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ABSTRACT

The one dimensional steady ash flow has been studied by the two

phase flow theory of a mixture of a gas and small solid particles, with

special emphasis on the lunar ash flow. For the general ash flow with heat

transfer, we have to consider seven variables: the pressure of the mixture

p , the temperature of the gas T = T , the temperature of the solid
& '

particles T , the velocity of the gas u , the velocity of the solid
P 5

particles u , the species density of the gas p and the volume frac-
P g

tion Z of the solid particles. The fundamental equations and boundary

conditions for our mathematical model are described. We find that there

are seven important non-dimensional parameters which characterize the ash

flow and which are the Jeffreys number J , the density ratio G , the'

d namic pressure parameter H , the initial velocity ratio u , the ratio

of specific heats of the gas y > the ratio of specific heat of solid

particles to that of the gas at constant pressure 6 and the Prandtl number.

Among the seven parameters, the Jeffreys number is the most important one

which is the ratio of gravitational force to viscous force. Hence Jeffreys

number for terrestrial ash flow is larger than that for lunar ash flow. -

Numerical solutions for special ash flow with and without heat •

transfer are presented in which the dynamic pressure parameter and the

Prandtl number may drop out. The variations of pressure p , temperature

T , velocities of gas and solid particles u and u , and the volume
o r

fraction of the solid particles Z with altitude are plotted for various

values of the non-dimensional parameters J , u , G and 6 .
e o

For isothermal ash flow, the large pressure drop occurs in the

dense phase region of low altitude and large volume fraction for large values



of Jeffreys number while the large pressure drop occurs in the dilute

phase region of high altitude and small volume fraction for small values

of Jeffreys number. Hence the dilute phase is important in the lunar

ash flow.

For ash flow with heat transfer, the influence of heat transfer

becomes important for the case of small initial velocity u and for the

case of gas of large heat capacity, i.e., small value of 6 . For instance,

for lunar ash flow with small initial velocity, the effect of the heat

transfer would make the whole layer of ash flow more compact together than

the corresponding isothermal case. The influence of the heat transfer for

the case with hydrogen as the gas species is much larger than that with steam

as gas species.



Symbols

b rate factor of emission of gas from the solid material

c specific heat of gas at constant pressure and constant volume
P,v

respectively

c specific heat of the solid particless

f defined by Eq. (54)

F Froude number

g gravitational constant

G density ratio of gas and solid particle

h surface distance between nearby particles

H dynamic pressure parameter

H local scale height
S

H local scale height of mixture of gas and solid particles
SM

J Jeffreys number

K,., thermal frictional coefficient

L characteristic length of ash flow

m molecular weight of the gas

N an integer

p pressure

P Prandtl number

r radius of solid particles

R universal gas constant

R Reynolds number

T temperature

u velocity

V characteristic velocity of ash flow

y altitude



y minimum level where fluidization begins

y critical level of fluidization beyond which u =0
c p

Z volume fraction of the solid particles

Y ratio of c and c
P v

p p density of the gas and the solid particles respectively
8 j SP

6 ratio of c and c
s p

y dynamic viscosity of the gas

K coefficient of heat conductivity of the gas
o

a source function of the gas

Subscripts

g for gas

p for solid particles

0 condition at y = 0

1 condition at y = y
m

Superscript

for non-dimensional quantities



I INTRODUCTION

Many geological phenomena can be explained by ash flows. For

instance, one of the major processes to account some features of lunar

soils is the ash flow . The formation of lunar surface features my be

O <\>

due to the results of lunar ash flows . Hence the analytical treatment

of ash flow should improve our understanding of many geological and astro-

geological phenomena. v

By ash flow, we mean the flow of a mixture of a gas and small

solid particles (ash) such that the solid particles have been fluidized:

and behave like a pseudo-fluid. Thus from the point of view of fluid

dynamics, the ash flow is a two phase flow of a mixture of a gas and a

pseudo-fluid of small solid particles. The mathematical theory of such

a two phase flow is still in a developing stage. In reference 3, the

senior author (Pai) gave a review of the fundamental equations of the

mixture of a gas and small solid particles. In general, the behavior

of the flow of ash depends on the flow rate of the gas. In lunar ash

flow, the gas may be produced from a great explosion or a great meteorite

impact. Roughly, we may divide the ash flow into two stages: when the
#

flow rate of the gas is above a first critical value, some of the small

solid particles on a fixed bed may first move with the gas flow. As the-

flow rate increases, the amount of the solid particles moved with the gas

4
flow increases. We may call this initial stage, the sedimentation stage ,

in which the solid particles are transported by the gas flow. In the sedi-

mentation stage, the behavior of the solid particles acts as individual

particles and their motion depends mainly on their individual physical



properties such as its size, shape, density as well as relative position •;

between particles.

When the rate of the fluid flow reaches a second critical '

value, called the flow of fluidization, the character of the solid particles

changes abruptly to a pseudo-fluid. The flow of the solid particles (ash)

has a similar behavior of the flow of an ordinary fluid and the physical j

properties of individual solid particles are not very important but they

contribute only to the average properties of the ash as a whole. In this !

paper, we consider only the case that the flow of ash may be considered as

the flow of a pseudo-fluid. e

In genereal, the ash flow problem is very complicated. In order

to obtain some essential features of lunar ash flow, it is advisable to i

study first some simple configurations. Hence we shall follow O'Keefe-

Adams to study one dimensional steady flow of a mixture of a gas and small

solid particles for both the case on the moon and on the earth. Our analysis

is an improvement of O'Keefe-Adams' analysis by including the velocity of the

solid particles and the heat transfer in the mixture. Hence O'Keefe Adams'

result is a special case of our general treatment. I

Our mathematical model is shown in Fig. 1 in which we assume i

that the gas is coming out from ground upward into free space. We take y = 0

at the top of the fixed bed. The gas velocity will increase with altitude

y . Between y = 0 and y = y , the mixture of the gas and solid particles
m

is in the sedimentation stage, in which the ash moves but it can not be con-

sidered as a pseudo-fluid. When the altitude is higher than y = y , the

ash is fluidized. We are going to find the distribution of pressure, tern-:

perature and velocities of the gas and the ash as well as the volume fraction

of the ash, under various conditions.



Because the temperature of the gas T and that of the solid
o

particles T may be different and the velocity of the gas u and that
r o

of the solid particles u may also be different, we have to consider seven

variables in a general one-dimensional ash flow. These seven variables are

(1) the temperature of the gas T (2) the temperature of the pseudo-fluid
O

of solid particles T , (3) the velocity of the gas u , (4) the velo-
H o

city of the pseudo-fluid of solid particles u , (5) the species density
t j\

of the gas p , (6) the pressure of the mixture p and (7) the volume
O

fraction of solid particles in the mixture Z . In section II, the seven

fundamental equations which govern these seven variables are given. These

fundamental equations should be solved with proper boundary conditions which

are discussed in section II too. ?

Before we solve the fundamental eqautions for the boundary con-

ditions, we first find the important non-dimensional parameters which charac-

terize the ash flow in section III. These non-dimensional parameters are c

very useful in correlation of our numerical results.

We solve the fundamental equations under various conditions '*

in section IV and the numerical results are discussed in section V. <

II. FUNDAMENTAL EQUATION OF ONE-DIMENSIONAL STEADY ASH FLOW AND THEIR

BOUNDARY CONDITIONS.

Since we do not consider the transition region near a solid

boundary, we may assume that the viscous stress and heat conduction of the-

gas and those of the pseudo-fluid of solid particles are negligible. Promt

reference 3, we find that the fundamental equations of one dimensional steady

ash flow as follows: "•



(1) Equation of state of the gas:

» - t 'g
 Tg

where R is the universal gas constant, m is the molecular weight of the

gas. Eq. (1) is simply the perfect gas law. We write Eq (1) in such a

form that we may study the effect of different gaseous species by varying

the value m.

(2) Equations of continuity. The conservation of mass of the

pseudo-fluid of solid particles and that of the gas in the mixture give

respectively the equation of continuity of these species as follows:

3- [Z p u ] = - 0 (2)
dy psp pj p

T "i - z>'8».) • °P <»

where p is the species density of the solid particles and is consi-sp

dered to be a constant, a is the source term of the gas, i.e., some

of the gas may be emitted from the solid particles and y is the ver-

tical distance from the surface of earth, moon or other planet in our

problem as shown in Fig. 1. The y-direction is coincided with the flow

direction and is opposite to the direction of gravitational acceleration.

We assume that the source term may be expressed as

a = bZ p (4)
P sp

where b is the rate factor of emission of the gas from the solid par-

ticles and is assumed to be a constant in our analysis.



