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ANALYSIS OF HIGH-ASPECT-RATIO
JET-FLAP WINGS OF ARBITRARY GEOMETRY

By Peter B. S. Lissaman
Northrop Corporate Laboratories

SUMMARY

Many techniques of amplifying the 1ift of a wing involve the blowing of
a thin, high energy sheet from the wing trailing edge (jet flap). Currently,
no methods exist to rapidly compute the performance of an arbitrary
jet-flapped wing.

This paper develops an analytical technique based on the method of Maskell
and Spence in which the well-known 1ifting-line approach is coupled with an
auxiliary equation providing the extra function needed in jet-flap theory.
The method of Maskell and Spence was developed for a special class of wings
of elliptical planform and loading. The present method generalizes this to
handle straight, uncambered wings of arbitrary planform, twist, and blowing
(including unsymmetrical cases). An analytical procedure is developed for
continuous variations in the above geometric data with special functions to
exactly treat discontinuities in any of the geometric and blowing data. A
rational theory for the effect of finite wing thickness is introduced as well
as simplified concepts of effective aspect ratio for rapidhahd estimation
of performance. '

~ The procedure has been programed and prints out all relevant data.
Each wing case takes less than six seconds on the CDC 6600.



The results converge properly to all known limit cases, and correlation
with other known theoretical solutions for jet-flap wings is good. It is found
that, although the method is a 1ifting-line technique, good accuracy was
obtained for aspect ratios as low as 4. Correlation with experimental data
was as good as other techniques, but it is pointed out that few properly
controlled and corrected experimental tests are known.

It is believed that the accuracy of this method is quite adequate for
jet-flap wing design and that the speed and flexibility of the program make
it very suitable for pre]iminary design.

INTRODUCTION

Powered 1ift is becoming an increasingly important technique for STOL
vehicles. In general, this consists of methods in which the energy of a
certain mass of air is increased, and this mass then forced over aerodynamic
surfaces to amplify the lifting effects. Typical examples of powered 1ift
using a jet sheet with lifting-surface interaction are: jet-flap wing,
externally blown flap, and augmentor wing. The theory developed in this
analysis is applicable to all these types of 1ift amplification, since augmentor
wings and externally blown flaps involve a similar analysis to jet-flap wings
and may be approximated by thin sheet jet-flap theory.

The fluid dynamics of multi-energy flows is generally a pooerly understood
field. Although it is simple to write the basic equations satisfied at appro-
priate points, a full solution for a specified geometry is more difficult, even
neglecting the effect of viscosity. In essence, this probiem occurs because
the unknown boundary between the two flows of different energy cannot be specified
in advance. Since this boundary moves as the flow state is altered, the solutions
are intrinsically nonlinear because of the nonlinear boundary conditions.

For the problem considered, a high energy jet sheet issuing from the
trailing edge of the wing is assumed. The standard assumptions of incompressible
inviscid flow, a thin jet, and linearized boundary conditions are made. This
model is described in detail in reference 1.



SYMBOLS
intermediate complex mapping parameter
2
aspect ratio, -
S
W
effective aspect ratio (see eq. (59))
coefficients of ° sine expansion
wing span, meters (ft)
local wing chord, meters (ft)
chord of airfoil in auxiliary plane (app. B)
normalized chord, —S_
av
S
mean chord, T¥' , meters (ft)
effective chord, (see eq. (19))
effective chord at station, w = -

momentum coefficient in auxiliary plane (app. B)

momentum coefficient in auxiliary plane at trailing edge
(see eq. (B12))

chord of airfoil in physical plane, meters (ft) (see app. B)

1ift coefficient at a station



" local 1ift coefficient due to jet momentum ~

two-dimensional normal pressure 1ift coefficient (see eq. (6))

two-dimensional 1ift coefficient finite thickness airfoil
two-dimensional 1ift coefficient zero thickness airfoil

two-dimensional 1ift coéfficient gradient with angle of attack
two-dimensional 1ift coefficient gradient with jet-flap deflection angle

local induced-drag coefficient’

local induced-drag coefficient due to jet momentum

local induced-drag coefficient due to pressure on airfoil
wing-induced drag coefficient

local jet-momentum coefficient, —x

wing jet-momentum coefficient

wing 1ift coefficient

wing 1ift coefficient gradient with angle of attack



g(x)

f*

wing 1ift coefficient gradient with jet angle
wing pressure 1ift coefficient

wing pressure 1ift coefficient gradient with angle of attack
wing pressure 1ift coefficient gradient with jet angfe

local normal-force coefficient in airfoil
local nose-thrust .coefficient on airfoil

induced drag of wing

elements of matrix determining o change

induced drag efficiency

function used to define jump operator (see eq. (37))

ratio of blown to unblown 1ift slope of airfoil (see eq. (59))
mapping derivative from physical to auxiliary plane

elements of line vector denoting error in nose thrust
compohents of force in Trefftz plane (app. A)

Heaviside operator



elements of matrix defining discontinuous potential gradients

1ift of wing, grams (1bs)
indices of summation
leading edge of airfoil (app. B)

nose source

~ gradient of nose source with angle of attack

gradient of nose source with jet angle

complex conjugate velocity in auxiliary plane

free-stream speed in auxiliary plane, meters/second (ft/sec)

complex conjugate velocity in physical plane

free-stream speed in physical plane, meters/second (ft/sec)

even integer defining upper limit of potential function series,
(see eq. (22))

radius of curvature of wake in physical plane
arc length in auxiliary plane (app. B)

arc length in physical plane (app. B)



S wing area, meters? (ftz)

t thickness of airfoil in auxiliary plane (app. B)
T thickness of airfoil in physical plane (app. B)
T! trailing edge of airfoil (app. B)

v main-stream velocity, meters/second (ft/sec)

w(z) norma]ized complex perturbation potential in Trefftz plane
W complex potential function

X spanwise coordinate in Trefftz plane

X spanwise coordinate normalized by semispan (2x/b)
y vertiéa] coordinate 1ﬁ Trefftz plane

Y vertical coordinate normalized by semispan (2y/b)
Z complex coordinate in Trefftz plane (app. A)

z' complex. coordinate in auxiliary plane (app. B)

VA complex coordinate in physical plane (app. B)

o local wing angle qf attack, radians.

