ELECTRON/PROTON SPECTROMETER
CERTIFICATION DOCUMENTATION
ANALYSES

Document Number EPS-779

Prepared by
Lockheed Electronics Company, Inc.
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
for
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas
ELECTRON/PROTON SPECTROMETER
CERTIFICATION DOCUMENTATION
ANALYSES

Prepared by:
P. Gleeson
Reliability and Quality Assurance Engineer

Approved by:
B. E. Curtsinger
Engineering Supervisor

Approved by:
B. C. Hall
Program Manager

Electron/Proton Spectrometer Program
Radiation Instrumentation Department
Lockheed Electronics Company, Inc.
Houston Aerospace Systems Division
Houston, Texas
TABLE OF CONTENTS

1.0 Introduction .. 1
2.0 Certification of the EPS 1
3.0 Verification Matrix 2
 - Reference between Verification Matrix Section number and substantiating Material 8
 - Structural Table of Contents 23
 - Electrical Table of Contents 109
ELECTRON/PROTON SPECTROMETER
CERTIFICATION DOCUMENTATION:

ANALYSES

1.0 INTRODUCTION

This document contains a compilation of analyses generated throughout the progressive development of the Electron/Proton Spectrometer (EPS) for Skylab. The purpose of the compilation of these data is to document the analyses required by the "EPS Verification Plan" (LEC Document No. EPS-435). The "EPS Verification Plan" was generated to satisfy the "Apollo Applications Program Ancillary Hardware General Requirements" (MSC Document No. MSC-KA-D-69-44, Revision A), and the NASA Contract, "Electron/Proton Spectrometer for Skylab", NAS 9-11373.

2.0 CERTIFICATION OF THE EPS

The certification of the EPS requires that the various tests, inspections, and analyses be documented and approved/accepted by the cognizant Reliability and Quality Assurance personnel for the EPS program. The certification is to be accomplished in three parts in accordance with the "EPS Verification Plan".

- Evaluation and review of the "Qualification Test Procedure", the records of the qualification testing of the EPS Qualification Test Unit, the "Qualification Test Report", and the acceptance test procedures.

- Evaluation and review of the inspection procedures and data points defined by the "EPS Verification Plan", and the results of the various inspections.
2.0 Continued

- Evaluation and review of the various analyses performed during the development and testing of the EPS.

2.1 Qualification Verification

The "Qualification Test Procedure", the records of the qualification testing of the EPS Qualification Test Unit, the "Qualification Test Report", and the acceptance test procedures have been reviewed and accepted by NASA/MSC.

2.2 Inspection Verification

The inspection procedures and data points, as defined by the "EPS Verification Plan", and the results of the various inspections have been reviewed and accepted by NASA/MSC.

2.3 Analyses Verification

The collection and identification of the various analyses performed during the development of the EPS are contained within this document to facilitate their evaluation and review. Analyses made during the early development stages of the EPS program are not necessarily correct for the final item. The early analyses, however, provided the basis for arriving at the final configuration of the EPS, and reflect the progression of scientific and engineering skills in the development of a superior product.

3.0 VERIFICATION MATRIX

The "Verification Matrix", a sub-section of the "EPS Verification Plan", provides, in matrix form, a listing of the various EPS functions to test, inspect, and analyze, in order to comply with the requirements of the EPS contract NAS 9-11373.
3.0 Continued

and the "AAP Ancillary Hardware General Requirements". The contents of this document, therefore, is a representative cross-section of the various analyses made during the development of the EPS, and are arranged in section order as found in the "Verification Matrix" (see Table 1 - "EPS Verification Plan - Verification Matrix").
TABLE I - EPS VERIFICATION PLAN - VERIFICATION MATRIX

<table>
<thead>
<tr>
<th>Section 3.0 End Item Specification Reference</th>
<th>VERIFICATION METHOD</th>
<th>TEST TYPE Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NR</td>
<td>A</td>
</tr>
<tr>
<td>3.0</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.1.1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.1.1.1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.1.1.1A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.1.1.1B</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.1.1.1C</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.1.1.1D</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.1.1.1E</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.1.1.1F</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.1.1.1G</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.1.1.2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.1.1.2.1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3.1.1.2.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3.1.2</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

VERIFICATION METHOD:
1. TEST
2. ASSESSMENT
 A. SIMILARITY
 B. ANALYSIS
 C. INSPECTION
 D. DEMONSTRATION

TEST TYPE
NR - NO REQUIREMENT
A - DEVELOPMENT
B - QUALIFICATION
C - ACCEPTANCE
D - PRE-INSTALLATION
E - INTEGRATED SYSTEMS
F - PRELAUNCH
G - OTHER

Verification Plan Reference:
2.3.4
2.3.4
2.3.4
2.3.4
3.1
2.3.4
2.1 & 3.1
2.3.4, 3.1.8 & 4.2
<table>
<thead>
<tr>
<th>Section 3.0</th>
<th>VERIFICATION METHOD</th>
<th>Verification Plan Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Item</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Specification Reference</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>3.1.2.2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.1.2.2.1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.1.2.2.1a</td>
<td>2C</td>
<td></td>
</tr>
<tr>
<td>3.1.2.2.1b</td>
<td>2C</td>
<td></td>
</tr>
<tr>
<td>3.1.2.2.1d</td>
<td>2C</td>
<td></td>
</tr>
<tr>
<td>3.1.2.3</td>
<td>2B</td>
<td></td>
</tr>
<tr>
<td>3.1.2.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.1.2.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.1.2.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.1.2.7</td>
<td>2C</td>
<td></td>
</tr>
<tr>
<td>3.1.2.8</td>
<td>2B</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.2.1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.2.1.1.1</td>
<td>2B</td>
<td></td>
</tr>
<tr>
<td>3.2.1.1.2</td>
<td>2B</td>
<td></td>
</tr>
<tr>
<td>3.2.1.1.4</td>
<td>2B</td>
<td></td>
</tr>
<tr>
<td>3.2.1.1.5</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>3.2.1.1.6</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.2.1.5</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.2.1.5C</td>
<td>2B</td>
<td></td>
</tr>
<tr>
<td>3.2.1.6</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.3.1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.3.1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.1.7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.1.8</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.3.2</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
TABLE I - EPS VERIFICATION PLAN - VERIFICATION
MATRIX (Continued)

<table>
<thead>
<tr>
<th>Section 3.0 End Item Specification Reference</th>
<th>VERIFICATION METHOD</th>
<th>Verification Plan Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NR A</td>
<td>B</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td></td>
<td>2C</td>
</tr>
<tr>
<td>3.3.2.4</td>
<td>2B</td>
<td>2B</td>
</tr>
<tr>
<td>3.3.2.5</td>
<td></td>
<td>2C</td>
</tr>
<tr>
<td>3.3.2.6</td>
<td>2B</td>
<td>2B</td>
</tr>
<tr>
<td>3.3.2.7</td>
<td>2B</td>
<td>2B</td>
</tr>
<tr>
<td>3.3.2.9</td>
<td>2B</td>
<td>2B</td>
</tr>
<tr>
<td>3.3.2.10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3.3.2.11</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3.3.2.12</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.3.2.13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3.3.2.14</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3.3.2.15</td>
<td></td>
<td>2C</td>
</tr>
<tr>
<td>3.3.2.16</td>
<td></td>
<td>2C</td>
</tr>
<tr>
<td>3.3.4</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.3.4a</td>
<td>2B</td>
<td></td>
</tr>
<tr>
<td>3.3.4b</td>
<td>2B</td>
<td></td>
</tr>
<tr>
<td>3.3.4d</td>
<td>2B</td>
<td></td>
</tr>
<tr>
<td>3.3.5</td>
<td></td>
<td>2C</td>
</tr>
<tr>
<td>3.3.6</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.3.6.1</td>
<td>2B</td>
<td>2C</td>
</tr>
<tr>
<td>3.3.6.2</td>
<td>2B</td>
<td>2D</td>
</tr>
<tr>
<td>3.3.7</td>
<td>2B</td>
<td>2B</td>
</tr>
<tr>
<td>3.3.8</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.3.8.1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.3.8.2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.3.9</td>
<td>2B</td>
<td>2B</td>
</tr>
<tr>
<td>3.3.10</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Section 3.0 End Item Specification Reference</td>
<td>VERIFICATION METHOD</td>
<td>Verification Plan Reference</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>3.3.10.1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.3.10.2</td>
<td>2B 2B</td>
<td></td>
</tr>
<tr>
<td>3.3.10.3</td>
<td>2B 2C 2C</td>
<td></td>
</tr>
<tr>
<td>3.3.10.4</td>
<td>2B 2C 2C</td>
<td></td>
</tr>
<tr>
<td>3.3.10.5</td>
<td>2C 2C</td>
<td></td>
</tr>
<tr>
<td>3.3.10.6</td>
<td>2C 2C</td>
<td></td>
</tr>
<tr>
<td>3.3.10.7</td>
<td>2B 2C 2C</td>
<td></td>
</tr>
<tr>
<td>3.3.10.8</td>
<td>2C</td>
<td></td>
</tr>
<tr>
<td>3.3.10.9</td>
<td>2B 2B</td>
<td></td>
</tr>
<tr>
<td>3.3.10.9.1</td>
<td>2B 2B</td>
<td></td>
</tr>
<tr>
<td>3.3.11</td>
<td>2B 2B</td>
<td></td>
</tr>
<tr>
<td>3.3.12</td>
<td>2B 2B</td>
<td></td>
</tr>
<tr>
<td>3.3.13</td>
<td>2B 2C</td>
<td></td>
</tr>
<tr>
<td>3.3.14</td>
<td>2B 2C</td>
<td></td>
</tr>
<tr>
<td>3.3.15</td>
<td>2C 2C 2C</td>
<td></td>
</tr>
<tr>
<td>3.3.16</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>3.3.17</td>
<td>2C 2C 2C</td>
<td>2.3.1 & 3.1.7</td>
</tr>
<tr>
<td>3.3.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.19</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Verification Matrix Number</td>
<td>Section Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.1.2.3</td>
<td>Minimum Useful Life</td>
<td>10</td>
</tr>
<tr>
<td>3.1.2.8</td>
<td>Safety</td>
<td>11</td>
</tr>
<tr>
<td>3.2.1.1.1</td>
<td>Location, Envelope Weight and Center of Gravity</td>
<td>21</td>
</tr>
<tr>
<td>3.2.1.1.2</td>
<td>Structural</td>
<td>23</td>
</tr>
<tr>
<td>3.2.1.1.4</td>
<td>Electrical</td>
<td>109</td>
</tr>
<tr>
<td>3.2.1.5C</td>
<td>Mission Interfaces</td>
<td>179</td>
</tr>
<tr>
<td>3.3.1.7.1</td>
<td>Structural Factors of Safety</td>
<td>180</td>
</tr>
<tr>
<td>3.3.2.4</td>
<td>Electrical Connectors-Pin Assignment and Pin or Socket Selection</td>
<td>181</td>
</tr>
<tr>
<td>3.3.2.6</td>
<td>Materials Detrimental to Electrical Connectors</td>
<td>182</td>
</tr>
<tr>
<td>3.3.2.7</td>
<td>Electrical and Electronic Piece Parts</td>
<td>183</td>
</tr>
<tr>
<td>3.3.2.9</td>
<td>Protection of Electrical and Electronic Devices</td>
<td>184</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Debris Protection</td>
<td>185</td>
</tr>
<tr>
<td>3.3.6.1</td>
<td>Test Points</td>
<td>187</td>
</tr>
<tr>
<td>3.3.6.2</td>
<td>Test Equipment</td>
<td>188</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Single Point Failure</td>
<td>189</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Selection of Specifications and Standards</td>
<td>200</td>
</tr>
<tr>
<td>3.3.10.2</td>
<td>Restoration of Use of Transistors and Capacitors</td>
<td>404</td>
</tr>
<tr>
<td>Verification Matrix Number</td>
<td>Section Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.3.10.3</td>
<td>Soldering</td>
<td>404</td>
</tr>
<tr>
<td>3.3.10.4</td>
<td>Welding and Brazing</td>
<td>404</td>
</tr>
<tr>
<td>3.3.10.7</td>
<td>Adhesive Bonding</td>
<td>405</td>
</tr>
<tr>
<td>3.3.10.9</td>
<td>Parts and Materials</td>
<td>405</td>
</tr>
<tr>
<td>3.3.10.9.1</td>
<td>Controlled EEE Parts</td>
<td>405</td>
</tr>
<tr>
<td>3.3.11</td>
<td>Standard Parts</td>
<td>455</td>
</tr>
<tr>
<td>3.3.12</td>
<td>Fungus Resistance</td>
<td>455</td>
</tr>
<tr>
<td>3.3.13</td>
<td>Corrosion Prevention</td>
<td>455</td>
</tr>
<tr>
<td>3.3.14</td>
<td>Interchangeability and Replaceability</td>
<td>455</td>
</tr>
<tr>
<td>3.1.18</td>
<td>Storage</td>
<td>456</td>
</tr>
</tbody>
</table>
3.1.2.3 Minimum Useful Life

The detectors are the only items on the EPS having a limited life expectancy. The detectors, therefore, are subjected to a special screen and burn-in program to determine their operating parameters, their statistical useful life, and their reliability. Also, because of the limited life expectancy of the detectors, the EPS flight units will be delivered to NASA/MSC with diodes mounted in place of detectors. The flight detectors will be installed on the EPS flight units shortly before launch.
3.1.2.8 Safety

The document "Safety Assessment for EPS Electron-Proton Spectrometer", EPS-425, included herein, presents the safety analyses.
SAFETY ASSESSMENT
FOR
EPS ELECTRON–PROTON SPECTROMETER

LEC Document Number EPS-425

Prepared by
Lockheed Electronics Company, Inc.
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
For
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas
August 1971
SAFETY ASSESSMENT
FOR
EPS ELECTRON-PROTON SPECTROMETER

Prepared by: P. Gleeson
Reliability and Quality Assurance Engineer

Approved by: B. E. Curtsinger
Engineering Supervisor

Approved by: B. C. Hall
Program Manager

Electron-Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company, Inc.
Houston Aerospace Systems Division
Houston, Texas
SAFETY ASSESSMENT

1. PURPOSE
The purpose of this safety analysis is to identify the efforts required to assure relatively hazard free operation of the EPS and to meet the safety requirements of the program.

Safety engineering criteria, principles, and techniques in applicable disciplines is stressed in the performance of system and subsystem studies; in test planning, and in the design, development, test, evaluation, and checkout of the equipment, and the operating procedures for the EPS program.

2. DATA
There are no formal data submittal requirements specifically associated with the EPS system safety engineering program listed in the contract. However, letter reports and safety assessment requiring the attention of NASA/MSC will be transmitted when appropriate and any accident/incident reports prepared in response to NASA/MSC direction will be submitted.
3. **SYSTEM SAFETY ASSESSMENT**

3.1 **TOXIC FLUIDS OR MATERIALS**

No toxic fluids or materials will be used during the processes of manufacturing, testing, or handling of the EPS.

3.2 **FLAMMABLE FLUIDS AND MATERIALS**

No flammable fluids or material will be used in the manufacturing, testing, or handling processes of the EPS, except isopropyl alcohol for cleaning the electronic subassemblies.

3.3 **NUCLEAR COMPONENTS/RADIATION**

The EPS instrument itself does not contain any nuclear components; however, the laboratory equipment will contain radiation sources. LEC has been licensed to use radioactive sources.
3.4 RADIOACTIVE SOURCES

<table>
<thead>
<tr>
<th>Radioactive Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium-133* Solid, Elemental</td>
<td>2 sources not to exceed 100 microcuries each</td>
</tr>
<tr>
<td>Cesium-137* Solid, Elemental</td>
<td>4 sources, each of three not to exceed 100 microcuries, one not to exceed 1 microcurie</td>
</tr>
<tr>
<td>Bismuth-207* Solid, Elemental</td>
<td>4 sources, each of three not to exceed 100 microcuries, one not to exceed 1 microcurie</td>
</tr>
<tr>
<td>Americium-241** Solid, Elemental</td>
<td>1 source not to exceed 0.1 microcurie</td>
</tr>
</tbody>
</table>

*Evaporated onto plastic film (Typical Bionuclear Inc., Houston, Texas.)

**Electrodeposited onto platinum foil (Typical Ortec Inc.)

These radioactive sources will be used for routine checks and calibrations of lithium-drifted silicon detectors, either in air or in a vacuum chamber. Because of their solid form and low activity, it is necessary to handle the sources with only a pair of small tongs.

3.4.1 Radiation Protection Program

The sources will be stored in locked, appropriately marked cabinets when not in use, with access to authorized users only. While the sources are not in use, they will be stored in a locked cabinet such that the dose level at the surface of the cabinet is \(\leq 2 \text{ mr/hr} \). While in use, appropriate radiation signs will be placed at the 2 mr/hr locations.
In addition, personnel using the sources on a routine basis will wear film badges available from R. S. Laudauer, Jr. and Company.

3.4.2 Waste Disposal

At the end of the EPS program, the sources will be turned over to the NASA/MSC Health Physics Group for either storage or disposal. No wastes or disposal are expected to be necessary for these sources during the duration of the EPS program.

3.5 VAN DE GRAAFF FACILITY

An adequate safety program is already in existence at the Van de Graaff facility, and consists of the following:

(1) The first time the accelerator is operated in each of the three modes, (low energy proton, high energy proton, and electron mode) Health Physics will be notified to perform a radiation survey for that mode.

(2) Prior to each accelerator startup, the operating supervisor or his alternate shall be responsible to see that the following control procedure is accomplished:

a. Physically check each entrance into the target area to insure that the interlock system is functioning correctly.

b. Inspect the target room before each accelerator startup to verify that no one is present.

c. Check the visual warning system to insure that all units are operating correctly.

d. Check the area monitoring system panel to insure that all monitors are operating.
e. Announce over the building intercom system, two (2) minutes prior to each startup, that accelerator operations will commence immediately.

f. Check the roof area for occupancy restrictions when required for a particular mode of operation.

g. Insure that an approved operator is at the console panel during accelerator operation.

3. It shall be the responsibility of the facility supervisor to maintain an OPERATION LOG. This record will indicate modes of operation and duration of each operation, e.g., target used, current, voltage and time spent on each mode of operation.

4. Approval must be received from the Radiological Control Officer (RCO) before anyone is allowed in the target room during radiation producing operations.

5. During the period covered by Machine Use Request 000225 (April 15, 1971 to February 1, 1972), no modifications will be performed on the accelerator facilities without authorization from the RCO.

6. In the event of a RADIOLOGICAL EMERGENCY, operations will be suspended and Health Physics notified immediately.

7. The roof area will be roped off and posted "Caution Radiation Area" during electron, proton and neutron production.

8. The doors to the accelerator target room will be posted as restricted areas at all times and will be posted "Caution High Radiation Area."
3.6 ENVIRONMENTAL CHAMBERS FACILITIES

NASA/MSC Environmental Facilities will be used for Qualification Testing and other environmental testing. These facilities have their own safety program approved by NASA/MSC.

3.7 CONTROL SYSTEM TEST FACILITIES

All environmental chambers located in the Lockheed Facility test area have been checked for safety features, and personnel using these facilities are aware of the procedures and cautions.

3.8 END ITEM ASSEMBLY

Maximum efforts have been made during design to ensure that the optimum degree of inherent safety has been included in all equipment designed, procured, or leased for the EPS Program through the selection of appropriate equipment components and design features, and through the use of materials which are known to be hazard free.

Appropriate action has been taken to assure that necessary functions of the system will occur as required, and that no primary failures will cause a chain of dependent failures which would degrade system safety and create hazardous conditions.
The environmental and acceptance test procedures will be designed to reflect safety considerations in their testing operations. The safety of the operations as well as the ability of the procedures to enhance the inherent safety achieved in the subsystems and equipment is a prime consideration.

3.9 RADIO FREQUENCY (RF) RADIATION HAZARDS

The limit for equipment exposure to RF radiation has been established at 0.01 watt/square centimeter \((\text{W/cm}^2)\) at any frequency. It is possible to encounter even higher power densities than this established safe maximum limit during the tests required by the Radio Frequency interference (RFI) tests; however, these high densities are localized. Susceptibility to fields and voltages from other circuits and equipment in the spacecraft was reduced to a practical minimum in the basic design of each assembly and sub-assembly. Primary consideration was given to components and circuits that are inherently free of susceptibility to magnetic fields at dc and audio frequencies. Preference was also given to circuits and components which are optimally free of susceptibility to transient voltage fluctuations and response to signals outside the intended operating frequency bands. The EPS is designed to withstand the transient supply voltage changes caused by the operation of other equipment in the spacecraft without degradation of operation. All digital logic has been designed to operate at as high a triggering voltage as feasible, definitely above the millivolt level. This design objective will provide optimum freedom from inadvertent operation due to stray pulses.
3.2.1.1.1 Location, Envelope Weight and Center-of-Gravity

The EPS was initially designated to be located on the Skylab Multiple Docking Adapter at which time a 15-pound maximum weight limitation was imposed on the design. Within approximately two months after the award of the EPS contract, however, notification was received that the EPS was to be relocated to the Command Service Module in the sector No. 3 fairing area by radial beam No. 2. At that time, a maximum weight limitation of 20 pounds was imposed. The relocation also dictated two major changes in the structural design of the envelope: 1) The mounting flange was to be about the mid-section of the EPS instead of at the base of the EPS, and 2) A structurally stronger envelope was required to withstand the exceptionally higher shock and acceleration g-forces associated with the new location. The resulting envelope weight for the Structural Test Unit was 21 pounds, the Engineering Test Unit, 22.5 pounds, and the Qualification Test Unit, 22.53 pounds.

The center-of-gravity, which remained at essentially the same point throughout the several packaging designs, is essentially the same as that for the Qualification Test Unit (see figure 1).
FIG. 1. MASS PROPERTIES STATUS
 - POSITION OF C.G.
3.2.1.1.2 Structural

The following are documents applicable to the assessment of the structural requirements of the EPS.

<table>
<thead>
<tr>
<th>Subject Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS Packaging Design Specification (Goals) (EPS-19)</td>
<td>25</td>
</tr>
<tr>
<td>Hermetic Sealing of EPS (EPS-5)</td>
<td>27</td>
</tr>
<tr>
<td>EPS Thermal Packaging Design (EPS-11)</td>
<td>29</td>
</tr>
<tr>
<td>Thermally Conductive Substrates for Printed Circuit Boards (EPS-71)</td>
<td>30</td>
</tr>
<tr>
<td>Interface of EPS with CSM (EPS-92)</td>
<td>32</td>
</tr>
<tr>
<td>Results of the EPS/CSM Interface Meeting</td>
<td>35</td>
</tr>
<tr>
<td>Held at North American Rockwell on 1-12-71 (EPS-104)</td>
<td></td>
</tr>
<tr>
<td>Preliminary Results of Thermal Analysis (EPS-174)</td>
<td>40</td>
</tr>
<tr>
<td>Comments on the Thermal Design Analysis (TXA 50-131) from LMSC - April 1, 1971 (EPS-194)</td>
<td>43</td>
</tr>
<tr>
<td>Additional Thermal Analysis Results (EPS-200)</td>
<td>46</td>
</tr>
<tr>
<td>Random Vibration Criteria for EPS (EPS-123)</td>
<td>47</td>
</tr>
<tr>
<td>EPS Sensor - Qualification Model</td>
<td>52</td>
</tr>
<tr>
<td>EPS Baseplate - Qualification Model (EPS-855)</td>
<td>71</td>
</tr>
</tbody>
</table>
Subject Title

EPS Proposed Increase in Qualification Vibration Level 73
Proposed Increase in Qualification Vibration Levels for the EPS (EPS-675) 80
Comparison of Acceleration Levels to Other Dynamic Test Levels for the EPS (EPS-592) 84
Statement of Work: Barry Vibration Isolators for EPS (EPS-670) 91
Vibration Testing of the EPS Electronics (EPS-722) 92
EPS Combined Pressure and Random Vibration 94
Vibration Test Report (Interim) on Solid State Radiation, Inc's. Lithium Ion Drift Detectors 98
ELECTRON-PROTON SPECTROMETER

PACKAGING DESIGN SPECIFICATION (GOALS)

1. Location - Mounted on multiple docking adaptor.

2. Instrument will be thermally isolated from vehicle skin.

3. Temperature Range, External - -180°F to +277°F.

4. Temperature Range, Internal -

- Operating Mode
- Detectors: -58°F to +32°F
- Electronics: -13°F to +77°F

- Standby Mode
- Detectors: -58°F to +95°F
- Electronics: -13°F to +158°F

5. Power
- Electronics: 12 watts
- Heaters: 3 watts available.

6. Package Size - 10" x 8" x 5" (400 cubic inches). (Detectors will protrude beyond 5" package height).

7. Weight - 15 lbs.

8. Operating Pressure - 10⁻⁸ torr.

9. General

- Information on other environmental requirements is contained in MSC-01159, Rev. C "Flight Hardware Environmental Design Requirements", September 1, 1970.

- It is presently planned that the detectors will be sealed units.

- It is presently planned that the packaging design will provide conductive paths to the external walls of the package, to transmit heat from the electronics.

- Electronics - Analog electronics will use P/C board techniques; digital and power supplies will most probably utilize welded cordwood modular techniques.

Ref. B - Temp. Range, Internal Mode: "-58°F to +32°F" was "-13°F to +77°F" and "-13°F to +77°F" was "+32°F to +122°F".
I. Perform evaluation and initial analysis of existing design concept.

II. Select suitable thermal coatings, investigate applicable thermal insulations.

III. Based on specs and initial analysis of existing design, make recommendations to finalize design concept.

IV. Provide liaison to LEC/HASD design engineering throughout the entire design phase.

V. Perform thermal analysis of final thermal design and write report on results.
Hermetic Sealing of EPS

It has been suggested that the EPS experiment be a completely hermetically sealed unit, so that it will not require documentation covering non-metallic materials, flammability, outgassing constituents, etc.

It is felt that this is a rather expensive way to avoid some documentation requirements. To design on the basis of a completely hermetically sealed unit will involve impact to the EPS program in several areas, such as:

a. Invalidation of all previous design concepts studied.

b. Need for investigation into suitable sealing techniques and seal testing that was not included in the original proposal. The difficulty of sealing for a five year period (one year operational) has not yet been established, but true hermetic sealing is both costly and time consuming to design and produce.

c. Invalidation of all preliminary thermal analysis undertaken by LMSC.

d. Elimination of multilayer insulation as a possible insulation technique. This material is only satisfactory under vacuum conditions.

e. Weight - the casing would now have to withstand a differential pressure of 15 psi. This would possibly lead to an increase in weight.

f. Additional machining for seal(s) and sealing bolts would involve additional costs, as would the seal itself.
g. If permanent (solder, welding) sealing techniques are used, then increased difficulty of access to internal structure and circuitry would seriously hamper rework if and when required.

While the above may not be exhaustive, it gives a measure of the impact associated with this decision. In contrast to this, it is felt that if the materials used in the construction of the EPS are selected from materials already approved for use in the Apollo program (ref. 1, 2 and 3), much of the documentation and testing is already covered.

Experience has shown that the outgassing from the average experiment electronics is not excessive, where care has been exercised in the selection of materials used. Also, even when no attempt has been made to stabilize materials such as potting compounds, encapsulations and conformal coatings - sources of the major portion of the outgassing - the outgassing tends to stabilize itself in a short period of time. Should certain materials required to be used be a cause of excessive outgassing, it would probably be more economic to provide individual sealed containers at a component or subassembly level rather than at the general assembly level.

Finally, the EPS experiment will probably be a very small source of outgassing compared to that from the spacecraft itself.

Determination of whether the design should provide total hermetic sealing unit must be made very soon to avoid major schedule impact to the EPS project.

Reference: 1. Grumman document LIS-360-22101

cc: B. E. Curtsinger
R. S. Lindsey
R. P. Dunn
P. Gleeson
In order to achieve maximum progress in the thermal/packaging design of the EPS instrument, the following requirements will be considered firm and will be utilized until further notice.

1. Temperature Range, External: -180°F to +277°F
2. Temperature Range, Internal: Design goals
 - Instrument Subassembly: Operate Mode
 - Detectors: 0°C + 25°C
 - Electronics: 25°C ± 25°C
 - Standby Mode
 - Detectors: -50°C to +35°C
 - Electronics: -25°C to +70°C
3. Mounting Location - MDA
4. Instrument will be thermally isolated from vehicle skin.
5. Weight: 15 lbs.
6. Vacuum seal - Not mandatory, design for thermally conductive paths from electronic components to a common heat sink using suitable encapsulating techniques.
7. Power: Electronics - 12 watts
 - Heater - 3 watts
8. Detectors: Will be hermetically sealed in TO-5 transistor package.
9. Packaging:
 a. Analog electronics - use PC boards.
 b. Digital and power electronics - use welded cordwood modular techniques.
10. Information on other environmental requirements can be found in MSC-01159 Rev. C "Flight Hardware Environmental Design Requirements", dated September 1, 1970.

cc: B. E. Curtsinger
 R. S. Lindsey

B. C. Hall
SUBJECT: Thermally Conductive Substrates for Printed Circuit Boards
(Action Item 1, 12-14-70)

Investigation of thermally conductive substrates for printed circuit boards indicates that apart from the conventional glass-epoxy (a very poor thermal conductor) the choice resolves itself into one between the pure oxide ceramics and aluminum alloy.

The International Electronic Research Corp. markets a "metal core circuit board" consisting of an aluminum alloy (6061-T6) core, an "Insulube 448" insulation and copper conductor. This type of board is being used in many avionics applications (e.g. by Lockheed in the S3A). Generally, such a board is capable of providing five times the power dissipation of the glass-epoxy equivalent board. When a board is attached to a good "thermal ground", this power dissipation could rise to 12-15 times that of a glass-epoxy board.

National Beryllia Corp. are manufacturers of pure oxide ceramics, including alumina and beryllia substrates. Their Cermetrol Division has the capacity to manufacture a complete "printed circuit board".

The thermal conductivities of the substrates are:

- Glass-Epoxy (G-10 Typical) 0.0026 watts/cm-°C
- Aluminum Alloy (6061-T6) 1.55 watts/cm-°C
- Alumina (99.7% Al₂O₃) 0.35 watts/cm-°C
- Beryllia (Berlox K120) 2.08 watts/cm-°C

However, the thermal conductivity is not a very good comparison of the relative efficiencies of the above materials as a thermally conductive substrate. Aluminum alloy, being an electrical conductor, needs a 4-5 mil insulating layer between it and the conductor.
A common concept for plates or sheets of material such as PC boards is resistance per square, and comparing these materials on this basis is a factual measure of their capabilities. Assuming, for comparison, a 1/16 inch thick board

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistance per Watt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass-Epoxy</td>
<td>2860 °C/watt</td>
</tr>
<tr>
<td>Aluminum (6061-T6)</td>
<td>4.06 °C/watt</td>
</tr>
<tr>
<td>Alumina</td>
<td>17.98°C/watt</td>
</tr>
<tr>
<td>Berlox K.120</td>
<td>3.309°C/watt</td>
</tr>
</tbody>
</table>

It can be seen that either the metal core circuit board or beryllia give the greatest improvement in heat dissipation over glass-epoxy. However, the aluminum board may have undesirable characteristics for use in some circuitry (such as capacitance in the op. amp. for EPS).

Ball park figures for cost are:

Aluminum Alloy Board (MCCB)

- $200 - $300 for prototype board (about 3-1/2"x 2-1/4"-75 holes)
- $ 50 - $100 for quantities ~ 25 (delivery ~10-12 weeks)

Beryllia

No cost figures available. Anticipate costs similar to aluminum alloy board above. (delivery ~8-10 weeks)

There is obviously no problem mechanically in using MCCB's, and preliminary calculations show that beryllia would be satisfactory.

cc: Curtsinger
 Dunn
 Lindsey
TO
B. C. Hall

FROM
D. L. Vincent

SUBJECT: Interface of EPS with CSM

The writer received a telephone call from North American Rockwell, regarding interface information on mounting the EPS into the CSM. Discussion took place on the thermal and structural conditions, and they will be contacting B. E. Curtsinger and/or R. S. Lindsey to come to an agreement regarding the electrical interface. This is important to them.

They provided some general information regarding the temperature of the spacecraft in the immediate area for mounting the EPS, and the proposed concept for attaching us to the spacecraft.

Mr. Ed Schlessinger gave the following details.

1. We will be mounted on the shadow side of the spacecraft, though there exists the possibility that we may see the sun for a short period of time in one particular attitude of the spacecraft.

2. Temperatures of the access panel that we would be mounted in place of are:

 for varying \(\beta \) angle (angle between sun line and orbit plane)

 \[\begin{align*}
 \beta & \quad \text{Panel Temperature} \\
 -73 \ 1/2^\circ & \quad -65^\circ F \\
 +73 \ 1/2^\circ & \quad -80^\circ F \\
 0^\circ & \quad \text{Temperature will vary in a sinusoidal fashion between \(-70^\circ F\) and \(+25^\circ F\).}
 \end{align*} \]

3. Within the spacecraft structure cavity the cavity wall temperature will range from 0°F to +50°F.
Mr. Squigley gave the following structural information.

1. We would be mounted on a flange on the access panel.

2. The EPS top plate would be 1-1/2" - 2" above the panel.

3. The approximate dimensions of the cavity are 14-1/2" x 12-1/2" x 7-1/2" deep. A more up-to-date sketch of the proposed mounting and cavity will be transmitted to NAR's Houston representative to pass on to us (it appears that the cavity is not a full rectangular box).

The writer informed them that our envelope would be smaller than the 12" x 10" that they had allowed for, and gave a provisional size of 10" - 10-1/2" x 9" x 6" high (exclusive of the detectors).

It appears that there would be space to provide some thermal insulation within the cavity should we find that we require it to keep within our thermal parameters.

They had been given to understand that at least one of the detector shields was only about 2-3 mils thick, and were a little concerned about the possible susceptibility to damage this would mean. The writer advised them that the thinnest shields are 14 and 71 mils thick aluminum.

The writer also inquired about the type of mating connector they might wish us to use, mentioning that we had planned to use a connector of the type covered by a MSFC specification. It would appear that they have some requirements regarding the connector, and its location, but preferred to leave this until they had spoken about the electrical interface.

Finally, it does not appear that they have been officially "turned on" by NASA to mount us on the CSM as yet, but understand that the official "turn-on" is "in the mill".

D. L. Vincent

cc: B. E. Curtsinger
 R. P. Dunn
 R. S. Lindsey
DIAGRAM OF FLUSH MOUNTING OF E.P.S. ON CSM.

SPACECRAFT STRUCTURE CAVITY.

FAIRING PANEL

PANEL FACE

CHANNEL # 6

X: 375

X: 225

BEAM Z

3 0' APPROX.
RESULTS OF THE EPS/CSM INTERFACE MEETING HELD AT NORTH AMERICAN ROCKWELL (NR) ON 1-12-71

LIST OF ATTENDEES:

A. Farkas NASA/MSC
B. Liles NR/Downey
B. Curtsinger LEC
D. Vincent LEC
Various other NR personnel.

RESULTS:

After the North American Rockwell and Lockheed organizations and the basic operation of the EPS had been discussed, the four instrument to spacecraft interfaces were discussed in detail. These four interfaces are:

A. Installation and Envelope
B. Electrical and Functional
C. Environmental
D. Ground/Bench Test Equipment

Each of these interfaces will require an Interface Control Document which will be, in effect, a contractual agreement between NR and NASA/LEC.

INSTALLATION AND ENVELOPE:

LEC presented the drawing no. SMC39106411, "Outline Drawing - Electron Proton Spectrometer" for discussion and review. This drawing defines the overall size of the package and position and maximum projection of the detector housings. Despite the increase in size from the provisional size of 10" x 9" x 6" given approximately two weeks ago to the present size of 10-1/2" x 9-1/4" x 6", North American personnel were able to confirm that they can mount and install this size package, and provided a sketch of the required hole pattern in the mounting flange around the instrument.
The present maximum allowable weight of the instrument was given (20 lbs), and it was indicated that while we anticipated that we would be a little below this, no firm estimate was available at this date.

The type of connector mating with the spacecraft, and its position, was discussed. Agreement was reached on a ME 414-0096-0053 connector for the instrument with the mating connector being ME 414-0095-0061. North American said that these were available from Kierulf Electronics in Los Angeles (telephone no. 213-685-5511). They suggested contacting Miss Mildred Haller of that company. It may be that Kierulf has some of these connectors in stock, though normal delivery is 4-5 weeks. Regarding the connector position, LEC stated its preference for it to be at the bottom of the instrument, close to one of the 9-1/4" sides and to one side of the centerline of the instrument. North American needed to look into their wiring and connector layouts more closely before they could give a definite answer, but generally thought that this position would be acceptable to them. Some questions were raised regarding the projection of the connector below the base of the instrument. LEC indicated that we had some leeway in this area and would attempt to accommodate their needs as far as we could. NR will send their suggested position for the connector and its projection to A. Parkas (NASA/MSC) by the end of the week.

