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ABSTRACT

" A prototype ultrasonic instrument has been designed and developed
for quantitative testing. The complete delivered instrument consists of a
special pulser/receiver which plugs into a standard oscilloscope, a special
rf power amplifier, a standard decade oscillator, and a set of broadband
transducers for typical use at 1, 2, 5 and 10 MHz. The system provides
for its own calibration, and on the oscilloscope, presents a quantitative
(digital) indication of time base and sensitivity scale factors and some mea-
surement data. Performance includes a velocimetry capability of better
than 0. 1%. '
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Frontispiece. The MSFC Ultrasonic Test System built by Panametrics under
Contract NAS8-26931 consists of a Tektronix R7704 Oscilloscope with 7A12,
7B52, Pulser /Receiver 5051 and spare plug-in, a General Radio 1312 Decade
Oscillator, an RF Power Amplifier, and a spare panel for special functions.
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INTRODUCTION

An ultrasonic test system may be analyzed in terms of factors
such as electronics, the transducers, the coupling means, the specimen,
and possibly in terms of the operator's role in conducting a test and in-
terpreting the results. '

In order for ultrasonic test results to be reproducible, the vari-
ability in the above factors should be minimized, or at least subject to
quantitatively defined limits. This may be readily appreciated as follows,
Ultrasonic technology has great and largely unused potential for evaluating

"small discontinuities in solid materials. For example, many individual
operators perform weld evaluations satisfactorily for a particular appli-
cation; but when several operators evaluate the same specimen, different
results are generally obtained. Obviously, uniformly calibrated ultrasonic
instruments are not being used. Furthermore, the basic characteristics
of the instruments differ. These facts contribute to the mistrust many
people have of ultrasonic technology and consequently many designers do
not specify use of the method,

It was recognized at MSFC that any method of overcoming the
indicated difficulties must surely include the development of better ways
of measuring the electrical and acoustical characteristics of instrumenta-
tion as well as the setting of sensitivity standards. An instrument of the
type indicated under '"Objective' is considered an essential and realistic
step toward achieving the full potential of ultrasonic technology. Later in
this report we suggest further steps to approach this objective.

OBJECTIVE

The objective of this project was to design and develop ultrasonic
instrumentation that will facilitate the quantitative nondestructive evalua-
tion of material defects. More specifically, instrumentation having the
following general features and containing the specified integral aids to
calibration was required:

1. A high gain, broadband receiver.

2. Means of adjusting receiver gain in discrete steps.
3. Mechanical vernier adjustments to calibrate the steps in receiver
gain,

4. A standard high frequency source to generate pulses of known
width and amplitude.

5. Means of adjusting the transmitted pulse width and pulse repetition
rate in steps of known magnitude.



6. Mechanical vernier adjustments to calibrate pulse characteristics,

7. Means of adjusting the output voltage of the transmitter continuously
over a specified range. Provide an adjustment knob that can be
locked.

8. Provide a voltage indicator for the output of’the transmitter.

9. Means of adjusting the time base in discrete steps. -

10. Mechanical vernier adjustments to calibrate the time base steps.

11. Any other features determined by mutual agreement between the

contractor and representatives of MSFC.

The program to achieve these objectives was divided into four
phases:

Phase I Detailed Definition of Requirements for Instrumentation.
Phase II. Breadboard Studies.

Phase III. Fabrication and Delivery of Ultrasonic Instrument to
MSFC.

Phase IV. Documentation.

Phase I. DETAILED DEFINITION OF REQUIREMENTS FOR INSTRUMENTATION

After reviewing contractual objectives, transducer technology
and the characteristics of available ultrasonic instruments the following
system parameters were analyzed:

(a) Power and voltage level range of transmitter;
(b) Output impedance of transmitter.
(c) Pulse length and repetition frequency increments to be used.

(d) The best method of developing and maintaining the accuracy of
the standard calibration pulse.

(e) Dynamic range of the receiver which is to have amplifiers with
linear gain, '

(fy The number and magnitude of incremental steps in receiver gain.
(g) Receiver bandwidth,
(h) Input impedance of receiver.

(i) Particular broadband transducers to be used.
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(j)) The type of pulse generating circuit to be used.

(k) Consider the possible use of standard as well as broadband
transducers,

() The optimum frequency range and the number of steps in that
range,

After establishing detailed design requirements, a determination of
fabrication procedures had to be made. More specifically, the relative
practicality of using some available subsystems versus an entirely new
instrument design had to be determined. It was decided to use a Tektronix
R7704 oscilloscope mainframe with 7A12 and 7B52 plug-ins as a subsystem,
and to design a pulser/receiver as a plug-in to that oscilloscope. It was
later decided to also utilize a General Radio Type 1312 decade oscillator
(10 Hz - 1 MHz) for special calibration and velocimetry applications. Other
functions required special instrument development. (See frontispiece.)

Analysis of instrumentation requirements led to the following design
goals, corresponding to (a) to (1) above:

(a) > 100V peak-to-peak rf, with transducer load of 2500 pf; > 200V spike,
with transducer load of 2500 pf.

(b) Detent-adjustable from 50 to 10002; down to 58 by vernier,

(c) Spike pulse shapes were to contain one or two transitions, each short
enough to excite the transducer; rf pulse length was to be controlled
by a "cycle count mode' such as 2, 4, 8, 16 or 32 cycles. Pulse
repetition frequency increments of 100, 200, 500 and 1000 were
selected.

(d) Several calibration pulses or waves were to be utilized: those pro-
vided by the oscilloscope; those provided by the decade oscillator;
and two special CAL functions, a rectangular shape, 0.1V by 0. 5u s,
and cw at 1, 2, 5 or 10 MHz.

(e) Pulser/receiver dynamic linear range for its receiver section was
chosen as 20 dB (+ 9V output). The 7A12 is linear and calibrated
from 5 mV to 5 V/div (60 dB) and operable to 12 V/div. Thus the
total receiver range is over 86 dB.

(f) Incremental steps of 0-2-4-...-18 dB were selected for receiver
gain. Increments of 20 dB would have been redundant, since the
7TA12 sensitivity is readily changed from 10 mV to 1V, to achieve
a 20 dB step. '

(g) To amplify 10 MHz pulses with negligible distortion, receiver band-
width of 30 MHz is adequate. Note that if the 5051 receiver is
; bypassed one can examine pulses (echoes) with the 75 MHz band-
width associated with the 7TA12.
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(h) Receiver input impedance was to be adjustable up to 1000%2.

(i) System must operate with typical broadband piezoelectric trans-
ducers in the 1-10 MHz range, Additionally, it was recognized
that if one could operate with broadband magnetostrictive trans-
ducers, versatility would be enhanced.

(j) Pulse generating circuits were selected as SCR for spike modes
" and complementary emitter follower for the rf mode.

(k) Overshoot control was to be used, to permit use of narrowband,
especially tuned, transducers.

(1) The required frequency range was selected as 1-10 MHz, with
steps at 1, 2, 5 and 10 MHz, By avoiding a front-panel selection
of 2,25 MHz, the prf was enabled to be precisely 100, 200, 500
and 1000 in a synchronous fashion, derived from the rf burst
frequency. To operate at any intermediate frequency, such as 2. 25
MHz, an external oscillator is required, or an external frequency
synthesizer, such as Hewlett-Packard 3320 A/ B,

Phase II. BREADBOARD STUDIES

In this phase we assembled a breadboard featuring most of the above
provisions. To facilitate breadboard testing, we utilized a standard
Panametrics pulser/receiver, model 5050 PR. This helped establish
the voltages, gain, damping and bandwidth required to achieve penetration,

- resolution and sensitivity appropriate for applications equivalent to:

(a) Penetration: 15 cm (6'") Teflon; 1" x 6" x 6" in an ablative heat-
shield material; 5 cm (2'') graphite (ATJ). Graphite test showed
advantage of broadband over narrowband 2. 25 MHz transducers.

(b) Resolution: ASTM No. 4 hole (1.5 mm dia, or 0.0625'" dia), lo-
cated about 3 mm (1/8") beneath surface, in aluminum test block.

Also, impulse-induced-resonance in metal shim stock, 0.5 mm
(0. 020" thick.

(c) Sensitivity: ASTM No, 4 hole, 10 cm (4'') deep in aluminum.

As a result of a demonstration to W. N. Clotfelter of the breadboard
at Panametrics on October 29, 1971, submission of various circuit drawings,
and subsequent discussions, MSFC Contracting Officer C. C. Linn authorized
us on January 21, 1972 to proceed with prototype fabrication.

It should be noted that early in the program, effort was devoted to
studying step-transition transmitter waveforms, and to signal processing
in the form of dual stepless gates and bipolar echo magnitude comparisons.
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These studies are further described in the appendices. It was found,
later in the program, that much of the single-transition results ex-
pected of the step were more easily achieved with a single-transition
spike, at least for resolution problems associated with contact trans-
ducers up to 10 MHz., Regarding the signal processor (which was not
required in the contract) we include in this report a design for a three-
channel unit, space for which has been allowed in the delivered cabinet,

Phase III, FABRICATION AND DELIVERY OF ULTRASONIC
INSTRUMENT TO MSFC

In this phase we built and demonstrated the complete instrument
or test system. To house the complete system, a Bud AGC9276R B blue
cabinet was selected. To demonstrate the system's operation, and
penetrating power, sensitivity, dynamic range, bandwidth, accuracy
and stability, oscillograms have been included as part of the documenta-
tion. These also clarify the operating instructions.

Phase IV. DOCUMENTATION

In this phase the appended instruction manual was prepared,
describing the calibration, operation and related measuring procedures.
Specific illustrative applications are included, relative to defect identi-
fication, thickness measurement, sound velocity and attenuation measure-
ment, acoustic emission transducer testing, and moduli and Poisson's
ratio measurements. These applications suggest the versatility of the
prototype, and also illustrate some of its limitations, Recommendations
are appended, to suggest ways of overcoming the present limitations, to
achieve performance beyond the requirements of the present contract, and
to approach more closely, the broad NDT objectives identified by MSF C.



SPECIFICATIONS FOR PULSER/RECEIVER 5051

Transmitter

" Waveforms: SPIKE Sl, a single-transition pulse for maximum bandwidth,
maximum penetration of highly attenuating materials. Ad-
justable up to 250V across 2500 pf transducer.

SPIKE S2, a dual-transition pulse for high resolution contact
testing in thin materials. Up to 200V across 2500 pf.

RF, synchronous oscillation burst containing 2, 4, 8, 16 or

32 cycles. Frequencies: 1, 2, 5 or 10 MHz internal crystal-
controlled, or 30 kHz to 10 MHz EXTernal oscillator-controlled.
Output adjustable to 10V p-p across 1 to 10 MHz transducers,
for test and calibration purposes.

CW CAL, 1, 2, 5 or 10 MHz + 0. 1% continuous sine waves for
calibrating scope display.

RECT CAL, a 500 ns + 5% x 100 mV pulse fed internally at
prf for calibrating receiver gain., Pulse's t. = 20 ns, tf = 20 ns,
—for calibrating receiver bandwidth.

Prf: 100, 200, 500 or 1000, + 0.1%, internal crystal-controlled, or,
in EXTernal mode, prf = external oscillator frequency — 107,
wheren =0, 1, 2, 3 or 4. Suitable for overlap measurements
synchronous detection signal processing.

Power Output Attenuator, 0-10-20 dB, and vernier, for spike S1, S2 wave-
Controls: forms. Internal slide switch selects 1 of 5 coupling capacitors,
for optimizing energy/waveform at chosen test frequency.
Damping resistor: 50, 100, 200,1000ochms or 1000 ohm vernier,
for waveshaping (in time and frequency domains).

Delay Control: Two-range vernier, 0.1-2, 2-20ps, for adjusting delay be-
tween and main bang, to permit viewing initial pulse, to compare
resonant frequencies with independent cw, and, in some measure-
ments, to center the overlapped echoes.

Mode Test Selection: Three-position toggle switch: Transmit (1), Receive (2)
or common (parallel connection of T and R).

