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PREFACE

The work described in this report was performed by the Telecommuni-
cations Division of the Jet Propulsion Laboratory,
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ABSTRACT

This report describes, the radio frequency subsystem (RFS) foT the
4ariner Mars 1971 (MM 1 71) spacecraft. The MM'69 RFS was used as the
aseline design for the MM'71 RFS, and the report describes the design
hanger made to the 1969 RFS for use on MM'71. It also cites various
roblems encountered during the fabrication and testing of the RFS, as well
s the types of tests to which the RFS was subjected. In areas where signifi-

ant problems were encountered, a detailed description of the problem and
;s solution is presented. In addition, the report contains some recommen-
ations for modifications to the RFS and test techniques for future programs,

of

it



I, INTRODUCTION

The Mariner Mars 1971 (MM'71) radio frequency subsystem (RFS)
provides the communication link between the spacecraft and the ground-
based Deep Space Instrumentation Facility (DSIF), 	 The functions of the RFS,
shown in Fig,	 1, are to

(1)	 Receive the S-band radio frequency signal transmitted from the
DSIF,

(2)	 Demodulate the S-band signal and provide the extracted composite
command signal to the flight command subsysto n, i

(3)	 Demodulate the ranging signal transmitted from the DSIF,
I ,'

(4)	 Transmit a modulated RF signal with a carrier which is phase-
coherent with either the received carrier or with an internally
generated frequency source..

~t	(5)	 Modulate the transmitted carrier with the composite telemetry
signal from the flighttelemetry subsystem.

(6)	 Modulate the transmitted carrier with the receiver-detected
E

ranging signal,

The RFS consists of the four subassemblies and the microwave corn-
f^

ponents shown in Fig, 2, 	 The major subassemblies are the receiver, the
i
!	 exciter, the traveling wave tube amplifier (TWTA), and the control unit sub-

assemblies.	 The microwave components consist of the dual RF switch, the
^-j

filter  hybrid, the output filter, and the diplexer.

The design performance parameters and the operational modes of the
RFS are shown in Tables 1 and 2, respectively.

JPL Technical Memorandum 33-573	 1
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II, DESIGN CHANGES

The Mariner Mars 1969 (MM 1 69) RFS served as a design baseline for
the MM'71 RFS, and several changes were required to implement modifica-
tions in system configuration and operational characteristics. In addition,
changes were made to increase reliability, The significant changes incor-
porated into the MM'71 RIPS were:

(1) The self-lock/false-lock problems which occurred in MM'69 were
eliminated by modifying several receiver modules and changing
the X5-X24 frequency multiplier in the exciter chain to a
X4-X30 combination.	 However, the design of the X30 multiplier
in the exciter was changed late in the program to incorporate a
breakdown suppressant when it was determined that the X30 RF
breakdown margin. was inadequate.

(2) An active loop filter was implemented into the receiver which
increased the loop gain by 10.

(3) The capability of turning the TWTA off and on was added. 	 As
part of this change, heaters were added to the RFS bay.

(4) A dual trace concept was incorporated into those microwave
components employing stri pline techniques. 	 However, when a
RIP breakdown occurred in the proof-test model (PTM) and
Flight 1 circulator switch, the dual trace was removed from the
switch and other design changes were made to improve its
breakdown margin.

(5) The control unit was modified to incorporate the new antenna
switching logic and the central computer and sequencer (CC&S)
2B transinit on the low-gain antenna (LGA) event.

Al

(6) The voltage-controlled oscillator/auxiliary oscillator 14

(VCO/AUX 0'! C) transfer inhibit was included as an umbilical
function.

These changes required modifications in several modules. 	 Also, as 4

stated, design deficiencies were encountered late in the program both by the
RFS subsystem contractor and at JPL which required additional design

2 JPL Technical Memorandum 33-573
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changes. The significant design changes or modifications finally incorporated
into the RFS are listed in Table 3 and discussed in n oru detail inSoction'Vl.

There are four distinct RF Ss; prototype, PTM, Flight 1, and Flight; 2,
as defined in the next section. The prototypee r4;.,A4 was used to define the
systern design, and design docuzrzentation for the PTM and flight systems was
based upon prototype perforixzance. The design and test specifications were
updated and revised after prototype tests were completed. Although the
prototype performance was generally adequate, it was necessary to make
design changes in some of the PTM modules.

III. PROCUREMENT PROCESS AND HA.RDWARZ DELIVERED

The procurement process for MM'71 was somewhat different from, that
of MM'69. In MM'69 the complete flight RFS was purchased from, a single

contractor. However, in M1\4 E 71 the microwave components, the traveling
wave tube (TYYT), and T'WTA ,sere purchased se parately by JPL f orn

three different contractors and then supplied to the RF subsystem contractor,
The subsystem contractor integrated the JPL-supplied hardware along with
his own into the RFS and conducted the flight-qualification testing. The
contracts for the microwave components, TWT, and TWTA were fixed-
price, The RFS was purchased. on a cost-plus -fixed-fee contract. Under
these contracts, the four complete RFS assemblies listed below were

delivered.

(1) Prototype--a non-flight, reworked and modified IYM 1 69 prototype
RFS.

(2) PTM ($IN 001)--the type-approval and flight spare unit, which
was the reworked and modified MM 1 69 PTM.	

,

(3) Flight 1 SIN 003--the MM 1 69 flight spare, reworked and modified
for MM'71, which was used on Mariner 8.

(4) Flight 2 SIN 005--a new assembly, used on Mariner 9.

JP.L Technical Memorandum 33-573 3
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IV, T 1-M METRY CHANNELS

A number of 12.FS parameters are telemeter ed during flight, Each
analog quantity is quantized to 7 bits, providing 128 distinct values
(0-127 DN*), Thebn, measurements are necessary to provide engineering
data for equipment performance evaluation and analysis. The channels,
which indicate uplink signal strength, antenna RF drive level, VCO frequency,
and temperature, are operational functions that aid in tracking the space-
craft and provide information for tole communication s predictions, Other
channels, such as excl.ter voltage, exciter drive, TW'T anode voltage, TWT
helix currant, and local oscillator drive are used to assess the performance
of the various subsystems, In general, the channels were mechanized so
that the 0. 127 DN range covers a aminirnum, of 80 0,'Io of the available voltage
telemetry range. While the telerr uVr y channels as mechanized on MM' 71
area generally satisfactory, some changes, such as calibration, could be
made to improve the accuracy and usefulness of some channels on future
projects, The channels are discussed below, and recommendations for
changes and improvements are made for each of them.

(1) Deceiver static phase error, channel. 111 (f63 kHz at S-band,
converted to *1, 5 fir ), Channel 111 is a measure of the VCO
control: voltage and indicates the receiver VCO operating fre-
quency, The X63-kl-iz range occupies about 85 to 90% of the
available range of 0-127 DN.

(2) Automatic gain control, channel 115 (0-3V). Channel 115 indi-
cates the spacecraft received signal level and whether the
receiver is in or out of lock, As now mechanized, the channel
provides signal level data frorrL -70 dBm to threshold (-153 dBm)
and typically uses about 2-1/2 V of the available 3-V range.
Signal levels above -100 dBm are not experienced in flight,
Finer resolution could be obtained if the range were reduced to
-100 dBm to threshold. Improvement of the calibration of this
channel over the temperature range prevailing in flight would
also permit more accurate signal level measurement.

"'DN = Data Number,

JPL Technical Memorandum 33-573
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(3)	 Exciter drive, chan ►.ol 210 (0-100 mW, converted to 0-100 mV),

Channel 210 measures the RIB" output power of the exciter and
thus the drive to the TWTA, The typical maximum resolution o!
channel 210 per data number is 0. 03 dB, anu the minimum is

0. 06 dB. The channel also drifts one data number for each 0. 5
to 1. 1 °C of temperature change. The calibration of the channel,
as well as that of 213 and 214 described below, was inadequate
for the following reasons:

(a) The channel was calibrated only at room temperature and
the flight acceptance FA limits, Additional calibration
should have been done at the expected flight temperature
limits, which are typically 10 to 341C.

(b) Only the Lost chamber temperature was noted at the time
of calibration. If the calibration is to be useful, it must,
as a minimum, include the VCO telemetered temperature
channel 404 (described below), An additional improvement
in calibration could be obtained by installing flight temper-
ature transducers next to the diode detector. An alternate
action would be to improve the temperature stability of
this channel.