Installation into the spacecraft was discussed generally, and apart from some question of access to some components in the region of the instrument, did not appear to present any problems. The need for a handling container for the instrument and a protective shield for the detector if installation takes place at KSC was discussed, but no resolution was made.

All in all, the installation and envelope discussion was remarkably free of any problem areas.

Electrical and Functional:

A proposal was made by LEC to include an Analog to Digital converter in the EPS, thereby deleting the requirements for the two analog channels and the 1 pps sync signal. NR was very agreeable to this due to schedule and telemetry channel availability restrictions. Therefore, for the remainder of the discussion, it was assumed that an A/D converter would be included in the EPS.
NR had performed tests to determine if the tape recorder/VCO telemetry channel had sufficient bandwidth to accept a serial 220 bit per second, bi-phase-level PCM signal. The results of these tests indicated that this was acceptable. It is not known, at this time, whether the existing Skylab ground telemetry stations will accept this signal.

The power interface (including the uplink command control requirement) was discussed and is agreeable to both groups.

North American Rockwell has a specification for RFI/EMI and will include this document in the ICD. This specification has not been reviewed for compatibility with existing requirements.

The availability of an EPS for spacecraft functional tests (on 6-21-71) was discussed. Mr. Parkas suggested that the Engineering Test Unit be used for these tests. It was pointed out by LEC that the Engineering Test Unit will not have QA coverage during fabrication, and this would probably prevent the unit from being connected to the spacecraft. NR agreed. It was decided that NASA and NR would resolve this problem.

Environmental:

This discussion centered around the Environmental ICD and its format. The environmental requirements covered were:

1. Thermal
2. Shock and Vibration
3. Nuclear Radiation
4. Pressure
5. Magnetic Field
6. Other environmental factors.

These areas were discussed, primarily from the point of view of NR's need-to-know in terms of integration into the spacecraft as a system, and the EPS possible interaction with other instrumentation.

Thermal:

This covers surface materials and properties, thermal coating characteristics, temperature control means, range and set points, thermal analytical model, heat sources and/or sinks and conductance values.
The primary need for control of this information is integration into the thermal engineering of the spacecraft plus the need for knowledge of the type of materials and surface coatings that would be handled on installation in the spacecraft. Most of the information required could well be supplied by direct liaison between E. Schlessinger (NR's Thermal Engineer) and Don Smith (LMSC), particularly in the area of the analytical model (a very simple model).

LEC raised the possible need to heat sink the experiment to the spacecraft and possibly insulate the instrument from the cavity within the spacecraft skin. There appears to be no problem in this approach if needed.

From discussion of the Functional ICD, there is a need to define any temperature requirements in terms of time also, as in two modes of spacecraft operations, we could be on the sunward side of the spacecraft. One of these is during the docking maneuver, the other is during an "earth resources" mode.

Shock and Vibration:

NA will supply the shock and vibration levels at the mounting surface of the instrument in the near future.

Nuclear Radiation:

It was accepted that we had no radiation source, and that we measured electron and proton radiation levels. A statement to this effect will be included.

Pressure:

This covers any limitations on the instrument operation due to gas release, RCS burns, etc. The primary effect would be slight degradation of the thermal coating surfaces. LEC confirmed that we would be looking at the instrument for the need to vent any internal atmospheric pressure during the launch and orbit insertion sequences.

Magnetic Fields:

This would cover transient magnetic fields, and LEC could give no definite figures at this time.
Other Environmental Factors:

This would cover any other needs of the instrument not covered elsewhere. At this time neither LEC nor NR had any items to include under this heading. The question of acoustics was raised by A. Parkas. NR replied that this was normally included in the vibration levels to the instrument.

Ground/Bench Test Equipment:

Since the EPS instruments are not to be installed on the Spacecraft at the North American plant at Downey, there is no requirement for tests or equipment at that location. However, NR strongly recommends that several tests be performed at Cape Kennedy.

Immediately after the EPS arrives at KSC, the unit should be subjected to a pre-installation test. This test would require bench test equipment and QA coverage.

Since the time between installation of the instrument on the spacecraft and launch could be as long as four months, NR recommends that equipment be provided to allow for functional tests of the EPS while installed on the CSM. This would require GSE and QA coverage.

Summary:

From the information obtained at this meeting, and from possible phone conversations in the future, North American Rockwell will prepare the ICD's for each interface. These will be sent to NASA and LEC for concurrence before the final drafts are prepared.

cc: B. E. Cash
 R. P. Dunn
 C. L. Fletcher
 P. Gleeson
 R. B. Hendrix
 R. S. Lindsey
 T. D. Lyons
 W. A. Oliveira
 R. W. O'Neill
 C. J. Spahn

D. L. Vincent
Preliminary Results of Thermal Analysis

The advance results from LMSC regarding the temperatures of the EPS show that these fall within the range of the packaging design specification (EPS-19, Rev. B) provided.

Cold orbit temperatures were predicated on 15.9W (12.9W electronics power + 3.0W heater power) while hot orbit temperatures are based on 12.9W electronics power only. The experiment is considered as mounted on the spacecraft structure via a glass-fiber mounting flange, or isolated in a manner to provide an equivalent thermal resistance at this point.

The specified temperature limits and the analysis results are tabulated below.

<table>
<thead>
<tr>
<th></th>
<th>Detectors</th>
<th>Electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specified Limits</td>
<td>-58°F to +32°F (-50°C to +0°C)</td>
<td>-13°F to +77°F (-25°C to +25°C)</td>
</tr>
<tr>
<td>Hot Orbit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbit Average</td>
<td>+12°F (-11.1°C)</td>
<td>+35°F (+1.7°C)</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>+27°F to +1°F (-2.8°C to -17.2°C)</td>
<td>+37°F to +32°F (+2.8°C to +0°C)</td>
</tr>
<tr>
<td>Cold Orbit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbit Average</td>
<td>-24°F (-31.1°C)</td>
<td>+2°F (-16.7°C)</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-22°F to -26°F (-30°C to -32.2°C)</td>
<td>+1°F (+1/2°C)</td>
</tr>
</tbody>
</table>
Detectors & Electronics

<table>
<thead>
<tr>
<th>*Cold Orbit (18.9W)</th>
<th>Detectors</th>
<th>Electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit Average</td>
<td>-12°F (-24.4°C)</td>
<td>+12°F (-11.1°C)</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-10°F to -14°F (-23.3°C to -25.6°C)</td>
<td>+1°F (+1/2°C)</td>
</tr>
</tbody>
</table>

*Estimated temperatures based on 6 watts of heater power in cold orbit.

An examination of these results shows that for the hot orbit, the detector and electronics temperatures fluctuate more widely than for the cold orbit. The detector temperature can rise to within 5°F of the maximum specified temperature, whereas the electronics are about 3°F above the mean (or nominal) specified temperature. In the cold orbit, the detectors are about 9°F below the mean specified temperature and the electronics are 13°F above the minimum specified temperature. The electronics temperature could be raised 10°F in the cold mode by the addition of an extra 3.0W of heater power, and this would raise the detector temperature by about the same amount. Figure 1 shows these results in a tabular form.

As a rough estimation of the thermal advantage of changing to a glass-fiber mounting flange, it would require a total power consumption 25.9W to maintain the cold mode temperatures at those for 15.9W.

CC: B. L. Cash
 B. E. Curtsinger
 R. P. Dunn
 P. Gleeson
 R. B. Hendrix
 R. S. Lindsey
 C. J. Spahn

D. L. Vincent
SUBJECT: Comments on the Thermal Design Analysis (TXA 50-131) from LMSC - April 1, 1971

An initial perusal of the above thermal design analysis report has presented no surprises or major deviation from information provided to the writer by D. H. Morton (LMSC) by phone.

Specific comments on the recommended thermal design provisions are as follows.

1. Thermal control surfaces

The proposed use of the White thermatrol paint and Mystic tape had been made known to us, and the design caters for this. D. Morton has provided the writer with LMSC's Material Specification, Process Bulletin and Process Specification (for protection of thermal control surfaces) for this material.

2. Electronics/Baseplate Interface

The change from 1/16" thick x 20.10 sq. ins. to 1/8" thick x 15.20 sq. ins. of fiberglass, providing approximately a 20°F increase in the electronics operating temperature, was provided by D. Morton and the necessary details are in the process of being modified. The proposal for the connecting screws is already incorporated in the design.
3. EPS/Spacecraft Interface

The proposal of a fiberglass flange came from LEC (as an alternative to a multitude of spacers and a possible requirement for NAR to isolate the hold-down bolts from the spacecraft structure). The present design incorporates this flange and the conduction path length is as recommended.

4. Heater Power Requirements

This paragraph did contain information not previously transmitted. The writer had advised LMSC that we monitored the temperatures, but that there was no provision to turn the instrument off, except through ground command. Possibly, this can be loosely interpreted as thermostatic control. The recommended "turn-on" temperatures for the heaters had not been transmitted, and the writer understands from B. Curt-singer that the heater control circuit is designed for "turn-on" at 0°C (32°F) and "turn-off" at +10°C (+50°F).

The request to examine the possibility of leaving the smallest detector dome unpainted was made due to the required thickness of the paint coating (4-6 mils). Discussion with B. Cash indicated that this thickness of paint on a dome of only 14 mils thickness would lead to either alteration of the energy levels measured by that detector or reduction of the required thickness of the dome by some amount that would, of necessity, have to await the results of test investigation of the effect of the paint coating. LMSC evaluated the thermal effect of leaving this dome unpainted, with the result that the change in temperature was insignificant. Therefore, the design does not require this dome to be painted.

Regarding the "stand-by" case (presumed to reflect possible rendezvous and docking situation), the report clearly indicates that these are worst-case situations. And the final sentence indicates that once again NAR has "backed off" from their initial input on the worst case parameters for the rendezvous and docking mode, which was in the order of potentially 7-10 days - with the EPS facing the sun - as a design requirement!
Comparing the temperature results with those given in "Preliminary Results of Thermal Analysis" EPS-174 (3-23-71) written prior to the change in the electronics/baseplate interface, we have:

Hot Orbit

Detectors: Orbit average and temperature range remain the same.

Electronics: Orbit average 62°F (16.7°C)
Temperature range ± 1°C

Cold Orbit (3W heater power)

Detectors: Orbit average and temperature range remain the same.

Electronics: Orbit average +17°F (-8.3°C)
Temperature range ± 1/2°C

Cold Orbit (6W heater power)

Detectors: Orbit average and temperature range remain the same.

Electronics: Orbit average +37°F (+2.8°C)
Temperature Range ± 1/2°C

These results show that the alteration in the electronics/baseplate interface has provided an increase in the electronics operating temperatures without any significant change in the equivalent detector operating temperatures. The only outstanding item in the design (from a thermal standpoint) is the determination of the desired heater power. There is no obstacle in the present design to prevent the use of 3W or 6W, and as it seems to be desirable that the electronics operate at as warm a temperature as possible in the cold mode then, power allotment permitting, the writer suggests that we use 6W heater power.

cc: B. L. Cash
B. E. Curtsinger
R. P. Dunn
P. Gleeson
R. B. Hendrix
R. S. Lindsey
C. J. Spahn

4-9-71
EPS-194
Page 3
At the time the thermal report was discussed, it was noticed that two previous points raised had been omitted. These were:

a. What is the minimum temperature of the electronics with all power off?

b. What is the minimum temperature of the electronics with 6W of heater power only? If this is below -50°C, what is the minimum power requirement to maintain the electronics at or above -50°C?

The answer to these questions was given by LMSC as:

a. All power off:
 Electronics Temp -100°F (-73.3°C)
 Detector Temp -103°F (-75°C)

b. 6W heater power only:
 Electronics Temp -54°F (-47.8°C)
 Detector Temp -71°F (-57.2°C)

As the 6W of heater power maintains the electronics at or slightly above -50°C, no attempt was made to find the power required to maintain the electronics at -50°C. Additional information provided was the detector temperature in these particular modes.

D. L. Vincent

cc: B. C. Hall
 B. L. Cash
 R. P. Dunn
 P. Gleeson
 T. L. Knox
 R. S. Lindsey
 C. J. Spahn
INTERDEPARTMENTAL COMMUNICATION

TO

B. C. Hall

FROM

D. L. Vincent

SUBJECT

Random Vibration Criteria for EPS

The vibration criteria for the EPS when mounted into the CSM fairing was received from Mr. A. Farkas (NASA/MSC) on 2-4-71. This information had been provided by North American in a telefax.

Review of the information led to an immediate query of the very high power spectral density levels involved. Mr. Paul Liles (NAR) confirmed the 6.0 g²/Hz level to Mr. Farkas, and these levels were confirmed independently of NAR by Mr. Parkas. These levels are apparently factual levels based on the monitored results of two tests, and are applicable to the EPS for any mounting position in the CSM fairing. Mr. Farkas states that these levels would be the test levels for the EPS, though the writer can find no indication in the telefax that these are other than flight environment levels. If they are flight levels or acceptance test levels, then the qualification test levels would be significantly higher (e.g. 6 g²/Hz × 1.3² = 10.14 g²/Hz). The question of what levels we will be contractually obligated to test to needs some clarification.

It is obvious that these high levels will have an impact on the design of the EPS. Not only is it necessary to re-examine the structural design in the light of the new criteria, but it will also be necessary to investigate the internal packaging of all of the electronics in each slice. The vibration spectrum has its peak power levels between 100 - 1000 Hz; the natural frequency of the EPS will be somewhere between 100 - 350 Hz in all probability, as will that of the majority of components. The peak power input bandwidth is so wide that it is virtually impossible to design so that the instrument will not have a resonant frequency in this range. An investigation of the full impact of this to the packaging design must be made, but has not yet been started. If the writer had to hazard a guess, it would be that we will be extremely lucky if we avoid having to modify the design appreciably from its present size and weight.
At this point, a review of the history of the vibration criteria for the EPS is not amiss. Figure 1 shows the variety of random vibration criteria that we have received as design requirements.

The first was that contained in MSC-02814, Preliminary Requirements Review, Electron-Proton Spectrometer (11-6-70):

- 20 - 80 Hz @ 3 dB/Octave increase
- 80 - 350 Hz @ .067 g2/Hz
- 350 - 2000 Hz @ 3 dB/Octave Decrease

Curve "A" Acceptance
Test levels.
5 mins/axis

At this point in time, there was some uncertainty as to the location of the experiment on the MIDA, and it was felt that the above specification was a fairly low one to design to. Therefore, the general specification for the MDA skin was selected from MSC-01159, Rev. C, "Flight Hardware, Environmental Design Requirements:

MDA Skin, Subzone 11-2

- 20 - 130 Hz @ .30 g2/Hz
- 130 - 220 Hz @ -6 dB/Octave
- 220 - 800 Hz @ .10 g2/Hz
- 800 - 1400 Hz @ -12 dB/Octave
- 1400 - 2000 Hz @ .010 g2/Hz

11.6 g r.m.s.

Detectors were vibration tested to these levels, and also the levels for the OWS LH$_2$ cylinder tank general specifications, subzone 4-3 (between 12-2-70 and 12-7-70 - see EPS 33 and 67):

- 20 Hz @ .010 g2/Hz
- 20 - 90 Hz @ +12 dB/Octave
- 90 - 200 Hz @ 3.7 g2/Hz
- 200 - 500 Hz @ -12 dB/Octave
- 500 - 2000 Hz @ .095 g2/Hz

29.1 g r.m.s.
The detectors successfully completed testing to both these levels. The OWS spectrum was run, as the workshop was being considered as an alternative location for the EPS. However, design was based on the MDA skin criteria, though it was recognized that these levels might be increased a little, dependent on the location of the experiment, so somewhat larger factors of safety were used in the initial design than would normally be called for to achieve an economical, light-weight design.

On 12-16-70, an interface meeting was held between LEC, NASA and Martin-Denver. At this time we were given a location on the MDA - the L-Band Radiometer Truss - and its accompanying vibration requirements.

\[
\begin{align*}
20 - & \quad 183 \text{ Hz} @ 1.0 \text{ g}^2/\text{Hz} \\
183 - & \quad 554 \text{ Hz} @ -12 \text{ dB/Octave} \\
554 - & \quad 750 \text{ Hz} @ 0.012 \text{ g}^2/\text{Hz} \\
750 - & \quad 1300 \text{ Hz} @ -12 \text{ dB/Octave} \\
1300 - 2000 \text{ Hz} @ & \quad 0.013 \text{ g}^2/\text{Hz} \\
\end{align*}
\]

Investigation indicated that our design could accommodate this new criteria without significant impact on the detail design (EPS72), mainly due to the large factors of safety used - as mentioned previously.

Approximately one week later, we were advised that the EPS would not be mounted on the MDA! A possible alternative position on the CSM was mentioned, and this was welcomed as probably leading to a reduction in the vibration criteria. General opinion was that the CSM vibration levels would be significantly lower than for the MDA. Even at the interface meeting with NAR, no mention was made of high vibration levels (EPS-104, 1-13-71).

\[
\begin{align*}
\text{CSM} & \\
20 - & \quad 175 \text{ Hz} @ +6 \text{ dB/Octave} \\
175 - & \quad 350 \text{ Hz} @ 6.0 \text{ g}^2/\text{Hz} \\
350 - 2000 \text{ Hz} @ & \quad -3 \text{ dB/Octave} \\
\end{align*}
\]

\[\approx 85.99 \text{ g r.m.s.}\]
As can be seen from Curve "E", the power levels involved are considerably higher than any previous specification given, and certainly we have no large factors of safety now involved to offset the impact on the design.

The environment of this location on the CSM is not an ideal one for a sensitive instrument, and will almost certainly have an effect on our present design. Examination of the curves shows that the CSM criteria is significantly greater than the OWS spectrum to which we subjected the detectors (as a "worst case" test), and it is interesting to note how the vibration level requirements have increased steadily since the project was first started. From the information that was first provided for design, it would have been impossible to forecast the levels now imposed.

cc: B. E. Curtsinger
R. P. Dunn
P. Gleeson
R. B. Hendrix
R. S. Lindsey
C. J. Spahn

D. L. Vincent
ELECTRON / PROTON SENSOR
COMBINED PRESSURE
AND RANDOM VIBRATION

The structural integrity of the E/P sensor hardware has been demonstrated by a series of sinusoidal, random, and shock test environments being applied to the engineering test model. The actual flight environment will subject the instrument to a load combination which would be both difficult and expensive to duplicate. This loading is a superposition of pressure on the instrument base plate and a maximum random vibration spectrum applied through the eight mounting locations.

The enclosed stress analysis is presented to verify the adequacy of the E/P sensor to the combined pressure and vibration loading.

Minimum margins of safety were found on the enclosure base plate (SBC 3910660). The lowest margin was +.08 on ultimate loading.
STRESS CALCULATIONS FOR HARD MOUNTED

BOTTOM PLATE

BASE PLATE
SDC 39106630

RAIOM LOAD INPUT LOCATIONS
8 PLACES

HOUSING
SDC 39106632

OUTER HOUSING ASSEMBLY
SEC 39107462
CALCULATION OF PRESSURE LOADS ON PANELS #

DISTRIBUTION TO BEAMS.

PANELS ARE .063 ALUM. 6061-T6

A MAXIMUM PRESSURE OF 3.25 PSI WAS REACHED FROM
NAR ENVIRONMENTAL SPEC MH04-02180-434

PANEL PRESSURE LOADS (LIMIT)

\[
\begin{align*}
3.25 \times 3.453 \times 3.041 & = 34.18^\frac{\text{in}}{\text{lb}} & (2) & 62.54 \\
3.25 \times 3.453 \times 3.167 & = 35.59 & (1) & 35.59 \\
3.25 \times 3.453 \times 6.208 & = 69.77 & (2) & 69.77 \\
3.25 \times 3.583 \times 3.041 & = 35.41 & (2) & 70.82 \\
3.25 \times 3.583 \times 3.167 & = 36.86 & (1) & 36.86 \\
\text{TOTAL} & & & \text{315.66}^\frac{\text{in}}{\text{lb}}
\end{align*}
\]

\[
3.25 \times 10.5 \times 9.25 = 315.66^\frac{\text{in}}{\text{lb}} \quad \text{CHECK}
\]

Distribute \(\frac{1}{4} \) of total panel load to each panel edge beam.
THE CRITICAL BEAM WILL BE BEAM AD" AS SHOWN BELOW.

\[W = (69.77 + 35.41 + 36.88 + 34.18 + 35.41) \times 25 \]
\[= 52.91 \text{ ft} \]
\[w = 52.91 / 9.17 = 5.77 \text{ k/ft} \]

REACTION \(R_A \)

\[W = (35.41 + 34.5 + 36.88 + 35.29) \times 25 \]
\[= 35.51 \text{ k} \]
\[R_A = W / 2 = 17.76 \text{ k} \]
Pressure Load Calculation (Cont'd)

Determine moment at various sections along beam 'AD'

X between P_R and A

\[M = P_R x - \frac{1}{2} W X^2 \]

\[R_R = \left[\left(\frac{3.91 x \frac{9}{2}}{242.87} \right) + (17.76 \times 6.12) \right] / 4 \cdot 17 \]

\[= 38.32^\circ \]

\[R_L = 33.35^\circ \]

<table>
<thead>
<tr>
<th>Section</th>
<th>X</th>
<th>P_X</th>
<th>X^2</th>
<th>W X^2</th>
<th>Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.5</td>
<td>12.16</td>
<td>.25</td>
<td>1.44</td>
<td>18.48</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>38.22</td>
<td>1.0</td>
<td>5.77</td>
<td>35.44</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>57.48</td>
<td>2.25</td>
<td>12.98</td>
<td>56.99</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>76.64</td>
<td>4.0</td>
<td>23.08</td>
<td>65.10</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>95.8</td>
<td>6.25</td>
<td>36.06</td>
<td>77.77</td>
</tr>
<tr>
<td>6</td>
<td>3.001</td>
<td>14.99</td>
<td>9.006</td>
<td>51.96</td>
<td>89.31</td>
</tr>
</tbody>
</table>

X between A and D

\[M = P_R x - \frac{1}{2} W X^2 - R_R (x - 3.001) \]

\[\begin{array}{|c|c|c|c|c|}
\hline
x - 3.001 & P_R (x - 3.001) & Moment \\
\hline
4.595 & 75.73 & 21.02 & 121.30 & 1.554 & 26.13 & 86.72 \\
\hline
\end{array} \]

Fig 1

Moment in Critical Base Plate Beam

3.25 psi

X Distance from P_R ~ IN
A 64 g RMS LOAD calculation

Calculation of the vibration test loading on the R" axis vibration

The R" axis random vibration test was run at a 65 g RMS level (test spec. called for 64 g RMS). The bottom plate instrumentation consisted of only one accelerometer which was located approximately in the center of the bottom plate. The accelerometer was positioned to measure R" axis response.

Because of the limited instrumentation the acceleration levels of specific modes cannot be isolated.

A conservative approach is taken in the following calculations to estimate the shears and moments occurring on the base plate during 64 g RMS R" axis excitation.

10 g RMS x 64 = 143 x 64 = 166.2 g" RMS

(143 g was 60 RMS acceleration from the 65 g R" axis input test)

30 acceleration peaks will go to

3 x 166.2 = 499.2 g" RMS

The method to be used to calculate base plate loads will be to assume that the 499 g response is that of the first mode, and only the first mode is important. The acceleration will be applied uniformly to the overall base plate to simplify the calculations.
Determining weight of bottom plate

Skin

\[9.25 \times 12.5 \times .062 = \]

Volume

\[6.032 \text{ in}^3 \]

Center ribs

\[4 \times 3.583 \times .282 \times .08 = .323 \]

\[4 \times 3.161 \times .282 \times .58 = .286 \]

Tapered ribs

\[8 \times 2.494 \times .125 \times 1.2 \times \frac{1}{2} = .150 \]

\[8 \times 2.773 \times .219 \times .08 \times \frac{1}{2} = .194 \]

\[5 \times 2.916 \times .125 \times 1.2 \times \frac{1}{2} = .109 \]

\[5 \times 2.539 \times .219 \times .08 \times \frac{1}{2} = .111 \]

Edge

\[39.5 \times \sqrt{(1.15 \times 2.34) - (0.05 \times 0.94)} = 1.126 \]

Intersection

\[6.496 \times .696 \times .344 = .333 \]

\[6.96 \times 6.16 \times .344 = .147 \]

\[6.96 \times 7.57 \times .344 = .236 \]

\[- 4 \times 3.916 \times .125 \times .244 = -.068 \]

Connector boss #5/16

\[.75 \times 1.678 \times .16 \times \frac{1}{2} = .096 \]

\[1.563 \times .17 \times .26 \times \frac{1}{2} = .011 \]

\[2.952 \times .25 \times .28 \times \frac{1}{2} = .089 \]

Fillets

\[\frac{3}{8} \times .125 \times .375 \left(1 - \frac{1}{8}\right) = .026 \]

\[42 \times .25 \times .31 \left(1 - \frac{1}{8}\right) = .317 \]

Total Volume = 9.51 in³

Density of 6061-T6 aluminum = .095 lb/in³

Total weight of base plate

\[WT = 9.51 \times .096 = 0.93 \text{ lb} \]
64g Vibration Test Loading (cont'd)

Now the equivalent total load from vibration becomes

\[499.2 \times 0.93 = 464 \text{ lb} \]

Unit load is

\[\frac{464}{(10.5 \times 9.25)} = 4.78 \text{ lb/in} \]

The total limit design load at any section can now be determined by using Fig 1 for obtaining the pressure moment at any desired section on beam "AD", our assumed critical beam, and multiplying the moment from the curve by:

\[\text{Factor}^2 = \frac{3.25 + 4.78}{3.25} = 1.17 \]

\[\text{TOTAL MOMENT} = 1.17 \times \text{MOMENT FROM CURVE} \]

<table>
<thead>
<tr>
<th>Section</th>
<th>Press. Min.</th>
<th>Vib. Mom.</th>
<th>Total Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.44</td>
<td>27.11</td>
<td>45.55 lb</td>
</tr>
<tr>
<td>2</td>
<td>35.44</td>
<td>52.10</td>
<td>87.54 lb</td>
</tr>
<tr>
<td>3</td>
<td>50.94</td>
<td>74.96</td>
<td>125.95 lb</td>
</tr>
<tr>
<td>4</td>
<td>65.10</td>
<td>95.7</td>
<td>160.80 lb</td>
</tr>
<tr>
<td>5</td>
<td>77.77</td>
<td>114.32</td>
<td>192.09 lb</td>
</tr>
<tr>
<td>6</td>
<td>89.01</td>
<td>130.84</td>
<td>219.65 lb</td>
</tr>
<tr>
<td>7</td>
<td>86.92</td>
<td>127.77</td>
<td>214.69 lb</td>
</tr>
</tbody>
</table>
Beam 10" Section Properties

Section 1

<table>
<thead>
<tr>
<th>ELEM</th>
<th>A</th>
<th>Y</th>
<th>A_y^2</th>
<th>T_o</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.062</td>
<td>.151</td>
<td>.00936</td>
<td>.00141</td>
<td>.00002</td>
</tr>
<tr>
<td>2</td>
<td>.0283</td>
<td>.06</td>
<td>.00173</td>
<td>.00010</td>
<td>.00003</td>
</tr>
<tr>
<td>3</td>
<td>.0176</td>
<td>.175</td>
<td>.00308</td>
<td>.00054</td>
<td>.00002</td>
</tr>
<tr>
<td>4</td>
<td>.0232</td>
<td>.199</td>
<td>.00464</td>
<td>.00092</td>
<td>.00001</td>
</tr>
<tr>
<td>TOT</td>
<td>.1317</td>
<td></td>
<td>.01381</td>
<td>.00297</td>
<td>.0008</td>
</tr>
</tbody>
</table>

$$\bar{y} = \frac{0.01381}{.1317} = 0.1035 \text{ in}$$

$$\bar{y}^2 = .0204 \text{ in}^2$$

$$I_{xy} = 0.0305 - .1317(0.0204) = .00636 \text{ in}^4$$

$$Z_{xy} = .00254 \text{ in}^3$$
Beam 16" Section Properties (Cont'd)

<table>
<thead>
<tr>
<th>Elem</th>
<th>A</th>
<th>y</th>
<th>A'y</th>
<th>A'y^2</th>
<th>T_o</th>
<th>Tot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.062</td>
<td>1.181</td>
<td>.00753</td>
<td>.00091</td>
<td>.00502</td>
<td>.00092</td>
</tr>
<tr>
<td>2</td>
<td>.021</td>
<td>.045</td>
<td>.0007</td>
<td>.00004</td>
<td>.00001</td>
<td>.00005</td>
</tr>
<tr>
<td>3</td>
<td>.027</td>
<td>.175</td>
<td>.00476</td>
<td>.00083</td>
<td>.00007</td>
<td>.00090</td>
</tr>
<tr>
<td>4</td>
<td>.025</td>
<td>.279</td>
<td>.00536</td>
<td>.00122</td>
<td>.00001</td>
<td>.00123</td>
</tr>
<tr>
<td>Tot</td>
<td>.134</td>
<td>.134</td>
<td>.0185</td>
<td>.00128</td>
<td>.00011</td>
<td>.00311</td>
</tr>
</tbody>
</table>

\[
\bar{y} = \frac{0.185}{12.11} = .1385 \text{ in} \quad \bar{y}^2 = .0192 \text{ in}^2
\]

\[
I_{xy} = .0031 - .1381(.0192) = .00054 \text{ in}^4
\]

\[
Z_{xy} = .00054 \cdot 1.1236 = .0039 \text{ in}^3
\]
Beam "Al" Section Properties (Cont')

<table>
<thead>
<tr>
<th>ELEM</th>
<th>A</th>
<th>(y)</th>
<th>(A_y)</th>
<th>(A_y^2)</th>
<th>(J_o)</th>
<th>(TOT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.062</td>
<td>0.091</td>
<td>0.0544</td>
<td>0.00051</td>
<td>0.0002</td>
<td>0.00053</td>
</tr>
<tr>
<td>2</td>
<td>0.0144</td>
<td>0.03</td>
<td>0.0043</td>
<td>0.0001</td>
<td>0</td>
<td>0.0001</td>
</tr>
<tr>
<td>3</td>
<td>0.0352</td>
<td>0.17</td>
<td>0.00550</td>
<td>0.00102</td>
<td>0.00020</td>
<td>0.00122</td>
</tr>
<tr>
<td>4</td>
<td>0.0733</td>
<td>0.249</td>
<td>0.00520</td>
<td>0.00144</td>
<td>0.00041</td>
<td>0.00145</td>
</tr>
<tr>
<td>TOT</td>
<td>0.1349</td>
<td>0.1185</td>
<td>0.00298</td>
<td>0.00297</td>
<td>0.00321</td>
<td></td>
</tr>
</tbody>
</table>

\[
\bar{y} = \frac{0.1175}{0.1349} = 0.873 \text{ in.} \quad \bar{y}^2 = 0.0175 \text{ in}^2
\]

\[
I_{yy} = 0.00321 \times 0.1349(0.0175) = 0.00385 \text{ in}^4
\]

\[
Z_{yy} = \frac{0.00385}{0.1477} = 0.00265 \text{ in}^3
\]
BEAM Cross Section Properties (cont'd)

SECTION 4

<table>
<thead>
<tr>
<th>ELEM</th>
<th>A</th>
<th>1/y</th>
<th>A/l</th>
<th>A/l^2</th>
<th>J_o</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.062</td>
<td>.071</td>
<td>.0544</td>
<td>.00031</td>
<td>.0002</td>
<td>.00033</td>
</tr>
<tr>
<td>2</td>
<td>.0096</td>
<td>.62</td>
<td>.0069</td>
<td>.00000</td>
<td>.00000</td>
<td>.00000</td>
</tr>
<tr>
<td>3</td>
<td>.0432</td>
<td>.175</td>
<td>.0075</td>
<td>.00122</td>
<td>.00026</td>
<td>.00155</td>
</tr>
<tr>
<td>4</td>
<td>.0232</td>
<td>.279</td>
<td>.0066</td>
<td>.00181</td>
<td>.00001</td>
<td>.00182</td>
</tr>
<tr>
<td>TOT</td>
<td>.1281</td>
<td></td>
<td>.01865</td>
<td>.00344</td>
<td>.00029</td>
<td>.00373</td>
</tr>
</tbody>
</table>

\[\bar{y} = \frac{.01865}{.1281} = .1463 \text{ in.} \quad \bar{y}^2 = .0182 \text{ in}^2 \]

\[I_{yy} = .00373 - .1281(.0182) = .00121 \text{ in}^4 \]

\[Z_{yy} = \frac{.00121}{.175} = .00691 \text{ in}^3 \]
BEGIN "AC" SECTION PROPERTIES (CONT'D)

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{ELEM} & A & y & R_y & R_y^2 & I_y^2 & TOT \\
\hline
1 & .062 & .051 & .00316 & .00016 & .00032 & .00018 \\
2 & .0048 & .01 & .00005 & .00000 & .00000 & .00000 \\
3 & .0512 & .18 & .00922 & .00166 & .00040 & .00206 \\
4 & .0233 & .309 & .00720 & .00222 & .00001 & .00223 \\
\hline
\text{TOT} & .1413 & - & .01963 & .00404 & .00043 & .00447 \\
\hline
\end{array}
\]

\[
y = \frac{.01963}{.1413} = .1389 \text{ in.} \quad y^2 = .01919 \text{ in}^2
\]

\[
I_{yy} = .00447 - .1413(.01919) = .00176 \text{ in}^4
\]

\[
z_{yy} = \frac{.00176}{.2011} = .00875 \text{ in}^3
\]
Beam "AD" section properties (cont'd)

Section 6 (Beam intersection)

![Diagram of beam intersection with dimensions and calculations]

<table>
<thead>
<tr>
<th>ELEM</th>
<th>A</th>
<th>y</th>
<th>Ay</th>
<th>Ay²</th>
<th>I₀</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.12577</td>
<td>0.141</td>
<td>0.01773</td>
<td>0.00250</td>
<td>0.00114</td>
<td>0.00364</td>
</tr>
<tr>
<td>2</td>
<td>0.10515</td>
<td>0.313</td>
<td>0.03291</td>
<td>0.01030</td>
<td>0.00003</td>
<td>0.01033</td>
</tr>
<tr>
<td>TOT</td>
<td>0.23092</td>
<td></td>
<td>0.05064</td>
<td>0.01280</td>
<td>0.00117</td>
<td>0.01397</td>
</tr>
</tbody>
</table>

\[
\bar{y} = \dfrac{0.05064}{0.23092} = 0.2193 \text{ in.} \\
\bar{y}^2 = 0.04809 \text{ in}^2
\]

\[
\bar{I}_{yy} = 0.01397 - 0.23092(0.04809) = 0.00287 \text{ in}^4
\]

\[
\bar{I}_{yy} = \dfrac{0.00287}{0.2193} = 0.01309 \text{ in}^3
\]
Beam "AD" Section Properties

Section 7

<table>
<thead>
<tr>
<th>ELEM</th>
<th>A</th>
<th>J</th>
<th>Ay</th>
<th>Ay²</th>
<th>I₀</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.062</td>
<td>.031</td>
<td>.00192</td>
<td>.00006</td>
<td>.00002</td>
<td>.00008</td>
</tr>
<tr>
<td>2</td>
<td>.05504</td>
<td>.172</td>
<td>.00947</td>
<td>.00163</td>
<td>.00054</td>
<td>.00217</td>
</tr>
<tr>
<td>3</td>
<td>.02325</td>
<td>.313</td>
<td>.00728</td>
<td>.00228</td>
<td>.00001</td>
<td>.00229</td>
</tr>
<tr>
<td>TOT</td>
<td>.14029</td>
<td></td>
<td>.01867</td>
<td>.00397</td>
<td>.00057</td>
<td>.00454</td>
</tr>
</tbody>
</table>

\[
\bar{y} = \frac{.01867}{.14029} = .13308 \quad \bar{y}^2 = .01771
\]

\[
I_{yy} = .00454 - .14029(.01771) = .00206 \text{ in}^4
\]

\[
Z_{yy} = \frac{.00206}{.0109} = .009767 \text{ in}^3
\]
Beam "AD" Stresses

\[F_y = 35,000 \text{ psi} \]
\[F_{tu} = 38,000 \]

ULT = 1.5 \times \text{LIM.}

<table>
<thead>
<tr>
<th>SECTION</th>
<th>MOMENT</th>
<th>Z-IN.</th>
<th>BENDING STRESS</th>
<th>M.S.</th>
<th>M.S. ULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.55 k-in.</td>
<td>.00254</td>
<td>17,930 psi</td>
<td>+.49</td>
<td>+.29</td>
</tr>
<tr>
<td>2</td>
<td>87.54</td>
<td>.00399</td>
<td>22,450</td>
<td>+.36</td>
<td>+.11</td>
</tr>
<tr>
<td>3</td>
<td>125.95</td>
<td>.00575</td>
<td>21,900</td>
<td>+.375</td>
<td>+.14</td>
</tr>
<tr>
<td>4</td>
<td>160.50</td>
<td>.00691</td>
<td>23,270</td>
<td>+.34</td>
<td>+.08</td>
</tr>
<tr>
<td>5</td>
<td>192.09</td>
<td>.00875</td>
<td>21,950</td>
<td>+.37</td>
<td>+.13</td>
</tr>
<tr>
<td>6</td>
<td>219.85</td>
<td>.01309</td>
<td>16,795</td>
<td>+.52</td>
<td>+.34</td>
</tr>
<tr>
<td>7*</td>
<td>227.24</td>
<td>.00977</td>
<td>23,260</td>
<td>+.34</td>
<td>+.08</td>
</tr>
</tbody>
</table>

* ESTIMATED MAX MOMENT SECTION

The preceding somewhat conservative analysis reveals no problems structurally with the lower enclosure plate. The fixity at the plate edge has been ignored because it will be small and will lower the pressure stresses. Increased allowables for plastic bending have not been used. Their use would affect each section differently but the use would increase all margins of safety. Resonant frequencies of the small sub plate areas fall above 2000 c.p.m.

