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ABSTRACT

The nonlinear flap—lag coupled oscillation of torsionally
rigid rotor blades in forward flight is examined using a set
of consistently derived equations by the asymptotic expansion
procedure of multiple time scales. The reglons of stability and
vlimit cyéle.oscillation are presented. The raies of parametric
excitation, nonlinear oscillation, and forced excitation played

in the response of the blade are determined.
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I. Introduction

The problem of the coupling between nonlinear oscillation,
parametric excitation,ahd forced oscillation is of great interest
in rotor dynamics. The present paper will restrict con- |
sideration to the flap-lag motion. Few authors have considered
the nonlinear oscillation of a torsionally rigid blade. Young

(Ref. 1) has used rough approximations to derive the solution

of a set of nonlinear équations. Hohenemser and Heaton (Ref.2) derived j;
the nonlinear equations of motion in forward flight approximately

and solved the equations by numerical integfation. The present ‘

_ author (Ref. 3) used the equations derived by Hohenemser and applied

the asymptotic expansion technique to establish the 1limit cycle
oscillation amplitude and clarified the role played by nonlinear

Aoscillation, parametric excitation, and férced oscillation of the
rotor blades. In the present paper, the nonlinear .

motion of flap-lag in forward flight are carefully rederived,
which is extended from the linear flap;lag equations in hover
derived by Ormiston and Hodge (Ref. 4). A techniqué similar to
that of Ref. 3 is applied to treat these new equations. ExtensiVé
results on the forced response, stability boundary, and limit:
cycle amplitude will be presented.

II. Formulation

In der1V1ng the equation of motion, we shall make the follow-
ing assumptions: (1) the pitch angle, 9, the static equlllbrlum

coning angle Bo' and the static equilibrium lag angle ¢, are small,

so that 62, 82 and cg

5 can be neglected as compared to one; (2) the

effective angle of attack is small and the two-dimensional quasi-

¥ :
All of the symbols used are defined in Appendices A and B.



steady aerodynamic theory can be used; (3) the ratio of the

profile drag coefficient to the 1ift slope is small and caﬁ be
neglected compared with unity; and (4) nonlinear terms up to the third
order will be retained. However, since the aerodynamic damping is much
higher in flap than that in lag, the perturbed motion in lag is much
larger than that in flap; thus, it i1s expected that the nonlinear
terms of the perturbed lag motion 7 will be more important than the
perturbed flap motion B. It is also expected that the nonlinear terms
are more important in the lag equation than in the flap equation.¥* Thus,
the nonlinear terms such as B¢, 852, 9C2 and their time derivatives
will be retained in the flap equation while 82, Bzc, 6Bz etc. will

be retained in the lag equations.

From the above assumptions, it has been shown (Appendix A)

that the equations of motion in flap and in lag are, respectively:

B+ % & * (1+ 2, B+ T - R 3
=285 - (pB-g®)§* - § 63
+EM[(Eo-)snt - S8 ¢]
+ L uf(Bot+Le,5- §6)st+[(Zo-c)s-dp-308 ]y
rER[F0Tsnt + (fost-3p8-56T ¢ ]

(1)
+ ZH(20 ¢ - poaat)

4 %;3(293 - ) sw2¢

—
This is indicated by the results of ASRL 166-1 (Ref. 3).
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where () ='%$, Y = Qt, y is the Lock number, u is the advance

ratio and the rest of the parameters are defined in Egs. (A.9),

- (A.22), (A.23), and (A.24).
The critical condition of the system is determined by the

existence of a small amplitude undamped oscillation for the linearized

version of Egs. (1) and (2). Namely, |
B8 6+ 0TI+ -ES = 0
C 4% T+ t R B -Yp =0

(3)



Let ‘
v ¢

B, T ~ e

in (3), we have the characteristic equation for p

x T . ' 2 2, . .
(VoS ~ b7k P g ) (B Foits)- B pR) @) o
where i ==S:1. The critical condition corresponds to p = QF which
is called the flutter frequency. Substituting into (4) and using

subscript "c" to denote the critical condition for thelparameter,

one obtains

| -ﬂ; =[3ch; ’*3&(“'!‘; )*-Rﬁc (z c"%ﬂ / (Fpc~ ‘3@,\) (5)

2 2 |4 (un"-ﬂ; g AL -5 (b2
(% c’ﬁ@C%c)ﬂF—ﬁst[ : P [:Gc"%“}z{%‘(‘% + )chl

(6)

s * .
If all the physical parameters such as QB, QC' %3C"b’

and n are given, one can determine the critical pitch angle,

4
say 6, from (5) and (6). It can be shown that for 6<6, all the
small amplitude motion will be damped and for 6>9c there exists

a branch of solution of (3), which will grow exponentially.
Ormiston and Hodge, Ref. 4, have shown that Whén nB' nt e, and

ch = 0, it is necessary to have O<Qg<l for the existence of ec.

Indeed in this case, it can be shown that

. , ! (7)
E-AD 2 T8 0 IR

QB is the elastic coupling effect, no expression for it is derived

at present. It will be treated in a forthcoming report. It was

Spgyg in Ref. 4 to have an important influence on flap~lag insta-
i v




We define the differential operatorsL and M, the functions

' y '
i3 Cij’ }i’ P's and K's

f's and h's, and various gquantities o's, B8
in Appendix B. All these quantities are to be used in the follow-
ing sections for the perturbation solutions.

III, Perturbation.Solution below the Critical Condition

If the angle of the pitch is less than O for a given set of
physical parameters, all the solution of (3) are damped. A per-

turbation solution of (1) and (2) can be established by assuming
>
p=pf A Np
2
A o

Substituting (8) into (1) and (2), requiring all terms of the same

(8)

order in U satisfying (1) and (2) separately, we obtain

0(w

L (e,.35) = f(w, ®)
VICASERNCAS )

0 (%)
L (8,.5) = F.ee)+ ;08,83 L (83,)

(10)

M(E,5) = ha(4,6) + Ry (€0; 5,50+ Raten®)

where L, M, f's and h's are defined by (B.1l) through (B.17) in
Appendix B.
Since the homogeneous solutions in (9), (10), etc. are damped

(below critical condition), we only have to consider the particular



solutions. Using (B.4) and (B.5), we may write (9) in the form

?16“" + "4'

L(€7n; gl )
. ¥ -
M (8.,%,) = '\:ge‘q' + P e

where P7 and P8 are defined in (B.34) and (B.35).

¢ (11)

»

( )* denotes

the complex conjugate of the corresponding quantities. The par-

ticular solution for Bl and y is simply

((ét) = ((;Z)ﬁiw—r(i';\)e-d, (12)
[ - 2

where 812 and o are defined in (B.36). Substituting (12) into (10)

and using (B.5) through (B.10), we have

4 ZuW

L(8,.2,) = Pas€ &t Pse Ps
(13)

: 2
M(P.,52)= Pt « BRI €24 R,

and the particular solution for 62 and (P is

()= GGt ()

where P13""P16’ 825, §25, 826' and L, are defined in (B.41)

through (B.48) in which 2?0,‘?0, 4 and‘f are set to 1.
By a simllar procedure one can obtain the solutions for
higher order expansions.