(4)	 RF drive monitor, high-gain antenna (HGA), channel 213
(0-25 W, converted to 0-100 mV), Channel 213 monitors the ar,
drive from the TWTA to the high.-gain antenna. The approximate
resolution is 0. 1 dB per data number, This channel, has the same
problem of drift with temperature as channel 210, and it also
lacked a good temperature calibration in MM'71.

(5)	 RF drive monitor, LGA, channel 214 (0-25 W, converted to
0-100 mV). Channel 214 monitors the .I F drive from the TWTA

to the low-gain antenna. Its resolution is about the same as that
of channel 213. It has the same temperature stability problem
as channels 210 and 213, and was also poorly calibrated as a
function of temperature,

(6)	 Status, channel 301 (0-4. 5 V). Channel 301 is a digital status
channel and indicates the MS data mode (engr only, R,TS-1,

JPL Technical Memorandum 33-573	 5	 1



RTS-Z, playback), the TWTA power moac (high/low power), and

the ranging channel on./off status. The TWTA mode and ranging
channel on/off are RFS functions, The ranging on/off status is
required; however, six other telemetry channels, as well as the
received signal strength at the ground station, give indications
of high or low power. This channo'; is not normally important as
a power indieawr, but since it is an easily mechanized channel,
J.L could bro useful during a TWT failure.

(7) TWTA second anode voltage, channel 302 (0-3 V), Channel 302
indicates the second anode voltage of the TWTA, The telemetry
voltage for each TWTA has a different center range, so that the
channel also indicates which TWT is on. The value of monitor-
ing the second anode voltage is limited, but since this voltage is
an indirect measurement of the regulated +20 V dc of the TWTA,
it is of some importance, This voltage is also used to generate
more critical  tube volta ces such as the helix voltage of about

1400 V dc.

(8) Exciter -25 V o1c, channel 306 (0-3 V). Channel 306 monitors
the -25 V dc supply of the exciter and also indicates which exciter
is on by using different telemetry voltage ranges for each of the
two exciters. This channel has limited value because the
-25 V dc voltage is well regulated and the exciter will work at

voltages well above or below the telemetered range of -20 to
-30 V. Finally, if the exciter voltages failed, there would be no
downlink signal to carry the telemetry information, and a com-
mand to switch to the other exciter would be initiated immedi-
ately, either automatically or from the ground.

(9) TWTA helix current, channel 308 (0-20 mA, converted to 0-3 V),
Channel 308 monitors the TWTA helix current. This is an
irnportant parameter of the TWTA, since almost any change in
the operating point of the TWTA will be reflected in the helix
current (or more accurately, the beam interception current).
The present resolution of the channel is about 0. 17 mA per data
number.

6	 JPL Technical Memorandum 33-573



(10) Deceiver VCO temperature, channel 404 (-16 to +55°C).
Channel 404 monitors the receiver VCO temperature. This
channel aids in the prediction of the .receiver best-lock frequency,
which is temperature-variable. The channel's resolution could
be increased from the present 0. 55°C per data number to 0. 11 °C
to provide better measurement accuracy and hence L-,otter predic-
tion of best-loch frequency. The channel is also used as a tem-

perature reference for calculating the RF powers indicated by
channels 210, z13, and 214.

(11) Auxiliary ospillaf^)r temperature, channel 430 ( - 16 to +5 +°C).
This channel monitors the temperature of the auxiliary oscillator
and aids in the prediction of the one-way downlink frequency,
which is temperature-variable. Increased resolution similir to
that of channel. 404: (as discussed above) should result in more
accurate predictions of the one-way frequency.

(12) TW T)-^ 1 and 2 base temperatures, channels 418 and 433 (-12 to

+96°C), The temperatures are sensed at the critical temperature
areas near the collector of each tube. These channels, in con-

l	 junctio;a with several others, are useful in determining TWTA
performance.

(13) Local oscillator drive, channel 422 -12 to +4 dBin, converted to
0-100 rnV), Channel 422 measures the level of the X36 output to
the first mixer in the receiver.

The automatic gain control (ACC) fine channel used in MM 1 69 was also
planned for MIV1 1 71. However, r, •iidway in the program, the channel alloca-
tion was needed for another subsystem. Thus, this channel capability was
built into the MM 1 71 KFS but never used. The AGC fine indicates receiver
input signal level as does channel 115, but its range covers -130 d13m to
threshold. Typically, this channel is noisy and hard to :read as well as diff
cult to calibrate accurately. Its usefulness, as it is now mechanized, is
questionable.

A telemetry relay module is common to both exciters. It conditions
the composite telemetry signal before it reaches the phase modulators and
also switches between two telemetry functions, depending on which exciter

JPL Technical Memorandum 33-573
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is on.	 One of those switched functions is a monitor of the do power supply
voltage (channel 306),	 The other switched function is the temperature trans-
ducer located on each of the auxiliary oscillator modules, 	 The temperature
of the ON module is telometexed,

V, RFS COMMANDS

Commands are required to select the redundant capabilities (TWTAs
and exciters) of the RFS, TWTA low or high power, and high-gain or low-
gain antenna, and to switch ranging on and off. 	 These commands can be
direct commands from the ground stations or they can be programmed into
the spacecraft CC&S, which will then command the RFS at a prescribed time.
The RFS will respond to seven direct commands and five CC&S commands,
as listed in Table 4.

j As shown in Table 4, three of the direct commands are toggles. 	 This
type of command is undesirable, particularly for the DC-7 (switch TWTAs)	 L

and DC-8 (switch exciters), because the mechanization of the command will,
under abnormal circumstances, permit the controlling relay in the RFS to
"hang u-o ll in a neutral position. 	 If this occurs, there is no downlink. 	 This
condition cannot be corrected from the ground, and would result in loss of
the mission.	 The TWTA control relay has hung up in the neutral position at

H least four times during subsystem tests as a result of spurious signals gen-
erated by turning the support equipment (SE) off with the RFS still connected.
During flight operations, observation of minimum time intervals between
RFS direct commands or CC&S-controlled operations is required to preclude
the possibility of hangups.	 It is recommended that these toggle commands
be avoided in future programs.

VI. RFS SUBASSEMBLIES

A.	 Receiver and Diplexer Subassembly

It The receiver and diplexer subassembly (see Fig. 3) form the narrow-
band, double-conversion, automatic phase and frequency tracking RFS
receiver,	 When the receiver is phase-locked to the transmitted uplink sig-
nal, it supplies an output frequency to the exciter which is phase- and

8	 JPL Technical Memorandum 33-573
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frequency-coherent to the received signal, The exciter multiplies the
receiver output frequency and phase by 120 for transmission at S-band. In
this mode, the deceiver and exciter form the transponder, which coherently
translates the frequency and phase of the received signal by a fixed ratio of
240 to 221, The transponder provides for coherent two-way doppler tracking
of the spacecraft, which permits accurate determination of the spacecraft
trajectory. When the receiver is phase-locked to a received uplink signal
which has been phase-modulated with the composite command subcarrier,,
the receiver demodulates the signal and sends the output to the command
subsystem for direct or delayed comman-ling of the spacecraft. The receiver
also demodulates from the uplink signal the pseudo -ran g'%, m noise ranging
code, amplifies and limits it, and sends it to the exciter to be modulated on
the downlink carrier. The ranging capability permits precise measurement
of the distance from the ground station to the spacecraft,

The '.receiver performance characteristics comprise the first seven
items listed in Table 1, and the receiver block diagram is shown in Fig. 3.
The receiver has a self-contained power supply, which converts the space-
craft 2. 4-kHz power to the f 15 V do required by the receiver. The supply
also provides a voltage to the first stages of the video amplifier module in
the ranging channel. This voltage is turned on or off by a DC-9 command,
and off by a CC&S cyclic 2A. Turning the ranging channel off by a 2A is a
safeguard carried over from previous programs. With the ranging channel
on, feedback onto the phase-locked loop (PLL) has sometimes created self-
lock on past programs. Self-lock can cause performance degradation or a
complete loss of command and two-way tracking capabilities.