A pressure calculation is shown below.

From Roark's 3rd Ed., p. 203

\[p = \frac{.75 \omega b^2}{t^2(1 + 1.6/\omega)} = 7440 \text{ psi} \]
\[\Delta = \frac{0.1422 \omega b^4}{E t^3(1 + 2.21/\omega^2)} \approx .018 \text{ in.} \]

\[\alpha = \frac{3.167}{3.583} = .884 \]
\[\alpha^3 = .691 \]
\[t^2 = .003844 \]
\[b^2 = 10.03 \]
\[E = 10^7 \text{ psi} \]
CALCULATION OF PRESSURE AND ACCELERATION LOADS
ON ENCLOSURE SIDE PLATE.

The total load on the enclosure sides will be calculated in a similar manner as those on the bottom plate, that is, the accelerometer RMS levels read from the 55 g RMS random vibration test will be applied to the total plate area to calculate an equivalent pressure which will be added to the design pressure directly.

\[1 \sigma \text{RMS g} = 111.3 \times \frac{64}{55} = 129 \text{ g} \cdot \text{o} \]

36 peaks will go to 388. g'o

Unit area vibration load on the side plate will be:

\[0.04 \times 0.098 \times 388 = 1.52 \text{ psi} \]

Limit design load on side plate is:

3.25 + 1.52 = 4.77 psi

The largest side will be used for the analysis (10.5 x 3.456). A uniform thickness of 0.04" will be assumed. This ignores stiffening ribs aiding in panel support. The panel reflection is expected to be larger than 1/2 thickness therefore a diaphragm analysis will be used. See Roark's 3rd ed pg 222.

CALCULATION OF PRESSURE AND ACCELERATION LOADS AND STRESSES ON ENCLOSURE SIDE PLATE.

Simply Supported - 4 Sides

![Diagram of simply supported side plate]

- $t^2 = 0.0016$
- $t^4 = 0.00000256$
- $b^2 = 11.92$
- $b^4 = 142.09$

$$\frac{E t^2}{b^2} = \frac{10^7 \times 0.0016}{11.92} = 1.342 \times 10^3$$

$$\frac{w b^4}{E t^4} = \frac{9.77 \times 142.09}{10^7 \times 0.00000256} = \frac{677.8}{25.6} = 26.5$$

$$\gamma l = 0.946 + \frac{0.06}{25} (1.24 - 0.946) = 0.962$$

$$\gamma_0 = 0.962 \times 0.04 = 0.038 \text{ in.}$$

$$\frac{S_0 b^2}{E t^2} = 2.40 + 0.06 (4.15 - 2.4) = 2.50$$

$$S_0 = 1.342 \times 2.5 \times 10^3 = 3355 \text{ psi at centroid}$$

$$\frac{S b^2}{E t^2} = 7.16 + 0.06 (10.3 - 7.16) = 7.35$$

$$S = 1.342 \times 7.35 \times 10^3 = 9865 \text{ psi at centroid}$$
LIMIT MS

\[M.S._{\text{lim}} = 1. - \frac{9865}{35000} = +.72 \]

ULT MS

\[M.S._{\text{ult}} = 1. - \frac{1.5 \times 9865}{38000} = +.61 \]
SUBJECT: EPS Baseplate: Qualification Model

An analysis of the baseplate under combined pressure and random vibration was made ("Electron/Proton Sensor, Combined Pressure and Random Vibration, 10/18/71; D.G. Probe") based on 'R' Axis random vibration as specified in NAR's ICD.

It has now been proposed that the 'R' Axis random vibration criteria be:

Max. g and lift-off simulation - 80 secs.
- 20 - 175 Hz +9 dB/oct increase
- 175 - 350 Hz 6.0 g²/Hz
- 350 - 2000 Hz -3 dB/oct decrease (70.5 g rms).

Transonic/Mach I Simulation - 10 secs
- 20 - 175 Hz +9 dB/oct increase
- 175 - 350 Hz 10.0 g²/Hz
- 350 - 2000 Hz -3 dB/oct decrease (91.0 g rms)

It is therefore necessary to re-examine the integrity of the baseplate when subjected to the proposed vibration levels.

Vibration Test level achieved, 55 g rms in 'R' Axis monitored response on baseplate = 143 g rms.

Hence, rms vibration of baseplate at new level:

= 143 x \(\frac{91}{55}\) = 236.6 g rms

and peak level (3σ) will not exceed 3 x 236.6 = 709.8 g

From previous analysis:

Equiv. Unit Load @ 499.2 g = 4.78 lbs/sq. in.
Hence, Equiv. Unit Load @ 709.8 g =

\(\frac{4.78 \times 709.8}{499.2}\) = 6.8 lbs/sq. in.

71
and moment factor (vibration)

\[
\frac{6.8}{3.25} = 2.092
\]

Again, from previous analysis, maximum pressure moment is 92 lbs-ins @ section 7.

Max. vibration moment = 92 x 2.092 = 192.46 lbs-ins

Section modulus, section 7 = .00977

\[
f_b = \frac{M}{Z}\]

\[
F_{Oy} = 35,000 \text{ PSI} \quad F_{U} = 42,000 \text{ PSI}
\]

\[
f_b = \frac{192.46}{.00977} = 19,699 \text{ PSI}
\]

\[
F \text{ of } S_{\text{Lim.}} = \frac{35,000}{19,699} = 1.78 \quad F \text{ of } S_{\text{Ult.}} = \frac{42,000}{1.5 \times 19,699} = 1.42
\]

\[
M.S._{\text{Lim}} = +.78 \quad M.S._{\text{Ult}} = +.42
\]

The above values are based on vibration only, as when the baseplate is subjected to qualification testing.

Consider with 3.25 PSI pressure added, then:

\[
f_b = \frac{192.46 + 92}{.00977} = 29,116 \text{ PSI}
\]

\[
F \text{ of } S_{\text{Lim}} = \frac{35,000}{29,116} = 1.20 \quad F \text{ of } S_{\text{Ult}} = \frac{42,000}{1.5 \times 29116} = .96
\]

\[
M.S._{\text{Lim}} = +.20 \quad M.S._{\text{Ult}} = -.04
\]

These figures indicate that the baseplate is marginal when subjected to the proposed peak vibration and pressure levels, but appears to present no problems if subjected to the vibration levels only.

The preceding is a somewhat conservative analysis, as was the analysis previously prepared. The notes on P. 15 of D. G. Probe's analysis apply here also.

The calculations show that the baseplate will meet the new vibration levels in qualification testing, if imposed. However, there is no real margin of safety for the combined pressure and vibration condition. Considering the increase in the vibration level, this is not surprising.

Failure of the baseplate, should it occur, would not be dramatic, but would probably consist of some cracking in the region of section 4 and/or 7.
It has been proposed to raise the EPS qualification random vibration criteria to:

Max. 9 and Lift-Off Simulation.

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Decrease/Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 175 Hz</td>
<td>+9 dB/Octave</td>
</tr>
<tr>
<td>175 - 350 Hz</td>
<td>6.0 g²/Hz</td>
</tr>
<tr>
<td>350 - 2000 Hz</td>
<td>-3 dB/Octave</td>
</tr>
</tbody>
</table>

(70.5 g r.m.s.)

Transonic/Supersonic Simulation.

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Decrease/Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 175 Hz</td>
<td>+10 dB/Octave</td>
</tr>
<tr>
<td>175 - 350 Hz</td>
<td>10.0 g²/Hz</td>
</tr>
<tr>
<td>350 - 2000 Hz</td>
<td>-3 dB/Octave</td>
</tr>
</tbody>
</table>

(81.0 g r.m.s.)

It is therefore necessary to re-examine the baseplate, outer housing and the response of the vibration isolators to this increase in random vibration levels.

An analysis of the baseplate under combined differential pressure and random vibration was made (Electron-Proton sensor, combined pressure and random vibration, 10/18/71, D.G. Probe) based on the 'R' axis random vibration as specified in N.A.E.'s I.C.D. The following pages update that analysis to apply to the new vibration criteria.
STRUCTURAL TEST UNIT, 'Z' AXIS RANDOM VIBRATION:

RANDOM VIBRATION TEST INPUT = 55.0 g r.m.s.
BASEPLATE RESPONSE = 143 g r.m.s.
BASEPLATE RESPONSE AT 91.0 g r.m.s = 143.0 x 91 / 55 = 236.6 g.

AT PEAK LEVEL (3σ), RESPONSE WILL NOT EXCEED
3 x 236.6 g = 709.8 g.

WEIGHT OF BASEPLATE = .93 LBS.

EQUIVALENT TOTAL LOAD ON BASEPLATE = 709.8 x .93 = 660.114.

\[
\frac{660.114}{10.5 \times 9.25} = 6.797 \text{ LBS/SQ. IN.}
\]

INCLUDING 3.25 P.S.I. PRESSURE DIFFERENTIAL,
TOTAL PRESSURE EQUIVALENT = 6.8 + 3.25
= 10.05 LBS/SQ. IN.

FROM PREVIOUS ANALYSIS, BEAM AD IS CRITICAL BEAM,
AND DISTRIBUTED LOAD ON BEAM WAS 5.77 LB/IN. FOR
3.25 LB/SQ. IN. PRESSURE, AND R₄ WAS 17.76 LB.

UNDER NEW LOADING, DISTRIBUTED LOAD
\[
w = \frac{5.77 \times 10.05}{3.25} = 17.84 \text{ LB/IN.}
\]

AND R₄ = \frac{17.76 \times 10.05}{3.25} = 54.92 LB.
$w = 17.84 \text{ lb/ft}, \; P_a = 54.92 \text{ lb}$.

$$P_R = \left[\frac{(17.84 \times 9 \times 3)}{2} + (54.92 \times 6) \right] = \left[\frac{722.52 + 329.52}{9} \right]$$

$$= 116.89 \text{ lb}.$$

AND $P_L = 54.92 + (17.84 \times 3) - 116.89 = 98.59 \text{ lb}$.

To determine bending moment at stations every .5" along beam:

When 'x' lies between P_R and P_a,

bending moment, $M = P_R x - \frac{wx^2}{2}$

When 'x' lies between P_a and P_L,

$$M = P_R x - \frac{wx^2}{2} - P_a(x - 3.0)$$
\[P_e = 116.83, \quad w = 17.84, \quad P_A = 54.92 \]

<table>
<thead>
<tr>
<th>STATION</th>
<th>(x')</th>
<th>(P_e x)</th>
<th>(x^2)</th>
<th>(w x^2)</th>
<th>(P_A(x-3))</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>58.445</td>
<td>0.25</td>
<td>2.23</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>116.83</td>
<td>1.00</td>
<td>8.92</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>175.335</td>
<td>2.25</td>
<td>20.07</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>233.78</td>
<td>4.00</td>
<td>35.68</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>292.225</td>
<td>6.25</td>
<td>55.75</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>3.0</td>
<td>330.67</td>
<td>9.00</td>
<td>80.28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3.5</td>
<td>405.115</td>
<td>12.25</td>
<td>109.27</td>
<td>1.5</td>
<td>27.46</td>
</tr>
<tr>
<td>8</td>
<td>4.0</td>
<td>467.56</td>
<td>16.00</td>
<td>142.72</td>
<td>1.0</td>
<td>54.92</td>
</tr>
<tr>
<td>9</td>
<td>4.5</td>
<td>526.005</td>
<td>20.25</td>
<td>180.63</td>
<td>1.5</td>
<td>82.88</td>
</tr>
<tr>
<td>10</td>
<td>5.0</td>
<td>584.45</td>
<td>25.00</td>
<td>223.00</td>
<td>2.0</td>
<td>109.84</td>
</tr>
<tr>
<td>11</td>
<td>5.5</td>
<td>642.895</td>
<td>30.25</td>
<td>269.63</td>
<td>2.5</td>
<td>137.30</td>
</tr>
<tr>
<td>12</td>
<td>6.0</td>
<td>701.34</td>
<td>36.00</td>
<td>321.12</td>
<td>3.0</td>
<td>164.76</td>
</tr>
<tr>
<td>13</td>
<td>6.5</td>
<td>760.785</td>
<td>42.25</td>
<td>376.87</td>
<td>3.5</td>
<td>192.22</td>
</tr>
<tr>
<td>14</td>
<td>7.0</td>
<td>818.23</td>
<td>49.00</td>
<td>437.08</td>
<td>4.0</td>
<td>219.68</td>
</tr>
<tr>
<td>15</td>
<td>7.5</td>
<td>876.675</td>
<td>56.25</td>
<td>501.75</td>
<td>4.5</td>
<td>247.14</td>
</tr>
<tr>
<td>16</td>
<td>8.0</td>
<td>935.12</td>
<td>64.00</td>
<td>570.88</td>
<td>5.0</td>
<td>274.60</td>
</tr>
<tr>
<td>17</td>
<td>8.5</td>
<td>993.565</td>
<td>72.25</td>
<td>644.47</td>
<td>5.5</td>
<td>302.06</td>
</tr>
<tr>
<td>18</td>
<td>9.0</td>
<td>1052.01</td>
<td>81.00</td>
<td>722.52</td>
<td>6.0</td>
<td>329.52</td>
</tr>
</tbody>
</table>

\[
\text{Max. } M = 272.391 \text{ occurs at } x = 3.473''
\]

TABLE OF BENDING MOMENTS.
<table>
<thead>
<tr>
<th>STATION</th>
<th>MOMENT LBS-INS.</th>
<th>I INS^4</th>
<th>Z INS^3</th>
<th>STRESS LB/SQ. IN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56.215</td>
<td>.00036</td>
<td>.00254</td>
<td>20.557</td>
</tr>
<tr>
<td>2</td>
<td>107.97</td>
<td>.00054</td>
<td>.0039</td>
<td>27.485</td>
</tr>
<tr>
<td>3</td>
<td>158.265</td>
<td>.00085</td>
<td>.00575</td>
<td>27.003</td>
</tr>
<tr>
<td>4</td>
<td>198.100</td>
<td>.00121</td>
<td>.00631</td>
<td>28.669</td>
</tr>
<tr>
<td>5</td>
<td>238.475</td>
<td>.00176</td>
<td>.00875</td>
<td>27.026</td>
</tr>
<tr>
<td>6</td>
<td>278.385</td>
<td>.00227</td>
<td>.01309</td>
<td>20.650</td>
</tr>
<tr>
<td>7</td>
<td>272.385</td>
<td>.00206</td>
<td>.00976</td>
<td>27.888</td>
</tr>
<tr>
<td>8</td>
<td>262.955</td>
<td>.00206</td>
<td>.00976</td>
<td>27.636</td>
</tr>
<tr>
<td>9</td>
<td>262.955</td>
<td>.00206</td>
<td>.00976</td>
<td>26.927</td>
</tr>
<tr>
<td>10</td>
<td>251.61</td>
<td>.00206</td>
<td>.00976</td>
<td>25.761</td>
</tr>
<tr>
<td>11</td>
<td>235.765</td>
<td>.00206</td>
<td>.00976</td>
<td>24.139</td>
</tr>
<tr>
<td>12</td>
<td>216.40</td>
<td>.00287</td>
<td>.01303</td>
<td>16.460</td>
</tr>
<tr>
<td>13</td>
<td>190.695</td>
<td>.00176</td>
<td>.00875</td>
<td>21.794</td>
</tr>
<tr>
<td>14</td>
<td>161.47</td>
<td>.00121</td>
<td>.00621</td>
<td>23.868</td>
</tr>
<tr>
<td>15</td>
<td>127.765</td>
<td>.00085</td>
<td>.00575</td>
<td>22.223</td>
</tr>
<tr>
<td>16</td>
<td>89.64</td>
<td>.00054</td>
<td>.0039</td>
<td>22.215</td>
</tr>
<tr>
<td>17</td>
<td>47.036</td>
<td>.00036</td>
<td>.00254</td>
<td>18.518</td>
</tr>
</tbody>
</table>

* POINT OF MAX. STRESS IN BEAM.

TABLE OF BENDING STRESS.

MAX. BENDING STRESS = 28,669 LB/SQ. IN.

BEAM MAT'L: ALUM. ALLOY, 6061-T6.

$F_{by} = 35,000$ LB/SQ. IN

$F_{t} = 42,000$ LB/SQ. IN

FACTOR OF SAFETY :-

$F.S_{lim.} = \frac{35,000}{28,669} = 1.22$

:: M.S_{lim} = +.22

$F.S_{ult.} = \frac{42,000}{1.5 \times 28,669} = \frac{377}{77}$

:: M.S_{ult} = -0.23
AT EDGES OF BEAM, BENDING STRESS IS COMBINED WITH BENDING STRESS INDUCED IN PANELS. MAXIMUM COMBINATION IS AT STN. 3.

BENDING STRESS (BEAM) = 27,003 LB/SQ. IN.

ASSUME PANEL 2.75 SQUARE.

\[\varepsilon = 0.063 \quad \frac{a}{b} = 1.0 \]

\[S_L = \frac{\beta \cdot \omega \cdot b^2}{\varepsilon^2} \]

\[\beta = 0.3078 \quad \varepsilon = 10.05 \text{ P.S.I.} \]

\[= \frac{0.3078 \times 10.05 \times 2.75^3}{0.063^2} \]

\[= 5894 \text{ LB/SQ. IN.} \]

COMBINED STRESS = \frac{27003 - (-5894)}{2} = 16,449 \text{ LB/SQ. IN.}

FOR G001-TG, \(F_{s,L} = 27,000 \text{ LB/SQ.IN.} \quad F_{s,U} = 20,000 \text{ LB/SQ.IN.} \)

\[F_{s,\text{LIM}} = \frac{20,000}{16,449} = 1.216 \quad M.S._\text{LIM} = +0.216 \]

\[F_{s,\text{ULT.}} = \frac{27000}{1.5\times16449} = 1.08 \quad M.S._\text{ULT.} = +0.09 \]

CONSIDER EFFECT OF BASEPLATE BENDING ON ELECTRON BEAM WELD AROUND EDGE.

MAX. SLOPE AT END OF BEAM = 0.058 RADIANS.

CONSIDER SIDE RIB AS CANTILEVER BEAM UNDER END MOMENT.
RIB SECTION

I = 0.0002845 in.³
Z = 0.000553 in.³

\[\Theta = \frac{M_o L}{EI} \]

\[M_o = \frac{\Theta EI}{L} = \frac{0.058 \times 10 \times 10^6 \times 28.45 \times 10^{-6}}{3.38} \]

= 4.48 lb-ins.

AND \[\frac{M_o}{Z} = 4.48 \times \frac{1}{0.000553} = 8,828 \text{ lb/sq.in. in rib.} \]

STRESS IN WELD:

ASSUME LENGTH OF WELD = 1.5 \times 0.38 = 0.57"

THEN STRESS IN WELD DUE TO BENDING

\[\sigma = \frac{G M}{L c^2} = \frac{6 \times 4.48}{0.57 \times 0.8^2} = 7,368 \text{ lb/sq.in.} \]

TOTAL STRESS IN WELD = \[\frac{0.93 \times 709.8}{39.5 \times 0.8} + 7,368 = 209 + 7368 \]

= 7577 lb/sq.in.
Subject: Proposed Increase in Qualification Vibration Levels for the EPS

It has been proposed to increase the EPS 'R' axis qualification random vibration criteria from:

Max g and Lift-off Simulation 80 seconds
20 - 125 Hz @ 12 dB/Oct Increasing
125 - 500 Hz - 2.0 g^2/Hz
500 - 675 Hz - -9 dB/Oct
675 - 1100 Hz - .80 g^2/Hz
1100 - 2000 Hz - -9 dB/Oct (overall - 41 g rms)

Transonic/MACH 1 Simulation 10 seconds
20 - 125 Hz @ 12 dB/Octave increasing
125 - 500 Hz - 5.0 g^2/Hz
500 - 675 Hz - -9 dB/Octave
675 - 1100 Hz - 2.0 g^2/Hz
1100 - 2000 Hz - -9 dB/Octave (overall = 64 g rms)

to the following levels:
Max. g and Lift-off Simulation 80 seconds
20 - 175 Hz - +9 dB/Octave
175 - 350 Hz - 6.0 g^2/Hz
350 - 200 Hz - -3 dB/Octave (overall = 70.5 g rms)

Transonic/MACH 1 Simulation 10 seconds
20 - 175 Hz - +9 dB/Octave
175 - 350 Hz - 10.0 g^2/Hz
350 - 2000 Hz - -3 dB/Octave (overall - 91.0 g rms)

Test time has not been changed.
These new levels represent a considerable increase in the vibration input to the EPS in the 'R' axis, which has always been the most severe axis for vibration response.

The effect of the proposed levels on an EPS test unit was considered in two ways:

1. What increase in vibration response and stress levels would be seen on the hard-mounted outer housing?

2. What increase in vibration input would the electronics package receive from the vibration isolators?

From the EPS Structural Test Unit results, we know that the baseplate is probably the most highly stressed part in the unit. A prior stress analysis was undertaken to verify the integrity of the baseplate under combined pressure and random vibration. This analysis has been updated to reflect the new vibration levels, and both are included as attachments to this memo.

These analyses are hand calculated. A number of assumptions have been made in them, and these assumptions probably err on the side of conservatism in the approach, but not necessarily so. It is usual in such cases to apply a factor of safety to such hand-calculated results. No such factors of safety have been used in the accompanying analyses.

The analysis of the baseplate shows that its integrity under a combination 3.25 p.s.i. differential pressure and the proposed transonic/Mach 1 simulation random vibration cannot be verified. Stresses at several sections are too high, and in one case we have a negative margin of safety occurring on ultimate loading. While the stress levels would be about 30% lower for the random vibration criteria alone, no account has been taken of potential stress concentration areas - of which the baseplate has several.

It should perhaps be mentioned that if the initial design and stress check had been performed using the presently proposed vibration criteria, the resulting baseplate would not be to the present configuration. It would be stronger, stiffer and probably 20 - 25% heavier.

Investigation of the response of the vibration isolators to the proposed vibration levels gives a new input level of 6.75 g.rms compared to 6.1 g rms for the old, and a deflection
requirement of .127" compared to .115". These are based on hand calculations by the writer.

Barry Controls, manufacturers of the vibration isolators, have carried out a computer analysis of the isolator response to the new levels which confirms these hand calculations.

Obviously, the response levels of the electronics components will increase over the response to the previous level, but not excessively so and will probably not be critical.

D. L. Vincent
VIBRATION ISOLATOR RESPONSE
(BARRY CONTROLS ANALYSIS)

'R' Axis

Max. g and lift-off.

<table>
<thead>
<tr>
<th></th>
<th>3 Sigma RMS (g's)</th>
<th>3 Sigma RMS Displ. (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 Hz</td>
<td>12.10 (7.47)</td>
<td>.084" (0.051)</td>
</tr>
<tr>
<td>50 Hz</td>
<td>23.20 (15.57)</td>
<td>.085" (0.059)</td>
</tr>
</tbody>
</table>

Transonic/MACH 1

<table>
<thead>
<tr>
<th></th>
<th>3 Sigma RMS (g's)</th>
<th>3 Sigma RMS Displ. (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 Hz</td>
<td>15.6 (11.79)</td>
<td>.110" (0.0804)</td>
</tr>
<tr>
<td>50 Hz</td>
<td>29.9 (24.63)</td>
<td>.110" (0.0882)</td>
</tr>
</tbody>
</table>

Note: Values in parenthesis are for previous test criteria.
REPORT: COMPARISON OF ACCELERATION LEVELS TO OTHER DYNAMIC TEST LEVELS FOR THE ELECTRON-PROTON SPECTROMETER

LEC Document Number EPS-592

Prepared by: D. L. Vincent
Mech. Engineer

Approved by: B. C. Hall
Program Manager
COMPARISON OF ACCELERATION LEVELS TO OTHER DYNAMIC TEST LEVELS FOR THE ELECTRON-PROTON SPECTROMETER

Preface

At the Critical Design Review of the Electron-Proton Spectrometer (EPS) held 19th - 20th October 1971, the absence of any acceleration testing for the EPS caused concern to some participants. As a result of this concern, RID T-4 was generated requiring that LEC do an analysis to verify the integrity of the EPS to a 'qualification' level of acceleration and compare this with other dynamic test levels. This report has been written to comply with this requirement.

Introduction

The boost acceleration occurs only in the +X direction of the EPS and reaches a peak value of 4.9 g, hence an ultimate 'qualification' test level would be $4.9 \times 1.5 = 7.35$ g.

A 20 g, 11 millisecond terminal sawtooth basic design shock and qualification level random vibration test has already been carried out on the EPS Structural and Engineering Test Units. The attached figure shows that, in the 'X' axis, both these tests expose the EPS to higher 'g' levels than the proposed acceleration level. Additionally, the response of the EPS electronic package upon its vibration isolators exceeds this proposed acceleration level between the range of 30 - 80 cps.
Consideration of the type of loading induced by each of the test methods assists in an evaluation of the relative severity of each of the tests. Acceleration will produce in the EPS and its component parts a unidirectional steady state load; failure will occur when this load exceeds the ultimate load that the part can withstand. Shock also produces an essentially unidirectional force, suddenly applied and of short duration. Shock induces loading which has approximately twice the effect of the same 'g' loading steadily applied. In this instance failure could occur at a level substantially below that causing a failure in an acceleration mode. Random vibration produces a continually varying bi-directional force which produces an alternating load of varying magnitude; failure can occur from overloading the component or from fatigue. A component can fatigue at a substantially lower loading than that required for failure under steady state conditions.

Hence, it can be seen that for an equal load situation, both vibration and shock are more severe than acceleration. On this basis, an analysis was made of the stress levels induced by the various test conditions in the leads of a typical EPS component. The factors of safety for each test mode were then compared.

Analysis

One of the largest and heaviest components in the EPS electronics package is the Kemet Capacitor, T210D156K075PS, mounted on the input filter printed circuit board of the filter module. This component is taken as being representative of those components in the EPS electronics package.
Component Data:
Weight = 6.3 grams (.014 lbs)
Lead Material = Tinned Nickel Wire
Ultimate Tensile Strength = 70,000 lbs/sq. ins.
Yield Strength = 40,000 lbs/sq. ins.
Endurance Limit = 28,000 lbs/sq. ins.

Lead Section Modulus, \(Z = \frac{\pi D^3}{32} \times 2 = \frac{2\pi \times .025^3}{32} = .307 \times 10^{-5} \text{ ins}^3 \)
(for two leads)
(for conservative analysis, the supporting effect of conformal coating will be ignored.)

Acceleration
Acceleration force = 7.35 g
Induced load = 7.35 x .014 = .103 lbs
Bending moment on leads, \(M = .103 \times .175 = .018 \text{ lbs} \cdot \text{ins} \)
Bending stress \(= \frac{M}{Z} = \frac{0.018}{0.307 \times 10^{-5}} = 5,863 \text{ lbs./sq. ins.} \)

Factor of Safety \(= \frac{\text{U.T.S.}}{\text{Bending Stress}} = \frac{70,000}{5,863} = 11.9 \)

Random Vibration

R.M.S. input to electronics package = 4.46
Induced load = 4.46 x 0.014 = 0.062 lbs.
Bending moment on leads, \(M = 0.062 \times 0.175 = 0.011 \text{ lbs-ins.} \)

\(\text{Bending stress} = \frac{0.011}{0.307 \times 10^{-5}} = 3583 \text{ lbs/sq. ins.} \)

Factor of Safety \(= \frac{\text{Endurance Limit}}{\text{Bending Stress}} = \frac{28,000}{3583} = 7.8 \)

(The above is based on the rms level. At this level, 7.35 g will be exceeded approximately 10% of the time.)

Shock

Shock input to electronics package = 24 g.
Induced load = 2 x 24 x 0.014 = 0.672 lbs.
Bending moment on leads, \(M = 0.672 \times 0.175 = 0.118 \text{ lbs-ins.} \)

\(\text{Bending stress} = \frac{0.118}{0.307 \times 10^{-5}} = 38,436 \text{ lbs-ins.} \)

Factor of Safety \(= \frac{\text{U.T.S.}}{\text{Bending Stress}} = \frac{70,000}{38,436} = 1.82 \)
Conclusions

It can be seen that both the random vibration and shock requirements exceed the acceleration test level by a considerable margin, even for the electronics package. The factors of safety compared to the failure level are lower for these two tests than for acceleration. It is therefore considered that these two tests adequately validate the ability of the EPS to meet the boost acceleration levels and an acceleration environment of 7.35 g.
STATEMENT OF WORK
BARRY VIBRATION ISOLATORS FOR EPS

It is required that the vibration isolator design provided by the Barry Division of Barry Wright Corp. to LEC Procurement Specification EPS-356 be analyzed for the following proposed change in the 'R' Axis Random Vibration Environment:

Max. g and Lift Off Simulation

- 20 - 175 Hz: +9 dB/octave increase
- 175 - 350 Hz: 6.0 g^2/Hz
- 350 - 2000 Hz: -3 dB/octave decrease

(duration - 80 seconds)

Transonic/MACH 1 Simulation

- 20 - 175 Hz: +9 dB/octave increase
- 175 - 350 Hz: 10.0 g^2/Hz
- 350 - 2000 Hz: -3 dB/octave decrease

(duration - 10 seconds)

The analysis shall compare the 3 sigma rms acceleration and the 3 sigma rms deflection responses of the isolator for the above vibration levels with those levels given for the 'R' axis in EPS-356. Also investigate the possibility of the isolator "Bottoming Out" under the proposed vibration levels.

Additionally, provide an isolator response curve for the transonic/MACH 1 simulation and advise whether any standing wave effects can be anticipated.
INTERDEPARTMENTAL COMMUNICATION

TO
B. C. Hall

FROM
D. L. Vincent

SUBJECT: Vibration Testing of the EPS Electronics

At the CDR a request for the acceptance testing of the EPS electronics by random vibration without isolators was disallowed. However, since that time, Boeing has taken over the G. E. support contract in reliability, etc., and while discussing the results of the qualification vibration testing with their representative, Mr. Dick Lopez, it became increasingly obvious that a move is afoot to have the EPS electronics tested to an acceptance random vibration level without the isolators, etc. Mr. A. J. Parkas is aware of this move.

It is presumed that such a test would be run to the levels originally given, i.e. 20 - 80 Hz, +3 dB/oct.: 80 - 350 Hz, .04 g^2/Hz: 350 - 2000 Hz, -3 dB/oct., a composite level of 6.3 g rms. However, the qualification unit would have to be qualified at a higher level (.067g^2/Hz at 80 - 350 Hz) giving a composite level of 9.8 g rms.

To perform such a test would require the manufacture of an adapter for the vibration test fixture by BRN, and also a solid adapter to replace the isolators on the mounting straps, so that the electronics unit could be mounted to the fixture for testing.

Some problems associated with such a test are:

1) The qualification test level is higher than that seen by the electronics unit in response to the high energy level in the full-blown qualification test.

2) The eccentric loading on the mounting straps will be approximately 50% higher than they were designed for, hence their integrity should be investigated.

3) With the unit hard mounted to the fixture, the transmissibility of the interface will change, and the response of the electronics will be considerably higher compared to when it is mounted on isolators. Additionally the peak input will be at a much higher frequency than previously experienced.
4) From 3), it follows that the electronics components would experience random vibration levels well in excess of those they have experienced mounted on the isolators.

The above is written to provide some idea of the impact of such a test, should a request to comply with such a requirement be forthcoming.

cc: B. E. Curtsinger

ELECTRON-PROTON SPECTROMETER

COMBINED PRESSURE & RANDOM VIBRATION

The structural integrity of the EPS hardware has been demonstrated by the qualification testing, visual and X-ray examination of the outer housing and baseplate show no cracking or other evidence of failure.

Prior analysis of the baseplate (D.G. Probe, 10-18-72) and update of this analysis (D.L. Vincent, 1-14-72) indicate that the baseplate was marginal under the combined random vibration and pressure criteria. These analyses were based on an admittedly conservative approach (see p.15 of D.G. Probe's analysis).

The analysis can now be updated & refined, utilizing data from the accelerometer mounted on the critical area of the baseplate. Additionally, the higher than anticipated vibration response on the baseplate justifies utilizing more of the sub-plate in the calculation of the section properties of the critical beam.
CRITICAL BEAM RESPONSE = 1.0 g F.M.S. [FOR 108.4 g F.M.S. INPUT]

Practical test data has shown that the peak g load relative to the g F.M.S. level for a response accelerometer is 1.6 x g F.M.S., and this is applicable to the response when the input is clipped at a 36 g F.M.S. peak as is the case for the equal test.

From this it follows that peak g level for critical beam = 1.6 x 1.0 g = 7.5 g.

WT. OF BASEPLATE = 53 lbs.

UNIT LOAD = \[\frac{53 \times 7.5 g}{10.5 \times 3.25} \] = 7500 LBS/SQ. IN.

PRESSURE FACTOR = \[\frac{7500}{3.25} \] = 2.338

: If the bending moment due to pressure is multiplied by 2.338, this will give moment due to combined vibration and pressure.

MAX. MOMENT DUE TO PRESSURE ONLY = 52 lbs.-ms.

COMBINED MAX. BENDING MOMENT = 52 \times 2.338 = 307.1 lbs.-ms.

This occurs at section 7 of beam

\[\text{LENGTH OF BEAM} = 9.17'' \]

Beam & Panel Spacing.

The effective width \(b' \) of the plate is needed.
From Roark, 'Formulae for Stress & Strain', 4th Ed., Article 37:

Let \(l = \) beam length
\(b = \) flange width
\(b' = \) effective width

When \(\frac{l}{b} = \frac{2.17}{3.01} = 0.607 \approx 3.00 \)

Then \(\frac{b'}{b} = 0.85 \), so that total effective width of flange \(= 0.85 \times 3.047 = 7.55'' \)

Hence, section 7:

\[
\frac{1.255}{1.08} \quad \frac{1.062}{0.344} \quad \frac{0.062}{0.062} \quad \frac{0.370}{0.370}
\]

<table>
<thead>
<tr>
<th>Sect.</th>
<th>Area (A)</th>
<th>(y)</th>
<th>Area (A_y)</th>
<th>(I_{xx}) (\frac{cm^4}{cm})</th>
<th>(x)</th>
<th>(A_x^2)</th>
<th>(I_{xxa})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.16054</td>
<td>0.031</td>
<td>0.004976</td>
<td>0.000514</td>
<td>0.064</td>
<td>0.000578</td>
<td>0.006279</td>
</tr>
<tr>
<td>2</td>
<td>0.05504</td>
<td>0.172</td>
<td>0.005677</td>
<td>0.000548</td>
<td>0.081</td>
<td>0.000687</td>
<td>0.006930</td>
</tr>
<tr>
<td>3</td>
<td>0.02331</td>
<td>0.313</td>
<td>0.007252</td>
<td>0.000575</td>
<td>0.102</td>
<td>0.001415</td>
<td>0.007685</td>
</tr>
<tr>
<td>Total</td>
<td>0.23893</td>
<td></td>
<td>0.021741</td>
<td>0.006207</td>
<td></td>
<td>0.02688</td>
<td>0.026883</td>
</tr>
</tbody>
</table>

\[
\bar{y} = \frac{0.021741}{0.23893} = 0.0911
\]

\[
I_{xxa} = 0.0006279 + 0.002688 = 0.0027569 \text{ cm}^4
\]

\[
Z_{xxa} = \frac{0.02688}{0.253} = 0.1063 \text{ cm}^3
\]

96
MAX. STRESS DUE TO COMBINED PRESSURE & VIBRATION:-

\[f_b = \frac{307.1 \times 28,830}{.01063} = 98,830 \text{ LBS/SQ.IN.} \]

So that :-

\[\text{F.S. LIMIT} = \frac{35,000}{28,830} = 1.21 \quad \text{AND MARGIN OF SAFETY} = +.21 \]

\[\text{F.S. ULT.} = \frac{40,000}{1.5 \times 28,830} = .57 \quad \text{AND MARGIN OF SAFETY} = -.03 \]

MAX. STRESS DUE TO VIBRATION ONLY:-

\[f_b = \frac{307.1 - 50}{.01063} = 20,235 \text{ LBS/SQ.IN.} \]

So that :-

\[\text{F.S. LIMIT} = \frac{35,000}{20,235} = 1.73 \quad \text{AND M.S. LIMIT} = +.73 \]

\[\text{F.S. ULT.} = \frac{40,000}{1.5 \times 20,235} = 1.38 \quad \text{M.S. ULT.} = +.38 \]

The above analysis still shows a negative margin of safety on an ultimate load condition. However, by using the actual quality test results in the analysis (which reflect an overtesting condition), combined with the differential pressure (which is at 3.25 P.S.I. for a very short duration) coupled with the inherent conservatism of treating the beam as simply supported, the above margins of safety are lower than exist in practice.
SUBJECT: Vibration Test Report (Interim) on Solid State Radiation Inc's Lithium Ion Drift Detectors

Introduction:
Arrangements were made to subject the SSR detectors, of the type to be used in the EPS experiment, to several random vibration spectra representative of those given for the MDA and OWS in document MSC-01159, Rev. C, "Flight Hardware Environmental Design Requirements". Sample detectors were taken to Building 15, NASA/MSC for testing on 12-2-70. The vibration spectra to be used were selected, in conjunction with Mr. A. Farkas (NASA/MSC), from the above mentioned document. It was intended that if the detectors survived these tests, the spectra would be increased in severity until a failure occurred, in an attempt to determine a maximum acceptable level of vibration.

