imbedded into adjacent half planes.



consider the problem described in Figure 2 where each half
- _plane contains a finite crack perpendicular to the jn;erface,

and then let the distances ay and a, 9o to zero.

Because of symmetry, it is sufficient to consider the
problem in the half plane 0 < r < o, 0 < 6 < 7 (Figure 2). The
related elasticity problem has to be solved under the following

boundary conditions:

T]re(r’“) =0, 0 <r <o,
T1gg(rsm-0) = - py(r) a;<r < by,
ule(r,n) =0, 0<sr<ay, b] < r < w; (2.a-c)

Ute = Y29 > Urp T Uzpr o Tigg T T2pp °

Tirg = To2re ° o = m/2, 0 <r <.w; (3.a-d)
TZre(r,O) =0, S0 < r < o,

rzee(r,+0) = - pz(r) s a, < r< b?’

uze(r,o) =0, b $ro<a,, b2-< r < o, (4.a-c)

Let the unknown functions f] and f2 be defined as follows:

}
N

)
falr) = - 2 Gz ugelrm-0)
.2 |
folr) = 2 55 uye(r,+0) . (5.a,b)

From (2.c), (4.c) and (5) it follows that



f](r) =0 , 0<rc«< ay, b.I < r < o,

fz(r‘)=0, 05r<a2, b2<r<oo:,

b] b2

[ filr)dr =0, [ fy(r)dr =0 . (6.a-d)

Using Mellin transforms and following the procedure out-
lined in [8], after somewhat routine manipulations the problem
can be reduced to the following system of integral equations

for the functions f] and f2:

b b
1 f,(s) 1
1 1 1
1 1 :
1 b2 ]+n<] :
+ o £ k]z(r,s)fz(s)ds = - THT_ p](r) . ay.<r < by,
2
b b
2 f,(s) 1
% / g-r ds + % J k2](r,s)f](s)ds
a a
2 1
. 1+,
+ o £ kzz(r,s)fz(s)ds = - gﬁz— pz(r) . a, < r < by,
2
(7.a,b)
where the kernels kij are given by
(rrs) f——g—c”‘rk-] (r.s) %——T(—cz"rk-]
k Y‘,S = - " k r,s T = ,
" k=1 (s+r) 22 k=1 (s+r)
(r.s) 2———~—k—d"‘rk-] (rss) 2————,(—d2"rk-] (8.3-d)
k r,s) = s k r,s) = H .a-
12 % (s+r) 21 , %-(s+r)



m](1+K]) 3(1-m])
ML CPET0 N1 ¢ Er 3 B

—

6(1- m]) 4(1-m;)
12 T THmx, 13 7~ Tm.e, ?
Rk M5y

1 m2(1+K2) 3(1-m2)

Chy = & - - s
21 K3 2(m2+K]7 2(1+m2K27 '
6(1-m2) 4(1-m2)
Cop = o Con = - .
22 1+m2K2 ’ ‘ 23 1+m24<2 ’
3(1+k,) 1+k 1+k 14k
d = ] - ] d = ] - ] .
11 2(m2+|<]) 2(‘I+m2 27 12 1+m2K2 P
0 3(1+n<2) ) 1+, . - 14k, ) T+k, .
21 2(m]+K2) ?IT+m]KfT ’ 22 Tih]K] m]+|<2 ?
my o= uy/ug my = uy/u, . : (9)
In (9) uy and yu, are the shear moduli, «; = 3-4v, for plane
strain and Ky = (3-vi)/(1+vi) for the generalized plane stress,

(i = 1,2),‘v} being the Poisson's ratio.

1

From (8) it is seen that for ay > 0, a, > 0 the kernels
k1j(r,s), (i,3 = 1f2) are bounded and continuous. Hence (7)
is a simple system of singular integral equations with an index
k = 1 and the additional conditions (6.c and d) which are ré-
quired for a unique solution. These equations can be solved
for the unknown functioné f.l and f2 in a standard manner. A
simple and highly effective numerical method has been described
in [9]. After obtaining f, and f2' all the desired f1e1d

quantities may be expressed as and evaluated from the def1n1te
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integrals with kernels corresponding to the particular field
quantity and the density functions fi (i =1,2) (see, for
example, [8] for the case of one crack). From the practical
viewpoint of particular interest are the stress intensity fac-

tors defined by*

k(ay) = llg V2la1 -r) T T1g0(T> ) = lim T——— /2(r -a,) f, (r),
1 r-va]
in V5T LAy
k(b]) = :‘lfg 2 r‘b] T]ee(r"") = ‘]l'l;‘ TT.‘; V_2<b-l-r, f](r):
1 5
: 2u
k(az) = lim v/2(a -r) Tygg(rs0) = lim 1+ /Zir -a 5 f (r),
r->a2 r+a2
k(bz) = 1im /2(r 5 J 1 zee(r 0) = -lim T?E_ /ZIE r) f o(r).