Pulse-Echo-Overlap Prf = EXT cw frequency- 10™, n=0, 1, 2, 3 or 4.
Controls: Sweep:
(a) Internal: Triggered with an adjustable burst of
synchronous trigger pulses and main bang blanking, or .
(b) External: X-axis driven by cw, and adjustable sweep
blanking.

Switch Style: Except where noted, all of above switches are Tektronix-
style lit pushbuttons.

Transducers: Piezoelectric or Magnetostrictive. Contact, buffer,
immersion, pulse-echo, pitch-and-catch, through-
transmission; all ultrasonic testing wave types.
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Receiver

Gain: 10X with a + 10% front panel vernier adjustment.
Bandwidth: 1 kHz to 25 MHz, 3 dB points. '
Attenuator: - 0to 18 dB in 2 dB increments.
Noise: | S1: 40 mV peak-to-peak; S2: 20 mV peak—to-peak.('w-\"’{(f\'\ ‘
Linearity: 1% at 5 MHz.
Dynamic Range: + 9V.
Input Impedance: 10,000 ohms + 5%, TR switch off.
~50 ohms, = o " on,
Mechanical
Size: 7x12.7x34.2 cm (2-3/4 x5 x 13-1/2 in.)
Weight: 1.45 kg (3.2 lbs).
Mainframe P/R plug-in is compatible with any Tektronix oscilloscope
in the 7000-series.
Unlabeled
Vernier
Notation Location
Transmitter Below 20 dB Transmitter ATTN pushbutton.
Attenuator
RF Attenuator Below RF pushbutton,
Sync Delay Above SYNC connector.
Receiver Gain Above RCVR OUT connector.



SPECIFICATIONS FOR RF POWER AMPLIFIER

InE ut

Input Signal Requirements:
Amplitude Range: 5V pp to 15V pp
Source Impedance: < 5
Signal Frequency: 1, 2, 5 or 10 MHz 1 5%
Duty Cycle: < 10%

Qutp ut

Amplitude: up to 100 V pp measured at output connector across the
following capacitive loads:

MAXIMUM
FREQUENCY LOAD CAPACITANCE
MHz pf
1 1000
2 1000
5 1500
10 2500

Output short-circuit protection is provided by a high voltage circuit
breaker. '

Power Requirements

115V 60 Hz 2.5 Amperes
Fuse: Buss MDX-3A

Mechanical
Size: 48 x 43 x 18 em (19" x 17" x 7")
Weight: 1.8 kg (40 lbs)



RECOMMENDATIONS

It is understood that MSFC has both immediate and long-range
plans for using the delivered instrument for quantitative nondestructive
testing. In using this equipment for specific tasks, operators will un-
doubtedly come up with suggestions or new requirements to expand or
improve the performance of the electronics. Additionally, it will be
apparent that transducers may be required with specifications exceeding
those presently available as standard commercial hardware items.

In order to further improve on the quantitative nondestructive
evaluation of material defects, it is suggested that the following recom-
mendations be considered:

1. Develop a pulser/receiver which retains the essential features
of the 5051, yet is designed with a low-noise figure for the
receiver of 25 pV (rms). This can be achieved in several ways:

(a) Retain basics of present layout, but omit rf and overlap
logic. ’

(b) Repackage present functions in a rack-width low-profile.
case, with sufficient space between boards to permit
shielding and isolation, or to switch out noise sources.

(¢) Trade bandwidth for low noise.

2. A power supply module could be designed and built to house the
5051, along the conceptual lines of Tektronix's TM501 Power
Module. This would enable MSFC to use the 5051 (or a new
model, type la above) with virtually any oscilloscope.

3. Combine a new model as in 1b with a single channel stepless
gate, for spectrum analysis, alarm and recording.

4. Design and construct a three-channel signal processor (Appendix E).

5. Design and construct an automatic time intervalometer with resolu-
tion of + 1 ns, echo polarity selections AB, AB, AB, AB, echo
position selections by ''blanking delay' and '"echo select''modes,
by two variable-position, variable-width gates, or by multiple-
echo logic modes, and threshold or receiver gain control. This
represents a combination of intervalometer features contained in
instruments such as Panametrics' 5010, 5225X and 5220 models.



6. Design and construct an instrument for automatically measuring
attenuation coefficient ¢ and reflection coefficient R, This in-
strument would utilize the AB and ABC ultrasonic measuring
methods wherein a specimen is interrogated with a liquid or
solid buffer between itself and the transducer.

 7. Explore coherent detection in highly attenuating media, using
phase-locked-loops, boxcar integration, etc.” :

8. Develop transducers for producing a focussed/ collimated beam
for high-resolution, high-sensitivity defect testing and evaluation,
where the defect location is not necessarily near the surface.

9. Develop matched transducers, including development of improved
ways of testing them. Example: differential comparison on 7Al2.
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signals to high accuracy at the NASA Electronics Research Center several
years ago. See, for example: R. C. Williamson and C. E. Chase, Phys.
Rev. 176 (1), 285-294 (5 Dec. 1968); R. C. Williamson, Rev. Sci. Instrum.
40 (5), 666-670 (May 1969); R. C. Williamson, J. Acoust. Soc. Amer. 45 (5),
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TIME BASE CALIBRATION AT 10 MHz
Settings: Observe:
OHMS 1000 7Dl4 reads
PRF 1000 f=9.996 MHz
AANANANNANNN N~ 2
\ | f \ \ MHz 10 (At other MHz
RCVR ATTN 0 settings, 7Dl4 reads:
. T/R Center 5.0001, 1.9984,
\ \ C =
v v V V V V V V V , CAL Arv 0.9975 MHz) ,
RECEIVER GAIN CALIBRATION
CAL Il Adjust Revr
Gain vernier
for 1V output,
500ns
DOUBLE EXPOSURE SHOWS
Rise RECEIVER BANDWIDTH CHECK
Time
Observe rise and fall times at
50 ns/ div.
Fall
Time
Fig. 3. Calibration oscillograms for Pulser/ Receiver 5051 plugged into Tektronix

R7704 oscilloscope.



(b)

(c)

52

N~ 10 MHz RF BURST OPERATION
USING CYCLE COUNT MODE
Waveforms shown for open
2 circuit load (no cable or trans-
ducer). Note > symbol in word
4 "> 5V, " meaning vertical scale
is uncalibrated. Burst amplitude
[a¥aVa¥a¥a¥a¥a¥a g 1s approximately 10V peak-to-peak,
a¥aVa¥aVa¥aVa¥a¥a¥aVaVaVaValals ‘e
AAAAANNNNANANANNANANNANAANAAN
VVVVVVVVVVVVVVVVV Y 32
200nS
S1 WAVEFORM, OPEN CIRCUIT
LOAD
OHMS: 50.

Xmtr ATTN: 20 dB.

Trace shows open circuit voltage
would exceed 300V for Xmtr ATTN
of 0 dB.

WAVEFORM, OPEN CIRCUIT
LOAD

OHMS: 1000.
Xmtr ATTN: 20 dB.

Trace shows open circuit voltage
would exceed 300V for Xmtr ATTN
of 0 dB.

Fig. 4. Open circuit waveforms for transmitter modes RF, Sl and S2.
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SI TRANSMITTER CALIBRATION

Trace shows Sl transmitter voltage
can exceed 200V when driving 4 ft
RG174U cable and 2500 pf trans-
ducer such as VIP-10-1/2C.
OHMS: 50.

Xmtr ATTN; 20 dB,

S2 TRANSMITTER CALIBRATION

Trace shows S2 transmitter voltage
can exceed 200V when driving 4 ft
RG174U cable and 2500 pf trans-
ducer such as VIP-10-1/2C.
OHMS: 1000.

Xmtr ATTN: 20 dB,

51 TRANSMITTER DRIVING L
LOAD (MAGNETOSTRICTIVE
TRANSDUCER 5010E5, ~100 kHz),
1'"" stub transducer, 16" lead-in
wire, 2'" specimen wire,

OHMS: 1000,

Xmtr ATTN: 10 dB.

PRF = 100.

Note 7B52 mixed sweep of 50u s for
first four intensified divisions of
sweep, followed by 5u s for re-
mainder of trace, to clearly show
echoes from front and rear of

specimen,

5. Transmitter waveforms for S| and S2, observed when driving relatively

large capacitive or inductive transducer loads.



RESOLUTION TEST

ASTM #5 Flat Bottom Hole in
aluminum, ~3 mm (1/8") below
surface. Transducer: VIP-5-1/2C

S1. Xmtr, Recvr ATTN: 0 dB.
OHMS: Adjust (~58).

PRF: 1000.

N~: 2 MHz: 10.

Arrow identifies flaw echo. Earlier
"glitch'' is due to TR switch,

SENSITIVITY TEST

#5 Hole in aluminum ~10 cm (4')
below surface,

Transducer: as above,

S1. Xmtr ATTN: 10 dB.
OHMS: 50.

Arrow identifies flaw echo.

PENETRATION TEST

Teflon, ~13 em (~5.5") thick,
Transducer: VIP-1-1 IT,

Double exposure compares S1, S2.
Xmtr ATTN: 10 dB.

OHMS: 1000,

Scale factors:; 100 mV, 50ps.

Echoes identified by arrows are
detectable, but are approaching
noise limit of 5051 pulser/receiver

prototype.

Fig. 6. Oscillograms demonstrating resolution, sensitivity and penetration.



(d)

Immersion Test

S1 0 dB OHMS ADJ

1 MHz N=2
Arrow identifies echo from #5 hole
located 1/ 8" below surface of
aluminum block. Large first
echo is due to water/aluminum
intecrface.
VIP-5-1/2C +
1/ 2" water path,

(e) , ,
Transmitter output for S1.

0 dB 10X probe (50V/ div)
OHMS 1000 10 MHz=z
PRF 1000 N=2
VIP-10-1/2C transducer.
Observe S1 spike amplitude
exceeds 300V,

(f)

Transmitter output for S2.
Other conditions same as above
Observe S2 amplitude exceeds

200V; observe faster recovery
to baseline,

Fig. 6, cont'd. Tests of spike mode resolution, sensitivity and voltage output into
cable and 2500 pf transducer. Voltage measured for (e) and (f) at R connector with
19X probe,



FLAT STEEL KEY 5051
THICKNE SS SETTINGS

S1
. 200" (5. 08 mm) Xmtr ATTN: 10 dB

(a)

15 |
e B +_...L+ ey

OHMS: ADJ
. 100" (2. 54 mm) (< 50Q2)

VIP-10-1/2C contact transducer,
(Note T/ R switch transient at first
graticule division, )

(b) FLAT STEEL THICKNESS: . 040" (1 mm)

UNCOUPLED (Note buffer reverberations)

COUPLED (Note reverberations in steel
specimen)

COUPLED; mixed sweep allows

200 ns/ div, or 10X, expansion of trace
containing specimen reverberations,
indicated by arrows.

VIP-10-1/4B buffer rod transducer.

DEFECT SIMULATION: #5 Hole in
é 100mV aluminum, ~3 mm {1/8 ') below surface,
ﬁ Small arrow in "} 100 mV'" word means

trace is inverted.

KEY 5051 SETTINGS: S2, Xmtr
ATTN: 10 dB; OHMS: ADJ (<509);
N~: 32; MHz: 10.

VIP-10-1/4B buffer rod transducer,

INTERFACE
ECHO

Fig. 7. Resolution tests on flat surfaces using contact and buffer rod transducers,



(a)

(b)

THICKNESS

075" (1.9 mm)

o

040" (1 mm) S1 Xmtr ATTN: 10 dB
VIP-10-1/2C OHMS: ADJ

contact transducer,.

. 020" (. 5 mm)

030" (.75 mm) 5051 settings same
as above, Note
faster sweep,

200 ns/ div.

VIP-10- l/ 2C
contact

transducer.

. 048" , 110" . 173" , 235" = Wall

- e e 77| Thiciness
W FTITIES S S S _f
CURVED .
e o e
min
T 0 55 e o

S2

OHMS: 50

Xmtr ATTN:
10 dB.