Testing
The initial spectra selected are given in Appendix A. A diagram of a typical detector is shown in Figure 1. Two detectors, one of 2 mm size cube and the other of 3 mm (Nos. 021 and 076 respectively) were cemented with Eastman 910 adhesive to a test plate. The leads from the header entered clearance holes in the plate. This plate was then mounted to the shake table so that the detectors would be vibrated in the X axis. The random vibration spectrum for Zone 11 on the MDA was then run. After examining the detectors, the test plate orientation was changed to the Y axis, and the test repeated. Again the detectors were examined, and then the orientation was changed to the Z axis and the test repeated. The results of this series of tests are recorded at the end of this report.

At this point in time, two more detectors were cemented to the test plate, again one 2 mm and one 3 mm (Nos. 022 and 048 respectively).
Difficulty was experienced in setting up the OWS spectrum on the test equipment. Finally, the cause of the difficulty was isolated to the cooling system for the equipment. This was apparently running hot, causing the system to overheat and cut out. No further testing could be undertaken that day (12-2-70).

The LEC engineer arrived at the test area at 9 A.M. on 12-3-70 to find that the test equipment was still out of commission. He left his phone number, so that he could be advised when the test could be recommenced.

Results

The results of the testing was as follows:

<table>
<thead>
<tr>
<th>Detector No.</th>
<th>X Axis</th>
<th>Y Axis</th>
<th>Z Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"X" Axis</td>
<td>No visible damage</td>
<td>No visible damage</td>
<td>No visible damage</td>
</tr>
<tr>
<td>"Y" Axis</td>
<td>No visible damage</td>
<td>No visible damage</td>
<td>No visible damage</td>
</tr>
<tr>
<td>"Z" Axis</td>
<td>No visible damage</td>
<td>No visible damage</td>
<td>No visible damage</td>
</tr>
</tbody>
</table>
APPENDIX A

RANDOM VIBRATION SPECTRA
(Extracted from MSC-01159, Rev. C)

MDA Spectrum

\[
\begin{align*}
20 - 130 \text{ Hz} & \quad @ \quad 0.30 \frac{g^2}{Hz} \\
130 - 220 \text{ Hz} & \quad @ \quad -6 \text{ dB/Oct.} \\
220 - 800 \text{ Hz} & \quad @ \quad 0.10 \frac{g^2}{Hz} \\
800 - 1400 \text{ Hz} & \quad @ \quad -12 \text{ dB/Oct.} \\
1400 - 2000 \text{ Hz} & \quad @ \quad 0.010 \frac{g^2}{Hz} \\
\end{align*}
\]

Composite = 11.6 g.rms

(The above is the High Level Random criteria for the MDA Cylinder Skin - General Specification - Subzone 11-2).

OWS Spectrum

\[
\begin{align*}
20 \text{ Hz} & \quad @ \quad 0.010 \frac{g^2}{Hz} \\
20 - 90 \text{ Hz} & \quad @ \quad +12 \text{ dB/Oct.} \\
90 - 200 \text{ Hz} & \quad @ \quad 3.70 \frac{g^2}{Hz} \\
200 - 500 \text{ Hz} & \quad @ \quad -12 \text{ dB/Oct.} \\
500 - 2000 \text{ Hz} & \quad @ \quad 0.095 \frac{g^2}{Hz} \\
\end{align*}
\]

Composite = 29.1 g.rms

(The above is the Lift-off Random Vibration criteria for the OWS LH₂ Cylinder Tank Section, Stations 2970 to 3100, General Specification - Subzone 4-3.)

NOTE: The above criteria were selected, lacking any additional information, as representing the severest vibration in their respective areas. No information was available regarding Zone 1 on the OWS.
FIG. 1. DIAGRAM OF DETECTOR, SHOWING VIBRATION AXES.
This report contains the response to actions items 1 and 2 contained in the above memo.

Item 1

A comparison of the various environmental requirements imposed on the EPS by reason of being mounted on the Skylab Multiple Docking Adapter (MDA) or the Orbital Workshop (OWS) zone 1 was made, together with those presumed to be imposed at the Preliminary Requirements Review (Nov. 6, 1970).

The results of this comparison are tabulated below:

<table>
<thead>
<tr>
<th>Environment</th>
<th>Preliminary Requirements Review (1)</th>
<th>MDA</th>
<th>OWS (Zone 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°F)</td>
<td>-60 to +195</td>
<td>-180 to +277</td>
<td>-200 to +300</td>
</tr>
<tr>
<td>Pressure-Launch & Ascent (mm.Hz) Orbit</td>
<td>---</td>
<td>1086 to 10^{-8} (2)</td>
<td>760 to 10^{-8} (2)</td>
</tr>
<tr>
<td>Humidity (%RH)</td>
<td>---</td>
<td>0 to 45%</td>
<td>0 to 100%</td>
</tr>
<tr>
<td>Acceleration</td>
<td>---</td>
<td>4.7g flt. axis</td>
<td>4.7g flt. axis</td>
</tr>
<tr>
<td>Vibration</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
</tr>
<tr>
<td>Shock</td>
<td>---</td>
<td>(4)</td>
<td>N/A</td>
</tr>
<tr>
<td>E.M.I</td>
<td>---</td>
<td>ED-2002-1032</td>
<td>SM-56669</td>
</tr>
<tr>
<td>Meteoroid Notes</td>
<td>---</td>
<td>IDENTICAL</td>
<td></td>
</tr>
<tr>
<td>Radiation</td>
<td>---</td>
<td>IDENTICAL</td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric Comp.</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Movement</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustic Noise</td>
<td>---</td>
<td>(5)</td>
<td>(5)</td>
</tr>
<tr>
<td>Contaminants</td>
<td>---</td>
<td>OVERBOARD DUMP MATERIAL</td>
<td></td>
</tr>
</tbody>
</table>

102
Notes:
1. Environmental acceptance test ground rules (Enclosure 2).
2. In 7 mins. max. decompression rate = 6 psi/min.
3. See Appendix "A".
4. See Appendix "B".
5. See Appendix "C".

It can be seen that the temperature limits on the OWS are slightly wider than for the MDA, but it is not felt that these are enough to make a significant difference.

During the launch and ascent stage, the pressure environment is initially lower on the OWS than the MDA - 1 atmosphere as opposed to 1.4 atmospheres. The OWS will see the full range of relative humidity, whereas the MDA only reaches 45% R.H.

For vibration, there is a significant difference. The OWS will give appreciably higher levels of vibration than the MDA, approximately three times the magnitude, and this may well be more severe than we can design for within the maximum allocated weight. There appears to be no significant difference between the two locations regarding acoustic noise.

At this moment, we have no information available on either of the E.M.I. documents to determine if there is any significant difference in their requirements.

Acceleration, meteoroid notes, radiation, light, atmospheric composition, air movement and contaminants criteria are the same for both MDA and OWS.

To sum up, the present design of the EPS would conform to all the environmental requirements with the exception of vibration and possibly shock. Assuming the vibration in zone 1 to be at least as severe as zone 4-3, then it is considered that it would be extremely difficult to design to meet this level of vibration within the present maximum weight allocation.
The EPS is being presently designed to the temperature, pressure, acceleration and vibration requirements for mounting on the MDA. The vibration levels used are those for zone 11-2, being the most severe conditions.

For shock we are designing to a 20g shock for total of 11 mseconds duration.

An attempt is being made to determine the maximum vibration level that the SSR detectors can stand, and a test report on the testing conducted to date is included. This testing is incomplete, but it is anticipated that it will recommence at 10 A.M. on 12-7-70. It is not anticipated that there will be any failure of the detectors, however, as their mass is extremely small. They would therefore require extremely high g levels to cause a bond failure or failure of the connection wires.

SSR have tested slightly larger detectors up to 100g. at 2000 Hz. They agree that the normal failure mode would be for the detector cube bond to the substrate to fail.

D. L. Vincent
Appendix "A"
Vibration Criteria

PRR

20 - 80 Hz @ +3dB/Oct.
30 - 350 Hz @ 0.04g²/Hz
350 - 2000 Hz @ -3dB/Oct.

Acceptance levels
1 min/axis min.
5 min/axis max.

(This random vibration spectrum is the only vibration criteria given in the PRR.)

MDA

Several spectra are given for different zones of the MDA. If we consider random vibration as probably being more severe than the sinusoidal inputs, the worst spectrum appears to be at zone 11-2, MDA Cylinder Skin, High Level Random Criteria.

20 - 130 g²/Hz
130 - 220 Hz @ -6dB/Oct.
220 - 800 Hz @ 0.10 g²/Hz
800 - 1400 Hz @ -12dB/Oct.
1400 - 2000 Hz @ 0.010g²/Hz.

1 min/axis

Composite 116. g.r.m.s.

OWS

No vibration data for zone 1 on the OWS were available in MSC-01159 Rev. c, but comparison of the levels given for zone 4 shows that it can be expected that the levels could be as much as three time higher than for the most severe MDA environment.
According to MSC-01159, Rev. C, shock requirements are not applicable to the OWS, with the exception of the normal MIL-STD-461 and 462 for transportation, storage and handling requirements.

As can be seen from the criteria below, the shock will vary depending upon the location of the EPS in relation to the docking post ring, reducing in severity as the distance from the ring increases.

<table>
<thead>
<tr>
<th>Distance from Nearest Docking Port Ring in Inches</th>
<th>Shock Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 12"</td>
<td>12.5 - 20 Hz @ 5.0 G's peak</td>
</tr>
<tr>
<td></td>
<td>20 - 1600 Hz @ +9 dB/oct</td>
</tr>
<tr>
<td></td>
<td>1600 - 5000 Hz @ 3000 G's peak</td>
</tr>
<tr>
<td></td>
<td>5000 - 10000 Hz @ -4 dB/oct</td>
</tr>
<tr>
<td></td>
<td>10000 Hz @ 1900 G's peak</td>
</tr>
<tr>
<td>13 - 49"</td>
<td>12.5 - 20 Hz @ 5.0 G's peak</td>
</tr>
<tr>
<td></td>
<td>20 - 1600 Hz @ 8 dB/oct</td>
</tr>
<tr>
<td></td>
<td>1600 - 5000 Hz @ 1500 G's peak</td>
</tr>
<tr>
<td></td>
<td>5000 - 10000 Hz @ 4 dB/oct</td>
</tr>
<tr>
<td></td>
<td>10000 Hz @ 950 G's peak</td>
</tr>
<tr>
<td>50 - 190"</td>
<td>12.5 - 20 Hz @ 5.0 G's peak</td>
</tr>
<tr>
<td></td>
<td>20 - 1600 Hz @ +6 dB/oct</td>
</tr>
<tr>
<td></td>
<td>1600 - 5000 Hz @ 380 G's peak</td>
</tr>
<tr>
<td></td>
<td>5000 - 10000 Hz @ -4 dB/oct</td>
</tr>
<tr>
<td></td>
<td>10000 Hz @ 240 G's peak</td>
</tr>
<tr>
<td>Greater than 190"</td>
<td>12.5 - 20 Hz @ 5.0 G's peak</td>
</tr>
<tr>
<td></td>
<td>20 - 1600 Hz @ +4 dB/oct</td>
</tr>
<tr>
<td></td>
<td>1600 - 5000 Hz @ 90 G's peak</td>
</tr>
<tr>
<td></td>
<td>5000 - 10000 Hz @ -4 dB/oct</td>
</tr>
<tr>
<td></td>
<td>10000 Hz @ 57 G's peak</td>
</tr>
</tbody>
</table>

Present Contractual Design Criteria

Appendix "C"
Acoustic Noise Criteria

<table>
<thead>
<tr>
<th>Geometric Mean Frequency (Hz)</th>
<th>Lift-Off</th>
<th>Boundary Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>110.0</td>
<td>110.0</td>
</tr>
<tr>
<td>6.3</td>
<td>111.5</td>
<td>112.0</td>
</tr>
<tr>
<td>8.0</td>
<td>113.0</td>
<td>113.5</td>
</tr>
<tr>
<td>10.0</td>
<td>115.0</td>
<td>115.0</td>
</tr>
<tr>
<td>12.5</td>
<td>117.0</td>
<td>116.5</td>
</tr>
<tr>
<td>16.0</td>
<td>118.5</td>
<td>118.5</td>
</tr>
<tr>
<td>20.0</td>
<td>121.0</td>
<td>120.0</td>
</tr>
<tr>
<td>25.0</td>
<td>123.0</td>
<td>123.0</td>
</tr>
<tr>
<td>31.5</td>
<td>124.5</td>
<td>125.5</td>
</tr>
<tr>
<td>40.0</td>
<td>127.0</td>
<td>127.0</td>
</tr>
<tr>
<td>50.0</td>
<td>128.5</td>
<td>128.5</td>
</tr>
<tr>
<td>63.0</td>
<td>131.0</td>
<td>130.0</td>
</tr>
<tr>
<td>80.0</td>
<td>133.0</td>
<td>131.0</td>
</tr>
<tr>
<td>100.0</td>
<td>133.0</td>
<td>131.5</td>
</tr>
<tr>
<td>125.0</td>
<td>133.0</td>
<td>132.0</td>
</tr>
<tr>
<td>160.0</td>
<td>132.0</td>
<td>132.0</td>
</tr>
<tr>
<td>200.0</td>
<td>131.0</td>
<td>131.5</td>
</tr>
<tr>
<td>250.0</td>
<td>130.5</td>
<td>131.0</td>
</tr>
<tr>
<td>315.0</td>
<td>129.5</td>
<td>129.0</td>
</tr>
<tr>
<td>400.0</td>
<td>128.5</td>
<td>128.0</td>
</tr>
<tr>
<td>500.0</td>
<td>127.5</td>
<td>127.0</td>
</tr>
<tr>
<td>630.0</td>
<td>126.5</td>
<td>126.0</td>
</tr>
<tr>
<td>800.0</td>
<td>125.0</td>
<td>124.0</td>
</tr>
<tr>
<td>1,000.0</td>
<td>124.0</td>
<td>123.0</td>
</tr>
<tr>
<td>1,250.0</td>
<td>123.0</td>
<td>122.0</td>
</tr>
<tr>
<td>1,600.0</td>
<td>121.5</td>
<td>121.0</td>
</tr>
<tr>
<td>2,000.0</td>
<td>120.0</td>
<td>120.0</td>
</tr>
<tr>
<td>2,500.0</td>
<td>119.0</td>
<td>119.0</td>
</tr>
<tr>
<td>3,150.0</td>
<td>117.0</td>
<td>116.5</td>
</tr>
<tr>
<td>4,000.0</td>
<td>116.0</td>
<td>113.0</td>
</tr>
<tr>
<td>5,000.0</td>
<td>113.0</td>
<td>109.5</td>
</tr>
<tr>
<td>6,300.0</td>
<td>110.0</td>
<td>106.0</td>
</tr>
<tr>
<td>8,000.0</td>
<td>109.0</td>
<td>103.0</td>
</tr>
<tr>
<td>10,000.0</td>
<td>107.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Overall SPL 142.5 141.5
Duration 30.0 120.0
Geometric Mean Frequency (Hz)

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Lift-Off</th>
<th>Boundary Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>124.0</td>
<td>128.5</td>
</tr>
<tr>
<td>6.3</td>
<td>126.0</td>
<td>129.0</td>
</tr>
<tr>
<td>8.0</td>
<td>128.0</td>
<td>130.0</td>
</tr>
<tr>
<td>10.0</td>
<td>130.0</td>
<td>130.5</td>
</tr>
<tr>
<td>12.5</td>
<td>132.0</td>
<td>131.0</td>
</tr>
<tr>
<td>16.0</td>
<td>134.0</td>
<td>132.0</td>
</tr>
<tr>
<td>20.0</td>
<td>136.0</td>
<td>132.5</td>
</tr>
<tr>
<td>25.0</td>
<td>138.0</td>
<td>133.0</td>
</tr>
<tr>
<td>31.5</td>
<td>140.0</td>
<td>134.0</td>
</tr>
<tr>
<td>40.0</td>
<td>142.0</td>
<td>134.5</td>
</tr>
<tr>
<td>50.0</td>
<td>143.5</td>
<td>135.0</td>
</tr>
<tr>
<td>63.0</td>
<td>144.5</td>
<td>136.0</td>
</tr>
<tr>
<td>80.0</td>
<td>145.0</td>
<td>136.5</td>
</tr>
<tr>
<td>100.0</td>
<td>145.0</td>
<td>137.0</td>
</tr>
<tr>
<td>125.0</td>
<td>145.0</td>
<td>138.0</td>
</tr>
<tr>
<td>160.0</td>
<td>145.0</td>
<td>138.5</td>
</tr>
<tr>
<td>200.0</td>
<td>144.5</td>
<td>139.5</td>
</tr>
<tr>
<td>250.0</td>
<td>144.0</td>
<td>140.0</td>
</tr>
<tr>
<td>315.0</td>
<td>143.5</td>
<td>140.5</td>
</tr>
<tr>
<td>400.0</td>
<td>143.0</td>
<td>141.0</td>
</tr>
<tr>
<td>500.0</td>
<td>142.0</td>
<td>141.5</td>
</tr>
<tr>
<td>630.0</td>
<td>141.5</td>
<td>142.0</td>
</tr>
<tr>
<td>800.0</td>
<td>140.5</td>
<td>142.5</td>
</tr>
<tr>
<td>1,000.0</td>
<td>140.0</td>
<td>142.0</td>
</tr>
<tr>
<td>1,250.0</td>
<td>139.0</td>
<td>141.0</td>
</tr>
<tr>
<td>1,600.0</td>
<td>138.0</td>
<td>140.5</td>
</tr>
<tr>
<td>2,000.0</td>
<td>136.5</td>
<td>139.5</td>
</tr>
<tr>
<td>2,500.0</td>
<td>135.5</td>
<td>138.5</td>
</tr>
<tr>
<td>3,150.0</td>
<td>134.0</td>
<td>138.0</td>
</tr>
<tr>
<td>4,000.0</td>
<td>132.0</td>
<td>137.0</td>
</tr>
<tr>
<td>5,000.0</td>
<td>130.5</td>
<td>136.0</td>
</tr>
<tr>
<td>6,300.0</td>
<td>129.0</td>
<td>135.0</td>
</tr>
<tr>
<td>8,000.0</td>
<td>127.5</td>
<td>134.0</td>
</tr>
<tr>
<td>10,000.0</td>
<td>126.0</td>
<td>133.0</td>
</tr>
</tbody>
</table>

Overall SPL 156.0 153.5

Duration (Sec) 30.0 120.0
3.2.1.1.4 Electrical

The following are documents applicable to the assessment of the electrical requirements of the EPS.

Subject Title	Page
EPS Pulse Amplifier Specification (EPS-3) | 111
Study of the EPS Preamplifier-Amplifier Time Response when Excited by a Rectangular Pulse of Varying Width and Constant Area (EPS-140) | 115
EPS Post-Amplifier Time Constant and Gain Calculations (EPS-138) | 122
EPS Heater Circuit | 127
Analog Section Specifications | 128
Unipolar and Bipolar Pulse Shaping Techniques: An Evaluation (EPS-65) | 131
Pole-Zero Cancellation at the Output of the Charge Sensitive Preamplifier (EPS-70) | 71
Selection of Time Constants for Accelerator Testing (EPS-199) | 138
Summary of Power System Performance During the EPS Engineering Test Unit Thermal-Vacuum Testing (EPS-376) | 139
Power Dissipation in Data Processor Modules (EPS-198) | 144
<table>
<thead>
<tr>
<th>Subject Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts List Changes for the Dual Differential Pulse Height Discriminator (EPS-197)</td>
<td>145</td>
</tr>
<tr>
<td>Part Value Changes for R2, R5(7), R5(9), R7(8), R7(9), R7(10), R8(7), R8(9), R10(8), R10(9), R10(10) and R13 of the Dual Differential Pulse Height Discriminator (EPS-90)</td>
<td>146</td>
</tr>
<tr>
<td>Experimental Verification of EPS Analog Design Before Manufacturing Release (EPS-85)</td>
<td>147</td>
</tr>
<tr>
<td>Selection of EPS Post-Amplifier Time Constants (EPS-89)</td>
<td>149</td>
</tr>
<tr>
<td>Selection of EPS Post-Amplifier Time Constants (EPS-86)</td>
<td>150</td>
</tr>
<tr>
<td>EPS Amplifier: An Analysis of the Filter Configuration and the Optimization of Signal Shapes (EPS-103)</td>
<td>156</td>
</tr>
<tr>
<td>EPS Housekeeping Specification (EPS-40)</td>
<td>174</td>
</tr>
</tbody>
</table>
EPS PULSE AMPLIFIER SPECIFICATIONS

1. Preamplifier

A. Charge Gain: \(29.6 \pm 0.15 \frac{\text{mV}}{\text{meV}}\)

B. Gain Stability
 1. Temperature Stability: 0.02%/°C
 2. Stability as a function of supply voltage variation: <0.5% for ±1.5 volt change in either or both power supplies.

C. Resolution (measured using a TC 202 at 0.53 μsec, bipolar):

<table>
<thead>
<tr>
<th>Input Capacitance (pf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
</tbody>
</table>

D. Output Rise Time

<table>
<thead>
<tr>
<th>Input Capacitance (pf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Rise Time</td>
</tr>
</tbody>
</table>

E. Output Decay Time Constant: 150.0 ± 1.6 μsec

F. Integral Nonlinearity: 0.07% \(\frac{(\Delta V_1)_{\text{max}}}{V_{\text{max}}} = \text{INL}\)

G. Detector Bias Polarity and Range: 0 to +500 VDC

H. Test Input
 1. Resistance: 49.9 ± 0.5%
 2. Capacitance: 1.0 ± 0.1 pf

I. Permissable Load: 499Ω

J. Power Dissipation: 13.3 ma @ +8 VDC = 107 mw
 3.0 ma @ +8 VDC = 24 mw
II. Pulse Amplifier

A. Pulse Gain: 41.6 ± 2

B. Gain Stability
 1. Temperature Stability: 0.01%/°C
 2. Stability as a function of supply voltage variation.

C. Linear Range: 0 to +5.0 VDC

D. Integral Nonlinearity: 0.07%

E. Input Polarity: Positive

F. Output Polarity: Positive

G. Preamplifier-Amplifier Calibration: +5V = 10 mev

H. Pulse Shaping Time Constant: 150 nsec - 500 nsec

I. Pole-Zero Cancellation: Adjustable from 50 μsec to 100 μsec.

J. Overload Recovery: Recovers from X10 overload in ≤2 NON overloaded pulse widths.

K. Output Noise: <1.0 mv (FWHM) for no input (21.7 μvolts referred to input).

L. Average Baseline Shift with Counting Range: < -SMV

M. Baseline Stability
 1. Quiescent Value: 0.0 ± 5.0 mv
 2. Temperature Stability: 50 μv/°C

N. Output Coupling: Direct

O. Permissible Load: 1 KΩ

P. Power Consumption: @ +8 VDC
 @ -8 VDC
III. Dual Pulse Height Discriminator
A. Input Signal Pulse Height Range: 0 to +5 VDC
B. Input Impedance: ~ 4 KΩ
C. Input Coupling: Direct
D. Pulse Pair Time Resolution: <100 nsec
E. Stability of Discriminator Level
 1. Temperature Stability: <0.01%/°C
 2. Stability as a function of supply voltage variation.
F. Output Logic Signal Shape
 1. Width: Variable
 2. Height and Polarity: +2.4 V to 0.8 V
 3. Drive Capability: 10 TTL Loads
G. Power Consumption: @ +5 VDC
 @ -5 VDC
 @ -8 VDC

IV. Prescaler
A. Scale Factor: 4
B. Coupling: Direct
C. Drive Requirements:
 1. Logic "1" Minimum: +2.4 V @ +50 μamp
 2. Logic "0" Maximum: +0.6 V @ -2.0 Mamp
D. Minimum Toggle Frequency: 25 MHz
E. Output

1. Logic "1" Minimum: +2.4V @ 1.0 Mamp

2. Logic "0" Maximum: +0.4V @ 2.0 Mamp

3. Rise Time Constant/Fall Time Constant: 160 nsec

F. Power Consumption: 52 Mamp @ +5 VDC
f(t) can be represented as a combination of step functions:

\[f(t) = H[u(t) - u(t-a)] \] \hspace{1cm} (1)

The objective then is to obtain the output response of the preamplifier-amplifier system when \(f(t) \) as given by (1) is applied to the preamplifier input.
It is hoped that this function would represent the output current of a semiconductor nuclear particle detector, allowing for the different charge collection times which are a function of the detector thickness and reverse bias voltage.

The output response can be obtained with the aid of the system's impulse response, which has already been derived and presented in a previous report, EPS-103. This function is given by:

\[h(t) = \frac{K}{2} e^{-t/T} (t^2 - \frac{1}{3T} t^3) \]

(2)

With the knowledge of \(f(t) \) and \(h(t) \), at least two different approaches can be used to derive the system's output response to \(f(t) \); 1) by using the convolution integral with \(f(t) \) and \(h(t) \) and 2) by using Laplace Transform techniques.

Just as an exercise and also as a check of the final result, let us derive the system's output response by using approach 1 and then approach 2.

Approach 1: Convolution Integral

In the field of linear systems analysis, there is a very useful theorem which states that the response of a system to a function \(f(t) \) is equal to the convolution of \(f(t) \) with the system's impulse response \(h(t) \). Thus, let \(y(t) \) be the desired response. The convolution integral is given by:

\[y(t) = \int_0^\infty f(t - \lambda) \times h(\lambda) \, d\lambda \]

(3)
where \(\lambda \) is the new integrating variable.

Recalling expression (1) and substituting the variable \(t \) by \(t-\lambda \) yields:

\[
 f(t - \lambda) = HU(t - \lambda) - HU[t - \lambda - a] \tag{4}
\]

Recalling expression (2) and substituting \(t \) by \(\lambda \) yields:

\[
 h(\lambda) = \frac{K}{2} e^{-\lambda/\tau} (\lambda^2 - \frac{1}{3\tau} \lambda^3) \tag{5}
\]

Substituting (4) and (5) into (3) yields:

\[
y(t) = \int_0^t [HU(t - \lambda) - HU(t - \lambda - a)] \times \frac{K}{2} e^{-\lambda/\tau} (\lambda^2 - \frac{1}{3\tau} \lambda^3) \, d\lambda \tag{6}
\]

by multiplying the integrand and observing the limits of integration, one has:

\[
y(t) = \frac{KxH}{2} \left[\int_0^t U(t-\lambda) \lambda^2 e^{-\lambda/\tau} d\lambda - \frac{1}{3\tau} \int_0^t U(t-\lambda) \lambda^3 e^{-\lambda/\tau} d\lambda \right. \tag{7}
\]

\[
 - \frac{KxH}{2} \int_{t-a}^t U(t-\lambda - a) \lambda^2 e^{-\lambda/\tau} (\lambda^2 - \frac{1}{3\tau} \lambda^3) d\lambda
\]

\[
y(t) = \frac{KxH}{2} \left[\left(\int_0^t U(t-\lambda) \lambda^2 e^{-\lambda/\tau} d\lambda - \frac{1}{3\tau} \int_0^t U(t-\lambda) \lambda^3 e^{-\lambda/\tau} d\lambda \right) \right. \tag{8}
\]

\[
 - \left(\int_0^{t-a} U(t-\lambda - a) \lambda^2 e^{-\lambda/\tau} d\lambda + \frac{1}{3\tau} \int_0^{t-a} U(t-\lambda - a) \lambda^3 e^{-\lambda/\tau} d\lambda \right] \right] \]
The integrals can be evaluated by making use of the following formulation:

\[\int x^m e^{ax} dx = \frac{m e^{ax}}{a} - \frac{m}{a} \int x^{m-1} e^{ax} dx \]

(9)

from which one derives:

\[\int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1) \]

(10)

The first term in expression (8) becomes:

\[
\int_0^t U(t-\lambda) \lambda^2 e^{-\lambda/\tau} d\lambda = \frac{2e^{-\lambda/\tau}}{\lambda^2} \left. \right|_0^t - \frac{2}{\tau} \int_0^t e^{-\lambda/\tau} d\lambda \\
= \left[-\frac{1}{\lambda^2} e^{-\lambda/\tau} - 2\tau^2 e^{-\lambda/\tau} \right]_0^t
\]

(11)

The second term of (8) yields:

\[
\frac{1}{3\tau} \int_0^t U(t-\lambda) \lambda^3 e^{-\lambda/\tau} d\lambda = \frac{1}{3\tau} \left[\frac{\lambda^3 e^{-\lambda/\tau}}{(\frac{-\lambda}{\tau})} \left. \right|_0^t -\frac{3}{\tau^2} \int_0^t \lambda^2 e^{-\lambda/\tau} d\lambda \right] \\
= \frac{1}{3\tau} \left[-\tau^3 e^{-\lambda/\tau} + 3\tau (-\tau^2 e^{-\lambda/\tau} - \tau^2 e^{-\lambda/\tau} - \tau^3 e^{-\lambda/\tau}) \right]_0^t \\
= \frac{1}{3\tau} \lambda^3 e^{-\lambda/\tau} + \tau^2 e^{-\lambda/\tau} + 2\tau^2 e^{-\lambda/\tau} + 2\tau^3 e^{-\lambda/\tau} \left. \right|_0^t
\]

(12)
By analogy with expressions (11) and (12) the third and fourth terms of expression (8) become:

\[- \int_{0}^{t-a} u(t - \lambda - a) \left(\lambda^3 e^{\frac{1}{\tau} \lambda} \right) d\lambda = \left[\left(\lambda^2 + 2\tau \lambda + 2\tau^2 \right) e^{\frac{1}{\tau} \lambda} \right]_{0}^{t-a} \]

(13)

\[\frac{1}{3\tau} \int_{0}^{t-a} u(t - \lambda - a) \left(3\lambda^2 e^{\frac{1}{\tau} \lambda} \right) d\lambda \]

\[= (-1) \left[\left(\frac{1}{3} \lambda^3 + 2\lambda^2 + 2\lambda + 2\tau^3 \right) e^{\frac{1}{\tau} \lambda} \right]_{0}^{t-a} \]

(14)

By grouping (11), (12), (13) and (14), one has:

\[y(t) = \frac{K}{2\pi \rho} \left\{ \left[- \left(\lambda^2 + 2\tau \lambda + 2\tau^2 \right) + \frac{1}{3} \lambda^3 + 2\lambda^2 + 2\lambda + 2\tau^3 \right] e^{\frac{1}{\tau} \lambda} \right\}^{t}_{0} \]

\[+ \left[\left(\lambda^2 + 2\tau \lambda + 2\tau^2 \right) - \frac{1}{3} \lambda^3 - 2\lambda^2 - 2\lambda - 2\tau^3 \right] e^{\frac{1}{\tau} \lambda} \right\}^{t-a}_{0} \]

or:

\[y(t) = \frac{K \pi}{2} \left[\frac{1}{3} \lambda^3 e^{\frac{1}{\tau} \lambda} \right]^{t}_{0} - \frac{1}{3} \lambda^3 e^{\frac{1}{\tau} \lambda} \right]^{t-a}_{0} \]
Thus expression (15) represents the response of the EPS preamplifier-amplifier system to an input signal function as shown in Figure 1.

Since the input signal is supposed to maintain its area invariant as the width \(a \) is made to change, expression (15) can be modified to account for this condition:

\[
y(t) = \frac{K \times A}{6a} e^{\frac{-1}{\tau} t} \left[t^3 - (t - a)^3 e^{a/\tau} \right]
\]

where \(A \) is the area under the pulse.

Approach 2: Laplace Transform

Let us now try to arrive at expression (16) by using Laplace Transform methods. The Laplace transform of Expression (1) is given by:

\[
F(s) = H \times \left[\frac{1}{s} - \frac{e^{-as}}{s} \right]
\]

and for the system's impulse response one has:
Thus the response of the system to \(F(s) \) will be:

\[
y(s) = F(s) \times H(s)
\]

and by substitution:

\[
y(s) = H \left(\frac{1 - e^{-as}}{s} \right) \times K \times \frac{s}{(s + \frac{1}{t})^4}
\]

or

\[
y(s) = K \times H \left[\frac{1}{(s + \frac{1}{t})^4} - \frac{e^{-as}}{(s + \frac{1}{t})^4} \right]
\]

Taking the inverse Laplace of both terms in (20), yields:

\[
y(t) = K \times H \left[\frac{1}{3!} \times t^3 e^{-\frac{1}{t}t} - \frac{1}{3!} (t - a)^3 e^{-\frac{1}{t}(t-a)} \right]
\]

and by rearranging terms:

\[
y(t) = \frac{K \times H}{3!} \times e^{-\frac{1}{t}t} \left[t^3 - (t - a)^3 e^{a/t} \right]
\]

and again making the substitution \(H \frac{a}{a} \) gives:

\[
y(t) = \frac{K \times A}{3! \times a} \times e^{-\frac{1}{t}t} \left[t^3 - (t - a)^3 e^{a/t} \right]
\]

Comparison between expressions (16) and (21) shows that both approaches yielded the same result.
The impulse response of the preamplifier-amplifier system has been calculated and presented in a previous report, EPS-103.

The expression representing the impulse response is given by:

\[
h(t) = \frac{Q}{C_f} \times \frac{1}{R_2^2 \times C_1^2} \times \frac{1}{2} \times e^{-t/\tau} \left(t^2 - \frac{1}{3\tau} t^3 \right)
\]

(1)

where the parameter values are defined in Figure 1 below.

The common time-constant for both stages is given by:

\[
\tau = \sqrt{R_1 R_2 C_1 C_2}
\]

(2)

In order to have the impulse response of the system in the form of expression (1), certain relationships have to hold, as detailed in Report EPS-103. One of these relations is that:
Another useful information from the same report is that the system's impulse response as given by expression (1) achieves its first maximum for a value of time given by:

\[t_{(\text{peak})} = 1.27 \times \tau \]

Thus this maximum of \(h(t) \) can be obtained by substituting (4) into (1):

\[
h(t)_{\text{max}} = \frac{Q}{C_f} \times \frac{1}{R_3 C_1} \times \frac{1}{2} \times 1^{-1.27 \tau/t} \times [(1.27 \tau)^2 - \frac{1}{3 \tau} (1.27 \tau)^3]
\]

or:

\[
h(t)_{\text{max}} = \frac{Q}{C_f} \times \frac{1}{R_3 C_1} \times \frac{1}{2} \times 1^{-1.27 \tau/t} \times (1.27)^2 \tau^2 [1 - \frac{1.27}{3}]
\]

or:

\[
h(t)_{\text{max}} = \frac{Q}{C_f} \times \frac{1}{R_3 C_1} \times .1306 \tau^2
\]

In Expression (5) \(\frac{Q}{C_f} \) is the peak amplitude of the signal coming from the preamplifier. Thus, by rearranging expression (5), the peak gain of the post amplifier becomes:

\[
\frac{h(t)_{\text{max}}}{Q/C_f} = \frac{.1306}{R_3 C_1} \times \tau^2
\]
EPS-138

or:

\[A_{\text{Vpeak}} = \frac{1.306}{R_3 C_1^2} \times \tau^2 \]

(6)

Another relationship which will be used here is also previously derived in Report #EPS-103, and is given by:

\[R_2 = \frac{R_1 \times \tau}{2R_1 C_2 - \tau} \]

(7)

In order to arrive at numerical values for the six time constant determining parameters, \(R_1, R_2, R_3, C_1, C_2 \) and \(C_3 \), one has available equations (2), (3), (6) and (7). This situation enables one to conveniently choose any two values among the original six and then solve the available expressions for the remaining four parameters.