r+b2 r+b2
(10.a-d)
For the bonded planes Material 1 Aluminum (E] = 107 psi,
4.45x10% psi, v, = 0.35),

vy = 0.3), and Material 2 Epoxy (E2
Tables 1 and 2 show some of the calculated plane strain results.
In these tables Py and Py réfer to constant pressures applied
to.the crack surfaces and- are related by (1). As a basis of -
comparison the special case of a homogeneous plane containing
two collinear cracks may be mentioned. For My = Hps Yy T Vg,
a; = a, =a, by =b, =b, the stress intensity factors are

given by

*See Section 4 below.



Table 1. Stress Intensity Factors for a; > 0, a, > 0.
o - Material-T:-Aluminum;-Material-—-2:- Epoxy; --

a2 = ], 2:2 = (bz'az)/z = ]/2,

¢y = (b]+a])/2 = 1.5, 2 = (b]-a])/Z variable.

5 k(ay) k(bq) k(a,) k(b,)

PiYRy | PRy | P Ry P22,
0.05 | 1.0015 | 1.0014 | 0.97417 | 0.98165
0.10 | 1.0023 | 1.0021 | 0.97515 | 0.98241
0.15 | 1.0037 | 1.0033 | 0.97679 | 0.98369
0.25 | 1.0082 | 1.0069 | 0.98212 | 0.98775
0.50 | 1.0326 | 1.0231 | 1.0086 1.0079
0.75 | 1.0836 | 1.0492 | 1.0590 1.0454
1.00 | 1.1832 | 1.0869 | 1.1474 1.1089
1.25 | 1.4094 | 1.1437 | 1.3118 1.2210
1.40 | 1.8046 | 1.2012 | 1.5047 1.345]

Table 2. Stress Intensity Factors for ay > 0, a, > 0.
Material 1: Aluminum, Material 2: Epoxy;

a, = 1, 2] = 22 = 0.5, ¢y = (b]+a])/2 variable.
. k(ay) k(by) k(a,) k(b,)
] P/l P2y P72y P2,
1.50 1.0326 1.0231 1.0086 | 1.0079
1.25 1.0494 1.0326 1.0187 1.0143
1.00 1.0844 1.0499 1.0344 1.0236
0.75 1.1849 1.0881 1.0624 | 1.0393
0.60 1.4114 1.1454 1.0965 1.0576
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k(a) _ [b%E(m)/K(m) - a’]/Z
p’% (b-a)va(b*ay |

- k(b) _ vZ b%[1 - E(m)/K(m)] ’

(11.a,b)
pO/I (b-a)vyb({b+a)

(¢ = (b-a)/2, m=1 - a?/b?) ,

where Po is the constant pressure applied to the crack surfaces
and K and E are the complete elliptic integrals ofvfirst and
second kind, respective]y} For example, for b = 2a which corre-
sponds to the row 27 = 0.5 in Table 1 (or to ¢; = 1.5 in Table
2), we have k(a) = 1.01762 Po?s k(b) = 1.01249 po/I.

As %y ~ 1.5 in Table 1 and cy » 0.5 in Table 2, k(a]) + o
while the remaining three stress intensity factors approach
some finite values. The reason for this is that in this limit-
ing case a; = 0 and the singular behavior of the stresses around
the crack tip is of the form R™® with 0.5 < a < 1 whereas the

-0.5 type singularity (see (10))

definition of k(a]) is based on R
where R is a small distance from the crack tip a, (see [8]).

The results for another special case are shown in Figure 3 where
a, = bz; This is the problem considered in [8] where only one
of the adjoining materials contains a crack. Because of the
change in the power a of the stress singularity when the crack
terminates at the interface, again as a + 0 k{(a) > « for

uy > uz-and k(a) -~ 0 for My < Hps whereas k(b) in both cases

remains bounded.

11



Figure 3.

Stress intensity factors for a crack perpendicular
to the interface (materials: aluminum and epoxy;
external load: crack surface pressure po).
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3. CRACK GOING THROUGH THE INTERFACE, aj = 0 = a,

We now consider the main problem in which the crack goes

A through the interface, occupying both materials. In this case
it is clear that the integral equations (7) are still valid,
with ay = 0 = a,. Thus, the equations have only three irregular
points (b],n; 0; bz,o), meaning that one has to be more careful
in examining the singular behavior of the solution. Unlike the
problem. considered in the previous section for which ay > 0,

a, > 0, as seen from (8), here the kernels ky; are no longer

_ J
bounded for all values of r and s in the closed intervals [O,b]]
and [O,bz]. At the irregular point 0 they become unbounded,
indicating that at r = 0 the behavior ofvfi(r), (i = 1,2), will

be affected by kij(r,s).