Nine of the eleven receiver modules, as listed in Table 3, were modi-
fied or changed from the MM'69 configuration. However, these modifica-
tions did not require a major circuit layout change in any of the main modules.
The primary reasons for the changes were to increase reliability, improve
circuit stability, and reduce electromagnetic interference (EMI) and unde-
sired signals. The latter were major contributors to self-lock and false-
lock problems encountered on MM 1 69. As a result of these changes and
those in the exciter subassernbly, there was no evidence of self-lock or
false lock on the MM'71 RFS,

JPL Technical Memorandum 33-573
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In addition, the loop filter was completely redesigned by incorporation
of a do amplifier to increase receiver loop gain by 10. The loop gain was
increased to lower the static phase error (SPE) resulting from orbital
doppler from the phase detector. Minimizing the SPE reduces the probability
of dropping RFS lock and/or flight command subsystem (FCS) lock, Without
the increased loop gain, the uplink frequency would have to be adjusted
several times during orbit to keep the SPE within required limits.

B.	 Exciter Subassembly

The exciter subassembly consists of two identical and fully redundant
S-band exciters. The output power of each exciter is divided in half by the
hybrid filter and presented to the input of both redundant TWTAs. Thus,
the e^xiters and TWTAs provide a fully redundant transmitter chain. The
exciters are phase-modulated by the composite telemetry signal for trans-
mission of scientific and engineering information from the ,spacecraft. Fig-
ure 4 shows a block diagram of an exciter,

1.	 Design modifications for improved performance. The RFS
exciter represents a complete redesign of the Mariner 1 69 design, although
the functional operation is similar. The MM'69 X24 frequency multiplier
was changed to a X30 and the X5 in the phase-modulator module to a X4.
Also, the phase modulator was redesigned, and some modifications were
made in the auxiliary oscillator module. The redesign resulted in several
improvements over the older system. The possibility of self-lock or false
lock was greatly reduced by changing the X5-X24 to X4-X30. This change in
multiplication order reduced the number and magnitude of undesirable har-
monically related signals. The X30 did not increase the exciter RF output
level, which was marginally low on MM'69, but it did reduce the exciter
alignment time by about 3 weeks. The redesign of the phase modulator
improved its frequency response, modulation sensitivity, and temperature
stability. It also reduced the 9. 57-MHz feedthrough, which contributes to
the self-lock problem. The auxiliary oscillator module was modified to
improve its frequency stability and to include the VCO/AUX OSC inhibit as
an umbilical function,

i

2.	 RF breakdown modifications. During the final flight-acceptance
testing of the second flight system, RFS SIN 005, an RF breakdown occurred
on exciter 1 as the vacuum chamber was being evacuated. The chamber

10	 JPL Technical Memorandum 33-573
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,ressure at the time of breakdown was about 200 µm, and therefore, the
breakdown can be classified as an ionization rather than multipacting break-
down. As a resiult of the breakdown, the RFS output dropped about 20 dB,
and the excite't output dropped well below the threshold of its level indicator,
The breakdown could be cleared and everything restored to normal by momen-
tarily turning the exciter off. Additional pumpdowns were performed on the
RFS, and the breakdown was found to be fairly repeatable between 1.00 and
500 µm. PumpdowrLs were made with exciter two on, but it did not exhibit
any evidence of breakdown.

No breakdown occurred on the first flight system during its acceptance
testing, although a loss in exciter power was experienced once on the PTM
during vacuum chamber pumpdown. However., no power loss was detected
on subsequent pumpdowns, and the cause of the power loss was never found;
it was most likely the result of an RF breakdown, From this, one could con-
clude that the RF breakdown margin on the existing design was extremely
small or nonexistent.

Although the breakdown could be extinguished by sending a command to
switch exciters, it was completely unacceptable from an operational and
reliability standpoint. Therefore, even though it was extremely late in the
program, it was necessary to initiate an investigation to find the cause of
the breakdown and take corrective steps to prevent its recurrence. This
invastigation caused a shortage of radio assemblies during spacecraft system
testing, and the available RFS had to be moved from spacecraft to spacecraft.

As a result of the investigation, it was determined thut the observed
breakdown occurred in the helical filter of the X30. A block diagram of the
X30 is shown in Fig. 5. The helical filter is a three-pole filter in the output
of the X5 frequency multiplier within the X30. The X5 is a varactor multi-
plier and was .filled with foam (Nopcofoam A-206) for structural purposes
only. As the investigation progressed, it was determined that the voltage
breakdown margin of the X5 without foam was very small or nonexistent
under conditions of design value carrier frequency and power level. In addi-
tion, RF voltage measurements were made in the X5 circuit and breakdown
tests performed on variable capacitors used in the X_5. These tests indi-
cated that the breakdown margin of two capacitors was insufficient.

E
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The investigation had uncovered a number of problems which required
solutions, and several were proposed or tried. One obvious solution to the
RF breakdown at low pressures was to pressurize the X30 and prevent its
exposure to low pressure. This approach required a complete redesign of
the exciter subassembly housing, and the available space for a pressurized
container was uncomfortably tight, More significant, the ability of such a
container to hold its pressure for the duration of the mission was in question.
Also, there was insufficient time to adequately leak-test a pressurized X30
container prior to launch. Fu-thenriore, the pressure could bleed down and
remain in the critical region where the X30 is most susceptible to breakdown.,
Although there were several undesirable aspects to the pressure approach,
its design was completed for use if all other approaches failed.

Launching the spacecraft with the radio off was not an acceptable solu-
tion; therefore, an attempt was made to prevent the RF breakdown without
pressurization. A series of possible modifications were tried on the helical
filter. Holes were drilled in the filter to provide rapid venting, The break-

f	 down still: occurred, but more important, it did not ex`einguish when exposed
to hard vacuum because of local outgassing caused by heating. Thus, this
rnethod had to be discarded. Another modification was to fill the filter with

f	 a closed-cell foam (Nopcofoam A-206). Tests showed that this raised the
power required for breakdown, but it was unacceptable because (1) foamed
filters were found to contain voids and nonuniform bubble size; and (2) the
trapped gas in the foam cells may leak out and the cells eventually reach
critical pressure. Thus, the equipment may be exposed to critical pressure
and be most susceptible to RF breakdown some time after exposure to hard
vacuum.

Small, hollow, silicon dioxide spheres (Emerson & Cummings Ecco
Spheres SI) placed in the helical filter were found to significantly raise the
power required for RF breakdown. The spheres, or "white sand," vary in
diameter from 0. 0254 to 0. 0102 mm. These dimensions were so small that
the free electrons excited by the RF field collided with the walls prior to
attaining adequate energy to ionize gas internal or external to the spheres.
Although the white sand provided an adequate RF breakdown margin, it was
still unacceptable because it was found to settle continuously during vibra-
tion, leaving undesirable voids. At this point, ''pink sand'' (white sand

3
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coated with thermosetting epoxy) was tried. This material (3M ##XR5068)
}	 also provided an acceptable RF breakdown margin, and it did not settle con-

tinuously during vibration like white sand, In addition, once cured at an
elevated temperature, the pink sand was no longer free to move.

During the testing, it had been determined that the X5 would break
down without foam. The foam in this area was unacceptable because prior
testing had shown voids in the foam: and indicated possible outgassing prob-
lems, As a result, pink sand (rather than foam) was used as a breakdown
suppressant in the X5. To accommodate pink sand, the mechanical design
of the X5 had to be modified to incorporate a bolt-on lid and a fill hole.

As previously noted, the RF breakdown voltage margin on two tuning
capacitors in the X5 was found to be marginal. To solve this problem, a
fixed capacitor was added in series with each of the two tuning capacitors,
which reduced the voltage across the variable capacitor to an acceptable

-	 level.

During the capacitor tests, it was determined that the O-ring seal on the
rotor screw, used to keep contamination out, trapped gas inside the capacitor.
Calculations show that this seal would prevent the inside of the capacitor
from rea, hing critical pressure for about 10 days after exposure to hard
vacuum. Thus, a standard capacitor could not be tested in a reasonable
time frame. To expedite testing, a hole was bored in the rotor screw head.
Capacitors without O-rings were ordered and installed in the flight equipment
where permitted by delivery schedules.

Throughout most of the breakdown testing, an isotope source was used
f

where feasible to produce the free electrons necessary for breakdown. If
j breakdown did not occur with the source in place, the possibility of a future

breakdown was extremely small. RF breakdown data as a function of pres-
sure, voltage, frequency, and spacing obtained during the various tests cor-
respond quite well with values published by R. Woo. 1 Woo's data also pro-

	

`	 vided an insight into the pressure regions deserving close examination and
air gaps which should be avoided. The variable air gaps created by tuning

	

i	 adjustment in the X30 were carefully measured, and the critical regions
were avoided.

