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SUMMARY |
' |
. l
The problem considered is a two-dimensional theory for the unsteady flow
disturbances caused by aeroelastic deformations of a thick wing at high ;
. ‘ I
subsonic freestream Mach numbers, having a single, internally embedded
supercritical (locally supersonic) séeady flow region adjacent to the loﬁ
pressure side of the wing. The theoﬁy develops a matrix of unsteady.
aerodynamic influence’ coefficients (AICs) suitable as a strip theory for
' |
aeroelastic analysis of large aspect ratio thick wings of moderate sweep,

typical of a wide class of current aAd future aircraft. !
o . ! — L

L ;

The theory derives ‘the=Iinearized unsteady flOW*S§lutionsvsepéfgﬁéij;for‘both
e .50 ravel |

T

the subecritical and supercritical regions. These solutions are coupled |

together to give the requisite (wing;pressure/downwash) AICs by the inter-
mediate step of defining flow distur?ances on the sonic line, and at th%

shock wave; these intermediate quantities?are then algebraically eliminated
| |

by expressing them in terms of the wing surface downwash.

A unique feature of the present theory is the idealization of the i :
non-uniform, supercritical, steady flow field as a layered medium where ;
regiong of uniform flow are separated by vortex sheets where the acoustié j

impedance changes discontinuously.
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INTRODUCTION

There has been a recognized need for realistic steady and unsteady transonic
airload prediction ﬁethods4suitable for flutter, gust load, and static aero-.
elastic analysis of flight étructuresj(particularly ﬁings and contrbl surfaces)
since the first advent of high speed, compressibility-induced control problems
of World War II aircraft (References 1-3). Although the level flight speeds

at that time rarely exceeded ﬁOO mph, the contemporary thick, unswept wings
occasionally encountered serious supercritical flow problems in high speed

 dives (Reference 1, Chapter 9).

The advenf of the turboprop and turbojet engine led to an entirely new

- generation of fighters, bombers, ASW aircraft, and both military and civilian
transport aircraft operating at high subsonic Mach numbers. Transport air- '
. craft, in particular, are characterized by thick, moderately swept wings of
large aspect ratio. These characteristics are required for efficient, long
range cruise;"Also, adequate high-lift‘performance is needed to provide
efficient airport pérfbrmance within noise limits and with minimum wing

structural weight to obtain a maximum ratio of useful load to gross weight.

The Tirst generation of jet transport aircraft, in fact, have been operating-
with supercritical wing flow at the high speed cruise point. Typiéally, one
_ finds local steady flow Mach numbers, referred to the swepﬁ chord, ranging
from 1.2 to as high as 1.6 at high angles of attack. This is the typical
situation for a 35° swept wing, for example, at a flight Mach number of .85,
where the freestream Mach number component normal to the quarter chord line
is only .7. Thus; one often sees a two-fold increase of local Mach number
in the "supercritical” (locally supersonic) flow region.

The current generation of turbofan-powered wide-body jets operate in essen-
tially the same speed and supercritical flow regime. Primarily, the new
turbofan powered aircraft provide improved fuel economy and important

reductions in airport jet noise, rather than increased speed. It is
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, . - I
' predicted that future technology advances in steady flow aerodynamics may

be used to allow: (1) increases of wing thickness, (2) reductions of sweep,
. P

(3) increases of cruise speeds, or (4)) STOL (powered high 1ift) capabilit?.

!
In view of the current stress on economy and noise reduction, the first two

possibilities may gain greater emphasis than speed increases for CTOL, ané
especially for STOL aircraft; however! such trade-offs are a proper funct%on
of mission analysis. Suffice it to sgy that the aircraft evolved frpm_an&
of the above described advances in technology, including STOL aircraft, will
yield designs whose wings will operatg well into the,sdpercritical flow
regime. Furthermore, military aircraft must be flutter certified to
V=1.15 Vg (VD

nust cértify to 1.2 Vb, which further|extends the transonic domain of |

I
I
I
. . . . . . 1
is design or structural limit speed), and commercial aircraft
i

interest to the aerocelastician. In military aircraft the current emphasié

i
is upon transonic maneuvering at high|C to allow higher load factors under

L)
i

buffet-free conditions. | § _

~ { ’ I

l l J.

For the purposes of the present studyL the extensive body of experimental!
A ‘ {
data and recent calculation proceduref for steady flow can be regarded as,

available for defining a non-uniform Steady flow field "environment" (with
variable thermodynamic state variables) into which small amplitude, unsteédy
aerodynamic flow perturbations must p%opagate. The aeroelastically induced

perturbations -are small compared to the steady flow variableé; therefore,:
: J

it is appropriate to linearize the equations of motion with respect to the
unsteady perturbations. .Since the Steady flow field varies, this approac# l
is often referred to as "local linearization" in the literature (References
4 - 7). While this is én'appropriategdescription of the mathematical

process, the term "local linearization" is sometimes identified with methods

. conditions, especially neglect of sonic line reflections in the super- |

- feature -of -the -present analysis.— — —- — — —~ — — — — —« — — — — —~ . - -l_ 4
‘ ]

l
|
employing additional simplifying assumptions with respect to the boundary' *
!
I

critical region. The removal of this deficiency, which is prevalent in all
1.
of the current literature on unsteady transonic flow, will be a primary

A

¥
.

———
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‘ " 1 Also, incorporated in the present me%:hod is a series of suggestions for :
possible simplifying key assumptionslfor idealizing_the steady flow, baséd
on extensive steady flow research within the aerospace industry with
regard to transonic-airfoils and winés, including the results of airfoili
research, and experiencé derived from aerodynamic wing design and develoé—

i

ment of transport aircraft. | |
- |
The above mentioned key assumptions will facilitate the application of |
other previously well developed pieceés of technology in: (1) unsteady aero-
dynamics for purely subsonic and purely supefsonic flow, and (2) relevané
technology in acoustic propagation through non-uniform (layered) moving

media,

is beljieved to be one which is physically well grounded, and which will

appeal to practical flutter analystslbecause it will:

o Automatically reduce to standard results Under subcritical

flow or purely supersonic|flow conditions.,

o ©Should cause only a nominal increase in computation time when |

efficiently implemented on the digital computer. !

. . !

o- Will require only a few réadily available input parameters to!l
i

characterize the essential features of the supercritical steady

flow en&ironment.
0 Is capable of continuous refinement, as improved steady flow

i
field data description becomes more routinely available.

I
I
I
!
’ I
In summéary, the analytical approach outlined below and in various Append%ces
i
|
{
1
]
I
!

FORM 7681-2
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SYMBOLS |
]
} I
. |
— R I I
a speed of sound |
- \s- : ]
_T A transfer matrix, Eq (E-4); also coefficients in Eqs (E-94,E-95)
' |
Db wing reference length (se&ichord), Eq (D-3) |
p— ) ]
! B C o= \/&2-1, Fig Al, Egs (A-35, C-3); also, transfer matrix,Eq (E-U4);
I ) / |
| coefficient in Eqs (E-94, |E-95) |
1
j c chord (Fig 3); section coefficient (1ift, drag or pitching moment)
| (Fig 3) ' f
C,D coefficients in velocity potential solution, Eqs (A-15, E-2) !
|
d differential operator (d/dz) !
: i
i e base of natural logarithmI !
| I
|
.+ —B-——— ~ transfer- funetion—or-coefficient.,—with- different-meaningss—i
i |
: depending on special subscripts or supercripts. See Egs (A-2q
to A-32, E-24, E-26, E-3OT31) I
f frequency », Hz , |
A , |
CF particular integral forcing functions,Eq (E-5) |
: |
G Green's function transfer |matrix for shock induced downwash
at wing surface, Egs (B-20, B-21); also Green's function transfer

|
matrix for shock impingement disturbances due to WA’ Egs B-27‘to!
B-29; also other meanings} depending on subscripts and superscripts,

Eqs (B-38, B-k2, B-6) |
i \/:I-complex number operat?r :
3,333 7 ﬁgit vectors i ;
I integral, Eq (C-19) ;
T, | everseofmetrix A, B (25) ]

e 5

i
R ]
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unit vector (see above); dlso reduced frequency,Eq D-3
: s

aerodynamic downwash induction matrixQEns (B-3, B-49); also)

wave parameter}Eﬁs (A-10, |A-11, C-2)
laplace transform operator Eq (E-79)

Mach number

1

!
!
I
{
[
|
i
I
[
|
!
unit normal vector :
1lifting pressure; absolute static pressure (Fig 2) |
|
i
|

interference downwash induction matrices,Egs (B-58 - B-71)
o , . e
pressure/downwash aerodynamic. influence coefficient (AIC) matrix

Laplace transform complex{variable

[
I
|
time, sec. I
. ' i
transfer matrix across shock wave, Eq (B-26, D-15); transfer |

|

matrices between surface downwash and sonic line disturbances,

i R Bl e e e S i S R T ety

Eq (B—33); transfer matrii between ‘disturbances entering shock
|
|
absolute ‘velocity vector :
| .
local freestream steady flow velocity; also, streamwise velocity

wave and sonic line disturbances (Eq (B-34))

: !
perturbation (backwash) in shock wave and sonic line transfer

I
functions (Egs B-12 - B-39) :
perturbation velocity normal to shock wave, Eq (B-19) :
vertical velocity perturbation (downwash) !
streamwise coordinate with origin: . at wing leading edge :
I

streamwise coordinate with origin . at intersection of sonic

line and the wing surface

vertical coordinate with $rigin at wing chordplane (measured

! 1
perpendicular to wing cho%d plane) i
!
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X |

z = (2 - Z relative vertical foordinate for the kth layer of the

k1)

local supercritical region, with origin at the inter-
] face between the KPP ana (k-1) layers. (For k =.1, the
origin is at the wing surface). See Egs (A-15 - A-18,

_ c-7) '
a reduced frequency parameter in shock wave transfer matrices,

Eq (D-2), also coefficient in constraint equation , Eq (E;l3)

LB =\/1-M2;’Prandtl-Glauert factor, Eq (A-35); -also constraint
’ matrix between freestream and outermost supersonic layer

Egs (E-7, E-12) .

v  see Egs (E-16, E-17)
& interface streamline slope, Eq (E-19) -
A difference operator; also AEl(l’g) has a special meaning,

Egs (E-2h4, E-31b); also déterminant, Egas (E-49, E-50)
- L ) —

U UIVUUN ORI,
‘ |

% C dummy variable of integraggon, Eq (C-13)
| A matrices defined by Egs (?-53 - B-57)
£ dummy veriable of integration (Egs A-22, £-85) )
T . 3.14159 . . .
p mass density of fluid
T summation operator
o state veétors, Egs (B-33 i B-41)
0] _perturbation velocity poténtial
w ' - =2nf,:~¢ircular frequency, rad.Zsec

I
I
1
|
|
I
|
I
|
|
I
|
\
|
|
i
|
|
1
I
I
!
|
n
|
'
I
|
|
|
|
x
|
!
i
|
|
:
!
|
|
|
|

{
!

. Special Matrix Notation . i
- . . B = - : i

kS *

[: ‘EJ rectangular or square matrix, See Appendix B 1
.. . . I
{ - column vector matrix (one column only), See Appendix B :
D) B T SN
S A Y unit diagonal matrix (off jdiagonal elements are zero) 4
‘ see Appendix B. f

7
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SPECIAL PARTIAL DERIVATIVE NOTATION |

|

(),  =d()/ax ete .

pu— -2 2 I
- ( )zz =9°()/8z", etc |
' I

. OTHER SPECIAL NOTATION |
GT) Laplace transformed quantity, Eq (A-5) |

- |

() complex amplitude for case of harmonic time dependence, |

Eq (A-1 - A-4); also in Appendix B, used to define modifie%

: matrices, Eqs (B-53 - B-57, B-60a, B-68 - B-70, B-76 - B-78)

A i
() lised to define modified matrix, see Eq B-60b [
I
i (*) vector quantity [
|
i SUPERSCRIPTS AND SUBSCRIPTS I
| i
| a airfoil or wing surfacq I
!
A ahead of shock wave | :
B. ._ .. ._._aft of shock _wave__ _ - - I
H homogeneous (solution of a differential equation), Egs (B-q,
c-13) |
I .
I interference, Eqs (B-58 - B-65); also, imaginary part, Fig.,
|
(A-2). !
I
J quantity evaluated at a particular layer interface, Eq (E-5)
- |
k superscript denoting a |certain interior layer and its associ- |
ated values of velocity,density,speed of sound and disturb%ncé
variables, Egqs (A-19, C-1, E-5) 1 !
| |
2 section 1lift (coefficient), Fig 3 :
| L
L local (freestream) Eq (1) of text; also lower wing surface, i
Fig (B-1), Eqs (B-7, B-13); also refers to layer in multilayer
: . 1
Eq (B-12). 1
: i
M refers to multilayer, Eq (B-12) i
O G S B
m section moment coeffic;ent (Fig 3) '

—
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X

Z

_component,, Bqs (B-16  B-18)

4 T
refers to interface between outermost supersonic layer anq

external freestream

|
‘ f
normal component |

. . i
refers to wing surface pressure, Eq (B-42) |

refers to particular fntegral (of a non-homogeneous differ-
ential equation), Eqs |(A-15 - A-17, A-19 - A-22, B-27 - B-36,
B-42, etc.) ' |

|
|
real part (of s), Fig f—2. : |
|
refers to wing surface, Eq (B-42) ]

]
refers to backwash veﬂocity, Eq (B-32); also refers to upper

wing surface, or flow |{field above the wing
refers to downwash veﬁocity, Eq B-32

|
|
i
|
refers to streamwise direction or backwash velocity |
|
4

refers to vertical direction or downwash velocity component

Eqs (B-16 - B-18) '

refers to dependence qn,perturbationtvelocity potential
(Eqs B-16 - B-18)

refers to external freestream

t
|
|
|
1
NUMERICAL SUPE%SCRIPTS AND SUBSCRIPTS I

i
superscripts refer to jinterior and exterior side of a certgi&

layer interface, Eqs (lE-1 - E-7); also subscripts refer to

elements of 2 x 2 transfer matrices, Egs (E-4, E-7). :

i
refers to quantities evaluated from purely subcritical flow

theory, Egs (B-3 - B-6)

—
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AA,AB,BA,BB partitions of aerodyns

MULTIPLE SUBSCRIPTS 'AND SUPERSCRIPTS
HAVING UNIQUE MEANINGS :

matrices Egs (B-3,. B-10)

mic induction and influence coefficilent

|
I
!
{
t

AB shockwave transfer relationship Eqs (B-26, D-11) |
- |
APSH- disturbances impinginé on upstream side of shock wave caused
by particular integral terms includes (¢PSH, UPSH, WPSH), !
)
Egs (B-32, B-3k4) |
. ]
BSH conditions on downstream side of shock wave t
! !
HML homogeneous, multilayer (Eq B-12) |
!
PML particular integral contribution to multilayer solution, |
Eq (B-12) :
psAﬁ refers to wing surface pressure beneath supercritical reg%on
' Eq (B-L2) l |
- - - — — 4
SH shock wave ,
SL sonic line :
WA caused by wing surfacq downwash ahead of shock |
WAL interference downwash!induced at lower wing surface ahead:of‘
shock’ wave Eg B-U45 i
WBL interference downwash |{induced at wing surface aft of the
shock wave |
WAP - downwash contribution at wing surface ahead of shock Wave£ %
due to particular integral term, Egs (B-32, B-33) |
! |
WASH refers to downwash induced by shock wave disturbance at |
the wing surface ahead of shock wave Eq (B-L49) :
WBSH refers to downwash induced by shock wave disturbance a%’tﬁe

wing surface aft of the shock wave

—_—
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1 - «BACKGROUND AND PREVIOUS ' RESEARCH

I
|
Review of Existing Unsteady Transonic Flow Methods i
- and Exploratory Research |

!

|

- Older work and its limitations.- It is well known (References 8,9 ) that,

the equations of unsteédy transonic flow may be linearized for high reduced

1
frequencies; however, it is not clear even in this case that one can neg%ec

ct

the sonic line reflections, associated with a supersonic (supercritical)l

. : i
region embedded in an exterior subsonic flow, and bounded by the sonic line

and terminal shock (see Figure 1 ). | -

_ Sonic Line: x = x, (z)
OGW: Outgoing .SL
Waves 4 ICRW (Incoming Reflected

|

|

[

|

' //// © -Waves) :
' _l

|

{

\ Shock
M< 1 A Wave +
;] M. <1
4 I
\
-  ——— — b ke

]

Figure.l Schematic of.Supercritical Flow . |

" Embedded: in a Subsonic EXternal Flow [

Notwithstanding .neglect of sonic liné reflections, Landahl's book (Referénce X
i !

9) is devoted almost entirely to thé linearized theory of transonic unsFeady

flow, except for Chapter 10, dealingjwith aileron buzz, which contains séme
{
usable results, particularly the "shock-compatibility" relation between -

unsteady perturbations on the upstream and downstream side of a shock.
o
It is recognized (References 8and 9)!that for thin wings, especially low:
aspect ratio wings, linearization at|higher reduced frequencies is reaso%- |
ably valid. Explicit calculation of|non-linear thickness effects for Py
unsteady subsonic and supersonic flow past slender bodies by Revell (Ref%r—%
ence 10and 11)indicate that for slender bodies, non-linear thickness effecté
" on dynamic derivatives are rather weék. These results are to be expected; i
qualitatively because three dimensional relief effects via the continuity

1 |

- ~equationy require- smalter -excess flow-field- velocities to -circumvent a bﬁdy}

t

11

LT L]

»
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1

-i__disturbance_flow_theories_ has. long been _recognized 1n Steady flow 01rclea L

. : | T
of given lateral width/length( ratip. Thus, one does not find large local
variations of Mach numbers. In fact) the first order approximation is tne

well known slender wing or slender dey theory due to Max Munk and i

R. T. Jones (see References 12-14). | In this case the lateral 1lift distribu

/ 2 . |
BAR«< 1; 8 =/1 - Mm and AR is the aspect ratio of a slender wing. Tne

tion for steady or unsteady flow is. Endependent of Mach number if

application of slender wing theory tb unsteady AICs in the form of Equation
(5) has been explicitly given by Rodden and Revell (Reference 15). |

In connection with unsteady linear theories at Moo= 1, several schemes h%ve

been devised for computation, using the sonic 1imit for the kernel function

in the well known procedure of Watkins, Runyan, weolston, and Cunningnam;

(References 16, 17) and also in "transonic box method" procedures (Refer:

ences 9, 15, 18, 19). }
|

While thé essential impertance of the non-linear terms in transonic small
|

(References 4-9,13,14) little has been done for the unsteady problem. F%r
steady flow, Spreiter and Alksne (Reference 5) introduced a notion called
local linearization in which the non-linear transonic term estimated by I
successive approximation, yielding equatlons having the same form as fori
purely subsonic or supersonic flow, but with the local Mach number varylng

with space. These methods have met with some success in problems of slender

airfoils and axisymmetric bodies at éerb 1ift near Mach 1. However, the:
method is a "simple wave" theory considering only outgoing waves and neglect-

ing incoming wave reflections from the sonic line and from the intermediate

1

number, density and acoustic speed which occurs between the wing surfacet and
i
i
!