a mean angle of wake in Trefftz plane, radians

G effective angle of attack, radians (see eq. (20))



kn

Ap

effective angle of attack at station, w = 5L, radians =~

local induced angle of attack, radians

lacal effective angle of attack of jet-flap airfoil, radians,
(see eq. (13))

local effectivé'angle‘of attack of plain airfoil, radians
local angle of downwash in Trefftz plane, radians

local angle of jet wake in Trefftz plane, radians

elements of matrix defining potential gradient
elements of Tine vector defining potential gradient at w
elements of line vector used in discontinuous analysis

local jet-moment per unit span at station x

circulation about airfoil in auxiliary plane (app. B)

circulation about airfoil and wake in physical plane, (app. B)
circulation about airfoil alone in physical plane (app. B)

Kronecker delta

pressure perturbation in Trefftz plane (app. A)



€ constant used in iteration technique (see eq.v(47))

n ratio of 1ift slope of thick unblown airfoil to zero thickness
unblown airfoil (see eq. (54))

] Tocal jet angle relative to chordline, radians
¢} slope of wake in auxiliary plane (app. B)
G slope of wake in physical plane (app. B)
Ay magnitude of it downwash discontinuity (see eq. (35))
i intermediate complex mapping parameter
P density of main-stregm flow, grams/_meter3 (s}ugs/ft35
o} function relating Trefftz plane downwash to wing plane downwash
9 normalized potential function
e© continuous normalized potential function
o* discontinuous norma]ized potential function
¢x’¢y Qradient of potential function, w.r.t. x,y
Xo distance from leading edge of airfoil
w angular coordinate of wing station (cos'] X)
th

Wy angular coordinate of i discontinuity of wing geometry



- - - = - - - - PREVIOUS-WORK -~ - - - - - -

The Tlinearized problem for the two-dimensional jet flap both in and.out
of ground effect has been treated in references 2 to 5. Excellent correlation
of the theory with experiment has been found.

The three-dimensional problem has been handled by a number of workers
using different approaches to handle the kinematic and dynamic boundary condi-
tions in the wake. A semi-empirical method for computing wing performance is
given by Kuchemann (ref. 6). Solutions using the techniques of matched
asymptotic expansions have been published by Kerney (ref. 7) and Tokuda (ref. 8).
A11 of these methods involve approximations about the wake location.

The model by Maskell and Spence (ref. 1) makes an attempt to handle the
dynamic condition on the wake by using two-dimensional solutions which properly
match the wake boundary conditions. However, this treats only the high-aspect-
ratio elliptically loaded case. Perhaps the most advanced model is that given
by Lopez and Shen (ref. 9). Although this model (1ike the others) is linearized,
it utilizes lifting-surface theory, finding the wake deformation by iteration
on the proper dynamic and kinematic boundary conditions.

The model proposed here lies somewhere between the method of Lopez and
Shen (ref. 9) and that of Maskell and Spence (ref. 1) in its assumptions and
complexity. It is essentially an extension of the blown 1ifting-line concept
for a high-aspect-ratio wing of arbitrary planform and blowing. In the current
model, methods are developed to take into account discontinuities in the wing
geometry in chord, angle of attack, jet angle, or blowing coefficient.

ANALYSIS

General

The formal 1ifting-surface solution consists of matching kinematic boundary
conditions on the wing as well as kinematic and dynamic boundary conditions on
the loaded jet wake as shown by Lopez and Shen (ref. 9). An extension of the
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Prandt1l 1ifting-line approach as employed by Maskell and Spence (ref. 1)
is adopted.

The basic idea (which may be formalized in terms of matched asymptotic
expansions) is that the forces on the wing may be determined in two places.
In the Trefftz plane, the forces may be uniquely determined in terms of wake
parameters (essentially downwash and jet coefficient). On the wing itself

(wing plane), the forces may be determined in terms of local section properties.
Here, the main parameters are the blown airfoil characteristics and the induced

downwash angle at the wing. The Trefftz plane and wing plane forces are then
matched to provide sufficient equations for solution.

In the case of-an unblown wing, the 1ift in the two planes is matched to
provide a relationship between the potential ¢ and the Trefftz plane down-
wash ¢y generating the well-known integro-differential equation of 1ifting-
Tine theory (Prandtl's equation). An important assumption is that the
induced angle at the wing is taken to be half that in the Trefftz plane.

In the case of a blown wing, a major portion of the bound vorticity
(that directly due to the jet sheet) is located downstream of the trailing
edge. Thus, it is not valid to assume that the trailing vorticity emanates
from a Tifting-line situated within the wing chord.

The analysis involves only two space variables, with the coordinate system
centered on the wing or wake centerline. The independent variable x 1is used

for the spanwise dimension, positive towards the right wingtip where the wing
is viewed from the rear, with y the vertical coordinate positive in the
upwards (1ift) direction. (See fig. 1.)

The approach of reference 1 is adopted and ihtroduces a new constant o
(variable across the span) by which the Trefftz plane downwash is scaled.
Thus, the downwash at the wing is assumed constant across each chordwise
station and equal to o(x) o.(x) where o (x) is the downwash angle in
the Trefftz plane. Hence, the induced angle .ai(x), as shown in figure 2, is
given by

a;(x) = o(x) a,(x) _ (1)

11



This implies that a further unknown is introduced into the wing plane
solution, so that an additional matching equation is required. It seems natural
then to match both the 1ift and drag equations, or equivalently, the normal and
chordwise force equations providing the additional equation for o . Reference 1
assumes that o 1is constant across the span, as implied by the elliptical loading.
In the present solution, o is permitted to vary with x and determined at each
spanwise station.

Trefftz Plane Solution

By considering the flow in the Trefftz plane and by resolving paraliel and
normal to the chord, a pair of equations is obtained for the normal pressure
coefficient and the thrust coefficient on the wing. It should be noted that
the total force on the wing constitutes the sum of the pressure force and the
momentum force due to the jet. Since the latter can be directly computed from
the kinematics, it is more convenient to work with the pressure forces alone.
It is noted that all coefficients are normalized by division of the dimensional
force by 1/2 p V2 ¢ for the two-dimensional quantities and by 1/2 p V2 Sw
for the integrated wing quantities, where p  is the ambient density , V the
free-stream velocity, ¢ the local chord, and Sw the wing area. Appendix A
" shows these force coefficients to be given by

c=9——i‘—9-cj(\a¢y+u+e) : (2)

n

4 +a36\ C. ’
D) o

Wing Plane Solution

This solution is required to relate the local wing angle of attack to its
bound vorticity distribution. This distribution must be such that the downwash
it causes when added to the trailing system flow produces the downwash necessary
'to match the physical kinematic boundary conditions on the wing (fig. 2).
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Consistent with 1ifting-line theory, it is assumed that the local downwash
may be computed by considering the downwash of a two-dimensional system as shown
in reference 1. This solution must match the kinematic and dynamic boundary
conditions appropriate to a jet-flapped airfoil.