At this point it is in order to present some clarifications about the conditions that lead to the pulse gain-time constant calculation results.

Firstly, the form of expression (1) is only valid if certain constraints are imposed on the networks of both active filter stages. These constraints are:

1. The poles of the input and feedback networks transadmittances must coincide, and thus cancel each other. This condition gives rise to expression (3).

2. The zeros of the feedback networks transadmittances for both filters must be real and coincide with each other (multiple poles in the transfer function).
3. The input network of the first filter stage must have a zero in its transfer function that coincides with the pole of the signal function at the input (preamplifier output).

Secondly, these same conditions guarantee that the damping factor of the output response be equal to one, and as a consequence no crossing of the baseline at the output of the first stage should occur, and only one crossing at the output of the second stage. In both cases, one achieves the fastest return to the baseline.

Let us now elaborate a little more on equations (2), (3), (6) and (7) in order to explicitly show the solutions for the parameters we are interested in finding numerical values.

From (6), solving for R_3 one has:

$$R_3 = \sqrt{\frac{.1306}{A_v}} \times \frac{\tau}{C_1}$$

(8)

From (2), solving for R_1 yields:

$$R_1 = \frac{\tau^2}{R_2 C_1 C_2}$$

(9)

And by substituting the value of R_1 as given by (9) into equation (7) results:

$$R_2^2 - \frac{2\tau}{C_1} R_2 = \frac{\tau^2}{C_1 C_2} = 0$$

(10)

The solutions to equation (10) are:

$$R_2 = \frac{\tau}{C_1} \pm \sqrt{\frac{\tau^2}{C_1 C_2} - \frac{\tau^2}{C_1 C_2}}$$

$$R_2 = \frac{\tau}{C_1} \left(1 \pm \sqrt{1 - \frac{C_1}{C_2}} \right)$$

(11)
Expression (11) tells us a few things: for C_2 greater than C_1 there will be two distinct values of R_2 (and consequently R_1) that will satisfy all the requirements. For C_2 equal to C_1, R_2 will be single valued:

$$R_2 = R_1 = \tau/C_1 \quad \text{(12)}$$

For C_2 smaller than C_1, then no real value for R_2 (and R_1) will exist that will satisfy the requirements. This means that R_2 (and R_1) would have to be impedances with both real and imaginary parts. Of course, this third condition is of no practical value for the sake of network simplicity.

Expression (3) can now be solved for C_3:

$$C_3 = \frac{R_1 \times R_2}{R_1 + R_2} \times C_2 \times \frac{1}{R_3} \quad \text{(13)}$$
EPS
Heater Circuit

BEC 2/17/71
ANALOG SECTION SPECIFICATIONS

I. Preamplifier
A. Charge Gain: 12.0 ± 0.25 Mv
 1. Temperature Stability: 0.02%/°C
 2. Stability as a function of supply voltage variation
C. Resolution (Measured using a TC202 at 0.5 μsec):

<table>
<thead>
<tr>
<th>Input Capacitance (pf)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td><10keV</td>
<td><10keV</td>
<td><10keV</td>
<td><10keV</td>
<td><10keV</td>
<td><10keV</td>
</tr>
</tbody>
</table>
D. Output Rise Time:

<table>
<thead>
<tr>
<th>Input Capacitance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>Rise Time</td>
</tr>
</tbody>
</table>
E. Output Delay Time Constant: 80.0 ± 1.6 μSec
F. Integral Nonlinearity = <0.07% \(\frac{(AV_1)_{max}}{V_{max}} \) = INL
G. Detector Bias Polarity and Range: 0 to +500 Vdc
H. Test Input
 1. Resistance: 49.9 ± 0.5Ω
 2. Capacitance: 2.2 ± .05pf
I. Permissible Load: 499Ω
J. Power Dissipation: @ +8Vdc @ -8Vdc

II. Pulse Amplifier
A. Pulse Gain: 41.6 ±2
B. Gain Stability
 1. Temperature Stability: 0.01%/°C
 2. Stability as a function of Supply Voltage Var.
C. Linear Range: 0 to +5.0 Vdc
D. Integral Nonlinearity: < 0.07%.
E. Input Polarity: Positive
F. Output Polarity: Positive
G. Preamplifier - Amplifier Calibration: +5V = 10 MeV
H. Pulse Shaping: 150nsec - 500 nsec
I. Pole-Zero Cancellation: Adjustable from 50 μsec to 100 μsec
J. Overload Recovery: Recovers from X2 overload in ≤ 2 non overloaded pulse widths
K. Output Noise: ≤ 1.0 mV for no input
L. Average Baseline Shift with Counting Rate
M. Baseline Stability
 1. Quiescent Value: 0.0 ± 5.0 mV
 2. Temperature Stability: 50 μv/°C
N. Output Coupling: Direct
O. Permissible Load: 1KΩ
P. Power Consumption:
 @ +8Vdc
 @ -8Vdc
III. Dual Pulse Height Discriminator

A. Input Signal Pulse Height Range: 0 to +5 Vdc
B. Input Impedance: ≈ 4KΩ
C. Input Coupling: Direct
D. Pulse Pair Time Resolution: < 100 nsec
E. Stability of Discriminator Level
 1. Temperature Stability: ≤ 0.01%/°C
 2. Stability as a function of Supply Voltage Variations
F. Output Logic Signal Shape
 1. Width: Variable
 2. Height and Polarity: +2.4V to 0.8V
 3. Drive Capability: 10 TTL Loads
G. Power Consumption
 @ +5Vdc
 @ -5Vdc
 @ -8Vdc

IV. Prescaler

A. Scale Factor: 4
B. Coupling: Direct
C. Drive Requirements
 1. Logic "1": +2.4Vdc
 2. Logic "0":
An evaluation of bipolar and unipolar pulse shaping techniques, with emphasis on application in the EPS, was made. The advantages and disadvantages for a two-integrator single-differentiator system are outlined as follows.

Bipolar

1. No baseline restorer required due to symmetry of the pulses about the baseline.

2. Poorer pulse-to-noise ratio (than unipolar) in a system with otherwise identical components and inputs.

3. Longer shaping time (than unipolar), which decreases the maximum count rate in otherwise equivalent systems.

Unipolar

1. Requires a baseline restorer, which increases the component count and power by 50%.

2. Less amplifier gain and bandwidth required for a given time-constant than required for bipolar.

3. Better pulse-to-noise ratio than bipolar in otherwise identical systems.

Breadboarding and testing has indicated that the disadvantages of the bipolar system could be overcome by proper design. The component count would be reduced, giving a bipolar system a decided advantage, which has dictated its choice over the unipolar system. The decision to use bipolar shaping in the EPS was made December 10, 1970.

Temperature Gain Stability Calculations

An IBM electronic circuit analysis program was run to evaluate the effect of expected temperature sensitivities of the components on the gain stability of the pulse amplifiers. A value
of ± 0.8% was chosen to simulate the component variations with
temperature over the range from -25°C to +25°C. This corres-
ponds to 50 parts per million per °C for the resistors and
100 parts per million per °C for the capacitors, giving a 0.75%
variation, which was rounded to 0.8% to simplify computations.
The peak voltage variation was 0.2% for unipolar and 0.07% for
bipolar.

The values took advantage of the inherent tracking of similar
resistors and capacitors, but the combinations were such that
maximum resistance was coupled with maximum capacitance and
minimum resistance was combined with minimum capacitance. Re-
sistance ratios, as well as capacitance ratios, were constant,
giving maximum time-constant changes over the temperature range.
POLE-ZERO CANCELLATION AT THE OUTPUT OF THE CHARGE SENSITIVE PREAMPLIFIER

Due to input sensitivity considerations as well as to achieve high resolution, the feedback network elements R_f and C_f are chosen such that the product $R_f \times C_f$ is much greater than the duration of the pulse carrying the energy-amplitude relationship at the output of the shaping amplifier. Thus, it becomes necessary to interface a network between the preamplifier and postamplifier in order to shorten the pulse before amplification.

In order to achieve optimum overload recovery performance and for better high count-rate response it is mandatory that the waveform at the output of the pulse shortening network be monotonic decreasing in nature, that is, no crossing of the baseline is allowed.

This requirement can be achieved by the use of the RC network at the output of the CSA as shown in the figure above.

Suppose the CSA is excited by an impulse of current of charge Q. The time domain output voltage is given by:

$$V_{01}(t) = \frac{Q}{C_f} e^{-\frac{1}{R_f C_f} t}$$

(1)
which in the frequency domain assumes the form:

\[V_{01}(s) = \frac{Q}{C_f} \times \frac{1}{S + \frac{1}{R_f C_f}} \]

(2)

Now, taking the transfer function of the \(R_1 R_2 C_1 \) network one finds:

\[\frac{V_{02}(s)}{V_{01}(s)} = \frac{S + \frac{1}{R_1 C_1}}{S + \frac{1}{(R_1 / R_2) C_1}} \]

(3)

Multiplying (2) and (3) gives

\[V_{02}(s) = \frac{S + \frac{1}{R_1 C_1}}{S + \frac{1}{(R_1 / R_2) C_1}} \times \frac{1}{S + \frac{1}{R_f C_f}} \times \frac{Q}{C_f} \]

(4)

If the zero of \(V_{02}(s) \), \(\frac{1}{R_1 C_1} \), is made numerically equal to the pole of \(V_{02}(s) \), \(\frac{1}{R_f C_f} \), then there is what is usually called a pole-zero cancellation, and expression (4) becomes:

\[V_{02}(s) = \frac{Q}{C_f} \times \frac{1}{S + \frac{1}{(R_1 / R_2) C_1}} \]

(5)

which has the time domain expression given by

\[V_{02}(t) = \frac{Q}{C_f} \times e^{- \frac{t}{(R_1 / R_2) C_1}} \]

(6)
Equation (6) shows that the voltage \(V_0(t) \) is a simple exponential of time constant \((R_1//R_2)C_1 \). Since \((R_1//R_2)C_1 \) can be made much smaller than \(R_fC_f \), the objective of shortening the pulse decay has been achieved, without baseline crossing.

In order to have no baseline crossing, one must have perfect pole-zero cancellation at all times. This means that \(R_1C_1 = R_fC_f \) must be true under all conditions.

PULSE PILE-UP AT THE OUTPUT OF THE POLE-ZERO CANCELLATION NETWORK

In order to find the instantaneous baseline fluctuations due to pulse overlapping in high count-rate applications, Campbell's theorem can be applied:

\[
v_0(\text{rms}) = \sqrt{n\int_0^\infty |v_0(t)|^2 dt}
\]

(7)

where \(v_0(t) \) is given by equation (6).

Substituting \(v_0(t) \) into (7) and evaluating the integral one finds:

\[
v_0(\text{rms}) = \frac{0}{C_f} \left[\frac{n}{2} (R_1//R_2)C_1 \right]^{1/2}
\]

(8)

POST-AMPLIFIER OUTPUT PILE-UP EFFECT

At the output of the two stage integrators with a unipolar pulse having a certain amount of undershoot due to an imperfect pole-zero cancellation of the preamplifier, the rms dispersion of the pulse amplitude can be found by applying once more Campbell's theorem.

\[
v_0(\text{rms}) = \sqrt{n\int_0^\infty |f(t)|^2 dt}
\]

(7)
where, in this case:

\[
f(t) = \frac{T_j}{T_s} e^{-\frac{t}{T_s}}\tag{9}
\]

and, \(T_j\) = resolving time of the unipolar pulse main lobe

\(T_s\) = Time constant of the undershoot.

Substituting equation (9) into (7) one has:

\[
[v0(\text{rms})]_{\text{REL}} = 0.707 \sqrt{\frac{T_j}{T_s} n T_j} \tag{10}
\]

In equation (10) the following definitions apply:

\[
[v0(\text{rms})]_{\text{ABS}} = [v0(\text{rms})]_{\text{REL}} \times V_{\text{peak}(\text{normal pulse})} \times 100\%
\]

\(nT_j\) is the duty cycle at the shaping amp output.

As an example of what can be expected for the instantaneous baseline fluctuations, consider the following practical parameters:

\(T_j = 1\ \mu\text{sec}, \ T_s = 50\ \mu\text{sec}, \ n = 2.5 \times 10^5 \text{cps.}\)

Substituting these values into equation (10) yields:
\[[v_0(rms)]_{\text{REL}} = 0.707 \times \frac{1}{50} \times 2.5 \times 10^{-5} = 10^{-5} \]

\[[v_0(rms)]_{\text{REL}} = 5\% \]

Note that \(\frac{T_i}{T_s} = \frac{1}{50} = 2\% \) undershoot. This figure can be made smaller by carefully adjusting the P-Z cancellation network.
Selection of Time Constants for Accelerator Testing

Six EPS post amplifiers are needed for analog electronics/detector testing presently scheduled for the NASA/MSFC Van de Graaff in May. These six amplifiers will be housed in two NIM modules as follows:

1 MM Module - 150 nsec
 220 nsec
 290 nsec

2 MM Module - 360 nsec
 430 nsec
 500 nsec

Distribution:

B. C. Hall
B. L. Cash
B. E. Curtsinger
R. P. Dunn
C. L. Fletcher
P. Gleeson
T. D. Lyons
W. A. Oliveira
R. W. O'Neill
G. R. Smith
C. J. Spahn
D. L. Vincent

R. S. Lindsey

R. S. Lindsey
SUMMARY OF POWER SYSTEM PERFORMANCE DURING THE EPS ENG. TEST UNIT THERMAL-VACUUM TESTING

A. INPUT FILTER

Due to the test setup (i.e., the EPS mounted inside a vacuum chamber) and a lack of the necessary test equipment, it was not possible to perform any RFI/EMI testing on the EPS during Thermal-Vacuum testing. Therefore, it is not known whether the Input Filter met its design specifications at the temperatures encountered during this test. However, since the electronic components utilized in this subsystem do not vary significantly with temperature and are insensitive to vacuum, and since this unit had already passed an EMI test at room temperature, it is assumed that the Input Filter would have allowed the EPS to pass an EMI test at any temperature within the operating limits specified for the instrument.

Since both power supplies and the Heater Control circuit were always within specification (see below), the Input Filter could not have modified the primary power (+28 Vdc) to these circuits. Therefore, the conclusion reached is that the Input Filter performed as expected.

B. DETECTOR BIAS SUPPLY

The Detector Bias Supply met all of the performance specifications during the Thermal-Vacuum testing. A summary of its performance compared to the required specifications is given below.
Specification (Ref. EPS-41)	Performance Thermal-Vacuum Test
Input Voltage: 27.5 ± 2.5Vdc | Operated from 28 ± 4Vdc
Input Current: \(I_{in} \leq 30 \text{ ma} @ 28\text{Vdc} \) | \(I_{in} \leq 25 \text{ ma} \)
Oper. Temp Range: -25°C to +25°C | Operated from -45°C to +43°C
Surv. Temp Range: -50°C to +50°C | Operated from -45°C to +43°C
Output Voltage: 350 ± 17.5Vdc | 346.9 ± 0.9Vdc over Temp range of -45°C to +43°C

C. LOW VOLTAGE POWER SUPPLY

The LVPS met most of the required specifications during the Eng. Test Unit Thermal-Vacuum testing. The summary below gives actual performance and the required performance.

Specification (Ref. EPS-45)	Performance Thermal-Vacuum Test
Input Voltage: 27.5 ± 2.5Vdc | Operated from 24 to 31Vdc
Input Current: \(I_{in} \leq 557 \text{ ma} \) | \(I_{in} \leq 550 \text{ ma} \)
Oper. Temp Range: -25°C to +25°C | Operated from -45°C to +43°C
Surv. Temp Range: -50°C to +50°C | Operated from -45°C to +43°C
Outputs:
+0.2
+8 -0.0 Vdc 8.05 to 8.08 -27°C ≤ T ≤ 23°C
+0.2
-8 -0.0 Vdc -8.08 to -8.13
+5 ± 0.3 Vdc 5.00 to 5.03
+5 ± 0.3 Vdc -5.258 to -5.317
+25 ± 2.0 Vdc 25.56 to 25.64
-15 ± 2.0 Vdc -16.63 to -16.73
3.0 ± .01 Vdc 3.003 to 3.009

*Note that the -5 Vdc output was out of specification. This output was out of spec. at room temperature (V_{out} = -5.317, spec. allows -5.300). This is a result of generating both the +5 output and the -5 output from one secondary winding on the LVPS transformer. Since the load current for the +5 is approximately 900 ma and the load current for the -5 V output is only approximately 120 ma there will be a considerable difference in the two output voltages. It was decided to set the output voltages of this winding with the +5 V output (i.e., adjust the number of turns on this winding to get a minimum of +5.00 Vdc out and take whatever comes out for the -5 V). Since the -5 V output is out of specification by only 0.3% worst case, this should be acceptable.

D. HEATER CONTROL

During the Thermal-Vacuum testing, the internal skin heaters turned on during Test Case #2 (operating during a cold orbit) when the internal package temperature had reached -0.5°C. When the additional six watts were dissipated within the EPS, the package temperature started
Increasing. The temperature was monitored for an additional two hours and increased to +2.9°C during this time. It is surmised that the package temperature would have eventually reached +10°C and the heater would have turned off.

During Test Case #1 (operating during a hot orbit) the package temperature started out at -35°C. With all electronics power on and the heaters on, the package temperature increased to +9.5°C in seven hours. At this point, the heaters turned off and the package temperature immediately stabilized at +10°C where it remained for the remaining eight hours of the test.

Since during the course of the Thermal-Vacuum testing, the EPS package temperature ranged between -45°C and +43°C, it is obvious that the Heater Control Subassembly will operate over and survive this temperature range.
TABLE I. EPS ENG TEST UNIT PERFORMANCE DURING THERMAL-VACUUM TEST.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+43</td>
<td>5.044</td>
<td>8.114</td>
<td>-8.165</td>
<td>25.70</td>
<td>346.6</td>
<td>-16.62</td>
<td>-5.329</td>
<td>3.003</td>
</tr>
<tr>
<td>+23</td>
<td>5.034</td>
<td>8.084</td>
<td>-8.131</td>
<td>25.64</td>
<td>346.1</td>
<td>-16.63</td>
<td>-5.297</td>
<td>3.009</td>
</tr>
<tr>
<td>+11</td>
<td>5.024</td>
<td>8.064</td>
<td>-8.102</td>
<td>25.59</td>
<td>345.6</td>
<td>-16.62</td>
<td>-5.281</td>
<td>2.999</td>
</tr>
<tr>
<td>0</td>
<td>5.014</td>
<td>8.054</td>
<td>-8.096</td>
<td>25.54</td>
<td>345.6</td>
<td>-16.63</td>
<td>-5.232</td>
<td>2.996</td>
</tr>
<tr>
<td>-27</td>
<td>4.976</td>
<td>8.006</td>
<td>-8.038</td>
<td>25.43</td>
<td>345.6</td>
<td>-16.64</td>
<td>-5.232</td>
<td>2.993</td>
</tr>
<tr>
<td>-45</td>
<td>4.916</td>
<td>7.928</td>
<td>-7.958</td>
<td>25.27</td>
<td>346.1</td>
<td>-16.53</td>
<td>-5.142</td>
<td>2.987</td>
</tr>
</tbody>
</table>

A. NOT CORRECTED FOR ADC

B. CORRECTED FOR ADC
Power Dissipation in Data Processor Modules

The power dissipation for the various data processor modules was measured individually in the operating mode on the bread-board unit. Individual module power is listed below.

<table>
<thead>
<tr>
<th>Module</th>
<th>Voltage</th>
<th>Current</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counter/Memory</td>
<td>5V</td>
<td>47mA</td>
<td>234mW</td>
</tr>
<tr>
<td>Sequence Control/Line Rec.</td>
<td>5V</td>
<td>19.1mA</td>
<td>96mW</td>
</tr>
<tr>
<td>Counter Control/Clock</td>
<td>-5V</td>
<td>2mA</td>
<td>10mW</td>
</tr>
<tr>
<td>Digital Data Comp.</td>
<td>5V</td>
<td>36.7mA</td>
<td>184mW</td>
</tr>
<tr>
<td>ADC Logic/MUX Cont.</td>
<td>5V</td>
<td>24mA</td>
<td>120mW</td>
</tr>
<tr>
<td>Buffer/Word Sync Gen</td>
<td>5V</td>
<td>52mA</td>
<td>260mW</td>
</tr>
<tr>
<td>Total</td>
<td>5V</td>
<td>180mA</td>
<td>900mW</td>
</tr>
<tr>
<td></td>
<td>-5V</td>
<td>2mA</td>
<td>10mW</td>
</tr>
</tbody>
</table>

It should be noted that ten counter/memory modules will be required for a complete unit. Thus, the total power required for a complete unit will be approximately 603 mA from the positive 5 volt supply and 2 mA from the negative 5 volt supply. If the positive supply voltage is increased to 5.1 volts, the current increases approximately 3 percent.

cc: B. E. Curtsinger
 B. C. Hall
 R. S. Lindsey
Parts List Change for the Dual Differential Pulse Height Discriminator

Recently completed testing conducted on the Dual Differential Pulse Height Discriminator indicates the need for several parts value changes. The new values are:

- **R5**
 Channel 1: RNC50H7500FR

- **R6**
 3260H-1-201

- **R7**
 RNC50H4640FR

cc: B. E. Curtsinger
Part Value Changes for R2, R5(7), R5(9), R7(8), R7(9), R7(10), R8(7), R8(9), R10(8), R10(9), R10(10) and R13 of the Dual Differential Pulse Height Discriminator

The subject MEPCO RNC50 resistors are officially changed to the following values:

<table>
<thead>
<tr>
<th>Resistor</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>6040 Ω</td>
</tr>
<tr>
<td>R5(7)</td>
<td>576 Ω</td>
</tr>
<tr>
<td>R5(9)</td>
<td>249 Ω</td>
</tr>
<tr>
<td>R7(8)</td>
<td>1180 Ω</td>
</tr>
<tr>
<td>R7(9)</td>
<td>1330 Ω</td>
</tr>
<tr>
<td>R7(10)</td>
<td>1500 Ω</td>
</tr>
<tr>
<td>R8(7)</td>
<td>576 Ω</td>
</tr>
<tr>
<td>R8(9)</td>
<td>249 Ω</td>
</tr>
<tr>
<td>R10(8)</td>
<td>1180 Ω</td>
</tr>
<tr>
<td>R10(9)</td>
<td>1330 Ω</td>
</tr>
<tr>
<td>R10(10)</td>
<td>1500 Ω</td>
</tr>
<tr>
<td>R13</td>
<td>6040 Ω</td>
</tr>
</tbody>
</table>

These values for R2 and R13 hold only if the input impedance of the Resolution Monitor is 4990 Ω ± 1%. If any change is made in this circuit's input impedance, please inform me so that compensating changes can be made in R2 and R3.

In addition, potentiometers R6 and R9 could possibly change to 3260 H (side screw) types.

cc: W. Oliveira
Prior to freezing the EPS analog design, a detailed attempt should be made to verify its adequacy and ferret out any shortcomings. This testing should be directed at the system performance level and should involve the detectors, preamplifier, amplifiers, pulse height discriminators, their interwiring and the overall packaging scheme. A large fraction of the testing can be accomplished at the bench. An incomplete listing of these tests is:

1. System gain accuracy
2. System gain stability
 a. Temperature
 b. Power supply variations
 c. Charge collection time.
3. System resolution
4. System resolution stability
 a. Temperature
 b. Counting rate and spectrum
5. System baseline
6. System baseline stability
 a. Temperature
 b. Power Supply Variations
7. System Overload Recovery
8. System overload recovery temperature stability
9. System integral nonlinearity
10. System power requirements

Most of the required equipment necessary to accomplish the preceding list of tests is on hand or could be borrowed. One outstanding item, however, is markedly absent. This item is a fast, linear, noise free pulse stretcher capable of operation...
at > 250,000/sec rates. This item will have to be developed or the \((\text{LMM})^3\)
detector channel cannot be tested. Since EPS bases its rate performance capabilities on this channel's
qualities, I feel that the need to perform adequate, well docu-
mended tests is paramount. If work is not started on this unit
this week, the probability of its completion by January 15 will
approach zero.

The second type of testing necessary to demonstrate the ade-
quacy of the EPS design involves use of flight type detectors
and charged particles. Due to the thickness of dead layers on
SSR cubical detectors, alpha sources are of little use. In
addition, the \((\text{LMM})^3\) detectors permit sufficient electron scat-
tering to render the data largely useless. The only remaining
form of handy charged particle is the proton. Results obtained
in earlier IFS testing gave the indication that this type of
particle is acceptable for resolution and gain measurements.

It is my belief that someone from the detector group should be
charged with the responsibility of gathering together a group
of detectors that can be used to determine the adequacy of the
EPS electronics. Spahn and Cash understand the necessary ramifi-
cations involved in the selection of detectors.

It is also my recommendation that we should obtain the use of
the MSC Van de Graaff. Since we have no scattering chamber, beam
profile measuring apparatus, or beam monitoring equipment, the
use of another facility, such as the one available at Rice, for
this testing would be very painful and possibly impossible. Due
to schedule and manpower limitations, we should attempt to gain
access for the last two weeks in January. I have seen a NASA/MSC
Action Document from the Space Physics Division Chief giving
access to the Van de Graaff to GE during this period. The Van
de Graaff is scheduled to close on February 1, 1971.

R. S. Lindsey

cc: Cash
Curtsinger
Lyons
Oliveira
O'Neill
Spahn
Subject: Selection of EPS Post Amplifier Time Constants

In IDC EPS-86 of 12-28-70, preliminary recommendations for post amplifier time constants were made. These were based upon sketchy information available at that time. On 12-28-70, Bob O'Neill repeated the data very carefully. The results are included here. Indications are that it is possible to operate the post amplifiers at time constants equal to the worst case charge collection times and suffer no ill effects so long as the worst case charge collection times are true. This would imply time constants of 110 nsec and 361 nsec for the (1 mm)3 and (2 mm)3 detector channels respectively. These time constants would produce dead times of 33% and 108% at input rates of 250K/sec. I recommend the following:

A. Accurately breadboard time constants of 110 nsec and 361 nsec and repeat the Relative Gain Charge Collection Time Data in a manner equal in precision to that reported here. Since the curves roll off more slowly as the time constant increases it might be possible to reduce the time constants by a small amount as a result of analyzing the 110 nsec, 361 nsec data. Accurately measure the post amplifier output wave shape to assume the proper time constant.

B. Generate counting rate information for each channel based upon the EPS boundaries and a Starfish Electron Enhancement.

C. Using the Random Pulser examine the behavior of the pre-amplifier - post amplifier - pulse height discriminator combination as a function of random input rate to determine whether or not EPS can be paralyzed by high counting rate conditions. If paralysis is possible its manner of onset and rate location are central to the quality of EPS and should be well known.

R. S. Lindsey

Cc: Cash
 Curtsinger
 Lyons
 Oliveira
 O'Neill
SUBJECT: Selection of EPS Post Amplifier Time Constants

To optimize the EPS linear electronics performance for high counting rate conditions, it is necessary to minimize the time required to process each detected event. This is accomplished by minimizing the post amplifier characteristic time constant (τ). The concept of EPS requires that the post amplifier output pulse height be proportional to the total charge generated within the detector during an event. This implies that τ is long with respect to the time necessary to collect the generated charge (T). It is apparent from a knowledge of the required counting rates and the proposed charge collection times that a conflict is possible. The facts necessitate a detailed analysis of both the charge collection time and its interaction with the post amplifier time constant.

The charge collection time for a carrier is given by:

\[T = \frac{d^2}{\mu V} \]

Since \(\mu_H \) (the hole mobility) is approximately a factor of two less than \(\mu_e \) (the electron mobility), calculations will be based upon times for holes. Now:

\[T_H = \frac{d^2}{\mu_H V} \]

where:
- \(T \) is the hole collection time
- \(d \) is the depletion depth in cm
- \(\mu_H \) is the hole mobility in \(\text{cm}^2/\text{volt-sec} \)
- \(V \) is the depletion bias in volts.
Additionally:

\[\mu_H = 2.3 \times 10^8 t^{-2.7} \]

where: \(t \) is the temperature in ° Kelvin.

Energy loss requirements have already fixed the nominal values of \(d \) at 1 mm and 2 mm. The worst case value of \(\mu_H \) occurs when \(t \) is maximized. Under operational conditions this is defined as 0°C = 273 K. However, since checkout of the instrument is necessary at up to +30°C = 103 K, the true worst case value of \(\mu_H \) occurs here. These two mobility values are:

\[\mu_H(0°C) = 608 \text{ cm}^2/\text{volt-sec} \]
\[\mu_H(+30°C) = 459 \text{ cm}^2/\text{volt-sec}. \]

Worst case initial depletion depth errors have been investigated by Spahn and Cash. Solid State Radiation, Inc. guarantees an initial error of \(\pm 15\% \) of nominal depletion depth.

Depletion depth drift as a function of oxygen impurity level, time, temperature and detector bias has been the subject of a detailed study by Spahn. He reports very little data to be available with poor agreement between authors. The worst case depletion depth drift calculations are conservative and assume an MDA mounting with the following conditions:

A. 350° volts detector bias
B. A .38 year active detector mission
C. A constant 0°C detector temperature.

Spahn has proposed some additional experimental work to verify his findings.

The proposed values for detector bias were a compromise resulting from problems with voltage derating of detectors, high voltage corona effects and the complexity of dual supplies. A value of 350 volts has been selected.

Figure 1 summarizes all these effects and the resulting hole collection time.
In parallel with this effort it is possible to measure the effect of finite charge collection time on post amplifier output pulse height to determine what τ is suitable for a known T_H. This work was done by Bob O'Neill on December 24, 1970, using hypothetical values of τ near the final EPS values. These data, Figures 2 and 3, relate the post amplifier output amplitude to the ratio of charge collection time (T) to post amplifier time constant (τ). Several things are clear from these data, and are:

1. The $\tau = 276$ nsec data should be repeated to remove several ambiguities that exist near the critical value of T/τ.
2. The $\tau = 83$ nsec data should be extended on the lower side to a point where the post amplifier output amplitude shows no further increase.
3. If a decision must be reached from these data for maximum acceptable T/τ values the result would be ≤ 0.5.
4. When preliminary values are established for $\tau_{(1 \text{ mm})}$ and $\tau_{(2 \text{ mm})}$ detailed precision data should be repeated for the exact values. This process should be repeated until acceptable values are found.
5. A computer program to predict the interaction between T, τ and the output amplitude should be generated on a reduced priority basis to allow a finer analysis of the problem. The two measured boundary values should be checked to insure the program's accuracy.

To sum up, on the basis of data available now, time constants of 220 nsec for the $(1$ mm$)^3$ detector and 722 nsec for $(2$ mm$)^3$ detectors are necessary, resulting in pile-ups of 66% and 217% respectively at input rates of 250,000/sec. Shorter time constants could result in an inability to claim equality between instruments due to detector variations. Better information from O'Neill could possibly lower the time constants.

R. S. Lindsey

Atch: Figures 1, 2 and 3

cc: Cash Oliveira
Curtsinger O'Neill
Lyons Spahn
FIGURE 1
HOLE COLLECTION TIMES FOR EPS

<table>
<thead>
<tr>
<th>Nominal Depletion Depth (1 mm)</th>
<th>Charge Collection Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.00 mm) 48 nsec</td>
<td>O°C 63 nsec</td>
</tr>
<tr>
<td>(1.15 mm) 63 nsec</td>
<td>+30°C 84 nsec</td>
</tr>
<tr>
<td>(1.32 mm) 83 nsec</td>
<td></td>
</tr>
</tbody>
</table>

Assumptions:

1. The maximum acceptable leakage current for a 1 mm³ detector at 30°C is 1 Aamp resulting in a bias voltage loss of 2.22 volts.

2. The maximum acceptable leakage current for a 2 mm³ detector at 30°C is 2 Aamp resulting in a bias voltage loss of 4.44 volts.

3. The minimum bias voltage supply value is 347.7 volts.

4. Depletion depth drift values are calculated assuming an MDA mounting with a maximum temperature of 0°C.
This report will discuss a pulse shaping amplifier composed of two sections of active filtering using two operational amplifiers connected in the inverting configuration, with bridged tee RC networks for the feedback branches. Two cases will be considered: (1) the output pulse is unipolar in nature, and (2) the output pulse is bipolar.

The design is conducted with the purpose of achieving optimum performance from the filters in regard to minimum noise contribution and predictable pulse shapes; that is, the unipolar pulse shall be near Gaussian with no undershoot, exhibiting almost perfect symmetry between the rise and fall times, and the bipolar pulse shall exhibit only one baseline crossover and its total duration being approximately equal to the unipolar pulse.

Unipolar Configuration

In order to study the response of the filter to the signal coming from the charge sensitive preamplifier, consider the circuit shown in Figure 1:

Unipolar

Figure 1
It will later become apparent that this configuration corresponds to unipolar shaping provided that the filter elements are chosen accordingly.

The signal coming from the preamplifier into the amplifier's input can be expressed as

\[e_i(t) = \frac{Q}{C_f} e^{-\frac{t}{\tau}} \] \hspace{1cm} (1)

where:

- \(Q \) - signal charge at the preamplifier's input.
- \(C_f \) - preamplifier's feedback capacitor.
- \(\tau = R_f \times C_f \) = preamplifier signal decay time constant

and \(R_f \) is a high valued resistor connected across \(C_f \).

In the complex frequency domain, equation (1) becomes:

\[E_i(s) = \frac{Q}{C_f} \frac{1}{s + \frac{1}{\tau}} \] \hspace{1cm} (2)

Let us now compute the transfer function of the amplifier's first filter section. That will consist of evaluating the ratio

\[\frac{E_{01}(s)}{E_i(s)} \]

It can be shown by operational amplifier theory that this transfer function is given by

\[\frac{E_{01}(s)}{E_i(s)} = \frac{-Y_{21a}}{Y_{21b}} \] \hspace{1cm} (3)

where \(Y_{21a} \), \(Y_{21b} \) are the transadmittances of the input and feedback networks respectively.

Using standard network analysis techniques, \(Y_{21a} \) is found to be:
\[Y_{21a} = \frac{1}{R_{2a}} \frac{S + \frac{1}{R_{la}C_{1a}}}{S + \frac{1}{R_{la}R_{2a} + R_{2a}C_{1a}}} \] (4)

and:

\[-Y_{21b} = \frac{C_{lb}}{S + \frac{1}{R_{lb}R_{2b} + R_{2b}C_{2b}}} \left[S^2 + \frac{1}{\left(\frac{R_{lb} \times R_{2b}}{R_{lb} + R_{2b}C_{2b}} \right)} \right] \] (5)

and the transfer function is given by:

\[
\frac{E_{01}(s)}{E_i(s)} = \frac{\frac{1}{R_{2a}} \left(S + \frac{1}{R_{la}C_{1a}} \right)}{C_{lb} \left[S^2 + \frac{1}{\left(\frac{R_{lb} \times R_{2b}}{R_{lb} + R_{2b}C_{2b}} \right)} \right] S + \frac{1}{R_{lb}C_{1b}R_{2b}C_{2b}}} \] (6)

Recalling equation (2), and establishing the condition that \(\tau = R_f \times C_f \) be equal to \(R_{la} \times C_{1a} \), one finds that upon multiplication of the preamplifier output response to the network "a" transfer function, there is a pole-zero cancellation and the response at the output of the first amplifier is given by:

\[
E_{01}(s) = \frac{\frac{Q}{C_f} \times \frac{1}{S + \frac{1}{R_{la} \times R_{2a} + R_{2a}C_{1a}}}}{R_{2a}C_{1b}} \frac{\left(S^2 + \frac{1}{\left(\frac{R_{lb} \times R_{2b}}{R_{lb} + R_{2b}C_{2b}} \right)} \right) S + \frac{1}{R_{lb}C_{1b}R_{2b}C_{2b}}} {S + \frac{1}{R_{lb}R_{2b} + R_{2b}C_{2b}} \right) \] (7)
It is desirable to have the differentiating time constant of the input network equal to the integrating time constant of the bridged tee network and thus superimpose the pole of Y_{21a} with the pole of Y_{21b}. Once this is established, $E_{01}(s)$ becomes:

$$E_{01}(s) = -\frac{Q}{C_f R_{2a} C_{1b}} \left[\frac{1}{S^2 + \left(\frac{1}{\frac{R_{1b} \times R_{2b}}{R_{1b} + R_{2b} C_{2b}}} \right)} S + \frac{1}{\frac{R_{1b} C_{1b} R_{2b} C_{2b}}{}} \right]$$

Equation (8) gives the signal response at the output of the first operational amplifier.