IV. Perturbation Solution in the Neighborhood of the Critical

Condition

In the previous section, we only seek the particular solution



of 8 and z. If the pitch angle is larger than ec, at least one

branch of the homogeneous solution of
L(6,S) =0
M(6,3)=0

is undamped. This undamped solution must be included in the solu--

tion of Bl, ) etc. In the neighborhood of ec, the value of 812,

Clz’ 825, etc. becomes very large, i.e., the solution in (12) or
(14) etc. are large (see B.36 and B.45 through B.48), the expan-

sion in (8) will break down. Under these circumstances, we

shall establish a different expansion by perturbing the system

near the critical condition. Introduce a small parameter e and let

A 3
R=€"B, *2P.T 2 Bat--- 4

i s (13)
{:A E_IK. =+ 2§2 T+ € §5f

for the dependent variables and let

9 - ec + .t—g?.*-'- -
M g (o -
3@(‘ 52 9; 1 -%(_“._-k 8, ZW'*
(16)
%gc ,3; T “'ggc*ﬁszﬂzz*“-

ﬂ ﬁw‘ 29, as &S .. :ﬂﬁ;+281 _,Q%Qf.--



The subscript "c" refers to the value at the critical condition.

We also introduce different time scales.
m
- = Z LP 5 m=20,1,2¢ """ (17)

then

- 2 o -
- 3(@ T E brz

5 o
W‘; 2o 2422 O XAXO

Py A\

For different valuesfof QF’ different order of magnitude of
parametric excitations and forcing functions, i.e., different order of
U, ufl, uhl, u2h2 and u2h2, are permitted in the expansion series

of - (15). We write

¥
ah (T.0) = h® f @

/dﬁ,(toﬂ) *ya? ﬁ:(to,g)
PRRCIOLTS SR
ﬂ. %2 (‘("'e‘) =M1Y‘9‘;(t°f9)

(18)

Assuming fl' h!, fé and hé are functions at most of order one,

we expand Y, & and ¥ in the following forms:
}x:ju.zl"‘u\l;i*--
X =%, + 1’«5‘6‘* 2% e
IR A AR

(19)



The constraint in the choice of the value of the coefficients in
(19) is to make the expansion series (15) a periodic solution
in the fast time variable Ty Since we shall only consider the

3/2

solution up to order ¢ , Wwe may, in general, have only one of
the coefficients as nonzero. 1In particular, within the above
mentioned constraint, only the leading coefficient is chosen to
be nonzero.

Substituting (15) through (19) into (1) and (2), requiring

terms of the same order in e satisfying (1) and (2) separately,

we will obtain the differential equations for the determination of Bl’

Cl' etc. The equations can be expressed in the following form:
0(81/2)
'
L((’)"Q'). :}“yo ‘F‘(To)e)
’
M (B,3,) = #, T,6) (20)
0(e)

L(8,50)= (it YR8 BT, o8) HE BB 5 )+ (CLT)

(21)

M8 5) = (Yo o) 1 Eok o ) + Bk £5615.)
-+ t\q(B.,i )

0(e3/2)
((s; 6)= W& 5100 B) L £u0r0 ) Mty (1o,0:8,5)4 iy (08,5,
-r)Mﬂ;ﬁ'o,B 8 %) +)A'F(r°,& 6 3, )+-F (®.,3 5832, 3.)
N(53§3) =M%, ﬁ. (to,B)a»p‘S"ﬁ ,(%,9) +)11‘B\5(to,9 (:,;;)4}1. (G083, 3 ) (22)
+Pﬁ5(r°sg>., D) R ﬁ‘(ro, CROEEA (e“”(s Y4

- —~— - - - - -

where L, M, f's and h's are defined in (B.1) through (B.17). 1In



-10-

this section, the parameters used in L, M and N [(B.1), (B.2) and
(B.18)] are referred to the wvalue at the critical conéitibns.

The homogeneous solution of (20) is ‘the same as (3). At the
critical condition, there is only one branch of the solution
which is undamped. Therefore, we may just include that particular
branch in the solution of Bl and Cl and

(5) =2k [A()e™on (Br)

2

( P ) = 2 Re I Az(ﬁz\)QZCRFTo+ A{\*(Gzz)+}‘| A% (62$>€£(“IZF)TQ

S2 §i\ ‘?z !;1 $}3
o (gslq) () : (M—)ez‘(v
Sea Cos (23)

where Bi and Cij are defined in (B.30), (B.3l1), (B.36), (B.47)

J
and (B.48). In (23), the u's, p's and.?'s are so chosen such
_that there are no secular terms in B's and ¢'s, i.e., the solu-
tions are periodic in the variable To- A substitution of (23)

into (22) yields



-11-

L(6,3,) = I® %—% + (8, B +M P ) A +P5A1A*] e UG
+P (22 B+ Pas AR" 42 By T

LT A—n-ecc--np)ro MR A*et-(z -3 )To
-2§p% R
4 B Py A etk Na F‘i et VT
+ MRy e SR (24)

M((53;§3)= {P;%Q'lf (B’P‘*+F"‘ F:S)A *?LP!IP\* 61:52.}7-(0

£, ‘T
'1'“*[—&-?%1' EGATG\**)“'ES‘Iet [
(- o 2 L(2-51)T
4 MB Ava- C(\—zn‘;)t'o }‘E:Az c(zfl;-n)'co
o '
—+ N‘ PZZ, 3010 + M| \f ?30 71.(. b

In the right hand side of (24), many terms have the same
frequencies as Qps i.e., the solution of Bayr T3 will have secular

iQ T

terms, i.e., 63, L3~Tp® F 0, unless the right hand side is

orthogonal to the solution of the adjoint operator

i

of L and M (Ref._3), i.e.

3[\7 L((I’s,";zﬂ‘f‘ M (3&,(5 € le‘: ’ Cl'(o =0 (.25)

in which v is defined in (B.63). Equation (25) will provide us
the equation for A which can be functions of Tor Tgee..etc.
Consider the following cases:

(1) Hovering p(=ul=u2)=0. In this case, all the forcing

functions and the parametric excitations (terms with coefficient
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My or u, in (20) - (25)] are zero. To suppress the secular

terms of 83 and C3r (25) is equivalent to requiring

(PR <0 RARAR) BB ERALRNA =0

2A 2 &
-s:c-_z'—f- 9;!1 Pf =+ KsAP( (26)

where v, Ky, K3 are defined in (B.63) through (B.65). Equation
(26) is in the same form as that of Eq. (49) in Reference 3. It

can be solved easily. The solution is

A= 6614) (27)

where ( )R and ( )I are used to denote the real and the imaginary part,

) nROTz/ Mag . 2H0.T\ 12
€= oe™ /i Yoee, & (178 2l

(%» d; 4 nn-e):cz ﬁi— 2“[‘4. e eo I € ZMG;"(&)

(28)

and o and ¢0 are the values of p and ¢ at 12=0. The conclusions
concerning the stability of the solution is the same as that in

Sec. IVa of Ref. 3; namely, (a) 1f92K2R>0 (above critical condition)

and k,,>0, the blade is unstable; (b) 1f€5K2R<0 (below critical

3R
condition) and K3R<0 the blade is sfable; (c) if 92K2R>0 and
K3R<0, there exists a limit cycle oscillation with amplitude being
4
B, \ 2
\Az = |- 2R (29)
220 Kaa
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2|<2R<O and K3R>0, there exists an unstable limit cycle.