There are two approximate approaches to the problem of defining the
boundary vorticity. The first is to assume that the vorticity is composed of
two parts - the one being that of a two-dimensional jet-flap airfoil at
Ay =0 = o with a jet flap of strength Cj and angle o (fig. 2). This
gives a downwash field W To satisfy the wing boundary condition, a further
vorticity is required,and this is assumed to be that of a plain airfoil at Qo
giving downwash Wy . Thu§,_§§_shown in reference 1, the kinematic boundary
condition on the wing is exactly satisfied, and the dynamic boundary condition
on the wake approximately satisfied. The above model is calied the alpha
effective model.

An alternative approximation is to assume the vorticity is that
corresponding to a two-dimensional jet-flap airfoil at the true effective angle
o - o, but at a reduced jet stkength. The new effective blowing coefficient

i
Cje is obtained by maintaining the same momentum 1ift in the three-dimensional
wing as in a two-dimensional jet-flap airfoil

¢ (9+a-a°°)=cj (e+q-a1.> (4)

e

This is called the Cj effective model.

Thus, the loss in jet effectiveness due to three-dimensional flow
(essentially involving the downwash due to the trailing vortex field) may be
accounted for either by a reduced effective angle of attack or by a reduced
effective momentum coefficient.

'Combinatibn 6f T}efftz and Wing Equations

It has been shown that introducing o as an unknown requires two Trefftz
and wing equations to close the set. The Trefftz plane solution gives
unambiguous results for .Cn and Ct . The wing plane gives two alternative.

13



expressions for Cn and Cg . Thus,i{h brﬁncipfé: these are four consistent sets
which could be chosen. For our purposes, the o effective assumption was

selected for both Cn and C, since this is slightly simpler algebraically.

t

Coefficients Using o Assumption

For this model, the 1ift coefficient due to the jet-flap airfoil at a],e

is C, a, +C, 8 (where C and C are the 1ift slopes for the jet-flap
SZ,OL t 'Q'S 2’0{. 'Q'G

airfoil at the appropriate Cj ). Expressions for C2 and Cz are given in
: o 0
reference 2. In addition, there is the 1ift due to the plain wing vorticity

of a flat plate at Qy s 21 Op = Thus, the Tift coefficient is

C2 = 2m oy * Cza ay + CQ'e ) _ (5)

Subtracting the jet momentum Cj (u] + 0) 1in order to obtain the normal pressure
1ift coefficient gives

cij = 2ma, + (02 - cj) o + <C“e cj) 6 (6)

For the nose thrust, the singular behavior near the leading edge is required.
This may be represented in the form of a nose source No as described in
reference 5 such that the perturbation near the nose behayes like NO/XO]/2
where Xo is the distance from the leading edge. It is shown in reference 5

that this can be written for a two-dimensional jet flap as

N =N a+N 6 (7)

For the plain airfoil vorticity, N_ = 1.0. Thus, the total nose
singularity constant is given by

N = N0 o +.a2 + N0 0 (8)

14



As shown in reference 5, this singularity accounts entirely for the nose
thrust which is given by

— o 2
Ct = 21r(No oy + a2+No e) (9)
o o

N, 2_=(2 C, - Cj) (10)
o 4 _
C. '
0
8 4

These expressions may now be coupled with the results from the outer solutions.

Coupling

Combining the Trefftz and Wing solutions (eqs. (2) and (6)) for the pressure
1ift coefficients gives

ﬂ_g‘_ﬁ-cj(a¢y+a+e')'=zyu2+(cz -cj)a]+(cze-cj)e

o
(12)
Substituting the geometrical results
aj =a-o =0 +tad (13)
y
and '
0] = 0 ay ‘ (13a)
results fn
4¢5‘=2n(o-1)&¢ +C (a+a¢)+c 0 (14)
c y Q’a y Lq ,

15



Vﬁ%ﬁﬁ@fﬁ?ﬁ@ﬁ&&ﬂémlm%%@?@hﬁﬁs@ﬁ.GY&(@W"'
gives

2“'{Noa_(a+&¢y)+Noee+a¢y(]'0)}2=

(4 f ¢) (d *‘Z ¢y>'+.(321) {eé -+ ¢y>é} (15)

Re]ationship With Prandtl Equation

It should be noted that equation (12) is actually an equation connecting
¢ and ¢y and represents the boundary conditions on the harmonic function ¢ .
These boundary conditions are known as Riemann-Hilbert-Poincare conditions;
where one part of a harmonic function is defined as a function of derivatives
of its conjugate. In order to transform this into the classical integro-
differential form, it is only necessary to note that

/2 ¢
<1>y=2]—ﬂfb - dt (16)
-b/2 |

by the harmonic property of ¢ . Noting that ¢ is proportional to the
circulation T , this is recognized as the classical downwash integral of
1ifting-line theory. Thus,the equation representing the boundary relationship
between ¢ and ¢y coupled with the harmonic property of ¢ will always give
rise to an integro-differential equation relating ¢ and J’(¢x/t - x) dt .

SOLUTION TECHNIQUE

General

The method employed is to assume a o distribution and use collocation
methods to solve equation (12). Then the results of this solution are
substituted into equation (15), and a new result for o 1is obtained.

16



Normalization of Lift Equation

Equation (12) can be rewritten in the form

4 a¢ c£a+cﬂ'ee

C{Cz-ZnTI-o)}={Cz-2n(l-oT} a7

(o 4

Putting Y = 2y/b , X = 2x/b , ¢c* = ¢/c
= &¢/cav where b s the wing span , S
chord gives

av ® Cay = Sw/b , A= b/cav , and
the area , and Cav the mean

Cl a+c2,6 2

c*{C -2m ( ]-o)} {C'Q -2 (1 -o)}

This has the same form as the Prandtl equation for a plain wing of 1ift slope 2m,

eujivalent chord ce‘, and twist ay where

. |
= o : : :
c, = 2 c’_‘{ﬁ- (- o)} (19)
Cg,aoc+Cg,e 8

ae=4n{%$‘-- (1 -c)}

so that equation (18) becomes"

(18)

(20)

=2ae+%d>v' (21)

Potential Functions

Continuous potential. - Writing the spanwise coordinate X = cosw, the

continuous potential &€ can be defined as

17



ot = Z A, sinnuw (22)

r-1
o T D A sinno (23)
n=1 '