The work of Rubbert’ and Landahl (Reference 20) also considers non-linear

acoustic impedance changes associated with the gross variation of Mach

the undisturbed flow.

steady effects on thick airfoils using the "method of parametric differen-

+

”'"tlatlon ;-put also-fails to consider- 1ncom1ng wave reflect10ns~from-the—~'~

—-sonic llne

U —

NP
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-| Andrew'and Stenton (Reference 21) have attempted to -apply local lineariza-

tion to unsteady transonic flow, and have done some interesting exploraeory
studles on acoustic ray tracing; however they confined their studies tq
two dlmens1onal propagation in the plane of the wing, whereas, supercrltlcal

flow effects are most serious for thick large aspect ratio-wings at moderate

In this case the ray tracing‘aside firom geometric acoustic limitations) yould

|

to high 1ift coefficients. l

]

be more appropriate in the vertical jplane, suggesting a "strip theory" as a

start on the general problem. This |idea is related to the proposed apprkach

which regards the supercritical regiion as a layered, moving, medium -into which
unsteady disturbances (sound waves) ‘propagate.- Acoustic impedance changes
for such media interfaces are given, for example, by Morse, Miles and Ribner
(References 22 - 24). These impedance changes cause reflections from thF
outer flow to airfoil surface. These reflections occur even in the locailly

subsonic regime; there, however, the impedance changes are quantitativel&

‘ weaker, and cruder apprg}g_im_a_t_i_qns,_may_sgffice. .Before pursuing this approach
further, some other recent developments in transonic flow theory must b%
discussed. ‘ 1
‘ |
! Recent research. - Several sympOS1a (References 6, 7) and a recent blblho-

graphy (Reference 25) are avallable descrlblng transonic research since 1950.
Most of this theoretical and experimental research is directed towards the'

steady flow problems of; (1) predicting pressures and flow fields past gdve

=

bodies, (2) designing delayed drag rise and "shock free" airfoils. In the

jmy

case of airfoil design there has been a renewal of interest in the hodograp
method (References 4, 12, 7, 26, 27),an indirect: transformation method*

using velocity components as independent variables, and yielding a linear

problem for steady flow, at the expense of boundary condition compllcatlpns,
-The hodograph method appears to be applicable only to steady, two—dlmen51onal
flow; therefore, it will not be eonsidered further, except it is noted as a

} possible tool for descrlptlon of the steady flow past a spe01al airfoil :

L --shape- whose-unsteady-airloads may- be‘sought ————————————— Sl

® - e 13
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I < 1
— There are two other threads in recentltransonic research which have led to
i i

improved steady flow analytical methods.

o Iax-Wendroff type methods (References 7, 25, 28, 29)

1

1

|
[
|
o Mixed finite difference methods (References 30 - 33) |
I
The Lax-Wendroff (forward marching in jtime) (References 7, 25, 28, 29) !

type of method is actually a transient approach to solving steady flow pro-

blems wherein an initial change (in the surface boundary condition, for

example) is introduced, and the asympﬁotic (in time) limit of the solution

|
finite difference methods using data for the previous time step. One knows,

is sought. At each time step, the spatial derivatives are calculated by

at the previous instant, whether the filow is locally subsonic or superson#c
and can accordingly adjust the finite |difference procedures (e.g., central
vs. backwards diffefences). This method may ultimately be applicable to !
oscillatory aerodynamics; however, it is plagued by several problems which

would appear to render it impractical'for flutter application at.the presént
- — — }

time for the followingrreasons: . |
i |
(1) Excessive computation time. Reference 28 presents one of the

most realistic and careful of the Lax-Wendroff schemes for |
! steady flow. It is stdted by the authors of Reference 28 th
' require- about 2 hours én a large scientific computer for a:
steady 2D problem. Considering that in flutter analysis a:
large number of reduced frequencies, Mach numbers, angles of
attack and wing section shapes, may have to be analyzed, su%h

a method would have to lbe sparingly applied, perhaps only as:
i
]

a check on simpler metﬂods.

- (2) The method has not been demonstrated on oscillatory probleﬁs.

+
|
1

(3) The method shows extreme sensitivity to boundary conditions
. _ o . . 1 ~ ~ I

and a tendency towards numerical instability. oo

(4) The physical significance of the "artificial viscosity" (used

<= — = — =~ to- stabildize-the-calculations)‘is, as‘yet,—controversialz-{~

T
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I
!
1

30-33) these appear faster and more| stable for computations than the ILax-
!

- With regard to mixed, steady flow finite difference methods (References

Wendroff(transient) approach. The results of Steger and Lomax (Reference

- 32) and Bailey (Reference 33), based on pioneer work by J. D. Cole and, :

Krupp and Murman, (Reference 30, 31) are impressive. However, no unsteady

11

applications have yet been developed though such a scheme might be |
devised in principle. Again, the prospect for unsteady flow would be !
computationally tedious, requiring many flow quantities to be defined, at
each frequency, and at a large meshjof points, both on-and off the body%
Past subsonic and supersonic flutter methods have all used surface aerosr
dynamic singularity distributions, Wwithout having to explicitly'calculate
off-body flow field data (excluding|component interference problems). I
Therefore, any finite difference methods(steady or unsteady) such as :

References 28 - 33, would represent|a tremendous escalation of computer,

time, even if their extension to oscillatory flow had already been compiet
' |

ed with demonstrated reliability (which is not likely in the near future).
. !

— -— T -

_ |
The above remarks are not intended to discourage development of unsteady,

finite difference‘methods, which might well be feasible after a few newI

generations of dlgltal computers. On the other hand, it would appear that
in the immediate future, some 51mpler useful methods are urgently needed
which could shed light on the essential features of transonic unsteady flow

for flutter analysis purposes, and this is the thrust of the present
theory.

Experimental data. - Ultimately itlis desired to compare any theoretical

{

i

!

. i

result with experimental data. It is noted that some oscillatory 2D |
section data, notably for trailing edge control surfaces,is available in
|

References 37 and 38, using a pressure measurement system described in I
Reference 36. Reference 35 is noted to contain some oscillatory delta wing
| |

pressure data. It is contemplated that the emphasis of the present approaLh

will be upon large aspect ratio thick wings, , where supercritioal flow!

l
than for low aspect ratio thin Wings. 15

[ 1]
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Therefore, 2D data correlations Wbuld be a first objective as a building:
block in a 2D strip theory as a replacement for present methods for loca%
sections, along the span of a finite|wing of moderate to large aspect ratio
(AR 4 to 8, say), which are adjacent|to regions of locally - supercritical
flow.

I
| |
Physical\Founthion for the Present Approach’. |

!
!
I

Tayered medium idealization of the steady supercrltlcal flow past a

2D section. - We shall outline, in the next sectlon a two-dlmen31onal

strip theory for ‘evaluation of unsteedy alrload on wing Sectlons at local

spanwise stations where the steady fillow field has chordw1se regions of

- — e

. . b
locally supercritical flow, such as is shown in Figure <2 . The steady I

flow field will be approximated as a| layered moving medium into which dis-

turbances propagate (see Figure '2).

Sheets —_———E\\\\7><;\k
f\K—‘ TV~ < T

,\‘ ME>M3 M5<M)-|-

Vortex — Sonic Line: x = XSL(Z)
- z T___/ ///—:_ Shock Wave_ _____~— o |

M <19
] Ml >MQ \ M6 < M
Uco ) . i ! 3‘ - )i
N~
» - ] .
© i e [
0 a l Flgure P2 Layered Medlum Representatlon of the Steady
© =] :

- . _ Transonic Flow TField About. an Alrfoll Wlth
L .. an Enclosed Supercrltlcal Reglon L ,

Emplrlcal substantiation of strip theory in steady flow past large [

aspect ratio thick wings., - Before discussing the 2D strip theory approéch

some brief justification will be offered, including an approximate methoh
for representing finite span effects}, which is consistent with present stat
of-the-art (3D subsonic and supersonic lifting surface theory). First w%\
cmsider some empirical observationsl concerning steady transonic flow past

wings and airfoils with local supercritical enclosures which help substabti

| _ate_the usefulness_of strip_theory on finite _wings which are_thick enough t

|__have significant_supercritical flow effects. ]

6 I

. FORM 7681-2



] : : | REPORT No. |

During the past several years, a cons%derable‘aﬁoupt of experimental and :
analytical research on wings and airfeils has been conducted throughout t@e
world (References 6, 7, 25), along with extensive wing design and develop-
ment studies in the aerospace industry for the wide-body jets. One interest;
ing and useful fact emerges which is éescribed as follows: If one calculates
the surface pressure on an airfoil byimethods which do not account for suﬁér-
! critical regions on the airfoil (any of several will suffice) then, in th%
regions where local Mach numbers are predicted to be subsonic, it is found
that the theoretical and experimental|pressures agree rather well despite:
the neglect of supercritical effects.| Also it is found that some empirical
methods (somewhat like Sinnott's method, Reference 40) will fairly adequaéely
describe surface pressures in the supercritical region. The present theofy
is an advance, since it also accounts|for subsonic interference effects

t
|
caused by the presence of local supercritical flow regions. !
i
]

The first point above is illustrated %n Figure 3 for an airfoil having local

f
supercritical flow. Similar results have been found in wing development

' studies in which subsonic lifting surface theory and 3D non-lifting potential
: I
flow methods have been applied. This|indicates that a method based on loqal

supercritical flow corrections to‘é 3D subsonic prediction method has had}

' some empirical foundation in steady flow. Also, many studies have been @éde
" to validate simplified wing design précedures based on application of 2D : !
airfoil data. These studies have repeatedly substantiated the nearly cor#ecé

prediction of local chordwise pressures on 3D wings using 2D airfoil dataj

with appropriate sweep corrections, except in the wing root and tip regioés.‘
: ' i
As a final point, it is noted that ae%odynamic wing development generally!

1 . - . . . . l
leads, by deliberate design, to achieYlng chordwise pressure distributions

éaused by neceséary spanwise variations of wing thickness. ;
!

Lo i

On the basis of the above considerations, it is suggested that a 2D strip,

i
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l

|

|

- which are nearly the same along the sban, except for practical limitations l
|

i

{

-

|

1
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i

)

. _ !
able from routine aerodynamic wing deyelopment, which must be accomplisheg

—#—ppiop—to-eommencement—oﬂ—sezious—flutteﬁ—and—gust-anaiysisg_$h@se-da$a¢axe--

i
I
|

analysis.

Empirical evaluation of 3D flow effects.

Prediction of local steady flow environment. - The review of analytical

methods given in the previous paragrabhs,indicates that reliable steady supe

critical flow prediction has only recéntly been achieved for 2D lifting air-

foils (References 28 - 32) and non-lifting axisymmetric bodies (Reference:33 .

Even in subsonic steady flows, though|methods exist, they often give poorl
results on practical 3D wing body configurations due to the extreme cbmpl%x-

ities of the geometries of wing root fillets, pylons, nacelles. etc., which

T

. ~ ]
all cause substantial interference. Also viscous and flow separation effgct

are especially difficult to assess for‘complex geometries, '
|

!
Despite these 3D analysis difficulties, wing pressure data is generally -atvai

also needed to substantiate structural loads before even the strength req#ira-

ments for member sizing can be finalized. Therefore, it is reasonable toi-
assume that one has steady flow wing pressure data available to aid in coh-
structing an unsteady supercritical flow theory in the following wayst : ‘
o0 Locally supercritical regions are mapped, both chordwise and:
{
!

o The correct steady flow section lift coefficients and surface

spanwise.

\ !
pressures are available po "tune" a local 2D description of the

steady flow above and bellow the wing. !
i
i

Empirical evaluation of 3D effects inl unsteady flow. ~ The folldwing approach

is suggested: ;
: |
having local supercritic?l regions be evaluated by the theory

o It is proposed that unst%ady airloads on those wing sections

E

! 1
T T T T T T -deéseribed aflalytically ih the fext Sectiofi.~ This method "inCludes

o . f9'J

theory for unsteady supercritical flOﬂ would be a useful tool for aeroelagggk

(4]
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|
l

[“detaris contained—in the—several—Appendices+

some evaluation of subsopic interference effects aft of the |

shock wa&e as discussed in Appendix B. :

( I
o In spanwise regions where the flow is locally subsenic, apply

the usual subsonic unsteady lifting surface theory for unsteady

airloads. This is suggefted.because the methods are approxir

mately.valid in steady flow as discussed above. I
|
|

OUTLINE OF ANAIYTICAL THEORY

Analytical Assumptions for Layered Medium Analysis of
Unsteady Flow Past 2D -Sections Having Local Supercritical Regions

|
|
|
i
|
|
|
¢

Preliminary remarks.- 1In the follbwing sections the basic assumptions ar
|

stated for the analysis of the locally supersonic and locally subsonic

regions. This will be followed in the section, "Analysis Outline", by an
|

outline of the analytical theory which will be a guide to mathematical

|
4+
/- !
|
|

Supercritical (locally supersonic) region.- The following is a list of

. ! - .
highlighted assumptions, key mathematical expressions, and pertinent obsef—

vations: i

|
| |
0 The steady flow field is, known, by independent calculation, by

methods such as ReferenJe 32, by semi-empirical methods, or from
!

l {7

. | !
0 The local supersonic supercritical flow regime can be adequatef

4

experimental data.

approximated in the(Z)di&éEfiBnﬁ(ﬁéfpehdiéulér to the chord) b
- | X o
a finite number of "Z/ %éyers, each having local Mach number; and

thermodynamic state variables which are, at most, a function of)
<

~

! ’ '
'x, and for a given }ayeﬁi(zkr * z < 2 . l) are a suitable

average of the known continuous distribution in the direction

‘ !
perpendicular to the surface. i
i

- em e e e mm e e e e e s e e e e e e e e e e e e e e e e e e e e e o
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0

o}

‘“Be_fﬁfther'sﬁbdiVided"iﬁto_éhonWise'sﬁB:iﬁtervaIs of constﬁﬁt‘

o}

_.sonic theory:

The "Z"’layers are separated by vortex sheets (surfaces of

‘changes of steddy flow: properties (and "hence, changes= in*~

1
|
tangential Velocity discontinuity) across which occur finite
I
|
acoustic impedance) :

don

The acoustic impedance changes and reflection and transmissi
coeffiCients*across discontinuities are governed by pressure "and
flow direction continuity conditions (Miles, Reference 23) and
with some modification allow use of previously developed reﬁults
of Reference 23 for reflection and transmission coefficients at
the discontinuities. Numerical evaluation of the theory of:

Reference 23 has provided layering criteria for the purposes

of the present study. The methodology of References 23 and ol
is equivalent and is incorporated in tne present theory by a

simpler approach which employs the Iaplace transformation with

respect to the streamwise variable, x. I

'
1
-

Each "Z" layer in the supercritical region may, in principle,

T

Mach number and fluid state properties separated by discontin-

uous impedance changes.| The present theory is further ideaiized
by assuming a single average Mach number and thermodynamic state
per YZ" layer. As Justification, it is noted that typical |
steady state pressure data in the supercritical region for nany
airfoils shows a tendency towards a nearly constant local Mach
number at a short distance downstream from the sonic line (see
Figure 3,“and consult References 6, 7, 28 and 32 for examples
of the near constancy of local Mach number in the supercritical
‘

region). |

In any of the supersonic subregions of constant Mach number:
(defined by the above mentioned layering assumptions) the ; .
unsteady velocity potential, and all perturbation gquantities

will be governed by the locally linearized 2D unsteady supef—

—— — - UL U VRSO GOSN _—— -

Y
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1

|

C ' I
= 'ﬁL + V¢ :
(1)

. _ a .- .-

ﬁ whére, if UL’ ars 0p» M Uﬂ/aL are local fluid properties then:

L

: 2
(U35 + %) @ (2)

2 1
Ve = P
L

subject to ihpedance cqange boundary conditions at each "z'l

layer interface and maqcbing the known airfoil surface normal

velocity (prescribed downwash) condition. !
I

o Only harmonic motion is considered, therefore any quantity !

o - . S
q: ‘is of the form i

|
Lt (3)

Q (we

[}

Q(t) |

- - 2 : — — 4
0 For the local supersonﬂc regions, disturbances on the soniq
!

lineﬂxSL(z) are regardgd as known initial values, which

|
suggests the use of a<ﬁaplace transformation on x for soly-

ing the local superson%c flow field.

Suberitilcal (locally subsonic) region. -

|
|
|
|

0 The layered medium concept applies in principle to the subspnic

|
I
|
|
|

region; however, the range of variation of local flow prope}-

ties is less than in the supersonic region. Therefore, subf

sonic induction effect# will be calculated from standard sub-

. 1
sonic theory as perturbations to the freestream steady flow,
. I .