(3) Equations of motion. The equation of motion for the

mixture as a whole is

du du
(1 - Z)p u — r- + Zp u — T- = - -T - [(1 - Z)p + Zp ]g (5)

g g dy Msp p dy dy lv 'pg MspJB ^ '

where g is the gravitational acceleration. We need another equation

of motion of either the gas or the pseudo-fluid of solid particles. As ̂

discussed in Reference 3 and Appendix I, the difficulty in writing down

such an equation of motion lies in the proper expression for the term of

interaction force between the gas and the solid particles. At low Reynolds

number flow where the inertial terms may be neglected and for negligible

volume fraction Z of the solid particles, Stokes law may be used for the

interaction force. But for the ash flow under consideration, the values

of Z may vary from 0.5 -to 0. At finite values of Z , the validity of

all know theoretical results ' for the interacion force are not very sa-

tisfactory. Thus some empirical relation is desired. From the experi-

o Q in
mental results of Ergun , Leva , Rowe and others given in Reference 7. a

new empirical equation for the pressure gradient in a mixture of fluid-

solid two-phase flow were obtained as follows (see Appendix I for detailed

discussion) :

Z 9

where

K(Z,r u) -- - r - l + J . , (6a)
p - 2

r is the average radius of the solid particles and h is the average ,,



6.

distance between the surface of nearby solid particles. As shown in

Appendix II, h/r in Eq. (6) is a function of Z only if we assume

that the solid particles are spheres of radius r , i.e. ,

— = (1.35 Z)~1/3 - 1 . (7)

Eq. (6) is convenient to use because it is a single formula which

reduces to Stokes law when Z approaches to zero and, on the other

8 9hand, it agrees well with the experimental data of Ergun and Leva

and others at finite Z . Thus Eq. (6) covers the whole range of

Z which we need. In Eq. (6) the source term of momentum has been

neglected. It is a very small term in our analysis.

(4) Equations of Energy. The conservation of energy for

the mixture as a whole is :

2 Ug + 8y) + Zpspup(csTp + I up + ™ + p> = cl

where c is the specific heat of the gas at constant pressure; c

is the specific heat of the solid particles and c is a constant which

represents the total energy of the mixture and which may be determined

by the boundary conditions as will be discussed later. In considering

the conservation of energy for the gas, we again have the difficulty

in writing down the heat transfer term between the gas and the solid

particles for finite values of Z . One way to overcome this diffi-

culty is to assume that Reynolds analogy between heat transfer and

drag force may be applied. Thus the thermal friction coefficient may

be approximated by the formula:
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KT=I

where K is the coefficient of thermal conductivity of the gas,
O

therefore, the energy equation for the gas is

g + 2 Ug + ̂=:VYV + "'WE + 2 Ug

(10)

The last term in Eq. (10) is the energy source of the gas emitted from the

solid particles.

Our fundamental equations for one dimensional steady ash flow are

Eqs. (1), (2), (3), (5), (6), (8) and (10) for the seven unknowns u , u ,
o r

p, p , Z , T and T . These fundamental equations are to be solved for
O o Jr

appropriate boundary conditions. The problem which we are going to solve

is shown in Fig. 1. The source of solid particles is underneath the ground.

From the general description of two phase flow or fluidization of solid

particles , we know that when Z 5-0.5 , the solid particles may be con-

sidered as a fixed bed. For convenience, we take y = 0 at the particular

level in the fixed bed where Z = Z =0.5, We assume that at y = 0 , the

velocity of the gas u and that of the pseudo-fluid of solid particles

u are known and we set them equal to u.. and u respectively. Further-

more, the pressure p and the volume fraction of the solid particlesZ are

also known. We assume that at y = 0, the temperatures of the gas and the solid

particles are in equilibrium at T . Therefore, our boundary conditions are:

a t y = 0 : u = u, , u . = u
' go 1 po o

p = p , Z = Z = 0 . 5 (average)

T = T = T . (11)po go o
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A few words should be said about the boundary value u

Since we assume that all the solid particles come from the ground and none

comes from outer space, the velocity of the pseudo-fluid of solid par-

ticles should not be negative. If u = 0 , the integration of equation

of continutity, Eq. (2), would give negative value of u for y > 0 ,
P

which is contradictory to our physical picture. Hence we should assume that

y $ 0 , u =0 when u =0. Similarly, u may decrease with increasing

altitude, for certain small values of u (see numerical example later).

For such case, even though u >0 at y = 0 , u may reduce to zero

at y = y > 0 . By the same argument as in the case of u = 0 , we

should assume that u HO for y > y . On the other hand, the assumption

of u = 0 for y > 0 or y > y suffers a defect from the physical

picture too. Since the gas is emitting at all time from the solid particles

at the expense of the mass of solid particles when u = 0 , a local volume

fraction of the solid particles can not be steadily maintained. (Note that

we have dropped the continuity equation of the solid particles when we as-

sume u =0). Strictly speaking, in such a case, we do not have steady

flow. However, in view of the small value of the rate factor b , we may

accept our quasi-steady analysis as a good first approximation to the un-

steady flow problem.

There is no restriction on the initial value of the velocity of

the gas u.. . For simplicity, in the numerical examples calculated in

this paper, we assume u1 = u which means that we have equilibrium condition

at y = 0 . The assumption of initially equilibrium in temperatures of the

gas and solid particles will later be shown to prevail throughout the entire

flow field.



In general, the volume fraction of solid particles Z decreases

q
with increase of altitude y. We set the minimum fluidization level

y = y arbitrarily at Z = 0.4 . When y > y , the solid particles may

be considered as a pseudo-fluid and our fundamental equations (1) to (10)

hold true.

III. IMPORTANT NON-DIMENSIONAL PARAMETERS.

Before we solve our fundamental equations (1) to (10) under the

boundary conditions (11), we first find the important non-dimensional para-

meters which characterize the ash flows from our fundamental equations and

boundary conditions. We introduce the following non-dimensional quantities:

p R Tp — g _ o — y
" -" "

u

where the bar refers to the non-dimensional quantities, the characteristic

length L is taken as follows:

L = —— . (13)
Psp8

Hence L is a modified scale height which is taken as a unit length in

our analysis. The characteristic velocity V is defined by the following

relation

bRT
V = . (14)
c mg
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The characteristic velocity V measures the significance of the emission

of gas from the solid particles. This is one of the basic physical pheno-

mena in our prbolem.

Substituting the expressions (12) into Eqs. (1), (2), (3), (5),

(6) , (8) and (10) , we have the following corresponding non-dimensional

fundamental eqautions in which the non-dimensional parameters J , G , H,

Y , & and P are defined in Eqs. (24) to (31) as follows:

7 - ̂ T (15)

^ (Z u ) = - f (16)
dy

^ [(1 - Z)pa u )] = Z (17)
dy g 8

du du "1 ,-
u -P- =-^-
P dv J dv

H \^ p u —^+Zu —K- =-^-— ^-z (18)L G g g d- p d- j d-

Z 9 . 0.68 , , N ,1QN+ rrr- (u - u ) (19)
8 Pdy (1-Z) e

(20)

7 G 1 / 0.68
h/rp P (21)

and the boundary conditions are

a t y = 0 : u = u = ugo po o

p = 1 , ZQ = 0.5 (22)

T = T = 1po go
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From Eqs. (15) to (22), we have obtained seven independent non-

dimensional parameters: u , J , G , H , y > P and 6 . The relative

importance of these parameters and their meanings are discussed as follows:

(1) Initial velocity ratio u which is defined as

uo = £ . (23)
c

In the ash flow under consideration, there are two possible reference velo-

cities which represent the sources of the gas in the flow field. One is due

to the emission of the gas from the solid particles in the flow field con-

sidered which is represented by the characteristic velocity V of Eq.

(14). In this report, we consider this case in which the main source of

the gas comes from the solid particles in the flow field. Hence we use

the characteristic velicity V as our reference velocity. However, in

the actual physical situation the release of gases from the solid particles

may take place before they enter the flow field, or in other words, before

they leave the fixed bed of Fig. 1 and then we have some gases coming from

outside of the flow field considered. The amount of these gases may be

represented by the initial gas velocity u , which is independent of the

rate factor b . For problems in which V is larger than u , we should

use V as a reference velocity as in Eq. (12). On the other hand, if

the gas comes mainly from the ground, we have u > V and then we should

use u as our reference velocity. In this case, the non-dimensional

velocity should be

. u u
u = -S- = -8. . (23a)
g u -6 o u

o

Hence the non-dimensional velocity in terms of V is equal to that in

terms of u times the initial velocity ratio u
o 3 o



where

12.