To examine the behavior of f] and f2 around the irregular
points, following [10] we assume that the unknown functions may
be expressed as

miB,

. J
(s - 9;(s) . g;(s)e , | (12)

B B .
o _ J Are_pb.) J
s (bj s) s (s bJ)

0 < Re(a) <1, 0 < Re(sj) <1, (j=1,2),

where a, B] and 82 are the powers of the singularity at the
three irregular points, the function 9; satisfies a Holder
rcohdétion in the_closed interval 0'5 s < bj, (J = 1,2), ahd
the function sa(s-bj)Bj is any definite branch which varies
continuously on 0 < s < bj, (j = 1,2). Consider now the fol-

lowing sectionally holomorphic'functions:

13



TiB

b b, j
J fj(S) - i g:(s)e ds
gj_( z ) = .;I? J. -§-=Z— d S ?_-}T-_(r e ‘1 - R 3 .,..,_,(»j___;_.]..’ 2.)._’_ _— o -
0 0

s%(s-b.) j(s-'z)
J (13)

where the complex variable z = r + ip is defined in such a way

that in each case the cut (p = 0, 0 < r < bj), (i = 1,2) lies
along the positive real axis. Separating the leading terms at

the end points of the cuts, (13) may be expressed as [10]

g.(0)e™ g;(b)
65(2) = L. 1 L+ 6 .(2), (14)
b Jsinmy 2 b.*sinnB, by d J
j o j j (2z-bj)
where Goj is bounded everywhere except possibly at the ends,

ejk,.near'which

C.
- JK_ : -
16o5(2) ] « ———1,  (4.k = 1,2) S s)
Jjk
|2, |
Jjk
ej] =0, pj] < Re(a); ej2 = bj’ pj2 < Re(Bj)’

cjk and pjk being real constants.

Using now the Piemelj formula [10]

[6,*(r) + 6,7()1, (0 <7 <by) (16)

Noj—

b.
1 i -
T £ sS-r ds =

the terms with the Cauchy singu]arity in (7) may be expressed

as -

14



b
J f.(s) g9;(0) g.(b.)
% / —%:F— ds = _JET_ cotma LI R i cotmnB 1
(o] bj J r bJ (b.-r) J
+ G]j(r) . (0 < r < bj’ ji=1,2), (17)

where the behavior of G..(r) in the closed interval [O,bj] is

1]

similar to that of G (i = 1,2). The remaining terms in the

0J
integral equations (7) may be obtained directly from (14)
through differentiation. From (7), (8) and (13) it is seen
that in these terms z = -r which is outside the cut 0 < r < bj’
J =1,2. As r varies in the interval (O,bj), z will vary in
the interval (—bj,O) in which Gj(z) is holomorphic, (j = 1,2).

Thus, from (13) and (14) we obtain

b.
i f.(s)ds g:(0)
w [ A = eyen) s gl —— o e,
0 by Jsinma
1 d rfj(s)ds ) d ) ag.(0) ]
™ 0 (s+r)? ST Gj(-r) By ;E ' G3j(r) ]
bj Jsinwa‘ '

b, .2
1 dr f.(s)ds ) r,2 d2 ) a(a+])gj(0) 1
v Tir—)a"’z—;ﬂj("’ = —F, ot Gylr)
2b Jsinma
(0 < r < bj’ j=1,2), (18.a-c)

where it may easily be shown that the behavior of ij(r) in
- ‘the closed interval'[O;bj],'(j =1,2, k =2,3,4), will again
be similar to that of GOj given by (15).

If we now substitute from (17), (18) and (8) into (7),

15



and multiply first both sides of each equation by r® and let
8
r - 0, then (7.a) by (b]—r) Vand Tet r » by, and (7.b) by

e, B S, .
(bz-r) 2 and let r » b2, we obtain the following system of

equations:

af(a+l) g](O)

(cosma + cqq + acy, + > ¢13) —p
b] sinma

g,(0)
1t oedyy) B, =0,
b2 sinma

+ (d

9](0)
d -
22 .B]
b] sinmo

ala+l 92(0)
+ (cosma + le toac,, + c23)

b2 sinmo

g](b])

—_— cotnB] =0,

b, '
1

gZ(bZ)

[0
by

cotmB, = 0 . (19.a-d)

gj(O) and gj(bj), (3 = 1,2), are non-zero constants which will
be shown to be related to the stress intensity factors. Thus,
(19.c) and (19.d) give the following characteristic equatidns

to determine s] and 82:
COtﬁB]‘='0 ; VCOtﬂ82‘='0 . o I (Zo.é,b)

From (20) the values of B] and 82 satisfying the condition
0 < Re(B;) < 1, (j = 1,2), are found to be By = B, = 1/2, lwhich

16



is the well-known result.