[}
b

regarded as uniform.

o0 The principal effects on the subsonic flow field due to the -
presence of the embeddéd supercritical region are describeq in

detail in Appendix.B. Briefly they are assumed to be as !
I o) K o177 E "f"}

s -y
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(2)

" theoretical value |because of the loss of the contribution

. !
The subsonic doub%et strength in the region forward ofj the

shock wave is reduced to one-half its usual subsonic '

ordinarily made by the supercritical region above the
upper wing surface. This doublet strength pertains to
the 1lift contribution from the subsonic region on thel
préssure side of the wing, opposite the supercritical:
region. | l
}

The subsonic doublet strength is changed, from its usual

- I
subsonic value, both forward and aft of the shock wave

position due to two effects: '
|

(a) The above mentioned reduction forward of the shoﬁk

also- changes jthe downwash induced at the airfoil |

surface aft of the shock wave (compared to usual'!
|
subsonic theory).

|
' [
(b) Additional interference downwash at the airfoil |

(3)

surfaceé\sauéed by disturbances convected through

the shock wave from the supersonic region. These
disturbanceslcan be represented by-a source distri-

bution spread vertically across the shock wave fﬂonp

I
which termindtes the supercritical region. P -

I
Because of the présence of the supercritical region above .

the upper wing fOﬁward of the shock, the usual anti-
symmetry of 1lifting pressure above and below the winggis{

destroyed forward{of the shock. Therefore, the upperE ;
‘ |
surface 1lift is c%lculated directly from the local sugerJ

!

sonic surface pressure, while the lower surface 1lift is ]
]

calculated as onelhalf of the subsonic doublet loading §

(including the interference effects described in (1) &nd i

(2), above). i

[}

i
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|
|

j the reader is referred to the Appendiées for all of the mathematical details

' important results. The basic equations and assumptions have been described

{ .
| in the preceding paragraphs, or in the Appendices.

. Formulation -of—the—aerodynamic—influence—coefficientsT—=—The chpsen—form4f N

‘ . ] — . .-
for the aerodynamic influence coefficients (AICs) is of the class (pressure/

] . I

(4) It is assumed (and proven in Appendix B)‘that the modif?ed

subsonic doublet ldading can be expressed as a linear |
combination of airﬂoil'surface downwash due to prescrib%d
motion. This provides the requisite "aerodynamic '

influence coefficients" (1lifting pressure increments/unkt
downwash) in the mahner required for aeroelastic analysis

applications. -

Outline of Analytical Results
I

Preliminary remarks. - Because of thé length of the mathematical derivat%ons

l
|
[
!
i
i

Only key equations will be displayed in the following text to emphasize tHe
1

|
i
' |

T

unit downwash) in matrix algebraic format. The matrix formulation of these

results is contained in Appendix B wh%ch is the most important body of an%- .
lytical results,” since it describes the interactions between the subcritical
and supercritical regions via shock wéve and sonic line disturbances. Th% |
reader is urged to study Appendix-B c}osely to obtain the primary thrust of
the present analytical formulation. Appendix A cont?ins the details of t?e
local supersonic solution; however, it can be seen from Appendix B that the
local supersbnic solutioq is just oné.of the pieggs in the overall analyéisz
and that Appendix B is the "big picture" framework whose details are furtﬁer%
delineated by the other Appendices. it is now of interest to highlight the

AIC matrix formulation of Appendix B.?

.

The desired end result is given by Eqs (B-27 - B74) and (B-79 - B-81).

In these equations as shown in Figure B:1,p.53, the superscript, AU’ refers

to the upper wing local supercritical flow regime which is terminated by a

-

oL



I | | REPORT No. |

: downwash) AICs are given in the following partitioned form, which emphasizes

shock wave whose locus is XSH(Z). The. superscript, AEP refers to the I

|
subsonic region on the underside of the wing forward of the chordwise posi-

tion of the upper surface shock wave.| The superscripts, Bﬁ, and, Bi, ref%r

to the upper and lower wing subsonic regions aft of the upper wing shock |

wave position. the«downwash values due to surface motion are called
simply W and w forward and aft of the shock wave, respectively. The |
present analy81s is obviously restrlcted to a single supercritical region;
however, the terms "upper side" and lqwer side" could refer to "suction :\
side" and "pressure side", and apply equally well to the case of a singlel
Bupercritical region on the lower side of the wing (at a negative steady :
State angle of attack, for example). |

!
From Appendix B, Eqs (B-72- B-Th, B-79 - B-81) the desired (pressure/ |

the difference in the nature of the aerodynamic coupling between wing down-
wash control points, depending upon Wpether they are forward or aft of th%

shock-wave. —The-lifting-pressure. forward-of-the shock-wave-ism ——0 L

!
AT AY 1
{ LI U(} : ()

o [
Lo
)
t
(
l
I
:

1.1
Ap °

—~
\J1

n

Ep slosn

The 1ifting pressure aft of the shockiwave is

)
_ ! =

WA
Lo Db + [ ]{ s} () |

4

i

The matrices E&)] , are the partitions of the pressure/downwash AICs

" which are required for aeroelastic -analysis. Either the lumped aerodynamic ,

forces at structural analysis grid points or the generalized aerodynamic :
forces, can be obtained from these lifting pressures by suitable numerical
integration” schemes ($e€ Referéences 2; 4,710 or 1L for examples);” therefore,

—_— Py

25
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the pressure AICs provide the necess%ry
modal flutter analyses.

arbitrary chordwise distribution, thi

wise deformation pattern, including chordwise camber changes due to arbi-

trary static aerocelastic deformations.
i
In deriving the above equations sevejal

The first is the basic subsonic 1lifting

available from any of several "kernell function"

solutions (see References 4, 15-18, %9).

following form (see Egs B-3 to B—6)'|

]
T T ABY I
WA/ K AA -] KaAB I | .
ol \KBA»KBB (&)
LB’ I o '_O !
T
i
The subscript o implies purely subsonic flow. In the .subsonic case, the

distinction between the A and B regi%ns

where the inverse is

%) [

A partitioned form is useful in the transonlc solution and is written as '

Because theldownwashes

analysis is applicable to any chord-

R

The desired pressure/downwash AICs are then

-1 W}

} I

data for either collocation or |
|

|

W, and W

A B are allowed

|
building block matrices are employed|.

surface solution which is assumed
\
type |

These results are expressed in the
1

or "vortex lattice"”

is dropped and Eq 8 is written asl

— v ——

(10)
|

I
' |

(11:)

!
i
1

‘ CAN T AR :
Qp = on“ on (12)
o " BA BB 5
"820" on = ;

A

This notation is frequently employedfin

In the case of purely subcritical flow,

e e e em e v ma e em e e e e e e e e

Appendix B. |

the matricéslzijjand {ép;}are i
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" solution is proportional to the Garrick and Rubinow solution (References hl

|
identical, by definition. 1In the ca%e of transonic flow, these matricesi
differ by an amount which is roughly|proportional - to the chordwise exte%t
of the steady supercritical flow region (presumed known) times the diffe%en,e
between upper surface lift for purelb supersonic flow and for purely subsonic
flow. As will be discussed ‘in Appendix A, and below, the local éhpersonic

|
2, 3, 8, 9) times a layered medium factor. |
!

\
Lift asymmetry. - One of the basic distinctions between the 1ifting surface

solution for a subsonic flow, vs. a transonic f}ow with an embedded supe%-
critical region, is that the lifting|pressure forward of the shock is nol

longer antisymmetric above and below|the wing for the transonic case. T$is

is explained in Appendix B, where a technique is presented for separately
calculating thé upper and lower surface contributions to the lifting pre%sure.
The upper surface lifting pressure i§ derived from the local supersonic 1
solution ~(discussed . more fully in Appendices A, C, and E). This incl&des

the effects of sonic _line dlsturbances which _are_regarded._as 1n1t1al"cond1=_

!

!
turn coupled to the subsonic 1lift distribution by means of subsonic flow;

tions in the local supersonic solution. These initial conditions are in

field induction matrices which are assumed to be available (at least in !

principle) from standard subsonic théory. b

|
]
- Lo . I,
Sonic line disturbances. - The soni? line disturbances due to the subsoglc'

wing loading in the regions A" By» énd Bf are described in Appendix B in -
terms of a discrete set of the unsteady perturbation values for the veloc1ty
potential, the streamvise velocity (backwash), and ‘the downwash. These

di screte initial values are assumed to be calculated from subsonic theor% i

at the sonic line locus XSL(ZK)? where 7, _ define vertical coordinates of
the layer interfaces used in Appendi¢es A, C, and E to describe the local
supersonic region, AU, ag a layered medium. From Appendix B,Eqs (B-13 té
B-15),the sonic line disturbances are represented as follows for K interface

layers:’
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) T
7] Y XL (1, a ) A TXL] fB L 5] '
P I CS I SR L) Sl Eel F RN
’ ZSL (1 A | By [ 7SE B B) i
s O R e A e
'”fj;;-l"ff, : “""l oo
L el [ e g
These matrices have K rows and NDw columns, if NDw is the number of chorndwise
downwash points v :
| |
The above equations are summarized %ore compactly in Eq (B-35) by definﬂng
a "sonic line state vector" —. , , |
: ¢‘VSL’ . I
N %suy Py Ysu (1:6)
" LI st | |
| The sonic line state vector defined by Eq (16)-possesses 3K rows and on%
.—.-column. . Egs_(13.to 15)_are then summarized_in Eq (B= h)_by us1ng_the~son1c__
line state vector and regarding the jmatrices '[: *s L:-etc as partltlons
* of what will be called sonic line induction matrlces d: j] and [: ]’
| defined by
{os} - [0 {2 < v+ [ o o
These sonic line induction matrlcest [% LT and [:o B] are of rank ;
3K x NDW It is noted that {_;} and {p } are known from the subso;nic
solution, Eqs (8 to 12), and have the ranks wa x 1 and NDWB x 1, where
NDWA and NDWB are respectively tde number of downwash control points:
forward, and aft of‘the shock wave, |for the. supercritical case. -The :
"sonic line induction matrices" defined by Eqs (13 to 17) are regarded as
the second set of known buildihg~blécks available for manipulation in the
theoretical development of Appendix?B. ' o ; '
e i y
_ | L
28
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1
“| The terms designated as {—ApAL }and (Ap }are the interference 1lift distri

bution in the subsonic regions in AL (below the wing ahead of the shock and

aft of the shock,'respectively). These terms arise because of the presenc%

- . ]
— of supercritical flow in AU. The factor 1/2 denotes the loss of the uppeir
l

wing contribution to doublet strength, compared with the usual subsonic

i theory, as explained in Appendix B. 'The remainder of Appendix B describeF
how these subsonic interference load {increments are derived explicitly in
| terms of the wing surface downwashes{’ .} and-{ }-to obtain the de31red:

(pressure/downwash) AICs described in the preceding paragraphs.

Subsonic interference downwash due to shock wave. - 1In Appendix B, Egs

(B-22 and B-23) there is defined a shock wave 1nduced interference downwash

s

at the airfoil surface, which is assumed as a reasonable approximation, to

satisfy the classicalsubsonic kernel function" type of lifting surface

| relationship :
i |
- o et ) — o
|
. |
; {AWSH} [BA] {——up - pOA>} + EOBB]{MB} (19)
i ' : y

Eqs (18 and 19) take into account the basic subsonic equations (8 to 12)

which relate the kinematic (motlonal) downwash at the wing surface to the I

!

s sonic theoretical lifting pressure!s {po } and ‘{po } . |
i ¢ ’ '

i
It is now necessary to relate the interference downwash on the left hand
side of Eqs (18 and 19) to the disturbances impinging on the shock wave from
the supersonic side. This relationsﬂip is expressed in Appendix B, Egs f !

(B-20, B-21, and B-L6)} |

WA WASH
GSL Ca T
= + (20)
WB WBSH l
"L
Gsr, Cyia i
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Using Eqs (17 to 20) eliminates the 'sonic line static vector yielding, a

in Eq (B-49).

SH WASH  _WASHT] [ | WASH]
AWAL Kan KB (o, Ga:
,\ | |
SH WBSH WBSH B WBSH
Mg K . %’ (p, S

The system of Eq (16 to 21) is solved simultaneously in Appendix B
(Egs B-58 and B-65) to yield the interference loadings in the subsonic

region in the following form

AA Mo A
P P ’
_ I L | IowA
BA B
_ L P1,vA 2

This gives the interference loading as the sum of two -quantities; (1)-a

bances, and (2) a term caused by disturbances generated directly by the

wing motion, WA’ in the locally supersonic region, which then impinge upon
the shock wave and are transmitted through the shock wave to cause a source
distribution on the subsonic side ofi the shock. The interference loads ;
defined by Eq (22) are expressed in terms of wing motion downwash by i i
|
l
f
i

1 A
eliminating of {5 P » poB}- u51ng Eq (10) to obtain the desired AIC

o
format given by Eqs (5 and 7))

One of the key relations in the above sequence is Eq (20), which is Eq
(B-L46b) of Appendix B. The first term multiplying the sonic line state °
P
Vector, is the product of three factors, (1) a subsonic source factor,
A B~

GBSH defining subsonic 1nterference downwash in terms of disturbances

on the downstream side of the shock wave (see Eq B-U45); (2).a shock wave:
- r

transfer factor TSHBA lrelatlng shock wave disturbance state vectors on

either side of the shock (Eq B-40) and, (3).a factor, [j APSH:] , which

accounts for shock-wave -disturbances-transmitted through the—supercriticail -

region from-the--sonic-line. —- S - ' -
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-| Of the three factors in the first ter% of Eq(B4ba),the first subsonic sou%ce

factor has not been written explibit}y, but 1s considered a trivial exerc%se
in subsonic theory, and is regarded as definable, in principle, along with
all of the other "subsonic induction"|matrices. The second factor (the
shock wave transfer factor) is developed in Appendix D, for normal shock |
waves; this is merely a convenient statement of reéults given by Landahl |
(Reference 9, pp: 110-113). The third factor, relating to transmission'o%
sonic line disturbances through the supercritical region, is a matrix state-
ment of results’'which are developed in Appendices A, C, and E, in terms of a
solution, by Laplace transformation o? X, in the layered supercritical re%ion;
The matrix statement of these resultsl(giyen in Appendix B in Egs (B-20, I
B-21, B~27 - B-34, B-38, B-42, - B-46) implies the inverse Laplace transfor-
mation of -quantities defined in Appendices A, C, and E, by a convolution :
integral method (Reference 42). Evaluation of the convolution integrals By
numerical integration then lends itse%f directly to‘a'matrix‘formulation;:

|

‘ | _ |
The second. term of Eq (20) (or Eg B-4O) likewise consists of three factors, |

the first two factors being the same énes discussed above., The third factor
in this case defines the propagation,jto the shock wave, ﬁhrough the laye%éd
supercritical region, of disturbances|generated directly by the upper wing

surface motion forward of the shock wave. This term is like the Garrick and
RubinOW‘solution with an impedance factor. The matrix statement of this éerm
in AppendinB implies the inversion of Taplace transformed quantities der%ved
in Appendices A and E. I
|
Criteria for layering of the local supersonic region. First some commenté

will be made concerning the nature of|the required layering; then, there !

!
will follow an outline of the results|presented in Appendices A, C, and E,

l
Prior to commencement of the Laplace transform solution presented in this:
report, an assessment was made of thelfeasibility of using a multiple l
reflected wave approach, utilizing prévious:acoustic theory results :
| (References.22 to 24).. _These. resultsicalculate coefficients of.reflection- J

1
{
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1 and transmission for plane acoustic waves, of Varying incidence angle, :
impinging upon a layer interface, acrposs which there is a discontinuous :
change of the %?antities, local stream velocity, local spéed of sound and;

] density. Computations were made,‘using the theory of References 23 and 24

] to evaluate the maggitude of the refllection coefficient for single reflection

. |
-4 of a plane sound wave, with an arbitrary angle of incidence,(defined as tPe

angle between the w%ve front and the {interface) and striking the interface

V

across which a discontinuous changé il local freestream Mach number is |
) )
assumed to: occur. It is also assumed that the local density and sound speed

‘are related to the local Mach number; by isentropic flow equations throug?-

out. the supersonic region, which is g good approximation. !
‘ ' : ' !

_ : ]

The results of the above described calculation show,for a single reflectibn,
that the reflection coefficient is equal to about .5 times the change in:

. : J
local Mach number across the layer. ﬁhis would suggest that the super- |

critical region might be approximateq by layers of sufficient vertical debth
: : I

. . bo_allow.a change of local Mach _number_of the_order of .2_across each. layer.L

In such a layer model, one would find reflected waves whose strengths arei

ten percent of the incident wave étrength for each reflection. It‘can bey

seen from the analyées ih Appehdices A, C, and E, that many reflections ahd -
refractions of waves occur; however, ‘they are systematically accounted fo%

by ‘the Laplace transform analysishwﬂicﬁ has been employed in these Appendices.
! ]
t

There are two basic reasons for not employing the reflected wave approachl

directly; (1) the disturbances arising from various points generate cylinbri
cal waves which can be described as a "bundle of plane waves" of varying !

incidence angle; (2) for an arbitfary steady flow field, dependent on var&ing
i

values of freestream Mach number and angle of attack, the width of the layers
will vary, as will the sonic line locus and shock wave bositions; therefo?e,
- it would be logically complicated to aéscribe how many wave reflections héve
contributed tq the pressure at any fi%ed point on the ai;ﬁoil. ;
! ' ' !
i

——»—u———-——-—-——--——--—-—————-—-9-—---——-——————————-———-—-——1

. : | ' l |
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For the first of the above reasons, the:reflection coefficient at an interface,

due to even a single point source (leading to a Garrick and Rubinow type:of
di sturbance) must be obtained by integrating the reflection coefficient for

angles of - incidence of the plane wave bundle which represents the point

D’

source (cylindrical wave) disturbance. On the other hand,the layer inter-
face impedance ratios are shown in Appendices A and E, to be point funct%on
of the complex Laplace transform variable which simplifies the handling of
layer interface boundary conditions.| The inversion of the Laplace transt
form of the impedance leads to a convolution integral for the reflection!
from the interface, of a point source disturbance; therefore, this methoé

is, in principle, equivalent.to the integration over a bundle of plane

waves described above.

