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CURRENT TO A MOVING CYLINDRICAL
ELECTROSTATIC PROBE

W. R. Hoegy
L. E. Wharton*
ABSTRACT
The current collection characteristics of a moving cylindrical Langmuir
probe are evaluated for a range of probe speeds and potentials which are appli-
cable to earth and planetary measurements. The current expressions derived

d include the cases of the general accelerated current, sheath area limited current,

orbital motion limited current, and retarded current. IFor the orbital motion

limited current, a simple algebric expression is obtained which includes and

Y/ 2N

generalizes the Mott-Smith and Langmuir expressions for both a stationary

co‘_/{

probe and a rapidly moving probe. For a rapidly moving probe a single formula

adequately represents both the accelerated and the retarded current.
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INTRODUCTION

Cylindrical electrostatic probes have been widely employed on rockets and
satellites for charged particle tempgerature and density measurements.!'? In
the future those devices may be used on planetary missions. A common fuature
of the planetary and earth electrostatic probes is the rapid vehicle velocity
relative to the particle thermal velocity. The ratio of probe speed to thermal
speed is denoted as the épeed ratio. Typical speed ratios for 1000°K ions in the
mass range 1 to 28 lie between 2 and 10.4 for a probe speed of 8km/sec (earth
orbit) and between 12 and 65 for a probe speed of 50 km/sec (Jupiter entry probe).
Speed ratios for 1000°K electféns vary from .046 to .29 for probe speeds between
8 km/sec and 50 km/sec.

Mott-Smith and Langmuirs derived two separate cylinder current expressions,
one for a stationary probe and the other for a rapidly moving probe. Kanal® derived
some integral formulas valid for a,fbitrary probe spéed and from them, power series
expressions which are valid only for small speed ratios. Bettinger ® pointed out
the need to develop a current expression which fills the void between the formulas

- for the stafionary and the rapidly mo.ving probes. In this papér we derive cylinder
probe current expressio;ls which are vali“d for a wide range of spéed ratios and
potentialls; The curfen£ exbi’esksions are presented in a form which allow e,ésy-b

and rapid numerical evaluation,
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BASIC CURRENT EXPRESSIONS
We review briefly the derivation of the integral expression for the current
to a moving cylindrical probe. All current formulas aré normalized with respect

to the random probe current and are denoted I,

I= i/i‘r‘nndom (1)
where i is the actual current, and the random probe current is given by:
» k T .
1run':'lom =ANgq ) (2)

21mm
where A is the probe area, N, q, T, and m are respectively the particie density,
charge, temperature, and mass.

The probe is assumed to behave as anidealized cylindrical Langmuir probe
with a coaxial sheath of charged particles which is unperturbed by the relative
probe-plasma drift motion, It is interesting to point out that the current
expressions derived here are correct in the limit of high drift velocity — this
is probably related to the fact that most of the particles coilected by the probe
came from the undistrubed portion of the sheath in the bow region. The probe
is exther guarded or is long enough 8o that end etfects can be neglected. We
also assume that no colhsions take place w1th1n the sheath and that outs1de the
sheath the part1cles are not inﬂuenced by the presence of the probe. Partmles |
which reach the collector surface are assumed to be collected. Under these

conditions, the cylinder probe current is given by:
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where a is the sheath radius, r the probe radius, h a unit normal vector on the

sheath edge, a the azimuthal angle specifying the location of an area element of
the cylindrical sheath, and £(¢') is the Maxwell-Boltzmann distribution function in

a frame fixed on the probe
f (3 =m¥2 e (T-F)’ )

where € and § are respectively the particie and drift velocities normalized by

the most probable particle velocity

—o=-—o m —0=—0 _...E.).._, (5)
C szk'r' S WVQkT \

The domain of integration in Eq. (3) is determined from the condition that the

particles reach the probe surface using the conservation of energy and angular
momentum, In terms of the velocity components ¢,, ¢, ¢, respectively along
the probe axis, tangent to the probe axis and the area element at o, and normal

to the area element at a, the velocity limits are:

f-ca<cfz<oo

o 2~V 1/2 2 -y 1/2
for retarded |- I (6a)
particles al 1 | 2 _ 1

' r? r?
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for accelerated =

(6b)
particles

0<cn<w,

where V = | e#/kT| is the normalized across the sheath potential, The four

dimensional integral i3 reduced to a single integral using the change of variable