On the other hand, since a # 0 and oo # 1, for (19.a) and
(19.b) to give a non-zero solution for gj(o), the determinant
of the coefficients must vanish, giving the characteristic

equation to determine o as follows:

D(a) = (coswma + Cip tacy, *+ Qi%ill c]3)(cosnu + CZ]
a{otl) - -
tacyy ¥ Ty Ca3) - (dyy +adyp)(dyy +oadyy) = 0

(21)
From (19) it is clear that the constants g](O) and 92(0) are

not independent and are related by

ala+]

9,(0) = - g,(0) v/b,/b, T

(22)
As will be pointed out later, the use of (22) will be necessary
in order to obtain a unique solution for the integral equa-

tions (7).

In the special case of homogeneous medium, mj + 1,
K] > Ko Cjk >0 (j =1,2; k =1,2,3), d]] + 1, d]2 +~ 0,
dyy =1, dy, > 0, the characteristic equation (20) becomes
coszna -1=20, giving o = 0 as the acceptable root and
9,(0)/vb, = - g](o)//ET."Cdnsideking’thé definitions (5) and
(12), this indicates that, as expected, at r = 0 the derivative

of the crack surface displacement becomes finite and continuous.

17



In the problem of two bonded half planes containing a

through crack perpend1cu1ar to the interface (Figure 1), the‘“w

- s{ngular behav1or of the so]ut1on at and around r = 0 must be
the same as that for two bonded quarter planes (see, for exam-

ple, [11] and [12]). Defining the constants

K] = 2(m]-1) , K2 = m](1+K]) - (1+K2) ,
Ky = m](1+»<]) + (1+K2) . (23)

after some manipulations (21) may be reduced to

2
[(K1-K2) c,os2 %g._ K1(a-1)2]
2 _: 2 mo 2 Ta. 2 2 _
t K3© sin > cos” o= - K2 (a-1) 0 . (24)

(24) is identical to the characteristic equation found in [11]
and [12] which indicates that the two solutions will have the

: . *
same singular behavior .

In the special case of only one of the cracks terminating
at the interface, i.e., for b1 > ay = 0, b2 > a, > 0, the
kerne]; k]2, k21 and k22 in (7) will be bounded and will have
no contribution to the singularities. For this problem the

solution is of the form

*

As shown in [11] the weak power singularity 0 < Re(a) < 1 as
assumed in this paper is not the only possible singularity for
two quarter planes. Theoretically it is possible to have a
logarithmic singularity as well as bounded stresses. However,
if one studies the conditions in detail, it is not difficult
to show that for all practical material combinations, the
power singularity is the only possibility.

18



9,(s)
*1
s (b]-s)

g,(s)

f](s) = fz(s) =

By ° a B
1 : 2 2
(sfaz) (b2-s)
(25.a,b)
and, following the procedure outlined above, the characteristic

equations for o, and B, (i = 1,2) are found to be

ola+l -
cotmp, = 0o, cotma, = o, cotng, = 0 . (26.a-d)

(26.a) is the equation found in [8] for the single crack and

(26.b-d) give B'l = 0.2 = 82 = ]/2.

4. STRESS INTENSITY FACTORS

Using the resu]té of the previous section it can be shown
that the strength of the stress singularity at the crack tips;
conventionally known as the stress intensity factor, is related
to and can be evaluated from the density functions or the dis-
placement derivatives fj(r), (j = 1,2), defined by (5). First,
consider the case of two cracks imbedded into the adjacent
homogeneous materials (i.e., bj > aj >0, §j =1,2) for yhich

the functions fj and the related holomorphic functions Gj(z)

may be expressed as

91(5)

fyls) = - - | (27.a)

- J _ J
(s-a;) “(by-s)

19



b j
6.(z) = 1 fJ fJ(S)dS i} gj(aj)e 1
J T a. s-2Z i . 3
_—— - T, ———--——ij:ajJ—_WSanuj_(z’aﬁo-—-—w— S
g:(b,)
- —4= L~ 46,02, (3=1.2)
—a.) Jdei . - J
(bj aJ) smnBJ (z bj)
i - - (27.b)
where &5 = Bj = 1/2. We now note that in equations (7) the

left hand sides are the expressions for [(1+v<j)/2uj]rjee for
(0 < r < ajs bj < r <) as well as for (aj < r< bj) as indi-
cated in (7). Thus, noting that the terms iavolving kij are
bouhded, outside the cuts Gj(r) directly gives Tige ON the real
axes, from which the stress intensity factors may be readily