(2) Jeffreys number J which is defined as

2
sp p ^ _e gravitational force ,„,.

e y(b — T ) Fr viscous force
m o

p r V
R = ~§2—E—- = Reynolds number (25)

v2
F = —^— = Froude number . (26)
r r g

Since Reynolds number R represents the ratio of inertial force to

viscous force and Froude number represents the ratio of the inertial

force to gravitational force, the Jeffreys number represents the ratio

of gravitational force to the viscous force. The importance of Jeffreys

number in astrogeological problem was first pointed out by O'Keefe ,

who suggested the name of Jeffreys number. In our problem, the main

forces are the gravitational force and viscous force. Hence Jeffreys

number is the most important parameter in our problem. A parameter F

was first introduced by O'Keefe and Adams in Lunar ash flow such that

78.1 F = J of our paper. The only difference between their F and our

J of Eq. (24) is a numerical constant.

It is interesting to notice that if we use u as our reference

velocity, we should replace V in Eq. (24) by u , and then the cor-

responding Jeffreys number becomes

P r J

0

* _
J is simply the ratio of J and u . We do not introduce any new
e J e o • J

parameters but use a different combination of old parameters.
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(3) Density ratio G which is defined as

G = . (27)
go

The parameter G is the ratio of the density of the ash to the initial

density of the gas. This parameter G represents the effect of the "

weight of the gas in the ash flow.

(4) Dynamic pressure parameter H which is defined as

P V2

H = -22—£• . (28)
po

The parameter H is essentially the ratio of the dynamic pressure based

on the reference velocity V to the initial static pressure p . Hence

the parameter H shows the effect of inertial terms. If H is very small,

we may neglect all the inertial terms in Eqs (18) and (20). If we use

u as a reference velocity, the dynamic pressure parameter should be

2
H* = ̂2_!!o = R -2 _ (2ga)

Po

* -2
Again H is simply a combination of H and u

(5) Gas property parameter y which is defined as

Y = ̂  (29)
v

where y represents the ratio of the specific heat of the gas at constant

pressure c to the specific heat of the gas at constant volume c

Hence it is a parameter solely for the gas in the ash flow. For most

ash flow, we may assume that y is a constant in the problem considered.

(6) Specific heat ratio 6 which is defined as

c
6 = — . (30)

c
P
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This parameter indicates the relative importance of heat capacity bet-

ween the solid particles and the gas and it is important in the deter-

mination of temperature distribution of the mixture.

(7) Prandtl number of the gas P which is defined as

M c

pr - -^ •

The Prandtl number P is important in the study of heat transfer bet-

ween species. In most cases, we may assume that P = 1 .

We note that the first four parameters u , J , G and H

are due to the dynamics of the ash flow. Hence they always exist whether

the ash flow is with or without heat transfer. The last three para-

meters Y><5 and P are due to the thermodynamics of the ash flow. Hence

in the isothermal ash flow, we need to consider the four parameters u ,

J , G and H while in non- isothermal case, all the seven parameters

should be considered.

Among these seven parameters in our problem, some of the para-

meters are not important and may be neglected. For instance, in most ash

flows, the factor b of rate of emission of gas is a very small quantity.

Thus the characteristic velocity V would be a small quantity too (see

Fig. 2). As a result, the dynamic pressure parameter H is also a small

quantity (see Fig. 3). In other words, the inertial terms in the funda-

mental equations may be neglected which means H g 0 . For very small H ,

Eq. (21) gives that T = T . For the case of T = T , the Prandtl
g P g P

number P will disappear in the resultant fundamental equations. Hence

for the general case of non-isothermal ash flow, we need to consider five

parameters u , J , G , Y and <$ .
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It is interesting to notice that in O'Keefe and Adams paper ,

they consider the limiting case of isothermal ash flow where H = 0 ,

u = 0 and G -> °° . Hence they have only one important parameter J
o e

(or their F ). As discussed before, u = 0 requires u =0 while

G •+ co requires that the weight of the gas is totally neglected. These

two conditions are generally true in the dense phase region of the ash

flow (see section III and IV). Thus O'Keefe and Adams results represent

one of the limiting cases of our more general treatment of lunar ash flow.

IV. METHOD OF SOLUTION

As pointed out by O'Keefe and Adams , the cooling of an ash

flow is a conspicuously slow process. From our experience in the study

of general fluid dynamic problems, the isothermal flow would give many

important features of the flow field. In most cases, the effects of heat

transfer would affect only quantitatively the results of the flow field

but give essentially the same features of the flow field qualitatively.

Hence we shall first study the isothermal case in part (a) of this section.

The effect of heat transfer will affect the flow field quantitatively in

certain cases. Hence we shall study the effect of heat transfer on ash

flow in part (b) of this section.

(a) Isothermal ash flow. In isothermal ash flow, we

T = T = T or T = f = 1 in the whole flow field. Hence we do not
g P ° g P

need to study the temperature distribution. We investigate only the five un-

knowns: p , p , Z , u and u which are governed by equations (15)
o o r

to (19). Furthermore, we shall consider the case H £5 0 so that our

fundamental equations (15) to (19) become:
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P = Pg (32a)

^ (Z u ) = - f (32b)
dy

- [(1 - Z) p u 1 = Z (32c)
dy g

(32d)
dy u J

(32e)
dy

The boundary conditions are

at y = 0 : u = u = u , p = l , Z = 0 . 5 . (32f)' go po o v ' o

In Fig. 1, we divide the flow field into three regions: dense

phase, transition phase and dilute phase for convenience. By dense phase,

we mean that the volume fraction Z of the solid particle is not negli-

gible in comparison to unity. Furthermore, if the density ratio G is

large, we may obtain simple analytic solution for the dense phase region

from our fundamental equations (32) , because the effect of the weight of

the gas is negligibly small. By dilute phase, we mean that the volume

fraction Z becomes so small that we can not neglect the weight of the

gas any more nor the velocity of the solid particles. The region between

the dense and dilut phase is known as the transition phase. It should be

noticed that there are no definite boundaries between these phases. Further-

more, our fundamental equations (32) hold true for all these three phases.
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We obtain the general solutions of Eqs. (32) by numerical solutions which

are valid for all these three phases.

(i) Dense phase region:

In the dense phase region, Z is not negligible in comparison

4
to unity. The density ratio G is in general a large quantity of 10

(see numerical example). As a result, (1 - Z)p/ZG « 1 and Eq. (32) be-

comes

dp
— = Z . (33)
dy

Now, substituting Eq. (33) into Eqs. (32b) and (32c) and integrating the

resultant equations (32f), we have

- - u (1 - Z )
u '~J^S- = -* - ^- (34)
8 p(l - Z) p(l - Z)

and

It is interesting to notice that when u = 0 or small (of the order of

1/G , say) , the ratio of u /u is of the order of G . Since G » 1 ,
6 r

u « u in the dense phase. This justifies the validity of O'Keefe and
r o

Adams' assumption that the solid particles do not move in their solution

for the dense phase of the ash flow.

Substituting Eqs. (33) to (35) into Eqs. (32e) , we obtain an

algebraic equation for p and Z as follows:

p2 + Q(Z) p - W(Z) = 0 (36)
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where

0, (Z,J G) = GZ I ̂  + 3-^ 1- 1 - Z u G (36a)
6 L1 L K(Z,J ) J ° °

e

W(Z,G) = 3̂-2 tl-uo(l - ZQ)] . (36b)

K(Z, J ) = l + 7 I (36c)
e 2Je (1-Z)2 \ h/rp

and h/r in Eq. (36c) is given by Eq. (7). The physical possible solution

of p , i.e., p > 0 , given by Eq. (36) is

P = f [ - Q + (Q + 4W)*] . (37)

Eqs. (33) to (37) describe the complete flow field of the dense phase

region in which the weight of the gas is negligible in comparison with

that of solid particles in any element of volume of the mixture. Since

p = p as given by Eq. (32a). We have the solutions for all the five
6

variables p , p , u , u and Z in the dense phase region.
o o r

To obtain numerical results of the solution of Eqs. (33) to (37),

it is convenient to use Z as an independent variable. For a given value

of Z , we can easily obtain p(z) from Eq. (37), then u (Z) from Eq.
o

(34) and u (Z) from Eq. (35). Finally the vertical distance y may be ob-

tained by integrating Eq. (33) as follows:

-_ _?l/di\dz + - <38>

Z^ ̂
where subscript 1 refers to the values at a reference altitude, i.e.,

at Z = Z^ , y = y1 . In general the solutions p(Z) , u (Z) , u (Z)
o r

and y(Z) depend on the parameters u , J and G . We shall discuss

the numerical results in section V.
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Let us compare our solution in the dense phase region with those

of O'Keefe-Adams in reference 5. They considered the case u = 0 only.

For the case u = 0 , Eqs. (34) and (35) show that
o

u
_£ -= 0(G) . (39)
u
P

Since G is a large quantity, it is proper to assume that u = 0 in
P

the whole region of dense phase. At the same time, Eqs. (34) and (36)

become respectively

u = _1 " P (AOa)
8 P(l - Z)

and

* = - • (40b), ,
K

Eqs. (40) are essentially the same results as given in reference 5. In

Eqs. (40), we have only one non-dimensional parameter J which is in

the expression of K .