Outside diameter=1, 250"
]

VIP-10-1/4B buffer
rod transducer,

Fig. 8. Resolution tests on flat and curved steel surfaces using contact and buffer

rod transducers, Flat specimens are feelers in Starrett #467 gage.



S2

S1

5051 KEY SETTINGS: Xmtr ATTN: 10 dB
OHMS: 50
Nv @ 2
T/ R connector: open circuit
(no cable or transducer)

Observe noise for S2 = 20 mV peak-to-peak;
for S1 = 40 mV peak-to-peak,.

Fig. 9. Receiver noise.




S1 OHMS: 1000 PRF: 100

(a) Transducers: matched 5010KT55 coils, 2"
(5 cm) apart, on remendur magnetostric-
N tive wire 1/ 16" dia x 19" long.
Centered. Observe small transient feed-
through, unreflected transmission, sum
pulse, pulse pair, sum, pair, etc.
Off center by 1/2'", Observe small
transient feedthrough, unreflected trans-
. mission, then matched pairs of different
: spacing and opposite polarity,
(b) |
" 52 OHMS: 1000 Teflon ~5-1/2" thick.
" Transducers: piezoelectric acoustic
) emission types, matched AE 0.1 L,
) narrow band. Observe period > 10pn s,
corresponding to resonant frequency
just below 0. 1 MHz,
|

Sl OHMS: 50 Aluminum block 7/8"thick

VIP-10-1/2C matched pair.

VIP-10-1/2C transmitting to
VIP-1-1-IT. Note extra delay due to
VIP-1 plastic wear plate, and signal
differentiated by thicker 1 MHz trans-
ducer element,

(d) ¢ 52 Steel block 1" thick,
VIP-10- l/ 2C transmitting
to VIP-5-1/2C.

OHMS

1000 Difference in received pulse
shape primarily due to
damping across transmitter,
In S2 mode, receiver damp-
ing is 5082. Transmitter

50 damping is 5090 in parallel
with OHMS set on 5051. For
example, for upper trace,

~488; for lower trace, 259,

Fig. 10. Through-transmission tests using magnetostrictive and piezoelectric transducers
from 0.1 to 10 MHz, including matched and unmatched pairs.



(b)

Fig. 11. Illustration of calibrating sweep in units of velocity (top oscillogr
> " &

Transducer: VIP-5-1/2C.

CcWwW This sine wave of =234, 941

OSsC kHyz is used to calibrate sweep
so | div 1'"of path inmaterial
of sound velocity=.2349" /p s,
(On 5051 push EXT MHz buttons,)

Adjust SYNC Delay until interface
echo A is aligned with a graticule

division.

Lower the trace position until end
echo B can be measured against fine
divisions, “ath length is seen to

slightly exceed 1 div (1").

Adjust 7B52 sweep vernier until time
interval between A and B echoes just

equals 1 division,

Adjust (decade) oscillator until period
just equals 1 division.

Measure oscillator frequency
(example: using 7TD14 plug-in,
observe f = 222. 09 kHz). Its
reciprocal is the round-trip time
interval, 4,503 ns.

am), or of

finding the frequency whose period equals the time interval, with sweep adjusted so

that interval equals 1 division. steel block., Specimen is . 556" steel



SYNC 5051 SYNC output
pedestal straddles
specimen echoes

RCVR A and B,

ouT

Z-axis intensification

(c)

Sweep driven by oscillator, but not
yet at correct frequency for overlap.

Sweep driven at f = 217, 94 kHz, to
overlap negative peaks at center
of display.

Fig. 12. Pulse-echo overlap method, driven sweep. Buffer: 3'" steel block.
Specimen: ., 556 steel block. Transducer: VIP-5-1/2C.



5051 SYNC trigger
pedestals occur just

o 3 e T O BENC prior to A and B
!.W RCVR f.‘ChOL:S, when oscilla‘?or
OU1 is adjusted to approxi-
mately correct fre-
quency of 220, 53 kHz,
and N~, EXT PRF,
EXT MHz and SYNC
Delay set properly,

(b)

Sweep is fast enough

(100 ns/ div) to be retriggered
in interval shorter than time
between A and B (~4. bps).

Sweep triggered at £ = 217.75
kHz., Sweep is triggered
three times per main bang,
Main bangs occur at f — 10
in this illustration.

Fig. 13. Pulse-echo-overlap method, triggered sweep.



(b)

(c)

1 MHz N=28
6 ft RG 58/U 509 cable
VIP-1-11 transducer

Peak-to-peak voltage
exceeds 200V,

2 MHz N =28
6 ft RG 58/U 508 cable
VIP-2-1/4-11 transducer

Peak-to-peak voltage
exceeds 100V,

5 MHz N=28
15 ft RG 58 /U 502 cable
VIP-5-1/2 C transducer

Peak-to-peak voltage
exceeds 100V,

14. Test of RF Power Amplifier driving broadband transducers, Main

Fig.
bang monitored with 10X probe (50 V/div).



RF OUTPUT Number of cycles (N~)
contained in input cf burst (10 MHz)

(d)
N=28
(e)
N 16
()
5y
N = 32

Fig. 14, cont'd. Test of RF Power Amplifier driving VIP-10-1/2C transducer
(2500 pf load) at the end of 20 ft (~6 m) of RG58/ U 508 cable, (10X probe, 50V / div. )



APPENDIX A: VELOCITY MEASUREMENT

It has been recognized for over 30 years that ultrasonic pulse-echo
techniques can detect a defect large enough to be identified as an individual
reflector. Such 'large' or macrodefects include cracks, voids, inclusions
and unbonds, of dimensions comparable to or greater than the interrogat-
ing wavelength, -

During the past 15 years it has become increasingly apparent that
microdefects, although of dimensions much less than the wavelength, and
therefore too small to be identified individually by ultrasound, may col-
lectively influence both sound propagation and the engineering properties of
materials in a significant way. Such microdefects include proosity, density,
composition and microstructure variation, stramed lattices, moist areas,
rachanon mduced damage, etc,

Appendixes A and B briefly describe those features of the prototype
ultrasonic test instrument which relate to microdefect evaluation via accu-
rate velocity, attenuation and reflection coefficient measurements. Sound
propagation measurements may sometimes be correlated with the nature
and magnitude of microdefects. Engineering properties such as Young's
modulus, the shear modulus, Poisson' s ratio, density and sometimes
grain size and texture, can be directly calculated from the measured
sound velocity, reflection coefficient and attenuation,

Methods

Sound velocity is usually determined by taking the ratio of path
length to travel time. When the path length is unknown, angulation and
reflection methods may sometimes be used. The present system can
utilize either of these approaches.

The choice of method is largely determined by the precision or
accuracy required, . For example, the following accuracy limits may
typically be associated with well-known methods:

Oscilloscope time base calibration 21%
Oscillator/ counter-assisted calibration 0.1%
Pulse-n -point 0.01%

Overlap methods 0.001%

In this Appendix we shall briefly comment on the last three methods.
For further details the reader is referred to ASTM' s forthcoming E-7
Recommended Practices for Velocity Measurements.

. A-1



Oscillator/ Counter-Assisted Calibcation

This method is similar in principle to methods recently reported by
E. H. F. Date, M. Atkins and G, V. Beaton in Ultrasonics 9 (4), 209-214
(Oct. 1971) and earlier by P. Mattaboni and E. Schreiber in J. Geophys.
Research 72 (20), 5160-5163 (Oct. 15, 1967). It may also be considered an
extension of conventional time-mark calibrations of the sweep at regular in-
tervals such as 1ps, 100ns, etc. (G. R. Speich et al. ,Metall, Tcans. 1972).

The basic idea is to adjust the frequency of the oscillator (Genecral
Radio 1312) so the period equals the time interval to be measured. This
comparison utilizes the two channels of the 7A12, plus the 5051 Sync Delay
which permits one to align the peaks or zero crossings of the oscillator cw
with two selected points in the signal or echo train.* One of several varia-
tions of this idea is to adjust the sweep speed so 1 div equals a unit length
in the part under test, Figure 11 illustrates typical alignment procedures.
An expanded sweep provides higher accucacy.

The adjusted frequency may be measured with a Tektronix 7014
plug-in, or with a separate counter/timer, Alternatively one may adjust
a frequency synthesizer such as Hewlett-Packard 3320A/ B, whose dials
are direct-reading,

Pulse-mn - Point

The pulse-7 -point method involves sweeping the center frequency
of an rf burst, and recording the frequencies of successive interferences
within the specimen. Papadakis has used this method over tens of mega-
hectz, as well as below 1 MHz (Trans, Met. Soc. AIME 236, 1609-1613 (1966); '
J. Acoust. Soc. Am, 44, 724-734 (1968); J. Appl. Phys, 42, 2990-2995(1971)).
The present system is limited to use below 1 MHz by the 1312, but could
operate up to at least 10 MHz if another oscillator were used instead.

Overlap Methods

. The 5051 can be operated in either of two overlap modes, besides its
"normal' flaw detection mode. In one overlap mode (denoted External Over-
lap) the sweep is driven by the cw oscillator. In the other overlap mode
(denoted Internal Cverlap) the sweep is triggered an internally-controlled -
small number of times at a cate equal to the oscillator frequency, In either
mode the final display is nearly identical, for a given group of selected
echoes (Figs. 12, 13). Figures Al-A3 further illustrate the method. The fol-
lowing references may be useful to one interested in using the method
extensively:

*The Sync Delay would also enable one to study the motion of some bodies
vibrating even at an unsteady frequency, with a stroboscopic-like display
on the oscilloscope, '

A-2



Papers on Pulse-Echo-COverlap Method
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Velocimetry Methods Independent of Thickness

Most ultrasonic velocimetry methods are based on an equation
of the form V = x/t where V = velocity, x = ultrasonic path length (i. e.,
x = thickness, for through-transmission, or x = twice the thickness, for
- pulse-echo) and t = transit time, In contrast to these methods, there
are several other methods for measuring -V without requiring knowledge
of x. Thus, they may be appropriate when it is not convenient to deter-
mine x, for example, when only one surface is accessible.

Critical Angle Reflectivity, This method is based on Snell' s Law. It
involves measuring one of several critical angles, depending on which
wave type (longitudinal, shear, Rayleigh, etc.) is of interest.(l) De-
noting the velocity of interest as V;, Snell's Law gives V; in terms of
the velocity V; and the measured initial angle of 1nc1dence 9 m an
adjacent medium (usually water) as follows:

v, = Vl/smelc .

(2)

This method has been described in greater detail by Rollins'“’ and by

Becker.(3)

This method may be practiced using the present system. On the
7B52, the TIME/ DIV may be rotated full ccw to AMPL, and the horizontal
deflection may then be driven in proportion to the angle of incidence 6 .
The linearity and DC CFFSET of the 7A12 may then be utilized, to obtain
a pattern of reflected amplitude vs 8 ,.

Differ ential Path or Differential Angle, This method, of limited use, is
also based on Snell' s Law, and may be considered, when it is not con-
venient to measure x or 6 1c+ It may be understood by applying Snell's
Law twice, for two different angles of incidence. Let the incident angles
be denoted 0 ;, and 0 1b» a8 in Fig, A4. Consider the two refracted rays
of like mode in medium 2, which will travel along different paths at
refracted angles 6 ,, and 9 2p+ They will be reflected after traveling
in medium 2 for intervals t, and t_, respectively. Again denoting the
Velocxty in medium 1 as Vy, if we ‘define A = sin 6 /VI and B = gin
lb/v , it may be shown that, for isotropic media,

(A1)



As a special simplifying case, we may let @ 1a = 0 (normal incidence).

2
en andV, = (1/ B) ~\/ (tp/ tq)

The practical difficulty stems from trying to measure directly
the transit time in the specimen t_ for the wave at oblique incidence.
Of perhaps academic interest, one might determine t by timing the
interactions of a laser beam with the echoes, where t%e laser in effect
monitors at least one surface of the specimen., This would of course be
limited to wedges and/or specimens which were optically transparent,
and would be a relatively complicated measurement in any event.