1 Woo, R., Final Report on RF Breakdown in Coaxial Transmission Lines,
JPL Technical Report 32-1500, October 1, 1970.
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As a result of the above changes, the possibility of RF breakdown in
the X30 was virtually eliminated. This was assured by first breakdown
testing the various subassemblies of the X30 at higher levels than those
encountered when the X30 is operating as a module. In general, the helical
filter, the X5, and the X3 were tested at 6 dB above their nominal input
power. The load isolator was tested as part of the X3 The power amplifier
and X2 frequency multiplier (PAX2) output power was tested at about 3 dB
above nominal by raising its do ;input voltage. At the conclusion of the
individual tests, the X30 was assembled and tested for breakdown as a com-
plete module. The breakdown testing of the X30 included raising the do input
voltage, which increased the RF output power, and therefore the possibility

t̀ t	 of RF breakdown; no breakdown waa observed.

I} The addition of pink sand did eliminate the possibility of both corona
and multipacting breakdown in the X30; however, the pink sand created
other problems which had to be overcome.	 The sand could not be merely

at poured in the helical filter and X5 because it would settle during vibration
and leave voids.	 To avoid the formation of voids during RFS system vibra-
tion, it was necessary to fill the helical filter and X5 under vibration with
a prescribed amount of pink sand which had been determined experimentally,
The pink sand spheres being small, the sand was hard to contain and required

j that all mechanical interfaces be filled with epoxy. 	 The dielectric constant t'
it of the pink sand shifted the center frequency of the helical filter by 90 MHz'

compared to air.	 The frequency shift was corrected b	 tuning the filterp	q	 y	 y	 g
90 MHz above the desired center frequency prior to filling it with pink sand.
A minor realignment was then performed to meet the required bandwidth and

'i VSWR,	 The loss tangent of the sand also increased the loss of the filter by
 about 1 dB.	 This was compensated for by increasing the output of the PAX2.

The addition of the sand also tended to increase the loss in the X5 up to a
maximum of 1. 35 dB.	 In general, the power output of the X30 was lower .
after the modification, and its temperature performance was somewhat l;

compromised.	 The final X30 performance is compared to the MM169 X24
performance in Table 5.	 During the X30 breakdown investigation, a MM169
residual X24 was breakdown tested; it was found to be marginal.	 It is most 1<

r
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significant that the addition of the sand did not in any way increase the
tendency for self-lack or false lock 'in the RFS,

C.	 Control Unit

The control unit accepts direct commands from the FCS, the CC&S,
and the failure- sensing circuits in the RFS. It selects the appropriate RFS
operating mode, The functions of the control unit are to

(1) Control the circulator switches to direct the output from either
TWTA to the high-gain or low-gain antenna upon receipt of a
suitable command from the FCS or CC&S,

(2) Sense the TWTA and exciter power level and, if it is low, switch
to the redundant unit upon receipt of the CC&S 2A cyclic
command,

(3) Sense over-current conditions in the TWTA and exciter power
supplies and switch i°,mmediately to the redundant unit; switch to
either redundant element upon receipt of a direct command from
the FCS.

(4) Select high or low power output from the TWTA upon receipt of
a command from the FCS or the CC&S.

(5) Sense overcurrent in the receiver power supply and remove its
prime power if such a condition exists. The prime power is
reapplied to the receiver upon receipt of each subsequent CC&S
2A cyclic command,

The control unit consists of 16 welded, encapsulated corwood modules
and five magnetic latching relays. The latching relays provide memory,
efficient switching and control, as well as isolation between functions.

The MM'71 control unit is basically a MM' 69 design with some modifi-
cations. A block diagram of the control unit is shown in Fig. 6. In MM'71,
the CC&S command 2B, transmit low-gain antenna, was added, and a change
was required in the control unit to implement this command. The antenna
switching logic was changed to prevent, where possible, high RF energy
from the ON TWTA from being fed into the OFF TWTA.. The MM'69 design
of the constant-current driver for the circulator switch did not meet MM'71
temperature specifications. In addition, the switch current was raised from

JPL Technical Memorandum 33-573



A to 22 mA for 	 A .the MM 1 69 value of 15 m	 MM17	 A circuit modification

eliminated both of tho deficiencies, 	 Redundant zener diodes were added to

the two redundant power supl lies 
in the exciter level sensor supply as

recon-amended by the UM 1 69 program.

D.	 Traveling Wave Tube Am2lifiers

The TWTAs consist of two TWTs, each with its encapsulated, modular,

f. solid-state power supply.	 The block diagram for one TWTA is shown in

Fig. 7, and major performance parameters are presented in Table 6,

The TWTA functions as a power amplifier of the phase-modulated

S,-band signal from the exciter. 	 It provides two output power levels, nom-

inally 10 or 20 W, by changing the voltages applied to the TWT helix, collec-

tor, and first anode,	 The MM 1 71 TWTA is essentially the same as that

used in KN1169.

The TWTA procurement involved two separate contractors. 	 The TWTs

were purchased on a fixod^price contract by JPL from one con-traCLOT.	 The

tubes were then supplied to the second contractor, who mated the TWT with

his power supply and performed the acceptance testing on the TWTA, 	 The

second contract was also fixed-price.	 This procurement, technique did

present some minor contractual problems and should probably be avoided ill

the future.

During the MM 1 69 program, noise and ripple voltage appeared on the

dc primary lines of some TWTAs at certain temperatures and line voltages.

This voltage was generated in the voltage regulator module as a result of

instability in the feedback loop regulating the output voltage. 	 An attempt

was made on the MM' 71 program to correct this problem. 	 However, the

solution was not entirely successful, and some noise continued to appear of

the dc primary lines,	 The noise was still a function of input voltage and

temperature,	 In addition, -the solution was incorporated only in the TWTAS

that required. rework. 	 While the noise has not been found to be a reliability

problem or degrade the TWTA or RFS performance, it is annoying and

exceeds specification limits, 	 Furthermore, it represents an unstable condi-

tion, and there is some concern that the noise could increase to the point of

degrading the TWTA performance.	 Elimination , 'the instability is recom-

mended for future programs.
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During preflight testing, one TWTA developed a short in the
high-voltage converter (HVC) between a high-voltage transformer and an

anodized plate connected to the chassi p , Analysis of the failure indicated
that there was insufficient spacing between the transformer and plate. This
was corrected by increased spacing, and the solution was eventually incor-
porated into `three of the four flight units. However, this solution may not
'be optimal, and additional design effort on the HVC should be considered by
future programs. Also, in the present TWTA design, the high-voltage
transformers are potted into the HVC and cannot be removed. This means
that the HVC must be changed when the TWT is replaced with one that
requires a different voltage, Some consideration should be given by future
programs to making the transformer more accessible to improve the TWTA

repairability and make TWT changes less costly in both time and money.

Initially, the MM 1 71 program was scheduled to use only residual
MM 1 69 TWTs, and thus, no procurement for new tubes was planned. How-
ever, after one tube had gone to air, and since good spare tubes were non..
existent, it was decided to purchase additional TWT t. The undesirable
idiosyncrasies of the existing tubes scheduled for flight had a significant
influence on this derision. .Also, it was getting sc late in the program that
a later procurement would not allow for the time required to build new tubes
and meet the launch dates. The decision to purchase additional tubes at
that time proved to be a good one.

The TWT contractor strongly recommended that the design of the out-
put winnow assembly and collector be changed on the new tubes, The pro-
posed design change had been successfully used on similar TWTs. The
change would significantly reduce the stress per unit area on the ceramic
insulator between the tube body and collector and thereby increase the relia•
bility of the TWT, Two TWTs, one in MM' 69 and one in MM' 71, had
developed leaks and went to air as a result of a crack in the old insulator
design. The new design would reduce the possibility of a recurrence of this
defect, The new collector design, a. bucket type, would reduce back-
streaming electrons by reducing the number of secondary and primary elec-
trons that escape the collector. These design changes were incorporated
into the new tubes, which were designed as an HAC 242 HA; the old design

was an HAC 242 H. The new tubes were subjected to a flight-acceptance
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vibration test at the contractor's plant. This test was performed with power
applied to the tube; in the case of MM 1 69 power was off during the vibration
test, In addition, the MM 1 71 vibration levels were tailored to match those
encountered in the RFS bay during assembly level vibration, As a result,
the MM 1 71 vibration 'Levels used at the vendor during acceptance testing
were higher than those used for MM169.