It is interesting to notice that if u is not zero but of the

order of 1/G which is a small quatity, we may still neglect u in the

study of the flow field of the dense phase region. However if u is of

the order of unity or larger, we can not neglect u even in the dense
P

phase region. In our numerical results, we consider only the cases that

u is of the order of 1/G in order to show some essential differences
o

between the dense phase and the dilute phase of the flow field.

5 9
It is generally assumed ' that the fluidization begins at

Z = 0.4. When u is of the order of 1/G , we may use Eq. (40b) to

determine the pressure p.. at the position of the beginning of fluidi-

zation, i.e. ,
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0.59 -

It is further assumed that between the top of the fixed bed y = 0 and

the level of minimum fluidization an average value of Z = 0.5 may be

used. Hence Eq. (33) gives

yx = 2 (1 - px) (42)

i.e., the altitude at which Z = Z- = 0.4 , y = y-, •

(ii) Dilute phase region

As the flow and solid particles move upward, both the pressure p

and the volume fraction of solid particles Z decrease with altitude y

while the gas velocity u increases with y . Eventually, when Z be-
o

comes so small that we can not neglect the weight of the gas any more

nor the velocity of the solid particles u (if u does not go to

zero) . This is the dilute phase of the ash flow. We have to integrate

Eqs. (32a) to (32e) numerically with the boundary condition Eq. (32f ) .

However, if we limit ourselves to the case that u is of the order of
o

1/G , some simplifications may be made. For instance, the total equa-

tion of continuity of the mixture may be obtained by adding Eqs. (16)

and (17) and integrating the resultant equation with respect to y as

follows:

(1 - Z)u p + u ZG = (1 - Z )u + u Z G = u Z G (43)
g p o ' o o o o o

because (1 - Z )u « u Z G . Hence Eq. (43) gives
o o o o

<44>
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where we take Z = — . From Eqs. (32d), (32e) and (44), we have

- ,-1
(45)

It should be noticed when u = 0 , because of our assumption of

u = 0 in the whole flow field, Eq. (45) reduces to

u = 7 [l + (1 - Z) |g] , u = 0 . (45a)
8 K J

It is again convenient to use Z as the independent variable in the

numerical integration for the dilute phase. From Eqs. (32c) and (32d),

we have

u I
_£.
Z J^ + ?J+<VV^ + ̂

^r + KlrJ—T L— + d-z)« 1 + ——\
LP(I-Z) \_1 + (l-Z)p gj GZ + (l-Z)p J

and

y = - I — dZ +yn (47)

where K is a function of Z given by Eq. (36c) for a constant J

u (Z,p) and u (Z,p) are given by Eqs. (44) and (45) respectively.

Eqs. (46) and (47) must be integrated numerically. Numerical solutions

have been obtained by the help of high speed computer UNIVAC 1108 of

the Computer Science Center of University of Maryland.

(b) Ash Flow with Heat Transfer

Even though the isothermal ash flow gives qualitatively the general be-

havior of flow field of ash flow, the effect of heat transfer would affect

quantitatively the flow field of a lunar ash flow which may be very
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important in the final interpretation of the features of lunar soil.

Hence in this section we consi'der the ash flow with heat transfer.

With heat transfer, we have to solve Eqs. (15) to (21) with

the boundary conditions (22). Again, we neglect all the inertial terms

by putting H = 0 in Eqs. (18) and (20). If we put H = 0 in Eq. (21),

we see that we must have T = T since the temperature gradient of the
f~> r

gas in the flow field can not be infinite. Even though H is not actu-

ally zero, we found in one numerical calculation that the constant in the

right hand side of Eq. (21) is of the order of

f
r e

for ash flow under our consideration. Since the rest of the terms

in Eq. (21) are of the order of unity, for all practical purpose we may

set

T = T = T . (48)
8 P >-

In other words, the heat transfer between the gas and the solid particles

in our cases is so fast that they are practically in local equilibrium

everywhere throughout the flow field and we have only one temperature T .

The constant c.. in Eq. (20) may be determined from the con-

dition given in Eq. (22). However, since the solid particles are not

yet fluidized in the sedimentation region of y = 0 to y = y, , our

knowledge of the thermal situation in this sedimentation region is rather

meager. In order to get some definite idea of the thermal situation in

the flow field y > y1 , we may replace the actual sedimentation by an

average temperature in this thin layer. As a result, our boundary con-

dition becomes
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S Z - Zl - 0.4; up = 5pl, u& = u^, p = plf Tg = Tp = 1 . (49)

With this thermal boundary condition (49) , the total energy constant

c, is

c = Z Gu + (6 - 1)0.4 Gu 1 + (Z Gu 7 + 0.4 u , p.) - . (50)
1 o o pi o o G pi 1 Y

With the help of Eqs. (44) and (48), Eq. (20) gives

-' Y - 1 /-
: - —-— \y1 YG Vc, -*— \y + —r- P

Z u
T = T = -—2-=

2 (51)
S l + ( 6 - l ) Z u / Z up o o

where

, c- 0.4 u . . r 0.4 u , 1
(6-1) -- 2i + lzl - + - El- . (50a)

* LZGu Zu * L Z u .
00 O O O pi

Eqs. (15), (16), (17), (32d) , (32e) and (51) are the funda-

mental equations for one dimensional steady ash flow with heat transfer

which governs the six unknowns p , T , p , u , u and Z with the
O O t

boundary conditions (22) or (44). Again in our numerical calculations,

we use Z as the independent variable. After some algebraic manipulation,

we obtain the following equations for numerical integraton:

(52)dz



Z u f j ^ / j r , Z u Z u p l u p_o o , f , s dK/dZ _o o _ o o Kg g *>
2 L K2 Z2f GZ2 f2 J Z2G

L Z ul o o

fZ u (1 - Z) po 1
Ag = f (1 - Z) ° ° - 8. _ -

* L Gf Z 8J
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d£ = dp/dZ
dZ ~ Zf

where
(1 - Z)p

f = GZ * + 1 (54)

Z u
A = 1 + (6 - 1) 3 E (55a)

Z u
o o

A
2 - °i - "7 y+ — p) (55b)

Z uo o

Z u (1 - Z) (f - 1) (1 - Z) u

— -*

(55e)
. _ "/
o o

(6-i)zA -n
,» PZ + A f (55f)

A, f(v _ n (6 - 1) Z A 1
. • + I \ ' J _ 1 _ _ ^ * l / n ̂  \

A7 = A Z u YG PZ + A (55g)

1 o o L 1 -•

= f p ^ + (1 - Z) ^^ + -V^ - °0 , K r (55h)
& I O I ™ ~ ̂  ^ X T i ls L B L K z f Gf Z J J

(551)
Gf Z

In addition to Eqs . (52) and (53), Eqs. (15), (44), (45) and

(51) must also be used in the numerical integration. It should be noticed
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that Eq£. (51) and (52) do not apply for the case u =0 or u = 0 .
o p

When u = 0 , Eq. (20) becomes

(1- Z) p U T + y = c 2 (56)

and

c2 = 0.6Plu U+J-^yJ (57)

where the boundary condition (49) has been used. Again, we may find

analytic solution for the dense phase, where [1 + (1 - Z)p ]/GZ « 1
O

and y/G « 1 and we consider only the case of u = 0 and u = 0 .

The analytic solutions are

c K
P(Z) = £ _ z) (58a)

u (Z) = - (58b)
g K

(c + p )(1 - Z)K - c. K2

p (Z) = — ~ z * (58c)
8 (1 - zr

T(Z) = p/P (58d)'
O

where the term (y - l)y/yG was neglected in Eq. (56) and K is given

by Eq. (36c). We may calculate y by Eq. (38). It is interesting to

note that in Eq. (58), all the four unknowns p(Z) , u (Z) , p (Z) and
o o

T(Z) are functions of Z only. When the weight of the gas can not be

entirely neglected and y is not necessarily small, we have to solve

numerically the following equations for the case u ^ 0 :

(B £ - B )
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^- = - — &-
dZ Zf dZ

°2 K v - 1 - -I3T-o_y (59c)- z)f

ug - f (59d)

where f is given by Eq. (53) and

B. = p u + (1 - Z) I —V- + o ;£) (60a)
1 S I 2 V — 2 — tL Q.L I

O L O \ T^ ̂  /^ 1? * ̂

r _ (1 - z) p" 1
B = (1 - Z) u + — Z- (60b)

L 8 K Z G J

B3 = c2 ' — ' K

B4 =

It is easy to show that when f ->• 1 and y/G « 1 , Eqs. (59) reduce

to Eqs. (58). Finally, there are cases where u ^ 0 but u = 0 at
o p

y = y as discussed previously for the isothermal case. When this occurs,

we simply put u =0 for y > y and replace the constant c_ by

c* = (1 - Z ) p u (T + Y „ l y ) (61)
2 cx Hgc gc c yG 3c.'

and continue the computation with Eqs. (59) for y > y . In Eq. (61),

the subscript c denotes the values at y = y
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V. NUMERICAL RESULTS AND DISCUSSIONS

In our numerical calculations, we limit ourselves to the

cases u = 0(1/G) and H = 0 as discussed in Section III. We
o

shall examine the effects of u , J and G with two sets of yo e

and 6 : one for steam and the other for hydrogen gas. The following

values have been used in our calculations:

(i) General data

g = 980 for earth, g = 160 j for moon
sec sec

T = 1130 °K . (62a)
o

(ii) For solid particles

3
p =2.4 gm/cm ; r = 0.005 cm.
sp p

c = 0.3 erg/gm-°K . (62b)

(iii) The properties of the gas species

(a) Steam m = 18 ; y = 1-3 , c = 0.6 -p gm - K.

y = 4 x 10~4 poise , b = 7.34 x io"7 ^- (62c)v ' sec.