It can be shown for r even (ref. 10) if @r‘;'] js defined at the pivotal points

w=mm7/r with
r-1

C — ] . m ™
L B fom Z] Ap sinn == (24)
n=

that the gradient Q$ can be written at each pivotal point as

r-1 ’
c
oy (k) = 'q,(:] Bn (25)
n=1
where
g o= | i 1 - 1
kn r‘sinﬂl;1l 1-cos-(m‘:u 1-cosjh—"—':7)—Tr
for k + n odd (26a)
= r
- for k =n (26b)
2 sinnmw
(=)
= 0 for k + n even, k # n (26c)

18



Thus, if a continuous distribution is considered only and equation (21) satisfied
at the pivotal points, the following is obtained

r-1
2 27
Z(Bkn ?r_‘(—)'kn) = 2 ag(K) (27)
n=]
where
Sy =1 K =n ‘ (28a)
8n = 0k £ (28b)

It is sometimes convenient to compute the potential gradient at other than the
pivotal point. It can be shown that this is given by

- oS(0) =), o A w) o (29)

n=1

m "4 r sinw

(r-]) cost( --"'—})}“—r cos{(r- 1) (w-m;‘l)}JbT

(30)

19



Discontinubus;potentiai. - For discontinuous wing geometry, it is necééééﬁy'
to have a potential function which is continuous, with the propér behavior at the

wingtips and at infinity.and which has a finite jump in its derivative °iy at a

* .
given station “d; . The function Qi which satisfies this has the property

sin { —5—
* el . 2
o (w) = - (bos w - COS wdi) 1 5 g
sin (——2—-—1)
L

@:Y (w) = - H'(‘Ddi - w) (32)

+ wg; sin w (31)

where H s the Heaviside function with the property
H (wdi - w) = _foi‘ W < wy : (33)
H (wdi - w) =0 for w > wy (34)

It can be seen in the analysis that this function is capable of exactly matching

a discontinuity in either ce' or a, at Wy -

General discontinuous solution. - It can be assumed that discontinuities
in effective geometric data (ce and ae) occur at s points, given by

Wy, > i=1...s . Then the general potential can be written in the form
i

r-1 s ' '
<I>(w)=E Al sinnw+z.>\i & (0) (35)
n=1 =]

h

where A is the magnitude of the it discontinuity in downwash.

20



Now substituting into the general normalized 1ift (eq. (21)) at the pivotal
points, this gives

r-1

2 4 c
E (K Ben ¥ T C Gkn) o +
n=1 €
s o o
2 k * [kn :
+ £ _ km kn -
Z{A H(wdi r) +1TCe Qi(r)})‘i Zaek
i=1 k
k=1+eor -] . (36)
where Co is the equivalent chord co at the kth pivotal point and similarly
k - .
with o
€k

This yields r - 1 Tlinear equations for the r - 1 + s unknowns , Qn
and Ai . The additional s equations are obtained by considering the jump
condition at each discontinuity.

Jump Condition

The jump operator |d on the function g(x) can be defined in the
following way

Lim
9(x) 1q = 559 § 9(d) - gld + 6)} (37)
Equation (35) can be written
: s _ r-1 .
e 2 BT R NS
C %Z =2 Og Ce by Ce <I>n Bn(w)
i=1 . n=1
s
2 }E: .
-FcC A Hifwy - o (38)
A “e = i ( i )

21



The jump operator “is now applied-at each discontinuity. - Then, noting that

¢ and &* are continuous throughout, this gives
2 =l .
0=20q, Ce 'wd " A Ce 'wd :E: % B (wd )
J jn:] J
s
2 { z ' .
-5 3¢ X; Hlw, -w } | .. J=1.. s (39)
Now, defining
A(cLe Ce)j = (one ce) ‘wd i=1"s5s (40)
J
=] S
J.. = { c Hw, -w } J
ij e ( d; dj) Imd1 s . (41)
sk * =] s
B w = {B w c } I J
n (dJ> n(dJ) € 'wg n=1"°"r-1 (42)
the set obtained is
r-1 -
Bn wd @ +Z J.l\] ‘AA(ae Ce)J
n=1
j=1"""5s (43)

This provides the remaining s Tlinear equations. Equations (36) and (43)

are then inverted for the solutions @ and x . From these, the potential may

be evaluated by substituting into equat1on (35)

22



Auxiliary Thrust Equation

Once the potential has been determined for the first assumed o distri-
bution, the thrust equation is checked, and a multidimensional Newton's method
used to establish the variation of the thrust equation with o .

The thrust coefficient at the wing plane is given in normalized form from
equation (15) as ’

2 ¢ 2
Wo_ Y -0
Cp = 2r N%(“-A)‘LN%G-MY(A) (44)

In the Trefftz plane, the thrust coefficient can be given by the right-hand side

of equation (15) as
o 2 &,\2
Y 2 ( Y):
t_4@<0b T)'-Fc.{g-ot'l-——A-—
j.

Ct = cF > (45)
At each pivotal poinf or singu]ar'point, the error function FK' is
F,o=ct (k) - ¢ (k) k=1"""r-1+s (46)
k t t

Then, o at each point can be varied by a fixed value € , generating a matrix

e _(Flogte) - R o))k

1" r=-1+%+s

(47)

kj € i=1er-1+s
The change in ¢ and ch required to make Fk zero is now given by
= _ (E .\-1 ,
a0 = ( k;.) Fi (48)
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'NUMERICS AND ITERATION PROCESS

General

The procedure used is to solve equations (36) and (43) for o = 0.5 , then

‘to substitute the values of & into the auxiliary thrust equation (48) to

determine a new set of o values to insert in equations (36) and (43) and to

“continue this process until the maximum change in o is less than an arbitrary

assigned value.