The blade is stable if the disturbance in |A| is smaller than

(a) if ©

that in (29), and the blade becomes unstable if the disturbance in |A|

is larger than that in (29). Let 62=1, by (15), (16) and (22),

the amplitude of the blade motion is (e-ec)l/ZA.

It should be noted. that « is. positive for the present

2R
problem. Therefore, the origin (AZ0) is unstable above the
critical condition (62>0), and is stable below the critical
conditions (62<0).

(2) wu¥o, Qp=1/2+ev, where v is of order one or smaller.

In this case 623 and £a3 in the second equation of (23) can be
very large or even singular, i.e., the solution of 82 and %y will
have secular terms. This is because the nonlinear coupling of
the first order homogeneous solution, Bl and Cl' with_the forced
response due to f1 and hl and its coupling with the parametric
excitation are in resonance with the system. The difficulty can

be avoided by requiring
)J‘:LC) ' (30a)

and the other coefficients in (19) may be taken as

X, =%, =
%, =%, =%,=¥,=0 .
' (30b)
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In (24), terms proportional to elQFTO and el(lngF)TO will cause
the secular terms in 83 and Ty5. To suppress it, it is required

that (25) be satisfied which is equivalent to requiring

Zkvtl

V(PR 4 5P AR A +PsNA" |

BR d ; X T
R, R T BN R A = o

or

aA ke ~209T, z,

changing variable by‘X=AelvT2, it becomes

%‘r\z (B )R + MR + WL R R (31)

where k's are defined in (B.65). Equation (31) is in the same
form as (10) of Ref. 3. Thus its behavior can be investigated

in the same manner, that is, if

N, < \4.210,_+DIA ns| (32)

the origin, |A|=0 is a focal point; if

Ln?‘ijv\ e ;x,:s:::{v; -
the origin is a node; if
\K19 +lV\ <
\Hg H'L (34)

the origin is a saddle point. Since (31) is homogeneous, if

KL{ K.e B,y JN:\K;\)-_ (Kuﬂz«\-x))l I

the solution near the origin (A=0) is stable. In this case, if «

3R

<0,
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there will be no large amplitude flutter response, i.e. the blade
will simply respond to the forcing function (no flutter mode) due o
to advancing flight. If 62K2RK3R > 0 no close trajectory for A can ' B
be formed on the phase plane. In this case, if K3R(0 (62K2R<0), o
the solution is expected to converge to one of the singular points

of (31); if x R>0 (62K2R>0), the solution is unstable. If

3

0 <0, a closed trajectory for A can exist on the phase

2“2r"3R
plane. The maximum distance of the trajectory from the origin

is bounded by

taa®e _ KB P\ [pl] ¢ < YeeBe, Ml
MM( 2¥Ga ' M le\) IMM« on | Ear (35)

In this case, it is expected that if K3R<0 (62K2R>0), the closed
trajectory is stable and if K3R>0 (62K2R<0), it is unstable.

Let u2=1, i.e. €=y, 92=(9—ec)/u and T2=uw. By (15), (23)

1/2

and (31), the amplitude of the blade motion will be u A(e—ec/u, ) .

For fixed (6-60)/u and as U increases, the amplitude will grow as

ul/z and will vary more rapidly with time scale ~1/u. A will tend

efec Kor 1/2 .
to — E;; as (e-ec)/u+w, if 92K2R>0 and K3R<0.

(3) u%x0, QF=l+ev, where v is of order one or smaller. 1In

this case, 812 and P in the first equation (23) can be very large
or even singular, i.e., the solution_of Bl and Z1 has secular

terms in To* This is because the forcing function fl and h1 have
almost the same frequency as the flutter frequency. This diffi-
culty can be avoided by requiring both'fl and hl to be small;

namely, =€ or
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xo?‘&l:(} (36a)
&}1”\

in (19). This is a reasonable assumption because both fl and h

are proportional to the pitch angle which are indeed relatively
small,

1

We may take the other coefficients in (19) as
(36b)
€. =9.= =0

Y2
b= g
&}:;i
g =

(In reference 3, u was taken to be u3e3/2,;2'to be one. The

present expansion is valid for a larger range of u.)

In (24), the terms proportional to e- QF o, e+lT0, eil(z’QF)TO
‘and e+1(29 -1)

0 will cause the secular solution for 83 and c3

Equation (25), in this case, is equivalent to requiring
v[rZ 35, (B RAAIRDA PN +0 By AT
L LVT -2V,
+}1i(?15 AN+ -—1"')'*\ z'])e ‘ z“‘/‘u A € z]

T
+ BE 4 (0,8 ai Py A+ RN + 1Py ae”

) -200T
P (P AR~ B8 40l B ) e 4 pl B Ke ™ oo

or

* < W\ —OVT
%ﬁz= (Kzez-*l“\l)’w)i\-\-“}. Kqh "'MI(HIOAA*T MoKyt 'z'.q)e L

- 2 (37)
-+ KbA A* -\-}»HH-.&A €
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Equation (37) is quite complicated. The complex amplitude
"A" depends on Uq., Gz,andvv which are coefficients in the expansion
of the parameters. Théir physical meaning is not quite obvious
because £ itself is just a conveniently chosen small parameter.
To see the effects of pitch angle, advance ;atib and the value
6f the flutter frequency, it 1s better to rewrite (37) in terms of -
physically more meaningful quantities by defining:

I Lo (Rpm)Y |
A=eiheP 2=z peF (38)

where 2|E| is the amplitude of the first order solution of the
lag motion in radians. Substituting (38) into (37), and using

(16) - (19), we have

g:‘ = | @8+ iRe-D] A 4+ 1 LA + Ko B ] KRR

9
P MR+ KR TA & pKe + K, (39)

The third bracket is the contribution due to the nonlinear
coupling of the flutter mode and the parametric excitation and
the term K3KZX* is from the nonlinear coupling of the flutter
mode. If the nonlinear terms are neglected, we obtain the result

for the linearized equations of (1) and (2), i.e.

AA —-[W}B -0 ) + ¢ (e M Kol + 5 “‘\A ] Ky
-+ }l V&n

(40)

_ Oy v
The homogeneous solution of (40) is in the form,Aoe 1,2
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A2 = M«zg(ﬂ-sc)*f‘i"wt J w| Ha "~ [ Kz2(8-8) + - ey

Therefore, the linearized solution, i.e., the origin (A=0), is

unstable if Re(Al) or Re(k2)>0. Its stability boundary is given

by

Re (M) =0 (41)

Since (39) is inhomogeneous, regardless of the range of the parameters,
the solution for A will not be zero, i.e., the flutter mode 1is
always excited. 4

To examine the behavior of a nonlinear solution,_one must use the
full equation (39) or (37) to investigate the characteristic of its
singular points. One can then éstimate its behavior by the method
used in Ref. 3. It can be shown that if u is sufficiently small
and (e—ec)/u2/3 is of order one or larger, it reduces to (73) of

1/3

reference 3, i.e., lKLvu for small value of y and the time

scale for the growth is proportional to 1/u2/3. For a larger value
of u, i.e., (e-ec)/ul/2 is of order one, |A| will be of order
u and the time scale for growth is proportional to 1l/u.