~evaluated. For example, at the end r = b] from (27) we obtain

2u
k(by) = Vim VZ(F-By) 1yq0(r,m) =y 1im  /2(r=b;) G(r)
r+b “1 r+b
1 1
ZU] V2 g](b]) 2U1 ' '
= - _|+K] /BT:]_ T - T—+K'.I ll[tl)] Vz‘b]‘r, f](r) .
1

(28)
The other expressions given in (10) follow from (27) in a simi-
lar way which, in terms of gj, become

2u, V2 g,(b,)
K(b,) = - —2& — 227
2 T e,

YV
. 2u. VZ g.(a.) . o _
k(a;) = T—l— s, (i =1,2) (29.a,b)
aJ +|<j | ,b————j_aj J |

Consider now the second typical case, that is, a crack tip
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terminating at the interface (e.g., by > a; = 0, b, > a, > 0).

In this case the stress intensity factor will be defined as

a
1(0) = Tim /Z r Teygq(ri0) (30)

where o is obtained from (26.a) and 1296(r,0) is given by
(7.b). Since b2 > a, > 0, at r = 0 the first and third terms

on the left hand side of (7.b) will be bounded, and only the
second term will contribute to the stress singularity. in the
second term a; =0, 0<s< b], r > 0, and kZ](r,s) is given
by (8;d). Hence, the asymptotic value df the integral for small
r may be obtained from (8.d) and (18.a,b). Using the definition

(30) and ignoring the bounded terms, we then obtain

b k-1
o, 2y 1 2 d,,r
. 1 2 1 2k
ky(0) = Vim v2 r * 3= ¢ | ) = fy(s)ds
1 r+0 o T o k=1 (s+r) 1
g,(0) '
= u]* 1 = 1im V2 uyor 1f](r) .
vby r+0

x 24y dyy *oady,
b T+, ~ sinma

(3-2a])(1+m]K]) - (1-2a])(m]+K2)

= My (T¥m &, T(my ¥x, JsTnma; (31.a,b)
Similarly for b] > ay > 0, b2 > a, = 0, we find
S Oy - w9,(0) .
s 2 - * 92
k2(0) = 1im V2 r Tlee(r,ﬂ) = /2 Wy (32)

r->0 2

where “2* is obtained from (31.b) by interchanging the indices

21



1 and 2 in Mys My, K, (j = 1,2), and replacing ay by a, which,

in turn, is obtained from (26 a) by subst1tut1ng c2k for c]k,
:“1* is identical to u given in [8] which was obtained by a
different method. Needless to say, in this case for the remain-
ing three end points the expressions given by (28) and (29)

will remain valid.

For the third case in which the crack goes through the
interface, i.e., for a; = a, = 0, b] >0, b2 > 0, we define
the normal and the shear components of the stress intensity

factor as fo]lows*

- 1 o = i
ke = llg r Tjee(P,H/Z) R kr llg r Jre(r w/2) ,
(j =1 or 2). (33)

Thus, to obtain ke and kr the expressions for the interface
stresses are needed. These expressions may be obtained as

definite integrals with the density functions fj, (i = 1,2),

*
In this case, the asymptotic expressions of the stresses for
small values of r and for 0 < 6 < 7 are of the form

' 1
vyyr.0) = K0 n (o) + 0(r®), (1.5 = r.6; Re(a) > Re(-a')),
r

where hee and hre are bounded and continuous in [0,m], includ-

ing at 6 = n/2, and the bounded function hrr has a discontinu-

jty at 6 = ©m/2. Here, because of the physical importance of
the interface and simplticity of the calculations, the stress
intensity factors are defined in terms of the normal and

shear stresses along the interface, i.e., kg = k(0)h 6(vr/2),

r = k(0)h e(Tr/2) As the results of this section show, with-

in a multiplicative constant, k(0) is noth1n? but the constant
g](O) (which is related to 92(0) through (22)).
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and the appropriate kernels which are evaluated from the origi-
nal Mellin Transform solution (see {8]). After some manipula-

tions, the components of the stress vector at the interface are

found to be
b 2 2
1 Ass A,s(3rc-s°)
My _ . Ty _ 1 1 2
T]ee(rs?) = Tzee(rs?) = Fg [ 5—2:'—2’ + " " 2 ]f](S)dS
r (s5+rc)
b ' 2 2
2 A,s A,s(3r-s%)
1 3 4
(- B 7zt > 5— 1f,(s)ds )
) r (s2+r2)
b 2 2
1 B,r B,r{rc-3s°)
T Ty _ |1 1 2
Tre(t7) = Targlrsz) = g g L 2,7+ — " 1 (s)ds
(s®+r®)
b 2 2
2 B,r B,r(r°-3s7)
PR N e A 1f.(s)ds , (34.a,b)
T S?_'_ Z 2 2 2
4] r (S +r )
u My Hy Uy
A, = —2 A Ay = - —— | A, =
1 m; 4K, i 2 |+m]K] ’ 3 m,+K i 4 1+m2K2 :
5 Hy (14myx,) 5 - My (my+ky)
1 (1+m]u<])(m]+»<2) ’ 2 (1+m]n<])(m]+|<2) ’
o wy(T4mpkq) B = uy(myticy) (35)
By = (T, T (W, ¥eq ] 4 " Ty, ) (Wy¥r7)