}

!

]

!
One further subtle point must be made to justify the physical basis for the

|

use of the layered medium model for the supercritical region. In the i

!
analyses of References 23 and 2k, thF impedance ratio across the layer !

interface %g.pggpgzpipnal to the ratio of Qa%_ valles where, 0, is den81ty

and, a.; is the speed of sound. For L perfect gas, Qa2 is proportional to
static pressure, which must be continuous throughout the fluid. Howeveri
because of the steady flow field streamline cur%ature, thefe is a gradient
to the static pressure in the direction perpepdicular to the wing surfac%.
The present model replaces the contibuous static pressure variation by step-

wise chahgesi . at the layer interfaées which can be regarded as similar:to

oy

all

-

membranes capable of supporting stat?c pressure differences due to the steady

flow curvature. However, to the incoming incremental aeroelastic distur%
bances, the membrane appears as a porous wall, having continuity of stream-i
line slope and equallty of 1ncrement?1 pressure on either side of the

membrane. Thus, the finite layerlng method chosen here is similar to an !
approach sometimes used for exampleﬁ in evaluating the effects of atmos—: %
pheric pressure variation upon the propagatlon of a sonic boom from hlgh- i

altitude towards the ground.
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—~ Layered medium analysis of the local supercritical region. - The followin

is primarily a qualitative discussion|of Appendices A, C, and E. These

Appendices contain the detailed mathematical development.

B e — Q- —

Appendix A contains a formulation of the boundafy value problem for the small
# amplitude, steady or oscillatory disturbances to the local supercritical
region, having a non-uniform steady flow as shown in Figure 1, which is

further idealized as a layered medium|as shown in Figure 2. The physical

basis of this idealization hés-already been discussed. Egs A-1 to A-U4

l
I
|
|
1
|
|

! describe, respectively, the éonvected wave equation governing the small
i . :
disturbances, the wing surface downwash boundary condition, and the first|

. |
. layer interface pressure and streamline slope continuity conditions. Egs ,

| A-5 to A-lh»éhow these same gquations after lLaplace transformation on thel

. |
. streamwise variable x, and taking into account initial values of disturbance

quantities on the sonic line, which a%evtemporarily regarded as known'quadti-
|
‘ |
.. loading-to. close_the.analytical_feedback-loop!)- Egs-A-15-to-A-18 -show—the- -

" ties. (Appendix B, in fact, shows hoy they are coupled to the subsonic

T

. i1 . . . |
analytical solutions within each of two interior supersonic layers, boundqd

. by an external subsonic freestream. These solutions indicate the presence

of particular integrals required to satisfy the non-homogeneous "forcing !
‘ |

functions” appearing on the right hand side of the Laplace transformed version

of the convected wave equation (Egs A46, A-7 and A-19). Egs A-20 to A-23!
|

. I . .
show the local supersonic surface pressure as a convolution integral of the

classical Garrick and Rubinow solution for unsteady disturbances to a steady
~supersonic stream (References 41, 2, 3, 8) plus a particular integral contri-
bution arising from sonic line disturﬂances which are induced by the subsonic
loading. Egs A-23 to A-26 outline thé inversion of the Laplace transform%,
emphasizing the nature of the ihtegraéion contours required within the !
Laplace transform complex variable (s) plane. Egs A-27 to A-35 display sohe
.of the layered medium transfer functions which modify the Garrick and-Rubinow

solution. Appendix E contains a rigofous derivation of the results given py’
1 ' !

Egs A-27 to A-35, for the case of two interior supersonic layers bounded by |
-~ i !

an external freestream: ~ Also contained in Appendix E i§ th& technique for ~ -
[

3 A
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generalization to an. arbitrary number of interior supersonic layers.
. l .

I
i
I
Appendix C contains a rigorous derivation of the particular integrals to:

the non-homogeneous, Laplace transformed, convected wave equations withind
the layers (Eq A-6, A-7, A-19, C-1).| Besides the general theory, descriﬁed
by Eq (C-1 - C-5, C-13 to C-17),there is also presented an explicit set of
results for the case where the sonic'line disturbances vary linearly with,

Z, the distance perpendicular to the|layer. This solution would be a go%d

approximation if several layers are used to describe the supercritical
region, and could influence the choice of layering criteria for a comput%r
program development. Also contained'in Appendix C is a particular integral
for the external freestream disturbaﬁces, wherein, the ihitial values ar%
defined on an extension of the sonic|{line, which may be arbitrarily located
for the convenience of the analysis without loss of generality, as long %s
the subsonic induction effects (see Eqs B-13 to B-15) are properly calcul-

ated. :

- — — — e . I
Appendix E contains an explicit deTiVation of “the particular integral coqtr:

butions to the airfoil surface pressure which is displayed in Egs (A-20) 1and
Eqs (E-95, E-96, and E-97). The res?lts of Eq E-97 show directly how th%
effects of the layer interface imped?nce changes influence the sonic ling
disturbance contribution to the airfoil surface pressure in the local super-

) I
sonic region.

EXTENSIONS OF ?HE PRESENT WORK

|
{
I
!
!
Analytical Effort I
|
!

The present theory is completed insofar as the problem is solved, in

principle, provided the reader accep%s—the layergd.med;qm model

|

as a_useful mathematical and pbysicai approximati@p to the total problem% f

Appendix B defines the necessary accounting procedhre for calculating aero-

dynamic influence coefficients for aéroelastic anglysié applications. I% is

_clear_that_each_matrix_in Appendix B;defines a computer subroutine requirgij

ment,_ and _each of these subroutines may require subroutines. 1y

EL A -
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. l
= It appears, therefore, that the primary analytical requirements will be as
' i

follows:

I

: |

_ 1. Write explicit equations for|defining each element of each matrix
defined in Appendix B. :
]

2. Define and write explicit equations for subroutines to the matrices
!
|
Appendix B. . |

' )

3. Define and write explicit equations for subroutines to invert the

!

of Appendix B as required for the more complicated matrices of

Laplace transforms defined by Appendices A, C, D, and E, whose iéverse

Laplace transforms are necessary to define some of the matrices |

+

sgecified in Appendix B. This task might entail several.subordinate

subroutines such as: '
- I

a. A subroutine to find poles of arbitrary transcendental functions

! of the complex variables This may require a subordinated s#b;
routine to find the zeroés of the complex function defining its
‘ i ~ —yenomimator (§€e EGS A=27to A-33, for example)t — —— T

.b. A subroutine to locate branch points in the cdmpléX'plane fo%

an . arbitrary number of interior supersonic layers bounded by a

subsonic external stream(see Eqs A-23 to A-26). |
i
¢. A numerical quadrature s&broutine to evaluate the line integrals

. I
along path segments on either side of branch cuts (line segments
connecting branch points|in the complex s plane. See

|
I
Reference 42, Appendix A, Figure A-2 and Egs A-23 to A-26). |
| }

i

!

!

d; A subroutine to calculate complex values of residues at the

poles defined by subroutine 3a, above. (See also Eq A-26.)

4, Write an interim analytical Tummary report covering the above itéms

in sufficient detail such that, in conjunction with the present

|
report, a computer programmer could work'reasonably independently |

. . ; . . : . f.oo
to begin coding the various subroutines with only occasional clari-,

|

.. - fication by_the“theoretical.aerodynamigist_or aeroelastician.

. . r—(—‘? v
S e < R N )
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Some of the computer programming effort could commence immediately, whilq
some of the subroutine coding would await the detailed definition in the!

. . ]
interim report defined as Item 4 undér analytical effort. The. programmer

task activities are wvisualized as follows:

Review and monitor computer programming effort; aid in check-
|
out of subroutines. _ i

Define Samplelproblems to evaluate the sensitivity of the ;

computer program to the number of layers, integration proce-
dures, ete. I
Write a final report aécording to NASA specifications.

J
!
!
Computer Programming Effort :
|

-,

|

Construct. a flow diagr?m based on Appendix B of the presen

report, and submit to analyst for review.

— e mct— — —

6.

e S B i

1.

. - Assemble the entire computer program and write a separate

Code-and check_out.theTMarious_subnoutines_implied4by~————4— -
Appendix B and the flow diagram, as soon as sufficient det%il
has been supplied by the analyst in the form of preliminary

appendices to the interim analytical report. '
|
|

Upon receipt of the interim analytical report, complete cod-
' |
ing and checkout of the various subroutines defined above.

report which would be a user-oriented document referring t

Review with NASA the férmat'for the user document, and the

1
|
!
'
0
!
the analyst's final report for the theory. :
|
]
software language compatibility requirements for various !

}

e

digital computer systems for which NASA may wish to compil‘

the software. 1
l i
Complete the user-oriented report documenting the computeri

* i
program. :

Submit computer program_documentation_report_for_review byl ]

4

analyst and NASA. ! 37
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|
| ’ .
Comments on Matrix Sizes and Computer

Storaée Rehuirements

Appendix B defines the matrix account}ng system required for solutien of the

problem. Most:. of the . arrays: will be siZed either by the number of chordwise
. |
locations where surface pressure and motion downwash are specified, or by’

the number of layers required to accurately model the supercritical regioh.
It has alregdy been suggested that layers might be defined at vertical po;i—
tions havigg increments of steady flow Mach number of the order of .2 or ;
less for greater accuracy. Examination of airfoil data shows that the upper
range of local surface Mach number is|about 1.4 to 1.6, for an embedded
supercritical region within an exterior subsonic flow. This would suggest
that 3 to 6 interface layers would certainly suffice, and possibly even t%e
two-layer model, derived explicitly in Appendices A and E, might provide

some usefui guidance, at least for br%liminary calculations. !

e o - - — [ W N

The number of chordwise downwash control points is governed by two criteria:
i

1. A set of points required by solution of the classical subsonicl
!

i
points per chord (for rigid body motion) to 10 or 20 for |

lifting surface problem. This could range from as few as two-

structural vibration modes| having appreciable camber bending.

. It would probably be judicious to define at least 10 chordwise!

control points on either sdide of the shock wave for the purpos%si

of Egs (B-3 to B-10). This would define 20 x 20 matrices for a

'
1

strip theory treatment of e wing span station having local super-
{ |

critical flow. !
i ;

2. A second set of chordwise bontrol points is needed to develop :

i
the surface pressure vs downwash relation on the upper wing
1] '

surface beneath the layered supercritical region. This set of}

points must be sufficient to allow accurate evaluation of the con

" “volution 1ntegral descrlbed by En A-22 and the inverse Laplace

S




transform of Eq (E-96). Tﬁe inverse of Eq (®-96) can be eval-: |
uated at an arbitrary numbgr of points by a contour integral ;
similar to Eq (A-23). 1In evaluating the first term of Eq (A-22),.
enough chordwise points must be used for the accuracy which is_ !
required by the numerical integration scheme employed (e.g.,
Gaussian's quadrature, Simpson's rule, etc.). The required Va?ues
of surface downwash at these points can be calculated by inter% |
polation between the chordwise locations of the downwash contr?l |
points used in the subsonie¢ 1lifting surface solution. This set

of integration control poiﬁts for the supercritical region miggt !
range from 10 to 50 points depending on the SOphistication of ﬁheg
quadrature method. 1In view of the complexity of the logic fori

the computer program as a whole, it may be preferable to begin:

-D-—

with a simple quadrature scheme using & larger number of chordWis‘
integration points. . I

l

.This section will be concluded.by an example, for a_refined analyticalﬂmodél,.

of the size of some.of the matrices in‘Appendix B. It is assumed that five E
_layers will adequately describe the supercritical flow gradients, and that. !
it is valid to assume a linear variation with Z of sonic line initial dis- |
turbances across each layer (see Appendix C, Eqs C-6 to C-12). Then as
indicated in Appendix B, three quantities will be required to define the
sonic line disturbance state vector for each layer interface (eqs B-13 to ‘
B-15 and B-35). For the assumption of ten downwash control points on each’
side of the shock (a refined description) then Table I defines the rank order;
of the largest sized matrices appearing in various equations in Appendix B; ;
From the pattern in Table I one can easily deduce the ranks of the remaining ;
matrices defined in Appendix B. It appears that the largest individual
matrix partitions are of the order 10 x 15; therefore, it appears that even
for a refined layering model, the present method is feasible within the
sborage capacity of many current digital computer systems. This also may
include even the smaller storage allocations assigned to time-shared, remote
terminal computer systems, provided the operatio;s sequence -‘ts carefully - -
programmed. It seems possible that a respectable accuracy could-be "achieved,

with an active computer core storage capacity of the order of 16 000 words.
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- TABLE I,--- EXAMPIES OF MAHRIX RANK SIZES |

] DEFINED BY EQUATIONS IN APPENDIX B l

!

Assumes 5 layers and 10 downwash ]

|

points on each side of the shock wave |

i

. i

| 4 l

Equation Number . Number of I

Number of Rows Columns Type :

[

B-10,11 10 10 square |

- _ |

B-12 10 5 rectangular” |

i B-13-15 5 ' 10 rectangular l

—_ - - — )

- B-16-19 5 B 5 square |

B-20521 10 5 square '

|

B-22-25 10 10 square |

B-26 15 | 15 square |

' B-27-29 10 - square I

i

B-30,31 1 column |

B-32 .25 15 rectangular :

B-33 10 15 rectangular I

B-3L 15 ' 15 square :

B-35-37,39 15 1 column |

B-38 15 10 square !

!

B-40 15 15 square i

! ~ !

1

; f

i ;
“—-—--——-—\.._____.....___..-__-_.—-? —————————————————

' 1

i i !
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CONCLUDING REMARKS

A new two-dimensional strip theory for

absence of supercritical flow effects

Based on empirical evidence for steady
foils and wings, it is believed that t

for routine digital computation; will

moderately- swept.,—large aspect-ratio,-

' speeds, and will use simple sweep thec
equivalent two-dimensional freestream

direction.

the present new theory for those spanw

supercritical flow.

presented for the calculation of unsteady aerodynamic influence coefficients
(AICs). The method is valid for arbifrary, rigid body or aeroelastic defor-
mations of a wing section whose steadfﬁflow field is characterized by a local
supersonic (supercritical) flow regioﬂ which is adjacent to one side of t%e

wing, and which is embedded in an exterior subsonic flow field.

to classical subsonic theory, which i desirable. R
|

. 1
elastician. It will be suitable for Qerforming aeroelastic calculations‘ﬁor

[ ' ' |
The present report also tentatively suggests empirical means for estimating
finite span effects, using existing subsonic lifting surface theory, plus
experimentarﬁdata for wing pressures in steady flow.
: |
que. défines the chordwise and spanwise extent of supercritical flow from Qhe

measured steady flow wing pressures, dnd replaces the subsonic air loads by

unsteady transonic flow has been

In the |
the present theory reduces automati%

!
transonic supercritical flow past alir-

. . |
he present theory, when fully develqped

provide a valuable tool for the aerc-

ry concepts to define the necessary:

flow properties along the swept chord
|

The suggested technil-

I
ise stations sharing chordwise loca%ly

[
' rejected on various grounds, prior to

theory, which is believed to provide a

|
+
fity;'and‘has'the‘advantage bf‘providiﬁg‘gODd'physicaI‘Insight'iato‘thé :
t

LV?rious possible theoretical approaches in the literature were reviewed and
. i

selecting the present layered mediu@

middle ground in computational complex

-— - -

I L1

S o—— .
. P

FORM 76871-2 ~ = -~

allly

ithick-wings -operating-at -high—subsonic
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.

crucial aspects of the problem Merely by formulating the analysis by th%
present method ylelds @mportant:conclus1on3”s * For example, the followi%g

conclusions have been drawn from the present studies: |
. s

1.

. 7 '
The usual anti-symmetry of 1ift above and below the wing is altéred

to an asymmetry of the upper and lower surface 1ift forward of the

shock wave. 'These contributions must be separately calculated.:

The air loads adjacent to locally subsonic regions can be calcu%

v

lated by the usual doublet procedure, if the air loads ahead ofi{ the

: L.
shock . on the locally subsonic side of the wing.aré assigned.azfactor
of one-half, and if additionally one accounts for subsonic downwash

: - |
interference: at the wing surface caused by disturbances tranémipted

through the shock wave from| the supercritical region.

|
. » {
If one defines suitable subSonic flow field induction matrices,!

- [
based on existing theory, one can couple the subcritical and |

supercritical regions via shock wave and sonic line disturbances

—wiitch afe then capable: of aigebréicAelimination by their expréEéi&
]

[ad |

. s Lo - S s
s linear combinations of wing surface downwash; hence, it is |

possible to explicitly deriye the desired AICs required for aeré-

| [

elastic application. | |
A preliminary assessment of|the computational aspects indicates:

only a modest computer storage requirement for the present theory.
|

The use of two to five interior supersonic layers may well suffice

for many transonic flow problems of interest, where local wing |
: |
surface Mach numbers seldomjexceed 1.6. ,

) |
The layering effects in the|supercritical region are significan?,

as the impedance change between the wing surface and the freestream
. |

is proportional to the ratio of local to freestream absolute st?ti:

pressure. This can vary by'a factor of 3 for a typical local Mach

number variation in the flow field between 0.75 and 1.6. :
{ |

1 . . '
Unpublished numerical studies by the author, using acoustic methods.

.._._.._.__.____.._.;_..__.._._.______.__.__-__

have shown that for a wide range of conditions, a Mach number change

hoo T
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|
|

of 0.2 will produce a ten percent reflection coefficient for a

This result provides a simpl?jphysical basis for defining the

{
|
. . |
single reflection from an interface in the local supersonic region.
: |
| ! . |
layering criteria for a given steady supercritical flow field. |

I

The nature of the local unsteady supersonic solution is easily
understood in the presentftheory,'wherein it is expressed in the |form
of the classical Garrick and|Rubinow solution for unsteady flow 4is-
turbances to a uniform supersonic stream, times a layered medium,

multiple reflection factor, plus a particular integral term arising
from sonic line disturbances. The sonic line disturbances are induc

|
ed by ' the: wing surface airlloads adjacent to the subsonic regiqn.