(4) u¥o, Qp=2+ev. In this case, the forcing functions £,

and h2 and the nonlinear coupling of the forced response due to
fl and hl’ and its coupling with the parametric excitation will

cause secular terms for 62 and ;2, i.e. and Zog can be large

Bas
or even singular in the second equation of (23). The difficulty
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is avoided by setting

: <P =Xe =0

4 =Y| =\ (42a)

The other parameters may'be taken as

Nl'—“—-o .
42b
& :\'gz‘::o ( )

We have

/
f*:'}*\i y

k
z2=¥=¢€" | - (43)
In the right hand side of (24), only terms proportional to elQFTO
and eZiTO will cause secular solution of 83 and L. To suppress'
the secular terms, (25) is equivalent to requiring

1o dR 2 2 T
V{?‘ﬁt*(el?3+PT‘P|7)A+P5AA*4'M.%%e L +

2 kd -Vl
+ Ti%%;*'(SJV@+P3133)4A-+TLP\N?*»Paggge e
or
A LAk 2 i
’%ﬂ =, 9:*}*2*(0/*‘* YGRAT 4 1 ——;‘;,_G U (44)

Transforming back to the physically meaningful quantitles by

C(2p-2)¥

-

! VT, i
A:_iz,AeL zzzer
we have

= - 1 ,% z
e R R AT G LR L
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The behavior of A near the origin (A=0) depends only on the sign
of Re[Kz(e-ec)+u2K6], i.e., stable if it is negative and unstable
if it is positive. One can examine the general behavior of A by
the method used in Sec. IV of Ref. 3. The results are the following:

Let

§,= Ha(e-0) v K+ il -2)

If¢%RK3R>O,'there exists no closed trajectory for A in the phase

plane. Since the sign of 3|K|/8T2 is the same as «k for large

3R
values of |A|. If K3R<0 052R<0), the solution will converge to
the'singular points of (44). If K3k>0 (62R>0), the solution is
unstable. If 62RK3R<0' there exists no_trajectory for A on the
phase plane in the regionl]K|2<-62R/2K3R. However, in this case,
it can be shown that the maximum valﬁe of the closed trajectory

from the origin is bounded by

Mox ("‘-&5 ’ ?.2) 5\0\‘:“ ‘5(2; (46)

where p0(>0) and pl(<0) are the largest and the smallest real

“"ﬂ.\ (4"2&“?1)?*}*1‘&‘_ =0 (47)

It is expected that if K3R<O (%R>O), the solution converges to
the closed trajectory and vice versa.
- 8-0
For fixed 6- -0, and sufficiently small yu, say ——7—b0(l), or
6-0

>>1, equation (45) can be solved similar to (26), with terms

proportional to uz being neglected. 1In this case, A& is of
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i
order (e—ecfbr ul/z, which is the same_result as obtained in
Ref. 3. For larger valuejof u, say (e-ec)/u~0(1) the full
equation (45), must be considered. The solution of A is of
order U,
Since (45) is inhomogeneous, A will not be zero, i.e., the

flutter mode will always be excited.

(5) uko, QF=1/2+ev,1+ev or 2+ev. In this case, there is

no secular term for the solution of (Bl, ;l) and (62, cz).

Therefore, we may take

:YO:]

v (48)
\ o, =%, =8 =, =
l.€.
3
NZ}A\E
2 = =\ ' : (49)

To suppress the secular terms of 83 ahd Ly there are three cases

(a) Qg =1/3+ev. In (24) , the terms proportional to Fi0pT)

and et (1-285) Ty 311 cause secular terms. Therefore, (25) is

equivalent to requiring
v{?. + (8B4 MR DA Po AR U T Nkl
zﬁ' AT AU AY W PR e =0

or

A _ * o VT,
%ﬁ—( 20, PR A + I AT Koy A 3% (50)
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Near the origin (A=0), the solution is

z > unstable
M'Z,Rez +,“\ KBK < O stable (51)
The general behavior can be examined by the method used in
Ref, 3. Let
2 . By
If GRK3R>0,Athere exists no closed trajectory for A in the phase
plane. 1If GRK3R<0, the maximum distance of the closed trajectory

from the origin is bounded by

- 2
Max | [~ Se l piivl® _ Se M4l } < |
T o N Alre Kk Thea| 1 S 1A lna
(53)
< I."‘l\.kﬂz IR YSEIE Gl
4| KSK\Z‘ 4% ll’(m\
(b)  Qp=3+ev. In (24), the terms proportional to etifipTy
and e3iT0 will cause secular terms. Therefore (25) is equivalent

to requiring

v [?- g%_L+(9,z Pt M P A + P AR )“? 8, e-wr,_]
+ P;_%%L-\P(ezﬂ-»/u}pm)/\ +P6A1’°\*‘*}*?ﬁzzc'w o _ .

ox
-iﬂr)_

oR ¥
< bn AR i
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Equation (54) is similar to (45), it can be examined accordingly.

(c) Others: 1In (24), only the terms proportional to

elQFTO will cause secular terms. Therefore, (25) is equivalent

to requiring

EB. '.:.(PLZBL +}AT H—Q)A"“ M:I,AIA*, (55)
T,

Equation (48) can be solved in a manner similar to that used

for (26); therefore, the conclusions in Sec. IV.1 hold for (55) with

’ 2
_K29 being replaced by K292 + u K6.

V. Uniformly Valid Eipansion

The solutions given in Secs: III ahd iV can be combined to
establish a single expansion which is valid for small advance
ratios y and all.range of piteh angles 6 up to a small neighborhood
above the critical conditions. We shall first show that there exists
a range of 0 where the expansion given in both Secs. III and IV are
valid, i.e., to establish the matching of the solutions. Then
using a technique similar to the one used in singular perturbation
theory (Refs. 5,6), a uniformly valid expansion can be constructed.
Let us use subscripts "b" and "n" for the solution in
Secs. III and IV to denote respectively the asymptotic expansion

for 6 below and near the critical pitch angle ec, i.e.

@)f/‘* (z:)w_/uz ( ?:)ﬁ

(e ()

(56)



-24-

the relation between € and u will depend on the cases (see Sec. IV)

considered. Let € be a small parameter such that

0< & , —%—«] (57)

We shall show that for e<6c and

g
0-6.=-% (58)

both expansions in (56) match, that is,

(%)n " (g)b =05 (59)

P

N

as €,8+0 with 1, being fixed and o=1/2, 1,... Then the uniformly
) 2

valid expansion is simply
(5)= (5) 2 (2), - (5)
3 \T ) VT ) T e (60)

The last term of (60) is the common part in the expan-
. B B
sions (;)n and (C)b'
We shall consider the four cases of Sec. IV separately.