The kernels in (34) can easily be

containing

1 ir

expressed as the sum of terms

(s+1'r)2

It is clear that since r > 0, at z
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(36)

+ ir the functions Gj(z)



defined by (13) will be holomorphic and, following the same
procedure which led to (18) in the previous section, the inte-
- grals—in (34) may be -evaluated—in- terms-of—G(z)and-its deriv- -

ative (at z = +ir). For example,

b b
1 sf,(s)ds 1
L2l = (et ) (s)ds
L sz+r2 2m p s+ir s-ir 1
1 (e'rr'lo(,/Z + -TT]C!/Z) Z](O) ]a + F1(r)
b] ]sinwu r
g,(0)
= ;] J— + F](l") ’
.. Tor
2b1 siny—
b
1
1 1 1
2 ir - )f (S)dS
T g (s+1’r)2 (s-ir 2 °1
ag,(0)
R Lo+ Fy(r), (37.a,b)
by Tsind®

where F] and F2 are bounded functions. Carrying out the neces-

sary manipulations, from (33-37). we obtain

1 9 (0) g9,(0)
ky = { [A; - (1-2a)A)] - [A, - (1-2a)A,]},
0 : = 1 2 B 3 4
g,(0) g (Of
k, = —— { — [B] - (1-20)8,]1 - £— [B; - (1-20)8,1},
2cos5— /FT by

(38.a,b)

where the constants g](O) and 92(0) are linearly related through
(22) and the constants A; and B; (i = 1,..,4) are given by (35).
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5. CRACK SURFACE DISPLACEMENTS

The crack surface displacements U1 and u,, are related

7

to the density functions f] and f2 through (5). Hence, noting

that uje =0 for r > bj, (3 = 1,2), after evaluating f] and f2

the displacements may be obtained from

b
1
u]e(r,w-O) = % { f](S)dS s

b
2 .
Uy (r,+0) = - %{ fo(s)ds . (39.a,b)

6. SOLUTION OF THE INTEGRAL EQUATIONS AND NUMERICAL RESULTS

In deriving the integral equations (7), instead of the
conditions (2.c) and (4.c) the conditions (6.a,b) are used;
that is, the problem is formulated on the assumption that out-

side the cuts ( ’bj)’ the displacement derivatives fj rather

%
than the displacements uje,

case of nonintersecting cracks (i.e., for a; > 0, aé > 0, or

(j = 1,2), are zero. Thus, in the

a; = 0, a, > 0), the integral equations (7) must be solved
under the single-valuedness conditions (6.c,d). Referring to
[10], since the general solution of the system of singular
integral equations [7] will contain two arbitrary constants, -
the two additional conditions (6.c,d) are needed for a unique
solution. On the other hand for-the intersecting-cracks, that
is, for a; = 0 ='a2, there is only one single-valuedness con-

dition, namely, -u1e(0,n-0) = u26(0,+0), or
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2
/ f](s)ds = fz(s)d§ . N . (40)

The second condition which is necessary for a unique solution
is provided by (22) relating g](O) and 92(0), or the functions
f] and f2 at r = 0.

For a; = a, = 0, even though the special cases of the
resulting system/of singular integral equations with generalized
Cauchy kernels (7) have been considered iﬁ [13] and [14], there
is no known method which can be used to regularize the integral
equations of this type. To solve these equations we first nor-
malize the intervals (aj,bj), (i = 1,2), through the following

change in variables:

2s - (b]+a]) 2s - (b2+a2)
1775, -, 0 27 T, -a,
(aj < s < bj’ -1 < Ej <1, j=1,2). (41.a,b)

Next we let

f.(s) = gj(S) - ¢J(€J) ’ (42)
(s-é) (bj-s) (1+g5) ~(1-¢5)
giving
b.-a. a.+B

Also defining
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2r - (bj+aj)
tj = bj ~ aj s PJ(tJ) = pj(r‘) s

(a,

J < r < bj, -] < tj < ], j = ]’2)’ (44)

and suppressing the subscripts in gj and tj, the system of

integral equations (7) may be expressed as

p 128y . 14K,
T { ; [zmg * K600 oy(8ws(e)de = - pr= Py(t)
(-1 <t<1), - (45)
where‘
-0 -B.
wi(€) = (1+£) Jr-g) 9, (i = 1,2) - (46)

are the fundamental functions of the system, and the kernels

K;: may be obtained from kij by means of appropriate transfor-

ij
mations. Now, observing that the fundamental functions wj(g)
of the system of integral equations are weights of the Jacobi

('B-:'a')
J° J'(¢), the equations may be solved numer-

polynomials Pn
jcally for the unknown functions ¢j by using the Gauss-Jacobi
integration formulas described in [15]. Affer evaluating ¢j’
the values of gj at the end points, which are needed to caIcu-
late the stress intensity factors, may be obtained from (43)

in terms of ¢j(t]).