The program was written with the capacity to handle 8 points of discontinuity
and 21 pivotal points. The only numerical constants required are the blown-1ift
coefficient slopes. This analysis uses the results given in reference 1:

1/2

Cg, = 2m (1 +0.151 ¢, /% + 0.291 cj) (49)_

Cao =2 (v €3)"% (1 + 0151 ¢;1/2 4 0.130 ¢ ) /2 (50)

It was found that only four iterations were required to bring the interative
changes o down to 10-5 so that convergence in all cases was very rapid.
Programed on the CDC 6600, a given wing planform takes less than 2 seconds to run.
The program is written with attention to divisors, so that the case Cj =0 can

be treated directly. Thus, plain unblown discontinuous wings may also be handled

by the program,

Local Integral Properties

Three items of interest are the local 1ift, induced angle at infinity, and
induced drag. If ¢ 1is the solution, it can readily be shown that

¢
=49 Y
@ N
o = -2 iﬁ (52)
aoo
Ca; = Cp 5 (53)
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These coefficients can be integrated across the span (taking due account of
“singularities) to give the integral wing properties CL and CD .
I

THICKNESS EFFECT

The preceding analysis is done for airfoils of zero thickness. The thickness
effect can approximately be incorporated by using a modified 1ift slope in the
wing-plane equation, as is normally done in the lifting-line approach to wing theory.

On this basis, the 1ift slope of a plain wing of finite thickness can be

written as 2 m n and that of the jet-flap wing of thickness t as CE and
o
CEG . Expressions for the latter quantities are derived in Appendix B. Substi-

tuting these modified 1ift slopes into the wing-plane 1ift equation, it can be
found that the equivalent chord and angle of attack (egqs. (19) and (20)) become

e = 2.c* {?%-n(l o)} (54)

Ch_ a+ Cf o .
2 (55)

(o =

e 41:{?%”1 (1 - c)}

With these new definitions, equation (21) is unchanged.
EFFECTIVE ASPECT RATIO

Aspect ratio plays a dominant role as the scaling parameter in the lifting-
1ine equation since the solution depends in a continuous, but nonlinear, fashion
upon aspect ratio.

For blown wings, the significance of the geometrical aspect ratio is obscured
by the additional parameters CJ and 6 . However, it can be shown that, for an
elliptically loaded blown wing, an equivalent aspect ratio can be defined which
has many useful properties.
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" The basic “integral equation for the jet-flap wing is -

a+C, 8 C, -2n (1 - o)
4e _,_ . %o + *a
Zn

[N

bl (DY

Differentiation with respect to o gives

c
49 )
o _ _ o 2 C )
= +A,n_{2a-21f(]-0')}OLY

T c* T

An unblown wing, where o = 1/2 and Cl =2m , gives
[s ]

4 @a 2
1TC*=2+_<I>OLY
If
CQ,
f=__0‘
w
and
A = A

equation (57)- becomes -

u—
nfc*.‘z”fAe

(56)

(57)

(58)
(59)

(60)

(61)

This converts equations (57) and (58) into identical equations. If f and o
are not functions of spanwise position, equation (61) can be solved by using

standard theory for an unblown wing of aspect ratio _Ae .
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For the elliptically loaded case, this assumption of spanwise invariance is
valid and f can be determined from two-dimensional jet-flap theory. However, o
cannot be determined without an auxiliary equation. Assuming o is known, where
CL is the mean wing-1ift coefficient, equation (61) can be solved to obtain

1+2¢C
CL = ¢]2T J (62)
o 2 T A
1+ + e
Ae

(63)

giving

where Cla is the two-dimensional 1ift slope. A similar resu]t.can be shown for
CLe . Thus, the interesting general result that can be obtained is

O

L 1
L= A1+ (64)
C ? ™A :

L i] + F;) e

This result is true for all elliptically loaded high-aspect-ratio wings - blown
or unblown. The induced drag may also be written (exactly for an elliptically
loaded wing) as

2
CDI ‘ (65)

For a wing of arbitrary loading, f and ¢ will in general vary across the
span; however, these equations will be approximately valid for some mean values
of f and o and can be written as '
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L 1 2
—_— = 1 + . : (66)
Cz 1+ ﬁL T Ae
: e
2
C
Cn - L
DI'e(nA+2TJ) (67)
where
A = A[z { f-0-3) }] (68)

and e is an induced-drag efficiency which will be less than unity.

It should be noted in this representation ¢ must be known and cannot, in
fact, be determined without solving the 1ift and thrust equations. However,
these results can be useful if an estimate for o is known from previous experience.

RESULTS AND COMPARISON WITH THEORY AND EXPERIMENT

Check of Analysis

It should be noted that the various known 1imit cases are corre tly obtained
with this model. Putting the aspect ratio equal to infinity kecovers_the proper
two-dimensional jet-flap airfoil performance. For elliptical loading, a constant
o across the span is obtained with uniform downwash and 1ift coefficients. For
zero blowing, the proper 1lifting-line solution for the wing is obtained. The
discontinuous input was found to check with results given in reference 10 for an
unblown wing with twist discontinuities.

A severe test of the discontinuity analysis was made by taking an inverse -
problem as a test case. Here, a uniform downwash was assumed, implying an
ellipticaly loading. However, the wing planform was given a chordwise discontinuity
with the elliptical loading maintained by appropriate discontinuities in angle of
attack. This pafticu]ar discontinuous geometry was used as input into the direct
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program which then inverted to the integral equation to recover the uniform
downwash and elliptical loading to the fourth significant place.

A check of linearity was made by determining the 1ift slope for a set. of
increasing angles of attack from 1° to 30°. It was found that the slope remained
the same to the fourth significant place. This is interesting in view of the
fact that, although the 1ift equation is properly linear, the auxiliary equation
for o is actually quadratic in o .

‘Basic Results

There is such a large set of results available frem the program that it is
of no particular value to display wing performance for some arbitrary set of
_geometries. The elliptical cases have already been given in reference 1.
Thus, for design purposes, the next most generally significant wing could be
considered to be the constant-chord straight wing with constant spanwise blowing.
A series of results for varying aspect-ratio and blowing coefficients are shown
in figure 3 for rectangular wings of 0-percent thickness.

It is convenient here to plot only the pressure-lift coefficient; that is,
the wing-system 1ift after the jet-momentum contribution has been subtracted.
Typically, at a station, the pressure-1ift coefficient is given by

cij = CZ - Cj (6 + a) (69)

while the wing-pressure-1ift coefficient is given by

_ 1/‘ '
¢ =+ /fc cdb (70)
L, "5SS "y

It should be noted that CLp is really the significant term in any evaluation
of the solution technique, since the momentum 1ift may be mechanically and exactly
computed for any planform. By removing the momentum 1ift, any differences in the
solution approach may be more clearly identified. Because of the linearity of the

29



ana]yéis, the resﬁifé are furtherfcdndenséd by ébﬁéidering on]yithe gradienfs
with o and 6 - that is, CLpa and CLpe . It can be seen from figure 3 that

thi$ results in a fairly compact presentation of performance. It is also note-
worthy, that for blowing coefficients above 4, there is little variation in the
1ift slopes with increasing Cj . '

The thickness effect is very significant. For an unb1own wing of constant
thickness, it can be shown that the thickness term can be accounted for by writing
27 n as the section lift slope; then, the 1ift slope of the thick wing becomes
n multiplied by the 1ift slope of a 0-percent-thick wing of aspect ratio A/n .