I
' i

It is strongly urged that the present theory be implemented for digital compu-
tation, Since it. is ihherently well oriented towards aeroelastic analysis' |
I
requirements by the nature of the formulation. |
| |
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APPENDIX A :
_ . . : |
LAPLACE TRANSFORM SOLUTION TO THE FLOW FIELD IN |
j THE MULTI-LAYERED, LOCALLY SUPERSONIC REGION AU ‘ |
’ o [
|
The local supersonic region may be broken into layers of constant local ,
Mach number with' increments of about|.2 in A M according to the results
of studies already mentioned. .- . T?e convected wave equation in each A
region is solved by Laplace transform on x, assuming initial values on tﬁe
sonic line are given. A solution will bé described for two interior super-
sofiic layers. Layer 1 is defined by(é <7z S'Zl) and layer 2 is defined by
<. < - ,
(zl Z 22)_. . - |
The velocity potential equation for harmonic:motion is (omitting elum): :
- !
' 5, =B +2i8 M -4 3 -
RS — lyge —1 Tl S L OX af—= — (A=1)
1 = i |
- [
The surface boundary condition is !
. !
—_ — I — —iUJ't !
¢lz (%,0) =W (X); W (X) =W _(X,t)e " (2-2),
!
!
The pressure continuity at 72 = Zl is: {
|
i
- B+ ip) = - ) TN -
Py (Uyyy + 10By) = -P, (UpPyy + 10) (4-3)
The streamline slope continuity at Z = Zl is: - :
1 = N s
=& (X,2,) == 9, (X,2) (A-4)
Ul lZ l U2 22. 1
. —— . i"-l~5'j
r*’;KHF-s-_C; ; L___P::



Where ¢l and ¢2

I

I

are the velocity perturbation potentials in layers 1 and: 2

separated by an interface at Z = zl (see Fig. W‘i) |
[
- _' Extended) /7/ Umdim M = Uw/am <. 1 :
Sonic Line - =~ 7 v . 5
‘ d = M = 7.
= 15,75, {Shock My = Up/2p3By 5/, 5<1)
—~ Sonic d/ 2, ! Wave 5 5
Line } T > 6, ! Zl M, = .Ul/al,Bl_/(Ml 1)
> .

Fig. A- 1 Two Supersonic’ Layer Model Bounded by an
External Subsonlc Free Stream

|
|
]
|
|
|
I

We next Laplace transform Equations !(Al-Al)"with respect to x and obtain

C 5 | . |
s
p

¢ (s,2) = -
— - T N —_— N - L
5. 2 ! .
1K B =G () (A-6)
WA |
. -KF, =T (s,2) E
2 2 o T T2 VP (A-7)
| zz i
l
‘ where N
| .
| _ ) g2 (1) (1) s (1)
| Gy (s,2) = - ;Bl (sczsSL + ¢X,SL ) + 2iw M ¢SL (A_g‘)
. a4y ' |
|
5, (6,2) = - 5.2 (0,2 g, () 2wM¢(2)'2'
p \8»2) = s x,8 / * el (2-9)
a
. 2 . i
2 22 u) 2"
Kl = ;Bl ) + Llel al/S - UJ"2]- l (A-lO)
. a . <-
.1 ‘
R 1
2 22 [ . 2 -
% %Bz v | Bnie)s - o] % (A-11)
- 2 as” |
1 2 E . . ¢ ks -
Here ¢éL)', ¢X(Si’ ¢é£), ¢)E(S£‘ar?'th'f sonic line (imitigl) values of : T
velocity-potential— and*streamwrse—pe‘rt’urb‘at‘i’onfvelocity at the sonic
46 .‘
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|
line for layers 1 and 2, respectively. :
!
- : . ]
The boundary conditions are Laplace ftransformed as follows: At the airfPil

surface i

Elz (s,0) =W (s) (A-12)
|

At the first interface, pressure conginuity yields i

n N '
N (Uls + iw) 5'(s{?i)= P, (Ués + iw) ¢2 (S’Zi) (a-13)
i
At the first interface, streamline s}ope equality yields I
'
o0 §,Z,) ==&, (s,2,) S (A-1k)
Ul lZ 1 Ub ZZ 1 |

Solutions for ai (s,2) and aé (s,Z)'Fatisfying Equations(A6) and (A7)can:

be written | - !

——syz)—= Cl-eosh—QKIz)-+-DI—sinh_QKlzJ +;5f:I_Q&,.z) —  (4-15)
| o [
z =% for (0 <Z< Zl) I
i I b
; _ A . "v“_:_
! '@é(s,z) C, cosh (KE%) D, sinh <K23) 55,2 (s,2) (A—l6)

|

|
| |
= - < <
z =7 - 7, for (Zj__ z < Zz) | ‘
1
|

Solutions of this type are written for each layer, except the diSturbancF

to the free stream is of the form ! |

l !
B, (s,2) = Ce ="+ §.(s,2) (a-17)
| N .
where QA
} z =7 - Z, (A-18)
;
— — _ _; w7
GKWEED -
N 4



ak(s,Z) can probably be regarded as a

If M, is subsonic, then Bp=+ 1 Jl—ngj and K obeys rules of complex

variable theory. We imagine the inig

theory) on an extension of the sonic|line (see Fig. A-1.). The

coefficients {Cl C2, Dl D2"'°CN’ DN’

satisfying the surface downwash conditions.

The solutions, {5} k}’ are particular
b

homogeneous RHS of Equations(A6,A7, etc.).

<?f,k:éz B Kk2‘5

narrow layer (Z,. <Z <12 ) based on

k1l —

the sonic line from subsonlc theory;| therefore, solutions to(Al9) can

easily be found.
}

The Lapiace transforﬁ for the upper ‘surface lifting pressure can be

written in the form

5 (5.0) < By () B (,0) + By (s0)

o ' '
wherelAﬁ'GR(s,O) is the Garrick and R

s

[  goR
S (s,0) = -0, (U
and 'M¥p . (s,0) is the additional sur
, 3
disturbances.
|
i
Il

l
|
|
|
|
l
]
boundary conditions of the form(Al3)| and(All4) at the interfaces and by |
!
|
|
|
|
l
1

l 1

ial conditions given (by subsonic

-]

C } are solved by applying the

integrals satisfying the non-

(s,2) - T, (s,2) (A-19)

constant or linear in Z over a

|
|
|
a curve fit to induced velocities on
I
|
|
|
|

1

(A-20)
ubinow solutlon o b
. Wa(s
s + 1) J20) (a-21) |
1

face pressure caused by sonic line

!
i
!
D
!
!

The oscillatory surface pressure is obtained by the inverse Laplace oo

transform of (A20).

GR -

~ X = - -
65 (xp) = [, Ey (x-§) 8p (§0) df + tpp 1 (x0) (A-22)
R - — - - L
43 :
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Using the convolution principle (Ref 42), the function ‘Eel(x -€) is given

by the Laplace transform- 1nver81on—t1'r1eorem ’ ,

The inversion,ﬁintegral(Aﬁ23)is evaluated along the indented contour

1 - | c + i ‘ . I !
:E_Zl (x-8) =57 ','E'ﬂ“(S)_e‘S('}'{'-‘?)_d's (a-23)
g c - i® B

|
|
!
S J
shown in Fig. A-2. . |
+f.lSI [
i
- |
|
|
> Sp :
Roots of - | T
|
I
|
|
3} Lo
l _ - {
" l 'S ¢ = S
Branch Po:.lzté. | (s 812 k,2) :
- Definéd By: :, .. =0 =/ '
Bys oK (s=5) 1)(s=5 5) i
., | | |
It can be seen from Equations (AlQ &".All) that Kl2 and 'K22 are quadratlc;s |
in s; therefore, one can write ' ' |
I !
Kl=+f(ss 1) (ss 5) (A-24)
-
K=t/ (3"32,1) (s-55 ) (a-25),
:
U S
' |
- S
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A o

‘for the special case of two supersonic layers bounded by an external sqq—

and similar expressions for each layer. It turns out that the branch

!
I
points (s = S, 15t séé)”lie on the imaginary axis for all layers which ar?
b At

locally supersonic, and for locally Fubsonic layers, the branch points i
are symmetric about-the’ imaginary akis. I
| | |

. ' ‘ |

The integral(A23) may be evaluated by the calculus of residues (see ReffﬁE)
to yield ’ |
1 N |
o 53 (x°8) o ‘
E (x-€) = o qeom | % Res1dues E2l(sj) i
Jj=1 STl [

A-26

I } S(X_g)N ( )
-% e :
k J Segk :
|
I

The last sum in(A26) represents the Fontribhtion of all the line integrals

) over various path segments shown in Fig.A-2. It can be shown !

of E2l( ; |

|__that Egl-(s) is single valued everywhere in the complex‘s plane, _except on |

opposite sides of the branch cuts (llpe segments connecting branch p01ntF
gkiﬁgniﬁgka for each layer). . It also turns out that the integrals |
aro&iﬁegﬁall circles surrounding the' branch points vanlsh and E2l(s) is|
an even function of K (or Kk in any layer separating adjacent superson1%
regions k and k-1). Therefore, the only line integral segment contrlbuﬂ
tions to Equation(A26) are from the first layer and the last layer '

adjacent to the subsonic free stream. This has been rigorously proveh |

sonic free stream. i

The first sum in Equation(A26) repr%sentSfresidues at poles of Eél (s)
with contributions from each layer. @él
( numerator /denominator) and the denominator has the -form

(s) can be written in the form

’ﬁE (s) = {’1 - ’ﬁ (s) ten.h (x,2 )}

COCKAEED L.
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. : . | , : b
7| The required poles are zeroes of Equation(A27) which are countably infinite.
|

Contributions from outer layers are contained in H21 (s). i

|
i |
- It is thus seen that the Laplace transform solution is equivalent to a |

multiple reflection solution but provides a systematic computation procedu%e;.

(.

"Special Solution for Two Supersdnic Layers Bounded .

by an External Subsonic Freestream

In this case

By () =N (s) L
i _ﬂgl___ , A
5.l (s | (a-28)
j2l :
where ﬁEél (s) is given by Equatlon(A27) and :
| : '
"1:‘” - T 211‘(— ()~ T T (a-29)
J o (s) = {ﬁEIl (s) = tanh (K2 1)} N S
| | 0 ((Ups + iw) U Ky P
> _ . ,
| 21 (8) = 5= Mo+ 1) 0k, | (a-31)
| - {Zeo 2 tanh (K, (2 -zl))} |
Ey(s) = (A-32)
JLil * ?Z'°°.>2 tanh (K, (2,2 1))} b
~and ) — ' ‘ l
ER | S P (Vs + 1) UsKp o
0,2 ' (4-33)

[ .
: !
The quantities Zoi(s) and 4n 2(8) are, in fact, the Laplace transforms of

i
|
the impedance ratios across the first Fnd second 1nterfaces. In evaluatioh
of Ke for the case, Mo < 1, one substitutes into Equations 1like(AlO) and

(All)and obtains: | - !

m ke em e e e em e rn e e e A e e e e e e e e e e e e e e e e e
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B 7 | | . | - 25u89"j

A T ,
- ‘. ' 5 |
2o {52 6?4 o (s -2} '
Ko~ = 31Bew s° + {2Mg (aw)s a—cog , (A-3L)
_| where T '
— : 2 2 l
BZ = - Bo"|= - (1-Me") ) (A-35)
.
| !
|
|
|
|
|
|
T
| |
i
i
|
|
|
|
|
. ! |
‘ - - -4 - — = — — +
|
|
1
!
| |
|
I
|
|
{
|
|
| i
! i
! .
¢ !
| !
1
i i
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| REPORT No. |

L

Let the subscripts A_and (B, B, A

U
associated with the local supersonic

(see Fig&fe B-1).

APPE]

L L
And subsonic regions, respectively

|
)

|

1

|

|

|

|

|

|

OVERALL ‘SUBSONIC/TRANSONIE LIFTING SURFACE SOLUTIONS |
' |
|

|

)

|

l

|

|

|

|

\DIX B

dencte, respectively, quantities

-

-~ Sonic
Line °

e

~ Figure B-1 Desighatiod of hegions of Locally

- - Sugsgnic andeogally Sgpersoniz Flow B i ]
- ~ !
e - ‘
[
|
- !
| ]
The local supersonic velocity potential and lifting pressures are then !
expressed as: :
hy Ay |
|
| o' =l o, U+, (B41)
‘ z I
! A A
U U 1
| Po=| ey *Pp (B;2)
A .
t .
53
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|

Where H denotes the homogeneous solution (due to the prescribed surface
downwash) and P denotes the partlcularllntegral (due to sonic line
_|disturbances, as discussed in Appendlx A). ¢ Ay and pAU include .-

[ —

— all of the multi-layer reflectlon effects discussed prev1ously

= |
{We next descrlbe the surface downwash ' in the chordwise regions adjacent
to A and B by column vector matrices ™ W } ‘and {W } It is assumed that one

has available a suitable subsonic kernel function/vortex lattice collocatlon

type solution ‘for the lifting surface pressure of the form

~
(o]
~N

|
|
|
1
B-3)

In the purely subsonic case, the A and B distinction is omitted:

- TR (o) o

(7
]The solutlon-for—{p- 1n-terms—of—1Wj-rs» -
!

| {}[]{} (3-5)

‘where . -1 , I

- e [ i (3-6)
, |

The object of ﬁhe ensuing aﬁalysis is to replace the upper surface solutioh

1n region AU by the results of the local supersonlc solution and modify the

“local subsonic lift distribution to acFount for the interference in Reglon,

i and AL~caused by the presence of the chal supersonic flow in Region AU.

1 4-‘ . i
!

As a first step, define the lifting pressure as the difference between upper

|

rand lower surface pressure: § i
‘
1

'
¢
{

»= (3 - 3y (8-7)

5)_', ot T o — '-__

s iz e =
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-{In purely

L1

and

When super
iof the 1if

upper and
of the upp

It is stil

regions B

‘however, t
e

'ftheoreticai values—(required—by—definizion—to-match the-motieon downwash -k -

“Three dist

‘ (1)
i (2) .

i

(3)

.~ —— - wave compatibility relations., .suitably .expressed in terms. of _the!_ |

AL and BL the lower wing regions forward and aft of the chordwise location

subsonic flow, 1 -

)

- P (B

b, - 2P = -2py (B-9)

I

|

i

I

-8

[

I

I

J

o 5 -9
|
. : 1

critical flow 1s present in Region AU, this anti-symmetry properFy
ting pressure is destroyed, and one must calculate separately thé

-
lower surface lift contributions ahead of the shock. Let us call
l

er wing surface shockwave location (see Fig.AB;l). |

' {
1 possible to calculate the 1ifting pressure in the subsonic ;

|
he doublet strength will be changed from its original subsonic |

inct sources of interference| downwash arise:

The loss of one-half of the original subsonic doublet strength

|
!
|
A change in doublet strength! on the subsonic side in region AL.|
!
!

contributed by the upper sid% of the wing in the (now supersonic)
region called Ay :
The addition of an interference downwash along the airfoil surface
in AL’ BL’ and BU due to disturbances transmitted through the
shock wave. These disturbances can be regarded as caused by a

!
]
monopole source distributio% distributed vertically along the !
shock wave front whose strength is everywhere equal to the com- ;

1

|

ponent of velocity normal to the shock front on the downstream

} f

1 : i
side (allowing for the possibility of a curved or oblique shock;

wave). : fo
The strength of this velocity is given by Landahl's (Ref. L) shokk

U\and BL by assuming an anti-symmetric 1lifting doublet distribution;

i -

TTDEKHEED
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1
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. | » , I
local supercritical solution (given by Eq.(Bl)) and evaluated on

the locus of the shock, (XSHI (Z)). on the upstream side. :

The final form of the lifting pressure solution will be similar to Eq. (B5)
I
I

[o] I{ AN P {WB} B <B-;1o>
ERS I I .

in format:

P,
Lo
=
S
1]

. . : . i . - !
it 1s necessary now to describe the matrices in more’ fundamental terms. ;Fron

Eq(B2) one can write. the supers_onic region surface pressure as: I

(- B -6 o) Bl [ o

where {USL} ) ‘I{ WSI} are the X and 7 velocities on the sonic line L
(at—each-layer -centerline)—due-to subisoni-c-d:’:sturbances—and——[[Q-P ML-]-J Q;;Ng'-%- -

~—

T

N
29 3

are the induction matrices for the efifect on surface pressure due to the |
particular integrals arising from the local multi-layer supersonic solution.

| G M -

The term '[égm-'] '{¢SL\] recognizes phase differences in velocity p:')t‘enti:al
[A A |

along the sonic line. I !

, K

i !
The sonic line disturbance potential land velocities are expressed in terms
’ t
L
{

of subsonic induction effects :

\ [ 1 7 A [ T i
S I A R | xsu| [ B B N
{USL} - _Ko,A_‘ _{2 (po + bp )}j " _K'O,B :If;{po " Ap} (8 lls)
. l
e A B " \ !
el [.zsu| ] LA hf ZSL] B B} }
o} = [x22] {3 Gt v o [ 257 {52« 7] (B-1b)
1 . ¢st] { L( A AL)? T ¢SL:|—{ B B ;
{chL} = _Kb,Z__ {24&‘ b, bp -;”+__Ko,'B 1% + Op ) (B-15)
: g . {

A AL, | B | . N
In Eqs.(Bl?,‘) 7a_r_1d(Bl’+) Ap 7, Op represent the interference loading in , |
the subsonic local flow regions AL’ BU, B. due to the presence of locally; J’

supersonic flow in region "- AU on the upper side of the wing. The factor

56 ~ R
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1 I

|

through the shock wave ]

'Equations(Bié)g

I
1/2 multlplledby{ p + Ap L} accounts for the local supersonic region

Sourde distribution).

[y

Next consider the disturbances transmitted from the supersonic region AU

- -
by DUl | sE
t’ su T L'BA )’

- BU'_ [ 2,81
Vsm 1= [Tea’ |}

. BU} —¢X SH{ AU} ¢z,sz€{ AU} ¢¢,sﬂ{ a) ;
_{¢SH (= [Tea 1Y%= [~ [BA JWsm [ " [Ta %su | .