As a result of the design changes, the helix current was decreased,
which irnproved the efficiency of the TWT. Also, the amount of "hiccupping"
(a quasi-periodic variation in helix current and/or power output) and helix
current steps were Significantly reduced in the new tubes.

As the MM 1 71 program progressed, it was necessary to replace two
TWTs in addition to the one which had previously gone to air, each with an

I-iAC 242 HA. One tube was changed because its turn-on characteristics
were abnormal. During tests performed on this tube aftor the change, a
collector-to-helix short developed, preventing further analysis. It is not
known whether this short was related to the abnormal turi.-on character-
istics, The other TWT was changed because it began to exhibit periodic
phase transients during a thermal vacuum test, Analysis revealed a broken	 3'

wire in the tube's output connector assembly; the break was external to the
vacuum envelope,

E.	 Microwave Components*

The microwave -components consist of the hybrid filter, output filters,
RF switch, and diplexer. The electrical characteristics of the microwave
components are shown in Table 7. Stripline on polyphenelene oxide (PPO)
construction is used for the hybrid, the switch, and all power monitors.
Coaxial cavities are used in the other circuits, Some changes were made
to all of the microwave components except for the output filter during the
MM' 71 program.

1.	 General component modifications. The most significant differ-'_
ence between the MM 1 69 and MM 1 71 microwave component design lies in the
RF switch, which will be discussed later. In the MM 1 69 design, the voltage t

rating of the level sensor and telemetry diodes in the various units was too
low. In MM 1 71, higher-voltage diodes were used in all level sensor and
telemetry circuits, which solved previously encountered problems.

k
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The circuit boards in some of the residual MM 1 69 hardware were
found to be cracked and crazed for undetermined reasons, To protect
against a possible trace failure due to the cracked PPO boards, a trace was
placed on the backup board, Thus, the circuit boards which faced each other
both contained a trace, one being the mirror image of the other.

Patches of mylar tape were used between the trace and tuning screws
in the MM 1 69 design, The MM 1 71 program replaced the tape with rnylar
discs, which was necessary to accommodate the dual trace. The disks were
installed by placing them into the tuning screw hold after the switch was
assembled, In MM 1 71, ferrite beads were added to the level sensor and
telemetry leads, which eliminated the EMI susceptibility encountered in

AV.. 169,

2, ^Hy - ridd filter, The hybrid filter divides the power output from
each exciter and furnishes drive power to both TWTs simultaneously through
band-pass filters. Attenuators are used in the hybrid filter input and output
circuits to adjust the exciter drive to an optimum value for each TWTA, and
to compensate for hybrid filter imbalance,

5

3, Output filter, The output filter is used in the TWTA output cir-
cuit, I', has minimum insertion 'Loss at transmitter frequencies, a band-
reject ,filter at receiver frequencies, and a low-pass filter to attenuate
transmitter output harmonics.

4. 	 RF switch, The RF switch consists of two circulators, making
a four-.port circulator switch, It provides a means of connecting either
TWTA to the high-gain or the low-gain antenna. A permanent magnet
assures that TWTA 2 will be connected to the high-gain antenna, with about

3, 5 dB power loss, in case the switch coil voltage supply fails, Failure

sensing for the TWTA outputs is accomplished at the input to each circu-

lator, and the high-gain antenna telemetry power monitor is at the HGA out-

put of the switch,

tl 	 The RF switch in the MM 1 71 RFS was initially scheduled for minor

design changes from the MM 1 69 baseline design, consisting primarily of

the addition of the dual trace and ferrite beads, as previously noted. How -

ever, a switch problem, which resulted in additional design changes, was

uncovered at the system contractor's facility during the PTM RFS thermal

,
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vacuum test, The output power from the RFS, and thus switch loss, was
found to be a direct function of atmospheric pressure, The RF output power
started to drop in the vicinity of 1000 11 m and continued to decrease as the

pressure was reduced, At a pressure of 1, 332 X 10 `6 '/cn-t2 (10' 4 tors*), the

RF output, depending on the radio mode, hurl degraded by I to 2 c113, Also,
when antennas or TWTAs were switched, the RF output power would rise to
its normal level and ',hen decay within 5 s to its degraded value in a vacuum
environment, When the IFS was returned to room, pressure, the RF output
,. ower returned to its normal value, The PTM switch was returned to JPL,
and the reduction in RF power output was duplicated in vacuum tests. To
verify a potential design deficiency, the Flight 1 switch, which was identical
with the PTM unit, was subjected to a vacuum +pest; it exhibited the same
breakdown anomaly as the PTM, The power loss was identified as a 11F
breakdown between the tuning screws and the trace,

As a result of inadequate testing techniques, the RF breakdown was
not discovered by the switch contractor during vacuum acceptance tests.
This situation must be corrected on future programs by improving test tech-
niques and procedures,

The MM'71 switch differed from the MM 1 69 switch in two respects
which reduced the RF breakdown margin: (1) The MM'71 switch used a dual

trace concept, (2) Mylar disks 0, 076 rnm (0. 003 in. ) thick and 4, 445 mm
(0, 175 in, ) in diameter where placed unde" each tuning screw in place of
the patch of mylar tape as used in MM'69. The location of the rnylar disks
depended upon the boards being in firm contact to avoid their mir rating. A
gap greater than 0. 076 mm would allow the disk to migrate,

The prototype switch, which had not been changed from MM'69 design,
was successfully vacuum tested at a power level of 22 W at JPL, The PTM
switch was converted back to the MM'69 design, i. e, , single trace and
rnylar tape over the trace, When vacuum te.. ced, the PTM exhibited momen-
tary breakdowns at 22 and 30 W. It is interesting to note that the switch did
recover and successfully withstood 44 W. Thus, it was determined that the
breakdown safety margin of the MM 1 69 design was unacceptable.

A program was established in which the switch contractor was to
analyze the problem and produce a satisfactory solution. Concurre.at °?y,

JPL set up a parallel program to accelerate the solution. As the program
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progressed, JPL assumed more of the task load while the contractor

implemented each JPL-originated improvement into the PTM switch.

The power loss in the switch was identified as a RF breakdown between
the tuning screws and the trace. To simplify the implementation of the JPL
investigation, a strpline test fixture was used to explore the breakdown
region for possible design changes, The test fixture was representative of
the stripline circuit employed in the switch, It was soon recognized that
the addition of the trace on the backup board increased the possibility of
breakdown between the tuning screw edge and the added trace. The tuning
screw passed directly through the trace with in^iufficient radial clearance.

To provide a greater safety margin, disks of thin K-15, a high dielec-
tric material, were introduced between the tuning screw and the trace. These
disks were larger in diameter than the tuning screw in the PPO backup board
and were held in position by a counter bore in the backup PPO. This change
was incorporated into the PTM switch, The switch was vacuumm tested, and
breakdown did not occur until the power level reached 46 W. The break-	

L

down occurred between the surface of the K•-15 and the tuning screw,

Data published by R, Woo (see footnote 1) indicate that breakdown
will occur with 45 W of incident power when the frequer;acy and spacing (f-d 	 f!

ii
products) between electrodes is between 70 and 175 MHz-cm. This repre-
sents a spacing of 0, 305 to 0. 76 mm (0. 012 to 0. 030 in. ) at 2300 MHz
between the K-15 and tuning screw. In tests performed, breakdown occurred
at 45 W, with gaps lying between 0. 279 and 0. 635 mm (0. 011 and 0. 025 in. ).
To assure that the switch would exhibit an acceptable breakdown margin,
tuning screw gaps between 0. 127 and 1. 016 mm were avoided by filling the
gaps with thin teflon disks about 1. 5 times the thickness of the gap and the
same diameter as the tuning screw hole in the PPO board. By eliminating
the 0. 127- to 1. 016-mm (0. 005 to 0. 040-in. ) air gap, the f-d range of 29.
to 234 was excluded. According to Woo, this would permit the screw gap to
handle about 70 W of incident power at the spacecraft transmitter frequency.