The effect is to increase the three-dimensional 1ift slope by an amount somewhat
less than n . A similar effect occurs for the blown wing; however, this appears

to be rather large when referred to pressure 1ift. Figure 4 shows a comparison

of pressure-1ift slopes for 0-percent-thick and 10-percent-thick wings. It can be
seen that the thickness is as significant as aspect ratio in determining performahce.
This point becomes important in comparing the theory with analytical results.

The generalized induced drag efficiency e (eq. (67)) is a useful quantity.
since this indicates how well a given wing approaches its minimum blown induced
drag. For rectangular wings, these values of e are shown in figure 5. It can
be seen that the efficiency values are quite high and suggest that for uniform
blowing the induced drag of rectangular wings can be approximated by the well-
known elliptical blown induced-drag expression.

Comparison With Other Theories

It should be noted first that since the analysis is an approximation to the
actual lifting-surface model, which is itself an idealized model of the actual
flow, the theoretical comparison of existing approaches should initially be
discussed. The present paper is a lifting-line analysis and, in this respect,
is similar to those by Maskell and Spence (ref. 1), Kerney (ref. 2), Tokuda
(ref. 8), and the section design method of Lopez and Shen (ref. 9). The latter
three methods do not use an auxiliary equation to determine o , but assume it
has its unblown value of one half.
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For elliptical loadings, the present model correlates with that of Maskell
and Spence (ref. 1), since it is actually a generalization of their technique,
although a slightly different form of the auxiliary equation is used. The proper
test of the Iifting-Tine/auxiliary-equation model is the comparison with a
properly numerically modeled linearized 1ifting-surface theory, with the appro-
priate kinematic and dynamic boundary conditions applied to a wing of zero thick-
ness. The only existing lifting-surface model properly satisfying the wake
boundary conditions is that of Lopez and Shen (ref. 9). Reference 9 shows
excellent correlation of Maskell and Spence's model with the Lopez and Shen
lifting-surface approach. The present model can thus be considered verified for
elliptical loading.

The rectangular wing presents a more difficult problem of correlation.
Published solutions are given by Tokuda (ref. 8) and Lopez and Shen (ref. 9);
these solutions differ by small but significant amounts. As a representation of
the differences between the various models, table I shows the ratio of the inte-
grated wing 1ift to the section T1ift (CL/Cl) for a representative design case -

elliptical and rectangular wings of aspect ratio 6.0 at the blowing coefficients
of 1.0 and 2.0. 1In obtaining these data, the data from reference 9 was ready
from a graph; while for Tokuda's result (ref. 8), his equation 6.6 was used.
This equation is read as |

C 3

% | 88 Ly
1+ 1og]o.<—4—> +1.577 | 7%

cl
o

This form is written out since there is some ambiguity in the enunciation of .
equation 6.6 in reference 8. As a further baseline, the classical lifting-Tine
unblown ;(CJ,=,O) results of Glauert are shown in the Tast column. It can be
seen that the present paper correlates rather well with the lifting-surface
solution while Tokuda's result (ref. 8) is somewhat higher. It can be concluded

that the present analysis correlates with the_]ifting-surface approa;h at least
in this range. R
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Table I also illustrates that there is about as much'vériéi16n>iﬁ solutions
between the rectangular and the elliptical planform as there is in the different
analytical approaches. While all solutions are probably acceptable for preliminary
design purposes, it would be very valuable to have a few known exact solutions

to test approximate methods against.

TABLE I.- RATIO OF WING LIFT TO SECTION LIFT FOR
0-PERCENT-THICK ASPECT-RATIO-6 WING

C; = 1.0[ C; = 2.0 €y =0.0
: (from Glauert)
Maskell & | 0.699 0.680
Spence
(o = 0.5)
Elliptical | yiske11 &) .700 .702 0.751
Planform Spence
(correct o) )
Kerney .740 .743
Tokuda 0.790 0.765
Lopez § .683 |Not avail.
Rectangular Shen
Lissaman .664 .656 0.720
Planform © = 0.5)
Lissaman .675 .668 ‘ j
(correct 0 ) '

The effect of thickness on 1ift slope is very significant and appears to be
Targer for the blown wing than a plain wing. Some representative results are
shown in table II where the thickness correction of reference 3 is used for the

blown elliptical wing, and the present method used for the rectangular wing. In
t 0
table II, the ratio of CLp for a 10-percent-thick aspect-ratio-6 wing to CLp
o ' o

for a O-percent-thick aspect-ratio-6 wing is presented.
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TABLE II.- EFFECT OF THICKNESS ON PRESSURE-LIFT-CURVE SLOPE

ct. /&
Planform Lpa/ Lpa
CJ =0 CJ = 2.0
Elliptical 1.075 |  1.100
Rectangular 1.046 1.102

It can be seen from figure 4 that a 10-percent-thick aspect-ratio-6 wing has
about the same performance as a O-percent-thick aspect-ratio-8 wing.

Comparison With Experiment

From the preceding comments, it can be observed that comparison with experi-
ment is a difficult process, largely becauﬁe few carefully controlled experiments
exist. Difficulties in proper normalization of experimental data involve not only
the usual problems of viscous boundary-layer effects which occur with all wings,
but the special jet-flap problems relating to proper determination of jet coeffi-
cient and jet angle, as well as the problem of proper wind-tunnel corrections for
a jet-flap wing. In this 1light, the approximate thickness corrections and the .
use of an experimental effective aspect ratio can be used to fit a theoretical
solution to almost any experimental data. '

As an illustration of this point, figure 6 shows a comparison of the present
theory with the experimental results of Wi]]iams and Alexander reported in
reference 11. The curves of thé present theory were obtained by directly inserting
the given data (namely planform, aspect rafio, thickness, angle of attack, blowing
coefficient, and jet angle) into the program with no "corrections". It can be seen
that the correlation is very good for 1ift slope, but that there appears to be a
systematic error in the 1ift at 0° angle of attack. This could be due to the fact
that the jet is not actually issuing at its nominal angle of 31.3°. It is of
interest to note that after making an approximate global thickness correction,
the results of Tokuda (ref. 8) match the experiment even better. However, Maskell
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although their solution is for an elliptical wing with elliptical blowing, giving

quite different results for C_/C, as shown in table I.
o] [0 3

CONCLUSIONS

An analysis has been developed for high-aspect-ratio jet-flap wings of
arbitrary (including discontinuous) geometry and blowing. This analysis has
been programed, and the results lead to the following conclusions:

1. The technique is as accurate as other known theoretical methods.

2. The program is more flexible and rapid than other methods,
particularly with regard to discontinuities in wing geometry.