In principle, one can also determine VZ in terms of the transit
time tp measured at normal incidence, and the distance 2W along the
specimen surface between a pair of symmetrical '""pitch-and-catch"
wedge transducers, when the distance between these transducers is
adjusted for the maximum echo amplitude. It may be shown that, for
the geometry of Fig., A5, and provided the same mode is used in deter-
mining tp and W,

2
2 _ W

T t_sin#
2 2 2 p 1b
'\/ V1 - Vz sin Glb

Now if the wedges are such that 0 1p = 45 deg and V, = 0.5 cm/p.s, this

simplifies to _
V - Vv = . 3 W/t . .

To solve this for V2, one may use Table Al or a graph of Vo vs W/t
(Fig. A6) or iterative procedures, provided V5 < 0.707.

v

. (A2)

P

Equations (A2) and (A3) also apply for a procedure similar to that
used in critical angle reflectivity, where, if the distance between two
variable-angle symmetrical wedges were fixed, one could vary the oblique
angles until a maximum reflection from the specimen' s rear surface was
observed. One denotes this particular (but not critical) angle 6 },,. From
this angle 6 |, the wedge velocity V,, the wedge distance 2W and the
time interval tp measured at normal incidence, V2 can be calculated.



Table Al., Solutions to Eq. (A3) for 6 b= 45 deg
andV, = 0.5 cm/ps.

1
V,, cm/ps W/tp, cm/ps
0.1 0.029
0.2 0.118
0.3 0.280
0.4 0. 548
0.5 1. 00
0.6 1.92
0.7 9. 80

% 3 sk 3% % ok

‘Reflection Coefficient

In this method V, is derived in terms of the sound pressure
reflection coefficient R.(4,5) One can measure R at normal incidence,
at the interface between a first medium (liquid or solid) of known
characteristic impedance Z1, and the second medium. That is, one
measures R = ‘Ecoupled/Efree’ where the E!' s are the echo amplitudes
observed when the two media are coupled and then uncoupled, respec-
tively, for a wave in medium 1 impinging on medium 2. Provided the
density p in medium 2 is known or measurable, the velocity V, may be
determined from:

zl 1 +R

V2= o, T - ° ' (A4)

Velocity Ratios

In some instances it may be useful to determine the ratio of two
velocities, over a common path.( ) This is sometimes easier to do than
to determine just one velocity, when the path length x is unknown. (7) The
velocity ratio for longitudinal and shear waves is simply the reciprocal
of the corresponding transit time ratio:

v t
M S (a5)
L T



Poisson'! s ratio ¢ may be written in terms of these ratios:

2
1-2(V../V.) :
o = r (A6)

2
2-2(Vyp/V))

Conversely, the velocity ratio may be expressed in terms of ¢:
\'4
T - [ 1-20
— = —_——— A
VL 2 (1 -0) (A7)

In the case of specimens such as round wires or thin rods of
diameter small compared to wavelength, such that, instead of longitudinal
waves, one has extensional waves propagating at a velocity Vg = NE/p
where E = Young' s modulus and p = density, and torsional waves propa-
gating at V. = NG/p where G = shear modulus, the thin rod velocity
ratio is:(8)"

v
I yNTE (a8)
VE
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IMMERSION - SPECIMEN
PATH
INITIAL |
PULSE ,
' ECHOES (A
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PRESENTATION
TIME
i Vc
Fig. Al. Pulse-echo buffer rod experiment and echo pattern, T T"J

X - AXIS
DRIVEN

AT F=1/T,
CONCEPTUAL
PRESENTATION

SUPERPOSITION A
OF 3 SUCCESSIVE

SWEEPS SHOWS

OVERLAP,

SCHEMATICALLY .
c

Fig. A2. Pulse-echo-Overlap method illustrated for echoes A, B and C.
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LINEAR SWEEP

(Retouched)

DRIVEN SWEEP

Fig. A3. ‘Top: Three echoes intensified for the pulse-echo~overlap measure-
ment. Bottom: These echoes overlapped by driving the x-axis of the oscilloscope
with a frequency equal to the reciprocal of the travel time between echoes.

A-10



Fig. A4. Velocity determination Fig. A5. Velocity determination

based on principle of measuring based on travel time t_ at normal
travel times in specimen of two incidence, and the disFance A
~ oblique rays. between symmetrical wedges
' positioned for maximum echo
amplitude.

Wedge: V, =0.5 cm/ps

Specimen Specimen

2

Fig. A6. Graph of
w/ tp vs V, for geometry
and conditions of Fig. A4:

2
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APPENDIX B: ATTENUATICN MEASUREMENT

Consider a specimen interrogated using a transducer and buffer in
pulse-echo fashion, as in Fig. Al. The attenuation coefficient @ and the
reflection coefficient R can be calculated from measurements of the ampli-
tudes of the three echoes A, B and C.! In certain cases, a and R can be
determined without measuring the specimen reverberation echo c.2

The above methods have been combined to yield V, @ and R simul-
l:za.neously.3 Thus, in what may be termed the "ABC Overlap Method, ' one
measures, in a specimen of length L, the three amplitudes A, B and C,
and the period T (or overlap frequency F = 1/T), All the necessary ultra-
sonic data- A, B, C and F - are contained in a single oscillogram as in
Fig, A3.

_ When A, B and C are normalized by dividing by B to give A = A/B
and C = C/ B, the sound pressure reflection coefficient R and attenuation
coefficient @ may be obtained from the nomogram, Fig., Bl, or from the
equations:

R = -[AC/(1 + A Q)] 1/2 (B1)
and _ — —
a =[(lnA -InC -In(l+A C)}/4L. (B2)

For cases where a is so large that C cannot be measured accurately
(i.e., errors in C exceed a few percent), one obtains &« and R by the "AB
Overlap Method, "' measuring A and B and either A, the interface echo
with the specimen uncoupled, or A', the buffer rod's reverberation echo.
Here, if Ay is measured, R = -A/A,. If A' is measured, R = -A'/A
(beam spread, mode conversion, transducer losses, electroacoustic non-
linearity neglected). In terms of R, A and B:

@ = (1/2L) In[ (A/ B) (RZ -1)/R]}] . (B3)

For routine determinations of R and @ one may utilize an accessory
instrument or calculator programmed in terms of peak-detected signals
A, B and C. This function can be combined with a suitable Signal Processor
(Appendix E).

The particular design features in the 5051 that relate to these mea-
surements, are linearity and wide dynamic range, Since these same
features are found in the 7A12, the complete system is capable of measuring



a and R with errors typically in the range 1 to 10%. -Since a may range
over several orders of magnitude, depending on the material and test
 frequency, such errors will usually be tolecable.
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Fig. Bl. Nomogram of propagation loss 2a L and reflection coefficient R as a
function of echo amplitudes normalized with respect to echo B in an experiment
utilizing a specimen on the end of a buffer rod or lead-in wire.



APPENDIX C: CABLE EFFECTS

As the center frequency and bandwidth of pulsed transducers are
raised above 5 MHz, the effects of the coaxial cable on overall system
performance can no longer be neglected. A brief study of these effects
was conducted to examine under what conditions they might possibly
affect system performance.

The results were separated into effects on the transmitted pulse
waveform and effects on the received echo. Theory showed, and ex-
periments confirmed, that in transmitting a pulse to the transducer
from typical pulser circuitry such as is used in this contract, the cable
causes a 6 dB/ octave or greater attenuation of pulse components above
a characteristic frequency f,. For a typical 5 MHz transducer (VIP-
5-1/2-C) f. = 10 MHz and for a typical 10 MHz transducer (VIP-10-1/2-C)
f,= 5 MHz. There are minor "ripples' in the attenuation above f..

The effect of the cable on echo reception is to provide a peak in the
frequency response in the region between 10 MHz and 40 MHz for typical
transducers, Peak amplitude can be as high as 15 dB if the receiver '
damping resistance is above 50 ohms, If the receiver damping resistance
is less than 50 ohms, attenuation with sharp dips and peaks results above
10 MHz. These effects can cause the received echo to ''ring' at an appar-
ent frequency between 10 MHz and 40 MHz when the receiver damping
resistance is other than 50 ohms. '

These points may be elaborated on as follows (see also Figs. Cl-4):
A typical 5 foot length of RG174/Ucable has a two way transmission delay
of 15.4 ns. In intervals less than several times greater than this, the
transducer is effectively driven from and drives into a 50 ohm resistor.
For times greater than about 50 ns, the source and load impedances of
the pulser-receiver are the important quantities. For a typical trans-
ducer capacitance of 1000 pf, the fastest rise (or fall) in voltage which
can be achieved across the transducer is about 30 ns. This limit arises
because the initial 50 ohm source impedance from the cable causes a very
slow rise time (50 ns to 63%) and at least 2 reflections from the source
are required to charge the transducer. Even the 30 ns charge time will
not be achieved, however, unless the pulser source impedance is less
than 10 ohms. Therefore, excitation rise times of less than about 30 ns
and efficient excitation above 10 MHz cannot in general be achieved with
capacitive transducers at the end of cables several feet long. It is im-
portant to realize that these conditions and limitations arise because of
the cable and the capacitive nature of the load; not because of the pulser.
It would be misleading to specify pulsers for these transducers in terms

C-1



of a resistive load. Performance specified in this way will deteriorate
when a cable and transducer are connected. However, since the damp-
ing resistance does appear in shunt with the cable, the specification
should include the value of the damping resistance chosen along with a
description of the cable and transducer used.

For similar reasons, the receiving response characteristic of
this transducer-cable-amplifier system shows strong spectrum dis-
tortion (peaks and valleys) above 10 MHz if the receiver input resist-
ance (usually called damping) is other than 50 ohms. This is a2 conse-
quence of placing cable between the transducer and receiver. Independent
choice of damping resistor is not possible if a flat spectrum response is
desired. These effects can be eliminated by placing the pulsing and first
receiving circuits in close proximity to the transduces. Spacing of a
few cm or less (~1") would be appropriate for use up to 100 MHz,

In summary, for broadband transducers and spike excitation,
cable effects are increasingly important above ~10 MHz. (For rf burst
excitation cable effects are to be considered even below 10 MHz - see
Appendix H.)
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APPENDIX D: TRANSITICN TIMES

Pulse Shape. The pulse shape that potentially could yield the highest
resolution is the step, or single transition to ground, With a broadband
transducer one can theoretically achieve, in the very near field, a half-
cycle, unipolar echo with bandwidth well in excess of 100%. This pulse
shape would normally be desired for defect detection and analysis, parti-
cularly in thin sections, or for defect searches close to an interface,

The transition time t, for a step determines the open circuit
electrical bandwidth: BW = 1/2 t,.. In practice, the bandwidth is limited
by the cable, transducer, and ultimately, by coupling and attenuation in
the test material. The amplitude of the step determines the electrical
pulse strength,

(When comparing broadband vs narrow band systems, it is to be
understood that, when a given piezoelectric material is critically damped
(perfectly terminated acoustically) its vibration amplitude cannot be as
large as if it were only partly damped. Similarly, broadband electronics
admits more electrical noise than narrow band (tuned) electronics.
Random noise increases in proportion to the square root of bandwidth. )

The step pulse shape may ultimately be preferred for bond evaluation
since its unipolar character will lead to simpler echo polarity identification,
augmenting pulse amplitude and spectral information.

Ultrasonic spectroscopy also would be enhanced by the step pulse,
in some cases, because of the large bandwidth,

Experiments on the effect of step transition times, pulse width and
damping were conducted initially using a Hewlett-Packard variable transi-
tion time output model 1915A as the pulser. (This instrument provides up
to + 50V open circuit, with pulse top variations of + 2 to + 5%, depending
on the transition time.,) Theory and experiments illustrated in Figs, D1-5
show that a single transition yields the echo of highest resolution, but a
rectangular pulse (double transition) can yield higher amplitude.