A total of 12 stripli.e fixture tests were performed using a combina-
tion of K-15 and teflon, reducing the 0. 127- to 1. 016-mm. air gaps to less
than 0. 127 .mm. The fixVire was vacuum tested at 50 W without any RF
breakdowns. The available test equipment would not permit testing at a
higher power level.
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The technique of excluding the critical air gaps by the use of teflon
was applied to the PTM switch, 	 The switch was tuned up, and all gaps were
carefully measured,	 Tight of the 19 gaps were found to lie between 0. 127
and 1. 016 mm; these were filled with teflon to reduce the air gap to less
than 0, 127 mm,	 The PTM switch was vacuum tested in all modes at powers
up to 45 W, and no breakdown occurred. 	 Potential contractual and schedule
problems prevented testing the switch to a higher power.

The two flight switches were retrofitted with K-15 and teflon. 	 The
switch contract specified the acceptance testing to be performed at 30 W,
and therefore the flight switches could not be vacuum tested at a higher
level.	 Both flight switches successfully passed the 30-W tests. 	 It is rec-
ommended for future programs that the test level be raised to a minimum of

r.
60 W.	 This would provide about a 5-dB margin when the TWTA is operating
in the high-power mode,

^ ram.A second switch problem was uncovered late in the MM'71 program.p	 P	 g

it The Flight 2 switch began to exhibit a new anomaly:	 when the switch was
operated to shift from the high-gain to the low-gain antenna, an increase of
I dB in insertion loss was observed.	 This malfunction occurred over a
limited temperature range and could also be induced by the application of a
mild mechanical pressure in the vicinity of the ferrite junction area.

Disassembly of the unit revealed an intermittent circular contact
i between one ferrite subassembly and the stripline junction trace. 	 It was

determined that dimensional tolerance buildup resulted in insufficient Ares-
sure contact and the. ferrite subassembly was not securely held to the trace.
A procedure was established by the contractor to select parts to provide,

t in the final assembly, sufficient pressure to ensure continuous contact
r^

;I around the periphery of the ferrite subassembly with the stripline trace.

5,	 Diplexer.	 The diplexer provides a band-reject filter at receiver
frequencies between the transmitter output (RF switch) and the low-gain
antenna, with a band-pass filter at receiver frequency and a low-pass filter
between the low-gain antenna and receiver (first mixer) input. 	 Also, the
low-gain antenna telemetry power monitor is contained in the diplexer.
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VII, RFS PERFORMANCE AND TEST HISTORY

The purpose of the tests performed on the RFS by the subsystem

contractor and JPL was to determine the flight readiness of the RFS as part

of the tpacecraft system and its compatibility with other subsystems and the

System Test Complex. In addition, operating procedures were verified and

personnel was trained.

In general, testing was performed at the module, subassembly, and

RFS levels by the subsystem. ;=tractor, At JPL, the RFS was tested alone

and in the spacecraft system; it was re ested at module, subassembly, and

RFS levels after rework. At the Air Force Eastern Test Range (AFETR),

it was tested alone and in the spacecraft,

A.	 Contractor Tests

At the co,intractor's plant, the modules were aligned and bench tested,	 }_

then conformally coated, readjusted, and acceptance tested. Next sub-

assembly (i, e, , ,receiver and exciter) tests were run, followed by the over-

all RFS assembly testing.

Test limits for flight acceptance (FA) were more severe than the

anticipated environment in flight, and the type acceptance (TA) limits on the

PTM were still more severe. Modules and major subassemblies were

tested to FA (flight) or TA (PTM) temperatures at ambient air pressure,

and the complete RFS was tested in a vacuum. The MM' 71 temperature

range was 0 to 55°C for FA and -20 to +75°C for TA (the same as MM'69).
However, the flight receiver and exciter subassemblies and their modules
were tested to 60°C at the subsystem contractor, and the flight TWTA's
were acceptance tested, by the TWTA contractor, to 75°C as measured on
the T WT base plate,

B,	 JPL Receiving Tests

As each RFS was received, it was subjected. to verification tests to as-
sure that no damage had occurred in shipment. The system was taken to the
telecommunications development laboratory (TDL), where it was interfaced
with the command and telemetry subsystems and the modulation index was
adjusted if necessary. Bit error rate tests were also run on the three sys-
tems after they were interfaced, and the TDL test complex was also used
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for miscellaneous RFS tests. After verification and calibration of the
subsystem test complex equipment system performance, power output, and
cable losses, the SE/RFS compatibility was verified and the initial checkout
of the RFS was performed before it was mounted on the spacecraft.

C.	 Spacecraft/RFS Integration Tests

The spacecraft/RFS integration test achieved the following objectives:

(1) Verification of spacecraft/RFS mission test computer (MTC)

interfaces and of interfaces with other subsystems.

(2) Measurement of the RFS power profile.

(3) Determination of the functional capability of the RFS as part of

the spacecraft.

(4) Verification of RFS/DSIF compatibility as measured by the

Compatibility Test Area, (CTA-21), DSIF station at JPL.

(5) Determination of the operational readiness of the RFS SE and

its interfaces with the system test complex.

D.	 Subsystem Tests

The objectives of the subsystem test were the evaluation of the per-

formance of the RFS while operating with spacecraft power and in the sys-

tem environment, and to make a preliminary determination of any possible

effects of the RFS on the system environment. The subsystem tests included

all mission-required modes and determined the ability of the RFS to per-

form according to its functional and design requirements. Variations of

performance and 'interaction effects of the subsystem and the spacecraft

were evaluated. Parameter variation tests were run to determine per-

formance margins, and power profiles were measured.

E.	 Spacecraft/RFS Mission Compatibility Tests

The spacecraft/RFS mission compatibility tests demonstrated that

spacecraft and DSN telemetry and command data systems met mission

requirements, that the ground system and personnel could operate the space-

craft satisfactorily, and that the flight telecommunications systems and the

DSIF were compatible,
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After verification of all subsystems and interfaces, the mission tests
were conducted. These tests included simulated. launch, separation, acquisi-
tion, cruise, and, playback, under hot and cold vacuum conditions. Engi-
neering and command exercises were performed with attitude control and
midcourse maneuvers and science exercises.

F. Electromagnetic Interference Tests

Electromagnetic interference tests were conducted on all ,flight models.
The tests consisted primarily of subjecting the spacecraft to an electromag-
netic field simulating launch conditions.

At JPL, RF power was radiated into the spacecraft and also connected
to the low-gain antenna port. The levels used for this test were intended to
be h dB higher than those expected from. the launch vehicle. The PTM was
found to be susceptible to these levels when the ranging channel was on,
causing a reaction in the AGC and SPE. The spacecraft is launched with
ranging off, and therefore this was not a serious problem.

At AFETR, only radiated power was used for the EMI test. No prob-
lems were experienced with arty RFS during this test, nor were any EMI
problems caused by the launch vehicle telemetry systems.

During the RFS Flight 1 bench and alignment test at the subsystem con-
tractor, the receiver exhibited the same general characteristic as during the
EMI test at JPL. The condition existed for only about 1/2 h and could never
be repeated. It was most likely caused by an unknown EMI source.

G. DSIF Compatibility Tests

The objective of the DSIF compatibility tests with CTA-21 was to
demonstrate functional and operational compatibility among all interfacing
elements of the spacecraft and the DSIF. A calibrated S-band link was pro-
vided between the spacecraft in the Spacecraft Assembly Facility (SAF) and
the CTA-21 receiver exciter ranging (RER) subsystem, with additional hard
lines to provide a source of data for bit error rate measurement. Calibrated
attenuators in the simulated uplink and downlink signal paths provided known
signal levels from threshold to -90 dBm at the receiver diplexer input and
the DSIF receiver low-noise amplifier input.

ti
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After interface checkout and calibration of all elements of the system,
and with the spacecraft in cruise mode, the RFS best-lock frequency was
verified, and,. the spacecraft receiver threshold was measured. Then, with
the spacecraft in science and playback mode, the best-loci: and threshold
measurements were repeated. These measurements were made with the RFS
in various modes to verify the performance of redundant elements and of
the high- and low-gain antennas. Ranging and command performance were

f

also verified. Tracking and acquisition capabilities were determined,
spectrum analyses were performed, and auxiliary oscillator frequencies
and phase jitter were measured. The effects of SPE offsets and ranging
modulation on the spacecraft command capability were also measured. The
test results indicated that the RFS was compatible with the DSIF and capable
of meeting the mission requirements.