¢ =gcosy, e, =&sinyg  and integration overa, ¢,y and iy

[+
Lo s | €dEVETIV @D 1 245 )
Vi iy
for retarded particles and:
4 ® - o - 52*-32 0l
ST EAEVET 4V e 1) 1 (2¢&s)
v v
R
a
;_2.-1
-
n2
51
4 a J .9 . _.;2_‘_;2 ) P g
Fo = E2d e A48T 1. (2 & )Y, (8)
=5 ), 0 (2€9)

for accelerated particles. In formulas 7 and 8 s is the compone‘nt of the speed

ratio in the plane perpendicular to the probe axis.
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Two approximations to the accelerating current are of general intarest —
the sheath area limited current and the orbital motion limited current, The
current is approximated by the sheath area limited current when a/r is close
to unity so that all particles entering the sheath are collected. The current is
then independent of the across the sheath potential and depends only on s and a/r.

To obtain this current the velocity domain (6b) is modified to allow all values

of the tangential velocity, ~®<c, <3

1

)
-

snl

o
4 af 29 w "52"'52 M
—_ £2d g et )1, (2¢ 5). (9)
/m E ’

The general accelerated current approaches the orbital motion limited
current when the sheath is much larger than the probe radius. In this limit,
a/r = ©, the current depends only on V and s:

a (° 2 10
Lot =”‘“J. Edg/EyV e 1 (2¢ ). (10)
v Jy
The integral current expressions, Eqs. 7-10, are the starting point for the

derivation of power series representations for the current which are discussed

in the next section,

MOVING CYLINDER CURRENT EQUATIONS
The current collection characteristics for the moving cylinder probe are

presented in various forms for a range of values of normalized potential V




and specd ratio s, The derivations an: sjetails are found in the appendex

starting with Eqs. All -~ Al6.

Sheath Area Limited Current
The sheath area limited current can be expressed as a single confluent

hypergeometric function:
Iﬁlnl = %f;b (“' %‘: 1 - 52‘) y ' (119.)

where ¢is defined by Eq. A8. An alternative form has been given by Heatley$

2 2 . '
Lsal ='§ ems/2 ;‘[(1 + s I, (%") + 521, (%‘ )] (11b) -

For small values of the speed ratio, s, the power series representation of ¢

4
and Kanal

may be used to represent I,,; (Eq. A8). For large s, the asymptotic form of ¢

(Eq. Al7) gives the representation:

L6909
1 22 SZM};" (12) |
sal T “'/__‘T_r' ] j <2

n=0

s large

Retarded Current

* The retarded ourrent is initially given as a double series in V and s:




AL NG LN CA A F‘(n *m -o-lz-) 13) ‘

7' n!m!I”(m-%)I"(n+1) |

I B
*rot

Expressing the series in 'V as a confluent hypergeometric function and applying
a Kummer transformation (Eq, A21), we obtain the retarded current in the form
of an exponential in V (the retarded current for a stationary probe is e™V )

multiplied by a power series in the gpeed ratio squared:

L n-3 .
: - §230
Irot = vz n 2 i_f,.Z. $ (- n, -.3; v) , (14a)
nrg i ! |
= 230
= oV (= %) L
i Z ST WP M (14D) 4
n=0

=e"V 1 .1.‘. 2 .Y.?.-Y-.L> SAF N
e{+(2+v)s+(44 Gs+‘ i

where L{™ (x) is the Laguerre polynomial. Equation 14 is applicable for small

—

values of 8 and arbitrary values of V. This representation of the retarded
current is particularly useful in describing the retarded electyon current to

satellites and plan..ary probes.

With the speed ratio, s, kept fixed and s’mall, the retarded current decreases

exponentially with increésing potential V; howevet when the speed ratio is allowed




to increase, with V kept large and fixed, the current increases and loses its

exponeatial character., The behavior is {llustrated in the formula of Kanal which

may be obtained from Eq, (14a) (sce appendix Eqs, A22-A24):

) r (n + -g) n
I, =en(vesh 1, 25/ (.i) . @)
= 0l (5 Y,

As s approaches vV with V large, the modified Bessel function behaves

asymptotically as

oV T TV

so that the exponential behavior is V% 4 1asg - V.
Another representation for the retarded current (see Appendix Eq. A25~A29)

is:

svVy large, s <VV (16)

where { (x)is a polynomial (Eqs. A28 & A29).

Note that because the potential is retarding, the current is small but not
exponentially small as 8 - ¥V from below. There is an abrupt change in
behavior as the boundary s = /V is crossed; for 8> /¥ the drift motion over-

whelms the retarding potential and the current becomes large as s increases.
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Again the exponential potential dependence is masked by the high drift velocity.