During Phases I and II it was understood that driving voltages
considerably greater than 50V would be desirable. Therefore, experiments
were conducted on breadboard circuits for producing a single transition
to ground, Unfortunately several difficulties were encountered. A first
limitation arose from the cable (see Appendix C). A second limitation
arose from transient effects associated with switching off in a few ns, a
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voltage source of several hundred volts (slewing rate ~10n V/s). Thirdly,
it was observed that the ideal echo singlet or doublet shapes quickly dete-
riorated for nonelectrical reasons, as the pulse propagated a few mm.,
That is to say, the observed difference in pulse shape, when comparing

a step to ground vs the more usual spike excitation, was generally not
significant. Results did not appear to justify the substantial effort anti-
cipated, if one desired to produce a high-voltage step to ground, using
presently available solid state switches,

To avoid these difficulties within the framework of this program, we
chose a more conventional route, and explored''spike'' excitations S1 andS2
with exponential return to ground governed by two different time constants.

In the first waveform, S1, the recovery time is dependent upon
the product of the coupling capacitor, C., and the damping resistance, R,
chosen by the operator. In the second waveform, S2, the recovery time
is dependent upon the product of the coupling capacitor and a fixed resist-
ance of 50 ohms.

The damping resistance thus affects both the excitation and echo
in the S1 case but affects only the echo in the S2 case (see Fig. 10).

When the damping resistance chosen is other than 50 ohms, ‘the S2
waveform will provide a flatter baseline than will the S1 waveform, How-
ever, this faster baseline crecovery is at the expense of a loss in echo
amplitude.

Receiver Recovery Time. The receiver recovery problem consists of
three main parts: (a) Transducer discharge, (b) Noise injected by pulser,
and (c) Receiver overload (saturation).

(a) The transducer discharge rate is normally governed by an RC time
constant where C = capacitance and R = damping resistance, The expo- .
nential decay follows the equation V = Ve -t/ Ttrom which it is readily
seen that the voltage discharges by one order of magnitude per 2. 3 time
constants (In 10 = 2, 3), Thus to discharge from 100V to 10V takes 2. 3T,
and from 100V to 10 pV takes 16. 17T, '

If we assume C = 2000 pf, the effect of damping resistance on
recovery time from 100V down to 10 pV is as follows:

R, OHMS TIME CCGNSTANT, ns RECOVERY TIME, pus
500 1000 16. 1
50 : 100 1. 61
5 10 . 161

Using a small coupling capacitor, to reduce C, speeds the recovery
at the expense of drive amplitude,
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The other approach, to lower the circuit parallel resistance, is
potentially a good solution if it is done over the proper time interval. A
permanently low resistance is unwise because it will require high pulse
power and provide an unsatisfactory receiving termination,

Therefore switching of a low resistance across the line during
the recovery period after the main bang is attractive. Such a switching
circuit must itself inject a low level of noise into the receiver during the
recovery period or else have a suitably short noise recovery time of its
own, In practice it is this requirement which may ultimately place a
limit on recovery time.

(b) The pulser itself must inject no noise above the specified receiver
noise level into the receiver near and past the end of the recovery period.
This requirement is progressively more difficult to meet as the recovery
time is shortened below 500 ns. Some avalanche transistors, for ex-
ample, exhibit "noise'" in the millivolt region up to 200 ns after avalanche
due to charge redistribution effects in the transistor. Other fast rise
pulse sources may exhibit similar noise.

(c) Third, the receiver electronics must recover from overload or gain
reduction sufficiently fast to meet the desired recovery time. This is
not as severe as the previous two problems but becomes difficult below
about 100 ns. Receiver overload recovery becomes more of a problem
as gain is increased but may be avoided by lowering clipping levels at
the receiver input.
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Fig. D-1. Idealized waveforms for acoustically matched transducer. (Transducer thickness = x, veiocity =v)



Experimental Conditions:

Pulse _____i?j_ﬁ-té_‘m'm >l 50 mV /em Transition times minimum;
Generator ™ Scope ~1 ps/em 502 source impedance; VIP-5
. o) 1SN SRS | l i ;
I = broadband transducer in con-
Quartz 1"  Fairchild 777 tact with 1'" thick block of
—— fused silica -'guartz"

(2) Pulse width = 40 ns (less than optimum)
Echo amplitude = 45 mV

(b) Pulse width = 100 ns (optimum)
Echo amplitude = 80 mV; this is a
time domain maximum value;
note symmetry of video triplet
echo shape.

(c) Pulse width=200ns (greater than
optimum)
Echo amplitude = 40 mV; echo
distorted, starting to split into
echo pair.

. (d) Pulse width = 1000 ns = lps (much
greater than
"optimum'')
Echo amplitude = +40 mV; echo pair
now separated by interval equal to
pulse width. At expense of amplitude
in the time domain, each echo has
gained bandwidth in the frequency
domain, i.e., greater information

content.

Fig., D-2., Effect of rectangular pulse width on echo shape.



Experimental Conditions:

same as previous figure, except pulse
width = constant for each oscillogram,

INustrative output waveforms of pulse
generator unloaded by transducer:

Rise time = fall time = minimum
Rise time = 50% of pulse width

Fall time = 50% of original pulse
width

(Rise time relates to leading edge:
Fall time relates to trailing edge.)

Symmetrical echo obtained using
rectangular 100 ns pulse width:

Rise time = Fall time = minimum
(~3 ns)

Fall time = minimum;

Rise time increased.

Echo amplitude
decreases,

Distortion not apparent,

Rise time = minimum;

Fall time increased.

Echo amplitude
decreases,

Distortion apparent.

Conclusion: optimum symmetrical video triplet echo is obtained with a rectangular

pulse having a width equal to half the period of the transducer!s nominal upper
frequency.

(VIP-5 operates at a center frequency of 5 MHz. Period = 200 ns.
Optimum pulse width = 100 ns. )

Fig. D-3. Effect of transition times on echo shape.



Both leading and trailing edges set
for minimum transition times. Each
edge generates an echo. Reverbera-
tion of the echo pair in the 1"

quartz block is also seen.

Leading edge ramped until first
echo in echo pair disappears, The
only echo generated is due to sharp
trailing edge. Compare echo and
its reverberation with above
oscillogram.,

Trailing edge ramped, leading edge
sharp. Converse of case b above.
Compare with a and b.

50 mV/cm Specimen: 1" quartz block

2 ps/em
Fig. D-4.
half-period of VIP-10,

Effect of transition time when width of "rectangular' pulse =3us>>



FREQUENCY DOMAIN

TIME
DOMAIN

2782

1282
]

0.2 ps/em

Transducer: Broadband VIP-10-1/2 C. 'O '0

Lower trace gate shtow‘s ;-teglon whose Spectra obtained with HP

spectrum appears at rig spectrum analyzer, linear
scale, 2 MHz /cm.

Fig. D-5. Effect of parallel resistance Rp on echo shape and spectral bandwidth

|
20 MHz



APPENDIX E: THREE-CHANNEL SIGNAL PROCESSOR

General layout designed so location of controls indicates function. Mechanical
vernier (screwdriver) adjustments are designed to avoid accidental misadjust-
ment, Features include: ’

GATES: Three (3) channels, denoted A, B and C: These gates may
monitor, for example, coupling, flaw and rear face echo;
also useful for reflection coefficient and attenuation mea-
surement by buffer rod ABC method; gates are virtually
stepless, for spectrum analysis with minimal transient in-
terference. Gated intervals are indicated by pedestals.
GATE COMPLEMENT mode blanks 7000-series oscil-
loscope display except for gated parts of trace. GATE
POSITION in each channel adjustable in three ranges: up to
1, 10, 100ps. Gate position is timed relative to either
SYNC pulse or ECHO. This time reference is independently
selectable for each channel - A, B and C. For the "A"
channel, the ECHO reference means that the delay is relative

" to the main bang which typically follows the SYNC pulse by
a short controllable delay. Gate WIDTH is adjustable between

1 and 10p s,
OUTPUT Available per channel individually (for spectrum analysis
SIGNAL: or other measurements) or with all 3 channels in common

at OUTPUT SIGNALS connector.

RECORDER Three (3) position switch selects most positive (+), most

OUTPUT: negative (-) or largest (MAX) echo in gated time slot. 1%
accuracy relative to INPUT SIGNAL at 1 kHz prf, for echoes
longer than peak detector acquisition time. Bipolar output
for determining sign of reflection coefficient, specimen
impedance, etc.

COMPARE Two-position COMPARE MAGNIT UDE switch, in conjunction

MAGNITUDE: with bipolar LEVEL control and EVENT indicators, controls

' ALARM indication and output corresponding to any one of four
combinations of echo magnitude and bipolar level magnitude:

LEVEL COMPARE ALARM Examples

7o) < o > IF ALARM No ALARM

-+ > ‘ lechol> l+ levell m _D\j._
~+ < | l echo| < l+ level' __m __l—_n—l__-

— < | echo< |- leVeI‘ *-q[_r .—l__-_l—
—_ > I echol) l- 1eve1| _LD“ _ _D(;J_

E-1



EVENT:

LEVEL:

ALTERNATING

GATES/SIGNALS:

ALARM:

SIZE:
WEIGHT:
' POWER:

Logic output to event recorder, corresponding to alarm light.

Pedestal display indicates sign and magnitude of this
bipolar control, corresponding to + or - rotation of
control knob. That is, besides use with COMPARE and
EVENT functions, it controls polarity and magnitude of
OUTPUT GATES which are available for oscilloscope
display. '

Sequential display requiring only one channel of oscilloscope.

Includes TEST, RESET, INT audible alarm, and EXT
logic level for EVENT occurring in any 1 or more gated
time slots.

14 x 21 x 37 cm.
Less than 10 kg.
110/220V, 50/60 Hz; fused.
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VIP Series Video Inspection Panaprobe: Broadband Transducers

Specifications
. Model 5070 VIP-10-1/2. C Transducer
(Style C for contact testing)

ary

L| 3786

! Wr NN

Microdoi I'goldenf'Series

l .250 Hex

Mechanical: T P—' 687 Dia —™
Case Material: Stainless steel, satin finish,

Wear Plate Material: Alumina, 99.5% pure, impervious, polished to better than 10 micro-inch rms.

Electrical Connector: Microdot ''golden' series.

Performance Characteristics:

s
~

Typical pulse-echo waveform reflected from fused silica test block at Sc? = 1, commonly referred to as the
yot point (1" thick). Excitation pulse; - 100V, 20 ns wide at half amplitude points. Cable; RG-174/U,1ft long.

0.2V/ecm
0. 2us /ecm

Load Resistance = 50Q Load Resistance = 102

‘The exact waveform and pulse spectrum obtained are dependent on a number of factors related to the in-
‘strumentation, the excitation pulse width, the material through which the pulse is propagated, and the
length of the sound travel path. With a high impedance termination, i.e., load resistance of greater than
35 ohms, single cycle waveforms can be obtained. If the load resistance is lowered to 10 ohms, 1-1/2
cycles are normally observed. Both statements apply when the pulse is'transmitted through a low attenua-
tion material and travels a total distance equivalent to one S_ parameter.

Damping Factor: 2 or 3, depending on load re-
sistance, Damping factor is defined as the
number of half cycles equal to or greater than
half the amplitude of the first half cycle in the
rf pulse,

-]
[=]
T

Loop Sensitivity: -43 dB typical, -50 dB min.
Measured as the ratio of the amplitude of a 20ns
wide (at the half amplitude points) excitation
pulse, measured across the transducer, to the
peak-td-peak amplitude of the back reflection
from a 1" thick silica test block,with a load
resistance of 200 ohms,

IMPEDANCE, OHMS
s
3
1

N
(=]
I

]

Capacitance: 2500 pf typical. 0 1 L )
. . o 2 4 6

FREQUENCY, MHz

Variation of the magnitude of transducer
electrical impedance with frequency.

®
o

* N 2
[
¢ 2 where \ . is the wavelength of sound in the transmitting material at the center frequency, Z is the

a
distance of pulse travel, and a is the transducer radius.

