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SUMMARY

The problem considered is a two-dimensional theory for the unsteady flow |

disturbances caused by aeroelastic deformations of a thick wing at high '

subsonic freestream Mach numbers, having a single, internally embedded |

supercritical (locally supersonic) steady flow region adjacent to the low

pressure side of the wing. The theory develops a matrix of unsteady

aerodynamic influence' coefficients (lAICs) suitable as .a strip theory for
| i

aeroelastic analysis of large aspect ratio thick wings of moderate sweep,]

typical of a wide class of current and future "aircraft. '

_ . ._
The theory derives 'the~;iinearized unsteady -flow" solutions ̂ separateiŷ for both

'"•" ' j • -"-- •••;- ' i
the subcritical and supercritical regions. These solutions are coupled

together to give the requisite (wing pressure/downwash) AICs by the inter-

mediate step of defining flow disturbances on the sonic line, and at the

shock wave; these intermediate quantities -are then algebraically eliminated
i l

by expressing them in terms of the wing surface downwash.

A unique feature of the present theory is the idealization of the ''

non-uniform, supercritical, steady flow field as a layered medium where \

region^ of uniform flow are separated by vortex sheets where the acoustic

impedance changes discontinuously.

ill

/



TABLE OF CONTENTS ! :
i

Page ;

SUMMARY iii '

INTRODUCTION . ! 1 i

SYMBOLS ' 5 !
I

BACKGROUND AND PREVIOUS RESEARCH ' 11 \

Review of Existing 'Unsteady Transonic Flow Methods - 11 !
arid Exploratory Research ' '

i ;
i

Older work and its limitations 11 ;
1 1 1 ~ ' ~ - ~ L - I | |

Recent research 13 j
i

Experimental data 15
• i

Physical Foundation for the Present Approach 16 |

Layered medium idealization of the steady supercritical !l6
flow past a 2D section : i j

Empirical substantiation of strip theory in steady Il6
flow past large aspect ratio thick wings I j

Empirical evaluation of 3D flow effects 19

Empirical -evaluation of 3D effects in unsteady flow 19

OUTLINE OF ANALYTICAL THEORY 20

Analytical Assumptions for Layered Medium Analysis of Unsteady 20 j
Flow Past 2D Sections Having Local Supercritical Regions i

Preliminary remarks 20

Supercritical (locally supersonic) region 20 :
i

Subcritical (locally subsonic) region 22

Outline of Analytical Results 2k '•

Preliminary remarks 2k

Formulation of the aerodynamic influence coefficients 2k

Lift asymmetry 27

Sonic line disturbances 27

Subsonic interference downwash due to shock wave 29

Criteria for layering of the local supersonic region 31



REPORT No.

Layered medium analysis of the local supercritical region

I

EXTENSIONS OF THE PRESENT WORK

Analytical Effort

Computer Programming Effort

Comments on Matrix Sizes and Computer Storage Requirements

CONCLUDING REMARKS

| APPENDIX A

{APPENDIX B
iit

APPENDIX C

["APPENDIX D

APPENDIX E

REFERENCES

LAPLACE TRANSFORM SOLUTION TO.THE FLOW FIELD IN

THE MULTI-LAYERED, LOCALLY SUPERSONIC REGION Ay

OVERALL SUBSONIC/TRANSONIC LIFTING SURFACE SOLUTIONS

.PARTICULAR INTEGRAL REQUIRED'BY THE LAPLACE TRANSFORM

SOLUTION. FOR THE MULTILAYERED SUPERSONIC REGION

SHOCK"WAVE "TRANSFER~MATRICES"

EXPLICIT SOLUTION FOR TWO INTERIOR SUPERSONIC LAYERS

BOUNDED BY AN EXTERNAL FREESTREAM:AND TECHNIQUE FOR

GENERALIZATION TO N INTERIOR LAYERS

-L

p

iM

age

3^

35

35

37
38

^5

53

69

81

99

j I



INTRODUCTION

There has been a recognized need for realistic steady and unsteady transonic

airload prediction methods suitable for flutter, gust load, and static aero--

elastic analysis of flight structures (particularly wings and control surfaces)

since the first advent of high speed, compressibility-induced control problems

of World War II aircraft (References 1-3)• Although the level flight speeds

at that time rarely exceeded 4̂-00 mph, the contemporary thick, unswept wings

occasionally encountered serious .supercritical flow problems in high speed

dives (Reference 1, Chapter 9)-

The advent of the turboprop and turbojet engine led to an entirely new

generation of fighters, bombers, AS¥ aircraft, and both military and civilian

transport aircraft operating at high subsonic Mach numbers. Transport air- '

craft, in particular, are characterized by thick, moderately swept wings of

large aspect ratio. These characteristics are required for efficient, long

range cruise; Also, adequate high-lift 'performance is needed to provide

efficient airport performance within noise limits and with minimum wing

structural weight"to obtain a maximum ratio of useful load to gross weight.

The first generation of jet transport aircraft, in fact, have been operating-

with supercritical wing flow at the high speed cruise point. Typically, one

finds local st.eady flow Mach numbers, referred to the swept chord, ranging

from 1.2 to as high as 1.6 at high angles of attack. This is the typical

situation for a 35° swept wing, for example, at a flight Mach number of .85,

where the freestream Mach number component normal to the quarter chord line

is only .7- Thus, one often sees a two-fold increase of local Mach number

in the "supercritical", (locally supersonic) flow region.

The current generation of turbofan-powered wide-body jets operate in essen-

tially the same speed and supercritical flow regime. Primarily, the new

turbofan powered aircraft provide improved fuel economy and important

reductions in airport jet noise, rather than increased speed. It is



-1 predicted that future technology adva ices in steady flow aerodynamics may|

i be used to allow: (l) increases of wing thickness, (2) reductions of sweep,
I • '

(3) increases of cruise speeds, or (kty STOL (powered high lift) capability.

In view of the current stress on economy and noise reduction, the first two
i

possibilities may gain greater emphasis than speed increases for CTOL, and

especially for STOL aircraft; however1, such trade-offs are a proper function
| !

of mission analysis. Suffice it to say that the aircraft evolved from any
| ' l

of the.above described advances in technology, including STOL aircraft, will

yield designs whose wings will operate well into the .supercritical flow '
1 i

regime. Furthermore, military aircraft must be flutter certified to |

V = 1.15 V (V is design or structural limit speed), and commercial aircraft
D x D

must certify to 1.2 V , which further

interest to the aeroelastician. In military aircraft the current emphasis
i

Is upon transonic maneuvering at high

buffet-free conditions.

extends the transonic domain of

CT, to allow higher load factors under
•Li i '

4- 4-
For 'the purposes of the present study', the extensive body of experimental'

I '
data and recent calculation procedures for steady flow can be regarded as.

available for defining a non-uniform steady flow field "environment" (with

variable thermodynamic state variables) into which small amplitude, unsteady
, I

aerodynamic flow perturbations must propagate. The aeroelastically induced

perturbations -are small compared to the steady flow variables; therefore,'
i 'it is.' appropriate to linearize the equations of motion with respect to the

- - '- . i

unsteady perturbations. Since the steady flow field varies, this approach .

is often referred to as "local linearization" in the literature (References ;

h - 7)- While this is an appropriate! description of the mathematical '

process, the term "local linearization" is sometimes identified with methods;
' ' i

employing additional simplifying assumptions with respect to the boundary1

conditions, especially neglect of sonic line reflections in the super- ^ j

critical region. The removal of this' deficiency, which is prevalent in all

of the current literature on unsteady transonic flow, will be a primary ,

feature-of-the-pre sent analysis.— __ _ _ _ _ _ _ _ _ _J—j



REPORT No.

Also, incorporated in the present method is a series of suggestions for I

possible simplifying key assumptionsifor idealizing the steady flow, based

on extensive steady flow research within the aerospace industry'with . :'•

regard to transonic'airfoils and wings, including .the results of airfoill

research, and experience derived from aerodynamic wing design and develop-

ment of transport aircraft. I

The above mentioned key assumptions will facilitate the application of '

other previously well developed pieces of technology in: (l) unsteady aero-

dynamics for purely subsonic and purely supersonic flow, and (2) relevant

technology in acoustic propagation through non-uniform (layered) moving I
i

media.

In summary, the analytical approach outlined below and in various Appendices

is believed to be one which is physically well grounded, and which will I

appeal to practical flutter analysts.because it will: '

tr A'ut'Om'a'fically reduce~to~ s'iandaYd results"Under subcriificaT"

flow or purely supersonic flow conditions.

o Should cause only a nominal increase in computation time when i

efficiently implemented on the"digital computer. !

I '
o Will require only a few readily available input parameters to I

characterize the essential features of the supercritical steady

flow environment.

o Is capable of continuous refinement, as improved- steady flow

field data description becomes more routinely available.

FORM 76S1-2
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SYMBOLS

A

b

B

speed of sound

transfer matrix, Eq ;; also coefficients in Eqs

wing reference length (sem'ichord), Eq (D-3)

-1, Fig Al, Eqs (A-355 C-3)', also, transfer matrix,Eq

coefficient in Eqs E-95)

C,D

d

e

f

F

G

chord (Fig 3)j section coefficient (lift, drag or pitching moment)

(Fig 3) ' '
I

coefficients in velocity potential solution, Eqs (A-15, E-2) '
I I

differential operator (d/dz) '

base of natural logarithm I
I ' I

trans-fe-r— function—or— coefficient-,—w-ith- di-f-fer-ent-meani-ngs-^ !-

depending on special subscripts or supercripts. See Eqs (A-20

to A-32, E-2U, E-26, E-30-31) I

I
frequency > Hz I

particular integral forcing functions,,Eq (E-5) |

Green's function transfer matrix for shock induced downwash

at wing surface, Eqs (B-20, B-21); also Green's function transfer
I I imatrix for shock impingement disturbances due to W , Eqs B-27 ito !
i iB-29; also other meanings, depending on subscripts and superscripts,

Eqs (B-38, B-te,

-1 complex number operator

i
unit vectors ;

integral, Eq (C-19) !

inverse of matrix A, Eq (E-25)

If ->w-»
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k

K

L

M
->
n

P

P

! . T

u

U

V

W-

X

x

unit vector (see above); also reduced frequency,,Eq D-3
I • ?

aerodynamic downwash induction matrix,Eqs (B-3, B-̂ 9); also *
* **

wave parameter,Eqs (A-10, A-ll, C-2)

Laplace transform operator Eq (E-79)

Mach number

unit normal vector

lifting pressure; absolute static pressure (Fig 2)
I

interference downwash induction matrices,Eqs (B-58 - Br?l) '
I ' ' " I

pressure/downwash aerodynamic.influence coefficient .(AIC) matrix

Laplace transform complex variable

time, sec.

transfer matrix across shock wave, Eq (B-26, D-15); transfer I

matrices between surface downwash and sonic line disturbances,

Eq (B-33); transfer matrix between'disturbances entering shock

wave and sonic line disturbances (Eq (B-3̂ )v)

absolute velocity vector
I I

local freestream steady flow velocity; also, streamwise velocity

perturbation (backwash) in shock wave and sonic line transfer .

functions (Eqs B-12 - B-39) '
I

perturbation velocity normal to shock wave, Eq (B-19) '
I

vertical velocity perturbation (downwash) '

| '
streamwise coordinate with origin; . at wing leading edge i

i
streamwise coordinate with origin . at intersection of sonic !

line and the wing surface

vertical coordinate with origin at wing chordplane (measured

perpendicular to wing chord plane) !
! _ i _ _
T
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= (Z - Z, -,)
k-J-

a

Y

6

A

C

A

5

TT

P

a

0

UJ

C

relative vertical coordinate for the k layer of the

local supercritical region, with origin at the inter-

face between the ki and (k-l) layers. (For k =,•!, the

origin is at the wing surface). See Eqs (A-15 - A-18,

C-7) I

reduced frequency parameter in shock wave transfer matrices,

Eq (D-2), also coefficient in constraint equation , Eq (E-13)

= yl-M , "Prandtl-Glauert factor, Eq (A-35);-also constraint

matrix between freestream and outermost supersonic layer

Eqs (E-7, E-12)

see Eqs (E-l6, E-l?)

interface streamline slope, Eq (E-19)

(1,2)
difference operator; also has a special meaning,

Eqs (E-2U, E-31b); also determinant, Eqs (E-̂ 9, E-50)

dummy variable of integration, Eq (C-13)

matrices defined by Eqs (B-53 - B-57)

dummy variable of integration (Eqs A-22, E-8'5) /

3.1̂ 159 . • •

mass density of fluid

summation operator

state vectors, Eqs (B-33 - B-l

.perturbation velocity potential

•=2nf j.'..'-circular frequency, rad./sec
i

Special Matrix Notation

rectangular or square matrix, See Appendix B

column vector matrix (one ,column only), See Appendix B

T
unit diagonal matrix (offjdiagonal elements are zero)

see Appendix B. '
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C)

a

A

B

H

I

L

M

m

SPECIAL PARTIAL DERIVATIVE NOTATION

= 3( )/3 x, etc

, etc

OTHER SPECIAL NOTATION (

Laplace transformed quantity, Eq (A-5) I
I

complex amplitude for case of harmonic time dependence, |

Eq (A-l - A-U); also in Appendix B, used to define modified'

matrices, Eqs (B-53 - B-57, B-60a, B-68 - B-70, B-76 - B-78)
' i

used to define modified matrix, see Eq B-60b I

vector quantity

SUPERSCRIPTS AND SUBSCRIPTS

airfoil or wing surface

ahead of shock wave

.aft. .of shock wave
I

1
homogeneous (solution of a differential equation), Eqs (B-l,

C-13)

interference, Eqs (B-58 - B-65); also, imaginary part, Fig.