(1) Hovering, u=0. In this case

()=

and (%)n is defined in Sec. IV.1l, and is proportional to A which

is the solution of (26). Since K262 is linearly proportionaﬁl'to"'e2
6-0 o .
(=—= =-3) (see B.59, B.29, B.39, 16 and A.24),

its real part is a large negative quantity. The solution of (26)

can be approximately expressed in the form
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. n,8.t
;A = A°<f il

(61)

where A0 is a constant.* A is exponentially decaying, so is (C n
i.e., (59) is automatically satisfied. We should point out that forkl
the conditionally unstablé situation of Sec.IV.l.d the approximate
solution (61) may be invalid for a sufficiently large initial dis—.
turbance. However, this situation may be avoided by having sufficiently
small €, thus seriously limiting the range of validity of the uniformly

valid expansion.
(2)  Qg=ltev, (Sec. IV.2). The expansion (%)n is in the

form similar'(up to the order considered) to that of the previous
case except that A is now governed by (37). In (37), within the

range given by (58) and u, of order one or smaller, the real

1

part of Koy 2(~ 1/€) is a large negatlve quantity; the solutlon for

A can be approximately expressed in the form

K20, T 4 -V
A=A, &7 ""{: y:*:» c (62)
2 N2
2 2
ekl
[This is wvalid only if - 3 <1l.]

|i(Qp=1)+k, (6-8)]
‘Where,AO is a constant to be determined from initial conditions.

The expansion near the critical value ec can be written as

M Kg oy (e-eny . )¢
( (5) ‘I&i (@-80)+ e ( )e F [‘t(o-zaﬂ(ﬂr—-l)] (gt') : e

(B, (e

(63)

He
K (8-0)+1 (QF

+o(g) |

—
Ao depends on the initial conditions.

Mm
+3
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We shall examine the expression (BC)b by expressing
| = jZF"E))

where v is a constant of order 1. Expanding the parameter in the

form of (16), we have, (B.18, B.19 and B.36)

D) = -5 (.rz;ﬂ -4 QF'ZF,J[%\’(RWE *‘%U'*RT_)"OW) (64)

(B ) Nu)( ) p-Si%ecSh ( MU +0G) e Oy (P7\
T =S |
12 i ‘P8 D) o \ ) )

By R (65)
ﬁ"(""*ﬁ)*{%\%?ﬂﬁ )*0()} &0 N.P)[ Wﬂ

From (14), (B.47), (B.48)

(25} = Namy) ( Pt S)S"**ﬁs‘z)»r
25 /b 2 ul,’(sz,- 9)9,{5,2 8(5"

=l (), + o)

2L(|z \ 12 %) "n t <
(ZJ N( )( B2 S~ P )2 (Bo- 055 - L (652 Ps ) o(f‘-)
2 (28, - 0353, ?.;S.J*r*% -

cofone
—

- (66)

(67)

LQ;-\)mz(e e)H ) T 0( £)

Then the expansion (C)b can be written as
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gk ) “
(8),=2 & | Fsmm )™ ey (o) w

+ M e 216, .3 ~ (68)
W@-0 Kz(&-&)l (';u)n + 0(?.")2{

2
Comparing (63) and (68), evidently the matching requirement (59)

is satisfied. The common parts of the two expansions within the
order of approximation in the expansion are the same as in (68).

Therefore, we have the uniformly valld expansion
(g)“(%),* (%) | (69)
(B)=(8)- () =0 | ("“’r(p“)e“ A

where

Z 1\

(f) = [1ay9) - N0, 0] (Pr)
vSp_ v ?3 (71)
and §55, 225, §26 and 226 are defined in the same way as Bogee-
etc. in (B.47) and (B.48), except that Bio and P is replaced
by 3’12 and Elz and R,=X = ‘go-:

(3) QF=2+ev. Similar to the previous subsection, it can

be shown that 8 and ¢ can be expressed in the same form as (69)
in which
¢ 2 @
(Bt ers )
3 12 S Vet | (72)

£2y

where
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bis ) _ [E(z,a)—ﬁ(a&-)] (IT;:)

- (73)

(f“' :r N{OB)'—N(O ) (?‘s)
316 - ~ ] ?Nv

with & =% <2=§=1 in (B.41)-(B.44).

For the other cases, the expansion near the critical con-
ditions matches that below the critical condition, 1.e., the
uniformly valid expansion is of the same form as that in Sec. IV
except that when evaluating 812, 512' 825, ;25, 826 andczs,
the parameters in the matrix g (B.18) are referred to their value
at the corresponding pitch angle 6, rather than using the value
at ec as done in Sec. IV.

VI. Conclusions and Numerical Results

To summarize the results for the pitch angle 6 in the neighbor-
hood of 6_: '

(1) The value of Kagp? defined in (B.65), characterizes the
behavior of the blade at large amplitude motion because the sign
of %éél is the same as that of k3gp When [A] is sufficiently
large? Therefore, if K3gp has large positive value, the nonlinear
effect is strongly destabilizing and vice versa. It is a very
undesirable situation to have the blade with Kap 2as positive,
because instability can always be excited if the disturbance is

sufficiently large. In practice, large disturbancesare likely

to occur due to gust or maneuver. The value of k,;p is independent
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of the advance ratio; however, it depends on 6, QB' QC' gB, gC
B in a complicated way. In the two cases considered in

p.c.
. 2 2
Figs. (2) and (3), when { >l+QB, 3R

small negative value, i.e., nonlinear effect is destabilizing or

is very weak. In the region Q§<1+Qg, K3r is generally negative,

K is positive or has a very

and has a larger value than that for Qg > 1 + 92 i.e., the nonlinear

B’
" effect is stabilizing and is stronger.

(2) When flutter occurs, the amplitude of lag motion is
much larger than that of flap. This is due to the fact that the

total damping in lag is much smaller than that in flap. The ratio

of the amplitudes is

181
13}

where u is defined in (B.20) and usually has a value of 0.1to 0.2.

= lu|

(3) In hovering, if 6>ec and k.,..<0, the limit cycle ampli-

3R

tude is

k@gﬂi‘gﬁ)]ya'
Wi

for lag motion and

elo-8c) 12
\\d [ ;lall )

for flap motion.
The following are the cases for 6 near ec in forward flight.
The value of QF has strong effect on the behavior of blade due to

periodic forcing function and the periodic parametric excitation.
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(4) 1If QFél/Z, the amplitude of the flutter mode is governed
by (31). By taking u2=l, the amplitude of the lag motioh is
ul/zA(Tz). In other words, when flutter occurs, the lag motion
grows as ul/z. The time scale T, for A is uyp, i.e., A varies

more rapidly in the time scale y (~1/u) for higher p. The

stability near the origin [A=0] is governed by the sign of

K= ke [Km (9'90:;)*,3 wlks) -] Hu(e—&a*ﬂ;-é]‘ (74a)

or in general, the stability of the singular points of (31)

is governed by the sign of

K= K (gzg B :\\ QSSF" g;;_— > (74b)

where

b

in which i=io is a singular point of (31). (Note §o=0 is a

(75a)

i\

MK + =VA,

singular point). If k of (74a) is less than zero, the origin is
stable and if K3p is also‘less than zero, since (31) is homo-
geneous, the flutter mode is unlikely to be excited.