H. Miscellaneous Tests

Vibration, weight and center of gravity, acoustic, simulated launch
complex, electromagnetic interference, and pyrotechnic shock tests were
performed on each spacecraft. However, because of a schedule conflict
caused primarily by the exciter RF breakdown problem, RFS SIN 003 did
not receive the spacecraft vibration test.

I. Recommendations for Improvementsovements in Testing
4

1. Test team staffing. Test teams for the MM'71 program gen-
erally consisted of two men per subsystem, with one man being a full-time
operator and the second splitting his time between operating and data analy-
sis. The second man also devised tests to resolve anomalous performance
and provided data necessary to close problem failure reports (PFR,s ). This
system worked quite well but does not provide adequate manpower for long-
term test such as thermal vacuum, In addition, during periods of high
activity, the two-man team was inadequate for real-time data analysis,
which had to be performed by non-team personnel. Real-time analysis has
proved to be one of the most useful tools for detecting anomalous
performance.

2. Data logging, In MM' 71, an oscillograph recorder was used to
analog-record several RFS direct-access or telemetry functions. This
recorder was used for RFS assembly-level testing at the contractor, and

26
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during system test at JPL and AFFTR. The recording was analyzed on a
near-real-time basis. This method of data analysis is time-consuming,
but it has proved to be extremely worthwhile for the early detection of anom-
alous performance or change in RFS signature.

Neither previous programs nor MM'71 have made use of a data acqui-
sition system for analog-recording direct-access functions and selected SE
functions. In MM'71, a great deal of time was spent in manually recording
data. This time could be more wisely spent in analyzing automatically
recorded data. It is recommended that a data acquisition system be uued
on future programs. However, it will not replace the oscillograph .recorder
because it will not record transients.

	

3.	 Data retrieval, Typically, many problems of anomalous per-
formance `°ecur and warrant a speedy review of old test data. In MM'69,
the system for data identification, storage, and retrieval was almost non-
existent, A big improvement was made in MM'71 in that all RFS data,
including the numerous rolls of oscillograph recordings, were identified,
cataloged, and stored in a designated area. This sytem worked quite well
and was well worth the effort, but could be improved upon by a closer to
real-time; identification and cataloging of data,

	

4,	 Calibration. Accurate prediction of auxiliary oscillator (down-
link) and best-lock (uplink) frequencies is particularly desirable during a

	

1	 mission. Accurate knowledge of telemetry data is also valuable in the daily
assessment of system performance and in the recognition and evaluation of
any anomalous in-flight performance, Both of these items require accurate
temperature calibration of the telemetry channels. Several of the RFS

2

channels, namely 111, 115, 210, 213, and 214 (see Section IV for descrip-
tion and details) are temperature-dependent, and thus particular attention
must be given to the temperature at the time of calibration. In flight, the
temperature-sensitive channels use the V'CO temperature as a reference.

	

VIM	 Unfortunately, the MM'71 test procedures did not always require the VCO
temperature to be noted at the time the temperature-sensitive channels were

i
calibrated. This oversight must be corrected on future programs. An
additional improvement in the calibration of the transmitter power channels
could be made if temperratu.re transducers were located next to the diode
detectors. To be useful in flight, this would require three additional
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temperature channels, one for each diode detector. The number of
additional channels could be minimized by more efficient utilization of
existing temperature channels, For instance, the TWT temperature chan-
nels could be combined into one by switching to the transc uuAr of the ON
TWTA,

The MM 1 69 and the MM'7,1 RFS were celibrated at only three temper-
atures, typically 25° C and the FA limits, It is recommended that the cali-
brations be made at five temperatures; one centered at the expected flight
temperature, one at each extreme of the expected range, and the other two
at the FA limits. Both VCO and AUX OSC temperatures should be noted at
the time of calibration. The best time to make or verify previo s calibra-
tions is during systems thermal vacuum when the spacecraft is closest to
its intended space environment.

J.	 AFETR Tests

At AFETR, special tests were run to verify that the spacecraft was
not damaged in transit from JPL. The test was divided into four parts;
(1) a preliminary test including special tests that could not be done during
the normal testing sequence, (2) a detailed examination of the spacecraft
during an accelerated mission sequence, (3) an encounter sequence, at which
time the radio was examined in detail, and (4) a playback sequence, during
which the _interface between the data storage subsystem (DSS), FTS, and RFS
was verified.

The spacecraft was moved to the explosive safe facility (ESF) after
system test at building AO. A modified system test was run with the RF link
as the only command and data link. No direct access was provided, The
spacecraft was encapsulated, and precountdown tests were performed.

The spacecraft was moved from the ESF to the pad and mated with the
vehicle. Compatibility precountdown tests were performed between the
spacecraft, launch complex. equipment (LCE), launch complex, launch
vehicle, Deep Space Network (DSN), and building AO. An electromagnetic
interference and joint flight-acceptance composite test (J-FACT) was per-
formed, with a precountdown test starting at T - 230 min, the spacecraft
umbilical released at T = 0, and ending after verification of proper space-
craft operation. The precountdown test was conducted around a fixed
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sequence of events as opposed to a rigid time sequence, 	 A composite
readiness test, (based on a time sequence) was conducted, with all events
occurring as they would at launch.

During testing at AFETR, several anomalies occurred.	 There were
two instances of receiver AGC indicating the presence of an uplink signal on
the RFS when none was known to be present.	 Investigation showed that one
was caused by the Apollo tracking ship in the harbor, which saturated the
receiver front end with its radar. 	 The other occurred when DSS-71 had its
transmitter on but not connected to a dummy load as intended.

When Mariner 9 was on the pad, a slight variation was discovered in
the second anode voltage of TWTA 1, telemetry channel 302. 	 The variation
in voltage was most likely caused by a loose terminal on a printed circuit
(PC) board, which resulted in a very low voltage on the TWT second anode;
however, the operation of the TWTA was normal.	 The second anode acts
as the ion trap in the low-power mode-, the low voltage reduced the effective-
ness of this trap.	 The first anode acts as the ion trap in the high-power

Ls

mode.	 A constraint was placed against operation of TWTA 1 in the low-
power mode,, and the spacecraft was launched on TWTA 2.

The low-gain antenna drive monitor indicated a change in drive power
when the antenna was connected in place of the dummy load, when the space-
craft was moved from place to place, or when there was movement of people
or equipment in. the vicinity of the antenna. 	 A definite pattern was estab-
lished, with fairly uniform readings observed in any one location or with the
antenna off.	 The range of the variations was slightly more than I dB, with
the lowest power indications occurring on the pad.	 These variations were
attributed to the change in voltage standing wave ratio (VSWR) that took

V place when the antenna was installed, and to the effect of objects near the
antenna coupled with inadequate directivity of the directional coupler used
to sense power,	 Temperature effects on sensor circuit calibration tended
to obscure these variations and had to be taken into account before the power
output pattern could be established,

There was also an effect on the output power observed in the block-
house caused by relative movement between the antennas on the spacecraft
and the tower.	 This appeared at irregular intervals as a, damped sinusoidal
wave having a starting amplitude of up to about 0. , :5 dB and dying out after
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6-10 cycles. The period of the sinusoid was about 1 Hz. The effect was
observed on both high- and low-gain antennas and was more pronounced
when there was greater activity on the tower. There appears to be no urgent
reason to make design changes to reduce this effect as long as its cause and
approximate magnitude are known.

Measurement of receiver threshold was difficult using tho LCE with
the spacecraft on the launch pad and people working in the vicinity. Thresh-
old degradation of as much as 3 dB was observed. Possible causes for this
condition are;

(1) Effects of proximity of people and equipment.

(2) Locally generated noise affecting; the receiver,

(3) Excessive phase jitter in the LCE.
r

(4) Multipath transmission to the precision coupler via the hord-line
cable and the air path to the low-gain antenna, with reflections
varying according to movement of people and equipment near the
antenna.

K.	 Miscellaneous Problems and Recommendations

Many problems were encountered in the RFS, its subassemblies, or
modules during the MM'71 program, which resulted in a total of 300 PFRs
prior to launch. Out of the 300 PFRs, 221 were written by the various con-
tractors, 70 at JPL, and 9 at AFETR. For the most part, the problems
were not defined as being mission-critical but were considered minor out-
of—spec conditions or performance idiosyncrasies. However, some problems
resulted from design deficiencies, component failures, or poor workman-
ship; those required corrective action.