(A-2). '

quantity evaluated at a particular layer interface, Eq (E-5)

superscript denoting a certain interior layer and its associ-

ated values of velocity,density,speed of sound and disturbance^

variables, Eqs (A-19, C-l, E-5) -I

I I
section lift (coefficient), Fig 3

i
local (freestream) Eq (l) of text; also lower wing surface,)

Fig (B-l), Eqs (B-7, B-:13); also refers to layer in multilayer

Eq (B-12). ; I
• i

refers to multilayer, Eq (B-12) i

section moment coefficient ̂ Fig 3) '

8
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P

P

R

s

U

W

X

1,2

refers to interface between outermost supersonic layer and1

external freestream

normal component

refers to wing surface pressure.

refers to particular integral (of a non-homogeneous differ-

ential equation), Eqs (A-15 - A-17, A-19 - A-22, B-2? - B-Q6,

B-U2, etc.)

real part (of s), Fig A-2.

i ;
refers to wing surface, Eq (B-̂ 2) j

refers to backwash velocity, Eq (B-32); also refers to upper

wing surface, or flow field above the wing

refers to downwash velocity, Eq B-32

refers to streamwise direction or backwash velocity

component, Eqs (B-l6 - B-18) A

refers to vertical direction or downwash velocity component

Eqs (B-16 - B-18)

refers to dependence on perturbation, velocity potential

(Eqs B-16 - B-18)

refers to external freestream

NUMERICAL SUPERSCRIPTS AND SUBSCRIPTS ,
i

superscripts refer to (interior and exterior side of a certain*

layer interface, Eqs (lE-1 - E-?)j also subscripts refer to'

elements of 2 x 2 transfer matrices, Eqs (E-U, E-?)). .

refers to quantities evaluated from purely subcritical flow

theory, Eqs (B-3 - B-6) I
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MULTIPLE SUBSCRIPTS 'AND SUPERSCRIPTS
HAVING UNIQUE MEANINGS • ,

I
AA,AB,BA,BB partitions of aerodynamic induction and influence coefficient

AB •

APSH

BSH

HML

PML

L

SH

SL

WA

WA

WBT

WAP

WASH

WBSH

matrices Eqs (B-3, B-10)

Shockwave transfer relationship Eqs (B-26, D-ll)
I

disturbances impinging on upstream side of shock wave caused

by particular integral terms includes (0PSH, UPSH, WPSH), I

Eqs (B-32, B-3U)

conditions on downstream side of shock wave

I : I
homogeneous, multilayer (Eq B-12) |

I
particular integral contribution to-multilayer solution, I

Eq (B-12) '

refers to wing surface pressure beneath supercritical region

Eq (B-te) I ' |

shock wave

sonic line

caused by wing surface downwash ahead of shock

interference downwash'induced at lower wing surface ahead _of

shock' wave Eq B-^5

interference' downwash

shock wave

induced at wing surface aft of the

downwash contribution^ wing surface ahead of shock wave ]

due to particular integral term, Eqs (B-32, B-33) I

| !
refers to downwash induced by shock wave disturbance at i

the wing surface ahead of shock wave Eq (B-̂ 9) !

refers to downwash induced by shock wave disturbance at the

wing surface aft of the shock wave

'- -t

"io"
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'BACKGROUND' AND PREVIOUS' RESEARCH

Review of Existing Unsteady Transonic Flow Methods

arid Exploratory Research

Older work and its limitations.- It is well known (References 8,9 ) that,

the equations of unsteady transonic flow may be linearized for high reduced

frequencies; however, it is not clear even in this case that one can neglect

the sonic line reflections, associated with a supersonic (supercritical) I

region embedded in an exterior subsonic flow, and bounded by the sonic line

and terminal shock (see Figure Fl ) . I - I

OGW: Outgoing
Waves

M < 1 ->
CO

-Sonic Line: x =
SL

ICRW (incoming Reflected
-Waves)

Shock
Wave

I

Figure. 1 Schematic of .Supercritical Flow .. '
"'' 'Embedded; in a 'Subsonic External Flow '

Notwithstanding,neglect of sonic line reflections, Landahl's book (Reference /*
.. " , l i
9) is devoted almost entirely to the linearized theory of transonic unsteady

flow, except for Chapter 10, dealing with aileron buzz, which contains some

.usable results, particularly the "shock-compatibility" relation between

unsteady perturbations on the upstream and downstream side of a shock.

It is recognized (References Sand 9)'that for thin wings, especially low-

aspect ratio wings, linearization at

ably valid. Explicit calculation of

higher reduced frequencies is reason-

non-linear thickness effects for i
iunsteady subsonic and supersonic flow past slender bodies by Revell (Refer-!

I ' !
ence lOand 11)indicate that for slender bodies, non-linear thickness effects

on dynamic derivatives are rather weak. These results are to be expected'
I '

qualitatively because three dimensional relief effects via the continuity

-equatlonj-require" smaller-excess- flow-field" velocities- to "circumvent 'a b'ody
!

11

FORM 7681-2
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I
of given ^lateral width/length/ ratio. Thus, one does not find large local

variations of Mach numbers. In factf, the first order approximation is the
I '

well known slender wing or slender body theory due to Max Munk and !

R. T. Jones (see References 12-lU). In this case the lateral lift distribu

tion for steady or unsteady flow is. independent of Mach number if '

PAR « 1; 6 = /l ~ M and AR is th'e aspect ratio of a slender wing. The

application of slender wing theory to unsteady AICs in the form of Equation

(5) has been explicitly given by Rodden and Revell (Reference 15). I

I
In connection with unsteady linear theories at M =1, several schemes have

1 O3 I

been devised for computation, using ;the sonic limit for the kernel function

in the well known procedure of Watkihs, Runyan, Woolston, and Cunningham,;

(References 16, 1?) and also in "transonic box method" procedures (Refer--

ences 9,- 15, 18, 19). | |

I .

While the essential importance of the non-linear terms in transonic small

_dis.t.ur.bance_f.low_theoriesjhas. -long. been_re.aQgniz.e.d .in_sjt.e.ajiy £low_circJLes. _

(References U-9,13,1̂ ) little has been done for the unsteady problem. For

steady flow, Spreiter and Alksne (Reference 5) introduced a notion called

local linearization in which the non-linear transonic term estimated by 1

successive approximation, yielding equations having the same form as for

purely subsonic or supersonic flow, but with the local Mach number varying

with space. These methods have met .with some success in problems of slender

airfoils and axisymmetric bodies at zero lift near Mach 1. However, the;

method is a "simple wave" theory considering only outgoing waves and neglect

ing incoming wave reflections from the sonic line and from the intermediate
i

acoustic impedance changes associated with the gross variation of Mach

number, density and acoustic speed which occurs between the wing surfacei and

.the undisturbed flow.

I

The work of Rubbert- and Landahl (Reference 20) also considers non-linear

steady effects on thick airfoils using the "method of parametric differen- :

"tiation"-,-but~also fails- to consider-incoming wave -reflections—from- the-; —

-sonic—line— — —— — —J

12



Andrew'and Stenton (Reference 21) have attempted to -apply local lineariza-

tion to unsteady transonic flow, and have done some interesting exploratory

studies on acoustic ray tracing; however, they confined their studies to!

two dimensional propagation in the plane of the wing, whereas, supercritical

flow effects are most serious for'thick large aspect ratio-wings at mode'rat

to high lift coefficients.

In this case the ray tracing(aside from geometric acoustic limitations) would

be more appropriate in the vertical

start on the general problem. This

plane, suggesting a "strip theory" a|S a
I

idea is related to the proposed approach

which regards the supercritical region as a layered, moving, medium"-into which

unsteady disturbances (sound waves) 'propagate. Acoustic impedance changes

for such media interfaces'are given, for example, by Morse, Miles and Riibner

(References 22 - 2k]. These impedance changes cause reflections from the

outer flow to airfoil surface. These reflections occur even in the locally

subsonic regime; there, however, the impedance changes are quantitatively
1 i

weaker, _.and cruder ̂approximations may suffice,.,. vBefore_purj3.uing _this_appr,oach

further, some other recent developments in transonic flow -theory must be

discussed. - 1 \

•• . i

| Recent research. - Several symposia (References 6, 7) and a recent biblio-

i graphy (Reference 25) are available describing transonic research since 1950.

Most of this theoretical and experimental research is directed towards the

; steady flow problems of; (l) predicting pressures and flow fields past given

; bodies, (2) designing delayed drag rise and "shock free" airfoils. In the
1 \

case of airfoil design there has been a renewal of interest in the hodograph

method (References k, 12, 7, 26, 27),an indirect, transformation method,'
i

using velocity components as independent variables, and yielding a linear

problem for steady flow, at the expense of boundary condition complications.

The hodograph method appears to be applicable only to steady, two-dimensional

flow; therefore, it will not be considered further, except it is noted as a;
i

' possible tool for description of the steady flow past a special airfoil •
; •' , , '1—shape-whose-unsteady-airloads may-bevsought.— — _ _ _ _ _ _ _ • _ _



REPORT No.

1
There are two other threads in recent jtransonic research which have led to,

improved steady flow analytical methods. ,

I
o Lax-Wendroff type methods (References 7, 25, 28, 29) |

I
p Mixed finite difference methods (References 30 - 33) |

i '
The Lax-Wendroff (forward marching in itime) (References 7, 25, 28, 29)

type of method is actually a transient' approach to solving steady flow pra-

blems wherein an initial change (in the surface boundary condition, for :
I i

example) is introduced, .and the asymptotic (in time) limit of the solution;

is sought. At each time step, the spatial derivatives are calculated by j

finite difference methods using data for the previous time step. One knowjs,

at the previous instant, whether the flow is locally subsonic or supersonic

and can accordingly adjust the finite difference procedures (e.g., central:

vs. backwards differences). This meth'od may ultimately be applicable to '

oscillatory aerodynamics; however, it is plagued by several problems which;

would appear to render it impractical for flutter application at,the prese'nt

time for the following reasons: I
I

(1) Excessive computation time. Reference 28 presents one of the
. |

most realistic and careful of the Lax-Wendroff schemes for I

steady flow. It is stated by the authors of Reference 28 to
I '

require about 2 hours on a large scientific computer for a I

steady 2D problem. Considering that in flutter analysis a

large number of reduced frequencies, Mach numbers, angles o'f

attack and wing section shapes, may have to be analyzed, such

a method would have to 'be sparingly applied, perhaps only as;

a check on simpler methods.
i

(2) The method has not been demonstrated on oscillatory problems.
i >

(3) The method shows extreme sensitivity to boundary conditions'
- - - . . . . ' . - - I t

and a tendency towards ^numerical instability. , |

(U) The physical significance of the "artificial viscosity" (used

-to- stab-il-ize-the-calcu-lat-ions-); is, as -yet ,-c on trover sial-. — j—i
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With regard to mixed, steady flow finite difference methods (References

30-33) these appear faster and more stable for computations than the Lax-
i

Wendrpff(transient) approach. The results of Steger and Lomax (Reference

32) and Bailey (Reference 33), based on pioneer work by J. D. Cole and,'

Krupp and Murman, (Reference 30,31) are impressive. However, no unsteady
L

Iapplications have yet been developed, though such a scheme might be

devised in principle. Again, the prospect for unsteady flow would be '

computationally tedious, requiring many flow quantities to be defined, at

each frequency, and at a large mesh of points, both on and off the body!

Past subsonic and supersonic flutter methods have all used surface aeror

dynamic singularity distributions, without having to explicitly calculate

off-body flow field data (excluding

Therefore, any finite difference me

.References 28 - 33? would represent

component interference problems). i

thods(steady or unsteady) such as

a tremendous escalation of computer)

time, even if their extension to oscillatory flow had already been complet

ed with demonstrated reliability (which is not likely in the near future).

The above remarks are not intended to discourage development of unsteady,

finite difference methods, which might well be feasible after a few new1

generations of digital computers. On the other hand, it would appear that
i I

in the immediate future, some simpler, useful methods are urgently needed

which could shed light on the essential features of transonic unsteady flow

for flutter analysis purposes, and this is the thrust of the present

theory.

Experimental data. - Ultimately it is desired to compare any theoretical
I . I

result with experimental data. It is noted that some oscillatory 2D (

section data, notably for trailing edge control surfaces,is available in

References 37 and 38, using a pressure measurement system described in (

Reference 36. Reference 35 is noted to contain some oscillatory delta wing
I I |

pressure data. It is contemplated that the emphasis of the present approach

will be upon large aspect ratio thick .wings, , where supercritical flow1

iffe"cfs~g~ov~em~a~m~or~e~s"ig~ni~frcFnt~range~of~ Mach number~arid lift coefficient,

than for low aspect ratio thin wings. 15

FORM 7681-2
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Therefore, 2D data correlations would be a first objective as a building]

block in a 2D strip theory as a replacement for'present methods for local

sections, along the span of a finite

(AR k to 8, say), which are adjacent

flow.

wing of moderate to large aspect ratio

to regions of locally•supercritical

Physical^Foundation for the Present'Approach'

Layered medium idealization of the sjbeady supercritical flow past a .

2D section..- We shall outline, in the next section a twordimensional,

strip theory for "evaluation of unsteady airload on wing sections at local

spanwise stations where the steady flow field'has chordwise regions of I

locally supercritical flow, such as is shown in Figure -*2 . The steady (

layered moving medium into which dis-flow field will be approximated as a

turbances propagate (see Figure '2).

Vortex
-SEeets •=. Shock-Wave

M < 1
oo

u

I

Sonic Line: x = x (z)
SL

Figure 2 Layered Medium. Representation of .the Steady
, Transonic Flow Field About an Airfoil with
.if an Enclosed Super critical Region , ;:_.

Empirical substantiation of strip theory in steady flow past large (

aspect ratio thick wings. - Before 'discussing the 2D strip theory approach

some brief justification will be offered, including an approximate method

for representing finite span effects which is consistent with present state-

of-the-art (3D subsonic and supersonic lifting surface theory). First we

consider some empirical observationsl concerning steady transonic flow past

wings and airfoils with local supercritical enclosures which help substanti-

_a.te_the .us.efulnes.s_of .strip_the.ory_ on .finit.e_wings .which are_thick"enough, tp

16

_r

I
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During the past several years, a considerable"amount of experimental and |

analytical research on wings and airfoils has been conducted throughout the

world (References 6, 73 25), along with extensive wing design and develop-

ment studies in the aerospace industry for the wide-body jets. One interest-i ; |
ing and useful fact emerges which is described as follows: If one calculates

the surface pressure on an airfoil bylmethods which do not account for super-

critical regions on the airfoil (any of severa'l will suffice) then, in the

regions where local Mach numbers are predicted to be subsonic, it is found

pressures agree rather well despite(

Also it is found that some empirical

that the theoretical and experimental

the neglect of supercritical effects,

methods (somewhat like Sinnott's method, Reference Uo) will fairly adequately

describe surface pressures in the supercritical region. The present theory
i

i

is an advance, since it also accounts for subsonic interference effects |

caused by the presence of local supercritical flow regions. '
i
I

The first point above is illustrated in Figure 3 for an airfoil having local
1 I

supercritical flow. Similar results have been found in wing development .

studies in which subsonic lifting surface theory and 3D non-lifting potential

flow methods have been applied. This indicates that a method based on local

supercritical flow corrections to a 3D subsonic prediction method has had]

some empirical foundation in steady flow. Also, many studies have been made
, I

to validate simplified wing design procedures based on application of 2D |

airfoil data. These studies have repeatedly substantiated the nearly correct

prediction of local chordwise pressures on 3D wings using 2D airfoil datai

with appropriate sweep corrections, except in the wing root and tip regions.

i i

As a final point, it is noted that aerodynamic wing development generally1

! i
leads, by deliberate design, to achieving chordwise pressure distributions

which are nearly the same along the span, except for practical limitations

caused by necessary spanwise variations of wing thickness. .

On the basis of the above considerations, it is suggested that a 2D strip,

i
— > if-
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theory for unsteady supercritical flow would be a useful tool for aeroelastic

analysis.

Empirical evaluation of 3D flow effects.

Prediction of local steady flow environment. - The review of analytical

methods given in the previous paragraphs indicates that reliable steady super-

critical flow prediction has only recently been achieved for 2D lifting air-

foils (References 28 - 32) and non-lifting axisymmetric bodies (Reference' 331).