For the material pairs Aluminum-Epoxy some of the calcu-
lated results for the p]ahé strain'case a?e shown in Tables
3-5 and Figures 4-13. Ffor b] + 0 or b2 + 0 (i.e., for the case

of a single crack terminating at the interface), the results
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of [8] are obtained as the limiting values.

examples given in this paper it is assumed that the composite

crack region in such a way that the stresses p](r) and pz(r)
are approximately constant.
problem considered in this paper, the crack surface tractions

will be constant pressures =Py and -Ps which are related

through (1).

In the example shown in Table 3 and Figures 4 and 5, the
material 1 is aluminum, material 2 is epoxy, one of the crack
tips b] is fixed at a'unit distance from the interface, and

b2 varies between 0 and Zb].

In the numerical

medium—is—toaded parallel to the interface and away from the"

In Figure 4 as well as 6 and 8

Thus, in the singular part of the

the constqntsvk] and k2 refer to k(b]) and k(bz), respectively.

Table 3.  The Stress Intensity Factors for Through Crack,
AR a; = ap = 0. Material 1: Aluminum, Material 2:
Epoxy (v 0.3, vp = 0.35, Eq/E, = 22.447);
by = 1 = constant, g = (b]+b2)/2, b, variable,
(By =By = 0.5, a = 0.273692). |
b,/by | k(by)/pyvE| k(by)/p,vE ke/p]s'a“ k./pya®
0.00 1.3552% > @ > - + ®
- 0.05 1.40374 4.36065 -0.22477 0.08215
0.25 1.33240 - 2.13917 -0.08113 0.03184
0.50 1.23789 1.55615 -0.05906 0.02158
0.75 1.15887 1.31166 -0.04636 0.01694
1.00 1.09312 1.17874 -0.03839 0.01403
1.25 1.03767 1.09693 -0.03266 . 0.01194
1.50 0.99020 1.04261 -0.02822 0.01032
1.75 0.94902 1.00462 -0.02462 0.00900
2.00 0.91286 0.97701 -0.02160 0.00789

*Taken from

Reference [8].
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Table 4. The Stress Intensity Factors for Through Crack,

a; = ap = 0. Material 1: Aluminum, Material 2:
Epoxy; 22 = by+b, = 2 = constant, c = (bz-b])/z

variable, (B] = Bp = 0.5, ad = 0.273692).

c/2 k(by)/pyv&| k(by)/pyv&|  ke/py2® k./pya®
-1.00 1.3552" > > - >
-0.95 1.40333 5.69903 | -0.34124 0.12472
-0.75 1.37532 2.76781 -0.11960 0.04371
-0.50 1.29929 1.87137 -0.07423 0.02713
-0.25 1.20448 1.43765 -0.05310 0.01941

0.00 1.09312 1.17874 -0.03839 0.01403

0.25 0.96213 1.01590 -0.02575 0.00941

0.50 0.80281 0.91834 -0.01293 0.00473

0.75 0.59068 0.87340 0.00313 -0.00114

0.95 0.29854 0.87519 0.02903 -0.01061

1.00 > 0 0.8827* > o > -

*Taken from Reference [8].

Table 5. The Stress Intensity Factors for Through Crack,
a; = a, = 0. Material 1: Epoxy, Material 2:

Aluminum; by = 1 = constant, & = (by+by)/2,

b, variable, (a = 0.273692, By = By = 0.5).
by/by | k(by)/pyv2| k(b,)/p,/2 ke/p]zOl ko /pya®
0.00 0.8827* + 0 + o > @
0.05 0.87141 0.39001 0.44554 0.16283
0.25 0.89435 0.72689 -0.16129 -0.05895
0.50 0.97701 0.91286 -0.48485 -0.17720
0.75 1.07647 1.02106 -0.69736 -0.25487
1.00 1.17874 1.09312 -0.86170 -0.31493
1.25 1.27901 1.14476 -0.99895 -0.36509
1.50 1.37559 1.18357 -1.11885 -0.40891
1.75 i1.46797 1.21377 I -1.22669 -0.44832
2.00 '1.55615 1.23789 -1.32567 -0.48449

*Taken from Reference [8].
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Figure 5. Stress intensity factors for normal and shear
stresses on the interface for the through crack
(materials: 1 aluminum, 2 epoxy; b] = constant).
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Table 4 and Figures 6 and 7 show the results for the same mate-

rial comb1nat1on In th1s second examp]e 1t is assumed that

the total length 22 = b]+b2 of the crack is constant, and the
distance ¢ = (bz-b])/z from its center to the interface is
~ variable. The stress intensity factors for the case of epoxy-

~aluminum are shown in Table 5 and Figures 8 and 9.