PANAMETRICS 221 Crescent St., Waltham, Mass. 02154 « Tel: 617 899-2719
Subsidiary of Esterline Corporation F-1

O ] Ultrasonic Technical Data
ESTERLINE Bulletin UTD-4A (February 1971):



Typical Spectrum of back echo from 1" thick fused silica test block, Sc =],

o 3 dB fractional 2
5 bandwidth S
@ p
g 5
: £
q‘ 8
4
[ v ailiiiiia " .
0 10 20 MHz 10 20 MHz
Load Resistance 20002 Lioad Resistance 109
Fractional Bandwidth = 130% Fractional Bandwidth = 72%
Fractional Bandwidth: 100% typical, 80% min. as measured at -3 dB of the pulse spectrum (B. W. =
Af atf3 dB ). Pulse ''center frequency" £ = midpoint of the -3 dB (half power) points. Load resistance, 50€.
c
Backing Noise: <-80 dB. Measured as the ratio of the amplitude of the first back echo from a 1" thick
silica block to the maximum signal returned from the transducer backing.
Operating Temperature Range: 32 to 120F, 0 to 50C.
Electrical:

Recommended Pulser/Receiver Characteristics:

Pulse width: < 50 ns measured at the half amplitude points.

Ty: <10 ns,

Maximum voltage: -100V guaranteed for a unidirectional voltage pulse of the above characteristics.
Most transducers will withstand much higher voltage spikes but "punch-through"
voltage is variable from unit to unit. The VIP-10-1/2 may also be driven with rf
bursts over most of its usable bandwidth. In general, excitation voltages should
be reduced for rf burst operation.

Typical Applications: Thickness gaging, high resolution flaw detection, flaw identification and/or
characterization by spectrum analysis, measurement of frequency dependent
attenuation effects by spectrum analysis. The VIP-10- 1/2 can be utilized on a
variety of measurements on both metallic and nonmetallic solids and liquids.

Documentation: Pulse waveform and pulse spectrum at the yo+ of the center frequency, bandwidth and
loop sensitivity are provided with each transducer at no charge.

ASTM 7075 Aluminum
Test Block
; 1/64" Dia FBH,
31 Below Surface
Contact Test
200 V/cm
5ps/cm

§ ASTM 7075 Aluminum
| Test Block

B 1/16" Dia FBH,

il 1/8'" Below Surface
Contact Test
5mV/em

0.5ps/cm

The above oscillograms demonstrate the resolution and sensitivity of the VIP-10-1/2C.

Additional Information: Technical Memorandum No. 6 entitled "Broadband Transducers: Radiation Field
and Selected Applications, ! by E. P. Papadakis and K. A, Fowler, is available
on request, Ordér ultrasonic reprint UR-90.

Other standard and special VIP series transducers are available from Panametrics. Call or write K. A.Fowler
Specifications subject to change without notice.

PANAMETRICS 221 Crescent St., Waltham. Mass. 02154 » Tel: 617 899-2719

Subsidiary of Esterline Corporation

-2 91970 Panametrics, Inc.
ESTERLINE PRINTED IN U.S.A.



APPENLIX G: INSTRUCTION MANUAL FCR
PULSER/RECEIVER 5051

INTRODUCTION

The Pulser/Receiver 5051 is a prototype instrument designed for
quantitative ultrasonic testing (Fig. 1). It was designed for use with
broadband transducers operating in the 1 to 10 MHz frequency range,
but it is not limited to these restrictions. It opecrates as a plug-in to
any 7000-series Tektronix oscilloscope. It is normally plugged into the
leftmost oscilloscope bay, but it can be plugged into any other bay too,
to derive the necessary power. To operate with any oscilloscope not in
the Tektronix 7000-series, a power supply would be required to provide
the following dc power (Tektronix notation):

5051 Pin

Connection Volts
A9 LTS, 45
Al4 LTS, COM
Al2 GND
Al8 +15
B12 GNLC
B18 -15
Al9 +50
A8 (J1008) +5

GENERAL OPERATION

The following information is presented as a general guide. De-
pending on the particular application (measurement of flaws, thickness,
velocity, attenuation, phase or time interval, or other special cases) a
different procedure may be chosen or specified.

Let us assume the oscilloscope mainframe is a Tektronix 7704,
turned on and operating properly. Let us further assume the bays con-
tain, from left to right, these four engaged plug-ins: 5051, 7A12, 7B52,
Accessory Bin, Reference to Fig. 1, or to the 5051 itself, will familiar-
ize the operator with the nomenclature and position of the various front-
panel pushbutton and toggle switches, unlabeled verniers, and connectors.



%*
One may now normally operate the 5051 as follows:

1‘

2.

Connect Microdot/ BNC cable (> 1 ft long) from 5051 SYNC to 7B52
MAIN TRIG IN,

Connect BNC/ BNC cable (< 1 ft long) from 5051 RCVR OUT to
7412 CH 1.

Unlatch all 5051 lit pushbuttons, by pressing unlit adjacent push-
button -halfway in. Push in RCVR ATTN 0 dB.

Push 5051 CAL CW pushbutton, and the 1 or 10 MHz pushbutton,
and one of the N~ pushbuttons, to check or adjust 7B52 at 1 or
0.1 ps/div, respectively. Adjust SWEEP CAL vernier on 7B52
as required, Time base is now calibrated. Push in 1 MHz.

Push 5051 CAL —J L— pushbutton. This internally injects into
input of 5051 receiver, a group of 0.1V x 0, 5u s rectangular pulses,
with rise and fall times of about 20 ns. Adjust 5051 RCVR GAIN
(unlabeled) vernier for gain of 10 by rotating vernier until 1V am-
plitude is measured at RCVR OUT., The receiver gain is now
calibrated.

Observe rise and fall times t, and t; of the rectangular calibration
pulses. The transition times should be about 25 ns, Calculate
receiver bandwidth using the approximation: BW = 1/2 t.. Example:
ift, = 25 ns, BW = 20 MHz. The 5051 contains no operator adjust-
ments for bandwidth. If bandwidth is observed to be inadequate,
consult factory (Panametrics).

Alternative calibration procedure: instead of steps 4, 5 and 6, one
may utilize an independent signal source to calibrate time base,
receiver gain and to check receiver bandwidth.

Having calibrated the 5051, we are now ready to operate it. Push
OPER pushbutton,

*In '"'normal'' operation, the 3-position switch S1003 on board Al0 is
switched to NORMAL, not to one of the two OVERLAP positions, Also,
the internal coupling capacitor switch S501 on board A5 is normally set
to position 1, 2000 pf (max). See Fig. 2.
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10.

11,

12.

13.

14,

15.

Select PULSE SHAPE by pushing spike shape Sl or 52, or radio
frequency pulse burst shape RF, If RF is selected, also select
frequency in MHz and number of cycles N~ as 2, 4, 8, 16 or 32.

Select appropriate transmitter termination in order to calibrate
transmitter, after noting the following. The amplitude of the Sl
or S2 main bang (initial spike) can be controlled up to 300V and
200V, respectively, by the transmitter spike step attenuator
(0-10-20 dB) and spike vernier. The amplitude of the RF main
bang can be controlled between 7 and 14V peak-to-peak by the RF
vernier. Since the amplitude and shape of the main bang depend
in part on the damping resistance (OHMS), the cable impedance
and length, and on the transducer impedance (which in turn may
vary with coupling conditions), one may sometimes prefer to not
calibrate the transmitter until these factors have been defined.

For example: damping OHMS = 100, cable impedance = 508;

cable length = 4 ft (1.2 m); transducer impedance = -j 6§ (Z =
-j/2wfC = -j/2m + 107 « 2500 x 1912Q for Panametrics VIP-10-1/2
transducer at 10 MHz), However, the transmitter may be cali-
brated as follows, for a given cable/ transducer/ coupling situation,
or for any other convenient termination to the transmitter BNC,
such as open circuit, 502, short-circuited cable, etc.

If only one transducer is to be used (pulse-echo), operate transducer
toggle switch to center position. Otherwise operate toggle to left
position and connect BNC tee to transmitter.

Select PRF: 100, 200, 500 or 1000 pulses per second.

Using 10X scope probe, connect probe tip to R or T/R connector,
and measure main bang on 7A12 at 5V/div. (If 10X probe is not
available, use 1X probe or coaxial cable but attenuate main bang by
20 dB.) Adjust 5051 step attenuator and vernier as required. The

‘transmitter amplitude is now calibrated for the selected pulse shape.

Operate transducer 3-position toggle switch to left, center or right

position. Left is for one transducer only (pulse-echo). Right is
for electrically separate transmitter and receiver transducers.
Center is seldom used; it is for connecting transmitter and receiver
transducers in parallel electrically, or for calibration purposes
(step 11).

Disconnect unnecessary connectors, cables, terminations or probe.

G-3



16. Proceed with test.

17. Typical 5051 settings are indicated in the "Illustrations' section of:

this manual,

SPECIAL OPERATION FOR EXTERNAL OVERLAP

This section describes the settings and procedure for measuring

time interval by the pulse-echo-overlap method wherein the x-axis is
driven by an externally-applied, variable-frequency continuous wave
whose period is adjusted until it equals the interval in question,

1.

7.

Remove 5051 from R7704. Remove right side panel. Referring to
Fig. 2 for switch notation and location, set S1001 at the H] position,
set S1003 to position 2, and set S1002 to position 3 (= 100). These
latter settings are done by snapping open the hinged transparent
cover, rotating the slotted rotor to the desired position, and then
closing the cover.

Replace right side panel. Install 5051 in R7704. Turn on R7704.

For first-time operation, use a VIP-5-1/2C transducer, ground 3"
steel buffer at least 1'" thick or 1" in diameter, and a steel specimen
~1/2'" long by at least 1/2" in other dimensions, A steel gage block
is generally suitable for this specimen. Couple the three items to-
gether, using a clamp or other fixture to prevent relative motion
during the measurement. |

Connect cables (at least 4 ft long) from 5051 RCVR OUT to 7A12,
CH 1, from 5051 SYNC to 7A12 CH 2, from T/R to the transducer,
and from GR 1312 decade oscillator to 5051 EXT. Push GPER, SIi,
Xmtr ATTN = 10 dB, PRF EXT and MHz EXT. Push N = 2,

On 7A12, push TRIGGER SOURCE: CH 1, push CH 2 VOLTS/ DIV:5,
and DISPLAY MCDE: ALT,

On 7B52, rotate TRIG LEVEL/SLOPE to about 4 of clock position,
push NCRMAL, AC, INT, MAIN SWEEP. Operator should now see
two traces. One is the echo train, The other is the SYNC output,

Observe the time t between selected echoes A and B, and measure
it to ~1% using the calibrated sweep.

*Turn off R7704 when removing or installing 5051,
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8. Set oscillator output to ~1V, and set its frequency f = 1/t, using
7C14 or other counter to measure f, or using timer to measure
oscillator period. The frequency f should now be within about
1% of the correct value.

9. On 5051, advance N from 2 towards 32, until leading edge from
the TR switch is as close as possible but left of echo A.

10. Adjust 5051 Sync Delay vernier until trailing edge closely follows B,
The AB pair is now straddled. See Fig., 12. '

11. Disconnect cable from 7A12 CH 2 and reconnect to 7704 Z-AXIS
INPUT, HIGH SENSITIVITY (rear panel).

12, On 7B52, rotate TIME/ DIV to full ccw AMPL position, MAIN
TRIGGERING SOURCE to EXT < 10, and connect oscillator output
to MAIN TRIG IN,

13. Adjust oscillator f and 5051 Sync Delay and horizontal POSITION (R7704)
until you observe overlap near center of display. Some adjustment
of oscillator output and readjustment of f may be necessary. Record
overlap frequency. Multiply path length by f, to calculate velocity:
V=2L/t=2 L{,

14, For best results the echoes A and B should have similar shape, and
be overlapped at corresponding points, such as the first zero cross-
ing, In Fig. 12, for illustrative purposes, we show overlap of the
central lobes of A and B, If narrow-band transducers are used,
sound velocity may be measured at the transducer center frequency.
Or one may use the 5051 pulse to trigger an rf pulse generator, for
rf overlap measurements,

15. Repeat measurement procedure to determine reproducibility, Pre-
cision of up to about 1% of the interval between successive zero
crossings is to be expected. For a 5 MHz pulse, this limit is about
+2 ns. Compare V with data from independent methods.