. . |
%Q(Bl8) represent a generalized form of Landahl's shock !
|

For a given shock

compatibility relations for curved and oblique shocks. :

geometry thé normal ve1001ty on the downstream side is

|
i

[ !
N SH FSH
{ SH,n } F J{ SH ] SH (-19)
o .- % 2 SsH _* SH
where- Ny = 1n - + kn is Fhe unit normal vector to the shock

|

front. |
: |

!

The surface downwash in the subsonic regions induced by the normal velocity
I
(source distribution) on the downstrﬁam side of the shock can be expressed

t

in terms of suitable Green's functioqs: 1 i

[ su) [ wal{ g1 T/ wall By l: wK{ BU} V b
_ U , -20)
'_{AWAL"} = | PussH_ { Ush } * _GWBSH_Jf_{wSH } *'|Ssen ]| Psn (B-20).
. | , i

{ suY T ws] | T. ws]~ 1 [ ws]| ) b
= By ' By ! i By ‘

‘_{AWBL } __L_GUBSH_‘ { Usk } * ‘_GWBSH J‘{WSH } * .,v_GQDSH _J‘{{%H } (B’;Zl)g

I

| |

D e e e e e e e e e e e e e e e o o e e o)

] '
et

b o4
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{ SH
o AW
N BL

doublet loading satisfy:

summarized as follows:

T By
SH
BU
Usy

B;

Wsn

¢

A

Lo J.
} "f .
"% |

The terms involving { } Egs. (B22)
are transposed to the left side to yleld

() - () T3 [ o
({ou - [ ) [ {) T o) o

Now it is necessary to express {-AWALi } {-AWBL }
combination of ( Ap L} { Ap

o) o ()

- . , ’ BB] | |
L {%(APAL - |poA)} + L K, J_{APB}

-

W

sH ) -

and (B23) are known and, therefore,

I

—(VBecauSe of Egs.(B3),(B20), and(B21), we require that the modified subsonic

SO - AT )
'{%(APAL - pOA)]> e {APB}

}

!
)
1
|
i
i
)
2

|
|
25

!
in terms of a linear!
plus other known quantities {,TpoA} ,:
Flrst%~Equa%ions(316%;(Bi797-and(BlBé—are*-—

!
!
(3-22)

!
|
(B-23)

L)

)

l
|
|
|
: |
o= o BA ] Ay (B-26)
|
!
!

o . | .
From the local supersonic multi-layer|solution, relations similar to Eqs.KBl

and (B2) may be written for any local supersonic quantity.

may then be evaluated on the upstream

follows:

{s

ﬁu} :;[GSH?X:I'{WA * AWAP} * { ’p SH}

side of the shock and expressed as

These quantities

i
(B-27

|

i

i

!

.)‘

-




[ 1
- , |
‘lUAU‘. —TGUWT I s B) o+ fut ) (B- I28)
| su f 7 [ PsHai]ta 4 Ta | "P,5H ] :
| ' ’ ’ - B - |
- - [
| A w | | 1 . Ar ) I
Ay ' g F )y Au Y
= A\ B-2
- {WSH } Gsn, A | { Mo ¥ % } * {)WP,SH}( (B-29)
- o y i
, |
where from Eqgs.(Bl) and(B2) one can éefine ‘
|
. A : - Ay )
; : R S - Ry R
. L. I
A U PR ¢ -
Ul_ ] 3 " y#(
{ Wsh ]‘ {az (Xs'H(Z))}L (B-31)
A - : I/
. '? P Ay AU
Next, by analogy to Eq.(Bl2) one can express WA > b5 1’ WP SH’) P SH
M
as a linear combination of {’¢SL’ USL SL} Let us define a partltlongd
matrix relation. '
, . t
i 5
S B - — - S H S S
! [ ® ) [ o var T WA L wAP ][ ) ,
! A #SL USL WSL o |
f A, | ’ / " I
| s 0 ¢PSH (OPSE  9PSH : |
% P,SH Tost, USL WSL J > |
i = | / U
o B-;
b A [ [UPSH  UPSH LUPSH SL (B-32)
P,SH ¢SL iUSL WSL I
A . .
U WPSH WPSH WPSH W
| Yesu ) L T¢SL TiUSL Twsz ] | Ysu )

It is convenient to introduce shock front and sonic line '"state vectors

such that:

LOFKHEES—

s

(o} -

[ I é] {- SL}
{50PSH} [ H:HSL}

1"

|
(B-33)

(B-34)
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3

!

1

vector'”

1 where the "state veetors" are defined as

Eqs.(B27) to(B29) can be regarded as [defining a total shock entry "state

——

" From Eqs.(527) through(B37)

[ .

i A T AfSH ]

‘ ‘{OSHU@ = I:GWA ]{wAg * f[Tsﬂ
f ¢ 1 . ~ i - i
{

One can rewrite Eq.(B26) in terms of

( A
1o 0

SH

=

Ued): 3l

a downstream shock "state vector"

(B-38)




- : 1
Equations (B13), (Bl4), and(Bl5) can be| rewritten in terms of a relationship

between the sonic line "state vector'| and the subsonic doublet loading

}
|
‘ I O 57 TL( AL, AL)‘\ e stlfe +A B) (B-Ll)
1%L T | %,a ZPF P T T, 1P P:) ;
, A . I
One can by analogy to Egs.(RR), (B7) “through (B9) calculate the upper surfac

pressure in region AU in terms of the sonic line "state vector" |

- | :
A . Ay ' 7 A |
{ b U(Z=O)§ {P - } ”[ [JJX{WA + AWAP} + {pP SU} (B_f_pg)
% <: ‘ t 4 j /,

. t
By analogy to Eq.(B32), the surface pressure due to the particular integral

in .the supersonic region may be ertten : |

BLERTR

Egs.(Bl42) and(BlL3) combine to yield:

T BRI

Equations(B20) and(B2l) can be rewrltten as

- 76512




I Ay
7| Substitution of Eq Bhl) SL} in Eq.(B4kL) ylelds ;{p

of ){— AP )} {APB'

(B-46Db) ylelds J{AWAEH, AWBL }as a linear function of {

* ApAL)}
- j{ ApB} Thus

1

Substituting Eq.(B47) into Egs.(B2L) and(B25)

{3

linear matrix algebraic equations for
.. These results may then be back

as functions of {2poA} and {p }
substituted to get {p (Z= O} the upper surface supersonic pressure

as a linear function of {W

‘more compactly as

WASH_l
AB I ]

w0 =,
£
|l_1
—
OW
o2

&
L

-

WBSH |

L¥a

)
J
—i

T QY T e

[ €]
. .-t_‘_ e

—_—
|
QW
>
L

|5 _][ - F_EGSL._?

I

(Z=0) f+ in termsl

Substitution of Eq.(B41) for { SL}? 1n

3

|
l
N
I
|
|
|
|
}

(B-L7)

leads to a well posed set of

+ Ap )} and {(\Ap )} expressed

s 2P 5 Py }' Eq.( BLL7) may be expressec'i

— e }+‘—

!

(3:49)

7\



-

| followin‘g form:-

Putting Eq.(B49) into (L) and(B25) yields

[l {ae, 05" + [

S

) and(B52) may be written in the

I )

2l LM
o [“‘]{Ae% )7}
[ XBSﬂ£%(PO + Op )} [WBSJ. A

[ ™) - [}

The quantities {pOA} and {_pOB} are| known from the subsonic solution
(Egs:(B3) to(B6)); therefore, Eqs.‘(BSJJ

3[R ﬂ@

]
!
|

I
(B-H1)

A

(B-52)

,r AA:, %pOA} FAB] { ) JE/TASI] { (3-53)
. —+ A
P [0 - T} TR T} e
}W ere - —- !
| h [7ul - [x AA] - [ o
‘ [%] - B - Tzl o
, 4 T “] L] .
| :[/\‘ ABj _ lLKAngSH:] : i
[mad - - D] ( ?6)
_ - ,__ B-5
___________:—Z?Bfﬂ_l_i_@‘f;]_;_‘_KB@ASLH_]__ ]
‘ | . ;63 "
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: : 1
[ I A IO e A

| '_ZA‘BB. _ J:K],Bsg'BSHl :
I

l

Egs.(B53) and(B54) may be more compactly written as:

] T~ 7., ALY - - WASH 4
=0 1 Swa b
S I i St Sl P + s | (B-57)
ApB { WBSH | |
- = - w— - - GWA PO B\ :
Solving Eq.(B57) yields finally the subsonic local flow interference |
.o ] . l 7
pressure increment due to the presence of the supercritical flow region
A; on the upper side of the wing.l _ |
Tm E . — T .I : o
-| JWASH" ’ 1
| \
“a + P?WA Jw L/
H— == - (B-58)
WBSH PB |
_ L I,WA |

DT G A A D AT fv‘q ~—

The interference pressure is §een to be proportlonal to the basic subsonlc:

i

~load1ng_computed_by_clas31cal_subsonlﬁ_kernel_funct1on_on_vortex.lattlce__p J_\

vtheoryaﬁplusvanfincrement from the local supersonic solution.

T— - . —— . 5 .
e . B ;:

1

|

|

I

Local Supersonic,Upper Surface Pressure . L I
. o |
I

1

From Egs.(Bult),(BL1) and(B58) one can write the local supersonic pressure

1n the follow1ng form:

H{plu(z 0)} [ i ]{WA}

—




—

—

U(z=0)} =

|

. ) |
and substituting(B58) in(B59) yields:

_ SL (
0,B |
The separate contributions of the subsjnic loading and supersonic downwash)
‘can be collected in Eq (B6l) to yleld :
K _— - . N i
}AU AU "R Al [ P B )
(2-0) =\ v PN T R P EV S (S P (3-62)
| { Jun [1') 1-35%. o) et ) :
1
where |
1 |
|
(B-63)
) — b
|
|
1
(B-6L
|
|
and(B58)is further partitioned as follows
!
i
| PIA PIA'A '. PIAB i
B S (I __:_ _ (B-65),
| B BA BB !

Lifting Pressure For

ward of the Shock Wave

‘The lifting pressure in the region A forward of the shock can be obtained
.from Egs.{B7),(B58) and(B62) as follows:

e hm e— e e e mm e e = o em em e e e e mmm —— — e m— e . e e e ae ae e e e e e e e
t L
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l\)h-
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f—l
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W—’
.' L ,_ll
. :U '
o

o
S——~—
L
H'.U:J>
=
’.J\

:1>E:
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-—._._.. B . — e —— . Z :'tﬁ? \ i

T 7 /; Al T E5E ]\ |

VP ‘=IIS1 s M - el S ) B69)
_i AéJ (g Eﬂ L] é i ?Ség : / — : ( b

P
Mol
&
L—or
{
P
L
DA
- g'
—
o3
&7
S~
-
LS
e

Using Egs.(B3) to(B6), Eq.(BA8) can b% put in the desired AIC format . -1
described by Egs.(B10) and(Bll) as follows : : '.
H

i ek

TRETE R R
G SR M)E T e

| —
l

. |
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‘and

- -

Therefore, the desired form of the aer

coefficient, is finally obtained as:

169 - B2

where from(B71)
BB ] Belfs]
RCAENE

G Ful [ - Rl

]

odynamic loading influence

‘where

Lifting Pressure Afit of the Shock Wave

(1n these purely subsonic reglons) can be calculated:as follows:

-4 -p} fo> - o)

=7 7 T ma
;‘I:P_BA:] - ?PI :l

S Tl s )

01 £ LI BI)
bt Pl bR
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|

Expressing Eq.(B76) in terms of downwa,
ATC format

~q

o

{

i

Bq.(BS5) and(576)

B e

where from

and

given by Egs.(B10) and(B1ll):

- BY

I

B0 Fud o] Funlle]

I

I

sh via Eq.(B5), yields -the desired J

!

l

. =T . ]

+ + |Q v 7

ARREN'
T B g

(B-79)

(B-81)

subsonic and supersonic regions caused
through the shock wave and the sonic 1
perturbations of the classical subsoni

[]

coupllng terms (represented by

E%is U.]

downwash effect

!

Thus, Eqs.(B79) and(B72) display the 4

| ATC's_with_proper consideration_for_the

T BB B o

esired form of the pressure/downwash
: sh

interaction between the local

b
by transmission of disturbances :
The resultant AIC's are ;
c AIC's (represented by [épéjs plus
) plus the direct supersonic surface ‘
I

ine.
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APPENDIX C

)
|
|
]
(
PARTICULAR INTEGRAL REQUIRED BY THE LAPLACE TRANSFORM ]

SOLUTION FOR THE MUETIL?YERED SUPERSONIC REGION :

| |

In Appendix A, it is shown that in each supersonic layer, the velocity ]
potential obeys the following non-homogeneous ordinary differential equatién

|
in z after performing a laplace transformation with respect to X. In layers

() - |
P ,(s:2) - K ¢P(k)(s z) = G (s,2) (c-1)
where :
: |
K < (Bos + [an ';i”' : o/, \) 1} G
| : l : L
_ - Bk :'/%2' 1) if M, > 1 — o ‘-’(0;32?/
. 1 '
- i, 2% _ . . ' : ,
B = A/(1 - M) = g, if M <4 | . ,(c:-u)g
‘The functions&%i(s,z)xérisé.fromfiditialfValuesAoﬁyé(g)and ¢(k) (on the' sonic
line). & 8L : |
. ‘ |
G(s,2) = - (3 (sogy) + ¢x,;§) ) + 2ilufa,) MaSy 7 (cs),

" for a narrow layer{Zk:l SZx< Zkl/' jand can be interpolated from numerir

‘values are obtained from subsonic theoiy as indicated in Appendix B.

. < < - :
Therefore, forSZk_lA—/Z4;A%k), let |

(k) k)

It will now be assumed that the initial values¢SL and¢§,SLare linear in Z :
4

cal values at discrete points{%ktk?l>é,--7yml These discrete numerical !

_—

N



- where, . i :
I
/ zZ = (Z' ’ k l) (CI:-?)
- ‘ |
~Then, Egs (CL,C5 through (C7)imply :
+4 . (x) , 4(x |
] ) Gko(s) = - {B <S¢SL( x %L ) * 21(3L)ME¢§§2} . (?"8)/
T () = - (82 ( ¢S(k) ) K el<nL)ME¢(k> - (¢-9)
51 - [
‘ Y ; |
i and where the linear approximatiOnS'miﬁgé)and ¢§%§L are :
o) (z) = (k) (x) !
209 (g = @ | 6 g
¢x,50(%) = ¢X,SL‘ +l¢x.’SL:LZ ' | (?-llla)
' - k (k) :
| ) éL\) - A (c-11b),

! ‘ . !
Note that ¢( )can be get = O on the @irfoil surface at the first layer;
however, flnlte values exist for the other layers for transient flow. Nex%,

,cons1der solutions to Eq(C- l\,w1th(C 6)subst1tuted for the right hand side |

| o
L SACORE & ¢P< ) =G () v 2 (o) (¢-12)

Q- - {

[

|

The general solution of Eq(CrIé)(or C-6) obtained by the method of Varlaﬁlon
of parameters, is (Ince, Ref 43~ p. 123) '

. 35 (s,2) - ¢(k> <k)(g> G, (s,0)

| 5,
oé A (¢H ¢H )

é )(S Z’ﬁ/[\ ¢(k)(g) G(s:6)ec

where the homogeneous functlonE‘ege_geglned as solutions of Eq (C-12) when
70
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FORM 7681-2

-~

] l
‘ 7 Ek = 0: [ :
: gék) (s,z) =|cosh (Kkz) (c-1k)
1 |
) |
: ~(k) = (sin Z c-1
®5, (s,2) =|sinh (K 2) ( 1|5)
— ~ ~ |
— A(¢H s By ) {s the Wronskian determinant: |
, 1 2 _ )
~(k) ~(k)
~ ¢}(Il) °H, :
=l ~ ~ 1164
A(¢Hl, ¢H2) d¢l({rlc) d%({z) (c 1lﬂ,a)
I dz dz :
cosh(X z) sinh(Kkz) !
» k 8
i K, sinh(Kkz) chosh(Kkz) (Cﬁl:6b)
|
A(ng, BHQ) = Kk(coshe(Kkz) - sinhe(l{kz)> (Ce‘-l:6c)
. |
o - - “iE - - (eT5d)
|
Therefore, for any arbitrary —ék(s,z) :
~ -cosh(K.z) ~
55(s,2) - TKRJ sinh (k.¢) G (s,¢)c
0]
rz : +‘si;in111(Kkz) 2 . ’ |
/' > T cosh (KkC) Gk(s,g)dg (C-il7)
’ For linear approximation to Ek(s,z),;(givin gy Eq(C6), one obtains b
~ -cosh Z) ~ . —
S ¢}1§(S,Z) = ——I;}{!z& Gk(S)[COSh (Kkz) - l:l|
o L. -
.3 I
¥ +Sl[’%l’?(zkz) Aék(s) sinh (KKZ) :
SRS l
- —I:tk- {cosh('Kkz)f sinh(Kkz)gle(s)dg} :
____________ A S
""""""" + = [(sinn(k, 2)f* cosn(x,¢)cG, (s)ac} (c-iBal
. K 40O T 71
?'T.;_t)fC'f(q‘E.'ED“ = 1]
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+1
—>

| REPORT No. |

L

i 6 (s) BERAONS
R = —2 (-1 + cosh(Kkz)“} - {1.(s,2) cosh(K{{é) _
2 — 1
_ & B |
] - Ee(s,,z) sinh(Kkz)} (:C-ISb)
— ~ ~ |
The integrals, Il(s,z) and Ie(s,z),lare defined as I
I,(s,2) Efo ¢sinh(K ¢ )ag (c-19a)
'52'(s,z) Efz geosh(K, ¢ )dg (c-19b)
. I O i
|
From elementary integral tables | l
El_‘(s?z) = _(Kkz)cosh(Kkz)-sinh(Kkz)] (Cc-~20a)
- T
and | _ HV . ;
I,(s,2),2 ( Kk&)sm(_lik_z_)_-co_sh(xk&)fq(c-QOb)
v -4