(b) Hydrogen gas

m=2 , Y = 1.4 , cp = 3.5 -^^

y = 2.6 x 10~4 poise b = 1.25 x 10~7 cm/sec. . (62d)

The choice of the value of B for for different gas species will be dis-

cussed in part (c) of this section. It should be noted that the value
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of b used here is different from that used by O'Keefe and Adams ,

which is b = 3.56 x 10 for steam. But our values of b are of the

same order of magnitude. The difference is due to the different defi-

nition of Jeffreys number. We both used the condition J /37.5 =1 in
e

the terrestrial case to determine the value of b .

We present our numerical results in three parts: (a) isother-

mal ash flow, (b) ash flow with heat transfer and (c) the effect of dif-

ferent gas species as follows:

(a) Isothermal ash flow. We have made systematical calcula-

tions for two cases of isothermal ash flow:

(i) In the first case, we consider u = 0 and let (J /37.5)
o e

various from 0.01 to 5.0. The terrestrial case corresponds to (J /37.5) = 1,

while the lunar case corresponds to (J /37.5) = 0.028. In our calculations,

we keep p and T unchanged and assume that the total mass of ashsp o

per square centimeter remains the same whether it is on earth, or on moon

or on other planet. As a result, we have

Gl ^Pgo^2 (P0)2
 g2

G^ = (P 0)1
 = (PQ)1

 = 8^ = ̂ ^~ ' (63)

where subscript 1 and 2 refer to the values of two different planets,

e.g., one may be the earth while the other may be the moon or other planet.

In our calculations, for given values of J 1 and J „ , we have definite

values for G /G_ .

(ii) In the second case, we consider a series values of u ,
o

which is assumed to be of the order of 1/G , for the lunar case only

i.e., J /37.5 = 0.028 and G = 21200 where the gas is assumed to be steam.
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The numerical results for isothermal ash flow with steam as

the gas are presented in figures 4-11.

In Fig. 4, we plot p as a function of altitude y for

various values of J for the case of u = 0 . In this report,

altitude refers to the height from the top of the fixed bed (Fig. 1) .

Each curve for a given J starts with a triangle which marks the

point of minimum fluidization, i.e., Z = 0.4. From there on the con-

> tinuum theory of the two phase flow begins to be valid. The actual

results for the pressure are given by the solid curves. If we neg-

lect the weight of the gas entirely, the pressure curves would be those

given by the dotted curves. Thus we see that the weight of the gas is

responsible for the pressure drop in the dilute phase region. Hence

O'Keefe and Adams in which they neglected the effect of weight of gas

hold true in the dense phase only. From Fig. 4, the following conclusions

may be drawn:

(1) For small values of J , such as the case on the moon,

the pressure drop takes place mostly in the dilute phase region. This

indicates the importance of the dilute phase of lunar ash flow as com-

pared to its counterpart on earth.

(2) In the case of the earth, on the other hand, the weight

of the gas is relatively unimportant in its effects on pressure drop for

large values of J . Thus the dilute phase is not important in ter-

restrial ash flow.

Fig. 5 shows the pressure-altitude relations on the moon for

various values of initial velocity u . We assume that

UQ = I (64)
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where N is constant. We calculate the cases for N = —, I, 2, 4, 8, and

16. The results show that the larger the initial velocity u , the faster

the pressure drop will be as the altitude increases when all the other

parameters remain unchanged.

Figure 6 shows the velocity of the gas u as a function of the
g

altitude y for the case u = 0, i.e., u = 0, at various values of J .o p e

In Fig. 7. we plot both the velocity of the particles u (dotted

curves) and that of the gas (solid curves) against the altitude y at various

values of u (i.e., various values of N), for the lunar ash flow. It is ••

interesting to notice that for small values of u (say N < 0.5)the particles •

will not move beyond a certain altitude even though an initial velocity of

the particles is assumed. For N £ 1, u will always increase with the al-

titude y. In low altitude, the velocity of solid particles u is always

smaller than that of the gas u . But at high altitudes, the difference
o

between u and u can hardly be distinguished. This means that as the flow
P g

of the mixture goes on, the flow field will finally reach its equilibrium

condition in which the velocity of the particles is equal to that of the gas.

This phenomenon is the well known pneumatic transportation of small particles.

Figure 8 gives the values of volume fraction of solid particles Z

as a function of altitude y at various values of J for the case of u =0

while Fig. 9 gives the values of Z as a function of altitude y at various

values of initial velocity u (or N) on the moon. It is interesting to note

that even though the spread of ash over the altitude is broader for small value

of J in the Z range calculated, yet for Z = 0.1, the larger the value Jg is,

the larger is the corresponding y. Hence more ash is concentrated in low

altitude for smaller values of J than that for larger value of Jg.

It should be noticed that for values of Z less than 10 ,

the particles per unit cubic centimeter is so small that the accuracy
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of the theory of continuum may not be good. On the other hand, we may

not be interested in such small values of Z for lunar ash flow. We

—8
include the value of Z less than 10 for future reference.

We are interested in local scale height of lunar ash flow.

The local scale height for atmoshpere with gas only may be defined by

the following relation:

dp dy dy ,,_N
p = " ̂/^ = " ̂ s

where

RT
Hg = — = local scale height . (66)

In general the temperature T varies with altitude and thus the local

scale height Ho varies with altitude. But for an isothermal atmoshpere,

the local scale height is a constant for all altitude. It represents

the difference in altitude in which the pressure drops to 1/e of its

original value where e is the base of natural logarithm.

In the case of the isothermal ash flow, we should modify Eqs.

(65) and (66) for the mixture of the gas and solid particles. In other

words, we have to use an effective molecular weight m,. instead of the

true molecular weight m of the gas in the determination of scale height.

From Eq. (5), if the inertial terms are negligible, we have

dp _ dy dy dy

where

RT
mo

H = ~ - B - =f = local scale height of the . (68)

]
-LWl~CLJ. O \.O.J.C llC-Lgl

ash flow

„
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The interesting point is that for the ash flow, the local scale height H
SM

is not a constant for the isothermal case because of the variation of

the volume fraction of solid particles with the altitude. Eqs. (67) and

(68) in non-dimensional form are respectively as follows:

dp _ _ dy _ dy _ dy

p pG[(l - Z)p + ZG]"1 H*MG H

and

^ SM p p
HSM = RT/mg ,,

where for convenience, we write the non-dimensional local scale height

5SM = HSM/L - HSMG *
* _

In Fig. 10, we plot H as y for the lunar ash flow of our

numerical example at various values of N . Since H is not a constant,

it would be preferable to use an average scale height H0 through which
o3.

the pressure drops to 1/e of its original value at y = 0 for isothermal

lunar ash flow. Such an average scale height may be determined from the

pressure curves of Figs.4 and 5 and is shown in Fig.11 as a function for •

J for the case u = 0 .
e o

The local scale height of isothermal ash flow increases with

altitude but its rate of increase decreases as the initial velocity of the

particles increases. The average scale height of lunar ash is much larger

than that of terrestrial ash.