Even in subs'onic steady flows, though methods exist, they often give poor!
I

results on practical 3D wing body configurations due to the extreme complex-

ities of the geometries of wing root 'fillets, pylons, nacelles, etc., which

all cause substantial interference. Also viscous and flow separation effects

are especially difficult to assess for complex geometries. '

Despite these 3D analysis difficulties, wing pressure data is generally-avail-

able from routine aerodynamic wing development, which must be accomplished

v—p.r-i-or—to -eommenceme-n-t-of— ser-i-ous-fl-utiter— and-g-ust-ana-1-ys-i-s.;—those-da-ta-a-pe- --
I I

also needed to substantiate structural loads before even the strength require-

ments for member sizing can be finalized. Therefore, it is reasonable tol '

assume that one has steady flow wing pressure data available to aid in con-
i I

structing an unsteady supercritical flow theory in the following ways:'

I I
o Locally supercritical regions are mapped, both chordwise and,

spanwise. '
I

o The correct steady flow section lift coefficients and surface

pressures are available jto "tune" a local 2D description of the

steady flow above and below the wing. I

Empirical evaluation of 3D effects in

is suggested:

unsteady flow. - The following approach

o It is proposed that unsteady airloads on those wing sections'

having local supercritical regions be evaluated by the theory

~des~crib~ed "analytic"a'lly in 'the next section. Thi's method includes

' ' Q 'J. K H E r '



some evaluation of subsonic interference effects aft of the. |

shock wave as discussed -in Appendix B. I

o In spanwise regions where the flow is locally subsonic, apply

the usual subsonic unsteady lifting surface theory for unsteady

airloads. This is suggested because the methods are approxip

mately,valid in steady flow as discussed above. i

OUTLINE OF'ANALYTICAL THEORY

Analytical Assumptions for Layered Medium Analysis of ,

Unsteady Flow-Past 2D-Sections Having Local Supercritical Regions

Preliminary remarks.- In the following sections the basic assumptions are

stated for the analysis of the locally supersonic and locally subsonic (

regions. This will be followed in the section, "Analysis Outline", by an1

outline of the analytical theory, which will be a guide to mathematical (

~~d'e'tal~l"s" c'onta"ine"d~in'

Supercritical (locally supersonic) region.- The following is a list of '

highlighted assumptions, key mathematical expressions, and pertinent obser-
I I

vations: I
I

o The steady flow field is known, by independent calculation, by

methods such as Reference 32, by semi-empirical methods, or from

experimental data.

o The local supersonic supercritical flow regime can be adequately

approximated in the(Z ydifrection (perpendicular to the chord)' by
' —- ' t

a finite number of "z"""ilayers} each having local Mach number, and

thermodynami'c state variables which are, at most, a function- ofi
I '

x, and for a given layer (Z. ^ Z ^ Z ) are a suitable
— - - . - _ — _ _ _ _ . ^ - - & - - - -K ~r -L - - - '

average of the known continuous distribution in the direction
I

perpendicular to the surface. i

20
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o The "Z"<layers are separated by vortex sheets (surfaces of

' tangential velocity discontinuity) across which occur finite

'changes of steady" flow-properties' ('arid,'"hence,''changes*-in*'" f-

acoustic impedance). ,

o The acoustic impedance changes and reflection and transmission

coefficients • across discontinuities are governed by pressure " a"hd

flow direction continuity conditions (Miles, Reference 23) and

with some modification allow use of previously developed results

of Reference 23 for reflection and transmission coefficients at

the discontinuities. Numerical evaluation of the theory of

Reference 23 has provided layering criteria for the purposes'

of the present study. The methodology of References 23 and 2^-

is equivalent and is incorporated in the present theory by a

simpler approach which employs the Laplace transformation with

respect to the streamwise variable, x. |
i

o Each "Z" layer in the supercritical region may, in principle,

b~e~~fufther ~sublil'v"rded~irit'o~~cHor"dw-ise~ suF̂ aTTteTvars tJf~co~ns'tant""
I . I

Mach number and fluid state properties separated by discontin-

uous impedance changes. The present theory is further idealized

by assuming a single average Mach number and thermodynamic state
\ i ' i

per "Z" layer. As justification, it is noted that typical |

steady state pressure data in the supercritical region for many

airfoils shows a tendency towards a nearly constant local Ma'chj
I >

number at a short distance downstream from the sonic line (see

Figure 3,. and consult References 6, 7, 28 and 32 for examples

of the near constancy of local Mach number in the supercritical

region). ' I ,

o In any of the supersonic subregions of constant Mach number: .

(defined by the above mentioned layering assumptions) the ,

unsteady velocity potential, and all perturbation quantities

will be governed by the locally linearized 2D unsteady super-

sonic _theory: _ _ _ _ _ _ _ _ . _ _ _ _ _ . . _ . .

21
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.

u -

Ap = -pL(

1 .
I

trT + v0 I
J-1 1

(1|)

where, if UT, aT, pT, MT = UTi/aT are local fluid properties then:
Jj J_j J_i J_i J_j Jj

V
20 = I ,

*L

subject to impedance ch
,

layer interface and mat

velocity (prescribed do

o Only harmonic motion is

Q: ' is of the form

2

(UL ̂ x + ^T ̂  0 (2• sx

1
1
Ii
1
1
1
l)
1
1

ange boundary conditions at each "z"l
i

ching the known airfoil surface normal

wnwash) condition.

considered, therefore any quantity

i
o For the local supersoni

line x (z) are regarde
oil

c regions, disturbances on the sonic

d as known initial values, which

1
i
1
U. .
1
1

')

1— -
1

suggests the use of a -Laplace transformation on x for sol'v-

ing the local supersonic flow field.

.Subcriti'cal (locally subsonic) region. -

o The layered medium concept applies in principle to the subspnic

region; however, the rajnge of variation of local flow proper- :

ties is less than in the supersonic region. Therefore, sub-

sonic induction effects' will be calculated from standard sub- |

sonic theory as perturb'ations to the freestream steady flow., !
i ' i

regarded as uniform. ' !

o The principal effects on the subsonic -flow field due to the'

presence of the embedded supercritical region are described' in

detail in Appendix.B. Briefly they are assumed to be as '

follows!" °" ~ ~ ~ ~~ ~ ~ ~ i

22"
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H E E D

(l) The subsonic doublet strength in the region forward ofj th'e

shock wave is reduced to one-half its usual subsonic '

theoretical value because of the loss of the contribut:ior

ordinarily made by the supercritical region above the (

upper wing surface. This doublet strength pertains to

the lift contribution from the subsonic region on the

pressure side of the wing, opposite the supercritical (

region. I

(2) The subsonic doublet strength is changed, from its usual

subsonic value, both forward and aft of the shock wave

position due to two effects: '

| '
(a) The above mentioned reduction forward of the shock

also changes the downwash induced at the airfoil

surface aft of the shock wave (compared to usual1

subsonic theory). .

1 'Additional interference downwash at the airfoil ,

surface ,vcaused by disturbances convected through1

the shock wave from the supersonic region. These '

disturbances can be represented by-a source distr.d-

bution spread vertically across the shock wave front
, I

which terminates the supercritical region. j -

I '
(3) Because of the presence of the supercritical region above

the upper wing forward of the shock, the usual anti-

symmetry of lifting pressure above and below the wing ]is ;

destroyed forward of the shock. Therefore, the upper ' j
I ' Isurface lift is calculated directly from the local super-

sonic surface pressure, while the lower surface lift is ,
I -

calculated as one-jhalf of the subsonic doublet loading J

(including the interference effects described in (l) a'nd j

(2), above). ! '. ;
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It is assumed (and 'proven in Appendix B) that the modified

subsonic doublet lo'ading can be expressed as a linear I
I I

combination of airfoil surface downwash due to prescribed

motion. This provides the requisite "aerodynamic '

influence coefficients" (lifting pressure increments/unit
I '

downwash) in the manner required for aeroelastic analysis

applications.•

Outline of Analytical Results '

i I
Preliminary remarks. - Because of the length of the mathematical derivation;

i •
the reader is referred to the Appendices for all of the mathematical details

I ' i
Only key equations will be displayed in the following text to emphasize the

important results. The basic equations and assumptions have been described
I 'iin the preceding paragraphs, or in the Appendices. '

I
I I

Formulation "of~the~a'erodynamic~influence~coeff±cients~—=—The chosen-form-*- -

for the aerodynamic influence coefficients (AICs) is of the class (pressure/

unit downwash) in matrix algebraic format. The matrix formulation of these
! iresults is contained in Appendix B which is the most important body of ana-
i I i

lytical results," since it describes'the interactions between the subcritical

and supercritical regions via shock wave and sonic line disturbances. The

reader is urged to study Appendix-B closely to obtain the primary thrust of

the present analytical formulation. Appendix A contains the details of the

local supersonic solution;1 however, it can be seen from Appendix B that the

local supersonic solution is_just one of the pieces in the overall analysis,

and that Appendix B is the "big picture" framework whose details are further'

delineated by the other Appendices. It is now of interest to highlight the

AIC matrix formulation of Appendix B.'

The desired end result is given by Eqs (B-2? - B?̂ ) and (B-79 - B-8l).

In these equations as shown in Figure Brl.,p..53> the superscript, & , refers

to the upper wing local supercritical flow regime which" is terminated by a
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shock wave whose locus is x (Z). The. superscript, A'T, refers to the I1 on. ' J-i I
subsonic region on the underside of the wing forward of the chordwise posi-

tion of the upper surface shock wave. T, , T,U L I
to the upper and lower wing subsonic regions aft of the upper wing shock I

The superscripts, B'T, and, BT', refer

,
I

^
wave position. vThe_ downwash values due to surface motion are called

simply W and W , forward and aft of the shock wave, respectively. The
A .D

present analysis is obviously restricted to a single supercritical region;

however, the terms "upper side" and "lower side" could refer to "suction '

side" and "pressure side", and1 apply equally well to the case of a singlel

••supercritical region on the lower side of the wing (at a negative steady

s^tate angle of attack, for example). I . I

From Appendix B, Eqs (B-?2- B-7^, B-79 - B-8l) the desired (pressure/ I

downwash) AICs are given in the following partitioned form, which emphasizes

the difference in the nature of the aerodynamic coupling between wing down-

wash control points, depending upon whether they are forward or aft of the

shock-wave. —The .-lifting— pressure- f.or-wa-rd-of— the -shock— wa-ve— is— - j --

The lifting pressure aft of the shockj wave is

7 sT f FL Bu|
|p (| • = .j P - p >

,(6)

(7)

The matrices |Q | , are the partitions of the pressure/downwash AICs !
LP J

which are required for aeroelastic analysis. Either the lumped aerodynamic ,

forces at structural analysis grid points or the generalized aerodynamic .

forces, can be obtained from these lifting pressures. 'by suitable numerical

integration" scheme's '(see "References' 2; if, "10 or lU,~ for examples");" therefore",
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the pressure AICs provide the necessary data for either, collocation or

modal flutter analyses. Because the downwashes, W and W , are allowed
f\ iJ

arbitrary chordwise distribution, the analysis is applicable to any. chord-

wise deformation.pattern, including chordwise camber changes due to arbi-|

trary static aeroelastic deformations. I
1 !

In deriving the above equations several building block matrices are employed

The first is the basic subsonic lifting surface solution which is assumed!

available from any of several "kernel! function" or "vortex lattice" type |

! solutions (see References h, 15-18, 39)- These results are expressed in !the

following form (see Eqs B-3 to B-6) i

A
WA
W.B

.
°
K
BB

i The subscript o implies purely subsonic flow. In the .subsonic case, the i
i I
• distinction between the A and B regions is dropped and Eq 8 is written as'1 I i

-I

The desired pressure/downwash AICs ar,e then

where the inverse i's

(9')

(iq)

(n!)

A partitioned form is useful in the transonic solution -and is written as • j
! I '
J AA' " „ ~AB~

Pn BA BB

o ^

(12)

1

This notation is frequently employed in Appendix B. v '. .
• Rr ^j r iIn the case of purely subcritical flow, the matricesi Q i and ,Q 1are

26
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I
identical, by definition. In the case of transonic flow, these ma trices I

differ by an amount which is roughlyi proportional to the chordwise extent

of the steady supercritical flow region (presumed known) times the difference
I ' 'between upper surface lift for purely supersonic flow and for purely subson

. , ' . . ) , . i
flow. As will be discussed in Appendix A, and below, the local supersonic

solution is proportional to the Garrick and Rubinow/solution (References .Ul

2, 35 8? 9) times a layered medium factor. "" I

I
I

Lift .asymmetry. - One of the basic distinctions between the lifting surface

solution for a subsonic flow, vs. a transonic flow with an embedded super-

critical region, is that the lifting]pressure, forward of the shock is nol

longer antisymmetric above and below the wing for the transonic case. This

is explained in Appendix B, where a technique is presented for separately

calculating the upper and lower surface contributions to the lifting pressure,

The upper surface lifting pressure is derived from the local supersonic I

solution /(discussed, more fully in.Appendices A, C, and E). This includes

the. e.£f e.c.ts_o.'f _s.on.i.c _line_dis.t.urbanc.e.s_which_are_rega,r.ded_a.s init.ial__c.ondi-=-j_

tions in the local supersonic solution. These initial conditions are in

turn coupled to the subsonic lift distribution by means of subsonic flowi

field induction matrices which are assumed to be available (at least in I

principle) from standard subsonic theory.

j I

Sonic line disturbances. - The sonic line disturbances due to the subsonic

wing loading in the regions A"T, BTJ, and By are described in Appendix B in ••

terms of a discrete set of the unsteady perturbation values for the velocity
' !

potential, the streamwise velocity (backwash), and-the downwash. These '

discrete initial values are assumed to be calculated from subsonic theory I

at the sonic line locus x (Z ), where Z. define vertical coordinates of .oJj k • k '
the layer interfaces used in Appendices A, C, and E to describe the local ;

supersonic region, A , as a layered medium. From Appendix B,Eqs (B-13 to

B-15),the sonic line disturbances are represented as follows for K interface

layers-'

27
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r;
These matrices have K rows and N columns, if N is the number of chor,dwiseDW
downwash points

DW

The above equations are summarized more compactly in Eq (B-35) by defining

a "sonic line state vector" —.

(16)

The sonic line state vector defined ,by Eq (l6) possesses 3K rows and one

-C.olumn. _ Eq.s_(.13_ t,o .15)— ar_e_the.n summar.i.z.ed_in Eq (.B=lj--)̂ .by_uslng_the_so.nic_ -

.
'

of what will be called sonic line induction matricesi
defined by '

D XSL"~ H i<i . , etc. as partitions
° if slK „( L o , A J

l SLand K

These sonic line induction matrices

3K x W_TI.DW
It is noted that

K . and |K "" I are of rank
.Lo,AJ J_o,BJ

!\ P f and 4 p jl are known from the subsonic

solution, Eqs (8 to 12), and have the ranks N_ x 1 and N x 1, where
Uw DW •

I IN and N ' are respectively the number of downwash control points
DW.B

forward, and aft of the sho'ck wave, for the-supercritical case. 'The

"sonic line induction matrices" defined by Eqs (13 to 17) are regarded as

tiie second set of known building^blocks available for manipulation in thle
I . i

theoretical development of Appendix ,B. I

-t - -i

28
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The terms designated as < ̂ Ap' . ft ancN Ap '/• are the interference lift disltri

bution in the subsonic regions in A", ((below the wing ahead of the shock apd
I Iaft of the shock, respectively). These terms arise because of the presence

of supercritical flow in AfT. The factor 1/2 denotes the loss of the upper

wing contribution to doublet strength, compared with the usual subsonic
I I

theory, as explained in Appendix B. 'The remainder of Appendix B describees

how these subsonic interference load increments are derived explicitly in

terms of the wing surface downwashes | W f and*W >to obtain the desired

(pressure/downwash) AICs des.cribed in the preceding paragraphs.