By studying the locations of the poles of $E_1(s)$, one can determine the nature of the time response or pulse behavior. It will, of course, depend on the roots of the characteristic equation:

$$S^2 + 2\rho W_0 S + W_0^2 = 0 \quad (9)$$

where the new variables are:

$$W_0 = \frac{1}{R_{1b} C_{1b} \cdot R_{2b} C_{2b}} \quad (10)$$

and

$$2\rho W_0 = \frac{1}{\frac{R_{1b} \times R_{2b}}{R_{1b} + R_{2b} C_{2b}}} \quad (11)$$

Solving for ρ in equation (9) one finds:

$$\rho = \frac{1}{2 \times \frac{R_{1b} \times R_{2b}}{R_{1b} + R_{2b} C_{2b}} C_{2b} \times \frac{1}{\sqrt{R_{1b} C_{1b} \cdot R_{2b} C_{2b}}}}$$

$$\rho = \frac{(R_{1b} + R_{2b}) \sqrt{R_{1b} C_{1b} \cdot R_{2b} C_{2b}}}{2 R_{1b} \cdot R_{2b} C_{2b}} \quad (12)$$
The roots of equation (9) are:

\[S_{1,2} = \frac{-2pW_0 \pm \sqrt{4p^2W_0^2 - 4W_0^2}}{2} \]

or

\[S_{1,2} = \frac{2pW_0 \pm 2W_0 \sqrt{p^2 - 1}}{2} \quad (13) \]

Equation (13) tells that one can expect three different kinds of solutions depending on the value of the parameter \(p \).

- \(\rho < 1 \), \(S_{1,2} \) will be a pair of complex conjugates in the left half of the complex frequency plane. In this case the response of equation (8) will be underdamped and will present oscillations.

- \(\rho > 1 \), \(S_{1,2} \) will be two numbers located on the negative real axis of the complex frequency plane. In this case the response of the equation (8) will be overdamped.

- \(\rho = 1 \), \(S_{1,2} \) will be a pair of coincident real roots located on the negative real axis of the complex frequency plane. In this case, the response of equation (8) will be critically damped. This means, fastest return to the baseline with no oscillations.

In the present application, one is more interested in this third type of solution (\(\rho = 1 \)) which gives for solutions the following:

\[S_{1,2} = W_0(2) \]

Under these conditions, equation (8) can be rewritten as:
For the second stage of filtering, the transfer function is again given by:

$$ E_{02}(s) = \frac{-\frac{1}{(R_{lc})^2C_{lc}}}{S + \frac{2}{(R_{lc})C_{lc}}} $$

It is easily shown that:

$$ Y_{21c} = \frac{1}{S + \frac{2}{(R_{lc})C_{lc}}} $$

and

$$ Y_{21d} = -\frac{C_{ld}}{S + \frac{R_{ld} + R_{2d}C_{2d}}{R_{ld} \times R_{2d} C_{2d}}} \left\{ S + \frac{1}{R_{ld} R_{2d} C_{ld} C_{2d}} \right\} $$

Thus:

$$ \frac{E_{02}(s)}{E_{01}(s)} = \frac{-\frac{1}{(R_{lc})^2C_{lc}}}{C_{ld} \left\{ S + \frac{R_{ld} + R_{2d}C_{2d}}{R_{ld} \times R_{2d} C_{2d}} \right\} \left\{ S + \frac{1}{R_{ld} R_{2d} C_{ld} C_{2d}} \right\}} $$

In this case, if the pole of Y_{21c} is made to coincide with the pole of Y_{21d}, one has:

161
\[
E_{02}(s) = \frac{1}{(R_{lc})^2C_{lc}}\]
\[
E_{01}(s) = \frac{1}{C_{ld}} \left[\frac{S^2 + \frac{R_{ld} + R_{2d}}{R_{ld} \times R_{2d}}}{S + \frac{1}{\frac{R_{ld}R_{2d}C_{ld}C_{2d}}{R_{ld} \times R_{2d}}} \right] \]

and the condition used to obtain (18) was:

\[
\frac{R_{lc}}{2} \times C_{lc} = \frac{R_{ld} \times R_{2d}}{R_{ld} + R_{2d}} \times C_{2d}
\]

The output voltage response will be obtained by multiplying both members of equation (18) by \(E_{01}(s) \) and then substituting \(E_{01}(s) \) by its expression as given by equation (14). Thus:

\[
E_{02}(s) = \frac{Q}{C_{f}R_{2a}C_{lb}C_{ld}(R_{lc})^2C_{lc}D}
\]
\[
\left[S^2 + \frac{R_{ld} + R_{2d}}{R_{ld} \times R_{2d}} \right] \left[S + \frac{1}{\frac{R_{ld}R_{2d}C_{ld}C_{2d}}{R_{ld} \times R_{2d}}} \right] \left[S + \frac{1}{\sqrt{R_{1b}C_{lb}R_{2b}C_{2b}}} \right] \]

The second filter section can also have its elements chosen so as to guarantee critically damped response. Under these conditions, one has:

\[
E_{02}(s) = \frac{Q}{C_{f}R_{2a}C_{lb}C_{ld}(R_{lc})^2C_{lc}D}
\]
\[
\left[S + \frac{1}{\sqrt{R_{1c}R_{2c}}} \right] \left[S + \frac{1}{\sqrt{R_{1b}C_{lb}R_{2b}C_{2b}}} \right] \]

If one goes one step further and makes the bridged tee elements for both filters correspondingly equal, Equation (21) becomes:

\[
E_{02}(s) = \frac{Q}{C_{f}R_{2a}C_{ld}^2(R_{lc})^2C_{lc}D}
\]
\[
\left[S + \frac{1}{\sqrt{R_{1c}R_{2c}}} \right] \left[S + \frac{1}{\sqrt{R_{1b}C_{lb}R_{2b}C_{2b}}} \right] \]

162
Equation (22) gives the overall response of the pulse shaping amplifier when fed from a charge sensitive preamplifier. The filtering is arranged so that there is one early differentiation at the "front end" in the so-called "pole-zero" cancellation network, followed by two stages of active integration. In addition, the time constants were chosen to be equal as explained above.

The frequency domain amplitude response is shown in figure 2 below.

The time domain expression for equation (22) is given by:

$$e_{02}(t) = \frac{Q}{C_f R_2 a C_1^2 (R_{1c})^2 C_{1c}} \times \frac{-t}{6} e^{\frac{-t}{\sqrt{R_1 C_1 R_2 C_2}}}$$

(23)

where $\sqrt{R_1 C_1 R_2 C_2} = \tau$ is the time constant.
The time for $e_{02}(t)$ to reach its maximum amplitude can be found by taking the derivative of $e_{02}(t)$ with respect to time, equating it to zero and solving the resulting equation:

$$\frac{de_{02}(t)}{dt} = K_1 \frac{1}{\tau} t^3 - \frac{1}{\tau} e^{-\frac{t}{\tau}} + K_1 x \frac{1}{\tau} e^{-\frac{t}{\tau}} x 3t^2 = 0 \quad (24)$$

thus:

$$-\frac{t}{\tau} + 3 = 0$$

and $t = 3\tau$. \hfill (25)

Expression (23) can be normalized with respect to amplitude and time constant, resulting in the following expression:

$$e_{02}(t) = t^3 e^{-t} \quad (26)$$

Examining expression (26) one immediately concludes that $e_{02}(t)$ has two singularities, that is, its value is zero for $t = 0$ and also for $t = \infty$. This, of course, clearly identifies the strictly unipolar nature of this amplifier configuration.

It is desirable to know the values of $e_{02}(t)$ for many different values of t in order to have a clear understanding of the system "dead-time" and "pile-up" effects under high pulse rate excitation. The expression $e_{02}(t) = t^3 e^{-t}$ was solved for t in increments of $\Delta t = .1$ from $t = 0$ to $t = 20$, using the H.P. 9100B calculator, and the results are presented in the form of a table of $e_{02}(t)$ versus t and also in the form of a plot of $e_{02}(t)$ versus t. The plot has been normalized so that maximum amplitude is made equal to 1. This allows all the other points to be immediately viewed as a direct percentage of the maximum value. The table and the plot are shown in figures 5 and 8 respectively.

164
Bipolar Configuration

In order to achieve a bipolar pulse response at the output of the shaping amplifier, it is necessary to differentiate the incoming pulse twice. For this particular application, and due to loading considerations, it is preferable to place the second differentiator between the two operational amplifiers. This can be made of a series R-C network at the input section of the second active filter as shown in figure 3.

Figure 3

By comparing figure 3 with figure 1, it becomes apparent that \(E_{01}(s) \) still has the same expression as given by equation (14). Furthermore, the transadmittance of the second amplifier feedback network will also be maintained unchanged and equal to equation (16). Thus:

\[
Y_{21d} = \frac{-C_{1d}}{s^2 + \left(\frac{R_{1d} + R_{2d}}{R_{1d} \times R_{2d}C_{2d}}\right)s + \frac{1}{(R_{1d}C_{1d}R_{2d}C_{2d})}} \tag{16}
\]

The second stage input network transadmittance will be:
and the second filter transfer function is given by:

\[
\frac{E_{02}(s)}{E_{01}(s)} = - \frac{1}{R_3} \frac{S}{S + \frac{1}{R_3C_3}} \frac{S}{S + \frac{1}{R_1R_2C_2}} \left[S^2 + \left(\frac{R_1 + R_2}{R_1R_2C_2} \right) S + \frac{1}{R_1R_2C_2} \right]
\]

As in the unipolar case, it is advantageous to make the following equality:

\[
R_3C_3 = \frac{R_1R_2}{R_1 + R_2} C_2
\]

Under this condition, equation (18) becomes:

\[
\frac{E_{02}(s)}{E_{01}(s)} = - \frac{1}{R_3C_1} \frac{S}{S + \frac{1}{R_1R_2C_2}} \left[S^2 + \left(\frac{R_1 + R_2}{R_1R_2C_2} \right) S + \frac{1}{R_1R_2C_2} \right]
\]

By using \(E_{01}(s)\) as given by equation (14) and considering critical damping for expression (30), the output response becomes:

\[
E_{02}(s) = \left(\frac{Q}{R_3C_1^2} \right) \times \frac{S}{S + \frac{1}{\sqrt{R_1R_2C_2^2}}}
\]

By studying equation (31) it can be seen that the effect of a second differentiation is the addition of a zero located at the origin. The time domain expression for equation (31) is given by:
\[E_{02}(t) = K_1 \times \frac{1}{2} \times e^{-\frac{t}{\tau}} \left(t^2 - \frac{1}{3\tau} t^3 \right) \] (32)

where \(K_1 = \frac{Q}{R_3 C_f R_2 a C_1} \)

and \(\tau = \sqrt{R_1 C_1 R_2 C_2} \)

The times to reach the positive and negative peaks can be found by taking the derivative of \(E_{02}(t) \) with respect to \(t \), equating it to zero and then solving for \(t \). After some straightforward manipulations, the following equation results:

\[t^2 - 6\tau t + 6\tau^2 = 0 \] (33)

for which the two solutions \(t_1 = 1.27\tau \) and \(t_2 = 4.73\tau \) are respectively the times of the first and second peaks of the bipolar pulse.

By substituting the values \(t_1 = 1.27\tau \) and \(t_2 = 4.73\tau \) into expression (32) the peak values of \(E_{02}(t) \) are found to be:

\[E_{02}\text{(first peak)} = + \frac{.262 \times K_1}{2} \] (34)

\[E_{02}\text{(second peak)} = \frac{.114 \times K_1}{2} \] (35)

It is interesting to know that:

\[\frac{E_{02}\text{(second peak)}}{E_{02}\text{(first peak)}} = \frac{.114}{.262} = .435 \] (36)

This means that the secondary lobe of the bipolar pulse has a peak that is only 43.5% as big as the primary lobe peak. However, the areas under these two lobes should be equal.
In order to find the time for the bipolar pulse to cross the baseline, one makes expression (32) equal to zero and then solve the resulting equation for t. Once that is done, the crossover point is found to be at:

$$t = 3\tau$$

(37)

As in the case of the unipolar pulse analysis, expression (32) can be normalized with respect to amplitude and time constant, so that the following expression results:

$$e_{02}(t) = e^{-t\left(t^2 - \frac{t^3}{3}\right)}$$

(38)

This expression was also solved for t, in increments of $\Delta t = .1$ from $t = 0$ to $t = 20$, using the H.P. 9100B calculator. The results are presented in the form of a table in figure 9 and of a plot in figure 6.

The frequency domain amplitude response for the bipolar pulse, corresponding to expression (31), is shown in the figure below.

![Figure 4](image-url)
Figure 6
<table>
<thead>
<tr>
<th>t</th>
<th>e_{O2} \times 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.0006</td>
<td>3.1</td>
<td>0.9984</td>
<td>6.1</td>
<td>0.3787</td>
<td>9.1</td>
<td>0.0626</td>
<td>12.1</td>
<td>0.0073</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0048</td>
<td>3.2</td>
<td>0.9937</td>
<td>6.2</td>
<td>0.3598</td>
<td>9.2</td>
<td>0.0585</td>
<td>12.2</td>
<td>0.0067</td>
</tr>
<tr>
<td>0.3</td>
<td>0.0148</td>
<td>3.3</td>
<td>0.9861</td>
<td>6.3</td>
<td>0.3416</td>
<td>9.3</td>
<td>0.0547</td>
<td>12.3</td>
<td>0.0063</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0319</td>
<td>3.4</td>
<td>0.9759</td>
<td>6.4</td>
<td>0.3240</td>
<td>9.4</td>
<td>0.0511</td>
<td>12.4</td>
<td>0.0058</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0564</td>
<td>3.5</td>
<td>0.9632</td>
<td>6.5</td>
<td>0.3071</td>
<td>9.5</td>
<td>0.0477</td>
<td>12.5</td>
<td>0.0054</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0881</td>
<td>3.6</td>
<td>0.9484</td>
<td>6.6</td>
<td>0.2909</td>
<td>9.6</td>
<td>0.0445</td>
<td>12.6</td>
<td>0.0050</td>
</tr>
<tr>
<td>0.7</td>
<td>0.1267</td>
<td>3.7</td>
<td>0.9317</td>
<td>6.7</td>
<td>0.2754</td>
<td>9.7</td>
<td>0.0416</td>
<td>12.7</td>
<td>0.0046</td>
</tr>
<tr>
<td>0.8</td>
<td>0.1711</td>
<td>3.8</td>
<td>0.9132</td>
<td>6.8</td>
<td>0.2605</td>
<td>9.8</td>
<td>0.0388</td>
<td>12.8</td>
<td>0.0043</td>
</tr>
<tr>
<td>0.9</td>
<td>0.2205</td>
<td>3.9</td>
<td>0.8933</td>
<td>6.9</td>
<td>0.2463</td>
<td>9.9</td>
<td>0.0362</td>
<td>12.9</td>
<td>0.0039</td>
</tr>
<tr>
<td>1.0</td>
<td>0.2737</td>
<td>4.0</td>
<td>0.8721</td>
<td>7.0</td>
<td>0.2327</td>
<td>10.0</td>
<td>0.0337</td>
<td>13.0</td>
<td>0.0036</td>
</tr>
<tr>
<td>1.1</td>
<td>0.3296</td>
<td>4.1</td>
<td>0.8498</td>
<td>7.1</td>
<td>0.2197</td>
<td>10.1</td>
<td>0.0314</td>
<td>13.1</td>
<td>0.0034</td>
</tr>
<tr>
<td>1.2</td>
<td>0.3872</td>
<td>4.2</td>
<td>0.8265</td>
<td>7.2</td>
<td>0.2073</td>
<td>10.2</td>
<td>0.0293</td>
<td>13.2</td>
<td>0.0031</td>
</tr>
<tr>
<td>1.3</td>
<td>0.4454</td>
<td>4.3</td>
<td>0.8026</td>
<td>7.3</td>
<td>0.1955</td>
<td>10.3</td>
<td>0.0273</td>
<td>13.3</td>
<td>0.0029</td>
</tr>
<tr>
<td>1.4</td>
<td>0.5034</td>
<td>4.4</td>
<td>0.7781</td>
<td>7.4</td>
<td>0.1842</td>
<td>10.4</td>
<td>0.0254</td>
<td>13.4</td>
<td>0.0027</td>
</tr>
<tr>
<td>1.5</td>
<td>0.5602</td>
<td>4.5</td>
<td>0.7531</td>
<td>7.5</td>
<td>0.1735</td>
<td>10.5</td>
<td>0.0237</td>
<td>13.5</td>
<td>0.0025</td>
</tr>
<tr>
<td>1.6</td>
<td>0.6152</td>
<td>4.6</td>
<td>0.7279</td>
<td>7.6</td>
<td>0.1634</td>
<td>10.6</td>
<td>0.0220</td>
<td>13.6</td>
<td>0.0023</td>
</tr>
<tr>
<td>1.7</td>
<td>0.6677</td>
<td>4.7</td>
<td>0.7025</td>
<td>7.7</td>
<td>0.1538</td>
<td>10.7</td>
<td>0.0205</td>
<td>13.7</td>
<td>0.0021</td>
</tr>
<tr>
<td>1.8</td>
<td>0.7172</td>
<td>4.8</td>
<td>0.6771</td>
<td>7.8</td>
<td>0.1446</td>
<td>10.8</td>
<td>0.0191</td>
<td>13.8</td>
<td>0.0019</td>
</tr>
<tr>
<td>1.9</td>
<td>0.7632</td>
<td>4.9</td>
<td>0.6518</td>
<td>7.9</td>
<td>0.1359</td>
<td>10.9</td>
<td>0.0177</td>
<td>13.9</td>
<td>0.0018</td>
</tr>
<tr>
<td>2.0</td>
<td>0.8055</td>
<td>5.0</td>
<td>0.6266</td>
<td>8.0</td>
<td>0.1277</td>
<td>11.0</td>
<td>0.0165</td>
<td>14.0</td>
<td>0.0016</td>
</tr>
<tr>
<td>2.1</td>
<td>0.8437</td>
<td>5.1</td>
<td>0.6017</td>
<td>8.1</td>
<td>0.1200</td>
<td>11.1</td>
<td>0.0153</td>
<td>14.1</td>
<td>0.0015</td>
</tr>
<tr>
<td>2.2</td>
<td>0.8777</td>
<td>5.2</td>
<td>0.5771</td>
<td>8.2</td>
<td>0.1126</td>
<td>11.2</td>
<td>0.0142</td>
<td>14.2</td>
<td>0.0014</td>
</tr>
<tr>
<td>2.3</td>
<td>0.9075</td>
<td>5.3</td>
<td>0.5528</td>
<td>8.3</td>
<td>0.1057</td>
<td>11.3</td>
<td>0.0132</td>
<td>14.3</td>
<td>0.0013</td>
</tr>
<tr>
<td>2.4</td>
<td>0.9330</td>
<td>5.4</td>
<td>0.5291</td>
<td>8.4</td>
<td>0.0991</td>
<td>11.4</td>
<td>0.0123</td>
<td>14.4</td>
<td>0.0012</td>
</tr>
<tr>
<td>2.5</td>
<td>0.9542</td>
<td>5.5</td>
<td>0.5058</td>
<td>8.5</td>
<td>0.0929</td>
<td>11.5</td>
<td>0.0114</td>
<td>14.5</td>
<td>0.0011</td>
</tr>
<tr>
<td>2.6</td>
<td>0.9712</td>
<td>5.6</td>
<td>0.4831</td>
<td>8.6</td>
<td>0.0871</td>
<td>11.6</td>
<td>0.0106</td>
<td>14.6</td>
<td>0.0010</td>
</tr>
<tr>
<td>2.7</td>
<td>0.9841</td>
<td>5.7</td>
<td>0.4610</td>
<td>8.7</td>
<td>0.0816</td>
<td>11.7</td>
<td>0.0098</td>
<td>14.7</td>
<td>0.0009</td>
</tr>
<tr>
<td>2.8</td>
<td>0.9931</td>
<td>5.8</td>
<td>0.4394</td>
<td>8.8</td>
<td>0.0764</td>
<td>11.8</td>
<td>0.0091</td>
<td>14.8</td>
<td>0.0009</td>
</tr>
<tr>
<td>2.9</td>
<td>0.9984</td>
<td>5.9</td>
<td>0.4185</td>
<td>8.9</td>
<td>0.0715</td>
<td>11.9</td>
<td>0.0085</td>
<td>14.9</td>
<td>0.0008</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0001</td>
<td>6.0</td>
<td>0.3983</td>
<td>9.0</td>
<td>0.0669</td>
<td>12.0</td>
<td>0.0078</td>
<td>15.0</td>
<td>0.0007</td>
</tr>
<tr>
<td>t</td>
<td>$e_{02} \times 10^2 %$</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>-----</td>
<td>------------------------</td>
<td>-----</td>
<td>------------------------</td>
<td>-----</td>
<td>------------------------</td>
<td>-----</td>
<td>------------------------</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0335</td>
<td>3.1</td>
<td>0.0552</td>
<td>6.1</td>
<td>0.3304</td>
<td>9.1</td>
<td>0.0720</td>
<td>12.1</td>
<td>0.0094</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1171</td>
<td>3.2</td>
<td>0.1066</td>
<td>6.2</td>
<td>0.3188</td>
<td>9.2</td>
<td>0.0677</td>
<td>12.2</td>
<td>0.0087</td>
</tr>
<tr>
<td>0.3</td>
<td>0.2299</td>
<td>3.3</td>
<td>0.1539</td>
<td>6.3</td>
<td>0.3072</td>
<td>9.3</td>
<td>0.0636</td>
<td>12.3</td>
<td>0.0081</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3561</td>
<td>3.4</td>
<td>0.1971</td>
<td>6.4</td>
<td>0.2955</td>
<td>9.4</td>
<td>0.0597</td>
<td>12.4</td>
<td>0.0076</td>
</tr>
<tr>
<td>0.5</td>
<td>0.4842</td>
<td>3.5</td>
<td>0.2362</td>
<td>6.5</td>
<td>0.2839</td>
<td>9.5</td>
<td>0.0560</td>
<td>12.5</td>
<td>0.0070</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6056</td>
<td>3.6</td>
<td>0.2713</td>
<td>6.6</td>
<td>0.2724</td>
<td>9.6</td>
<td>0.0526</td>
<td>12.6</td>
<td>0.0065</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7148</td>
<td>3.7</td>
<td>0.3026</td>
<td>6.7</td>
<td>0.2611</td>
<td>9.7</td>
<td>0.0493</td>
<td>12.7</td>
<td>0.0060</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8081</td>
<td>3.8</td>
<td>0.3300</td>
<td>6.8</td>
<td>0.2499</td>
<td>9.8</td>
<td>0.0462</td>
<td>12.8</td>
<td>0.0056</td>
</tr>
<tr>
<td>0.9</td>
<td>0.8833</td>
<td>3.9</td>
<td>0.3539</td>
<td>6.9</td>
<td>0.2390</td>
<td>9.9</td>
<td>0.0433</td>
<td>12.9</td>
<td>0.0052</td>
</tr>
<tr>
<td>1.0</td>
<td>0.9398</td>
<td>4.0</td>
<td>0.3743</td>
<td>7.0</td>
<td>0.2282</td>
<td>10.0</td>
<td>0.0405</td>
<td>13.0</td>
<td>0.0048</td>
</tr>
<tr>
<td>1.1</td>
<td>0.9775</td>
<td>4.1</td>
<td>0.3914</td>
<td>7.1</td>
<td>0.2178</td>
<td>10.1</td>
<td>0.0380</td>
<td>13.1</td>
<td>0.0045</td>
</tr>
<tr>
<td>1.2</td>
<td>0.9972</td>
<td>4.2</td>
<td>0.4054</td>
<td>7.2</td>
<td>0.2076</td>
<td>10.2</td>
<td>0.0355</td>
<td>13.2</td>
<td>0.0042</td>
</tr>
<tr>
<td>1.3</td>
<td>1.0001</td>
<td>4.3</td>
<td>0.4165</td>
<td>7.3</td>
<td>0.1977</td>
<td>10.3</td>
<td>0.0332</td>
<td>13.3</td>
<td>0.0038</td>
</tr>
<tr>
<td>1.4</td>
<td>0.9877</td>
<td>4.4</td>
<td>0.4250</td>
<td>7.4</td>
<td>0.1881</td>
<td>10.4</td>
<td>0.0311</td>
<td>13.4</td>
<td>0.0036</td>
</tr>
<tr>
<td>1.5</td>
<td>0.9619</td>
<td>4.5</td>
<td>0.4310</td>
<td>7.5</td>
<td>0.1788</td>
<td>10.5</td>
<td>0.0290</td>
<td>13.5</td>
<td>0.0033</td>
</tr>
<tr>
<td>1.6</td>
<td>0.9242</td>
<td>4.6</td>
<td>0.4346</td>
<td>7.6</td>
<td>0.1698</td>
<td>10.6</td>
<td>0.0271</td>
<td>13.6</td>
<td>0.0031</td>
</tr>
<tr>
<td>1.7</td>
<td>0.8766</td>
<td>4.7</td>
<td>0.4362</td>
<td>7.7</td>
<td>0.1611</td>
<td>10.7</td>
<td>0.0253</td>
<td>13.7</td>
<td>0.0028</td>
</tr>
<tr>
<td>1.8</td>
<td>0.8209</td>
<td>4.8</td>
<td>0.4359</td>
<td>7.8</td>
<td>0.1528</td>
<td>10.8</td>
<td>0.0237</td>
<td>13.8</td>
<td>0.0026</td>
</tr>
<tr>
<td>1.9</td>
<td>0.7586</td>
<td>4.9</td>
<td>0.4339</td>
<td>7.9</td>
<td>0.1448</td>
<td>10.9</td>
<td>0.0221</td>
<td>13.9</td>
<td>0.0024</td>
</tr>
<tr>
<td>2.0</td>
<td>0.6914</td>
<td>5.0</td>
<td>0.4303</td>
<td>8.0</td>
<td>0.1371</td>
<td>11.0</td>
<td>0.0206</td>
<td>14.0</td>
<td>0.0022</td>
</tr>
<tr>
<td>2.1</td>
<td>0.6208</td>
<td>5.1</td>
<td>0.4253</td>
<td>8.1</td>
<td>0.1297</td>
<td>11.1</td>
<td>0.0192</td>
<td>14.1</td>
<td>0.0021</td>
</tr>
<tr>
<td>2.2</td>
<td>0.5480</td>
<td>5.2</td>
<td>0.4191</td>
<td>8.2</td>
<td>0.1226</td>
<td>11.2</td>
<td>0.0179</td>
<td>14.2</td>
<td>0.0019</td>
</tr>
<tr>
<td>2.3</td>
<td>0.4742</td>
<td>5.3</td>
<td>0.4119</td>
<td>8.3</td>
<td>0.1159</td>
<td>11.3</td>
<td>0.0167</td>
<td>14.3</td>
<td>0.0018</td>
</tr>
<tr>
<td>2.4</td>
<td>0.4004</td>
<td>5.4</td>
<td>0.4037</td>
<td>8.4</td>
<td>0.1094</td>
<td>11.4</td>
<td>0.0156</td>
<td>14.4</td>
<td>0.0016</td>
</tr>
<tr>
<td>2.5</td>
<td>0.3276</td>
<td>5.5</td>
<td>0.3947</td>
<td>8.5</td>
<td>0.1032</td>
<td>11.5</td>
<td>0.0145</td>
<td>14.5</td>
<td>0.0015</td>
</tr>
<tr>
<td>2.6</td>
<td>0.2565</td>
<td>5.6</td>
<td>0.3851</td>
<td>8.6</td>
<td>0.0973</td>
<td>11.6</td>
<td>0.0135</td>
<td>14.6</td>
<td>0.0014</td>
</tr>
<tr>
<td>2.7</td>
<td>0.1877</td>
<td>5.7</td>
<td>0.3749</td>
<td>8.7</td>
<td>0.0918</td>
<td>11.7</td>
<td>0.0126</td>
<td>14.7</td>
<td>0.0013</td>
</tr>
<tr>
<td>2.8</td>
<td>0.1217</td>
<td>5.8</td>
<td>0.3642</td>
<td>8.8</td>
<td>0.0864</td>
<td>11.8</td>
<td>0.0117</td>
<td>14.8</td>
<td>0.0012</td>
</tr>
<tr>
<td>2.9</td>
<td>0.0591</td>
<td>5.9</td>
<td>0.3532</td>
<td>8.9</td>
<td>0.0814</td>
<td>11.9</td>
<td>0.0109</td>
<td>14.9</td>
<td>0.0011</td>
</tr>
<tr>
<td>3.0</td>
<td>0.0000</td>
<td>6.0</td>
<td>0.3419</td>
<td>9.0</td>
<td>0.0766</td>
<td>12.0</td>
<td>0.0101</td>
<td>15.0</td>
<td>0.0010</td>
</tr>
</tbody>
</table>
EPS HOUSEKEEPING SPECIFICATION

General: To insure proper operation and maintenance of the EPS hardware a total of twenty (20) parameters must be monitored using two (2) spacecraft high level, low rate analog FM channels. Since the detectors' temperature controls the spectrometer's operating mode, a wide range detector temperature sensor will be monitored on one channel singularly. The other nineteen (19) monitors and two sync channels will be multiplexed onto the second TM channel.

The total complement of monitors is:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>+8</td>
<td>1</td>
</tr>
<tr>
<td>-8</td>
<td>1</td>
</tr>
<tr>
<td>+28</td>
<td>1</td>
</tr>
<tr>
<td>+5</td>
<td>1</td>
</tr>
<tr>
<td>-5</td>
<td>1</td>
</tr>
<tr>
<td>-5 (reference)</td>
<td>1</td>
</tr>
<tr>
<td>+350 (bias)</td>
<td>1</td>
</tr>
<tr>
<td>Electronic Package Temperature</td>
<td>1</td>
</tr>
<tr>
<td>Wide Range Detector Temperature</td>
<td>1</td>
</tr>
<tr>
<td>Narrow Range Detector Temp. Monitor</td>
<td>1</td>
</tr>
<tr>
<td>Detector Leakage Current Monitor</td>
<td>5</td>
</tr>
<tr>
<td>Electronic Noise Monitor</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
</tr>
</tbody>
</table>
TM Interface: Each of the analog TM channels assigned to the EPS has the following characteristics:

- **Input Range**: 0 to +5 VDC
- **Input Impedance**: $\geq 1 \text{ M}\Omega$
- **Input Shunt Capacitance**: $\leq 2.2 \mu\text{f}$
- **Sample Rate**: 1.25/second
- **Sample Interval**: $\leq 20 \mu\text{seconds}$
- **Sync Availability**: None
- **Required Source Impedance**: $\leq 10\text{K}\Omega$

Detailed Specifications: The analog multiplexer/buffer system will have the following end to end characteristics:

- **TM output range**: 0.000 to +5.000 volts into 1 MQ
- **Output Impedance**: 1.00 KΩ ± 0.1Ω orig. temp. range
- **Short Circuit Duration**: $\leq 0.1\%$
- **Integral Nonlinearity**: $< 0.1\%$ over the allowable package temperature
- **Gain Stability**: $< 5.0 \text{ mvolts over the allowable package temp.}$
- **Zero Stability**: Must meet or exceed the requirements of tests CE02, CE04, RE01, RE02 and RS03 of MIL-STD 461A.
- **Tolerance to induced noise in signal line**: $<10 \text{ nAmps over the allowable temperature range.}$
 - @ +8 VDC
 - @ -8 VDC
 - @ +5 VDC
- **Buffer Amplifier Input Bias Current**: No loss in monitor characteristics for a + 1 volt variation in any supply voltage.
 - $-25^\circ\text{C} \leq T \leq +25^\circ\text{C}$
 - $-50^\circ\text{C} \leq T \leq +50^\circ\text{C}$
Design Responsibility: The housekeeping subsystem engineer will have the responsibility of designing all components of the analog system with the exception of:

A. The five leakage current monitors
B. The noise monitor and its associated input multiplex circuitry.

However, in these two cases the housekeeping subsystem engineer will determine output specifications necessary to properly interface with the ensuing multiplexer.

Location: The entire housekeeping subsystem with the exception of the five leakage current monitors and the multiplexed noise monitor will be located in the Data Processor module.

Detailed Sensor Specifications

A. Wide range detector temperature sensor
 1. Range -100°C to +100°C
 2. Accuracy* +5°C

B. Electronics Package Temperature Sensor
 1. Range -100°C to +100°C
 2. Accuracy* +5°C

C. Narrow Range Detector Temperature Sensor
 1. Range -25°C to +30°C
 2. Accuracy* +0.5°C

D. Leakage Current Monitors
 1. Range 0 amp to 5 amp
 2. Accuracy* ± 5 namp

E. Resolution Monitor
 1. Range 0 Kev (FWHM) to 100 Kev (FWHM)
 2. Accuracy* ± 1 Kev (FWHM)

F. Voltage Monitors
 1. Range +4.50 volts maximum
2. Accuracy

G. Positive Analog Sync
 1. D.C. Output* +0.5%

H. Ground Analog Sync
 1. D.C. Output* 0.000 ± 0.01 volt

*Indicates accuracy over the entire environmental range.
3.2.1.5.C Mission Interface (Times of Hardware Operation)

The determination of mission profiles are defined by the Skylab Program Office. Certain requirements of the mission total times are defined by the ICD. The ability of the EPS to meet these requirements and to operate in hostile environment for more than the required mission times is reflected by the FMEA and the Qualification Test Report. A mean-time-between-failure analysis of the original concept of an operation time of two years is met. A worse case rough analysis of the entire system estimates a mean-time-to-failure (MTTF) of 21,500 hours. This MTTF does not include the detectors.
3.3.1.7.1 Structural Factors of Safety

The original design of the EPS incorporated factors of safety as required to meet this requirement. After the higher test levels were received, there was some doubt as to whether the design had a sufficient factor of safety. A computer calculation performed very recently indicates that the EPS design continues to meet this requirement even when stressed to the higher test levels.
3.3.2.4 Electrical Connectors - Pin Assignment and Pin or Socket Selection

All electrical connectors used in the EPS were analyzed during the Single Point Failure Analysis and the Failure Mode Effects Analysis (FMEA). The requirements of paragraph 3.3.24 of MSC-KA-69-44 were met with emphasis on mishaps due to design, operational and procedural deficiencies, environmental conditions, personnel error, and normal equipment operation.

a. All connectors in slices are keyed and cannot be mated wrong. Also connectors (slices) cannot be de-mated with power on instrument. Hence, no hazard.

b. A statement indicating 'power must be off' during installation in spacecraft will be added to installation and handling procedures.
3.3.2.6 Material Detrimental to Electrical Connectors

Non-metallic materials used on the EPS program were surveyed by LEC R&QA for compatibility. The source of this analysis is the non-metallic manual and NASA/MSC personnel. No material used on the EPS program is considered detrimental to electrical connectors. No metallic materials report is required by the contract; therefore, this effort is not documented.