SPECIAL OPERATION FOR INTERNAL OVERLAP

This section, similar to the previous section, relates to the pulse-
echo-overlap method wherein the sweep is triggered several times at a
rate equal to the external cw oscillator, to provide an overlap of two
selected echoes,



* .
1. Remove 5051 from R7704. Remove right side panel. Referring to
Fig. 2, set 51001 at the HI position, S1003 to position 3 and 51002
to position 3 (+ 100). '

2, Replace right side panel. Install 5351 in R7704.
3. Same as step 3 in previous section,

4., On 5051 set S1, Xmtr ATTN: 10 dB, OHMS: 1000, PRF: 1000, N: 2,
MHz: 1. Connect cable from 5051 SYNC to 7A12 CH 2, and from
5051 RCVR OUT to CH 1,

5. On 7A12, set DISPLAY MODE: CH 1, TRIGGER SOURCE: CH 1,
Adjust to see echo train, Observe and measure t between A and B
to about 1%,

6. On 7A12, change DISPLAY MODE to ALT, Adjust Sync Delay until
CH 2 pulse pedestal train display straddles B,

7. On 5051, push EXT MHz and EXT PRF,
8. Adjustf=1/t.
9. Advance N as close as possible to left of A,

10. Adjusf Sync Delay and N for minimum number of pedestal pulses just
prior to A and B, See Fig. 13.

11. Reconnect from 5051 SYNC to 7B52 MAIN TRIG IN, Set 7B52
TRIGGERING SOURCE to EXT., Adjust 7B52 LEVEL/SLOPE to
about 10:30 position,

12. On 7A12 set for CH 1 display only.

13. Adjust 7B52 TIME/ DIV to greater than 10 or 20 times the interval t
between A and B,

14, Adjust oscillator for overlap. Set 7A12 VOLTS/ DIV for sharpest
pattern, Center the display as required, Record overlap frequency.
(See steps 14, 15 of previous section,)

*Turn off R7704 when removing or installing 5051,
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CIRCUIT DESCRIPTION

This section of the manual describes the circuitry used in the
Model 5051 Pulser/Receiver. The description begins with a discussion
of the instrument using block diagrams. Then, each circuit is described
in detail using block diagrams to show the interconnections between
stages in each major circuit and the relationship of the front panel con-
trols to the individual stages. Complete schematics of each circuit are
given, One may refer to these schematics throughout the following cir-
cuit description for electrical values and relationships.

Assembly and Component Numbers

. The Pulser/Receiver is composed of separate assemblies as
follows:

Al Completed Unit

A2 Receiver

A3 Receiver Attenuator Switch

A4 Crystal Oscillators

A5 Spike Generator

A6  Spike Generator Attenuator Switch
A7 Damping Switch

A8/A10 28 Volt Regulator

A9 RF Burst Generator

Al0 Interconnecting Plane and Logic
All Shape Switch

Al12 Calibrate/ Operate Switch

Al3 Burst Length Switch

Al4 PRF Switch

Al5 MHz Switch

It should be noted that AS/AIO is not a separate assembly but part of the
interconnecting plane and logic. Each assembly has its own material
list and its parts are numbered accordingly., For example, a resistor
appearing on assembly Al5 would be numbered R1501. Assemblies A2
through Al5 are part of assembly Al.

Block Diagram

The following discussion is provided to aid in understanding the
overall concept of the Model 5051 Pulser/Receiver before the individual
circuits are discussed in detail. All interconnections occurring in the
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Pulser/Receiver are indicated on the block diagram. Arrows are used
to indicate the direction of signal flow and a variety of symbols are

used to indicate the type of connection made. These symbols are called
out in the Note section of the block diagram, All controls appearing on
the block diagram are labeled by surrounding the title of the control with
a rectangle. The location of these controls is also called out., The
Pulser/ Receiver can be subdivided into the following categories:

Eight front panel pushbutton switches

DC to DC Converter (PS101)

Spike Generator (A5)

Burst Generator (A9)

Crystal Oscillators (A4)

Receiver (A2)

An Interconnecting Plane and Logic (Al0)

The eight panel switches provide most of the controls necessary
to operate the Pulser/Receiver. The power supply PS101 is a 500V dc
to dc converter, This supplies the necessary power to operate the spike
generator. The spike generator can provide up to 300V of broadband
excitation for driving ultrasonic transducers., The rf burst generator
provides a burst of rf having at least 10V peak-to-peak amplitude and
containing a selectable number of rf cycles and is used for narrowband
excitation of transducers, - The four crystal oscillators provide sine wave
excitation at 1, 2, 5 and 10 MHz, This excitation is used in driving the
logic and also in producing the rf burst. The receiver is blanked during
the main bang and for a controllable interval thereafter. It amplifies
the received echoes by a factor of 10,

Detailed Circuit Description

Spike Generator A5, The 50 volts supplied by the oscilloscope mainframe
is regulated by the 28V regulator A8/ A10. The relay K801 connects this
regulated voltage to the input of the dc to dc converter PS101. The output
of the converter (500V dc) is supplied to pin J505 on the spike generator
assembly, :

Integrated circuit U501 and transistors Q507 and Q508 form a high
voltage reguiator which supplies voltage to the spike generator.

The spike attenuator switch A6 sets the output voltage of this

regulator at 0, 10 and 20 dB below 500V dc. Calibration of this switch
is adjusted by front panel control R602. Transistors Q505 and Q506
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form a constant current source which is used in charging one of the
selected coupling capacitors C501 through C505. SCR's Q501 through
Q504, when triggered by the spike gate appearing at J503, discharge
the selected coupling capacitor into the transducer through CR501.
Relays K501 and K502 are used to short out the unrequired SCR's when
the spike attenuator switch is in the -10 dB or -20 dB positions.

Crystal Oscillators (A4). Assembly A4 contains four Pierce crystal-
controlled oscillators operating at 1, 2, 5 and 10 MHz, The proper
oscillator is chosen by applying 15V dc to this oscillator through switch
Al5, The crystal oscillator output is coupled through assembly Al0 to
the rf burst generator assembly A9,

RF Burst Generator (A9). The crystal oscillator output is coupled
through J906 to emitter follower Q908. The output of this emitter fol-
lower is connected through relay K901 to the input of integrated circuit
U901. The emitter follower Q908 buffers the crystal oscillator output
and feeds this signal to the logic located on A10. This signal is also
used for sweep calibration by feeding it through J902 to the calibrate/
operate switch and to the receiver,

U901 functions as a gated amplifier and produces a 3V peak-to-
peak rf burst containing 2, 4, 8, 16 or 32 cycles of c¢f, The gating signal
for this amplifier is derived from transistors Q910 and Q911, The burst
output is peak detected on assembly All and fed to the input of Q912 at
J904. This signal is then fed to Q911 and serves as an AGC for amplifier
U901,

Transistors Q907, Q906, Q905, Q904 and Q911 form a buffered
amplifier having a gain of approximately 4. 8. The output of this amplifier
is fed to the input of complementary emitter follower Q901 and Q902.

This complementary emitter follower provides the low impedance neces-
sary to drive the transducer to approximately 10V peak-to-peak,

1903 and its associated components provide short circuit protection
for the complementary emitter follower transistors Q901 and Q902,

Receiver (A2). The receiver input is protected from overload by CR208
and CR 209, CR204 and CR205. Q211 and its associated circuitry com-
prise an electronic transmit/ receive (TR) switch which protects the
receiver input from damage caused by the large excitation voltages pro-
vided by the transducer driving circuitry, Transistors Q208, Q209 and
Q210 convert the logic level TR gate drive signals to sufficient amplitude
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and correct polarity for driving transistor Q211. This circuitry also
Provides compensation for switching transients introduced by the gate
capacitance of Q211,

Transistors Q212, Q213 and Q214 form a high input impedance,
low output impedance buffer amplifier having unity gain. This buffer
amplifier is used to provide a low impedance drive for the receiver
attenuator switch A3, The receiver attenuator switch is connected be-
tween J202 and J201 and provides attenuation in steps of 2 dB from 0 dB
to 18 dB. Transistors Q204 through Q207 provide the ceceiver voltage
gain. R211 is a front panel control located under the receiver attenuator
switch and is used to adjust the receiver gain to a calibrated value.
Internal operating bias for the receiver is adjusted by means of R212,
The receiver output is buffered by transistors Q201, Q202 and Q203,

Interconnecting Plane and Logic (A10)

Input Signal Conditioning. The crystal oscillator signal is fed to Al0
through P1001 from the crystal oscillator buffer located on A9. U1001
is a high speed comparator used to square the crystal oscillator sine
wave signal, Ul004 buffers the comparator output.

Overlap Frequency Dividers. Integrated circuits Ul017 through U1020
each divide the conditioned input signal by 10, S1002 can be used to select
any of the four outputs of these frequency dividers thus giving a signal
having a repetition rate equal to the input signal divided by 1, 10, 100,
1000 or 10,000,

PRF Circuitry. Switches Al4 and Al5 and associated integrated circuits
Ul021, U1022 and U1023 make up the circuit used to generate the pulse
repetition frequency. When the internal crystal oscillator is selected at

1 MHz, Ul017 through U1019 divide this 1 MHz signal by 103, U021
divides this signal by 10, producing a signal having a PRF of 100 Hz at
pin 10 of J1003. U1021 also has an output equal to 1/5 of the input fre-
quency. This output is fed to pin 2 of J1003 thus providing a signal having
a 200 Hz PRF. One section of dual flip-flop U1023 is used to divide the
1000 Hz clock signal by 2 thus producing a 500 Hz PRF,

When the internal crystal oscillator is set at 2 MHz, U1017 through
U1019 again divide this signal by 1000 producing a 2000 Hz signal. This
signal is further divided by flip-flop U1023 thus producing a 1000 Hz sig-
nal, The PRF is then generated in the same manner it was when the
crystal oscillator was set at 1 MHz,
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When the internal crystal oscillator is set at 5 MHz, U1022 is
used to divide the resulting 5000 Hz signal by 5 thus producing again a
1000 Hz signal. The PRF is then generated again in the same manner
that it was when the crystal oscillator was set at 1 MHz.

When the internal crystal oscillator is set at 10 MHz, U1022 is
used as a divide by 10 circuit to divide the resulting 10,000 Hz signal
by 10 so that a 1000 Hz signal is produced. Again, the PRF is produced
in the same manner it was when the crystal oscillator was set at
1 MHz,

Cycle Counting Logic. For this discussion refer to the schematic,

Fig. G1. The function of this circuitry is to generate a pulse having

a length equal to the selected number of cycles of the clock frequency.

A sync enable pulse presets flip-flop 1 of U1002 so that the Q output

of this flip-flop is at a logical 1. This signal then allows the clock at
pin 6 to set flip-flop 2 output to a logical 1 which is the burst gate signal
at P1002. This signal in turn enables the flip-flops in U1005 through
U1007 to count clock pulses. When the selected point on the burst length
switch, Al13, becomes a logical 1, Ul003 provides a.return to ground
pulse which clears both flip-flops in U1002. This returns the burst
length signal to ground at P1002, thus completing the cycle.

Sync Pulse Circuitry, U1008 is triggered by a signal derived from the
PRF switch Al4 and in turn triggers one-shot U1009 which produces a
100 ns wide pulse for synchronizing the oscilloscope sweep.