Subsonic interference downwash due to shock wave. - In Appendix B, Eqs I

(B-22 and B-23) there is defined a sh'ock wave induced interference downwash

at the airfoil surface, which'is assumed as a reasonable approximation, t'o

satisfy the classical"subsonic kernel function" type of lifting surface

relationship I

(19)
I

Eqs (l8 and 19) take into account the basic subsonic equations (8 to 12)
I '

which relate the kinematic (motional) downwash at the wing surface to the

subsonic theoretical lifting pressures Jp (i and 1 p i . (

It is now necessary to relate the interference downwash on the left hand

side of Eqs (l8 and 19) to the disturbances impinging on the shock wave from

the supersonic side. This relationship is expressed in Appendix B, Eqs ' !

(B-20, B-21, and B-

SH 1
AW. -

ATL

AW SH^

WAr- ~
G ' - ~ i j

SL

WBTG ' L

s \

•
•SL

+

WASH
WA

_ WBSH
GWA l |

r ""

W
A

(20)
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Using Eqs (17 to 20)

in Eq (1-1*9).

KH

I 0»BSH i^ JD_ — *

L '

> • !/
The system of Eq (l6

eliminates the sonic line static vector yielding, as

~ WASH" ~WA
KAA KAB

WBSH WB
— BA _ . ^B

to 21) is solve

(Eqs B-58 and B-65) to yield the int

.

3H~| f.\ , A
Q O

4

.

+ Ap

3H / B B
J I (P0

 + AP

1 simultaneously in

^rference loadings

> +

) I

1
1

, 1
- WASHT7 rt
\A. r

- Vwjo
WBSH ' . .

_WA J\ ' >)
1
ii

Appendix B |

in the

region in the following form

fi^r1 »>[ '_ .
This gives the

proportional tc

bances, and (2)

inter:

L-the_ c

• a tei

V *!

Jl" PI

uq-n . A . I
; 1 2 V |

^3B B
— J v._ *

.JPi
• — •*-

A ~
,WA

B

ference loading as the sum of two -quant

classical subsonic doublet loads, via st

-m caused by dis

wing motion, W., in the locally supe

the shock wave

|
turbances generated dir

/
•1

it

3n_

5C1

rsonic region, which then

subsonic

i
i

' 1 ;
WAl (22

— L ii
Lesj (l)-:a ter

Lc line dis£ur

;ly by the

impinge upon

-1)

)

a

and are transmitted through the shock wave to cause a source!

distribution on the subsonic side of the shock. The interference loads '

defined by Eq (22) are expressed in terms of wing motion downwash by

eliminating of .•< ;, PO •»„• P r using Eq (10) to obtain the desired AIC

'format given by Eqs (5 and 7)-

One of the key relations in the above sequence is Eq (20), which is Eq

(B-^6b) of Appendix B. The first term multiplying the sonic line state ' \
i I i

vector, is the product of three factors; (l) a subsonic source factor, :
-|~ WA B =1 .
&„_„' I defining subsonic interference downwash in terms of disturbances

^L_BSH J ' i
on the downstream side of the shock wave (see Eq B-^5); (2). a shock wave: ,

transfer factor T relating shock wave disturbance state vectors on
.|_bh _Ji F- —i

either side of the shock (Eq B-Uo) and, (3)-a factor, TQV , which.
-I oL —I

accounts for shock -wave -disturbances-- transmitted through- the-supercritical -

region from-the--sonic-line. ———- —•
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Of the three factors in the first term of Eq(B46a),the first subsonic source

factor has not been written explicitly, but is considered a trivial exercise

in subsonic theory, and is regarded .as definable, in principle, along with

all of the other "subsonic induction" matrices. The second factor (the

shock wave transfer factor) is developed in Appendix D, for normal shock I

waves; this is merely a convenient 'statement of results given by Landahl '

.(Reference 9, .pp; 110-113).* The third factor, relating to transmission of

sonic line disturbances through the supercritical region-, is -a matrix state-

ment of re suits "which are developed in Appendices A, ,C, and E., in terms of a

solution, by Laplace transformation on x, in the layered supercritical region'.
' 'The matrix statement of these results, (given in Appendix B in Eqs (B-20, |

B-21, B-27 - B-3'U, B-38, B-te,-- B-U6) implies the inverse Laplace tran'sfer-
I i

mation "of -quantities defined in Appendices A, C, and E, by & convolution |

integral method (Reference .̂2.) . Evaluation of the convolution integrals b'y
I i

numerical integration then lends itself directly to a matrix, formulation-. |

I

B-̂ 6) likewise consists of three' factors,

the first two factors being the same ones discussed 'above. The third factor
I

The 'second term of Eq .(20) (or

in this case defines the propagation,

supercritical region, of disturbances

to the shock wave, through the layered

generated directly by the upper wing

surface motion forward of the shock wave-. This term is like the Garrick and

Rubinow solution with an impedance factor.-; The matrix statement of this term

in Appendix B implies the inversion of 'Laplace transformed quantities derived

in Appendices A and E.

Criteria for layering of the local supersonic region-. First some comments

will be made concerning the nature of

will follow an outline of the results

the required layering; then, there '

presented in Appendices A, C, and E.

•Prior-to commencement of the Laplace transform solution presented in this

report, an assessment was made of theI feasibility of using "a multiple

reflected wave approach, utilizing previous .acoustic theory results

_ (.References. 22 _to .2k).. -These, results, .calculate coefficients of-reflection—

_L
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and transmission for plane acoustic waves, of varying incidence angle, |

impinging upon a layer interface, across which there is a discontinuous i

change of the quantities, local stream velocity, local speed of sound and!
\ .f

density. Computations were made, using the theory of References 23 and 2,U

to evaluate the magnitude of the reflection coefficient for single reflection

of a plane sound wave, with an arbitrary angle of incidence,(defined as the

angle between the wave front and the interface) and striking the interface

across which a discontinuous change" in local freestream Mach number is

assumed to. occur. It is also assumed that the local density and sound speed

•are related to the local Mach number] by .isentropic flow equations through-

out, the supersonic region, which is a| good approximation. I
. ; I

I '
The results of the above described calculation show,for a single reflection,

that the reflection coefficient is equal to about .5 times the change in
• I ' '

local Mach number across the layer. .This would suggest that the super- |

critical region might be approximated by layers of sufficient vertical depth

fed allow .a change_sf local Mach number of_the order of .2 across each layer.. . . _ - _ _ _ . . . . . .*,.+.

In such a layer model, one would find' reflected waves whose strengths 'are .

ten percent of the incident wave strength for each reflection. It can bei

seen from the analyses in Appendices A, C, and E, that many reflections and

refractions of waves occur; however, 'they are systematically accounted for
I 'by the Laplace transform analysis,.wh'ich has been employed in these Appendices.

' I
I

There are two basic reasons for not employing the reflected wave approach!

directly; (l) the disturbances arising from various points generate cylindri

cal waves which can be described as a "bundle of plane waves" of varying i

incidence angle; (2) for an arbitrary steady flow field, dependent on varying
i i

values of freestream Mach number and angle of attack, the width of the layers

will vary, as will the sonic line locus and shock wave positions; therefore,

it would be logically complicated to describe how many wave reflections havej

contributed to the pressure at any fixed point on the airfoil.

i ' - ! :
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;For the first of the :above .reasons, the .reflection coefficient at an interface,

due to even a single point source (leading to a Garrick and Rubinow type,of

disturbance) must be obtained by integrating the reflection coefficient for all

angles, of- incidence of the plane wave bundle which represents the point)

source (cylindrical wave) disturbance. On the other hand, the layer inter-
. i

face impedance ratios are shown in Appendices A and E, to be point functions

of the complex Laplace transform variable which simplifies the handling of

layer interface boundary conditions. The inversion of the Laplace trans^-

form of the impedance leads to a convolution integral for the reflection;

from the interface, of a point source disturbance; therefore, this method

is, in principle, equivalent.to the integration over a bundle of plane |

waves described above.
i
I

One further subtle point must be made to justify the physical basis for the

use of the layered medium model for the supercritical region. In the |

analyses of References 23 and 2k, the impedance ratio across the layer '
I 2' __ — - - ,

interface is proportional to the ratio of p-a'' va'lues where,...p, is density
-j ^ ^ =̂  ,-

and, a,', is the speed of sound. For a perfect gas, p.a • is proportional to

static pressure, which must be continuous throughout the fluid. However,

because of the steady flow field streamline curvature, there is a gradient

to the static pressure in the direction perpendicular to the wing surface. I
, - ' I

The present model replaces the continuous static pressure variation by step-r'

wise changes at the layer interfaces which can be regarded as similar1to

membranes capable of supporting static pressure differences due to the steady
i ' 'flow curvature. However, to the incoming incremental aeroelastic distur- ;

bances5 the membrane appears as a porous wall, having continuity of stream-;

line slope and equality of incremental pressure on either side of the

membrane. Thus, the finite layering method chosen here is similar to an: |

approach sometimes used for example,' in -evaluating the effects of atmos-!

pheric pressure variation upon the propagation of a sonic boom from high;

altitude towards the ground.

^ ^ __ _ __ __ ___ __ __ ^_ t _ m __ , i
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I
Layered medium- analysis of the local supercritical region. - The following

I
is primarily a qualitative discussion of Appendices A, C, and E. These |

Appendices contain the detailed mathematical development. I

I

Appendix A contains a formulation of the boundary value problem for the small

amplitude, steady or oscillatory disturbances to the local supercritical ,

region, having a non-uniform steady flow as shown in Figure 1, which is I

further idealized as a layered medium as shown in Figure 2. The physical'

basis of this idealization has- already been discussed. Eqs A-l to A-^ I

describe, respectively, the convected |wave equation governing the small ,

disturbances, the wing surface downwash boundary condition, and the first I

layer interface pressure and streamline slope continuity conditions. Eqs

j A-5 to A-lU- show these same equationsafter Laplace transformation on the '

streamwise variable x, and taking into account initial values of disturbance

quantities on the sonic line, which are temporarily regarded as known quariti-

'; ties. (Appendix B, in fact, shows how they are coupled to the subsonic

. loading_to. close_the_analy.t.ical_feedback-loop.!-)_ Eqs-A—l§-to-A-l8 -show-the'-

analytical solutions within each of two interior supersonic layers, bounded

. by an external subsonic freestream. These solutions indicate the presence'

of particular integrals required to satisfy the non-homogeneous "forcing '

functions" appearing on the right hand side of the Laplace transformed version
I '

of the convected wave equation (Eqs A-J6, A-7 and A-19). Eqs A-20 to A-23 '
I I

show the local supersonic surface pressure as a convolution integral of the

classical Garrick and Rubinow solution for unsteady disturbances to a stea'dy

supersonic stream (References hi, 2, 3, 8) plus a particular integral contri-

bution arising from sonic line disturbances which are induced by the subso'nic

loading. Eqs A-23 t° A-26 outline the inversion of the Laplace transforms,

emphasizing the nature of the integration contours required within the '

Laplace transform complex variable (s) plane. Eqs A-27 to A-35 display some

.of the layered medium transfer functions which modify the Garrick and Rubinowr

solution. Appendix E contains a rigorous derivation of the results given by !1 ! i
Eqs A-27 to A-35? for the case of two interior supersonic layers bounded by !

-** i '

an external"freestream": ~ ATso~c~onta~i'ned "Iri~"Append"ix~.E is "the" technique "foT, I
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J generalization to an. arbitrary number of interior supersonic layers.

I
Appendix C contains a rigorous derivation of the particular integrals to '

the non-homogeneous, Laplace transformed, convected wave equations within

the layers (Eq A-6, A-?, A-19, C-l). . Besides the general theory, described

by Eq (C-l - C-5, C-13 to C-17),there is also presented an explicit set of

results for the case where the sonic line disturbances vary linearly with,

Z, the distance perpendicular to the layer. This solution would be a good

approximation if several layers are used to describe the supercritical |

region, and could influence the choice of layering criteria for a computer

program development. Also contained in Appendix C is a particular integral

for the external freestream disturbances, wherein, the initial values are

defined on an extension of the sonic line, which may be arbitrarily located

for the convenience of the analysis without loss of generality, as long as

the subsonic induction effects (see Eqs B-13 to B-15) are properly calcul-

ated. '

I !

^Append"ix~E cont~aTiTs~a"n expricrtTHeTivat~ion of ~the~ parTficular integral contrT

button's to the airfoil surface pressure which is displayed in Eqs (A-20) land

Eqs (E-95, E-96, and E-97). The results of Eq E-97 show directly how the

effects of the layer interface impedance changes influence the sonic line

disturbance contribution to the airf9il surface pressure in the local super--
I

sonic region. ' (

I

EXTENSIONS OF THE PRESENT WORK ,

Analytical Effort I
I I

The present theory is completed insofar as the problem is solved, in

principle, provided the reader accepts-the layered medium model -

as a useful mathematical and physical approximation to the total problem: |

Appendix B defines the necessary accounting procedure for calculating aero-

dynamic influence coefficients for aeroelastic analysis applications. It is
i .

. clear_that_each_matrix_in .Appejidix_ B^def ine_s _a computer ̂ subroutine require.-.]

ment_,_ and each of these ̂ subroutines flay .require subroutines. i i

'. 35
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~i It appears, therefore, that the primary analytical requirements will be as

follows:

1.

3-

it.

Write explicit equations for

defined in Appendix B.

defining each element of each matrix

Define and write explicit equations for subroutines to the matrices

of Appendix B as required for the more complicated matrices of

Appendix B.

Define and write explicit equations'for subroutines to invert the

Laplace transforms defined by Appendices A, C, D, and E, whose inverse

Laplace transforms are necessary to define some of the matrices I

specified in Appendix B. This task might entail several subordinate

subroutines such as:

a. A subroutine to find poles of arbitrary transcendental function:

of the complex variables! This may require a subordinated sub-

routine to find the zeroes of the complex function defining its

~ ~denomi"nat~or~(see Eqs~A~27~to~~A~::"337~for example")"

b. A subroutine to locate branch points in the complex-plane for

an . arbitrary number of interior supersonic layers bounded by a

subsonic external stream|(see Eqs A-23 to A-26). I

I '
c. A numerical quadrature subroutine to evaluate the line integrals

I . . i |
along path segments on either side of branch cuts (line segments

connecting branch points in the complex s plane. See

Reference k2, Appendix A, Figure A-2 and Eqs A-23 to A-26).
I

d. A subroutine to calculate complex values of residues at the

poles defined by subroutine 3a5 above. (See also Eq A-26.) i
!

Write an interim analytical summary report covering the above items

in sufficient detail such that, in conjunction with the present

report, a computer programmer could work reasonably independently

to begin coding the various subroutines with only occasional clari-

fication by_ the. .theoretical .aerodynamic ist, or aeroelastician.
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5-

6.

7.

Review and monitor computer programming effort; aid in check-
I

out of subroutines.

Define sample.problems to evaluate the sensitivity of the

computer program to the number of layers, integration proce-

dures, etc. '

Write a final report according to NASA specifications. .

Computer Programming Effort I

Some of the computer programming effort could commence immediately, while

some of the subroutine coding would.await the detailed definition in the'

interim report defined as Item h under analytical effort. The. programmer

task activities are visualized as follows: . '
I
i

1. Construct, a flow diagram based on Appendix B of the present

report, and submit to analyst for review. I
I I

_ 2 Code-and check-out- the-i-var-ious—subr-out-i-ne-s—implied -by (-

Appendix B and the flow diagram, as soon as sufficient detail

has been supplied by the analyst in the form of preliminary

appendices to the interim analytical report. '
I '

3. Upon receipt of the interim analytical report, complete cod-
| I

ing and checkout of the various subroutines defined above. (

h. Assemble the entire computer program and write a separate |

report which would be a user-oriented document referring to

the analyst's final report for the theory. (

5- Review with NASA the format for the user document, and the

software language compatibility requirements for various '

digital computer systems for which NASA may wish to compile

the software. '- 4
1 ;

6. Complete the user-oriented report documenting the computer I

program.
_l

7_.__Sjabmit_JIojnpi}tj!!i_pr̂

analyst and NASA. •' 37
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Comments on Matrix Sizes and Computer

Storage Requirements

-! Appendix B defines the matrix accounting system required for solution of the

I problem. Most:.of the:.arrays:.will be sized either by the number of chordwise

locations where surface pressure and motion downwash are specified, or by,

the number of layers required to accurately model the supercritical region.