- - 2

Substituting (C-20a) .and (€-20b)

~ (%) Tk,
o
S "é s) .
kl '
k31

¢ - R . e
FORM 7681-2

|
1nto (C-l8b) yields | ‘

—{ -1 %k coéh(Kkz)}

-smh(lKkz)} -81nh(Kkz) [1 cosh(Kkz)

{cosh(Kkz) [(KKZ) cosh(Kkz) I

+K,2) S1nh(KKz)] ¥ (c=21a)
|
Eq (C2la) may be further simplified to yield f
e 3 % (s) v
| 55 (s,2) - o o (a1 MRt )
S,2Z ——- + cos Z ik’
________-___________Iiw ___fk _______ -
-51nh(Kkz)} (cJ'-;z,flp)
72 -
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Eq(C22B) represents the interference @

- Eq(C21b) represents the function required by the multilayer supersonic

l
|
solution defined in Appendix A. Appéndix A also requires ¢( ) and ¢é52 : '
‘ > {
‘ _ ' t
_| evaluated at z = 0 and at z = (Zk - Zk) =z, |
- : |
. . I
_| First, the derivative of(C2lb) is |
|
| ( ) I
k [
°%2_ (s,0) g () |
aZ 4 P,Z }
5 (o) ()
' 1
= K£3 {K_ - cosh (Kkz)Kk} (C-22a)
' i
= (s) 5, () |
(k) ko 1
s (s,2) = sinh (Kkz) - {1 - cosh (Kkz)} (C-22b)
K !
k

e . —

ownwash due to the(%articUlar integral

FdRM 7681-2

in each layer {Z k =1, 2:N}. At z 2 0 one has from Eq(CEib) : i
ZSNaz=mEo (c-23)
|
At z = 0 from Eq(C22b) implies | I
o) (5,0)| = 0 (c-24)
|
At z = 2 = (zk Zy. {)Eas(C21b) and(C22b) yield ,
P ( ), ;
(k)(s,zk {- 1+ cosh (K Zk) ] '
]%( (s))
- 13 - (K.z) - sinh (K 2 )} (c-25)
L i
N R
73
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ND 0 —
( )(s zk)- Ki siﬂl(Kkzk> -

{1- coshv(Kka)} &0-26)

O— - - -
H

The(@uantities definéd by Egs(C23)through (C26)are needed for evaluation

e layer interface boundary conditions défined in Appendix A,

Particulafjlntegral for a Subsonic
7+ Exterhal:‘FreeiStream Disturbance
I
The Laplace transfarmed disturbance potential is governed by

e e e e i e e e e
, o

1

o

-3

g

8p ©)(s,2) - 2 o$)(5,2) = G (s,2)
2% ‘
where 5
2. 2 .
_ Ko = (B2 & oM e (D) s_= (H5)) -~ c-28)
! , |
and, in general, ’
5 o .
B® =M -1 Mo > 1 (c-29)
2
= -Bw_ 5 Mo < l)
IJf Mo-< 1 it is assumed that initiai value disturbances are defined on an

outward extension of the sonic line,rgnd are related to subsonic flow dis- |

turbances in the manner described in Appendix B. If Mo > 1, then no .

initial disturbances need be considered; therefore, the particular integré
is non-zero only when Mo < 1. by
b
The right hand side of Eq(C27) like Eq(C5) is given by f j

P
G, (5,2) = {8 %(sp, ™) + L8]y + 21l wagl)y (c-302)"
____‘_______________‘_S____(SL ______SL _______ e
- i
7h
» 13)Ci(ﬂiﬂ?ﬁ” - ) [:::]

>

FORM 7681.2
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where for N interior layers

Linearly independent homogeneous solut

(oo)(s 2)

1

e

~(°°)(s 2)
[

K w2z
e

‘T“j

2
= {pe= s¢§°;) + o, =)y 21 (5 )qu(“’)} (c- 30b)
)
SL
I
It will be assumed that G (s,Z) can be approximated in the form
w0 ° .
N oo
ity -bwoz . 7 “Troz
Goo(s’Z) = Goo,oe '—'IGOO(S’ZN)e (C- l)

ions of Eq(C27) are of the form

+§:mz (

— - —
By the method of variation of paramete

particular integral to Eq(C27) in the

form prescribed by Eq(Cl3).

rs, one caﬁ_immediately—%rite the

. s
+K oz 1%, <K ofy ;. <b ~

o5 )(s2) = e “/ € O, |
. - - - , N
o Z A '

N zZ N\ ,
re ¥ °°Z[ gHeo-be=)Cr (cZ34)

: : 0,02 i

] vy H
- lo __A'- 1 1
| .
where A 1is the Wronskian determinant | |
. i '
e-K mz,“e KCOZ ~--| i
A= ~ = Ko (c-35)
K e X P g mel % Lo

I !

!

!
——_—..___—_—_——--—_-—_——_————_—_———_————n’w—
.
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l o
— i
I | \
Koz po - (o + Koo |
(oo) Ce ¢ ,
S (s,z) = ol Gm’o) ] e d g
] | (c-36)
Koz - [? (Ko -bw)
SR ¢
- . 2K ool ©,0 € dC I ’
7] | i o : !
Carrying out the integration yields for (bm ;é Kow) :
)
. ~ l
. N( )(S ) - (G o){_esz-,e _(boo+Kco) 6_K°°Z (Km-bm)zf
2K o ZKm T D o) (e )}(C -37)
(K ©-b o) |
~ . i
G -b o2z ~y =D 0Z I
- ( )(s z) = =22 ¢ i e =~ % ) |
2Ko ‘(Kotbd o) (Kw-beo *
~ _ ) 1 . | .
- F}m o e sz{< 1 } ] : (C—38\»\)
2K o ‘K o-b co) . . '
- - - - — o
|
In the special case b » = K w then Eq(C36) yields ;
E K wz! Koz :
~( )(S Z) - { ® +Z€ @ } !
2K o 2K © '
( 'Gm O;) e-K ©Z 1 -
X = = ——ZE { (K coZ) ) } (0'39)
é)Koo !
For large K o2z the first term dominates and the disturbance decay rate is ,
E% > slower than for the case Ko # b w. [Since Eq(C27) also governs the subso'nic;
~ !
lifting surface theory (when Gm(s,z) = 0) one could expect the sonic line
disturbances due to subsonic doublets to behave like e_K°° ? at large Kcn:Z;
therefore, Eq(C39) is probably the relevant solution. ) j
| too
' ]
| !
_.._—-—-.-—-—-—————-—-_——_..._.—_____________._._I.—...f
L
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i
APPENDIX D

l
|
|
| !
SHOCK WAVE TRANSFER MATRICES ]
!
.
The following analysis is restricted to normal shock waves (shock front |
perpendicular to the airfoil surface), This is. a good approximation tol .
many cases of interest in transonic flow, at least as far as the final

transition from supersonic to subsonic flow, even when there is a prelim-
v

inary supersonic oblique shock compression near the end of the super-
critical zone (above a so-called "supersonic bubble" ; see Piercey Reference
24 Section llyandiBiackwell,'Referehce 2L Section 21)4

i
.
. : [
The following analysis uses results|of Landahl (Reference 5, p. 113) and
expresses these results in the format required by Appendlx B. Landahl |
writes the relatlon between velocity potential and streamwise perturbat%on
velocity (backwash) across a normal shock as follows: !
| [
- LA s B - ';'BU - T
3 1¢73 = 3, 1 8% (p-1
|
where, '
! a = 2k M / (1- 2 ) ( D-2i
AMa My
U U |
. , ' f
The reduced frequéncy hA is defined|in terms of a reference length b and
the upstream flow Velocity UAU ’ :
: [

k, = oz'.ib/U (D-3;
|

. ) |
Here we use AU and B to denote conditions upstream and downstream of the

U
shock, following Appendix B. The tangential velocity component, W, i

(upwash) must be continuous across %he shock wave; therefore,

A B
U _ |, U =
Ysu = |Ysm (D-})

b — e - e e m  m e e, e e e e e b T e T e e e e e e e e e e e —_

B

feciren L]

FORM 7681-2



or,

where,

-ig/b 1 0O
s -1 O
0 o0 1
- 4

. SH

Thus, Eq(D7) transforms to

[ Ay
‘5SH
{7
[ISH'
wAU

>

Thus, one can write the transfer ma

ITvectort derossT a normalt shock gt the ce

i 7 ()

. ~U

-ig/b -1 0 By
B

= s -1 0 <ng > (1'3-81
B
U 1

0 0 0 W
b J L SH | :

A
< U - U ,
2 (2% (D-lib)
SH -SH |
. |
For a single layer, the relations(Dl) to(D4) can be expressed in state |
vector form (as in Appendix B). ek :
‘ i
6AU\ |
| ?sH |
A C e
; = ﬁU} (p-5)
SH | i
o !
SH 1
\ |
: )
P |y, R
Us = I3x sw) (p-6
i
Then, Eqs(D1) to(D4) can be written| in matrix form [
— —_ [N — . - \ |
A | B |
—iae/b. 10} |8 Y ~ i 6.9 .
—L sH [~ f=%——=1r o SH| — . cT
’ B
oyl =y
AU _BU |
o o 1| |w 0 0 1 W
_ R B - BT 4\ SH) !
e i
The operator a/ax becomes s after Laplace transformation, and all harmonic!,
x dependent (barred) quantities become ( ~ ) quantities, dependent on §,
the Laplace transform complex variable.
{
!

trix partitions for change of the state

ntér1'ing of~layer K &s T6110ows:™ 7
]
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subscript k):

[;ux/b_ -

The inversion can be accomplished b

the'upper left hand two by two part

,

(D-9)

(D-10)

=1 .

-Jak/b 10
-1 O s
0 1 0

xIr .
] T(k)S}j NAU )

-1 0
o 1

T

|

|

|

9

!

!

|

I

I
1

i

\

|

|
(D ;ll)
)

O~ w

I
y partitioning. First it is noted that

ition inverts as follows (dropping the
‘ |

: |
1 -1 1 | '
(ia/o+s )[:-s _W/J (D—‘l2)

-1

S
(igzs)
b

Therefore, Eq (D-11) reduces to

[:TéX)SH:] _

(2o s)

o O =~

Evaluating the upper left hand part

-1
[ ]
S } i

N

Since the shock-wave transfer funct

coupling between layers in the larg

ition of (D-11) yields

[-:‘a/b | 1}
s -1 )

4
|
|
!
|
!
{
1
!

0
|

ion is a point function there is no

-1 Sl 1 (D-13)
s -ig/b|| s -1
o o+s) -2 (D—éLh)
10 (-s+ia/b) |
I
|
-2/(s+jak/b) 0 :
Cs+ig, /b)/(s+ig, /o) O (p-15)
l
|
|
|

er_matrix implied by Eq (B=26)._ _

-—

-3} -
\O

LNCKHEED : /
R :

< >
AN T
1
.
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| EXTERNAL FREESTREAM AND TECHNIQUE

and 2 are summarized as follows: At

4 APPENDIX E

EXPLICIT SOLUTICN FOR TWO INTERIOR SUPERSONIC LAYERS BOUNDED BY AN

- From Appendix A the ILaplace transformﬁd boundary conditions at interface i

: l
(1 (2) ,
3, (sz)/u = F, (s,2)/v, |
.N('l)< ) ] ~4(2)( ) :
At Zo= Zyr p( S R P( | 2817 (E:_l)_
; ; i
3, (ss2)/u, = ¥ (s,2,)/0, !
|
.(2) (=) [
$ (s,2,)  E T (%) |
{

|

FOR GENERALIZATION TO N INTERIOR LAYERS
. |

the interface Z = Z

= (U

. o ~ _ '
| Using Eqs (I5) through (I7) of appendix A, Eq.(E-I) becomes(at Z=Zl;z=zl=?l):

K -
1, ! .
‘—Ul— '[Cl 51nh(Klzl)_ + D) cosh(Klzl :
VA
A\
o1 (Uis + 1w}{]§; cosh(Kizl) + D

At the external freestream interféce]

_ﬁ;";[;z S1nh(K222) t D, cosh (ng2

- | (ﬁ) K.D I
L1~ | 5P o
I):lx 3 Ty (5m) < 5 (3
vl Z il ( ) S4Z = I
st )] 3, )} (2]
S + i) C‘2

LodwwnEsn 1]

R

- -
A}

[ -
FORM 7681-2

2 ]

-~ - (E-2¢))
1 X

- ﬁ;f—KPCm +6PZ(S,Z = O)} ) )

- | 3 |

0, (U2s + iw) <E}2 cosh(Kzze) + D, Sinh(KEZQ)J +'$§)2)(s,z )}‘z :
R e L Tyt Ay g S -’6—&- s0)F — — -~ Er2di
ootz ko9 200 ( '81')
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Next, we write the Laplace transformed airfoil surface normal velocity

(upwash) boundary condition

I

[

a

W (s) = { 'k.D. + ”(l)(s oj [ (E-3)
= 15Dt 8py TS -
| f .
- Egs.(E2a-E2d)and(E3) provide five equdtions for the five unknowns, Cys Doy
C2, D2, qw,
Each of the interface pressure and streamline slope continuity boundary
conditions can be put in the form of [a transfer matrix.

— T e
17 +} %:lu <1>) s %3) 52|’ Rk (B-4)
S B B SSP 'D1J B | _2J Ry :
where for Z = Zj’ k=jorj+1luwe define vectors ‘{Fék)}such that :
I I i
- Galgs - - -
F = !
i (E-5)
[
" |
I N ]
Bp =y (s 4 i) bp (s,25) (E-6)
[

v ]
The vectors { ( ? } define forecing flunctions arising from the particular

integrals (deflned in Appendix C) Wthh, in turn, are caused by the sonic

{
i
line initial value disturbances. i
]

The external freestream interface conditions (E-2c) and E-2d) can be written
|

!
CRFTONEL - 1T 9]

in similar format

where, (») implies the use of external freestream steady flow field condﬂtions

for fluid property (qn, (PN m) evalﬁatlons - The two by two transfer matrices
]

82 | '

TLOoCRHEEG " - - E::]

J

FORM 7681-2
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\[A(k?]and [B(k)_] are defined as follows from Egs (E-2)

- Agi) = gf sinb (Kz,)
j \ Agg) = % coslll (Kkzk)
] Aéi) = -pk(Uké + iw) cosh(K, z, )
ég) = Py (U [+ i) sinh(Kz,)
and, ) 1
B£i%}) =0
§g+1) - A§g+l‘(s’zk+1 = 0) = Kei1/Vny
KD 5N =)

Thus, the elements of [:( {] and [j(h+l{] satisfy a recursion relatlonshlp

which is helpful for computation.

The column vector {B

face between the outermost interior

whether M

is either supersonic or

F P41 (U k17"

iw)

~~

I~

]
o
e

Bm =~ = = = o o e e — — —— — ]

1
\O

(»)\ defined in Eq (E-7) is associated with the inteﬁ-
layer and the external freestream(valld

|
subsonic). {|3( )} is thus deflnedlby‘

Egs (E-7) and(E 2d) by an obvious gemeralization from 2 to N supersonic

layers.

i
|

FORM 7681-2

L

]

l
33
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G

]
|
i
I
|
— (E-10)
. |
= |
— |
7 I
The superscript () implies substitution of freestream fluid properties %or
. the (N + 1) layer in Eq(E9). Thus, |
' |
B(m) = 0 Bl(m) = -K /U :
11 ’ 12 |
- (E-11)
. g 1
Bg;-) = - pco(U| s + 1w) 5 Bég) =0 |
|
Therefore, (E-1lO)and(E-11) yield
|
- . i
1 y -K /U Rl [
0{6-(“){} _y el a (E-12)
S e e - g

‘ | |
The two,by 4Awo transfer matrices l[Al(k):’ and jl}(k+l)] allow one to easily

solve for the coefficients {gﬁ} inci'Luding especially Cl and Dl which def‘ine

the surface pressure. PFirst,. it is quecessary to eliminate Cm by use of Eq

(E-7) which can be re-expressed as a,constraint between C,and D, (or Cy!
[

and D in the general case of N interior layers). |

N T o%w Pyt Cyp (E-13)

where, from Eqs (E-2c) and E-24)

Ag) Cy * Ag)DN“’(l/UNWges z) = —%{: (ke +3(s,0)  (5-1da)
Aéy)CN + Aég)DN 'pN(UNS + iaﬂ'és?ssz = pw(U s + iug(qw4$é“0(s,(») (B-1kDp)

f‘taznaqutr*«l ]

- Al

FORM 7681.2
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|

8) -

1
1 Solve Egs (E-14) for C I I
v I
A0, () ~(N) |
, 21 Cy * ApptDy + pP v (8:2y) |
— . !
— ~(=) o (°°) () L l
Bp,y (5:0) - 0u(U, s|* 1w) (a - 8p ) (Bq15
N (Mo _ AWy - '
B A1 7Cy m A Dy [
’ |
. ' I
Therefore, (E-15) can be written )
' |
|
N N )
v§1) Cy +v§2| y =gy (:16)
o |
where, ]
N o
-l - s, w) e al (B4172)
Koé i
(§) _ () ‘ %, () )
Yio' = Ay - pg.a')(lll s + lw) = A]L2 (E417b)
I
- _ _ - - - L
and, ) : !
o) - (pP‘N)<s o) - pp W (3,2)) - pu(s + iu) (a ) 4 (a-1
I
and the particular integral contributions to interface streamline slopes dre
defined as :
|
8oy =7 Font |
5,2,)
P N N .
1 e (E-19)
(00) = U_'ggzzsao) I
I
|
From Egs (E-13) and(E-16) through(E-l9) :
!
IN N !
y§2>/ () (E-20)
| |
and :
‘ Cpp —= (“)/ (E=21)
R R s T -
L
85
Locn?ﬁEEET““*“ E::]

FORM 7681-2
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Having defined the constraint Eq (E—lé) for the external stream effect we

k = 1,2) From Eqs|(E-3), (E-4) and (E-13) one obtains

solve fo? (Ck’ D5

- (cC -1 vl -Y on (€ ﬂ / ,
1 R 5 ) - )
7. I Y| {foroDaCo, p | ‘
, S s R R R A
| - = = S \ S /

_._.,_t.Lj__t:.j________.__
n
e

(Eil’z) ; AE(l 2)[
=4 D. + ) C +
(1,2) & g (2] 2F
0 2 ,

~ T T T
T ([ * 1 A oli
* f(j‘ (Féfi} ' ‘{P(l)}> (Bz34)

Define the inverse of J[;{k%] as [}gk?]{

i

[
[¥] 1 [a@] 7 (hes)
: : |

|

|

Then

Tol[
NESI I !