The expression for vV < s is obtained by summing Eq, 18 over 8:

2 o )
Lot =Z '('nTYT)" ¢ (mw—é. 1 - s’). (7

m=Q
Tho formulas for evaluating ¢ are given in the appendix in Egs., A30, An
asymptotic form for 8 > /V, 8 large, is (see Appendix Eqs, A31-A34):

0
1. ~2% 5 ANV W N 2 v\ Y
ret U= L \ & nl ' o2 LA

s>V/V, s large (18)

where P (x) is a polynomial of order n (Eqs. A33 and A34). The agymptotic

behavior of the retarded current is:

3l

Orbital Motion Limited Current
The orbital motion limited currazt is given by the double series (Eq. All,

12, 16):

w

© | r n+m-—-1-k
I s - (_ SZ)I,lvm i 2 ) v3/2I"<n+m+1) (19)
sl 'l r(m-.,})r(nu) F(m+g-)f‘(n+1)

T e




The formula suitable for small speed ratios is obtained by summing over

index m:

<]

.2
e

neQ

=2 1 8

oml

(s ~(n - f;, - %‘ V) ; (20)

where ¢ is given by Eqs. A7 and A35. The first term in the speed ratio expansion
(Eq. 20) is the classical orbital motion limited formula of Mott-Smith and

Langmueir.® For large values of V, the asymptotic series (Eqs. A36~A41) is

appropriate:

s2< Y 2)

where the polyonomial Q, is given by Eqs. A40 and A41.

For small values of the potential, another representation is obtained by

summing Eq. 19 over index n:

~ o 3
3/2
Lomt =Zavf,7 ¢(m-—;~» 1 - S”) *-v-‘-—-—--—-————-r(m; D m+1, 15 -sHb
' l'“(m+—2-)

(22)

10




The first term is identical to the retarded current expression with V replaced

by -V. The evaluation of ¢(m - 1/2, 1 ; - 8?) is given by Eq. A30 and ¢(m + 1,
1; - 8?) by Eq. A42. For small values of the speed ratio, s, the retarded current
and the orbital motion limited current are not identical under the transform

V= - V. However for high s values, the second term in Eq. 22 decays rapidly

as ﬁ""2 and therefore
s large Iomi (M=% I (-V). (23)

Consequently the asymptotic orbital motion limited current for s? > V is obtained

from Eq. (18) with V ~ -V

s2>V
In the appendix it is demonstrated that Eqs. (21) and (24) are term by term

identical (Eqs. A43-A45). Therefore these asymptotic expansions may both be

written as:
R " -4
2 2 2 \¥
I =—VV+ s? E (k, £ < S ) , (25)
LV i (V+sz) Z Vs V+s?

11



where

g (-ky (-ky
v ( "i’)&

Writing out the first few terms of Eq. 25 we have:

B (k, 'f‘) = (-

1
— ) 2
L oY Vs a2 st | 5, 2V
VT Vis? [ Vis? Vys?

1 V
— 2 :

N 32 ( s? ; 8V s? . 8V? boe (26)
VesH? L\V+s? (vashH? (vish?

To first order in g2 this form is identical with the expression:

L2 T s v @1)
L= [V4+5° 4 +
v v 2y4s? yg4s?

.52 large or V large

Formula (27) is the sought for g‘eneral‘iz,ation‘qf the Mott-Smith and Langmuir

approximations., For s = 0 we obtain the stationary, probe current equation

12

¥ e o
R e o
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oear e

vl 4+ V (28)

I l :”g"
Oml Eq .27 ‘/7-.;-
[ L]

and for s> > V we obtain the formula:

! . = 2 2 1 29
Ioml,gq, T Visteo (29)

22>y

which generalizes the Mott-Smith and Langmuir formula for high drift velocity

by including the random thermal motion in the term 1/2 (the Moft-Smith and

! 2
o Langmuir formula is -';-_- YV is? ,
o 7’,

General Accelerated Current

E The power series representation for the accelerated cylinder current is

g

obtained from Egs. A11~A13 but will not be written explicitly. For small values

(=

of s, the integral representation is used directly to obtain the representation:

[+ ]
i 2 L2 2yn

bxg (n 1)

< QRS T

PRl JRigt

where £ and gyn are givep in the appendixf (Eqs. A46-A51). No aﬂé-empt is made
to derive an asymptotic form from Eq, 36 t‘dr large V since the relatioh a/r =
a/r (V) is unknpwn.' For iarge vqlueé of the Spééd ré.tio, g, the accelerated
currént fedllces to the or,bitél kmotio"n limited current (seé appendix Ecis. A52-

and A53)k:




ace = Tomt s large (81)

Congequently the current to a rapidly moving cylinder probe is given by a single
formula Eq. 24 or Eq. 25 for both accelerated and retarded particles (with V

replaced by -V for retarded particles).