It has already been suggested that layers might be defined at vertical posi-i ;
tions having increments of steady flow Mach number of the order of .2 or

less for greater accuracy. Examination of airfoil data shows that the upper

range of local surface Mach number is about l.U to 1.6, for an embedded

I supercritical region within an exterior subsonic flow. This would suggest

that 3 to 6 interface layers would certainly suffice, and possibly even the

two-layer model, derived explicitly in Appendices A and E, might provide |

some useful guidance, at least for preliminary calculations.
-I

The number of chordwise downwash control points is governed by two criteria:
I

1. A set of points required by solution of the classical subsonic!

lifting surface problem. This could range from as few as two

points per chord (for rigid body motion) to 10 or 20 for i

structural vibration modes having appreciable camber..bendingV

It would probably be judicious to define at least 10 chordwisel

control points on either side of the shock wave for the purposes

of Eqs (B-3 to B-10). This would define 20 x 20 matrices for a

strip theory treatment of a wing span station having local super-
i I

critical flow. !
i i

2. A second set of chordwise Control points is needed to develop •
• I

the surface pressure vs downwash relation on the upper wing * }

surface beneath the layered supercritical region. This set of|

points must be sufficient to allow accurate evaluation of the conj-
. _ _ . , _ . . „ _ _ _ „_ _^_ _ „ _ «_ _. _ _• _)

volution integral described by Eq A-22 and the inverse Laplace i

38"



transform of Eq (E-96). The inverse of Eq (5-96) can be eval-' {

uated at an arbitrary number of points by a contour integral

similar to Eq (A-23). In evaluating the first term of Eq (A-22),.

enough chordwise points must be used for the accuracy which is \

required by the numerical integration scheme employed (e.g., ;

Gaussian's quadrature, Simpson's rule, etc.). The required values

of surface downwash at these points can be calculated by inter- |1 !
polation between the chordwise locations of the downwash control

1

points used in the subsonic lifting surface solution. This set !
I i

of integration control points for the supercritical region might i

range from 10 to 50 points depending on the sophistication of the

quadrature method. In view of the complexity of the logic fort

the computer program as a whole, it may be preferable to begin'
i

with a simple quadrature scheme using a larger number of chordwise

integration, points. 1

I i

.This section will. .be. concluded.-by an .example., .f.or_ a._r.ef.ined analytical-model.,-;-.
i

of the size of some.of the matrices in Appendix B. It is assumed that five i

layers will adequately describe the supercritical flow gradients, and that: !

i
it is valid to assume a linear variation with Z of sonic line initial dis- :

turbances across each layer (see Appendix C, Eqs C-6 to C-12). Then as

indicated in Appendix B, three quantities will be required to define the

sonic line disturbance state vector for each layer interface (eqs B-13 to

B-15 and B-35)- F°r the assumption of ten downwash control points on each'

side of the shock (a refined description) then Table I defines the rank order;

of the largest sized matrices appearing in various equations in Appendix B>

From the pattern in Table I one can easily deduce the ranks of the remaining .

matrices defined in Appendix B. It appears that the largest individual

matrix partitions are of the order 10 x 15; therefore, it appears that even

for a refined layering model, the present method is feasible within the

sborage capacity of many current digital computer systems. This also may

include even the smaller storage allocations assigned to time-shared, remote

terminal computer systems, provided the operations sequence -is carefully -• •

programmed. It seems possible that a respectable" accuracy could-be"achieved,

with an active computer core storage capacity of the order of 16 000 words.
39
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1
1 11

1
i
1
1
1

TABLE 'I. EXAMPLES OF MATRIX RANK SIZES |

DEFINED BY EQUATIONS IN APPENDIX B '

Assumes 5 layers

points on each side

i

,

r "- •

Equation
Number

B- 10,11

B-12

B-13715

B-16-19

B-20,721

B-22-;25

B-26

B-27-29

B-30,31

B-32

B-33
B-3U

B-35-37,39
B-38

B-UO

Number
of Rows

10

10

I
and 10 downwash I

of the shock wave |
ii
i

5

5 '

10

10
t

15

5

5
25
10

15

15

15

15

.' Number of
Columns

10

5

10

5

5
10

15
10

1
15

15

15
1

10

15

„
Type

square

rectangular'

rectangular

square

square

square

square

• square

column

rectangular

rectangular

square

column

square

square

1
1
i
1
1
i
1
1
1
i
1
1

i1
1
1
1
1
1
1
1
1
I
1
i

1
!

"Uo
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CONCLUDING REMARKS

A new two-dimensional strip theory for unsteady transonic flow has been I

presented for the calculation of unsteady aerodynamic influence coefficients

(AICs). 'The method is valid for arbitrary, rigid body or aeroelastic defor-

lo'callymations of a wing section whose steady .'flow field is characterized by a

supersonic (supercritical) flow region which is adjacent to one side of th'e

wing, and which is embedded in an exterior subsonic flow field. In the I

absence of supercritical flow effects [the present theory reduces automatically

to classical subsonic theory, which is desirable.

Based on empirical evidence for steady transonic supercritical flow past a'ir-

foils and wings, it is believed that the present theory, when fully developed

for routine .digital computation, will provide a valuable tool for the aero'-

elastician. It will be suitable for performing aeroelastic calculations' for

•moderately- swept-,_large a.spect-r.ati.o, -j-thick-wings -opera-ting-at -high-sub sonic- -

speeds, and will use simple sweep theory concepts to define the necessary .

equivalent two-dimensional freestream

direction.

flow properties along the swept chord

I
The present report also tentatively suggests empirical means for estimating

| I
finite span effects, using existing subsonic lifting surface theory, plus (

experimental' data for wing pressures in steady flow. The suggested techni-

que defines the chordwise and spanwise extent of supercritical flow from the

measured steady flow wing pressures, and replaces the subsonic air loads by

the present new theory for those spanwise stations sharing chordwise locally

supercritical flow.

(..Various possible theoretical approaches in the literature were reviewed and

I rejected on various grounds, prior to'selecting the present layered medium

I theory, which is believed to provide a middle ground in computational complex-
' ! i Jri'ty, "and" has 'the"advantage "of"providing "go'od~physlc"al~i'nslght~in"to~th'e~ ~,

i t
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crucial aspects of the problem. Merely by formulating the analysis by the

present method yields ^important icbnclus'ibnscrs " For example, the following

conclusions have been drawn from the present studies: I

: u i
1. The usual anti-symmetry of^lift above and below the wing is altered

to an asymmetry of the upper and lower surface lift forward of the

shock wave. ''These contributions must be separately calculated.

2. The air loads adjacent to locally subsonic regions can be calcu-

lated by the usual doublet procedure, if the air loads ahead ofI the

shock^, on the locally subsonic side of the winĝ are'.'-'.assigned.asfactor

of one-half, and if additionally one accounts for subsonic downwash

interference-1: at'the wing surface caused by disturbances transmitted

through the shock wave from the supercritical region.

3. If one defines suitable subsonic flow field induction matrices,!

based on existing theory, one can couple the subcritical and

supercritical regions via shock wave and sonic line disturbances

~~ ~wh~ich~are then capable:.of algebraic .elimination by their, expression
I . '

as linear combinations of wing surface downwash; hence, it is I

possible to explicitly derive the desired AICs required for aero-

elastic application. .

h. A preliminary assessment of the computational aspects indicates.

only a modest computer storage requirement for the present theory.
| I

The use of two to five interior supersonic layers may well suffice

for many transonic flow problems of interest, where local wing I

surface Mach numbers .seldom)exceed 1.6.

5- The layering effects in the supercritical region are significant,

as the impedance change between the wing surface and the freestfean

is proportional to the ratio of local to freestream absolute static

pressure. This can vary~by1a factor of 3 for a typical local Mach

number variation in the flow field between 0.75 and 1.6.

! " !6. Unpublished numerical studies by the author, using acoustic methods

have shown that for a wide range of conditions, a Mach number change
! 1 L_a^_.:mi A i
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t

of the classical Garrick and

of 0.2 will produce a ten percent reflection coefficient for a I

single reflection from an interface in the local supersonic region.

This result provides a simple/physical basis for defining the i

layering criteria for a given steady supercritical flow field. I
I

7. The nature of the local unsteady supersonic solution is easily |

understood in the present".theory, wherein it is expressed in the Iform

Rubinow solution for unsteady flow dis-

turbances to a uniform supersonic stream, times a layered medium,1

multiple reflection factor, plus a particular integral term arising

from sonic line disturbances; The sonic line disturbances are induc-

ed by '.the: wing surface air loads adjacent to the subsonic region.

lit is strongly urged that the present theory be implemented for digital compu-

tation, since it- is inherently well oriented towards aeroelastic analysis' '

requirements by'the nature of the formulation. '

I i
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APPENDIX A

LAPLACE TRANSFORM SOLUTION TO THE FLOW FIELD IN

THE MULTI -LAYERED, LOCALLY SUPERSONIC REGION A^

The local supersonic region may be broken into layers of constant local

Mach number with'increments of about .2 in AM according to the results

of studies already mentioned. ... The corivected wave equation in each

region is solved by Laplace transform on x, assuming initial values on tlje

sonic line are given. A solution will'be described for'two interior super-

sonic layers;. Layer 1.".is defined by(© "==• Z ^- Z ) and layer 2 is defined by

The velocity potential equation for harmonic •• mot ion is (omitting e1 ): '

0.izz_ -
= Bn

2 0--, + 2i«» M, 0

The surface boundary condition is

0, (X,0)=W(X); WjX) = WjX,t)e'~lUJt

The pressure continuity at Z = Z,

I ,

a

is:

a

p -P

The streamline slope continuity at Z = Z is

(A-2),

(A-3),

(A-U)



1
Where 0 and 0 are the velocity perturbation potentials in layers 1 and' 2

separated by an interface at Z = Z, (see Fig. A;-l) 1
-1 " i

Extended! * ^/ Uc>x> M
ra

 = ^J^ < X i
Sonic LineJ •̂ """ ""-r z / • /? 2

0 . •» / ^o Wo \^^"^~\bonic | ; ,// <-j c r*= VWave / /? 2
Line ) U -» 0

I 1 ^ . X ' 1 1 3 1 ' 1 .

(L ^^^ '

Fig. A-l Two Super son
1

ic" Layer Model Bounded by an ,
External Subsonic Free Stream 1

1

We next Laplace transform Equations (Al.-A^):' .with .respect to x and obtain

/f 1

% (s ,Z) = 4jf'''-sx -r , „. „ (A-5)
- i f , P 0 (x,Z) dx

• • • - ° ' • !
. ' • ' : . ' :. ' . • '• « 1

*. ' 2^0 — K 0
1 1 L=^ < » . Z ) ' ' i(A-6)

• :
\ - K2%, = ^2 (S 'Z) (A-7)

ZZ ,

;
where

~ ( \ V ^ / (l)

'

1

( l ) s ' X (1)0 ; '} -:- 2iU) M 0 x A (A_S)
A. « O J-J ^^^^ 4. OJ-J \ /al ; 1

~ ? (9\ (9} ( 2 ) ( -
G2 ( B ,Z ) = - B2 (80^^ + 0x>s^

j> + 2iULM2 0SL j (A_9)
a02 . i

• K12'= Vs2 + [Ki(^7)s -^-I'l (A-10)
1 ai *

( ' . " . . " 1
„ 2 .) 2 2 |~. . ,U) v 2 T 1
^ = ;JB2 s + 2M2i(—)s - juL_J [ . (A-ll)

- Here -0- ^- ~ "OT 5 nT v or are "the s'offic- line ('initial)- value s~of
- jQll Oil Ajbll I

velocity-potential— and— strearawi-se-perturbati"on~velocity at the sonic
1*6

H C K H E 6 D "

^



line for layers 1 and 2, respectively.

The boundary conditions are Laplace

surface

transformed as follows: At the airfoil

(A-12)

At the first interface, pressure continuity yields

P1 (l̂ s + iuu) -:- iuo)
(A-13)

At the first interface, streamline slope equality yields

Solutions' for ?L (s,Z) and "$- (s,Z) satisfying E'quations(A6) and (A?) can.

be written I
I

ẑ-). +_?fp_1_(.s., .zl) - (

z = Z for (0 < Z <
I

, z) = C2 cosh (K2jz) + D2 sinh (s,z) (A-l6)

z = Z - Z for

Solutions of this type are written for each layer, except the disturbance

to the free stream is of the form ' '

where

(s,z) = C e~_». ?+ 0 ,-(s,z)
»

I

= Z , 2

4

(A-17)

(A-18)
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If MJO is subsonic, then Beo=+ i /1-M^?, and Kra obeys rules of complex |

variable theory. We imagine the initial conditions given (by subsonic j

theory) on an extension of ,the sonic

DO>---CM> Dcoefficients C2, N. N
boundary conditions of the form(Al3)

line (see Fig. A-l.). The '

are solved by applying the |

and(Al1+) at the interfaces and by I

satisfying the surface downwash conditions.

The solutions, \$ f, are particular integrals satisfying the
' I

homogeneous RHS of Equations (f&,A7, etc.).

non-

(A-19)

I
G, (s,Z) can probably be regarded as a constant or linear in Z over a
K-

narrow layer (Z 5 ̂  5 ̂ v) based on

the sonic line from subsonic theory;

easily be found.

a curve fit to induced velocities on

therefore, solutions to(A19) can '

The Laplace transform for the'upper -surface lifting pressure can be

written in the form

Ap- (s,0) = (s) (s,0)

GRwhere (ftp (s,0) is the Garrick and Rubinow solution ''

(s,0) = - iU)) Wa(s)

(A-20)

"i

(A-21)

and Ap'-n -, (s,0) is the additional surface pressure caused by sonic line 'r> i
disturbances.

The oscillatory surface pressure is obtained by the inverse Laplace

transform of (A20),. I

(XJD) - (x-§)
GR

d? (x,0) (A-22)

c K HW



Using the convolution principle (Ref. J+2), the function -*E>j (x-5) is given

by the Laplace transform-invers-ipn—theorem " '

E
2i

c +

i,V
c -

(A-23)

The inversion,,integral (A-23)is evaluated along the indented contour

shown in Fig.A-j2.

FIGURE A-2 Complex Plane and 'Inversion Integra'!'
Contour Showing Indentations Around ,-

Branch ••Points: (s =.s.