3. Correlation with existing experimental data is satisfactory, but
it is considered that definitive test data are lacking.

4. The present method is a useful analytical tool for jet-flap wing
design. '

5. Two additional steps are needed to evaluate jet-flap theories.
These theories should be checked against:

a. Definitive-lifting-surface analyses
b. Properly controlled and corrected experimental tests

Such checks should include cases with variable discontinuous planform and
blowing parameters.
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APPENDIX A

TREFFTZ PLANE FORCES

GENERAL

Here, the situation in the Trefftz plane where all forces on the wing may
be indirectly determined is considered. It is convenient to use the exact
nonlinear large angle analysis initially, and then to expand to the appropriate
order of accuracy. |

UNBLOWN WING

The unblown case is treated first to establish a reliable connection with
“conventional Trefftz plane theory. It is assumed that a self-preserving steady
wake exists in the Trefftz plane (fig. Al1). Thus, in places inclined at o to
the mainstream flow V , the situation is properly two dimensional. Incompressible
flow of density p is assumed. In this inclined plane, for steady two-dimensional
flow, a complex potential W(z)- is defined as

W=Vsina (- iz + w(z)) (A1)

where z = x + iy with x horizontal and y upwards in the Trefftz plane.
The normalized perturbation potential w(z) may be written

w(z) = ¢ (X,y) + i ¥ (x,y) - (A2)

Forces in the direction z and y are now considered by applying the
momentum theorem to a large cylinder of axis parallel to the final wake direction.

On the upstream face, velocity and pressure have their free-stream values;
on the downstream face, the velocity is V cos a in the direction of the
cylinder axis V sin a oy in the . x (spanwise) direction and V sin o (1 + ¢y)
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APPENDIX A
" in the orthogonal "y direction. Thus the pressure perturbation - Ap - in the -
Trefftz plane is given by

1

Ap =50 v2 {1 - cos? & - sin?

a1+ ¢y)2 - sinf & ¢x2} (A3)

For the forces in the Z direction FZ » there are only pressure
contributions giving

P, = -f Ap dS* (A4)
S

where S] is the infinite downstream face of the cylinder and dS* is the
elemental surface area, substituting equation (A3) gives

P

2F, =p s1n2af[2¢ + o0+ 0, ]dS* N (A5) .
51

For the y force, onTy momentum need be considered giving

F‘y = -p v2 cos @ sin &f ¢>y ds* (A6)
3
Noting that ¢ decays sufficiently rapid]y at x,y » «»., these surface
integrals can be converted by Gauss Theorem into line integrals about the wake.

Assuming the wake is linear and oriented in the x direction, the symmetries of
the upper and lower surfaces of the wake give

2FZ=pV sin a{ 4f¢dx-2f¢¢ dx} , (A7)

Fy=pV2cosas1na2f¢ dx (A8)

where ¢ 1is the potential and ¢y its gradient on the upper surface of the wake.
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This can now be resolved into the conventional 1ift and drag directions to
obtain the following exact relations

L=pV2 sin&{zfcp dx+sin2&f¢ q)ydx} (R9)

D=-p v2 sin? 3 cos of¢ ¢y dx (A10)

For o small, these degenerate to the classical linearized results. Results
similar to the above are given by Ribner (ref. 12); however, in that version, the
induced drag is left in the form of an infinite surface integral, as opposed to
the convenient finite line integral given here.

It is now assumed that the trailing vorticity which must satisfy the Beltrami
condition, that is, be parallel to the local flow, has negligible lateral
(spanwise) components in the wake. Then, each spanwise station in the Trefftz
plane contains the same 1ift as the corresponding spanwise wing station. Thus,
defining the local 1ift coefficient as Cz(x) and local chord as ¢ , the
following is obtained

. 2 - |
o + S0 600) 6, (0)) (AT1)
Cz(x) =4 sin o G

By making the same assumption for the local induced-drag coefficient Cd(x)., the
following is obtained

¢, (x)

Cd(x) = - 2 sin? & cos & o(x) ~XE—— (A12)

It should be noted here, that while this result is correct for the 1ift for
any planform, it is only valid for induced drag if the planform is essentially
unswépt.' For sWept wings, it is known that the distribution of induced drag in
the Trefftz plane does not correspond to that on the wing itself, although the
total induced drag, of course, can be obtained by integration either on the wing
or in the Trefftz plane.
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CBLOWN-GASE - - - - - . ..

The jet sheet is now introduced assuming the momentum at each station to be
v(x) and inclined at an angle B(x) to the horizontal (positive downwards). Then

_ - -1 -
B =a - tan { tan o (1 + ¢y)} (A13)
Bx-a b, * 0 (a3 ~ (A14)

Thus, to second order, the additional force coefficients due to the jet
element are

2 v(x) & ¢, (x)
2

C (x) " -
R'j cplV

(A15)

\ ( - %‘-‘2‘%"‘)2) | (416)

C,.(x) = -2 y(x
dj cp v2 - :

Then, writing Cj as the local jet—momenfum coefficient with ¢ the local chord

C. = (A17)
] %pﬂ)_
for the blown wing gives
c(x) = + 222l ¢ Gy () + 0 (5)) (A18)
-2 -2 2
2 a” ¢(x) ¢,(x) a” ¢,(x) _4
Cd(x) = . - Y - Cj <] - ————%&;——— +0 (a ) (A19)
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It is shown in equation (A19) that the terms without Cj account for the vortex
1ift both on the wing and in the jet wake.