(b) The effects of heat transfer. There are three different

heat transfer processes in the ash flow which are (i) the heat convection

of the mixture of the gas and solid particles (ii) the heat conduction of

the mixture of the gas and solid particles and (iii) the heat transfer
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between the gas and the solid particles. As we have mentioned in section

II, the heat conduction of the mixture is negligible if we do not consider

the transition or boundary layer region near a solid boundary. In our

problems, we have neglected the heat conduction of the ash flow. From

our discussion in section IV , since the parameters 27/4 G/P J H is a

very large number , we conclude, that the heat transfer between the gas ;

and the ash is so rapid that these two species are in local thermal equi-

librium everywhere throughout the flow field. Thus in studying the effects

of heat transfer, we need to consider the temperature distribution of the

mixture of the gas and the ash T through the heat convection process,

Eq. (51) only. With heat transfer, we should use Eq. (15) to determine

p from p and T . We have carried out the numerical integration dis-
&

cussed in section IV (b) for the case with heat transfer to obtain the

unknowns from the beginning of minimum fluidization level. The numerical

method used is a fourth order Runge-Kutta method (the same method was used

in the isothermal ash flow). These numerical solutions have been checked

with the analytic solution in the dense phase region with heat transfer

effects. Our numerical results are mainly for the lunar ash flows with

heat transfer except a few cases for earth in order to compare the dif-

ference of the effects of heat transfer between moon and earth. The results

are given in Figs. 12 to 20 in which the gas is steam. Since in our iso-

thermal ash flow results the gas is steam, .we may compare the ash flow

with heat transfer to the corresponding isothermal ash flow.

Figure 12 shows the pressure distribution as a function of altitude

at various values of u on the moon with heat transfer. We should compare
o

the results of Fig. 12 to those of Fig. 5. For N > 1 , the pressure

distributions with and without heat transfer are qualitatively the same

such that, as N decreases, the rate of pressure drop decreases too. But
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for N < 1, the effect of heat transfer has a great influence on the pres-

sure distribution. For N < 1 , the rate of pressure drop increases enor-

mously as N decreases and the pressure drops very rapidly as N ->• 0 .

Hence for N < 1 , the pressure distributions with heat transfer differ

greatly from those of isothermal case.

Figure 13 shows the distribution of the density of gas as a

function of altitude. With heat transfer, the distribution density p
g

is different from that of pressure p while in the isothermal case, we

have p = p . It is interesting to notice that with heat transfer, the
6

density of gas may increase to 20 times of its original value for u = 0 •

case and drops rapidly from this maximum value. The large variation of gas

density makes the pressure distribution different from that of isothermal

case.

Figure 14 shows the temperature distributions at various u

on the moon. For N > 8 , the temperature variation is small in the most

part of the flow field, which suggests that the isothermal approximation

is a good one for these lunar ash flows. For small values of N , parti-

cularly N ->• 0 , the variation of temperature in the flow field is large'.

Hence the isothermal approximation is not a good one for small N , par-

ticularly N -> 0 .

In Figure 15, the distributions of velocities of gas and solid

particles are plotted as functions of altitude at various values of u

We find that for cases of N $ 1 , the velocity of solid particles becomes

zero at certain level y while in isothermal cases, this occurs at N $ 0.5.

Otherwise, the general trend of velocity distributions of gas and solid

particles is similar for the cases with and without heat transfer. Usually,

heat transfer has little influence on velocity distribution.
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In Figure 16, we plot the distribution of volume fraction of

solid particles as functions of altitude at various values of u . It
o

is seen that for N < 0.5 , the range of dense phase (Z » 0.2) increases

rapidly as N decreases. We do not have similar situation in isothermal

case. It is also interesting to notice the rapid drop in volume fraction

of solid particles after the dense phase at small values of u for the
o

case with heat transfer.

Figure 12 to 16 give mainly the results of lunar ash flow with

heat transfer. We also make some numerical calculations for the comparison

between the flow field with and without heat transfer on the moon with those

on the earth for two typical values of initial velocity, i.e., N = 0

and 8 as follows:

Figure 17 shows the comparison of pressure distribution at u . = 0

or N = 0 . Tremendous change of pressure distribution is shown on the moon

due to the influence of heat transfer while on earth the effect of heat

transfer is not so significant. It is interesting to notice that in this

case (N = 0) with heat transfer, the pressure distributions as functions

of altitude on the moon and on the earth do not differ greatly as those are

in the isothermal cases.

Figure 18 shows the comparison of temperature and gas density

distributions with and without heat transfer on the moon and on the earth

for the case u = 0 . The distributions of gas density on the moon with

and without heat transfer bear no similarity at all while those on the earth

do roughly have similar behavior. The temperature drop on the moon is much

faster than chat on the earth as shown in Fig. 18. As a result, the layer

of hot ash is thicker on the earth than that on the moon for u = 0 .

Figure 19 shows the comparison of gas velocity and volume fraction
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of solid particles at u = 0 for those on the moon to those on the earth.

Again, the effects of heat transfer are much more significant on the moon

than those on the earth. The thickness of dense phase increases by 14 times

due to the effect of heat transfer on the moon at u = 0 , i.e., 3m
o

(y = 0.2 , Z = 0.2) in isothermal case and 40 m (y = 2.7 , Z = 0.2) with

heat transfer. On the other hand, the corresponding values for the thick-

ness of dense phase on earth are 28.5 m for isothermal case, (Ref. 5 gives

30 m) and 34 m for case with heat transfer, thus we have only an increase

of 1.2 times due to heat transfer.

In Fig. 20, comparison of pressure, gas density and temperature

for u = 8/G , i.e., N = 8 , are shown. It is seen that for large N ,

the effect of heat transfer is small on the distributions of pressure and

gas density because the temperature variations for large N is rather small

and we do not have such a large drop in temperature for N = 8 as in the

case of N = 0 . For N = 8 , we also find that the effects of heat transfer

on gas velocity and volume fraction of solid particles are insignificant.

Hence we do not show these variations. In conclusion, for large initial
\

velocity, u ? 8/G or N > 8 , the effects of heat transfer are small

and the isothermal approximation is good. And for small initial velocity

N $ 8 , the effects of heat transfer become important particularly when

N -»• 0 . The effect of heat transfer at small initial velocity (N -> 0) is

to make the whole layer of ash flow more compact together on the moon. The

thickness of dense phase is increased considerably by the influence of heat

transfer while that of dilute phase is reduced. The direct consequences

of the slow change of volume fraction of solid particles over the layer of

dense phase on the moon for N -»• 0 are that
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(1) the pressure drop in the dense phase layer increases

(2) the gas density also increases and

(3) a steep vertical temperature gradient occurs.

(b) The effects of different gas species. For small values of

N or u , the flux of energy of gas is relatively large in comparison

with that of pseudo-fluid of solid particles while for large values of

N or u , the flux of energy of gas is relatively small in comparison

with that of pseudo-fluid of solid particles. Since gas is a compressible

fluid, the effect of heat transfer on gas is large. On the other hand,

the pseudo-fluid of solid particles behaves as an incompressible fluid and

thus the effect of heat transfer on the solid particles is small. As a

result, we see in the last part of this section that the effect of heat

transfer is large for small N while it is small for large N .

Since different gas has different specific heat or different

heat capacity, the influence of heat transfer may be different for dif-

ferent gases. It is interesting to investigate how large would be the

effects of heat transfer on ash flow for different kinds of gas species.

In our previous numerical calculations, we considered only the case in which

the gas is steam. Another possible gas in an ash flow is hydrogen. Since

the heat capacity of hydrogen is about six time larger than that of steam,

we may find out the main influence due to different gas species by carrying

out some of our numerical calculation of ash flow with hydrogen as the gas

instead of the steam.

Before we make the specific numerical calculation, it would be

useful if we consider the general effect on the ash flow due to the physical

properties of its gas species. The physical properties of the gas species

which have some influence on the ash flow are (i) the ratio of specific
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heats Y , (ii) the specific heat at constant pressure c , (iii) the
P

mass of a molcule of the gas m , (iv) the coefficient of viscosity y

and (v) the rate of emission of gas from the solid particles b . Among

these five physical quantities, Y > c , m , y , and b , only the

value of b is not known very well. In order to compare the effects. of

the physical properties of different gas species, we have to set a criterion

for this comparison. Since in our study we find that the Jeffreys number

J , Eq. (24), is the most important parameter in the ash flow, we shall

assume that the Jeffreys number J remains unchanged for different gas

species when the other physical quantities remain unchanged. In other

words, we may use the condition that J =37.5 on earth to determine the

values of b for different gas species. When the properties of solid

particles, the gravitational acceleration and the initial temperature are

the same, for a constant Jeffreys number, Eq. (24) gives

m l 2
— — = constant for any gas = - - — = — - — (71)
pb Ml 1 y2 2

where subscripts 1 and 2 denote the values for gases 1 and 2 res-'

pectively. Thus in Eqs. (62), we have b = 7.34 x 10 cm/sec, for steam

and b = 1.25 x 10 cm/sec, for hydrogen.