Defined By":" '•• ,. --• K. =0=7"
" • ... .;•• ' K

o o
It can be seer; from Equations (A10 &'A11) that K, and K are quadratics

in s; therefore, one can write i

(A-25)!

c e n



and similar expressions for each layer. It turns out that the branch |

points (s = s ,'v s/p) lie on the imaginary axis for all layers which are

locally supersonic, and for locally subsonic layers, the branch points ,

are :symmetric .aboutv.the". imaginary axis. I
| . I

i
The integral(A23) may be evaluated by the calculus of residues (see Ref .JJ-2)

to yield

E2.i
Y
2rri sj "? Residues

(A-26)

The last sum ih(A26) represents the contribution of all the line integrals

of if ..(s) over various path segments shown in Fig.A-2. It can be shown '

_tijat_E0-,_ (s) is .single valued everywhere in the .complex
8 s' plane, except on

opposite sides of the branch cuts (lane segments connecting branch points
^- I ! '

•sVn-.-a^id^s-vo • £ or each layer). . It also turns out that the integrals ,
fr.KJL /:__-* ,~. - ^ .K<! ' •.

'around small circles surrounding the branch points vanish, and Ep, (s) is|

an even function of ¥i (or K, in any layer separating adjacent supersonic

regions k and k-l). Therefore, the only line integral segment contribu-i

tions to Equation(A2.6) are from the

adjacent to the subsonic free stream

first layer and the last layer'

This has been rigorously proven i

'for the special case of two supersonic layers bounded by an. external sub-

sonic free stream. I

The first sum in Equation(A26) represents.-residues at poles of E_, (s) i

with contributions from each layer. if .. (s) can be written in the form '

(.numerator /denominator) and the denominator has -the form j

J21
(s) = {1 - (s) tanh

_L
(A-27).
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The required poles are zeroes 'of Equatiion(A27) which are countably infinite.

Contributions from outer layers are contained in 'H ' ( s ) . I

I
It is thus seen that the Laplace transform solution is equivalent to a I

multiple reflection solution but provides a systematic computation procedure.

'Special Solution for Two •.Super.so'hic Layers Bo_unded:

by an External

In this case

Subsonic Freestream

21 Er (s)

D I (s)
E21

where 1%' (s) is given by Equation(A2-7) and

"H, Z_:)-(-s-)-E-(s)21 v"' ~ "211 v"' "2

(s)' = '{-H21 (s) -_- tanh (^Z )} .-•
i

D2 |(U2S + ill)) UpK-,

21

2 (s) =21 PI](UIS"+ iUO)

E 2 ( s ) = -,
+ tanh (Kg

tanh

and

't-' PCS (UcoS] + ill))
-

P2 (u

U-28)
I
I
I
I
I

(A-29)

(A-sq)
i

(A-31)

(A-32)
1 I

I

(A-33)

The quantities Z2i(s) and ^0?2,(s) are,i in fact, the Laplace transforms of ,

the impedance ratios across the first and second interfaces. In evaluation
1 . . . i

of KO, for the case, Moo < 1, one substitutes into Equations like(Alb) and |

(All)and obtains: j - '

153-1
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where

r 2 2 f /iuJv w2~l ^
= {B^ s^ + h>Mi (—)s - —ff\ }

L \- aco a^ J J

= - 3eo (A-35)
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APPENDIX B

OVERALL -SUBSONIC/TRANSONIC LIFTING SURFACE SOLUTIONS

Let the subscripts A and (B , B , A ) denote, respectively, quantities
•U u L Li

associated with the local supersonic and subsonic regions, respectively

(see Figure B-l).

'Figure B-l Designation of Regions of Locally

Subsonic and, Lpcal'ly Supersonic Flow

The local supersonic velocity potential and lifting pressures are then

expressed as:

(B-

(B-

l)

2)

L O C K M E E P

FORM 7681.2



r

Where H denotes the homogeneous soluti'on (due to the prescribed surface '

downwash) and P denotes the particular] integral (due to sonic line I

disturbances, as discussed in Appendix A). 0 u and p U include .. |

all of the multi-layer reflection effects discussed p r e v i o u s l y . I

I
We next describe the surface downwash 'in the chordwise regions adjacent i

' " " • • ' - -fT -\ .-/ -1
to A and B by column vector matrices'jW.j and Ŵ̂ j. It is assumed that one

1 "' — ' I
has available a' suitable subsonic kernel function/vortex lattice collocation

type solution for the lifting surface pressure of the form

I

<

K A

B

I
i

(B-3)
i

In the purely subsonic case, the A and! B distinction is omitted:

(B-U)

r i " MThe-sol-ution-for-j-po-J- i-n -terms-of-̂ W-j; 4i-s-: 4- 4-

;where

(B-5)
I

(B-6)

The object of the ensuing analysis is to replace the upper surface solution

'>": in region ATT by the results of the local supersonic solution and modify the••-:' ^ I • i
local subsonic lift distribution to account for the interference in Regionj B

: and AT caused by the presence of the local supersonic flow in Region A,T.
 !

i"1-. I u i

I 1
As a first step, define the lifting pressure as the difference between upper

and lower surface pressure:

P = (P1
L - (B-,7)

J- -I

. O C K H C E D



~\

~\In purely subsonic flow,

TJ,

and

I
I
I

(B-8)

I
I

(B-9)

When supercritical flow is present in Region A.,, this anti-symmetry property

of the lifting pressure is destroyed, and one must calculate separately the

upper and lower surface lift contributions ahead of the shock. Let us call

A_ and BT the lower wing regions forward and aft of the chordwise location'L L . I
of the upper wing surface Shockwave location (see Fig.A B-O.,). ,

It is still possible to calculate the lifting pressure in the subsonic ,

regions B _,and B by assuming an anti-symmetric lifting doublet distribution;
• ,JJ • L ' I
'however, "the doublet strength will be changed from its original subsonic (

: {theoretical vaiues—(-required—by-defi-nisb-ion—to-match the-mot-i-en d-ownwash-)-r-l—

''Three distinct sources of interference

(l) A change in doublet strength

downwash arise:

on the subsonic side in region A,. |

(2) .. The loss of one-half of the original subsonic doublet strength '

contributed by the upper side of the wing in the (now supersonic,)

region called A . '

(3) The addition of an interference downwash along the airfoil surface

in A,, B , and B due to disturbances transmitted through the '

shock wave. These disturbances can be regarded as caused by a ,

monopole source distribution' distributed vertically along the I
I i

shock wave front whose strength is everywhere equal to the com- ,

ponent of velocity normal to the shock front on the downstream !

side (allowing for the possibility of a curved or oblique shock '

wave). I i

The strength of this velocity is given by Landahl's (Ref. h) shock

.wave compatibility relations,, .suitably .expressed in .terms, of _the!



local supercritical solution (given by Eq.(Bl)) and evaluated on]

the locus of the shock, (X (Z)). on the upstream side. ,
on1 '

The final form of the lifting pressure solution will be similar to Eq. (B5)

in format: '
i

I

(B-10)

I
I

(B-JLL)("'

it is necessary now to describe the matrices' in more1fundamental terms. From

Eq.(B2) one can write-the supersonic region surface pressure as: i

where / UOTV , 'i W_T Y are the X and Z velocities on the sonic line
V. &L) (. blj _r- pjyjjjl PpjvfJ

(•at^each "layer -centeriine-)—due~to sub'sonic-disturbances—and— •©• ~~ Q,̂ —
| <=L. A J«» -L ̂

are the induction matrices for the effect on surface pressure due to the |

particular_inte_grals arising from the local multi-layer supersonic solution.
I I

recognizes phase differences in velocity potential

along the sonic line.

The sonic line disturbance potential

of subsonic induction effects

f

and velocities are expressed in terms

(B-13),

(B-HO

(B-15)!1 WJ\ .!_ UJ-D _l A '-> Jj

In Eqs.(B13) and(Bllj-) | Ap , Ap | represent the interference loading in . j

the subsonic local flow regions A^, ] BT due to the presence of locally,— L— — • — — . --- — --- — ----- '__

supersonic flow in region ' A^j on the upper side of the wing. The factor'
• ---



1/2 multiplied by j p + Ap Lj account

A not communicating with the subs

s"ource distribution).

Next consider the disturbances transm

L . . - , .

1
s for the local supersonic region |

onic region (except via the shock wave
l
1
1

itted from the supersonic region A- '

through the shock wave

ta1-fe^M+Cs
r SH / BA J r SH 1 1 \ BA

»SH| Jw u| + [T^ 'SH J0 ^ [ (B-16)
_|) ^ on j |_ ±SA _|^ on J i

1

'Si|'f»SHU| -+ fTM'Sf*SHl <B-"'>. 1 1 . on / , isA 1 on 1
V 1. 1 — 1 ,1 J. H— — A f- -' —\J i

T BT 1 F rf> "If A 1 F d,
10SH '/= LTBA' J1USH 1 + |LTBA

Equations (B16 ); ̂ oABlS) represent a ge

compatibility relations for curved an

'SHl[w AU| + |~T00'S4 AU1 (B-18)Ji SH J. .L BA Jl SH )l v | '
1

neralized form of Landahl ' s shock '

I oblique shocks. For a given shock

geometry the normal velocity on the downstream side is I
i *

r B i F r a "
I VSH,nU( = rnxSHj | USH 'J X 1 J

FSHlT B,TT 1
+ x n Jw U V (-B-H9)ZJ '1 on /-» \ J- |

_> ' -» SH '*• SH '
where- n = i n -:- k n is the unit normal vector to the shock ,

on X Z '
front . 1

1
1

The surface downwash in the subsonic regions induced by the normal velocity

(source distribution) on the downstream side of the shock can be expressed

in terms of suitable Green's functions:
I

i) F WAT
;| =LGUBSHj

V

"" '< (hJ0SH '4 9SH
(B-21

57
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Because of Eqs.(B3),(B20), and(B2l), we require that the modified subsonic
\

doublet loading satisfy:

ABlSH'

f SH'

4 ̂A BL .

[,"] Ax
-po }

I As
-po }:

K M (B-22)

I

I

(B-23)

The terms involving f p | Eqs.(B22)

are transposed to the left side to yield

and(B23) are known and, therefore,

Now it is necessaiy to express
- -

\
•;

j j V. ̂ WBL J ^n terms of a linear1

combination of { §• Ap Lj- , ,| Ap j plus other known quantities -^ p f ,

~{~po^ or A~WM~'"X^B/5—Firsik
summarized as follows:

0
BU
SH

U.
SH

W,SH

(Bl6-)T( SL-7-)- and (Bl8-)-are^
I

i
"TBA:|1 SH J

SH

W,

SH
AU
SH

(B-26)

I

From the local supersonic multi-layer) solution, relations similar to Eqs.(Bli)

and(B2) may be written for any local supersonic quantity. These quantities

may then be evaluated on the upstream' side of the shock and expressed as [

follows:

(B-27),



r

|USHU| V[GSH!A]]]WA +

{ WSHU} = [GSH!A] { WA +

<} + |UP^H]

: AW/1 t |wp*gH| .
( , .; ,,

where fromEqs.(Bl) and(B2) one can

( U SH U )=1 | A U < X S

lefine

1
T(Z)H

'" '',

, { «S^H 8% ^

Next, "by analogy -to Eq.(B12) one can

as a linear combination of / 0 , UOT
\ bJj bli

J7

j) P U
express jj AW. , 0p _„,

1
1
1

(B-28)

I

(B-29)

1
1
1
1

(B-30)
i
Ii

(B-3D
' 1

, WC T \ . Let us define a partitioned
O-l-i J

matrix relation.
;

AW P } " ~ T . W A P TA 0SL
c -

U 0PSH

WAP WAP ! .
USL WSL ' I

i
0PSH m0-PSH

1 0P,SH T0SL TUSL ' XWSL

\ f \
Ay UPSH UPSH UPSH .

UP,SH X0SL XUSL ""WSL

ATT WPSH
W • m"-L"li m

P,SH J |_ 0SL

WPSH TWPSH
USL WSL J [

1
1
1

•'

'
USL f (B-32)

I
I
1

WSL J

1

It is convenient to introduce shock front and sonic line "state vectors" i

such that:

/ pi r wAP~| / \l < Q" [

1
i

(B-|33)

i

lie M/fT^'Ja ] (B^)V P.SH / SL J |> SL IV > i _L- , -1 1 J |

1
1
I



where the "state vectors" are defined as

W,SL

(B-35)

u'U

¥.

"A;U
AU

(B-36)

Eqs.(B27) to(B29) can be regarded as [defining a total shock entry "state

vector"

SH U
AU

W

SH
ATTu

v S H ,

(B-37)

From Eqs.(B2?) through(B37)

AUSH-
WA

WAP SL SL| (B-38)

One can rewrite Eq.(B26) in terms of

BU
SH

USH

B,
WSH

U

a downstream shock "state vector"

(B-39

Eq.(B26) then implies

• aSH^
(B-ho}

U6CfKM«lED



Equations(B13)3(BlU), and(B15) can bej-rewritten in terms of a relationship
I

and the subsonic doublet loading |between the sonic line "state vector"

SL| (/ B
i,B *j

I

One can by analogy to Eqs. (B2), (B2?) 'through(B29) calculate the upper surface

pressure in region An in terms of the sonic line "state vector"

8
(B-U2)

1 i
By analogy to Eq..(B32), the surface pressure due to the particular integral

in .the supersonic region may be written: (

"SL

Eqs.(B^2) and(B14-3) combine to yield:

"AU~ -^
p (Z=0) - ujjj iu" A j r ' |^L_

Equations(B20) and(B2l) can be rewritten as

"o c K-M E"E o :



Substitution of Eq

of < |r(p A -;- Ap L)

(Bin)

}( ' (

•Ta_T")- in Eq.(B^U)
t\ SLJ

(B-M5b) yields {AWA^H, AwB^

\ Ap r
'

. Thus

t
1

j /

-

+
;

SH)
AL (

. ~SH i
_DT •*

Ju V

— —
' SL
Ko,B

^. _

]

=

J
"

P

r Au \ •yields X p (Z=0)|' in terms 1

]! . Substitution of Eq.(BlH) for / a_T}> in
^ J ' (I S rj/
il
j-as a li

F WAL I

^SLWB£
[GSL J

near function of X ^(p

r
"~

..
.SLKO;A

\^\B A B' y
D ' H - A p . j

'•V

"TZ

i f
A/ A AL
1a(P0

 + AP ,

I
WASH'H ~( ~}

•'.S/A J'..' '

1 C
WBSH=~ 1 1 A'Y
WA J A J -

+ ApAL)}. , j

1
1

}.. 1
v 1

1

1
1

(•D_)\J\

1

1

Substituting Eq.(B>7) into Eqs.(B2U) and(B25) leads to a well posed set of

linear matrix algebraic equations for { ^(p + Ap ]> and {((Ap M expressed
r A 1 f B T ' ias functions of i |po / and A p f I. These results -may then be back

substituted to get
Y ATJ Y1- " •"

•;( p (Z=0)r the upper surface supersonic

as a linear function of f W \ ' K1 ' Po ]•. Eq.(B^7-) maj

pressure i
i

f be expressed

' more compactly as I
• L - - - - - - - - ' " - . L •

. . - • • . ' '

fiw SHY
•^ !

AT, SH ,

T" ... WAJ
K. .

i M

3H t| v WASH T TK 8 > J<
v WBSH' il WBSH ;' /

i- i _ ..

l(p
f B
(P« +

A IF i
Ap

AL) ^WASH

APB| ! +| WBSH

ir i 'i
| w A,r B :9

' B L j

where

'r^~

r
WASH!