The tables also show the limiting values of the stress
intensity factors for by » 0 and ¢ » 1. These limiting values
are obtained by observing that in the case of a tnrough crack
(i.e., for by > a; =0, (j = 1,2)), for the material pair
aluminum-epoxy (21) gives the power of the stress singularity
as a = 0.2737. On the other hand, for the limiting case of a
crack tip terminating at the interface, i.e., for b] =0 or
b2 = 0, and for the mnterial'pair under consideration, from

(26.a) the power ay; of the stress singularity is calculated to

be:

ay 0.8258 , crack in aluminum,

a, 0.3381 , crack in epoxy. ' (47.a,b)
Thus, for example, in the example shown in Table 3 and Figures
4 and 5, as b2 + 0 the powers of singularity become o -+ UK
By > aq. Therefore, for this limiting case, since a; = 0.8258
>a = 0.2737 and ay > By = 0.5, at r = 0 the stresses would
have a stronger singularity and consequently the stress inten-

sity factors k; and k., which are defined on the basis of r-%,

-0.5

and k(bz), which is defined on the basis of r , would alil

go to infinity. Similar arguments apply to the limiting values
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Figure 6. Stress intensity factors for through crack
- (materials: 1 aluminum, 2 epoxy; 22 = 2 =
constant, ¢ variable).
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Figure 7. Stress intensity factors for normal and shear
stresses on the interface for through crack
(materials: 1 aluminum, 2 epoxy; 22 = 2 =
constant, ¢ variable).
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Figure 8. Stress intensity factors for through crack
(materials: 1 epoxy, 2 aluminum; b] =1 =
constant, £ variable).
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- Figure 9. Stress intensity factors for normal and shear

stresses on the interface for through crack .
(materials: 1 epoxy, 2 aluminum; by =1 =
constant, £ variable).
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shown in Tables 4 and 5.

From Tables 3-5 and Figures 5, 7, 9 it is seen that the
normal component of the stress intensity factor, ke, (hence,
the normal component of the bonding stress along the interface
in the neighborhood of r = 0) may be positive or negative de-
pending on the relative penetration depths b] and b2 of the
crack into the adjacent materials. As the ratio b2/b] in-
creases, k9 increases if Hy > uy (Figures 5, 7), and decreases

if Hy < Wy (Figure 9).

Figufe 10 shows a sample distribution of the density

functions f] and f2 defined by

f-‘(S) =F](E]) ’ (0<S<b": -1 <E~| <])s
fz(s) = Fz(gz) ’ (0 < s < b2’ -1 < Ez < 1). (‘48.a,b)

The calculated values shown in the figure correspond to the
example given in Table 3 with bz/'b] = 0.05 (i.e., material 1
is aluminum, material 2 is epoxy). The important feature of
the distribution of the density functions f1 and f2 is that at

@ type singularity, they become

r = 0, because of the common r~
infihite, -f] and f2 having the same sign (i.e., at r = 0 the
derivative of the crack surface displacement is discontinuous

and unbounded).

Sample results for the crack surface displacement calcu-
Tated from Q39) are shown in Figures 11-13, where the variables

are again the normalized quantities £ and P defined by (41).
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The results shown in Figures 11, 12, and 13 corfeSpond to the
examples given in the Tables 3, 4, and 5, respectively. In
Figures 11 and 13 the length unit for displacements is b] and
in Figure 12 it is 2 = (b]+b2)/2. A careful examination of the
crack surface displacements in the adjacent materials around

r = 0 would indicate that the cfack opening in the medium with
‘the higher nodulus is greatér than that with the lower modulus,

both having an infinite slope.

The results given in this paper may be used in the analy-
sis of fracture propagation in the composite medium by using
any of the standard fracture criteria if the crack extension
takes place at the singular point r = b] or r = b2 where the

-1z However, in studying

singularity is of the form (r-bj)
a possible fracture initiation at r = 0 (where the singularity
is of the form r %), i.e., initiation of a debonding crack
along the interface or a ;1eavage crack-in one of the adjacent
materials, a criterion similar to that outlined in [8] may

have to be used.
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