The MM I 69 program was plagued with tuning capacitor problems and
initiated a program to lubricate the thre&ds and limit the number of times
the rotor could be turned before the capacitor must be replaced. This pro-
cedure was followed in MM'71 and resulted in only minor tuning capacitor
problems.

In the event a module required rework, it was retested prior to
installation in the subassembly. The subassembly was then retested and,
finally, after it was reinstalled, the RF5 was retested to bench FA limits.

JPL Technical Memorandum 33-573
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Following this, except for one instance where tirnc dill not permit, the RFS
was sub)e-^.ted to a modified FA vibration and thermal vacuum test,

Throughout the MM'71 program, the phase ,jitter measurerrients were
generally out of specification because of noisy oscillators in the SE. It is
recommended that the oscillator noise be reduced in future programs. The
high phase noise made it difficult to accurately assess RFS performance in
this area,

The bench test and TA/FA test procedures used in MM'71 required a
great deal of repetitive data to be recorded, which was unnecessary, It is
recommended that future programs scrutinize these procedures and .reduce
the amount of repetitive data taking,

4i
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Table 1_, Design values of significant RFS parameters

Parameter Value

Receiver input frequency 2115 :^5 MHz

Receiver tracking threshold -1.53 dBm

Receiver tracking loop noise bandwidth at threshold 18 Hz

Command channel noise bandwidth (single-sided) 2. 5 kHz

Ranging channel noise bandwidth (single-sided) 1. 5 MHz

Receiver noise figure 7. 5 dB

Dynamic signal level range -70 dBm to threshold

Transmit/ receive frequency ratio 240/221

Transmitter output frequency 2295 *5 MHz

Transmitter output power

Low-power mode 10 W

High-power mode 17 W

Telemetry and 'ranging channel modulation bandwidth 1. 5 MHz

Power required

2.4 kHz, 50 V 24 W

25-50 V do TWT (high-power/low-power) 90/54 W

Weight of radio assembly 28. 5 kg (63 lb)

32	 JPL Technical Memorandum 33-573
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Table 2. Radio modes
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Table 3. Design changes

f

Equipment Change

Receiver subassembly

Video amplifier Modify circuit to reduce EMI to
minimize self-lock and false lock.

X36 multi plier Modify vardctor mounting to assure
electrical contact,

Xl/Z multiplier Change transformer to prevent
tendency to operate as X1/4.

AGC detector Reduce EN41 on power leads; improve
reference amplifier stability.

Phase detector Add filtering to reduce	 MI; change
reference amplifier from grounded
base to grounded emitter to improve
stability,

VCO Add filtering to reduce ;EMI on power
lines; modify VCO circuit to reduce
parasitic oscillation.

Loop filter Redesign to incorporate do amplifier
to increase PLL gain by 10.

Isolation amplifier and balanced. Improve 9. 57-MHz trap to reduce
detector 9. 57-MHz feedthrough.

47. 8-MHz IF Revise output circuit to redistribute
gain and provide greater linear out-
put range; improve input VSWR.

Exciter subassembly

Auxiliary oscillator Add zener diode for improved stability;
incorporate VCO/AUX OSC inhibit as
umbilical function; improve input
VSWR.

Phase modulator Redesign; change X 5 to X 4 multiplies,

X24 multiplier Redesign; change to Apollo-type X30;
incorporate RF breakdown
suppressant.
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Table 3 (coned)

I

JEquipment Change

Control unit

A 16 module Add CC&S 2B capability; modify
circuit to incorporate new antenna
switching logic.

Al2 module Improve regulation of constant-
current driver for circulator switch;
increase switch current from 15 to
22 mA,

Al and A7 modules Add redundant zeners.

Microwave

Isolator Incorporate backup trace on some
units; replace mylar tape covering
trace under tuning screws with mylar
disks (not recommended for future
programs).

Hybrid filter Change single to dual RF trace;
change level sensor and TLM diodes;
reduce EMI susceptibility by use of
ferrite beads.

Diplexer Change single to dual trace; change
level sensor and TLM diode detector;
.reduce EMI susceptibility by use of
ferrite beads.

Circulator switch Change switch modes to prevent TWTA
damage by high RF energy; change
switch design to limit tuning screw
gaps to increase breakdown margin..

Spacecraft bay VI (;RF chassis) Add heaters to maintain thermal
balance when TWTA is off.

F

s_.
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Table 4. RFS commands
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Commands Functions

Direct

DC-7 Switch to power amplifier (toggle)

DC-8 Switch to exciters (toggle)

DC-9 Switch to ranging ON/OFF (toggle)

DC-10 Transmit low-gain antenna

DC-11 Transmit high-gain antenna

DC-42 Switch to TWT high power

DC-43 Switch, to TWT low power

CC&S

ZA Test radio

Turn ranging channel off if on

Reset receive overrurrent circuit breaker if tripped

Switch to alternate exciter if exciter RF output is low

Switch to alternate TWTA if TWTA RF output is low

ZB Transmit low-gain antenna

2C Switch to TWTA low power

2D Switch, to TWTA high power

2E Transmit high-gain antenna
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Table 5. Electrical comparison of MM'69 X24 and MM 1 71 X30 multipliers

Parameter MM'69 X24 MM'71 X30

Output frequency 2295 MHz 2295 MHz

Output power +23. 5 dBm (min.) +23.35 dBm (min.)

Output power stability  :0. 5 dB +0. 5,	 -1. 25 dB

Output bandwidth 60 MHz 90 MHz

Output frequency 95.6 MHz 76.5 MHz

RF input power +3 :E3 dBm +10 ±2 dBm

do input power 6.8 W (spec.) 6. 8 W (max.)

aOver FA temperature range.
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Parameter MM'71 performance

Sire, cm 24, 89 X 15. 24 X 19. 05

Weight, kg 8.62

Input RF drive, mW 50

Power output, W 22 (high power)
11 (low power)

Overall efficiency, To 24

Power supply, V do 25 to 50

JPL Technical Memorandum 33-573
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'T'able 6. Typical TWTA major performance parameters



Insertion losses, dB

Transmit  Receive  Rejection

Hybrid ,filter 4.5 C >100 >100 @ do to 21.17 MHz
> 60@2199.8 and

2391. 8 MHz
>100 @ 2477 to 4000 MHz
>70 @ 4000 to 10, 000 MHz

Output filter < 0. 3 > 60 >30 @ 2100 and 2125 MHz
> 70 @ 4580 to 10, 000 MHz

Diplexer

LGA to receiver >100 <1. 2 > 100 @ do to 1988. 4 MHz
> 70 @ 1988.4 to

2048. 4 MHz

Transmitter to
LGA <0. 3

Transmitter to >50
receiver Reverse isolation

Minimum

RF switch

TWTA 1 to HGA < 0. 35 > 25

TWTA 2 to HGA <0. 7 > 50

TWTA 1 to LGA <0. 7 >50

TWTA 2 to LGA <0. 35 >25

a2290. 2 to 2301. 3 MHz.

b2108. 7 to 2119. 2 MHz.

cIncludes 3-dB power split.

JPL Technical Memorandum 3-)-573
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Table 7. Microwave component electrical characteristics
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AUXILIARY	 AUXILIARY
OSCILLATOR	 OSCILLATORNCO	 TWANGING
INHIBIT	 TRANSFER	 MODULATION

FROM OSE	 FROM RECEIVER	 FROM RECEIVER

19,1 MHz	 14.1 MHx	 x4 FREQUENCY	 76.5 MHz
VCO INPUT	 AUXILIARY	 MULTIPLIER AND	 X90 FREQUENCY
FROM RECEIVER	 OSCILLATOR. ;.sE MODULATOR	 MULTIPLIER

TLM

AUXILIARY OSCILLATOR
TEMPERATURE

MODULATION

(CHANNEL 430)	 .. .w 
TIM RELAY	

CHANNEL 430 TO TLM

EXCITER

MODULE	 _.	 CHANNEL 306 TO TIM

•75 V da
(CHANNEL 306)	 COMPOSITE MODULATION

•+^^"" FROM FTS

2,4 kHz	 EXCITER POWER	
-2$ V do

SO V rm	 SUPPLY	
-15 V do

Fig. 4.	 Exciter block diagram

2x9$ MHz

TO HYBRID
FILTER
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^^L^^13	
ISOLATOR+24 dBm L

Fig. 5. X30 block diagram



Fig. 7. TWTA block diagram
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