M J

. WASH~I
'AS

WBSH~|

fl:
3A J

- M'
(B-50)

WBSH]- ff ^WB-Tli F siTji- - -II -^s^J •L-Ko7B-Ji - -
62
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Putting Eq.(i&9) into(B2^) and(B25) yields

I
WASHl ' f i , - A . A

A L j . IVWASrfl (T B B
,"]&

All WASH]WA

(B-151)

.Ap [l (B-52)

The quantities •( p / and <ip \ are known from the subsonic solution
V O / ^ • O J

(Eqs.(B3) to(B6)); therefore, Eqs.(B5l) and(B52) may be written in the

following form:-

AM±1L J

j

(B-53)

where
WASH

(B-55)

"3 - [?

(B-56)

— —i
j i
63
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B'A!
) -It "

TVWBSH'T
1*83 I

Eqs.(B53) and(B5U) may be more compactly written as:

lAp~" "
K Ap-3

WASH"

A _
¥BSH (B-

Solving Eq.(B57) yields finally the subsonic local flow interference

pressure increment due to the .presence of the supercritical flow region

A on the upper side of the wing.I

A

57)

,!

IA L
2AP

\ i A B
I ILA£^_

K

-1

B

V _

W.
A

'I o ,

_
B '

_ I ,WA_

W , OB-58)

The interference pressure is seen to b,e proportional to the basic subsonic

,loading_computed-by_class.ical-s.ubsonici_kernel_function_or_v:or-tex. lattice—

theory, .-plusvan' increment from the local supersonic solution.

Local Supersonic Upper S.urf ace "Pressure.

From Eqs.(B^),(B^l) and(B58) one can write the local supersonic pressure

in the following form:

iv

Letting

and
WA f PsAUpl

SL J_

(B-59)

(B-60a)

6k



and substituting(B58) in(B59) yields:

The separate contributions of the subsonic loading and supersonic downwashi

'can be collected in Eq.(B6l) to yield:

(B-62)

i

(B-63)
1- -
i
i

.1
(B-61+

I

and(B58)is further partitioned as follows:

AA

B BA

AB

BB
(B-65)

!

i Lifting Pressure Forward of the Shock Wave :
1 . ;

The lifting pressure in the region A forward of the shock can be obtained ;

•'from Eqs.(B7),(B58) and(B62) as follows: '

_±T\T_ .-.



rA,

(B-66)
' I

-GWA .
G

B (B-67)

- AA
A

TAB WA w
A (B-60)l

where

AA P'A
G (B-69)

AB
(B-70)

Using Eqs.-('B3) to(B6), Eq. (B68) can be put in the desired AIC format

described by Eqs.(BlO) and(Bll) as follows:

, P A
AAJ 2>

W ,
B "I,WA

!

( \ if BB~W + K ,•LJ... ... L PL
G,WA .-.'"A (B-71),

L O C K H E E D CT3
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-

—

t

'.

(.

Therefore, the desired form of the aerodynamic loading influence

coefficient, is finally obtained as:

!p1 • EMM * [c
where from(B7l)

\ Q = ) p | j ^Q + p

.' |

],{WB} <B-f2)

I
i

.. ' i

_J l_ o J !

i
A —1

T rwl + pi"¥A | (B~i73)
— '1— ^_JL 1 —

and

\ Q = i P ' =0' H- P

-< 1 -

' • • 1

1

. . 1

"l/r \BB~I (B-7inii_ P j L-^AJ L. P j -L Ati JLL"P _ j '' '• • i
•

Lifting Pressure Af

From Eqs.(B3) through(Bll) and(B58), t

"(•in these purely subsonic regions) can

/ ] ( K B 'J D ,1 j U L

=M:&B1
= PBA"|POA} +

. u_ _JV

where

i
1

t of the Shock Wave ' 1.
l

le lifting pressure aft of the shock

be calculated;as follows: ' 1
l

f l i
P + Ap f (B-75)

• ^^ 1

"?BB]{poB}+pB
>WA]{WA} ^

I

1

r T-BA\ = riBA] (B-77)j

l— — — J i< 1 KJ " + 1PIB1|] (*-^\

67
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Expressing Eq.(Bj6) in terms of down-wash via Eq.(B5), yields-the desired !

AIC format given by Eqs.(BlO) and(Bll): i

(B-79)
I
I

where from Eq.(B5) and(B?6)

and

(B-81)

Thus, Eqs.(B'79') and(-B72) display the desired form of the pressure/downwash'

,AIC_Ls_w.ith. pro.p.er_c.ons ider.at.ion for the... interact'ion between_the local ;

subsonic and supersonic regions caused by transmission of disturbances

through the shock wave and the sonic line. The resultant AIC's are

perturbations of the classical subsonic AIC's (represented by j lQp ) plus!
—I <L- *-LJ

P )' plus the direct supersonic surface '
, l/s -fs~u —downwash effect ( - ((£,.

68
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APPENDIX C

PARTICULAR INTEGRAL REQUIRED BY THE LAPLACE TRANSFORM

SOLUTION FOR THE MULTILAYERED SUPERSONIC REGION

I I
In Appendix A, it is shown that in each supersonic layer, the velocity |

potential obeys the following non-homogeneous ordinary differential equation

in z after performing a Laplace transformation with respect to X. In layers

where

Pzz(s,z) -

^s2 + [31k ?k k V

B, = ,

=Gk(s,Z)

Bk =
if

'̂The functions'&,..(s,Z):"arise. from."initial .'values, of 0̂  'and 0̂  :.' ' (on .the", sonic

line).

0,

(k) (k)
It will now be assumed that the initial values 0by and0x qT are linear in Z :.

for a narrow layerfZ^-j^ <JL,< Z }.' f j and can be interpolated from

cal values at discrete points {Z-,:k=l,2,--7N }. These discrete numerical !
•^ . —K. - . I

values are obtained from subsonic theory as indicated in Appendix B.

Therefore, for .(z
k_i '^ /z/? z

k),

,z.) ='G (s) 00. z (c-6);

69
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where,

Then, Eqs (Cl, C5 through ('C7)imply

(G-7)

. ;o

i and where the lineax approximations to

(k) , . = (k)
-

-L

9)

are

$
.00

(G-10)
I

Note that ,0":,T can be set = 0 on the airfoil surface at the first layer;
bill i ]

: however, finite values exist for the other layers for transient flow. Next,

consider solutions to Eq.(C-l),with(C-6)substituted for the right hand side; "j

\s,z) -
zz <(s)

o •
(s)

The general solution of Eq(C-l'2)(or C-6) obtained by the method of variation

of parameters, is (ince, Ref Iĵ  p. 123)

0
H H
Hl H2

A (0TT » 0TT )
Hl H2

(C-13)

where the homogeneous functions are defined as solutions of Eq (C-12)' when

70
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j
a

(S,Z) S

cosh

sinh (K z)
^

(G-1'U)

(C-H5)

is the Wronskian determinant:
l 2

l 2

dz dz

cosh(K z) sinh(K z)

A(0H , *„ ) = ^(cosh (ly:) - si
I

.('Grl6b)

(Crl6c)

"N*

Therefore, for any arbitrary G, (s3z

-cosh^z^

\ sinh

+si

For linear approximation to G,(s,z), given by Eq(C6), one obtains
TCOShh , ( K , z )

1 K~-

K'2

+sinh(Kk.2

Jk
(s )[cosh (^z) - ij

sinh

[s inh(Kz)r 2

-^-Vo-
(s)dr] (C-i8al)
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[-1 +
K

cosh(K.z)

- I2(s.,z) si

The
*W I

integrals, I,(s,z) and I_(s,z), are defined as

I-L(S,Z)
T

=/0

From elementary integral tables

(C-l8b)

I
I

(C-19.a)

(C-19b)

j] (C-20a)

and

s inh(Kk̂ cosh(.Kkz.)> |. (C-20b)
. - -4 i

Substituting (C-2Qa) .and (C-20b) into (Ĉ lSb) yields

K

z)

) i r" *""'-s inh(Kz) i -sinh(K z) l-cosh(K z)
I K j K |__ K

}' (C-21a)

Eq(C21a.)may be further simplified to yield
**+ I cz\

Gv (V

"rh(-l +

(s)
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and

Eq(C21b) represents the function required by the multilayer supersonic
' fk")solution defined in Appendix A. Appendix A also requires xA '

evaluated at z = 0 and at z - (Z - Z, ) = z .

First, the derivative of(C21b) is

s)

- cosh

1 - cosh
Kk

(C-22a)

(c-

Eq(C22B) represents the interference downwash due to the^particular integral

in each layer {Z : k = 1, 2:N}. At z = 0 one has from Eq(c21b) '

0

At z = 0 from Eq(Q22b) implies

0) = 0 (C-23)

(s,0) = 0 (C-2U)

At z = z k= (Zk - Zk_£)Eqs(C21b) and(C22b) yield

G (S

-Vt
{- 1 + cosh (KkZk) }

- sinh (C-25)
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L>

G .<•>.
K

- COSh

The ('quantities defined by Eqs(C23)through (C26)are needed for evaluation of

layer interface boundary conditions-defined in Appendix A. .

Particular...Integral for a Subsonic

.'' External* > Free ̂Stream .Disturbance

.The Laplace transformed disturbance potential is governed by

0
zz

(s,z)

where

j£ =_u=!-«

(C-27)

-(•C-28)

and, in general,

B =M
CO 00

'MOO > l

M CO < 1!

(C-29)

If Moa-< 1 it is assumed that initial value disturbances are defined on ah

outward extension of the sonic line, and are related to subsonic flow dis-

turbances in the manner described in Appendix B. If M oo > 1, then no . !

initial disturbances need be considered; therefore, the particular integral

is non-zero only when M oo < 1.

The right hand side of Eq(C27) like Eq(Q5) is given by

JSL
(C-30a)

FORM 7681-2
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It will be assumed that G (s?Z) can be approximated in the form

G l Q 17 \ r\ ,
I S ,Zl ) = (j (.

co oo ,O

where for N interior layers

z = Z --Z.

SIG (C-3D

N (C.32)

Linearly independent homogeneous solutions of Eq(C27) are of the form

-K coZ

K oo Z

(C

(G

-33a)

-33b)

I

By the method of variation of parameters, one can immediately write the

particular integral to Eq(C27) in the form prescribed by Eq(Q13)-

= -e
+KCOZ rr

oo ,O

s-K oo z T _(Koo-hx>)^G -^<=°}o:

where A is the Wronskian determinant

•. v -K ooZ K
• -K ooe K coe^

= 2K (C-35)
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x1-

I
K

-K coZ

CO - (tbo + K

e dr

s (Y hV JV CO ~ U CO

;(c-36)

Carrying out the integration yields for (b ^ K<»)

(co),

•"̂

(G ) K »z - (b co + K co)z
co . O ^ ̂  P P;e
K ,(K CO + b co )

i

- K c o Z ( K c o - b c o . ) z

(e -lj}(C-37)
(̂K co-b

G -to coZ .'-i -b coz
00,0 /. -e | C^e

•2K oo >- (Kco+b co) (K«,-b «

G o e -Kcoz

2K • • (Kco-b

In the special case b ro = K co then Eq(C36) yields

-K coZ

(C-39)

For large K coZ the first term dominates and the disturbance decay rate is

slower than for the case K co ̂  b co.
r *^

lifting surface theory (when G (s,z)

Since Eq(C27) also governs the subsonic
I I

= 0) one could expect the sonic line I

disturbances due to subsonic doublets to behave like e

therefore, Eq(C39) is probably the relevant solution.

at large K
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APPENDIX D

SHOCK WAVE TRANSFER MATRICES

The following analysis is restricted to normal shock, waves (shock front |

perpendicular to the airfoil surface).. This is, a good approximation to',

many cases of interest in transonic iflow, at least as far as the final

transition from supersonic to subsonic flow, even when there is a prelim-

inary supersonic oblique shock compression near the end of the super- '

critical zone (above a so-called "supersonic bubble"; see Piercey"'Reference

2h Section 11 ..and-Blackwell, Reference 2k Section 21 )|.

I

The following analysis uses results of Landahl (Reference 5, p. 113) and

expresses these results in the format required by Appendix B. Landahl I

writes the relation between velocity potential and streamwise perturbation

velocity (backwash) across a normal shock as follows: I
I ,

U
x

where,

a = 2kXT / (I-M! )
A A B

CD-I!)

(D-2)

The reduced frequency k is defined
J\

the upstream flow velocity U.

in terms of a reference length b and

A
Ay

(-D-3)

Here we use A^ and B to denote conditions upstream and downstream of the

shock, following Appendix B. The tangential velocity component, W,

. (upwash) must be continuous across the shock wave; therefore,

SH
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or
a/

u ' -=BU
r 50 i

.SH
>irt>)

For a single layer, the relations(Dl) to(DJO can be expressed in state I

vector form (as in Appendix B). Let '

,f A i
T U
0SH

SH

/«WSH

where ,

Then, Eqs(Dl) to(D4) can be written in matrix form

_=J«/&. -l'_0_

-1 0

0 0 1

A
-0"SH

/U
SH

—1- -o •

-1 0

0 1

/U
-ASH-

B_.

BU

"^SH

The operator becomes s after Laplace transformation, and"~all harmonic

x dependent (barred) quantities become ( ~ ) quantities, dependent on s,

the Laplace transform complex variable.

Thus, Eq(D7) transforms to 1

SH
ATT

0

o o o
B

Thus, one can write the transfer matrix partitions for change of.the state

:? Vector" a'cro'ss" a" nofrffat shb~c'K a*t~ ^he centerl'ine of layer R as "fo'llows:"
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f /4i sHfi jk

(4
-..- . r k SHI r-^k

T =

The inversion can be accomplished b

the upper left hand two by two part
subscript k):

s -1

Evaluating the upper left hand part

-j^/b -1

L s -i]
i

(2SL$ s)^

i r (
(' JQ±S )

Therefore, Eq (D-ll) reduces to

[ -r 1
mV "• /Oil -.

L °
Since the shock -wave transfer funct

coupling between layers in the larg

L O C K H E E D ! , 1
' • - - • • ' . • /

\

• :/• -v |

*SH |

W^ '

- f^HfaM (D-10)-L BA J [ SHj

- i l l - -i '
/b -i o -3ak/

b l ° '

3 - 1 0 s -1 0 (D-ll)

D 0 ij L 0 0 ij !

l
y partitioning. First it is noted that

ition inverts as follows (dropping trie1 i F ii C.L,(i^/b+s)) /,
[_-S -3(X/DJ. 1

Ltion of (D-ll) yields 1
1

f-Wb ll _ '

L s -ij. |

• 1 | — 1/v / "h 1
* * "̂ **/ *J i T^ 71 "2 i

-s -i«/b s -1 i

0 (-s4o#/b) |

1
l

-2/(s+iak/b) 0 |

(-s+i^X /b)/(s+ia /b) 0 (D-15)

0 ij |

Ion is a point function there is no

=r matrix implied by Eq (B-26). 1
t

79

H

FORM 7661-2



"Page missing from available version"



REPORT No.