From Eqs. (14), (27), (28), and (30) we have the following

relations for the two different kinds of gas:

2

Vc2 PI ' G2 m, H2 y2 ' 62 Cpl

Hence when we change the gas 1 in the ash f).ow to gas 2 , we have to

modify the reference velocity V , the density ratio G , the specific

heat ratio 6 and the dynamic pressure parameter H in addition to the
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gas property parameter y . '

Since in our investigations, we consider the case of H = 0

only, for the isothermal ash flow we need to modify the density ratio

G only. When the gas is hydrogen, from Eq. (72), we have

r* ~ Q c
hydrogen steam

because nu = 18 for steam and m.. = 2 for hydrogen. From our previous

discussion of isothermal ash flow results in (a) of this section, i.e.,

Fig. 4, the effect of G or the relative importance of the weight of

gas becomes significant only in the dilute phase or small value of Z .

Thus for hydrogen, we have a larger value of G than that for steam, which implies

that the effect of G comes at even smaller value of Z than those shown in Fig.

4 for the case of steam. Since the isothermal approximation is poor for small

values of u and an increase of G would influence the results at small Z region

only, the change in parameter G alone would not give much new and interesting

results for the isothermal ash flow. Hence we feel that we need not study
/

the results for isothermal ash flow with hydrogen in detail.

On the other hand, the value of c for hydrogen is about six

times greater than that of steam, we expect that some significant effects

due to the change of steam to hydrogen in the ash flow with heat transfer

would occur. Hence we recalculate the ash flow variable with hydrogen

as the gas species for the case with heat transfer and the results are

presented as follows:

Figure 21. shows the pressure distributions of the lunar ash

flow with heat transfer as functions of altitude at various values of UQ i

or N with hydrogen as the gas species. We compare Fig. 21 with Fig. 12

which is for the case of steam. We find that there are significant differences
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between these results. For the case of steam, Fig. 12, the effects of heat

transfer is not important for N 5 1 and important for N ̂  1 . For the case

of hydrogen, Fig. 21, the effects of heat transfer remain significant even when

N is as high as 16. Qualitatively the pressure curves for the case of hydrogen

for all N $ 16 behave similarly as those for the case of steam when N $ 1. The

reason is evident because the larger the heat capacity of a gas is, the larger

would be the relative influence of the heat transfer in the mixture due to the

contribution of the gas species. Thus the influence of the heat transfer would

extend to larger value of u or . N for the gas with larger heat capacity.

Figure 22 shows the temperature distributions of the lunar ash flow

with heat transfer as functions of altitude at various values of u or N with
o

hydrogen as the gas species. It is evident that the isothermal approximation is

not good even N = 16, due to the large heat capacity of the hydrogen gas.

From the pressure and the temperature distributions, we calculate---

the density distributions of the gas which are given in Fig. 13 for both the

steam and hydrogen.

Figure 23 shows the corresponding distributions of velocities of the n

gas and the solid particles for the case of hydrogen which should be compared

with the corresponding curves for the case of steam in Fig. 15. Figure 24 shows

the corresponding distribution of volume fraction for the case of hydrogen gas

which should be compared with Fig. 16 of the case of steam. It is evident that

as long as the heat transfer effects are important, the variations of the cor-

responding variables are similar. In other words, the curves of hydrogen gas

for N $ 16 are similar to those of steam for N $ 1 .

VI. SUMMARY AND CONCLUSIONS

From our theoretical study and numerical results, the following

conclusions may be drawn:
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(1) A theoretical model of two-phase flow of a mixture of gas and

small solid particles is used in studying one dimensional steady ash flows

for both the lunar and terrestrial case, with special emphasis on the lunar

case. The fundamental equations and the boundary conditions are described.

In general, there are seven unknowns: the temperature of the gas T , the
o

temperature of the solid particles T , the velocity of the gas u , the
r o

velocity of the solid particles u , the pressure of the mixture p , the

density of the gas p and the volume fraction of the solid particles z •
&

For the ash flow under consideration, the temperature field is in local

thermodynamic equilibrium so that T = T = T . We have to study six

unknowns: T } p , p , u , u and Z only.
O L &

(2) From the fundamental equations and the boundary conditions

of one dimensional steady ash flow, we find that there are seven non-dimen-

sional parameters which govern the ash flow and which are: (i) Jeffreys

number, Eq. (24) which is one of the most important parameters in ash flow

and which represents the ratio of gravitational force to viscous force,

(ii) the density ratio G , Eq. (27), which represents the effect of the

weight of gas in the ash flow (iii) the dynamic pressure parameter H ,

Eq. (28), which represents the inertial effects in the ash flow, (iv) the

initial velocity ratio u , Eq. (23), which represents the effects of ini-

tial velocity u of ash relative to the characteristic velocity of

emission V , Eq. (14), from the solid particles in the ash flow, (v) the

gas property parameter y . Eq. (29), which is the ratio of specific heat

of the gas at constant pressure c to that at constant volume c , (vi) the

specific heat ratio <5 , Eq. (30), which is the ratio of the specific

heat of the solid particles c to that of the gas at constant pressures
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c , and (vii) the Prandtl number P , Eq. (31) which is important in the

study of heat conduction in the mixture and heat transfer between species.

In our study, we consider the cases where the inertial effects are negligibly

small and the species in the mixture are in local thermodynamic equilibrium.

Hence the parameters H and P will be dropped out in our analysis. We

study mainly the influence of the five parameters J , G, u , y and 6 .

(3) Analytical solutions to the fundamental equations with and

without heat transfer have been obtained for the dense phase region of the

ash flow. Numerical solutions for the whole flow field of the ash flow have

been obtained for both the isothermal ash flow and the ash flow with heat

transfer. In the isothermal case, the effect of different gas species is small.

For the ash flow with heat transfer, the heat capacity of the gas species has

a large influence on the ash flow. Hence we calculate two cases of lunar ash

flow: one for steam as the gas and the other for hydrogen as the gas and com-

pare these results. Some essential results for these cases are given below.

(4) For the isothermal ash flow, only three parameters J , G

and u are important. In our calculations for isothermal ash flow, we

find that the density ratio G is important only in the dilute phase where

the volume fraction is very small, (see Fig. 4). Hence the change of para-

meter G due to the change of gas species from steam to hydrogen would

change slightly the flow field in the upper dilute phase only and it would

not give much new and interesting result of isothermal ash flow. Hence

in our numerical solution, a major portion of the results of isothermal

ash flow deals with steam only. For a definite kind of gas species, there

is a definite relation between J and G . Hence for isothermal ash flow,

the most important parameters are J and u only.



43.

For large values of J , (i.e., large graviational constant

if other factors remain equal), the pressure drop in the isothermal ash

flow occurs mostly in the dense phase region while for small values of

J (i.e., small gravitational constant, if other factors remain equal),

the pressure p drop in the isothermal ash flow occurs mainly in the

dilute phase region and for intermediate value of J , the pressure

drop occurs in transition region as shown in Fig. 4. Hence the dilute

phase region is important in the lunar ash flow.

The weight of the gas or the density ratio parameter G is

much more important in the dilute phase of the isothermal ash flow than

in the dense phase of the ash flow. It is responsible for the pressure

drop at high altitude. Hence for the lunar ash flow, the parameter G

is very important.

Since we study mainly the flow field due to the emission of gas

from the ash, at small initial velocity ratio u < 0.25 , the particle

velocity may become zero when the altitude is above a certain critical

height because we assume that no particle (or negligible amount of par-

ticles) comes from outer space. For large values of u (u 5 0.5) , the
o o

velocity of the particles u increases with altitude y just as that

of the gas u . At low altitude, the velocity of the particles u is
o r

always less than that of the gas u , while at high altitude, the equi-
&

librium condition will be reached and then the velocity of the particles

is nearly equal to that of the gas.

The local scale height of the isothermal ash flow increases

with the altitude but its rate of increase decreases as the initial velo-

city of the particles increases.

(5) For the ash flow with heat transfer, we first reexamine



our isothermal results for steam with heat transfer. The most important

heat transfer process in the ash flow is due to heat convection in the

mixture. Our numerical results, given in Figs. 12 to 20, show that the

effect of heat transfer becomes important for the cases of small initial

velocity u . For the case of steam as the gas species, the effect of

heat transfer is very small if u $ 8/G , i.e., N $ 8 , but for N < 1

especially for N ->• 0 , the influence of heat transfer is very large.

As N -»• 0 , the effect of heat transfer is to make the whole layer of

ash flow more compact together on the moon. The thickness of the dense

phase of lunar ash flow is increased considerably by the influence of heat

transfer while that of dilute phase is reduced. The pressure drop in the

dense phase layer of lunar ash increases and the gas density also increases

and reaches a maximum and then reduces due to the effect of heat transfer.

(6) Since the effect of heat transfer depends greatly on the

heat capacity of the gas species, we reexamine our numerical results for

steam by using the hydrogen as the gas species for the lunar ash flow.