No materials are used adjacent to exposed electrical contact surfaces. The only material used on or near the connector (but not near exposed contact surfaces) is PR 1538 polyurethane conformal coating on leads and rear of connector bodies. The only fluids used in cleaning are isopropyl alcohol and freon.
3.3.2.7 Electrical and Electronic Piece Parts

A fully documented parts program is available for review. This includes procurement specifications, screening specifications, EEE Parts list, and procurement requirements. The documentation meets all the requirements of this paragraph. These documents have been reviewed by NASA/MSC Reliability and Quality Assurance with no comments. The referenced documents are available for review.
3.3.2.9 Protection of Electrical and Electronic Devices

Electrical and electronic devices used on the EPS have protection against reverse polarity. Adequate diodes have been installed for circuit protection. A protection circuit has been designed to protect the instrument from spurious voltages from the spacecraft as well as protection from feedback voltages into the spacecraft from the instrument.
3.3.4 Debris Protection

a. Electrical circuitry - prevent unwanted current path being produced by debris

The EPS consist of an inner subassembly containing four "slices" (modular aluminum housings containing printed wiring boards and electronic subassemblies encapsulated in their own aluminum housings), which is shock-mounted within an outer mechanical housing. The top plate containing the detector assemblies is mounted onto the inner assembly leaving a gap around the upper edge of the outer housing to allow any movement due to the vibration isolators. This gap is concealed by a flexible silicone skirt to prevent open access to the inner assembly and act as a reflective shield for thermal control yet not affecting the controlled thermal conduction between the outer housing and the top plate/inner electronics assembly. Any contaminants and/or debris could penetrate the outer housing only through this gap and reflective shield. When the four slices are mated, there are covers between each printed wiring board and its mating printed wiring board. This results in an assembly which is sealed except for access holes to test point jacks in two ends of the upper three slices. Each access hole presents access to only one cavity and printed wiring board. The printed wiring boards are conformally coated with PR 1538, a polyurethane, on both sides as protection against moisture, contaminants, etc. Each printed wiring board was designed to mount in a separate cavity shielded from any other cards or electronic subassembly. All wire or contact terminations are conformally coated or encapsulated.
b. Critical mechanical items covers and containers

The eight vibration isolators are contained within the EPS outer housing in pockets with access when required through covers. The detectors are enclosed within hermetically-sealed housings for protection and selection of energy levels. The EPS is supplied with a protective glass fiber cover over the upper half of the experiment which is secured in a shipping and testing stand for protection until installation in spacecraft where a boost cover is employed. All electronic subassemblies are mounted in compartments in slice assembly configurations, which makes any subassembly inaccessible without dismantling the inner assembly.

d. Threaded fittings and fasteners

All fasteners used in the EPS are used with heli-coil screw-lock inserts to positively secure threaded members against loosening caused by vibration and shock and to protect tapped threads against wear and damage in use. All mechanical and electro-mechanical assemblies are cleaned per MSC C-8, Class A. All mechanical parts are packaged per MSC-SPEC-C-12A or MSC10M01836 Paragraph 5.1 and 5.2 (for parts with thermal control coatings) until assembly in a controlled access area or clean room. Upon final assembly all subassemblies are cleaned per MSC C-8, Class A. This cleaning prevents contaminants and/or debris in tapped holes or other limited access areas which could loosen and contaminate areas of the EPS. No self-tapping screws, bolts, or quick-acting fasteners are used. In all four slices, where tapped holes are not blind, they are open outside the hardware so that debris will not be released inside.
3.3.6.1 Test Points

During the early phase of the development of the EPS it was established that there would not be any testing of the EPS after it was installed on the spacecraft other than observing the output of the instrument thru the normal telemetry system. Therefore, all test points contained within the EPS are for laboratory use only.
3.3.6.2 Test Equipment

Development analysis of the Bench Test Equipment (BTE) was made based on the ICD and EPS requirements. The approach was to make the overall acceptance test procedures as simple as possible. The BTE simulates the spacecraft interface such that all inputs/outputs to the EPS are tested in such a way to guarantee proper minimum/maximum level signals. The BTE has been designed and proved by tests and operation.

There are three sources of power in the BTE which are used to power the various interfaces as well as the EPS itself. The computer's internal 6 volt supply powers all logic used in the BTE, the ±15 volt dual supply powers the input interface board and the 8 channel digital to analog converter, and the 25 to 30 volt supply is used exclusively to power the EPS. All power supplies have internal current limiting and over voltage protection to completely protect the EPS and the various subassemblies of the BTE from damage due to power supply malfunction.
3.3.7 Single Point Failure

The "Electron-Proton Spectrometer Single-Point Failure Report", EPS-424 is presented to satisfy this requirement.
ELECTRON-PROTON SPECTROMETER
SINGLE-POINT FAILURE REPORT

Prepared by
Lockheed Electronics Company, Inc.
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
For
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas
August 1971

190
SINGLE-POINT FAILURE REPORT

Prepared by:
P. Gleeson
Reliability and Quality Assurance Engineer

Approved by:
B. E. Curtsinger
Engineering Supervisor

B. C. Hall
Program Manager

Electron-Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company, Inc.
Houston Aerospace Systems Division
Houston, Texas
SINGLE-POINT FAILURE
ELECTRON-PROTON SPECTROMETER

1. PURPOSE

A single point failure summary identifies the critical areas that will, as a result of a single assembly failure, cause a complete or partial loss of the experiment, questionable data, or complete loss of data acquisition. The following information must be delineated:

- Corrective action taken
- Experiment objective and,
- Justification for retaining a single point failure

2.0 CORRECTIVE ACTION

The requirements of the Electron-Proton Spectrometer (EPS), such as weight to power limitations, logic, and electronic circuit packaging, limit redundant circuits and components. As a result, corrective action to reduce the possibility of critical failures is applied through careful selection of the best available high-reliability components, screen and burn-in tests, and derating of components used in the circuits.

3.0 JUSTIFICATION FOR RETAINING SINGLE POINT FAILURES

Space and weight are important factors in the EPS; consequently, there are no redundant logic and electronic circuits. Most of the components used have a long life expectancy. Hi-Rel micro circuits have a predicted Mean-Time-To-Failure (MTTF) rate of five to ten years.
Discrete components have been selected to the high reliability requirements of MIL-STD 883, MIL-STD 202, established reliability programs, or have been screened to Hi-Rel requirements. Component derating further increases the life span. Worst case analysis of the entire system estimates a MTTF of 21,500 hours. This is several times the hours required by mission objectives. The above MTTF does not include the detectors.

4.0 MISSION OBJECTIVE

To measure electron and proton radiation the instrument accepts charge pulses from the detectors. These pulses are shaped and amplified and trigger discriminators at different energy levels. The discriminators outputs are fed into the data processor for telemetry processing.

5.0 SINGLE-POINT FAILURE ANALYSIS

5.1 DATA PROCESSOR

5.1.1 Counter Memory

Ten channels of input information from the discriminators are processed and shifted to the Sequence Control and Digital Data Compressor. The data consists of 4 channels of electron and 6 channels of proton information. A failure of any one channel would result in 10 percent loss of data critical to the mission.
5.1.2 Sequence Control

A failure of the Sequence Control could result in no data output from the Data Processor, including housekeeping events. All common Digital Data Output, Column Sync, Word Sync, Multiplexer Address Advance, housekeeping gates, A/D Converter Start, etc., are dependent on the Sequence Control.

5.1.3 Digital Data Compressor

Failures in the Digital Data Compressor could result in no output data from the Word Sync Generator and Output Buffer, resulting in no data readout to telemetry.

5.1.4 Multiplexer A/D Analog Section

This section of the Data Processor handles housekeeping events. A failure in any part of the Multiplexer would have very little effect on the mission critical data.

5.1.5 Multiplexer A/D Converter Logic

A failure in this section would not effect mission critical data.

5.1.6 Word Sync Generator and Output Buffer

Failure in this section of the Data Processor could result in complete loss of output to telemetry.
5.1.7 Filter Module

This module contains one Output Filter for each telemetry data channel. Failure of a data point filter would result in no data out on one telemetry data channel.

5.1.8 Voltage Monitor

A failure of the Voltage Monitor would have negligible effect on the mission critical data of the EPS.

5.2 LOW VOLTAGE POWER SUPPLY

5.2.1 Preregulator

Failure of the Preregulator could result in erratic output or no output from Preregulator with a possible loss of power to the EPS.

5.2.2 Core Driver

A failure of this driver would result in erratic operation, loss of switching or possible loss of power to the EPS.

5.2.3 Transformer Assembly

A failure of the Transformer Assembly could result in possible loss of a portion of the power to the EPS or possible loss of all low voltage power.

5.2.4 Discriminator Reference Regulator

A failure of the Regulator could result in reduced power input to the Transformer Assembly, power loss to transformer, or possible loss of all low voltage functions.
5.2.5 **Inductor Assemblies**

Failure in an Inductor Assembly could result in erratic output or loss of one or more of the power supply outputs.

5.3 **DETECTOR BIAS POWER SUPPLY**

Loss of Detector Bias would result in no primary data. Detectors would not function. Secondary data (housekeeping information would still be obtained).

5.4 **HEATER**

5.4.1 **Heater Control**

Loss of the Heater Control Circuit would result in a possible temperature variation that could cause loss of or erroneous data.

5.4.2 **Heater Circuit**

The Heater Circuit is not normally on during EPS operation. During down or storage time the effect of failure in the Heater Circuit would depend on orbit mode. At Beta 0° no effect would be noticed. At Beta 73° the EPS survival could be effected.

5.5 **NOISE MONITOR (5 each)**

Failure of the Noise Monitor function would result in a loss of housekeeping events. Effect on the operational data of the EPS would be minor.
5.6 LEAKAGE CURRENT MONITOR (5 each)
Failure of the Leakage Current Monitor would cause a loss of housekeeping events. This event would have minor effects on the primary data received from the EPS.

5.7 PREAMPLIFIER (5 each)
Failure of any one Preamplifier would cause a loss of 20 percent of the primary data inputs to the Data Processor.

5.8 PULSE AMPLIFIER (5 each)
Failure of any one Pulse Amplifier would result in the loss of 20 percent of the primary data to the data processor.

5.9 PULSE HEIGHTS DISCRIMINATOR (5 each)
Failure of any one of the Pulse Height Discriminators would result in 20 percent loss of primary data to the Data Processor.

5.10 INPUT FILTER
Failure of the Input Filter would cause the loss of either all data, primary data only, or Heater Control only.

5.11 DETECTORS
If one of the Detectors failed, two channels of information would be lost (1 Electron, 1 Proton). Twenty percent of mission critical data would be lost.
5.12 CONNECTORS

5.12.1 1 PPS
Clock Sync Pulse for cycling data and timing for data processor. Failure of 1 PPS would result in loss of all data.

5.12.2 Input, Detector Bias Supply
Failure of input to bias supply would result in loss of detector operation.

5.12.3 Input 28 Vdc To Instruments
A failure of input power would result in loss of all power to instrument.
3.3.9 Selection of Specifications and Standards:

Parts and material conforming to various Government specifications were selected in the precedence required. Certain parts required for the EPS were not available as Established Reliability Parts. Procurement of these parts was handled in three different ways, i.e.

- Vendors Specifications,
- Procurement Specifications, and
- Screen and Burn-In.

VENDORS SPECIFICATIONS

When vendors specifications were available, they were reviewed. If the specifications complied with NASA Reliability Requirements for flight hardware, parts were procured on this basis. Specification Test Sheets are available on request on these parts.

PROCUREMENT SPECIFICATIONS

To meet the requirements for High Reliability Parts when suitable vendors specifications were not available, procurement specifications were written to ensure that vendors' testing programs would be upgraded to qualify their parts under NASA requirements for High Reliability Flight parts. The Procurement Specifications were published in EPS-239, a copy of which is attached.
SCREEN AND BURN-IN SPECIFICATIONS

Some parts did not lend themselves to these approaches and were purchased as commercial and JAN parts and subjected to a Screen and Burn-In to qualify them as Hi-Rel Parts. The Screen and Burn-In was conducted at the NASA White Sands Test Facility. These tests were designed to meet Specification for Semiconductors, MIL-S-19500; Test Requirements for Semiconductors, MIL-STD-750; Test Methods for Electronic Parts, MIL-STD-202D; and MSC Reliability Parts Program Requirements, MSC-3515. The Screen and Burn-In Specification are included as a part of EPS-239.
EPS FLIGHT UNIT
PROCUREMENT AND
RELIABILITY REQUIREMENTS

LEC Document Number EPS-239
Revision A. Added EPS-356 and page 2-9
Revised pages 2-5, 2-6, and 2-7

Prepared by
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
for
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas
EPS FLIGHT UNIT
PROCUREMENT AND
RELIABILITY REQUIREMENTS

Prepared by: P. Gleeson
Reliability and Quality Assurance Engineer

Approved by: B. E. Curtsinger
Engineering Supervisor

Approved by: B. C. Hall
Program Manager

Electron/Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas
EPS Flight Unit Procurement and Reliability Requirements

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-1</td>
</tr>
<tr>
<td>2</td>
<td>2-1</td>
</tr>
<tr>
<td>3</td>
<td>3-1</td>
</tr>
<tr>
<td>4</td>
<td>4-1</td>
</tr>
<tr>
<td>5</td>
<td>5-1</td>
</tr>
<tr>
<td>6</td>
<td>6-1</td>
</tr>
<tr>
<td>7</td>
<td>7-1</td>
</tr>
<tr>
<td>8</td>
<td>8-1</td>
</tr>
<tr>
<td>9</td>
<td>9-1</td>
</tr>
<tr>
<td>10</td>
<td>10-1</td>
</tr>
<tr>
<td>11</td>
<td>11-1</td>
</tr>
<tr>
<td>12</td>
<td>12-1</td>
</tr>
<tr>
<td>13</td>
<td>13-1</td>
</tr>
<tr>
<td>14</td>
<td>14-1</td>
</tr>
</tbody>
</table>
SECTION 1

EPS FLIGHT UNIT
PROCUREMENT AND
RELIABILITY REQUIREMENTS

INTRODUCTION

This document brings together a compilation of the reliability requirements for parts/components for use in (procurred for) the Electron/Proton Spectrometer (EPS) Qualification and three flight units. The reliability data contained herein provides a visibility of parts selection and reliability requirements for the EPS to insure a parts program that will meet the extended life criteria of the EPS, and to meet the NASA/MSC reliability requirements.

A few parts, which meet the design requirements of certain aspects of the instrument, could not be obtained in the quality grade of established reliability parts. For these particular parts, which require screening and extra testing, applicable procurement and screen and burn-in specifications are included in this document.

Cognizant personnel associated with the reliability and quality assurance aspects of the EPS program are urged to bring to the attention of the LEC Reliability Engineer any errors or omissions in, or modifications of any statements or requirements contained herein so that appropriate corrective action can be made in a timely manner.
The following list provides a visibility of the parts selection and the reliability requirements required for the procurement of parts/components for the EPS.
EPS FLIGHT UNIT COMPONENTS
RELIABILITY REQUIREMENTS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U055</td>
<td>Solder</td>
<td>44</td>
<td>Kester</td>
<td>QQ-S-571D</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>U153</td>
<td>Detectors, 20-505</td>
<td>SSR</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>U154</td>
<td>Detectors, 20-606</td>
<td>SSR</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>U155</td>
<td>Detectors, 20-707</td>
<td>SSR</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>U156</td>
<td>Detectors, 25-808</td>
<td>SSR</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>U157</td>
<td>Detectors, 25-909</td>
<td>SSR</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>U158</td>
<td>Detectors, 20-404</td>
<td>SSR</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>U159</td>
<td>Drift measurements silicon ingot, detectors for 30-404</td>
<td>SSR</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>EPS-125</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>U166</td>
<td>Connector, 20-505</td>
<td>ME414-0120-0021</td>
<td>Kierulf</td>
<td>Not used</td>
<td></td>
<td>MC414-365, Rev. C & PDC-1a-2, -3A & -4</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>U167</td>
<td>Connector, 20-606</td>
<td>ME414-0120-0021</td>
<td>Kierulf</td>
<td>Not used</td>
<td></td>
<td>MC414-365, Rev. C & PDC-1a-2, -3A & -4</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>U168</td>
<td>Connector, 20-707</td>
<td>ME414-0120-0021</td>
<td>Kierulf</td>
<td>Not used</td>
<td></td>
<td>MC414-365, Rev. C & PDC-1a-2, -3A & -4</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>U175</td>
<td>Connector, Coax Receptacle</td>
<td>CX-RH-M-0</td>
<td>ITT Cannon</td>
<td>Greymar</td>
<td></td>
<td></td>
<td>100% visual inspection; insulation resistance, dielectric withstanding voltage tested</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>PR #</td>
<td>Description</td>
<td>Mfr. Number</td>
<td>Source</td>
<td>Federal Spec/ MIL Spec</td>
<td>LEC Spec</td>
<td>Mfr Spec</td>
<td>Other Specifications</td>
<td>Gov't Source Inspr</td>
<td>Lot Traceability</td>
<td>C of C require</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
<td>-------------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>U176</td>
<td>Connector, Coax Receptacle</td>
<td>CX-RB-M-0</td>
<td>ITT Cannon Greymar</td>
<td></td>
<td></td>
<td></td>
<td>100% visual inspection; insulation resistance, dielectric withstanding voltage tested</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U177</td>
<td>Connector, Coax Receptacle</td>
<td>CX-RB-M-0</td>
<td>ITT Cannon Greymar</td>
<td></td>
<td></td>
<td></td>
<td>100% visual inspection; insulation resistance, dielectric withstanding voltage tested</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U178</td>
<td>Connector, Coax Receptacle</td>
<td>CX-RB-M-0</td>
<td>ITT Cannon Greymar</td>
<td></td>
<td></td>
<td></td>
<td>100% visual inspection; insulation resistance, dielectric withstanding voltage tested</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U179</td>
<td>Connector, Coax Receptacle</td>
<td>CX-RB-M-0</td>
<td>ITT Cannon Greymar</td>
<td></td>
<td></td>
<td></td>
<td>100% visual inspection; insulation resistance, dielectric withstanding voltage tested</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U180</td>
<td>Connector</td>
<td>ME414-0120-0021</td>
<td>Kierulf Elect.</td>
<td>Not used</td>
<td></td>
<td>MC414-0365, Rev. c & RDC-1a,-2,-3a,-4</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U181</td>
<td>Connector</td>
<td>ME414-0120-0021</td>
<td>Kierulf Elect.</td>
<td>Not used</td>
<td></td>
<td></td>
<td>168 hour burn-in @ 0.2W, @ 85°C; 100% elect. tests req. after burn-in: all units must meet prior est. electrical & temperature parameters</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U218</td>
<td>Thermistor, 4.7K +5% @ 25°C</td>
<td>RTH06BS472J</td>
<td>Victory Eng.</td>
<td>MIL-T-23648</td>
<td></td>
<td></td>
<td>168 hour burn-in @ 0.2W, @ 85°C; 100% elect. tests req. after burn-in: all units must meet prior est. electrical & temperature parameters</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U219</td>
<td>Potentiometer</td>
<td>3260H-1-XXX</td>
<td>Bourns</td>
<td>MIL-R-27208(RT26)</td>
<td>EPS-124</td>
<td>MIL-R-22097(RT27)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PR #</td>
<td>Description</td>
<td>Mfr. Number</td>
<td>Source</td>
<td>Federal Spec/ MIL Spec</td>
<td>LEC Spec</td>
<td>Mfr Spec</td>
<td>Other Specifications</td>
<td>Gov't Source Insp</td>
<td>Lot Trac-ability</td>
<td>C of C required</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>------------------------</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
<td>-------------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>U220</td>
<td>Amplifier</td>
<td>SE526K/883</td>
<td>Signetics</td>
<td>MIL-STD883A</td>
<td></td>
<td></td>
<td>X-ray U-221-1 893-Level A testing</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U221</td>
<td>Amplifier</td>
<td>HA2-2520-2</td>
<td>Harris</td>
<td>MIL-STD883A</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Multiplexer, 16 ch</td>
<td>HS9-1000-2</td>
<td>Harris</td>
<td>MIL-STD883B</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U222</td>
<td>Inductor, 20 mh</td>
<td>526-2930-130</td>
<td>Collins</td>
<td>MIL-T-27B</td>
<td></td>
<td></td>
<td>168 hr burn-in at rated power & 125°C</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U223</td>
<td>Transistor, PNP</td>
<td>2N5333</td>
<td>Texas Inst</td>
<td></td>
<td></td>
<td></td>
<td>Screen and Burn-in at W.S.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U224</td>
<td>Transistor</td>
<td>2N4878</td>
<td>Interall</td>
<td></td>
<td></td>
<td></td>
<td>Screen and Burn-in at W.S.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U225</td>
<td>FET</td>
<td>JAN2N2609</td>
<td>Teledyne</td>
<td>MIL-S-19500</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U226</td>
<td>Transistor</td>
<td>SS3520</td>
<td>Motorola</td>
<td>MIL-S-19500</td>
<td></td>
<td></td>
<td>h_{fe}>1000Ω, 1kHz & 15V; h_{fe,min} 25; f_T>500MHzΩ & 15V Screen and Burn at W.S.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U227</td>
<td>Transistor</td>
<td>JAN2N3811</td>
<td>Motorola</td>
<td>MIL-19500</td>
<td></td>
<td></td>
<td>h_{fe}>1000Ω, 1kHz & 15V; h_{fe,min} 25; f_T>500MHzΩ & 15V Screen and Burn at W.S.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U231</td>
<td>Capacitor, Variable 0.0-2.5 pf</td>
<td>RVC-12</td>
<td>JFD</td>
<td>EPS-232</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U232</td>
<td>Transistor</td>
<td>JANTX2N</td>
<td>Texas Inst</td>
<td>MIL-S-19500</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U232</td>
<td>Diode</td>
<td>JANTX1N</td>
<td>Texas Inst</td>
<td>MIL-S-19500</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
EPS Flight Unit Components - Reliability Requirements

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U233</td>
<td>Diode, 1N4567A</td>
<td>1N4567A</td>
<td>Dickson</td>
<td>MIL-S-19500/159, 127</td>
<td></td>
<td></td>
<td>To satisfy TX requirements</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>U234</td>
<td>Diode</td>
<td>JANTX11N4942,4010</td>
<td>Unitrode</td>
<td>MIL-S-19500</td>
<td></td>
<td></td>
<td>To satisfy TX requirements</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>U236</td>
<td>Inductor, 100uh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ORDER CANCELLED.</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U237</td>
<td>Filter</td>
<td>6332-125, 126</td>
<td>Potter</td>
<td>MIL-F-15733</td>
<td>8000</td>
<td></td>
<td>Environmental & burn-in (Potter spec dated 1970)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U246</td>
<td>Capacitor</td>
<td>828-1KV-XST-103M</td>
<td>Erie</td>
<td>MIL-C-11015D</td>
<td>EPS-121</td>
<td></td>
<td>Cap - offset leads - anti-corona undercoating - not to be dipped in wax, 100% visual. Corona start voltage to be measured.</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U247</td>
<td>Diode</td>
<td>5082-2123</td>
<td>Hewlett-Packard</td>
<td>MIL-S-19500, MIL-STD 750</td>
<td></td>
<td></td>
<td>To be tested to Hewlett Packard's specification sheet for Hi-Rel application</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U248</td>
<td>Connector</td>
<td>MCD1</td>
<td>Microdot</td>
<td>MIL-C-24908, MIL-C-83848</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U249</td>
<td>Magnetic Cores</td>
<td>52002-1A</td>
<td>Magnetics, Inc.</td>
<td>NASA QA Acceptance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>52134-1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>55037-W4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>55040-W4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>55041-W4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>55121-W4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80530-1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EPS Flight Unit Components

Reliability Requirements

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U250</td>
<td>Magnet Wire</td>
<td>80XX</td>
<td>Belden</td>
<td>MIL-R-55182</td>
<td>EPS-116</td>
<td></td>
<td>Reliability and QA Data required.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U251</td>
<td>Resistor, Film</td>
<td>MK132</td>
<td>Caddock</td>
<td>MIL-R-55182</td>
<td>EPS-168</td>
<td></td>
<td>Reliability and QA Data required.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U252</td>
<td>Resistor, Carbon</td>
<td>RCR07, RCR20</td>
<td>Allen-Bradley</td>
<td>MIL-R-39005</td>
<td></td>
<td></td>
<td>Established Reliability</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U253</td>
<td>Capacitor</td>
<td>CKR05, CKR06</td>
<td>Kemet</td>
<td>MIL-C-39014</td>
<td></td>
<td></td>
<td>Established Reliability</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U254</td>
<td>Integrated Circuits (TTL)</td>
<td>SNC54, SNH54</td>
<td>Texas Inst</td>
<td>MIL-STD 883, Level A</td>
<td></td>
<td></td>
<td>Hermetic seal jam nut mounting, environmental resisting 200°C</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U257</td>
<td>Connector</td>
<td>NBH16-26PH</td>
<td>Deutsch</td>
<td>NASA 40M 39569</td>
<td></td>
<td></td>
<td>Reliability and QA Data required.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U261</td>
<td>Resistor</td>
<td>1712-100 meg</td>
<td>Caddock</td>
<td>MIL-R-55182</td>
<td>EPS-168</td>
<td></td>
<td>Selected from JANTX2N</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U262</td>
<td>Transistor</td>
<td>SS3515</td>
<td>Motorola</td>
<td>MIL-S-19500</td>
<td></td>
<td></td>
<td>Selected from MN4251H:</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U262</td>
<td>Transistor</td>
<td>SS2638H</td>
<td>Motorola</td>
<td>MIL-S-19500, MIL-STD 883, Level A</td>
<td></td>
<td></td>
<td>BVCEO=20Vmin @ IC+10mA</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-----------</td>
<td>---</td>
<td>-------------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>U263</td>
<td>Resistor</td>
<td>RNC50,</td>
<td>Mepco</td>
<td>MIL-R-55182C</td>
<td></td>
<td></td>
<td>Established Reliability, P tolerance, R or S failure rate</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>U264</td>
<td>Capacitor</td>
<td>RC33, RC12,RC37</td>
<td>USCC</td>
<td>MIL-C-39014</td>
<td></td>
<td></td>
<td>Temp. Cycling, 100 hr burn-in @ 200% rated power, DR, IR, Dissipation factor</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>U269</td>
<td>Transistor</td>
<td>JANTX2N2484</td>
<td>Teledyne</td>
<td>MIL-S-19500/376</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>U271</td>
<td>Switch</td>
<td>DAS2132</td>
<td>Dickson</td>
<td>MIL-STD 883, Not 2 Met. 5004</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>U279</td>
<td>Connector (Coax)</td>
<td>031-0070-001</td>
<td>Microdot</td>
<td></td>
<td></td>
<td></td>
<td>Insulation Resistance, Dielectric Withstanding Voltage, Contact Resistance and Vibration to be performed 100%.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>U281</td>
<td>Capacitor, Polycarbonate</td>
<td>X483W4</td>
<td>TRW</td>
<td>MIL-C-18312, MIL-C-19978B</td>
<td></td>
<td></td>
<td>Hi-Rel testing - temperature & immersion cycling, 240 hour burn-in @ 125°C</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>U287</td>
<td>Sensistor</td>
<td>TG51</td>
<td>Texas Inst</td>
<td>MIL-T-23648</td>
<td></td>
<td></td>
<td>Temp Cycling, Leak Test & 48 hour burn-in @ 150°C</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>U290</td>
<td>Thermal heater Dissipator</td>
<td>TXP0508ND</td>
<td>Int'l Elec</td>
<td></td>
<td></td>
<td>Int's Elec</td>
<td>Temp Cycling, 168 hr burn-in</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
EPS FLIGHT UNIT COMPONENTS

RELIABILITY REQUIREMENTS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U303</td>
<td>Transistor</td>
<td>SSC6113</td>
<td>Texas Inst</td>
<td>MIL-S-19500/1385</td>
<td></td>
<td></td>
<td>Selected from JAN TX 2N4858. Gm(min)=18000 micro-mhos. Vgg Range =.3V to .6V @ IDS=10mA & VDS=4V.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U318</td>
<td>Capacitor</td>
<td>T210</td>
<td>Kemet</td>
<td>MIL-C-39003</td>
<td></td>
<td></td>
<td>Established Reliability</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U324</td>
<td>Inductor</td>
<td>MS90538-12</td>
<td>J.W. Miller Co.</td>
<td>MIL-C-15305</td>
<td></td>
<td></td>
<td>Temp. Cycling & 168 hr burn-in at rated power.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U320</td>
<td>Chromel A Wire</td>
<td>242-594</td>
<td>Curtin Scien. Co.</td>
<td>Not used</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U327</td>
<td>Socket</td>
<td>32223</td>
<td>Amp Inc</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U332</td>
<td>BEO Mounting Disc</td>
<td>D-350-19</td>
<td>Thermalloy</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U333</td>
<td>Resistor</td>
<td>RWR-81S</td>
<td>Dale</td>
<td>MIL-R-39007B</td>
<td></td>
<td></td>
<td>R failure rate</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R500-FR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RWR-81S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1R-300FR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U337</td>
<td>Gold Dumet Leads</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U356</td>
<td>Resistors</td>
<td>RCR05</td>
<td>Allen-Bradley</td>
<td>MIL-R-39008</td>
<td></td>
<td></td>
<td>Established Reliability</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U357</td>
<td>Resistor</td>
<td>RNC50, RNC55</td>
<td>Meeco</td>
<td>MIL-R-55182C</td>
<td></td>
<td></td>
<td>R or S Failure Rate</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U358</td>
<td>Capacitor</td>
<td>RC10C</td>
<td>USCC</td>
<td>MIL-C-39014</td>
<td></td>
<td></td>
<td>Temp Cycling, 168 hour burn-in, dissipation factor, insulation resistance, dielectric withstanding voltage.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
EPS FLIGHT UNIT COMPONENTS
RELIABILITY REQUIREMENTS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U375</td>
<td>Capacitor</td>
<td>CKR05BX</td>
<td>Kemet</td>
<td>MIL-C-39014</td>
<td></td>
<td></td>
<td>Established Reliability</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>U510</td>
<td>Capacitor</td>
<td>T210D</td>
<td>Kemet</td>
<td>MIL-C-39003</td>
<td></td>
<td></td>
<td>Established Reliability</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>U497</td>
<td></td>
<td>RC33</td>
<td>USCC</td>
<td>MIL-C-39014</td>
<td></td>
<td></td>
<td>High Rel. Testing</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>U450</td>
<td>Transistor</td>
<td>JAN2N3811</td>
<td>Motorola</td>
<td>MIL-S-19500</td>
<td>EPS-129</td>
<td></td>
<td>Screen & Burn-in White Sands Test Facility, Replacement for failed parts on screen & burn-in</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>U462</td>
<td>Transistor</td>
<td>2N4848</td>
<td>Intersil</td>
<td></td>
<td>EPS-175</td>
<td></td>
<td>High Reliability pre seal inspect tested to EPS-175 (screen and burn-in) - Replacement of commercial version</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>U480</td>
<td>Inductor</td>
<td>8336-001</td>
<td>Potter</td>
<td>MIL-C-15305</td>
<td></td>
<td></td>
<td>High Reliability Tested</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>U511</td>
<td>Inductor</td>
<td>8336-001</td>
<td>Potter</td>
<td>MIL-C-15303</td>
<td></td>
<td></td>
<td>High Reliability Tested</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
PROCUREMENT SPECIFICATION
FOR
LITHIUM-DRIFTED SILICON DETECTORS

Document Number EPS-819
7-26-72

Prepared by
Lockheed Electronics Company, Inc.
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
For
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas

215
PROCUREMENT SPECIFICATION
FOR
LITHIUM-DRIFTED SILICON DETECTORS

Prepared by:
C. J. Spehn
Principal Engineer

Approved by:
B. E. Carttsinger
Engineering Supervisor

Approved by:
B. C. Hall
Program Manager

Electron-Program Spectrometer Program

Lockheed Electronics Company, Inc.
Houston Aerospace Systems Division

216
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 SCOPE</td>
<td>1</td>
</tr>
<tr>
<td>2.0 APPLICABLE DOCUMENTS</td>
<td>1</td>
</tr>
<tr>
<td>3.0 COMPONENT SPECIFICATIONS</td>
<td>1</td>
</tr>
<tr>
<td>3.1 Mechanical</td>
<td>1</td>
</tr>
<tr>
<td>3.1.1 General</td>
<td>1</td>
</tr>
<tr>
<td>3.1.2 Physical Mounting</td>
<td>4</td>
</tr>
<tr>
<td>3.1.3 Dimensions and Dead Layers</td>
<td>4</td>
</tr>
<tr>
<td>3.1.4 Identification</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Environmental</td>
<td>4</td>
</tr>
<tr>
<td>3.2.1 Temperature</td>
<td>6</td>
</tr>
<tr>
<td>3.2.2 Pressure</td>
<td>6</td>
</tr>
<tr>
<td>3.2.2 Vibration</td>
<td>6</td>
</tr>
<tr>
<td>3.3 Electrical and Nuclear</td>
<td>6</td>
</tr>
<tr>
<td>3.3.1 Extended Bias</td>
<td>6</td>
</tr>
<tr>
<td>3.3.2 Leakage Current</td>
<td>6</td>
</tr>
<tr>
<td>3.3.3 Noise</td>
<td>7</td>
</tr>
<tr>
<td>3.3.4 Electron Resolution and Spectral Characteristics</td>
<td>7</td>
</tr>
<tr>
<td>3.3.5 Bias Tabulation</td>
<td>8</td>
</tr>
<tr>
<td>3.3.6 Calibration</td>
<td>8</td>
</tr>
<tr>
<td>3.3.7 Shaping Time Constants</td>
<td>9</td>
</tr>
<tr>
<td>3.3.8 Silicon Reserves</td>
<td>9</td>
</tr>
<tr>
<td>3.3.9 Lithium Drift Rate</td>
<td>10</td>
</tr>
<tr>
<td>4.0 ACCEPTANCE TESTS</td>
<td>10</td>
</tr>
<tr>
<td>4.1 Initial Acceptance Tests (Performed by Vendor)</td>
<td>10</td>
</tr>
<tr>
<td>4.1.1 Thermal Cycle</td>
<td>10</td>
</tr>
<tr>
<td>4.1.2 Detector Biasing</td>
<td>10</td>
</tr>
<tr>
<td>4.1.3 Leakage and Noise</td>
<td>10</td>
</tr>
<tr>
<td>4.1.4 Electron Response</td>
<td>10</td>
</tr>
<tr>
<td>4.1.5 Stability</td>
<td>11</td>
</tr>
<tr>
<td>4.2 Final Acceptance Tests</td>
<td>11</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.0 RELIABILITY AND QUALITY ASSURANCE PROVISIONS</td>
<td>11</td>
</tr>
<tr>
<td>5.1 Certificate of Compliance</td>
<td>11</td>
</tr>
<tr>
<td>5.2 Traceability</td>
<td>11</td>
</tr>
<tr>
<td>5.3 Record Retention</td>
<td>12</td>
</tr>
<tr>
<td>5.4 Test Data</td>
<td>12</td>
</tr>
<tr>
<td>5.5 Preparation for Delivery</td>
<td>12</td>
</tr>
<tr>
<td>5.5.1 Unit Preparation and Packaging</td>
<td>12</td>
</tr>
<tr>
<td>5.5.2 Packing</td>
<td>12</td>
</tr>
<tr>
<td>5.5.3 Marking</td>
<td>12</td>
</tr>
<tr>
<td>5.5.4 Delivery</td>
<td>13</td>
</tr>
<tr>
<td>6.0 WARRANTY</td>
<td>13</td>
</tr>
</tbody>
</table>
1.0 SCOPE
This document defines the electrical, mechanical and environmental specifications and initial acceptance tests for the procurement of lithium-drifted silicon detectors for use on the Electron-Proton Spectrometer (EPS) being developed by Lockheed Electronics Company for NASA/MSC under Contract NAS 9-11373.

2.0 APPLICABLE DOCUMENTS
MIL-STD 750A, Test Methods for Semiconductor Devices
MIL-STD 202D, Test Methods for Electronic and Electrical Component Parts
MSCM 8080, Manned Spacecraft Criteria and Standards

3.0 COMPONENT SPECIFICATIONS

3.1 Mechanical

3.1.1 General
The detector elements shall be cubical in shape. They shall be manufactured of lithium-drifted silicon.

3.1.2 Physical Mounting
The silicon cube shall be bonded to an aluminum oxide substrate which in turn is bonded to a TO-5 transistor header as shown in Figures 1 and 2. The header shall be supplied with a steel can (unsealed)
Fig. 1. View of Detector Mounting
Ceramic Disc

Case Ground

Detector

P-Side Contact

N-Side Contact

TO-5 Transistor Can

Fig. 2. Top View of Detector Mounting
3.1.3 Dimensions and Dead Layers

The dimensions of the silicon cube shall be as shown in figure 3. The five exposed sides of the detectors shall have dead layers of .0050 cm or less equivalent of silicon. The p^+ (unexposed) side shall have a dead layer of nominal thickness .05 cm.

3.1.4 Identification

Each detector shall have a four-digit identification number painted or inscribed on its base. If painted, the paint must be vacuum compatible. The most significant digit shall be "2". Each number shall be unique and referenced to:

1. The silicon ingot used in fabrication
2. The date of detector fabrication
3. The lot number
4. The dates of testing
5. The data supplied with each detector

3.2 Environmental

3.2.1 Temperature

The detectors shall operate within specifications over the range $-50^\circ C$ to $+25^\circ C$. They shall be capable of being cycled over the range $-50^\circ C$ to $+60^\circ C$ at $1^\circ C/minute$. No permanent deterioration of the detector shall be incurred by exposure to a $60^\circ C$ environment for a period of 24 hours providing bias is not applied during this period.
Fig. 3. Schematic Drawing of Lithium-Drifted Silicon Detector

Dimensions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.255±0.0050 cm</td>
</tr>
<tr>
<td>B*</td>
<td>0.200±0.0025 cm</td>
</tr>
<tr>
<td>C</td>
<td>0.210±0.010 cm</td>
</tr>
</tbody>
</table>

Not Counting Dead Layers on Lateral Surfaces
3.2.2 Pressure

The detectors shall operate within specifications in a dry environment of either air or nitrogen from 1000 mm Hg to 350 mm Hg and also over the range from 20×10^{-3} torr to less than 10^{-5} torr.