SUMMARY

The extensive use of the cylindrical electrostatic probe for in situ measure-
ments of charged particles on rodkets ang earth satellites and ite proposed use
on planetary probes démon‘strate the need.to understand the effect of the relative
probe tc plasma drift velocity on the probe volt-ampere characteristics. To
this end we have derived a number of series representations for the current to
a moving cylinder probe starting from the four dimensional integral representa-
tions of the current. Four categories of current have been considered: general
accelerated current, sheath area limited current, orbital motion limited current,
and retarded current. Power series in both s, the speed ratio, and V, the
normalized potential, have been given for all four cases. Simplified representa-

tions valid for small speed ratio s and arbitrary V .s well as represental;ions

valid for large s havé 'been‘ presénted, These répréséntations fill the gap between

the stationary and the rapidly moving probe theories of Mott-Smith and Langmuir.3

One of the more useful of these is the formula for the orbital motion limited

_current;

14
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i,
2 [ Vigs (32)

which is valid for V + 82 > 1, This formula, Eq. 32, can be used to evaluate the

accelerated ion current for earth and planetary probes.
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APPENDIX

Basic Power Series
We derive a power series y.presentation for the cylinder probe current in

powers of s and V from which asymptotic formulas valid for high s or V can

be obtained, The summation yields series in confluent hypergeometric functions J

The evaluation of the cylinder current as given by Eqs. 7-10 ‘seduces to the

problem of performing the integra‘lzk

[+4]
I{aq 1, s) =4 I xdxvV/%% + r e (%% s%) I, (2x 8) (A1)
T Jq /2

The dependence of I (q, r, 8) on 82 is simplified hy performing a Laplace trans-

form in s2;

m P
T(arop= f ds? &P 1 (q, 1, ). (A2)
o ;
Using the Laplace transform of the modified Bessel function®, we obtain

the result:

i , : | |
1 J d z (z + r)1/2 e™P z/14p (A3)
Jq . .

I(q r, p)=_2
@no=Z

17

AR s




This is in the form of a integral representation of the confluent hypergeometric

4

function’, ¢ (a, c; z). Therefore using the relation,

Y(a, e zy=zl" Y (a~ctl, 2~c} z2) (A4)
we find:
Y (a £ p) =2 cpa/tip [14P 3’2,‘;,(, L _1 patn) (As)

To facilitate the separation of variables and taking the inverse Laplace

transform, we partition I into two parts:

I(q 1, s)=1, (r,s) + IQ (q) r, s)

(A6)
T rnp=T1 (r, p +T2 (@ r, P),
according to the relation between y and ¢:
(-0 I Rl Y ., (an
\/J(a, ¢ z) = e o l)q‘n(a cy z) 4 -.ﬁ—(—;)—— 27 p(a-c+1l, 2-c; 2z).
w0 n .
b(a, c; 2)= ) - -(-2-'1:-'- : . (AB)
n=90 (c)n &

The result of the partition is:

18
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L p\¥2
I (r,p) = T—Lﬁ (l..g.l’) ePr/1tp, (A9)

1 (14 ¥ ot g 3, 5, RLEHD) (A10)
Typ r‘(?.> "2
\2

The inverse Laplace transform of 'f, (r, p) is obtained by expanding it in a
The

T2 (q, vy P) =~

double series in powers of r and 1/p and evaluating the residue at p = 0.

result is a power geries in s? and r:

I, (r, 8) = Z Z o (n i ~%> (A11)

= n’-m'I‘(m—..> F(n o+ 1)

Similarly ’i; (4, r, p) is expanded in a triple series in powers of (4 + r), d, and

1/p. Evaluation of the residue yields:

| -5 s2) (- @) (r + ) f"(x\+m+fﬂ+1)(A12)
/Cn'm'l"(ﬂ-r )r'(m+'5+1)l"(n+1’)

' ©
IQ (q, S)::- (,‘r +q)3/2 Z

nym,
0

retarded, sheath area limited, and

Thekfour' basic currents: accelerated, :

orbital motion limited are combinations of I, and I,

19
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Igc, = Il (vr 5) + 12 ,-...'...Y........ V. S\ -~ -a- :[2 ;_._v.._...., 0, s\, ( )
..3. -1 ' a? _ 1
r? vrQ '