Spike Generator Sync Circuitry. One-shot U1010 produces a variable
delay via 51001 and R101A for positioning the spike sync pulse which is
produced by Ul011. This pulse also provides the sync enable pulse for
U1002 as discussed above,

TR Turn-On Circuit., Ul009 provides a preset pulse to flip-flop 1 in
U1025 thus turning on the TR switch 1 microsecond ahead of the main
bang,

TR Turn-Off Circuit. Ul013 provides a 300 ns delay after the end of the
rf burst before triggering U1012. This resets flip-flop 1 in U1025, thus
turning off the TR switch.
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External Overlap Sweep Blanking, Ul016 provides a variable width pulse
of 5 to 100 microseconds for blanking the ' scope sweep during ''external
overlap.' The leading edge of this pulse is ANDed in U1024 with the
clock, producing a series of pulses which repeatedly triggers one-shot
U1015. The first of this string of pulses presets flip-flop 2 in U1025
which through Q1001 intensifies the ! scope beam. When the trailing edge
of the pulse produced by Ul016 occurs, Ul014 clears flip-flop 2 in Ul025
so that the trace again is blanked through Q1001,

Square Wave CAL Circuit., The output of Ul015 as described above is
fed to a NAND gate in U1024 which shapes this pulse for the square wave
calibration. This signal is fed to the receiver through J1002. The cali~
bration pulse height can be set by adjusting R1013,

Internal Overlap Sync, The calibration pulses are fed to the "internal
overlap'" sync point on S1003 and are used to repeatedly trigger the ! scope
sweep for triggered overlap measurements.
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APPENDIX H. INSTRUCTION MANUAL FOR
RF POWER AMPLIFIER

General

This section describes front panel control functions and general
information necessary for operation of the RF Power Amplifier,

Front Panel Controls and Connectors

Input Connector Signal input connector for the Power
Amplifier,
Plate/ Screen Switch Two-position switch used to select

either the final.amplifier plate or screen
current to be read on the above meter.

Filament Switch and Indicator Main power switch for Power Amplifier,
Applies only filament power to final
amplifier when plate switch is OFF,

Plate /Screen Current Meter Reads plate (0 to 500 ma) or screen
current (9 to 59 ma) depending upon
position of Plate/Screen Switch.

Tuning _ Main tuning control which resonates
' final amplier plate tank at selected
operating frequency.

Band Switch Selects proper tank components for
driver and final amplifier,

Time/Operate Switch Selects 216 V dc or 368V dc in the
tune or operate position respectively
for the screen of the final amplifier.

Plate Switch and Indicator Applies full plate voltage and screen
voltage to final amplifier,

Cutput Connector Point at which transducer and cable
are connected.



Receiver Connector

RF Output Meter

Plate Tank Coils

General Operating Instructions

Protected output connector for con-
necting power amplifier output to a
receiver,

Reads the peak to peak RF voltage at
the output connector,

Plug-in tank coils for 1 &2, 5 and 19
MHz.

The following procedure demonstrates the basic operation of the
controls of the RF Power Amplifier at one selected frequency.

Preliminary Settings

1.

Set the controls of the 5051 Pulser/Receiver as follows:

Xmtr ATTN

MHz

N~

PRF

Calibrate /Operate
Pulse Shape
T/R-R

0db

Transducer frequency (1, 2, 5 or 10)
Desired number of rf cycles (e.g., 8)
1000

OPER

RF

Right-hand R position

Connect 5051 sync output to 7B52 main trigger input and set
the 7B52 controls as follows:

Trigger Level/Slope
Main Triggering
Display Mode

Time/Div

10 o' clock
Normal, AC, Ext
Main Sweep

5 ps/div

Connect 5051 RCVR OUT to CH 1 input of 7A12, and set the

7A12 controls as follows:

Display Mode

Trigger Source

CH 1
CH1



Volts/Div 1 V/div
Input Coupling AC

4. Connect the T/R output of the 5051 to the RF Power Amplifier
INPUT and set the controls of the Power Amplifier as follows:

Plate /Grid Switch Plate

Filament OFF

Tuning Transducer frequency

Band Transducer frequency _

Plate Tank Coil Insert the correct tank coil for the

frequency being used into the socket
located under the door in the right
front corner of the Power Amplifier
top cover,

Tune /©Operate Switch Tune
Plate Switch OFF _
5. Connect the Power Amplifier output to the transducer selected.

6, Connect the Receiver connector on the Power Amplifier to the
R input on the 5051,

Tuning and Operation
1. Turn on the R7704 and the Power Amplifier filaments,
2. Set the 5051 RF amplitude vernier to minimum output (full ccw).

3. After a 30 second warm-up turn the Power Amplifier Plate
Switch to On and adjust the tuning control for maximum
reading on the RF Output Meter. Turn the Plate Switch to OFF,

4. Set the Tune/Operate Switch on the Power Amplifier to Operate
and set the Plate Switch back to ON, At this point the RF Output
meter should be reading less than 100 V pp (full scale) and the
Power Amplifier plate current should be about 199 ma dc.

5. The RF output may now be increased to 100 V pp by increasing
the output of the 5051. (Rotate the RF Amplitude vernier
clockwise). In some cases, when a length of cable appears
between the transducer and the Power Amplifier Output, it will
not be possible produce a full scale reading on the Output Meter,
This is due to the low input impedance to the cable caused by the
transformation of the transducer's capacitance from the receiving
end to the sending end of the cable.
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6. Echos and an attenuated main bang should now be visible on
the oscilloscope. '

Circuit Description

Introduction

This section describes the circuitry used in the RF Power Amplifier.
The schematic diagram will assist one in following the discussion.

General Description

Power Supply. Switch S1 applies power to the filament transformer
T2, the fan, the grid bias transformer T3 and the driver amplifier
plate and screen transformer T6. A 30 second filament warm- up
delay is provided by K2 so that the final amplifier filaments (V1 & V2)
have sufficient warm-up time before plate voltage can be applied.

Plate and screen voltage for the final amplifier are produced
by T1, and cannot be applied until the 30 second warm-up delay has
elapsed. The Tune/Operate switch S2 and K1 are connected so that
the plate power switch CB cannot apply plate and screen power unless
S2 is in the Tune position,

Regulator tubes V3, V4 and V5 provide 368 volts of regulated
screen voltage for the final amplifier, V1 and V2,

Driver Amplifier. The input signal is fed to the driver amplifier
V6 from J1 through a series resonant grid circuit. The plate tank
for the amplifier is a split type so that it produces properly phased
grid driving voltage for the final amplifier, V1 and V2,

Final Amplifier. The final amplifier V1 and V2 is arranged in the
push-pull configuration to minimize distortion of the amplified
signal. Proper tank components are selected by S4 and the plug-in
coils provided.

Output Meter Circuit, The voltage appearing at the output connector
is peak-to-peak detected and displayed on the Qutput Meter with
100 V peak-to-peak being full scale.

Cable Effects. As discussed in Appendix C, the effect of cable
length on the performance of the pulser-receiver.in spike modes




S1 or S2 is to generally degrade the transmitter efficiency and
receiver response above 10 MHz, For a general guideline, cables
should be kept as short as possible, not over 10 feet in any instance,
if consistent with the application,

For use in the rf burst mode, the same guideline is
appropriate except at 10 MHz where the maximum length should
be 3 feet to avoid extreme loss of efficiency.

The following points apply equally to use of cables for the

rf burst mode with the Pulser/Receiver 5051 alone or with the RF
Power Amplifier,

*
Table H1l. Cable-Transducer Loads

MAXIMUM MAXIMUM
‘ TRANSDUCER 508 COAXIAL
FREQUENCY CAPACITY CABLE LENGTH
MHz pf ft m
1 1000 150 ~ 50
2 1000 100 ~ 30
5 1500 16 ~ 5

10 2500 3 ~ 1

These cable lengths are computed on the basis of limiting the minimum
voltage transfer ratio of the cable transformer effect to unity. Lengths
shorter than these will have a multiplication effect on the voltage at the
transducer, reaching a maximum at a length of:

. _1.03x1o8 tan 3.18 x 107> £t
SR a £C

Optimum cable lengths are shown in the table below. The multiplication
factor will depend on amplifier tuning but can range from unity to about 5.

* Cable lengths are computed for cables having a speed of electromagnetic
wave propagation equal to 667 of the free-space value.



Table H2.

Cptimum Cable Length

TRANSDUCER OPTIMUM
FREQUENCY CAPACITANCE CABLE LENGTH
MHz pf ft m
1 500 146, 4 ~ 45,0
2 1000 52.0 15. 8
5 1500 8.3 2.5
10 v - 2500 1.3 0.4
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Data Sheets on Tektronix
R7704, 7A12, 7B52

Available: Tektronix Inc.
P. 0. Box 500
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low-frequency oscillators

Type 1312 DECADE OSCILLATOR

10 Hz to 1 MHz

20-V output, 80-dB step attenuator
low distortion and hum

decade controls, in-line readout

FREGUERTY

® ©

* @

o}

The 1312 permits frequency to be set fast, yet accu-
rately, and with little chance of operator error. Thus it is
the ideal oscillator for the many production and quality-
control tests that demand laboratory performance and easy
operation. Like a decade resistor or capacitor, the 1312
can be set to the desired frequency with two step decades
and one continuously adjustable dial; selected frequency
is displayed digitally in line, with decimal point and fre-
quency units.

Although the 1312 is economical, it represents no per-
formance compromises. The 20-volt output is held con-

OUTFUT VOLTAGE
'

stant to within +=2%, without degrading the low distor-
tion. For measurements of attenuation and gain, output
level can be changed in precise increments with the pre-
cision 80-dB step attenuator, while a continuous control
permits setting to any desired level. Output impedance of
600 ohms is maintained at all voltage levels, including
the zero-volt setting of the attenuator provided for ease
in locating sources of hum and noise in a measursment
setup. The output of the 1312 is isolated from the chassis
to reduce the effects of ground loops.

— See GR Experimenter for January 1968.

50 +10
.
20 E
# 10 =z
3 /] 3
£ o5 -
8 / oG 100 K 100 Thiz
g o2 \\"'-.,\_
ol e
008 Typical low distortion (left) and uniform output level (above), shown as
0H 100 1S P 100 1M functions of frequency.
specifications
FREQUENCY Hum: <0.04% of max output or 4 uV, whichever is greater.

Range: 10 Hz to 1 MHz in five decade ranges.

Accuracy: *=1% of setting.

Stability (typical at 1 kHz): Warmup drift, 0.1%. After warmup:
0.001% short term (10 min), 0.005% long term (12 h). Resettable
within 0.005%.

Control: Step control of two most significant digits, continuously
adjustable third digit with detented zero position. In-line readout
with positioned decimal point and frequency units. Most sig:
nificant digit 1 through 10, second digit 0 through 9 with uncali-
brated X for 10, third digit O through 9.

Synchronization: Frequency can be locked to external signal. Lock
range +3% per volt rms input up to 5 V. Freguency controls
function as phase adjustment.

OUTPUT

Voltage: 20 V open circuit.

Power: >160 mW into 600 Q.

Impedance: 600 . Isolated from chassis by 10 0 across 0.1 uF.

Attenuation: Continuously adjustable attenuator with >20-dB
range, and 80-dB step attenuator with 20 dB per step. Inter-
mediate steps reduce output to zero while maintaining 600-Q
output impedance.

Distortion: <0.25%, 50 Hz to 50 kHz with any linear load. Oscilla-
tor will drive a short circuit without clipping.

Amplitude vs Frequency: =2%, 10 Hz to 100 kHz with =600-Q
load; *+2%, 100 kHz to 1 MHz with <600-Q load.

Synchronization: Constant-amplitude (0.8-V) high-impedance (27-
k) output to drive counter or oscilloscope.

GENERAL

Power Required: 100 to 125, 200 to 250 V, 50 to 400 Hz, 13 W,

Terminals: Front-panel output, GR 938 Binding Posts; rear-panel
output, female BNC connector. Sync, rear-panel, female BNC.

Accessories Supplied: Power cord.

Accessories Available: 776-A Patch Cord (BNC to shielded double
piug).

Mounting: Rack-bench cabinet.

Dimensions (width x height x depth): Bench, 19 x 3% x 11 in.
(485 x 99 x 330 mm); rack, 19 x 3% x B%& in. (485 x B9 x 225 mm).

Weight: Net, 1314 Ib (6.5 kg); shipping, 17 Ib (B kg).

Catalog

Number Description
1312 Decade Oscillator
1312-9700 Bench Model
1312-9701 Rack Model