(5) 1If QFél, the flutter amplitude A is governed by (37) or
(39). For small value of u, (small as compared to e-ec), i.e. uy=e

3/2

or u=eg with 92 being of order one, (if u<0(e3/2) for e—9c=0(s)

forward flight will have little effect on the flutter of the blade),

the lag amplitude is

i AT = fx%A ()5‘4')
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i.,e., the lag motion grows as ul/3 and the length of time for A
to grow is proportional to l/u2/3. For larger values of .u (large
as compared to e—ec), i.e., ul=l or u=sl/2 with 62 being of order

one or smaller, the lag amplitude becomes
d 2
& Aty = pAY)

i.e., the lag motion grows as u.and A varies more rapidly in the
time ¢ (~1/u2) for higher u. The origin (A=0) on the phase plane
is no longer a singular point since (39) is inhomogeneous. There-
fore, depending on the distance from the singular point to the
origin, the-stability prediction by the linearized theory such

as (41) may not be meaningful. Let KEXO be a singular point of
(39), then the stability of the singular depends on the sign of

k [defined in (74b)] where

%, =106 ac)n(n.;-|)+;~ M2 Kyfohr + (2 Ao tH, 9]
‘=)JIKQ'+)*“4;R0'? ’Q;A:

Since (39) is inhomogeneous, K&*O, i.e., the flutter mode is

(75b)

always excited.

(6) If QFéZ, the flutter amplitude is governed by (44).

1/2

For small values of u,i.e., ny=e or p=e with 62 being of

order one, the lag amplitude is
B Y
i
£ Kw) = pA(RY)

For large ﬂ, i.e., ul=1 or p=el/2 with ezubeing of order one,

the lag amplitude is

gam) = pAKY)
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The stability of the singular point depends on the sign of «

[defined in (74b)] in which

- N =X
S EB)HH Kt L ()~ WA A

-
<S;‘=: \43F\o
where Kﬁio is a singular point of (45). Since K5=o because (45)
is homogeneous, the flutter mode is always excited.
(7) 1If QFé1/3 or 3, the flutter amplitude is governed by (50),

1/2

or (54). Taking u,=1l, i.e., u=¢ , the lag amplitude is
1

1 =

£ He) = X AQ)
The stability equation for the singular point is also (74b) in
which

N4

8.2 Klo-8o)+ oH +i (Re-3) <28 KRR,

~ 2 — (750)
§s= W3 Ay v 2pHeA,
for QF—1/3=O(€) and ﬁoe—iVTZ is a singular point of (58),
. ~ A
%Z: K}(E‘Oc)‘%,:VQQ*’L(jlv'z)'f liiv‘;hoab
—~ (754)
%;=£K3 Ao

for Q;=3=0(e) and ioe—isz is a singular point of (54). 1In the
latter case, (54) is inhomogeneous, the flutter mode will be
excited.

(8) Others. The amplitude equaﬁion (55) is similar to that
of hovering. Therefore, the conclusion (3) also holds in this case

. . 2
if KZR(G-GC) is replaced by KZR(e_ec)+“ KgRr®
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(9) When evaluating Ke according to (B.65), if the quadratic
terms in 612 and Lo are neglected, and in (75) Ao (or AO) are set
to zero, k=0 of (74) gives the stability boundary of the linearized
solution of (1) and (2).

(10) If x,. <0, QF is not near one, two, or three and if the

3R
‘blade is operated under the céndition k<0, the flutter mode will
not be excited. Therefore, in practical design, QFél, 2, or 3
should be avoided.

(11) The amplitude of the blade motion is of order e|A],
how ¢ relates to the advance ratio u depends on thé value of QF.
In other words, for the same value of p, the magnitude of the
response can be of different order. In particular, if QF=1, 2, or
3, the flutter mode is always excited; one cannot just from the
observation of the motion of the blade conclude whether the
blade is in the region of stability or instability. Because the
motion cannot simply be the forced response, for differenf value
QF' the response is magnified to different magnitudes.

Numerical results are presented in the figures. The

induced flow is approximated by

AT (T B2 1)

where 0 is the solidity ratio (Ref. 4). Throughout the computation,

the following parameters are used®

T = 0.0%
o = Slps =0
Cy,= 0.0l

L = R
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2~

For practical interest, we shall only compute the cases 1+QB~1.1

2~
and Q.

In Figures 2 and 3, the locus of the critical conditions for
various ec are presented; y=5 in Fig. 2 and y=10 in Fig. 3. These
locl are similar to that of Fig. 4 of reference 4. The region
within the locus 1s unstable according to linear aeroelasticity

theory. For y=10, such regions are much larger than that for y = 5

for the same ec. The numbers given on this locus are the values

|K2R/K3R|l/2 for the corresponding parameters at e=ec. The solid

line is a portion of the locus where K3R<0 and the dotted line is

K.p>0. That is, over the solid line portion of the locus, there

1/2 1/2

3R
exists a stable limit cycle of amplitude 2(e—e¢)
1/2 1/2|

|K2R/K3R|

for lag motion and 2(6-6,) u| for the flap when >0,

| %2r/%3R]
lu| is usually 0.1.0.2 because of low aerodynamic damping in lag.

The blade is unconditionally stable if e<ec. Over the dotted por-

tion of the locus, the blade is unconditionally unstable if 6>6c and

conditionally stable if 6<6,s i.e., if the disturbance in |A| is

1/2
smaller than |k,p/k,pl

ll/2

, it will die out and if it is larger

than » it will grow. 1In these two cases, the limit

[ <2r/%3R

cycle amplitude can be quite large for e>ec, because IK2R/K3R|a

is quite large, i.e., the nonlinear effect is weak. For such a

blade, it is not desirable:to operate above the critical condition.
Figures 4 and 5 are the lag response of the blade in hovering

for a given initial disturbance, obtained by

method of numerical integration. In both cases, 1+q§=1.09544,

Y=5, 0=0.3 and ec=0.25. QC=1'0017 for Fig. 4 and QC=1'19747 for
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Fig. 5, while ‘the numerical values for K3g are -0.0074 and 0.001
respectively for both cases. It is clear that the motion in Fig. 4
approaches a 1limit cycle oscillation while the'amplitude in Fig. 5
grows steadily.
The case considered in Fig. 4 has a flutter frequency QF=1.00418;

It is expected that A is to be governed by (37). 1In this case,

Mqe = 0.0(178+ 0.01T° b ¢

Ka= —0.00T4 24 -+ 0.0107 L

Ky =-0.00T6%—0.0005] 2

Ky = —0,0 154 — 0.00 ‘77(3&

Kq= -o. 06638¢—0.01480 4

Koo = ~Go73%o+o°°°‘z+°

Ky, = 0-00 N2l +0. 0024«

Kis = 001167 + 0.02-473 ¢
SIF‘l=0~°°("\8

The time variation of |A| are plotted in Fig. 6. As predicted

in Sec. IV.2, when QF31, the amplitude of the response is of

1/3 2/3

i for (e—ec)/u of order 1 and the time scale is proportional

to l/u2/3. Figures 7 and 8 are the lag responses of the blade
obtained by numeriéal integration having the same physical parame-
ters as that of Fig. 6. u=0.03 for Fig. 7 and u=0.04 for Fig. 8.
(e-ec)/u2/3 are held to be one. The lag motion is normalized

1/3

by dividing by u=/~, and ¢ is normalized by multiplying by u2/3.