AES AT (A14)

Alb

Ia 5 ? I, (0, s), ( )

(A16)

Ioml = ‘Il (V, S) + IQ (0) V, S)

Asymptotic Formulas
The asymptotic series for the confluent hypergeometric function ¢ are

derived from exact series representations

b (a, o - ) = (a=cH 1) T(c)y(a+n z)’ (A17)

n!l(c~a)l (a) 2™

n=0

a -cfnegative integer

o ) | ,,'
b (a, c; z) = ). (1~a) I (ck)v')"(‘c ~a +n, z) e . -(A18)
o ‘ng‘o n ! P (ﬂ) r‘(c - a) zc"n-h)

a ¥ negative integer

20
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The incomplete gamma funstion, » , may be written as
Y (o x)=at x* P (n, a4+ 1 -x). (Al®)
For sufficiently large z, the following holds,
I (a) - (a, z) ~ 21 &°F, (A20)
The Kummer transform for ¢ is:
$(a, c; z)=e* P (c~n, 0 ~2) (A21)

Kanal Formula for Retarded Curyent
To obtain the Kanal formula we begin with Eq, (14a), expand ¢ and sum the

series in s

L WS sl 1 , A22
Irct”eZk|k)!¢( ’5!k+1:"'52>n ( )

k=0

Using the Krummer transform we obtain:

1,,, = evh Z G ¢ (g kot 1 s’“). (A23)

k=0
Finally we write out the series for ¢ and sum over index k:
2
] C 3

, ) / s\
L.=e€ ( +V)Z -7 <75_‘.,.> I, (2 s VV) | (A24)

m=Q-

21




Using the Bessel function representation

X

f et

Im(x)ze“g-n%}r¢(m+%,2m+1;~2x‘). (A25)

We obtain the formula:

¢ & -(=/ V)

: ﬁ‘;"‘”(?‘*%’Qm*l‘"“s“V) o

re

m*0

Using the asymptotic expansion of ¢ and summing over m, we obtain the result:

R (""""1'"'" ] j /
i ; PR Y PR W SR
Ir«ut-"—-—-—l———fp-e“("m)a Z W %) K%) ’
’ 4msvy bt \2/, 2/,
- 31 1 . .8) (A27)
QF1<2'2+~n"2 nn/_‘_/_).,

The hypergeometric function may be transformed to the form:

: c2n=3/2 o
oFy = - i (-— n-1, ~-2n; L n; i), (A28)
\ /Y, _ 2 Vi

where F, = ¢, is a polynomial in 8//V of order minimum of n + 1,

2n. The first three values are:

Y (x) =1
%(X)~=1-‘SX-85¢2 (AZQ)
“p‘z {x) = 1-8x4+48 x? + 64 x3.

22
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Evaluation of ¢ (m - 1/2, 1; -8?)

Ut

These functions are defined by the fixst two along with the recursion relation:

1, st 2y x (8% 52
6 ti o) = [‘”sz’ f (3) (’2">]

¢ (%, 1 - s’) " em/2 I, (%i) (430)

e Co S T e A A

|-

¢(m+%, 1:—52)-‘« [(Qm-s") ¢(m+-,:12-. 1;-59)
m

TR

Asymptotic Form of Retarded current for s ? >V

+
ISR

o
1

Substitution of the asymptotic form for ¢ in Eq. 17 yields:

m -1/2 4 !
~ o &) @ () 63
¥) ) 2l e
t = , , .
A®Q m=0 n!m!l“(%-m)

(A31)

The sum over index m yields the formula:

ret

1. '_—‘;‘..?...s
4

n*g

1 1 1._\_1_) | (A32)

23



A polynomial r¢presentation is obtained with the transform:

1 1, 1, ). - 1
Fi (n-? n =i = x) =(1-x)/¥ ™ p (-—n, ~6) = )(A33)

where B, (x) = ,F, (-n, -n; -1/2; x) is a polynomial of order n. The first few

polynomials are:

g
{ 3
n

- 1-2x (A34)

T
»
i

Orbital Motion Limited Current for Small s
The confluent hypergeometric functions, ¢ (n - 1/2, -1/2; V) are evaluafed

from the first two and the recursion relation:
1 1\ _ /7
\/’("-5: "—éy V) »~§- rfc(\/_)+\/—

‘/’(%r"l; ) /—(1-2\/)& erfc(/—i-f\/_‘ ' (A35)




An exact representation for ¢ allows us to write the asymptotic form of y for

large V!
TR A+a-0)lyrn 2)
L 01T () |y 28

+ 21" (- 2" " (c - 1 - n, z)].