; 5(2),
L . #7'_0,,m_21 (2

l

|

_ !

Since D, is known from Eq (E-3), then|the second row of Eq (E-24) can be |
|

|

1
solved to express D, in terms of bl
|
1 1 1 1 ~
=55 0, s D @) o 1) ) )
e e e e e e e e e e e e e e e e e — 2 ——————————
(1,2) ,
T —+ AE (‘2,P (EB-27)

T ARKHEEG T ]

P
FORM 7681.-2
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- Then, [ }
D, = lr1,2 (D, + ADl,P) (5-28)
E ;
where ADl P is defined by ' :
— (1) (1) (2) (l) (l) ~(2) (1,2)
B e = IAZI (8 P,1 "%, 1" T (p " Pr l)+iAF2 : :f92?? '“ (EJ29)
From Eq (EL26) \ :
. . o <]
L |
E£l’2) = IAil) léz) 1 (%%22 2§2) . (E—éoé)
|
1,2 1) (2 1) (2 : !
Eé ) - IA;l)BlE ) IAQE)Q22B21(%) (E-30b)
i,2 C (). (2 , 30¢
AE§ ) - IA52232§ ) ' (E ?O ).
O T _ o
Next, solve the first. row of Eq (E-24) for C,» since D is already known |
from Eq (E 3) ‘ :
N E§1’2)D 4 AE(l 2)¢ Cop t I ii) {08 (2) (1)) " (1)(v§2% -'Eélﬂ) (-31)
2(2) | ' ’,
= —(—7 (D + AD]_ P) + AE(l 2) o Jp + IA(l)(al(DZ])- 1(:.11)_"'1}(\1)(1’1(3&3_ é)li)) “‘({E—32')

11

!
Some general simplifications occur as'a result of results in Appendix C |
I
|

concerning the particular integrals '$(k)(s,z). These are expressed as

5C)(s,2)) = 53)(s.0) |- 2 32)(:.0) - 0 (E-33)
2 A .

32 (s,09 =3B (s,2) = 0 (34
' l

302 (5,2)= 320 (5,0) = s0,(Ups + 1) B (5,0) (£:35)

B it L LR TP e 1

- X

FORM 7681-2
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i — I
7 Likewise, Bq(E-3) for D, simplifies | ! i
. o |
(1), ’ | 1 (1) ,
_ 85 (s,2 =2 =0) = T"ZPZ(S’_Q) =0 ._(E-~36)
] |
and !
7] ~{1 ~ (1 1 - :
N 50(,0) =B, 15, 0) = 0, (uys + 1B (5,020 (5-37)
P,1 0119 :
: |
Then from Eqs (E-3) and (E-36) v :
| : ' GR
{ D, = W(s)/x, = D (E-38)
. ) l
which agrees with :Reference 2, p. 366, for the Laplace transform soluti%n
to the Garrick'and'Rubinow case of an unbounded uniform supersonic stream.
, : 1 :
_ |
Then using Eqs (E-3Y4) to -(E-38) one obtains from (E-29) that AD] N
,P .

simplifies to ' Co

S 1) . (1) sl (1) ~ (1) (1,2)4 e
ap— =1 (1) w1, W, 1t amy (E39)
| 1,P Ay - B 1' Ay P,1 2,P . ;
| (1 2) : |
; _ 192) )
C, = _(I'§7 (D + ADl P) +AE) 02 P .
1)
1) (1) , 7 (1 ¢
-(I, ( Dy 1 ) (E-LO) -
Ay P 17 Alé\ P,1
|
In the 2 interior layer case, N = 2 and Eq (E-21) yields !

C.p = & /Y(g) (B-41),

where from (E-18) i

Us . :
- 3,5)(5,0 - 3,2 )(s,z 1) etz (6 7)5 %) (w-ke)
0B - (/5 5D s,y) (5-43)
T _-—6-1(;:2-: _(1711 )3 sz =0) T T T T T (m)
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‘ ‘{ From Eq‘(E-l'?a). | . A(2) |
SRR s
| ” |
From (E-17b) and E-20) l :
' U
: W3 a3 s v aw) 2 ald) (st16)
N
o2 | DA (r3h7
The matrix’ [}A(k)] defined by Eq(EéS)‘is :
-1 !
Rl YOO RN C OB |
: - N A17 A '
ISR ] B
- (k k ‘
] ,_%_ Aée)' ‘Aézi}( (E-48)
= K k Kk . :
} & ) -Aél)l All)' ' o :
‘ T where - - - {L - - J’ -
; For the case k = i, using ﬁqs (E-8) it is found that :
LD = Kp (b w)/) (E50)
1 i P
Ili‘fll) = -(Ul/Klfmnh('Klzl) (E-iSJTa)
1 -~cosh(¥1%1
%‘512) = pi(uisx J?.w) (E~;51b)
IA(;'z = (Ul/Kl‘)i:osh(Klzl) (E=51c)
1) i h(Kl?l i 4
I'f»g-ézi‘ ;lTnUls;r i (E:514)

—

- e _— - —_—- {

I g S T [ J
. ¢
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]
- Forming the matrix one finds |

' K Pl(Uls + i) (E-52a)

1

{

[T (1{] F——Ulsinh(Klzl) ' -cosh(Klzl) .
I
A .

, ‘Ul | sinh(Klzl)
~ | | | (K—l) cos'kl(Klzl) WO Uls_,_ % B

| %y (e)sinn(igz) cosnliz) |

| ;'Zl(s)cosh(Klz‘l')'“s:inh(KlZl') (E-52p

. !

-k

N GEm]

~—

|

L !
| where we define the Laplace transformed interf&ce impedance in layer 1 as,
o |

Z(s) = -py(Uys + iU /Ky (E-53)

Airfoil Surface Pressure in the

e e e - = — .

Supercritical Region AU
U

| As defined in Appendix B the local surface .pressure in AU(where M > 1)l is
A

A LAy v

S P~ = p-(z =0

lsh(_K]:z) + D sinn(K,2) +'$§Dl)(s,z)‘)z o

|

= -pl(UlS + iy ) (Clco

dyo 1 \

= -0, (Ups + iw) (€ +$§, )(s,O)) , (E-5k):

a7y x(1) ! b

But from Eq (E-37). dp (s,0) = 0; therefore, L b

i
~AU AU¥ ’
S Bz =0) = U+ ) o (E-55)
Using Eqs (E40 - E53) for c, yields : b
® -~
OCKHEED™ L_Fa
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R El\laz) 'Wa(s) (l 2) : ( ) lj
) 1,2 S
Cy = E2(1,2) K1 —(—E‘ ) ADl p AE CE,P
i
~ : |
B + 1 n . ( ) ~ (1)yy l
p]_(U]_S ) (< l(s)§1nh( 1)6 + COSh(Klzl)pP,l ) ) GE56)
A , v
]: Now the ratio_El(l’z)/E2(l’2) is the| quantity called E Eyq (s) in Appendix A
i From Eqs (E-30a,E-30b,E-5%a. & E-52b; we first define E (1’2) and E (1, 2)
\
; 1,2 1 7
| El(' ) = l‘i)"l-('Uls e «CZ‘l(S)Blé )smh(K z) - 05,8 2( )cosh(Klzl)?‘(E—.W)
' I Lo
‘ (1’2) . 1 it ( ) (2 C o g
E, o= pl(U - 103) _(-Zl(s)B cosh( )-l—oz22B21 glnh Klzl))‘g.‘(E—58)

! —

"
. From Egqs (E-8, E-9; E-45-E-51)

|

{

'
- ( o » + 3 =) Uw3{2 . !
9 ,(Uys-+ dw)cosh(K,z,) - p (U s + iw v, sinh(K,z,) | (E-

|
vil) E-59)
Y:(L2)A 05 (U s + 1w)slnh(K ) -p_(U s + iw) i COSh(K z ) :(E 60 )
. . KcoU2 .
S
g
sl
00 12 (Y11 : ‘éf"(EH6'l)
.o (U + )UK, i Bl
= - (SlnF(K2Z2)4 +92(U28 — 1w7K U \,osh(KEZ )) ’ ,
| 0, (U s + iw)y K2 ’ ' '
(cosh(K2z ) + Aex TR olnh(Kzz ) 0
_ g
- /(sinh(K z ) +’Z (s )COSh(KQZ )}) : |
'Zzi s‘i '( &)
Dop = 7 (5] ) e
(cosnligre) =y winisy)) G
] T
| ! f
N -
) 191;



—1

U S B

| .
) cosh(Kezg)
) sinh(Keze)

(31nh(K z ) + Z 2(
(cosh(K z ) +'Z (

w

Ooo =

where the impedances, '22(5) and'zwls) are defined by analogy to Eq (E-57)

'ze(s) = -pplUps + 1w)Uy/K, (:E'&‘)
. (.
} ~m(S) = -o_(U s + iU /X (:E-65)
‘ |
; and the ratios | :
| 7, () =% (8)/2%y(5)
, 7, 1(2) = Tl(s)/2, () (5-66)
i F;om\EQS (E-57 - E-66) and Eq (E-9) :\ |
- o : K, (E-67)
2 - oy ) R ) - ag e fw)oosh(iy2)) -
(1,2) 1 | X (‘E_"68)
N (T (‘%1(‘8@ fOSh(K ? )"‘22"2(U ° * w)sinh(Ky ) !
We now form the ratio , : :
_ a3y, (e) '
'Ezl(S) - Ey(s) /B (:E-?g)
[
2, . o
Fel(s) = 5‘22 s1nh(K z ..q22cosh(K17 ) '
(-Z /Z )cosh(Klz )+a oSinh( Klz )) l ﬂ
= ;(tanh(Klzl) - 211(5)222)
(1= ey, Z, j(s)tann(Kz) )y ‘(E_m)
. |
el __ald
,92 | X i
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T

Now, from Eq (E-63), o,, cen be written in the form

(z, 2(8) + ﬁanh(Kézgzj .
"2 = (THT, w2 (5;

where'ﬁ2(s) is the quantity defined in Eq(A~32)Appendix A.

L)

If one defines as in Eq (A-29) of Appendix A

— m— o — o - —_

, o’ ’Hgl(s). = ’ze,l(s)'ﬁz(s) (E':72)
Then Eqs (E-70 - E-72) yield :
-(tanh(K 121) - Ty (s ))/ \ ‘ (E-:73)

G = H,, (s)tann(k z,)) v |

:

21(8) =

This is precisely the same as Eqs (A727) through(A-33) of Appendix A.
To further establish the correspondence with Appendix A we note that Eq -
(A-33) of Appendix A equals Eq (A-?l% and from Egs (A-27) and (A-30) of
Appendix A and Eq (A-78) it is seen %hat

- i T, (s) = '«iﬁzl(s) *gta;L(Klzl)> - (E'7M)-
: i
'ﬁZl(S) = Kdl ;fﬁ2l(s)tanh(Klzl) y ‘(Eﬁ75)

~ ~ . !
EQI(S) W' )/K represents the direct contribution of the local surface,

, \fiupﬂ

i o B ’

where from Egs (E66 - E-71, E-72 and E-73) 4 i
N _ p2(U2s + ﬂuz U2Kl(2w,2(s) + tanh(Kéze) 3 (576

Hel(s) = pl(Uls + i) U1K2(l +'zx,2(s)tanh‘(xézz)‘) (E-

I

!
!
: !
Particular Integral Contribution:to [

Local Supersonic Surface Pressure

l

It can be seen from Eqs (E-54 - E-56 E-69 - E-76) that the term

upwash, , W (s) 4in the local supersonic region A The remaining terms in

U’
Eq (E456) _represent surface pressure effects due to sonic line dlsturbance§
S I L T LI T T L LTI T
Following Eq (B-42) of Appendix B. I j

T T T 93

m—— .
orrEen ]

e

T-3
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0

ST A A .
) PN T ) (N
_”{p__(f io)} ”{?s } - [GWA

Eq (E-77) represents, in matrix form
ution integral, which is the require
Z

with Eq (E-56) substituted for c, -

Eq (E-56) can be split into two term

where the first term. is the homogene
sonic region
~

C1m By

and the second term of (E-T8) is the

A

[
;!

(E-77)
i

‘ AN
U, Pl _j_ “ul
] \{WA * AWA }f ’ {pP, 5 }r
_ & )

l

the numerical evaluation of the convol

d inverse Laplace transform of Eg (EIBS),
|

ous solution fd? the multilayer super-
|
|

(s) W.(s)

l a

,particular integral contribution.

(E-79)
|

/¥{

= E, (s) 4D (1,2)

1,P 1,p *AF Cz,P

1 ~ .
+ pl(Uls — i&gf(-zl(s) s1nh(Klzl)

By comparing Eq (A—Sﬁ) with Eq (A-22)

can be seen that the Laplace transforh of the particular integral contribu-

tion to the surface pressuré in the 1

App 1 (s,0)

Since, by Appendix C, there is no direct contribution to the airfoil

surface downwash from the particular

( ) (s,0) =

=40 Wapl S

——%‘ —

~ (1)

s (1)
851" * Pp,1

cosh(Klzl)) (E-80)

. i
bf Appendix A and Eq (E-77) above, it

ocal supersonic region is
.
A :
P:S (E'8l)

p,(Uys + iw)C

1 1,P

|
|

integral in the first layer, we have;

i
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Then- from Eqs (E-55,-E-78 and E-79)

1
|
I
A l W_(s) !
B (s,z2 =0) = 4(U;s { iw) (E,, (s) X 1,p (E-83)
{
Therefore, by the convolution principle |
A m X ! o |
3 U(x,z = 0) Eél(x - g)/_\pGR(g )aE + L'lé_pl(U s + lw)c,l P) (E_BLI-)
i
-GR . e
&) =Lt (pl(ugs + iwlW, (s)/K) (E-85)

An alternative form of"Eq (E-84) showrs

pAU
s
GWA

A X

p Y(x,2 = 0)

0

where by the Laplace transform inversion theorem

p A Cico |

U

—pl

2n1~/; N

Thus, it is seen that Eq (E-77) is a|ma

gration scheme which is equivalent to the analytical solution expressed By |

Eq (E-87).

matrix elements required by Eq (B- hl) of appendix B. l

We next consider the inversion of C. 1ip*

‘the direct comparison with Eq (E-83)

(x8) Wp(e)ag + LMo, (U5 + 1w)C) ) (5-67)

|
Eyp (s)

Ky

s(x- g)ds

S _lLL)) = _(.E=88)__
|
trix statement of a numerical inte-

. Therefore, Eq (E-87)" represents the basis for calculating thé |

!

|
{

First, Eq (E-80) must be simplified.

Using Eqs (E-52a,E-52b,E-51 and E- 29) one finds

), (1 1)~ (1) (1,2), . !
ADy p = Aél) P(l) * IAéQ Pp 1 * K, Co,p '
0 (U5 + iw) (-2, (s )COSh(Klz ) ép(i)’“ Pp 1Slnh(K121))
!
+ AE2-(1’2)C2’P , (E'é39)'
e ]
_ _ L -
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From Egs (E-41 - E-59) !

I
j
|
) 2 :
Cop = 2( )/Y1§ : (E-90)
|
o [
G & (5,0) - Bp 57 (5,2,)) - Z(e)6,, )-8, 02y
T (5)31n z.)) l
p2(Uzs + yu)(cosh({zz ) + zZ_ 2 h (K2 2))_ |
From Egs (E-34b, E-56b and E-9) :
!
1,2 1)_ (2 I
éEl( ) - A§2 2§ | !
'PPe(Uzs + w) _
pl(UlS‘+}iw) (-cosh(K, 2,)) (E—?l)

Substituting Eqs (E-89,

integral contribution to the local surface pressure in the supersonic reéiéu

. Which is represented by Eq (A-20) ofl Appendix A

3

E-90, and E-91 into E—8d) provides the particular

AEP,fs,6)= 0, (Uys + :'u,.»)cl,P (E-92).
Ty () () cosnligz by stan(qz By l(e,z)) |
- (:Zlcosh(K z. )8 P(l)+ pP(l)( )s1nh(Klz ))+ -Ezl(s)51nh(k zh
2) -
@D 59 76,0 @) |
+ cosh(iz) )) (cosh(R 52h) + 7 QSlnh( 5250 ) (£-93)
We next simplify Eq (E—9§). It is éonvenient to represenﬁ Eq (E-93) as; E
follows: | o :
1 1) | v
89p 1(s,0) = i P(l) 1PP(1 % o

—




‘ where by comparison of Egs (E-93 and E-94)

Kl = 'Z'l(s) (1 + f2l(s)) cosh (Klzl) . (E-95a)
B = - simn(kyz)) (1 + Eyy(s)) (E-95b)

l

(cosh(Klz‘l) - EZl(s)sinh(Klzl))
o " TcosﬂKezej + Zo; 2sinh(K2z2)T (E-95¢)

o=

Egs (E-92) to (E-95) display the effects of relfections, back to the airfoil
surface pressure, of the contributions of the particular integrals in

regions (1, 2 and ®) to the streamline slopes and pressures at the layer
interfaces at z = zy = Zl‘and at Z = Z2 (where z, = 22 - Zl). The last

term in Eq (E-94) displays the impedance mismatch feature encountered in
crossing the outer layer adjacent to the freestream flow. The inversion of .

the Laplace transforms implied by Eqs (E-93) to (E-95) will be discussed in

. a later study.. .
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