It can be seen that the amplitudes of the two curves are very

2/3w.

similar in the time scale T,=H
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FIG. 2 LOCUS OF CRITICAL CONDITIONS FOR VARIOUS PITCH ANGLES

0, FOR y=5, ¢=0.05, cdo=o.01, a=2m, n,=n, =R, =0



9

[

s}
.

[

[

et

(=

L]

(€]

<

-39~

.
et pegion of unstable
limit cyecle
e
-
R
3 ) I 4 A A
.o 1.0 il 1.2 ‘1.3 1.k 1.5
/9., a2
/7 1+
VT

FIG. 3 LOCUS OF CRITICAL CONDITIONS FOR VARIOUS PITCH ANGLES

ec FOR y=10, o=0.05,_ Cdo=0.01, a =2r, "B="C=QBI;=°



40~

o LT00" =21 .a:mmo.ﬁuwc+ﬁ 0=2%p=2u=%u ‘uzae
“10°0= P9 “G0°'0=0 ‘G=A *62°0=6 WOd NOILIANOD TYOTLIUD

FAO9V HTIONV HOLId 404 ONIHHAOH NI NOILOW DVT ANV dVId 4 °*DIA

g

9. SWTJ, TRUOTSUSWTPUON
a2 ChZ ane gl ozi 06 0%
{ | ] 1 | | |
§35TX® UOTJBITTOSO ST0AD 3TWIT °*QTH00°T=98 ‘6z'0="6 2s®d sTu3 ul
I T O 1 | 24
! s B .

i
it
|

T L e e

|
|
_.
|
|

R S e

et

MRV ARVAAA

2 uoTaol beT

0°0 ST*0-~

=y

- g uoTaon detad

'ST°0



~41-

o LuL6T T="8 “nnS60°T= o4ty 0=?Fpuau cuzes

“10°0= P2 €G0°0=0 ‘G=A €Gz'0=0 WO4 NOILIANOD TVOILIHD
FA0GY FTONY HOLId HOd ONIUIAOH NI NOILOW DYT ANV d¥1d & °DHIdJ

th BWTJ, TEUOTSUSWTPUON
67 ah2 e ngt - 0l gg Oh
L _ _ . _ _ 1 |
T
SUNEN | REE
_ ] 0 ’ | !
| Ll | ,_ "
v |
i i
|
|
i
¢
“
| i
1 |

e

T

P

.838TX9 maouo 3TWUTT aTQqe3s ON .mmH.Hnmc .mN.onoo 2sed sTyg ur

A

o~

2 uoTtioN bBeq

o

=
ST°0, "0 ST°0-

g uoTzon detd



-2~

.:”oo..muuc anv

o]
.«emmo.auwc+ﬂx 10=29p=2u=u ‘uz=e ‘10°0 = P> ‘50°0=0

¥0d S=A ANV n/(°%6-6) SNOINVA WOd |¥| 30 NOIIVINWA EWIL 9 *OId

€/7
2TEDS SWTIL MOTS

Aim\NlﬂvNP
D_:N

08z anz 0yt ozt 08 oh
L I i | | 1
: :
co-= £42
§°0-= &
0-9
0°0
S0
0°t

00" -

S

Se”

oyt

1

opn3 TTdury

A



~43-

Ao.Tm\Nw\,A__ 9-0) ‘£070=7 UTM 9 "IT4 JO 3PU3 ST owES ouj v sIvgeweRd) I
t ; _f w

:m

T "
A

*€0°0=" yod (z) pue (1) °sO=
JO NOIIWMOEINI TYOTIAWNN IOTIIA X4 S_m \N;nvap

TTYOS FAWIL MOTS °*SA SNOIIOW OVI ANV JdV'Id QIZITVWION L °OId

n/uoT3on ber

€/T

n T90W de
£/1 /UOTION Td



*v0°0=" ¥0d (Z) ANy (T) °-sbF
JO NOIIVHOAINI TYOIHAWAN IOTMIA X€ Aam\Nnnva
TIVOS AWIL MOTIS °*SA SNOIIOW HY'T ANY dVTd QIZITVWEON 8 °9Id
4
M=
besg=""

Zh 4g Q€ he 81 21
L . 1 _ L I I

L

0
o
]

o
.Ao.ﬁum\mn\A 6-90)
‘40°0=n Y3TM 9 *374 JO 3BYUJ SB IuEs 2Yj) SJIB SIIjWBIBY)

AN L

¥

8l-

0°0 6°0-

6°0

SP°0 0°0 Sv°0- 8°T

g/1/UCTION bet

E/In/uoxqow deta



-45-

Appendix A. Derivation of Flap-Lag Equations

In deriving the equations of motion of the blade in flap-lag,

8, z,and 6 are used for flap, lag,and pitch angle respectively. (.
denotes differentiation with respect to y and y=0t with Q being the

rotating speed of the shaft itself. Two coordinate systems are

used, namely, (x,y,z) rotating with the blade about the shaft

and (X,Y,2) rigidly attached to the blade. The base vectors

of the two coordinate systems are related by (Fig. 1):

L=Bl -5 am® T —ampenb K

U

, (a-1)
e 8 -9 K -

J

r~

;{& = 5«»(5;5 -\—m@%eg-\-m@;m&’ﬁ

Let the distance of a point on the blade from its support be x,

or RE where R is the length of the blade. The position vector,

the velocity, and acceleration of the point can be written, as

T=Ry(w@ L~0-3R) (a-2)

= RRE [ BA-R L ()0 ks k]

| (A-3)

a = 7 Rz %_[é&;&g»«"@lm@ +(HT )260@]};
Teop-a(ag) b pn0] 4
g ep -] k]

Let m be the mass per unit length, then the inertia moment about

the z-axis (the hub) is

(A-4)

)

‘ES
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|

M = - (mraa Rdg
= 1 0* [Swp-2)p ot (sipi-copk) @5
+1ﬂ2[t§+ (H"g)"m@@m@;:} f:\,

where
\

I1=| €&'maz

o

(A-6)

The flow velocity relative to the blade is

Vi =} R e (dag) € = s (W43 ) ]

. . . N ~ (Aa-7)
Vg = RRE[poimp L +(4) o lepopl |

where Vinp is the induced velocity. To evaluate lift and drag,
it is more convenient to express V¥, in terms of (X,Y,Z)-

coordinates, which move together with the blades, i.e.

Va= V%I +Ved +V; K (a-8)

It i1s clear that Vx is the velocity component in the axial direction

along the blade, while Vy and VZ are in the cross section of the blade.

— -9
f\./m"’ﬂﬁx ,K. ~ A
using (A-1) we find

Vy = -S1E zp [(/‘) (447 ) 50D G + A (P 0o 6]
v feop(ef)ab+BseocnBlf oo
Vz =-3¢ R{X + U] en W+3) %F’ 030 — i (§15) &wej

+E ):- CooB(H ¢:)¢~% + \5 "‘Delj
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We shall assume that quasi-steady two-dimensional aerodynamic
theory holds for each cross section, i.e., the aerodynamic load

vector can be written as

2 | VA
L =4pa ng ~ (A-11)
L= ahec Ml N 3 vk

where Pa is the air density, "a" lift slope, c chord length, Cd

o
profile drag coefficient
= V., T + . (A-12)
YT Y ~ VZ. k&
o gg is the effective angle of attack, i.e., (Fig. 1.C):
v Va
X = lat 2 M | (A-13)

et

and N is a unit vector normal to V, and in the plane of the blade
cross section defined by
N = L*YT VY

~ - (A-15)

\ v | \\/Y!