APPENDIX E j
1

EXPLICIT SOLUTION FOR TWO INTERIOR SUPERSONIC LAYERS BOUNDED BY AN ]

EXTERNAL FREESTREAM AND TECHNIQUE

From Appendix A the Laplace transform

FOR GENERALIZATION TO N. INTERIOR LAYERS
1
i1

ed boundary conditions at interface JL

and 2 are summarized as follows: At the interface Z = Z. 1

(1)

CD

l ,1
(2) |

= *# (s ,Z )/U |z l ^ (

. fe) :
P ( s ,Z ) = p (s ,Z ) ,

At :Z = Z~: ' . - > - - - - - - A - •• (Erl)
(2)

0Z (s,Z2)/U2

(2)
P (s,Z2)

V x / ^ r / N / T T j
/^_* 1 S £j j I (J '

I
1

{ m \ 1

1
I

i i
Using Eqs (15) through (17) of append

Ki T / x-=- - C sinh(K1z ) + D cosh(lCz

ix A, Eq.(E-l) becomes(at Z=Z,;z=z =Z )
- I1

1 1 (^ ^2D2 '
) 1 + Tj *PZ (s 'zi) = -JT~ (Er2a

1 '*- . .j- -j_ - - -^ (

(U s+ iW>/[c" cosh(K,z ) + D '«i«h(K y ^1 + ^^ ( « •, \[- Ipi is ^^L1 cos ^Zl x

- ~P (uo

1 1 _]: • P 1 J (E,_2b|,

s + ico) C
2 '

. 1
At the external freestream interface (Z = Z^, z = z = (Z^-Z )): 1

^ c. £. -L i

^ TT
1 /^ Ci -i v-i Vi f T^ n \ _L_ T\ ^^ ̂ ^. i-t V. / T/" r^

U 2 innv"p ? 2 ^22
2 -I—

II 1 c

1 1 (2) •
^ | , J- *^J* / ^ ,_,, \

J U
2
 Pz ' 2 ~ !

^ (E?-2cl)

CO 1 ~ * i 7 ^ ~ ? ~ v/l

~/[— -i /2\ -\ I
-P2 (UgS + ioj) V C2 cosh(lCz ) + D , sinh(K2Z ) + "$£ ^ ( s , z )V = i

\J— -1 / \ J— i
1 — ̂ - ( oo ) -*—

— ~p°°vU.

L O C K H E E D • 1

I 1 Is + ioj- |Cco + p s,0 f Er2dj
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Next, we write the Laplace transformed airfoil surface normal velocity I

(upwash) boundary condition

(s) = \ -CD
'Pz

(s,C

I

(E-3)

Eqs,(E2a-E2d)and(E3) provide five equations for the five unknowns, C , D ,,

C2'

Each of the interface pressure and streamline slope continuity boundary I

conditions can be put in the form of |a transfer matrix.

where for Z = Z., k = j or j + 1 we define vectors

The vectors K Ep . V define forcing functions arising from the particular

integrals (defined in Appendix C) which, in turn, are caused by the sonic.

line initial value disturbances.
I l

The external freestream interface conditions (E-2c) and E-2d) can be writjten

l
in similar format

{ H§ - 38<I
where, (co) implies the use of external freestream steady flow field conditions

for fluid property (U , p , a ) evaluations. -The two by two transfer matrices
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[Vk'Jare defined as follows from Eqs (E-2)

A12 = i^ C°Sh

i
I

(E-8)

I
I

sinh(Kkzk)

and,

(k+1) _ (k+1
*12 ~ A12 k+1

(E-9)

"R — A
22' ~ 22

Thus, the elements of [A _( and

which is helpful for computation.

>Vl = °) = °

satisfy a recursion relationship

m, -. , / ("Ol defined in Eq (E-7) is associated with the inter-
The column vector'| 3 / i
face between the outermost interior i.ayer and the external freestream(valid

whether M is either supersonic.or subsonic). •{ (IP f is thus defined Iby
- I

Eqs (E-?) and(E-2d) by an obvious generalization from 2 to N supersonic

layers. I

-< H F E 0

FORM 7681-2
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(E-10)
I
I

;itutiThe superscript (oo) implies substitution of freestream fluid properties for

the (N + 1) layer in Eq(E9). Thus, I

:
Bll = ° ; 1? = -K«A_LJ_ J.C1 CO 03 i

' (E-ll)

21 = - P«(U - 0

Therefore, (E-lOJ)jand(E-ll) yield

The two: by xtwo transfer matrices

I

I

(E-12)
—I

+ M
I

allow one to easily

solve for the coefficients J !"K 'j- including especially C and D which define

the surface pressure. First,.it is necessary to eliminate C by use of Eq
| 00 t

(E-7) which can be re-expressed as a.constraint between C -and D (or C I

and D in the general case of R interior layers).

N (E-13)

where, from Eqs (E-2c) and E-2d)

\W C + A ( N>n +1Ul °N A12 DV+

= -p.Cu8 (

FORM 7681-2
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Solve Eqs (E-JlA) for

A.(N) + - A (N) D + ~
A21 CN A22 l DN P:

"i (s,0) - pro '(U s
U

12

Therefore, (E-15) can be written

(N)'

where,
( N ) = n

(N) _ A ( N )
U

,W

(E-,17a)

(E-S17b)
l

and,

(s,o) - ;«.)) - U

I
and the particular integral contributions to interface streamline slopes are

i
defined as

(E-19)

From Eqs (E-13) and(E-l6) through(E-19)

( IN) / (N)
--Yi2 /Vu (E-20)

and

N,-P
(-)/ (N)

L O C K H E E D

•. ' i
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Having defined the constraint Eq (E-13) for the external stream effect we

solve for (C , D ; k = 1,2) From Eqs
K &

7ca.
D, I

(E-3), (E-*0 and (E-13) one obtains1

p(D

E

t±-.t

(1,2)1 AE
(•1,2)
1

.-!/

^ ca,P +

Define the inverse of ]|A as l|

-i

Then

1

4^'L,.
-i

0 B(2)'12

0- • B'12 0

.0

"22

B
12

B

Since D, is known from Eq (E-3), then

solved to express Dp in terms of D,

I

(E-22)

I I

(E-25)

the second row of Eq (E-2U) can be

_ (1,2) (1)(2) (1)J (1)} D 6 ' 6 ; I (l)s
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Then,

2

where &B is defined by
-Lj "

= z (1) (1) _ 6(2k (1,2),
'2,P','.

I

(E-28)
I

I

(E--29)
I

From Eq ( 13-26)

,
El <2> +

11
(E-30a)

21

v 21

(E-30b
i

(E-30c)

(2)

Next, solve the first", row of Eq (E-2U) for C , since D is already known

from Eq (E-3)

_ Jl,2) (1,2)
Cl ~ El D2 + AE1 C2,F +

I

(2)
-p,i') T

•i i

Some general simplifications occur'as

concerning the particular integrals "̂ (̂sjz). These are expressed as

a result of results in Appendix C ,
i(k)

= 0

-p2(U2s

I

(E-33)
i

(E-35 )

8?

FD .

FORM 7681-2
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Likewise, Eq(E-3) for D, simplifies j

= z =

and

U = 0

p£i;>(s,0) =

Then from Eqs (E-3) and (E-36)

= D.
GR

(E-38)

which agrees with Reference 2, p. 366̂ , for the Laplace transform solution

to the Garrick and Rubinow case of an unbounded uniform supersonic stream.

Then using Eqs (E-3̂ 0 to :(E-38) one obtains from (E-29) that AD-,

: simplifies to

E(1,2)
1,

1,2)

(D

12

In the 2 interior layer case, N = 2 and Eq (E-21) yields

c ' .(oo)/ (2)C_ = £2 /YI;L

where from (E-l8)'

U s

((2)
P,2

88
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1

From Eq .(E-l?a).
i

From (E-l?b) and E-20)

( 2 ) .(2) • ' /
Yl2 = A22 -V* (

The matrix'

*

,wh'ere

F (i<-y\
I/ ' defined by

L_ •"• — J

[d-i
=

,w

" q

^E)

Eq (E2

-1

REPORT No.

-

1

(2) 'u A;?'
CO _|__l_

S -U -i * » i i T? ' ) i C
-I-CO/ __ V-^-1"^*?;

1
ura (2) 1

co i

1
I

5) 'is 1

All A12 '
= A (k) A (k)

LA21 A22 J

( k ) ! " (k) -(E"^8

i i

w A<!
1

:) (k) (k) / ', .
? 12 21 ' 'i

1
; For the case k = 1, using Eqs (E-8) it is found that

i

11

(1)
12.

-cosh

(1)
pi(U]Ls +

'(E-50)
I

(E-51a)

(E-51c)
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Forming the matrix one finds

1

sinh(KL z.

(E-52al.).

, j

"Z (s)sinh(jLz ) -cosh(K^z )

1)" sinh(K z )
(E-52b,)

I

where we define the Laplace transformed interface impedance in layer 1 as.

I I

Airfoil Surface 'Pressure in the

Supercritical Region A,,

As defined in Appendix B the local surface-pressure in A,,(where M_ > l)1 is
•"•TT . '

= ,P"-(z = 0)

ico D1sinh(K1z)

But from Eq (E-37) = 0; therefore,

A A
-U = p'U(z = 0) = -p

Using Eqs (Ê O -'.E53) for C yields ,

(E-55)
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E.-(-172-)-

E^

(1,2)
i - >

E
,[TT72) '2,P

1 Now the ratio En
(1,2), (1,2) .

I

'A, is the

From Eqs (E-30a,E-3bb,E-52a. &'. E-|?2b

E. (1,2)

(1,2)

quantity called'E?I(s) in Appendix A.21

"P1 '̂U1S + lc^

PI(U IS + i

,we first define E,

(2) ^

and

From Eqs (E-8, E-9,-'E- ll

...(2) _ - • - ,„ r

• ' ' (-2)

= ^
(2)

12

(s)cosh(K2z2)J

K22

£-59)

XE-62)
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~r

_ (sinh(K2z2) +"2 (s) cosh(K2z2)

*22 = (cosh(K2z2) -f^^sj
(|E-63)

where the impedances, "2?(s) and "2 (is) are defined by analogy to Eq (E-57)

I

/K
l <w

(JE-610

I
(JE-65)

and the ratios

Frorn^ Eqs (E-57 - E-66) and Eq (E-9)

•P (1?2) : • 1 ^ x , c.

(E.-66)

-67)

(1,2)
K

(iE-68)

K r w l

We now form the ratio

+ Ho)
'

E.
21

iT cosh(KlZl)-o/22P2(U2s
2 i

(1 ^ (1'2)
(1 '2)/E2(s)

ico)slnh(KlZl-))

I

(IE-69)

= -(tanh(K1z1) -\;j
(E-70)



REPORT No.

Now, from Eq (E-63)3 0?oo can ^e written in the form

(Z (s) + tanh(icz^))
- co , cL eL

"22 r- = E2(s) (E-jTX)

where IL(s) is the quantity defined in Eq(A-3?)Appendix A.

If one defines as in Eq (A-29) of Appendix A

Then Eqs (E-70'- E-72) yield

''E (s) /•(tanh(K1z1)
21 ~ TV ~^ T~T;

! This is precisely the 'same as Eqs (A-27) through(A-33) of Appendix A.

To further establish the correspondence with Appendix A we note that

• (A-33) of Appendix A equals Eq (A-71) and from Eqs (A-27) and (A-30)

Appendix A and Eq (A-78) it is seen that

(E-172)
I

(E-j73)

Eq

of

T5 (s) =

where from Eqs (E-66 - E-71, E-72 and E-73)

(E-,75)

tanh(K2zg) )

P l ( U n s
J . - L

UnK0(l +-Z P(s)'tanh (K^z
L CL <X> jC- ^- C-

:(E-76)

I
Particular Integral Contribution to I

Local Supersonic Surface Pressure
I

It can be seen from Eqs (E-5̂  - E-5& E-69 - E-76) that the term

E (s) Wa(s)/K, represents the direct contribution of the local surface, :

upwash,y W (s) in the local supersonic region ATf. The remaining terms in I

Eq (E-56) represent surface pressure effects due to sonic line disturbances.

Following Eq (B-U2) of Appendix B. j J_ _ , g3

O G K H E E n
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Eq (E-77) represents, in matrix form

(E-77)
i

the numerical evaluation of the conyol-
» I

ution integral, which is the required inverse Laplace transform of Eq (E-55;)}
x- I

with Eq (E-56) substituted for C.I

Eq (E-56) can be split into two terms

ci = CI,H i,p (E-78)

ii -v-
where the first term, is the .homogeneous solution for the multilayer super-

sonic region.

1,H (s) . (E-79-)

and the second term of (E-78) is the. particular integral contribution. '

(E-80,)

By comparing Eq (A-5̂ ) with Eq (A-22)pf Appendix A and Eq (E-77) above, it

can be seen that the Laplace transform of the particular integral contribu-

tion to the surface pressure in the local supersonic region is I'

A,
APpjl(s,0) =! L(pp

=!-PI(UIS

(E-81)

Since, by Appendix C, there is no direct contribution to the airfoil '
1

surface dpwnwash from the particular integral in the first layer, we have!

=_ 0
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7 -T-hen- from -Eqs

Therefore , by

P U(x;,z =

(E-55,-E-78~ and

ATT'Z U/ n\p ^.s,z - u; -

the convolution

0) -f\ (x0) _j E21(x

E-79)

-^V -

princi;

i 1
1

17 (s) '
t- i / iOf t f ( " ^ 1' - + P ^ fl? R3^t- iw/v-E'o-i \^} v • ^ i^-i -rJ ^.JL-OJ;<ii A^ i,r |

>le '
1

i

1

(l^s + i^o)W (s) /K ) N (E-85)

An alternative form of'Eq (E-8U) shows the direct comparison with Eq (E-83)AU r ^ -i
p (x,z =o) =/ G . (x-?) ¥ (?)d? + L (-p-iCU-i8 + )̂cn P) (E-87)

0 i

where by the Laplace transform inversion theorem

Thus, it is seen that Eq (E-77) is a matrix statement of a numerical inte-

gration scheme which is equivalent to the analytical solution expressed by

Eq (£-87).. Therefore, Eq (E-87)'represents the basis for calculating the

matrix elements required by Eq ) of appendix B.

We next consider the inversion of C j . First, Eq (E-80) must be simplified
1,F ,

Using Eqs (E-52a,E-52b,E-51 and E-29) one finds

AD1,P
(1) (1) (1)[~ (1) (1,2)

& + J + AEJA22 PP,1 2,P

'2,P
(E-89)!
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From Eqs - E-59)

"2,P ~ *2
.(-) (2)

(E-90)

) . (2K
-- 6

P,2

From Eqs

-p2(U2s + ito)(cosh(K2Z2) + Z^ ̂

, E-56b and E-9)

p (1,2) (1) (21)
Jl ~ A12 21 '

X

(E-91)

Substituting Eqs (E-89; E-905 and E-91 into E-80), provides the particular

integral contribution to the local surface pressure in the supersonic regio'n

. which is represented by Eq (A-20) of I Appendix A (

4- --

(E-92)

(2),
P,2 (E-93)

We next simplify Eq (E-93).

follows:

It is convenient to represent Eq (E-93) as

P,2 ! (E-9V)!

i i

'--I



where 'by comparison of Eqs (E-93 and E-9*0

(1 + E21(s)) cosh (KlZl) (E-95a)

E21(s)) (E-95b)

(cosh(K z ) - E (s)sinh(K?z ))
T - L \. ^L _ L^ (
2~ (cosh(K2z2) +Zo8j2sinh(K2z2))

Eqs (E-92) to (E-95) display the effects of relfections , back to the airfoil

surface pressure, of the contributions of the particular integrals in

regions (l, 2 and ») to the streamline slopes and pressures at the layer

interfaces at z = z = Z and at Z = Z (where z = Z - Z, ) . The last

term in Eq (E-9̂ 0 displays the impedance mismatch feature encountered in

crossing the outer layer adjacent to the freestream flow. The inversion of

the Laplace transforms implied by Eqs (E-93) to (E-95) will be discussed in

a later study.,' :.
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