The force contribution due to the entire jet sheet can now be computed
directly by considering conditions at the trailing edge of the wing. Assuming
the wing to be uncambered, with the local geometrical angle of attack to be a(x)
and with the jet angle relative to the wing to be 6(x) , the direct momentum
force is subtracted to obtain the pressure components on the wing itself in
coefficient form as

Czp=+4—%—9-cj <&¢y+a+e) ‘(A20)
Cdp=__2a_if1+‘§cj{&2 éyzl- (oc+6)2} (A21)

These are now resolved relative to the chordline to give the normal force

coefficient Cn and the thrust coefficient Ct . To second order in q and o,
these become

cn=+9—‘z—‘k-cj(&¢y+a+e) (A22)
saof .80 Cifa, . - 2
AR

This pair constitutes the outer solution, expressing the pressure forces on the
wing itself.
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APPENDIX B

JET-FLAP THICKNESS CORRECTION

GENERAL

The analytica1 results for jet-flap performance used in the paper are for
the linearized problem; that is: the airfoil thickness is linearized; the position
of the jet wake is assumed to be on the airfoil chordline; and the dynamic boundary
condition itself is linearized. To find the first order effects of linearization,
an exact nonlinear solution is assumed to be known for a Joukowski airfoil, and
they by a mapping to an auxiliary plane. This is reduced to a flat-plate airfoil.
Then, by expanding the mapping to appropriate order, the ratio of the 1ift in the
two'planes can be determined, assuming that the 1ift on the flat airfoil in the
auxiliary plane is given with sufficient accuracy by linearized theory. The
analysis is two dimensional and incompressible.

ANALYSIS
Figure Bl shows a thick Joukowski airfoil and the auxiliary airfoil and

defines the symbols used. The potential in the physical plane, Z =X + i Y given
by W(Z) =%+ i v, is assumed. Q 1is the complex conjugate velocity dW/dz .

The boundary conditions are as follows:

kinematic: ¥ = 0 on airfoil and wake _ (B1)

2
CC.Q
. + - ©
dynamic: [(Q )2 - (Q)z] = ——ﬂ— (B2)
where + and - refer to upper and lower surfaces of the vortex wake , C the

chord, Cj the momentum coefficient , and R the radius of curvature of the wake.

1

This geometry is now assumed to be mapped to the auxiliary 2'=x+1iy
plane by
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2' = F(Z) , dz'/dL = f*

where under f* the airfoil maps to a slit. Potential is conserved at

(83)

corresponding points. The mapping is required to have the following properties:

f* =+ ] ,Z+°°

f* regular at T'

# analytical elsewhere except at N

where T' is the trailing edge of the airfoil and N the leading edge.

be noted that‘corresponding elements are given by
dz' = f* dZ
so that the length and angle of an element in each plane are given by
ds = |f*| dS , 8* = (arg f*) + o*
with
dz' = ds 0%, dz = dz ¢'%"

Under this mapping, the boundary conditions become

kinematic: ¥ = 0 on body and wake

dynamic: [<q+)2 - (q') 2] =c' qm2 -C—r—#-—

{1 - ag; (arg f*)} g%:-.. on wake
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where 6* 1is the inclination of the wake in the auxiliary plane; ds an arc
length along the wake in the plane; and q the complex conjugate velocity in
this plane.

Thus, this now becomes a nonlinear problem of flow about a jet flapped flat
plate of chord c' at angle o with jet angle of 6 and with a momentum
coefficient cj which varied according to

c. =& Y 1 - 29 (arg £%) (B11)
A i de* \ard
THE MAPPING FUNCTION

The parametric functional relationships can be expressed as

1
=u+— B12
Z=1yu n (B12)
) .
z'=u+a+—(:1—-:—g)— (B13)

where 1 1is an intermediate complex parameter. This transforms the Joukowski
airfoil to the flat plate, with the required properties on the derivative. In
addition, the following geometric properties are noted

Z Plane z' Plane
Chordsﬁ‘—}g—gi:-c 4 (1+a)=c
Thickness = 14+aa =T 0=t
The mapping derivative
f*=%% ' %% (B14)
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-2
oz (2]
f* =11 - 5 5= (B15)
H H

-1

is evaluated as

1 2

&1-2am-l?—2+o(a3> (816)
At the trailing edge
fral-a - al (B17)
“while downstream
f* + 1 | (B18)

The approach to unity is very rapid. For example at u = 3 , which is about
0.5-chord length downstream, it can be found that f* = 0.98 for a 10-percent-
thick airfoil.

EQUIVALENT PROBLEM

Thus, the equivalent problem consists of finding the exact solution in the
z plane of the flow about a flat plate of chord c¢' =4 (1 + a) immersed in a
distance flow of velocity q_ and angle o and having a jet flap of variable
strength. This strength is given by equation (B11), substituting equation (B16)
and expanding to 0(a) gives

C.

c; = %T-T—:JE- at the trailing edge (B19)
_C '
¢y = o Cj at infinity (B?O)
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Substituting for
+ 2 a
and expanding to 0(a) gives

C. '
Csiq = at the trailing edge (B22)
3l 1-a )

C.

cy = ZT_:J?y-at infinity (B23)

The pressure field on the airfoil is now assumed to be a function of the
blowing coefficient cj] at the trailing edge. Then, using standard linearized
theory, Y, is the circulation about the airfoil alone and is given by

a _ 0 0 \ )
—C—-<c2 @+t e) - <a+9> 5 - (B24)

where Cz and Cie are the 1ift slopes for O thickness computed for a blowing
o .

coefficient of cj1..

Spence (ref. 2) gives

¢ -2 (11 cj])]/z (1 +0 (cj]))]/z (B25)
, _

but

¢y = €4 (1 +al+0 <a2>) = ¢ (1 +0 (az)) (B26)
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So €5 ° Cj near the trailing edge, giving
2y .
a_ 0
< - Cz-' (o +8) Cj , (B27)
since
0 _ 0
C2 = Cla a + C26 9 (B28)

Under the mapping, Z =+ z , potential is conserved so tha circulation about
the thick airfoil in the physical Z plane , Pa , is given by

_ ()
21, = ¢{C) - (a+0) C5) (B29)
However, the wake 1lift in the physical Z plane is given by

(a + 0) Cj c (B30)

Thus, the total circulation in the physical plane is given by

2r=c(c§-(a+e)cjc)+(a+e)cjc (831)

So that the 1ift coefficient in.the physical plane is given by

C§=%{CZ+(°‘+6) c, (E(;-])§=(1+a) {CZ-(oMe) Cj]ia}

noting that

\
€ =1 +a+0(ad) (B33)
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Noting that the mapping gives

ol

it can be shown that

- Eeo ]

(B34)

(B35)

This gives the result to O0(T/C) where T/C 1is the thickness to chord ratio

(B36)

Thus, in physical terms, it is observed that the thickness affects only that
portion of the T1ift directly experienced on the airfoil (the pressure lift).

This result was intuitively proposed as a correction by Spence.

The above

analysis, while still an approximation, provides.a rationale for this correction.
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