If Vy>0, i.e., the flow is from the trailing edge to the leading

edgé, this is called reversed flow. In our present

C
consideration, we assume that Vy<0, and ugff<<l,"do<<l. A
a

substitution of (A-12) through (A-15) into (A-11l) vyields

Lo= (L, £ +(Lad 0k (A-16)

where
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(L= fac {1+ 2 Vel Ve st
v [%‘:9 ‘VY\ Ve - Yz VY‘} 06)9% ,dz:uu('f,

(Lg),\: ‘\i?AC%%[\/; % Ve VY:( oo b

(A-17)
—[%\\/Y‘va‘vz\/y:i,ﬁ,\meﬁ
ey e
(L= b, 28
Sm\z;
The aerodynamic moment at the hub (z-axis) is
1
M = S X x LAng (A-18)
~ A o -~
The equations of motion of the blade are
‘ , \ } —“u
Motta) d s T (Rofr) *I%cT=0 0
in flap and
Myatly ) K +T o 5+ (f-Bec)=0 (2-20)

B wc are the

bending frequencies in the flap and in the lag direction, wBt is

in lag, where ch is the preconing angle, and w

due to the elastic coupling. (Note that, depending on the con-
struction of the blade, wB ' wC ’ wBC can be a function of the

pitch angle). 1In (A-19) and (A-20), it can be shown that by

C
neglecting small terms, such as asz,"do compared to one,
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(Moo )i = 18 (B4 (w2 0 e
+ gm? {BM{A_@’»*H 0»“)(‘“?)%@ CJ aenf cB
— [Acop 43y p S (43D ] (12 678)
+ oo B O~ T+ -g— M (=3 )&;(w_+;)+ zﬁw‘qhg 3];«'»})
~[copp @Td- EnsiPoofs oo (4+) ()
+ T ppes ($£3) +am Co (¢+3) A&(&Vrg)p&@]m% 21y

(MzeM) K =Tt [Soop-2Cr3) 6 a-p)
+ %In‘ ibw9+[A§a-+/Joo(¢+§\M~§ <J(1+ co*®)
- [Ap 5>+ M CAmUEE) ] b b
+ g7~ -g- p P o0 @) AB+2 b0 (MR Jeof
- [eoB b (#3)+ 3 Matpuofoo a1) (3 )+ L pd 3o (443)
e y‘m(4+z)m'-(_¢+;)a-~(s] “o

- S{-"[w‘% (wi3+ B uc (14%) in (443 >} ‘74‘3(409]“39}

where

is the Lock number
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\
B= S)\zgdg (a-22)
° .
]
C=4 . d
|1z dy
To further simplify (A-19) and (A-20), we shall assume that

elastic coupling chfo(e), the pitch angle 6, the static equilibrium

flap angle Bo, and the static equilibrium lag angle L, are small,

so that 92, Bg and Zo, can be neglected as compared to'l. The

guantities Bo and o satisfy

Do+ @ (B0-Cpo) + DpsSe= 5 (0-A)2

: _ Y Cd. 1
Wps (B Br) + W T, =~ 51 A8+ 3 -BlR
- We shall define the following non-dimensional parameters

‘SI; = C#%‘//fil
N = W /st

.
3 =2 B

(a-23)

b2t § (R0 )
X = ‘g’ (26 -R) "'z'?’o

Y = 28.- § (8-24)



Substituting {(A-23) into (A-19) and (A-20), replacing B by

B+8

motion flap and lag, respectively, and retaining only proper non-

and ¢ by ;+;0, i.e. using B, ¢z to denote the perturbed

linear terms we obtain Egs. (1) and (2).
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Appendix B. Definition of Various Functions and Quantities

L(B,3) = .@‘u*ﬁp.@*(\dl;,)&*-ﬂp{ﬁ-l e (B-1)
MBI =T + 3T+ T + R — Y (5-2)
5,0) = T 1 Ee-0) siny- 4, w04) | (3-3)
pes) = R0 ey
.Y :

R@0) =-3 [(_83_ %4 CO)sSw+ (%s-zc)@°®<¥1 (B-4)
A (%,8) = R C4,0) /p (B-4) "
5,49 = S(o-psaf -0coad) (5-5)
‘;;.(‘Ke) = '¥z (Q’, 6) /‘g (B-5) !
%.040) = T16- 2 -paswat+ (g Lyuwa ¢ ] (3-6)
+, (,9) = R,(4,0) /9 | (B-6) "

08,80 = T{@oi-4p 80 o+ (Be-5-Sp-508)wt] -

F0;0.5) = 51" 10p) i + [(2c- o) B-3p,03 (5-9)
.+%p°§-cos] ¢ }

F,82=-2p3 (.- T5) 3> % BT (B-9)

‘R&(@/‘S):—l?s? + (z(s,—§e) 6% -f:g(if' '(B—IO)
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| *[3ef- 3os9-'°§@]w?}
F.088%) = ¥ (26% - R)sway

‘R ®8:89= -g izg’:.,B - [2(?; (.i'a)s +9%]5.‘..2¢ +2§°§mu}}

'Y’(?lg.,@z )-—A?’S "2(5 S‘a(? fe)ng pg
S TR e8.3) -22B. 3P°?‘P' +E 2

3;57.3%' *2, Q‘S“ “Rpsz.s |
&1(@.;.;_3;5,) =2B.R,*2f, B, (2B,- §0)( é>.§ +6.3)
+IP?P1.+2‘!"§ 3 "’7' ?t%: ch bT.‘ +Y %%
S,y 2B ’
| "39.3 +Y, W, SZPQ@‘
S)Z.. 9{‘4[.0( _ o o’XZ. R
New)= | 8; % | ==

e D(oc,e)
L*\/‘G%g \+QF *L“Z@

- (B-12)

(B=13)

(B-l4).

(B-15)

(B-16)

(B-17) ',

, (B—18) '
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—D('t) ;(S‘(’eﬂ - 9(‘.“)8‘59() (y;- K+ ,;gxfx) - (SZ(’:( ‘LZ%(QM- LYp( (B-19)

L e B S,

- H'.Sl e St ‘*3(«‘2; 570
u* = comrle,x conjkc,oa‘e o{: W | | (B-21)
%, = - 24 SIp - (B Lo - w ' (2-22)
X=20put - (28,- £o) R w - T w (-23)

_—_-z.,SZF(u u)oz(\aflg)SZF———sz(u ) (B-24)

4= :.% —-—9)51{: (u *u) + = ZXZF uruw (B-25)
T =- (3;52F.*a¢o> L+ X, | (26
P ==(2 SZF*&,,) -\-’\ﬁ W (B-27)
= -’:BPZQF U + LSZFE"Z ‘ﬂ(sgz . (B-28)

4= = L JQF 3{2. *((:QF \(z‘ﬂ@yz_ v (B-29)
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