Consequently we have the asyrmptotic form:

R (n41), (n —;-) )"

m e

v 2o ("‘17>m 3 S’n%
L T2V ) > (%) A )

When s? > V the series in n converges and may be written as:

; . ’
v 2 o Z : Iy /1 1 s?

I ~ 4 Y - - F I,m-235 1 ..‘__->'

omt = Y (V)_(z)m21<m+ "Ta v

m=0

where ,F, has the representation

© g\l/27m ‘ 3 2
o S . ) . 1 ]
2F1 = (1 +-§—> . 2F’1 ("‘ m, b "‘ f“’ 1? - “"‘-,-),
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{A37)

(A38)

(A39)

(A40)
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where Q () = ,Fy (-m, 3/2 - m; 1; x) is a polynomial of order m. The first

three terms are given as:

QQ =1
=1 (A41)
Q, 5

Evaluation of ¢ (m + 1, 1; -82)

Using Eq. A21 we find:

(A42)

1

e"‘: @ (=m; 1; s?)
e~ s Lr(nO) (52)7,
where L{"{x) is the Laguerre polynomial.

dm+1, 1 -s?)

I

Term by Term Equivalence of I ; Expansions
The term by term equivalence of the two orbital motion limited series for

Vv>s2ands? > V follow from the proof of the equality:

!
n s

2
n sty p (V)2 ey _s? A43
<s>,ypn( 2)~<y> vwo,,ﬂ( V). (843)

The proof is accomplished by rearranging the pyolVynom;i'a'ls.
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0 k!k!
m=k
. i) (Y
= (2 k \ s? (Adda)
k=0 klk!
Using the relation:
. k
(a, - m)k - (1 - ‘a‘)m (..) (A45)
(1‘ = 'a")m-k
then
1 v m~e
: =, 0 (-3) ) |
(- V" Q (“s‘) = (52" L. (A4db)
m v 1
Tk k(L) L, (.. .2.)
m=k
Changing the dummy index m - k= K, and using
m .} _ , :
Y (=) (= m),
we find
, 1 | | k
(" "") i (—,m)k (- m), ("' ";)
- (S'Z)m m L S
S
, : ~ k
.(_ _1_) |
2/
= 2\m " m = -V
" —= P, (_ __)
o\ g?
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Accelerated Current Functions

R o e P e S T

The functions £, and g, used in the 4peed ratio expansion for I.. aregiven

by: S

V(1+’}’2 Ve +§everch(1+72)V.

fy =(%+vw2) (L+yHV &Y

la \Jo oo | ,
+ k’ﬁ V) LV e AT, (M4D
2. 1} (A48)
yE = :
a?
21
f o= (n+§—V>f +V(n+1)f
n+2 2 ntl ) ) n
FY2(A + v v)S/Q e"YQV (2 Vyn (A49)
gy = %-[‘—/z—:erf ('yf')_y/“’evv:l .(ASO)
By = (n + %) g =2 (P V)2 e T | (Asl)
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Formof I ., for Large s

From Eqs. A13 and A16 we note that

Tice = Tomy +8lgebric sum of three I’s (A52)

The asymptotic behavior of I, (q, r, s) for s large and fixed q and r is obtained

by summing Eq. Al2 over index n:

I, (q 1, s) =~ (r 4+ q)%2 Cat A, (m+d 41, 1 - P, (A53)
md m!T ('f; + -g-)

0

and

pmad+l, Li-sH=e ¢(-m-4, 1j + 57

which decays exponentially for large s.
The hypergeometric functions in Eqs. A27, A32, and A39 were expressed

as polyhomials using the theorem:
F(a, b; ¢; x) = (1 - x)¢"2"b  F(c -a, c - b; ¢; x),

An alterhati_ve method of evaluating these functions is directly through their
recursion relaﬁons. The recursion relations may be obtained either from the
contiguous function relations or by the use of successive raising and/or lowering
operators. In the latter method, any two of the hypergeometric functions 'ar‘ek

expressed as prqducts of raising and lowering operators acting on the third

29



function. Derivatives of ordertwo'or more are written as derivatives of order

1 and 9 using the differential equation. Finally the recursion relation is obtained

by eliminating the first derivative:inithe:two resulting equations, |

NASA--GSFC
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