Since the heat capacity of hydrogen is about 6 times that of steam, we

do find that the effect of heat transfer with hydrogen is much larger than

that with steam. Qualitatively, the effect of heat transfer still depends

on the initial velocity u . The larger the value u is, the smaller

the influence of heat transfer will be if other parameter remain unchanged.

But for steam, we find that when u $ 8/G or N $ 8 , the effect of heat
o

transfer is negligibly small. However, for hydrogen, the effect of heat

transfer is not negligible even if N = 16.
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APPENDIX I

ON THE PRESSURE GRADIENT IN FLUID-SOLID TWO-PHASE FLOW Al LOW REYNOLDS

NUMBER

Introduction

One of the main difficulties in the application of equations

of motion of a mixture of fluid and small solid particles is the cor-

rect expression for the interaction forces between the fluid and the

solid particles. Generally, the interaction forces depend on the Reynolds

number, Mach number, Knudsen number, shape, size, surface condition,

number density and rotation of the particles as well as the interaction

between particles in the local flow field (I1and references thereon).

However, in most engineering problems, we usually assume that the par-

ticles may be represented by uniform spheres with an effective radius

r and the Reynolds number of the particles, R = 2?rUr /V > is the
P e r p

dominant factor. The other effects may be important only at particular

situations. Therefore, the interaction force term which appears in the

momentum equation of two-phase flow may be represented by the viscous

drag force of spheres in a uniform flow as a first approximation. Even

after such a simplification, it is not straightforward to write down the

interaction force term because the viscous drag force of many spheres in

a uniform stream is still lacking. Single sphere in infinite domain at

low Reynolds number (R < 0.1) the viscous drag force is given by Stokes'

law, or Oseen's approximation at R **> 1 ; while at high Reynolds number

only empirical curve is available. With the presence of many spheres in

a finite domain, even at low Reynolds number, we have to rely on experi-

mental information for the drag force. Thus, it is quite frequent that
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an empirical equation for the pressure gradient is used in the calcu-

lation of fluid-solid two-phase flow at low Reynolds number, where the

f
inertial terms are negligible C2'}3', 4' and 5')'. Empirical equations

of pressure gradient for spheres in a finite domain have been reported

by many authors (2',3' and references thereon), however, due to the em-

pirical nature of these equations, their applications are restricted to

some range of the volume fraction of the solid particles (a typical para-

meter to be used) or concentration. It is the purpose of this note to

present a useful equation for the pressure gradient which covers the entire

range of the volume fraction of the solid particles of practical interest

(0 < Z $ 0.4) for fluidized bed and fits well to most of the available ex-

perimental data at low Reynolds number flow.

Experimental Results

A general form of the available empirical equation for pressure

gradient of fluid flow through packed columns due to the viscous energy

dissipation alone at high concentration may be expressed as follows:

dp_ Kja Z2 TT Ku Z2 ,n,
—c- = — —J- • ————— TT = _ —*— • ——^^— n M

<* r2 (1-Z)3 m r2 (1-Z)2 f (

where

(1 - Z)uf . (2')

The constant K is 45 in Carman-Kozeny's equation with k = 5(6') and

is 37.5 in Ergun's equation (2') and 50 in Leva's equation (3') for

spherical particles (in fact, K is between 36 and 50 as reported by

different experimenters (31)). Equation (I1) is valid for laminar flow

and is restricted to Z > 0.2.
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Rowe (71) expressed his experimental results for the drag force

of a single sphere at the presence of other equally spaced spheres as

follows:

where

CD = |£ (1 + 0.15 R,
0-687) (4')

e

and R = 2r p,.U /y . At low Reynolds number (R < 1) , the second term
e p t m e

in the parenthesis may be dropped. As shown in the Appendix II, h/r may

be expressed by Z as

_

~ = (1.35Z) 3 - 1 (5')
rp

for rhombohedral packing. Since

Z = n ( | TT r3) (6')

where n is the number density of the spheres per unit volume, the total

drag force per unit volume becomes

F •p s „ 2 m h/r
rp P

Rowe performed his experiment at R =32 to 96 and h/r = .1 to 1.

New Equation

In general, the minimum fluidization occurs at Z ̂  0.4. For a

fluidized flow of mixture of fluid and small solid particles, we are in-

terested in the range of Z from 0 to 0.4. We note that at small

values of Z , the pressure drop is mainly due to the frictional drag

between the fluid and the solid particles. As a result, Eq. (7') may be
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interpreted as the pressure gradient at small values of Z . As Z -»• 0 ,

Eq. (7') may be reduced to

i ^ = - 6 TT r p u, (8')
n dy p f

which is the well-known Stokes' law for frictional drag of sphere in in-

finite stream at low Reynolds number. On the other hand, Eq. (7') fails

to describe the pressure gradient at high concentration region of Z > 0.2

and at low Reynolds number (see Fig. 25). Since Eq. (7f) has the correct

limiting case of Stokes' law as Z approaches zero, in view of Eq. (!'),

3
it is not difficult to realize that a term of (1 - Z) in the denominator

should help at high concentration region. By doing so, we find a new equa-

tion which gives the pressure gradient in a flow of mixture of fluid and

small solid particles at low Reynold number and fits well with most available

experimental data as follows:

d£ _ _ 9u_ Z Q 0̂ 68, u
J,T ~~ •> 0 (--L ̂  V. /,- ' Uf •
dy 2r2 (1 - Z)2 h/rp f

P

A plot of Eq. (9') is shown in Fig. 25 as a function of Z .

Comparison with Experimental and Theoretical Results

A comparison of Eq. (9') with most available experimental data

is also shown in Fig. 25. At high concentration of Z > 0.2 , Eq. (9')

coincides perfectly with Carman-Kozeny equation with k = 5 between

Z = 0.25 and 0.45 and falls in between that of Ergun and Leva. At inter-

mediate concentration of Z from 0.05 to 0.2, the data of Happel and

Eppstein, Steinour, Mertes and Rhodes, Hanratty and Bandukwala as reported

in Ref. 6' and 8' and Adler and Happel (91) are also plotted in Fig. 25.
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The large deviation among the data in this range may be due to the effects

other than concentration, such as agglomeration and segregation and an

oriental factor is also suggested in Ref. 9'. It seems to the author,

the data of Happel and Eppstein is most reliable to show the effect of

concentration since their data agree with that of Ergun within experimen-

tal error at high concentration region, Z = 0.2 to 0.5. Eq. (9?) also

represents Happel and Epstein's data to within 15 % higher. At dilute

region, Eq. (91) also agrees closely with the experimental data of McNown

and Lin (10') to within 10 % lower. Therefore, Eq. (9') is indeed a best

fitted equation to all the experimental data available at present. Other

semi-empirical equations, which only cover a small range of concentration,

and do not show large difference from the data presented in Fig. 25 , may

be found in Ref. 6' and references thereon and are not reported here.

The only theoretical models related to the present work are those

of Happel (6!) and Kuwabara (II1). Their results are also plotted in Fig.

3 3
1' with concentration defined as Z = r /(h + r ) . It is seen that Eq.

P P

(91) fits the experimental data better than those theoretical results.

Another point of the theoretical work subjected to criticism is that its

3 3
definition of concentration Z = r / ( h + r ) , which is obviously imprac-

tical at high concentration region, Z > 0.2 say. Should Eq. (5') be used

to calculate the concentration from the ratio of h/r , the drag would

be increased by 6.3 and 4.62 times at Z = 0.5 and 2 and 1.53 times

at Z = 0.2 respectively for Happel's and Kuwabara's model. For packing

other than rhombohedral, the increase in drag at high concentration region

would be greater. It is obvious that any theoretical model would not be

satisfactory at high concentration due to the complexity of the flow. Hence,

it is on the safe side to use experimental results such as Eq. (9') to carry

out computation for lunar ash flow.
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APPENDIX II

GEOMETRIC CONSIDERATION OF VOLUME FRACTION OF SOLID PARTICLES

Let the radius of the spheres (solid particles) be r and
P

the half spacing between nearby spheres be h . To calculate the volume

fraction of the solid particles, we may consider the packing of the in-

visible spheres of radius h + r . The closest packing of uniform spheres

is the rhombohedral packing as described by Graton and Fraser (12'). As

shown in Fig. 26, 14 of the invisible spheres may be put together to form

a cubic of side 2/2(h + r ) while each sphere involved has some part of

its volume excluded from the cubic. Such cubic may continuously repeat

itself throughout the space in our problem. The total number of spheres

inside the cubic is 4. Thus, we have

Q

V = volume of the cubic = 16/2 (h + r )
c p

4 3
V = volume of solid particles = 4 T ir r
s K 3 p

and
V -3

Z = rp- = 0.74( — + 1)
V IT
c p

_!
— = (1.35Z) 3 - 1

when h = 0,Z = 0.74 which is the maximum volume fraction of spheres.
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