3.2.3 Vibration

The detectors shall be capable of withstanding the following vibration criteria without suffering any physical damage or degradation:

RANDOM VIBRATION CRITERIA

- $20 - 175 \text{ Hz } @ +6 \text{ dB/Octave}$
- $175 - 350 \text{ Hz } @ 6.0 \text{ g}^2/\text{Hz}$
- $350 - 2000 \text{ Hz } @ -3 \text{ dB/Octave}$

$\approx 85.99 \text{ g r.m.s.}$

3.3 Electrical and Nuclear

3.3.1 Extended Bias

The detectors shall be capable of operation at an extended bias voltage of 500 volts dc over the warranty period without suffering electrical damage.

3.3.2 Leakage Current

The detectors shall have a leakage current not to exceed 2.5 microamperes at 350 volts bias at $25^\circ\text{C} \pm 1^\circ\text{C}$, and 4.0 microamperes at 500 volts bias at $25^\circ\text{C} \pm 1^\circ\text{C}$. The temperature coefficient of the leakage current shall be such that the current increases by no more than a factor of two (2) for each 8°C temperature rise above 25°C. The leakage current shall increase by not more than 25 percent per month of the value measured on the first acceptance test, referred to $25^\circ\text{C} \pm 1^\circ\text{C}$.
3.3.3 Noise

The detectors shall have a FWHM noise of \(\leq 30 \text{ keV}^* \) at a bias of 350 volts at \(25^\circ \text{C} \pm 1^\circ \text{C} \), utilizing a shaping amplifier with double differentiation and double integration time constants of 0.36 microseconds.\(^*\) The temperature coefficient of the noise shall be such that it increases by no more than a factor of 1.41 for each \(8^\circ \text{C} \) rise above \(25^\circ \text{C} \).

The detectors shall be free of "contact" and "microplasma" noise and shall exhibit a count rate of \(< 0.05 \text{ ct/s} \) above a 200 keV discriminator level due either to noise of any kind or radioactive contamination, all at temperatures from \(-50^\circ \text{C} \) to \(25^\circ \text{C} \), utilizing a shaping amplifier with double differentiation and double integration time constants of 0.36 microseconds.

Furthermore the noise of the detector shall increase by no more than 15 percent per month of the value measured on the first acceptance test, referred to \(25^\circ \text{C} \pm 1^\circ \text{C} \).

3.3.4 Electron Resolution and Spectral Characteristics

The detectors shall exhibit a FWHM resolution of \(\leq 45 \text{ keV}^* \) for the 972 keV conversion electron line of Bi-207 when the electrons impinge on the entire lithium face (uncollimated) of the detector.

\(^*\) Including electronic noise

\(^*\) See 3.3.7
3.3.4 Continued

The ratio of the number of counts in the peak channel of the 972 keV line to the number of counts in the peak channel of the 482 keV line of the Bi-207 spectrum shall be ≥ 1.3 (with background not subtracted). These tests are to be carried out at 350 volts bias, $25^\circ C \pm 1^\circ C$, with double differentiation, and double integration shaping amplifier time constants of 0.36 microseconds.**

During these tests a pulser shall be fed into the test input of the preamplifier and a pulser peak accumulated with the electron spectrum.

3.3.5 Bias Tabulation

Data shall be tabulated on the total time that bias was applied to the detectors, including the temperature and the bias voltage. The time shall be tabulated to within ± 15 percent, and the temperature to within $\pm 2^\circ C$.

3.3.6 Calibration

The electronic system used for the tests of 3.3.3 and 3.3.4 shall be calibrated using a high quality detector of known characteristics. Namely:

1. Entrance window ≤ 1 micron equivalent of silicon.

2. Active area $\geq 50 \text{ mm}^2$.

** See 3.3.7
3.3.6 Continued

3. Depletion depth ≤ 2 mm.

4. Electron resolution:

≤ 23 keV for 972 keV Bismuth-207 electrons

All measurements shall be performed using a preamplifier
with a noise of $\leq (7 \text{ keV} + 0.1 \frac{\text{keV}}{\text{pf}})$ and a shaping amplifier
with double differentiation and double integration time
constants of 0.36 microseconds** with the calibration detector
biased for full charge collection.

During these tests a pulser shall be fed into the test input
of the preamplifier and a pulser peak accumulated with the
electron spectrum.

3.3.7 Shaping Time Constants

Although the detector parameters must be warranted with the
specified shaping time constants, the vendor may, at his
option, measure the pertinent parameters with double
differentiation, single integration time constants of
0.4 microseconds.

3.3.8 Silicon Reserves

The remnants of the silicon ingot(s) from which the detectors
are fabricated shall be reserved for LEC for possible future
fabrication of EPS detectors for a period of 24 months from
the beginning of the contract.

** See 3.3.7
3.3.9 Lithium Drift Rate

The lithium drift rate in the silicon ingot(s) used for the EPS detectors shall be measured and specified at 25°C ± 1°C. The accuracy of the measurement shall be within ±25 percent.

4.0 ACCEPTANCE TESTS

4.1 Initial Acceptance Tests (performed by Vendor)

The detector shall undergo the following initial acceptance tests performed by the vendor at the place of manufacture. Lockheed Electronics Company reserves the right to have its engineers present at any or all of these tests.

4.1.1 Thermal Cycle

The detectors shall undergo one thermal cycle, from 25°C to -50°C to 60°C to 25°C, with the temperature remaining at the extremes for one hour.

4.1.2 Detector Biasing

After the thermal cycle the detectors shall be biased for at least two weeks at 350 volts at 23°C ± 2°C.

4.1.3 Leakage and Noise

During the biasing period, leakage, noise, and detector temperature shall be measured and recorded for each detector every seventy-two hours ± 2 hours.

4.1.4 Electron Response

At the end of the two weeks biasing period, leakage current, noise, and response to a Bismuth-207 source shall be measured and recorded.
4.1.5 Stability

If, at the end of the two week biasing period, the leakage current and/or noise of a particular detector have increased by more than 20 percent (referred to 25°C) above their initial values as measured within 24 hours after the beginning of the two week period, that detector shall be rejected although it might still satisfy the requirements of 3.3.2 and 3.3.3.

4.2 Final Acceptance Tests

Final acceptance of the detectors will occur approximately six weeks after their delivery to Lockheed Electronics Company and will be based upon tests performed by Lockheed engineers.

5.0 RELIABILITY AND QUALITY ASSURANCE PROVISIONS

5.1 Certificate of Compliance

A certificate of compliance signed by the Quality Control manager shall be included with each detector shipment. The certificate shall verify that the detectors were processed in accordance with this specification and that all requirements have been met.

5.2 Traceability

The contractor shall assure that traceability required by Standard No. 86 in MSCM 8080 can be provided for all parts delivered. All traceability identification to the parts manufacturer's production, assembly, or test lot shall be made available in a timely manner on request from LEC and/or NASA/MSC. This traceability requirement is a one way, backward traceability by part or lot code.
5.3 Record Retention

All records assembled as a result of this specification shall be retained by the manufacturer for at least two years following completion of the order.

5.4 Test Data

Test data encompassing the items of paragraphs 3.1.4, 3.3.2 through 3.3.6, and 3.3.9 shall be supplied with each detector. The data of 3.3.4 and 3.3.6 shall include plots of the spectra involved.

5.5 Preparation for Delivery

5.5.1 Unit Preparation and Packaging

Each unit procured to this specification shall be clean, dry, and packaged individually. The manner of packaging will afford adequate protection against corrosion, deterioration, and physical damage during shipment from supply source to the first receiving activity.

5.5.2 Packing

The packaged units shall be packed in a manner that will afford adequate protection against damage during direct shipment from the supply source to the first receiving activity. This pack shall conform to the applicable carrier rules and regulations.

5.5.3 Marking

Each shipping container will be marked with the supplier's name and the part number.
5.5.4 Delivery

Unless otherwise specified, the supplier shall use his own delivery facilities if delivery is local, and air express if the distance is greater than 100 miles.

6.0 WARRANTY

The manufacturer shall guarantee the operation of the detectors to the specification herein, when subjected to any combination of the conditions specified herein, for a period of one year.
SECTION 4

PROCUREMENT SPECIFICATION
FOR
BOURNS POTENTIOMETER
3260 (RT26) and 3262 (RJ26)

Document Number EPS-124

Prepared by
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
for
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas

232
PROCUREMENT SPECIFICATION
FOR
BOURNS POTENTIOMETER RJ 26 AND RT 26

Prepared by: P. Gleeson
Reliability and Quality Assurance Engineer

Approved by: B. H. Curtsinger
Engineering Supervisor

B. C. Hall
Program Manager

Electron-Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company
Houston Aerospace Systems Division

233
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SCOPE</td>
<td>4-4</td>
</tr>
<tr>
<td>2.0</td>
<td>APPLICABLE DOCUMENTS</td>
<td>4-4</td>
</tr>
<tr>
<td>3.0</td>
<td>RELIABILITY AND QUALITY ASSURANCE REQUIREMENTS</td>
<td>4-4</td>
</tr>
<tr>
<td>3.1</td>
<td>Certificate of Compliance</td>
<td>4-4</td>
</tr>
<tr>
<td>3.2</td>
<td>Retention of Records</td>
<td>4-5</td>
</tr>
<tr>
<td>3.3</td>
<td>Traceability</td>
<td>4-5</td>
</tr>
<tr>
<td>3.4</td>
<td>Preparation for Delivery</td>
<td>4-5</td>
</tr>
<tr>
<td>4.0</td>
<td>TESTS AND INSPECTIONS</td>
<td>4-6</td>
</tr>
<tr>
<td>4.1</td>
<td>Resistance Measurement</td>
<td>4-7</td>
</tr>
<tr>
<td>4.2</td>
<td>Temperature Cycling</td>
<td>4-7</td>
</tr>
<tr>
<td>4.3</td>
<td>Vibration</td>
<td>4-9</td>
</tr>
<tr>
<td>4.4</td>
<td>High Temperature Burn-In</td>
<td></td>
</tr>
</tbody>
</table>
1.0 SCOPE

This document defines the detailed high reliability requirements for Bourns potentiometer models 3260 (RT26) and 3262 (RJ26) for use on the Electron-Proton Spectrometer (EPS). Various resistance values and lead configurations will be used and are covered by this specification.

2.0 APPLICABLE DOCUMENTS

The following documents of the issue in effect on the date of application shall form a part of this specification to the extent specified.

MIL-R-27208, Variable Resistor General Specifications

MIL-R-22097, Variable Resistor, Non-Wire Wound

MSCM-8080, Manned Spacecraft Criteria and Standards

MIL-STD 202D, Test Methods for Electrical and Electronic Parts

3.0 RELIABILITY AND QUALITY ASSURANCE REQUIREMENTS

3.1 Certificate of Compliance

A certificate of compliance signed by the Quality Control Manager shall be included with the device(s)
3.1 (continued)

shipment. It shall verify that the potentiometers were processed in accordance with this specification, and that all requirements have been met.

3.2 Retention of Records

The part supplier shall maintain and preserve records of evidence of compliance for a period of one year from the date of acceptance of the item by LEC. The supplier shall make his records available upon request from LEC or NASA/MSC.

3.3 Traceability

The vendor shall assure that traceability required by Standard No. 86 in MSCM 8080 can be provided. Identification to the part production, assembly and test lot shall be recorded. All traceability information shall be supplied on request of LEC or NASA/MSC. This traceability requirement is for a one-way, backward traceability by part or lot code.

3.4 Preparation for Delivery

The potentiometers shall be packed in a suitable container which will protect the body and leads of the device during shipment.
4.0 TESTS AND INSPECTIONS

All components procured to this specification shall be subjected to the following tests on a 100% basis and in the sequence specified.

4.1 Resistance Measurement

Each potentiometer shall be tested in accordance with MIL-STD-202D, Method 303. The following details shall apply.

4.1.1 Test Voltage

Measurement of resistance shall be made by using the test voltage in Table 1. This same voltage shall be used whenever a subsequent resistance measurement is made.

<table>
<thead>
<tr>
<th>Total Resistance, Nominal Ohms</th>
<th>Maximum Test Voltage Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 to 100</td>
<td>1.0</td>
</tr>
<tr>
<td>100 to 1,000</td>
<td>3.0</td>
</tr>
<tr>
<td>1,000 to 10,000</td>
<td>10.0</td>
</tr>
<tr>
<td>10,000 to 0.1 megohm</td>
<td>30.0</td>
</tr>
</tbody>
</table>
4.1.2 Total Resistance

Total resistance shall be measured between the resistance-end elements, with the contact arm positioned against a stop. The positioning of the contact arm and terminal shall be the same for all subsequent measurements of the total resistance. The total resistance shall not deviate from the specified nominal by more than $\pm 1\%$.

4.2 Temperature Cycling

Each potentiometer shall be tested in accordance with Method 102A, Condition C, MIL-STD 202D.

Resistance measurements shall be made at the conclusion of the final cycle. The resistance measurement shall be within $\pm 1\%$ of specified values.

4.3 Vibration

Each potentiometer shall be tested in accordance with Method 204, MIL-STD 202D. The following details shall apply.

a. Test leads - Test leads used during this test shall be no larger than AWG 22 stranded wire, so that the influence of the test leads on the potentiometer shall be held to a minimum.
b. Measurements before vibration - Total resistance and setting stability shall be measured as specified in 4.6.2.1 and 4.6.9.1 respectively, MIL-R-27208C.

c. Test condition D

d. Measurements during vibration - Each potentiometer shall be monitored to determine electrical discontinuity of the resistance element, and between the contact arm and element, by a method that shall at least be sensitive enough to monitor or register, automatically, any electrical discontinuity of 0.1 millisecond or greater duration.

e. Measurements after vibration - Setting stability and total resistance shall be measured as specified in 4.6.9.1 and 4.6.2.1 respectively of MIL-R-27208C.

f. Examination after vibration - Potentiometers shall be examined for evidence of mechanical damage.

4.3.1 Vibration Test Requirements

When potentiometers are tested as specified, there shall be no electrical discontinuity, and potentiometers shall meet the following requirements.
4.3.1 (continued)

Setting stability - Change shall not exceed ±1%.

Total Resistance - Change shall not exceed ±1%.

Operating Torque - Shall not exceed 150% of specified operating torque.

Visual Examination - There shall be no evidence of mechanical damage.

4.4 High Temperature Burn-In

4.4.1 Total Resistance and Setting Stability

Total resistance and setting stability shall be measured as specified in 4.6.2.1 and 4.6.9.1 respectively of MIL-R-27208C. The potentiometers shall then be exposed to an ambient temperature of 150°C ±5°C with power off, for a period of 168 hours. Not less than 2 hours after the end of the exposure time, the total resistance and setting stability shall be measured. Torque shall be measured as specified in 4.6.8.1 of MIL-R-27208C. Dielectric withstanding voltage and insulation resistance shall be measured as specified in 4.6.6.1 and 4.6.7 respectively of MIL-R-27208C.

4.4.2 Burn-In Test Requirements

When tested as specified, potentiometers shall meet the following requirements:
4.4.2 (continued)

a. Setting Stability - Change shall not exceed ± 1%.

b. Total Resistance - Change shall not exceed ± 1%.

c. Operating Torque - Shall not exceed 150% of specified torque.

d. Dielectric Withstanding Voltage - There shall be no evidence of damage, arcing, or breakdown. The leakage current shall not exceed 1 milliamperc.

e. Insulation Resistance - Shall not be less than 1,000 megohms.

f. Visual Examination - There shall be no evidence of mechanical damage.
TABLE 1

ELECTRICAL AND ENVIRONMENTAL TESTS

<table>
<thead>
<tr>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Total Resistance</td>
</tr>
<tr>
<td>Environmental Temperature Cycle</td>
</tr>
<tr>
<td>Vibration</td>
</tr>
<tr>
<td>Burn-In</td>
</tr>
</tbody>
</table>
SECTION 5

PROCUREMENT SPECIFICATION
FOR
ERIE CAPACITOR TYPE
838-1KV-X5T-103M

Document Number EPS-121

Prepared by
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
for
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas

243
PROCUREMENT SPECIFICATION
FOR
ERIE CAPACITOR TYPE
828-1KV-X5T-103M

Prepared by:
P. Gleeson
Reliability and Quality Assurance Engineer

Approved by:
W. A. Oliveira
Staff Engineer

B. E. Curtsinger
Engineering Supervisor

B. C. Hall
Program Manager

Electron-Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company
Houston Aerospace Systems Division
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SCOPE</td>
<td>5-4</td>
</tr>
<tr>
<td>2.0</td>
<td>APPLICABLE DOCUMENTS</td>
<td>5-4</td>
</tr>
<tr>
<td>3.0</td>
<td>QUALITY ASSURANCE</td>
<td>5-4</td>
</tr>
<tr>
<td>3.1</td>
<td>Certificate of Compliance</td>
<td>5-4</td>
</tr>
<tr>
<td>3.2</td>
<td>Traceability</td>
<td>5-4</td>
</tr>
<tr>
<td>3.3</td>
<td>Record Retention</td>
<td>5-5</td>
</tr>
<tr>
<td>4.0</td>
<td>PREPARATION FOR DELIVERY</td>
<td>5-5</td>
</tr>
<tr>
<td>4.1</td>
<td>Unit Preparation and Packaging</td>
<td>5-5</td>
</tr>
<tr>
<td>4.2</td>
<td>Packing</td>
<td>5-5</td>
</tr>
<tr>
<td>4.3</td>
<td>Marking</td>
<td>5-6</td>
</tr>
<tr>
<td>4.4</td>
<td>Shipping Method</td>
<td>5-6</td>
</tr>
<tr>
<td>5.0</td>
<td>ELECTRICAL AND ENVIRONMENTAL TESTS</td>
<td>5-6</td>
</tr>
<tr>
<td>5.1</td>
<td>Capacitance</td>
<td>5-6</td>
</tr>
<tr>
<td>5.2</td>
<td>Dissipation Factor</td>
<td>5-6</td>
</tr>
<tr>
<td>5.3</td>
<td>Temperature Cycling</td>
<td>5-7</td>
</tr>
<tr>
<td>5.4</td>
<td>Burn-In</td>
<td>5-8</td>
</tr>
</tbody>
</table>
1.0 SCOPE

This specification defines the high reliability requirements of capacitors for the Electron-Proton Spectrometer. The components shall be subjected to the specified tests in the order given.

2.0 APPLICABLE DOCUMENTS

MIL-STD-202D, Test Methods for Electronic and Electrical Parts

MSCM 8080, Manned Spacecraft Center Criteria and Standards

3.0 QUALITY ASSURANCE

3.1 Certificate of Compliance

A certificate of compliance signed by the quality control manager shall be included with all units shipped. It shall verify that the units were manufactured in accordance with this specification and that all requirements have been met.

3.2 Traceability

The Manufacturer will assure that traceability required by Std. 86 in MSCM 8080 can be provided. In addition, provisions will be made to record information relating to the specific tests performed and
3.2 (continued)

processes on each lot of parts. All traceability information will be supplied to LEC and/or NASA/MSC upon request.

3.3 Record Retention

The part supplier shall maintain and preserve records of evidence of compliance and traceability for a period of one year from date of acceptance by LEC. The supplier shall make his records available upon request.

4.0 PREPARATION FOR DELIVERY

4.1 Unit Preparation and Packaging

Each unit procured to this specification shall be clean, dry and packaged individually. The manner of packaging will afford adequate protection against corrosion, deterioration and physical damage during shipment from supply source to the first receiving activity.

4.2 Packing

The packaged units shall be packed in a manner that will afford adequate protection against damage during direct shipment from the supply source to the first receiving activity. This pack shall conform to the applicable carrier rules and regulations.
4.3 Marking

Each shipping container will be marked with the supplier's name and the part number.

4.4 Shipping Method

Unless otherwise specified, the supplier shall use his own delivery facilities if delivery is local, and air express if the distance is greater than 100 miles.

5.0 ELECTRICAL AND ENVIRONMENTAL TESTS

5.1 Capacitance

Capacitors shall be tested in accordance with Method 302 of MIL-STD 202D. The following details shall apply.

a. Test frequency 1 MHz ± 100 kHz.

b. Limit of accuracy ± 10%.

5.2 Dissipation Factor

The dissipation factor of capacitors shall be measured with a capacitance bridge or other suitable method at the frequency and temperature specified. The inherent accuracy of the measurement shall be ±2% of the reading plus 0.1% dissipation factor unless otherwise specified. Suitable measurement techniques shall be used to minimize errors due to connections between the measuring apparatus and the specimen. The AC voltage actually
5.2 (continued)

impressed across the specimen shall be as low as prac-
ticable. When a DC polarizing voltage is required, it
shall be as specified and shall exceed the peak AC vol-
tage impressed across the specimen; however the sum of
the peak AC and the DC voltages shall not exceed the
voltage rating of the specimen.

The following details shall apply.

a. Test frequencies 60 cps, 120 cps, 1 KC, 100 KC
 and 1 megacycle.

b. Test temperature 25°C.

The dissipation factor shall be not greater than the
percent indicated in the applicable specification
sheet.

5.3 Temperature Cycling

Capacitors shall be tested in accordance with Method
102 of MIL-STD 202D. The following details shall
apply.

a. Conditioning prior to first cycle - 15 minutes at
 standard temperature.
5.4 **Burn-In**

Capacitors shall be tested in accordance with Method 108A of MIL-STD 202D. The following details shall apply:

a. Test temperature - 85°C ± 3°C

b. Length of test - minimum of 168, +16, -0 hours.

5.4.1 **Operating Conditions**

Capacitors tested shall be subjected to the dc rated voltage. The surge current shall be not less than 30 ma nor more than 50 ma.

5.4.2 **Measurements During and After Exposure**

At the conclusion of this test and while the capacitors are at the applicable test temperature, the insulation resistance shall be measured in accordance with Method 302, MIL-STD 202D, Condition C. The insulation resistance shall not be less than 10,000 megohms. The specimens shall be returned to 25°C and Paragraph 5.1 and 5.2 shall be repeated.

5.4.3 **Corona Start Voltage**

The capacitors shall be tested in accordance with Method 105C, MIL-STD 202D. The following details shall apply.

a. Corona start voltage measured and recorded.

b. Minimum acceptable value of corona start voltage for any unit is 1000 volts RMS.

250
SECTION 6

PROCUREMENT SPECIFICATION
FOR
CADDOCK RESISTORS
TYPE MK, MG AND MS

Document Number EPS-116
January 28, 1971

Prepared by
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
for
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas
PROCUREMENT SPECIFICATION
FOR
CADDOCK RESISTORS
TYPE MK, MG AND MS

Prepared by: P. Gleeson
Senior Aerospace Engineer

Approved by: W. A. Oliveira
Staff Engineer

B. E. Curtsinger
Engineering Supervisor

B. C. Hall
Program Manager

Electron-Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company
Houston Aerospace Systems Division
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SCOPE</td>
<td>6-4</td>
</tr>
<tr>
<td>2.0</td>
<td>APPLICABLE DOCUMENTS</td>
<td>6-4</td>
</tr>
<tr>
<td>3.0</td>
<td>QUALITY ASSURANCE REQUIREMENTS</td>
<td>6-4</td>
</tr>
<tr>
<td>3.1</td>
<td>Certificate of Compliance</td>
<td>6-4</td>
</tr>
<tr>
<td>3.2</td>
<td>Retention of Records</td>
<td>6-4</td>
</tr>
<tr>
<td>3.3</td>
<td>Traceability</td>
<td>6-5</td>
</tr>
<tr>
<td>3.4</td>
<td>Preparation for Delivery</td>
<td>6-5</td>
</tr>
<tr>
<td>4.0</td>
<td>ELECTRICAL TESTS</td>
<td>6-5</td>
</tr>
<tr>
<td>4.1</td>
<td>Electrical Parameters</td>
<td>6-5</td>
</tr>
<tr>
<td>4.2</td>
<td>Resistance Value by Type</td>
<td>6-6</td>
</tr>
<tr>
<td>5.0</td>
<td>ENVIRONMENTAL</td>
<td>6-6</td>
</tr>
<tr>
<td>5.1</td>
<td>Temperature Cycle</td>
<td>6-6</td>
</tr>
<tr>
<td>5.2</td>
<td>Burn-In</td>
<td>6-7</td>
</tr>
<tr>
<td>6.0</td>
<td>FINAL SCREEN</td>
<td>6-7</td>
</tr>
</tbody>
</table>
1.0 SCOPE

This specification defines the high reliability requirements of resistors for the Electron-Proton Spectrometer. The components shall be subjected to the specified tests in the order given.

2.0 APPLICABLE DOCUMENTS

MIL-STD 202D, Test Methods for Electronic and Electrical Component Parts

MIL-R-10509-F, Resistor Fixed Film, General Specification For

MSCM 8080, Manned Spacecraft Center Standards and Criteria

3.0 QUALITY ASSURANCE REQUIREMENTS

3.1 Certificate of Compliance

A certificate of compliance signed by the Quality Control Manager shall be included with the device(s) shipment. It shall verify that the resistors were processed in accordance with this specification, and that all requirements have been met.

3.2 Retention of Records

The part supplier shall maintain and preserve records of evidence of compliance for a period of one year.
3.2 (continued)

from the date of acceptance of the item by LEC. The supplier shall make his records available upon request from LEC or NASA/MSC.

3.3 Traceability

The vendor shall assure that traceability required by Standard No. 86 in MSCM 8080 can be provided. Identification to the part production, assembly, and test lot shall be recorded. All traceability information shall be supplied on request of LEC or NASA/MSC. This traceability requirement is for a one-way, backward traceability by part or lot code.

3.4 Preparation for Delivery

The resistors shall be packed in a suitable container which will protect the body and leads of the device during shipment.

4.0 ELECTRICAL TESTS

4.1 Electrical Parameters

Measure the following parameters and record the results on an appropriate data sheet beside the applicable serial number. Reject devices exceeding the limits shown.
4.1 (continued)

a. R (resistance) per method 302 of MIL-STD-202D. Limit = ± 1% of designated value.

b. IR (insulation resistance) per method 302 of MIL-STD 202D. VR = 200 V, limit = 1000 megohm minimum.

4.2 **Resistance Value by Type**

<table>
<thead>
<tr>
<th>Type</th>
<th>R in ohms</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK 132</td>
<td>800 K</td>
<td>± 1%</td>
</tr>
<tr>
<td>MK 650</td>
<td>50 K</td>
<td>± 1%</td>
</tr>
<tr>
<td>MG 660</td>
<td>10 M</td>
<td>± 1%</td>
</tr>
<tr>
<td>MG 650</td>
<td>100 K</td>
<td>± 1%</td>
</tr>
<tr>
<td>MG 650</td>
<td>4.99 M</td>
<td>± 1%</td>
</tr>
<tr>
<td>MG 650</td>
<td>2.49 M</td>
<td>± 1%</td>
</tr>
<tr>
<td>MG 650</td>
<td>2.0 M</td>
<td>± 1%</td>
</tr>
<tr>
<td>MS 126</td>
<td>1.33 K</td>
<td>± 1%</td>
</tr>
</tbody>
</table>

5.0 ENVIRONMENTAL

5.1 **Temperature Cycle**

5.2 **Burn-In**

Subject each resistor to a burn-in test for 168 hours under the following conditions:

Temperature - 125°C

Operate at rated power.

The resistance change shall not be more than 0.5% from initial measured value, or out of initial tolerance, before and after burn-in.

6.0 **FINAL SCREEN**

Measure and record resistance. Resistance shall be within ± 1% of nominal and shall not change greater than ± 0.5% from initial reading.
TABLE 1

ELECTRICAL AND ENVIRONMENTAL TESTS

<table>
<thead>
<tr>
<th>Test</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>4.1</td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>5.1</td>
</tr>
<tr>
<td>Burn-in</td>
<td>5.2</td>
</tr>
<tr>
<td>Final Screen</td>
<td>6.0</td>
</tr>
</tbody>
</table>
SECTION 7

PROCUREMENT SPECIFICATION
FOR
CADDOCK RESISTORS
TYPE 1712-100 MEG

Document Number EPS-168

Prepared by
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
for
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas
PROCUREMENT SPECIFICATION
FOR
CADDOCK RESISTORS
TYPE 1712-100 MEG

Prepared by: P. Gleeson
Reliability and Quality
Assurance Engineer

Approved by: W. A. Oliveira
Staff Engineer

B. E. Curtsinger
Engineering Supervisor

B. C. Hall
Program Manager

Electron-Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company
Houston Aerospace Systems Division
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 SCOPE</td>
<td>7-4</td>
</tr>
<tr>
<td>2.0 APPLICABLE DOCUMENTS</td>
<td>7-4</td>
</tr>
<tr>
<td>3.0 QUALITY ASSURANCE REQUIREMENTS</td>
<td>7-4</td>
</tr>
<tr>
<td>3.1 Certificate of Compliance</td>
<td>7-4</td>
</tr>
<tr>
<td>3.2 Retention of Records</td>
<td>7-4</td>
</tr>
<tr>
<td>3.3 Traceability</td>
<td>7-5</td>
</tr>
<tr>
<td>3.4 Preparation for Delivery</td>
<td>7-5</td>
</tr>
<tr>
<td>4.0 ELECTRICAL TESTS</td>
<td>7-5</td>
</tr>
<tr>
<td>4.1 Electrical Parameters</td>
<td>7-5</td>
</tr>
<tr>
<td>5.0 ENVIRONMENTAL</td>
<td>7-6</td>
</tr>
<tr>
<td>5.1 Temperature Cycle</td>
<td>7-6</td>
</tr>
<tr>
<td>5.2 Burn-In</td>
<td>7-6</td>
</tr>
<tr>
<td>6.0 FINAL SCREEN</td>
<td>7-6</td>
</tr>
</tbody>
</table>
1.0 SCOPE

This specification defines the high reliability requirements of resistors for the Electron-Proton Spectrometer. The components shall be subjected to the specified tests in the order given.

2.0 APPLICABLE DOCUMENTS

MIL-STD 202D, Test Methods for Electronic and Electrical Component Parts

MIL-R-10509F, Resistor Fixed Film, General Specification For

MSCM 8080, Manned Spacecraft Center Standards and Criteria

3.0 QUALITY ASSURANCE REQUIREMENTS

3.1 Certificate of Compliance

A certificate of compliance signed by the Quality Control Manager shall be included with the device(s) shipment. It shall verify that the resistors were processed in accordance with this specification, and that all requirements have been met.

3.2 Retention of Records

The part supplier shall maintain and preserve records of evidence of compliance for a period of one year from the date of acceptance of the item by LEC. The supplier shall make his records available upon request from LEC or NASA/MSC.
3.3 **Traceability**

The vendor shall assure that traceability required by Standard No. 86 in MSCM 8080 can be provided. Identification to the part production, assembly and test lot shall be recorded. All traceability information shall be supplied on request of LEC or NASA/MSC. This traceability requirement is for a one-way, backward traceability by part or lot code.

3.4 **Preparation for Delivery**

The resistors shall be packed in a suitable container which will protect the body and leads of the device during shipment.

4.0 **ELECTRICAL TESTS**

4.1 **Electrical Parameters**

Measure the following parameters and record the results on an appropriate data sheet beside the applicable serial number. Reject devices exceeding the limits shown.

a. \(R \) (resistance) per method 302 of MIL-STD 202D.
 \[\text{Limit} = \pm 1\% \text{ of designated value}. \]

b. \(IR \) (insulation resistance) per method 302 of MIL-STD 202D. \(VR = 200V \), \(\text{limit} = 100,000 \text{ megohm minimum} \).
5.0 ENVIRONMENTAL

5.1 Temperature Cycle

The parameters specified in Paragraph 4.1 shall be monitored. Any unit failing the electrical parameters shall be rejected.

5.2 Burn-In

Subject each resistor to a burn-in test for 168 hours under the following conditions:

Temperature - 125°C
Operate at rated power.

The resistance change shall not be more than 0.5% from initial measured value, or out of initial tolerance, before and after burn-in.

6.0 FINAL SCREEN

Measure and record resistance. Resistance shall be within ±1% of nominal and shall not change greater than ±0.5% from initial reading.
TABLE 1

ELECTRICAL AND ENVIRONMENTAL TESTS

<table>
<thead>
<tr>
<th>Paragraph</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>4.1</td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>5.1</td>
</tr>
<tr>
<td>Burn-In</td>
<td>5.2</td>
</tr>
<tr>
<td>Final Screen</td>
<td>6.0</td>
</tr>
</tbody>
</table>

265
PROCUREMENT SPECIFICATION
FOR
CAPACITOR (VARIABLE) RVC 12

Document Number EPS-232

Prepared by
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
for
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas
PROCUREMENT SPECIFICATION
FOR
CAPACITOR (VARIABLE) RVC 12

Prepared by: P. Gleeson
Reliability and Quality Assurance Engineer

Approved by: W. A. Oliveira
Staff Engineer

B. E. Curtsinger
Engineering Supervisor

B. C. Hall
Program Manager

Electron-Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company
Houston Aerospace Systems Division
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 SCOPE</td>
<td>8-4</td>
</tr>
<tr>
<td>2.0 APPLICABLE DOCUMENTS</td>
<td>8-4</td>
</tr>
<tr>
<td>3.0 RELIABILITY AND QUALITY ASSURANCE REQUIREMENTS</td>
<td>8-4</td>
</tr>
<tr>
<td>3.1 Certificate of Compliance</td>
<td>8-4</td>
</tr>
<tr>
<td>3.2 Traceability</td>
<td>8-4</td>
</tr>
<tr>
<td>3.3 Record Retention</td>
<td>8-5</td>
</tr>
<tr>
<td>4.0 PREPARATION FOR DELIVERY</td>
<td>8-5</td>
</tr>
<tr>
<td>4.1 Unit Preparation and Packaging</td>
<td>8-5</td>
</tr>
<tr>
<td>4.2 Packing</td>
<td>8-5</td>
</tr>
<tr>
<td>4.3 Marking</td>
<td>8-5</td>
</tr>
<tr>
<td>5.0 ELECTRICAL AND ENVIRONMENTAL TESTS</td>
<td>8-6</td>
</tr>
<tr>
<td>5.1 Capacitance</td>
<td>8-6</td>
</tr>
<tr>
<td>5.2 Dissipation Factor</td>
<td>8-7</td>
</tr>
<tr>
<td>5.3 Dielectric Withstanding Voltage</td>
<td>8-7</td>
</tr>
<tr>
<td>5.4 Temperature Cycling</td>
<td>8-8</td>
</tr>
<tr>
<td>5.5 Vibration</td>
<td>8-8</td>
</tr>
<tr>
<td>5.6 Burn-in</td>
<td>8-10</td>
</tr>
<tr>
<td>5.7 External Visual</td>
<td>8-10</td>
</tr>
</tbody>
</table>
1.0
SCOPE

This specification defines the high reliability requirements of variable capacitors for the Electron-Proton Spectrometer. The components shall be subjected to the specified tests in the order given.

2.0
APPLICABLE DOCUMENTS

MIL-STD 202D, Test Methods for Electronic and Electrical Parts

MSCM 8080, Manned Spacecraft Center Criteria and Standards

3.0
RELIABILITY AND QUALITY ASSURANCE REQUIREMENTS

3.1
Certificate of Compliance

A certificate of compliance signed by the quality control manager shall be included with all units shipped. It shall verify that the units were manufactured in accordance with this specification and that all requirements have been met.

3.2
Traceability

The manufacturer will assure that traceability can be traced to the lot date and/or code of the lot the parts procured to this specification was taken from. All traceability information will be supplied to LEC and/or NASA/MSC upon request.
3.3 Record Retention

The part supplier shall maintain and preserve records of evidence of compliance and traceability for a period of one year from date of acceptance by LEC. The supplier shall make his records available upon request from LEC or NASA/MSC.

4.0 PREPARATION FOR DELIVERY

4.1 Unit Preparation and Packaging

Each unit procured to this specification shall be clean, dry and packaged individually. The manner of packaging will afford adequate protection against corrosion, deterioration and physical damage during shipment from supply source to the first receiving activity.

4.2 Packing

The packaged units shall be packed in a manner that will afford adequate protection against damage during direct shipment from the supply source to the first receiving activity. This pack shall conform to the applicable carrier rules and regulations.

4.3 Marking

Each shipping container will be marked with the supplier's name and the part number.
5.0 ELECTRICAL AND ENVIRONMENTAL TESTS

5.1 Capacitance

Capacitors shall be tested in accordance with Method 305 of MIL-STD 202D. The following details shall apply.

a. Test frequency - 1 mHz + 100 kHz.

b. Limit of accuracy - + 2% or 0.5 picofarad, whichever is greater.

5.2 Dissipation Factor

The dissipation factor of the capacitors shall be measured at both maximum and minimum capacitance setting at a frequency of 1 mHz + 100 kHz. The accuracy of the measurement shall be at least 0.2%.

5.3 Dielectric Withstanding Voltage

Terminal to Terminal - Capacitors shall be tested in accordance with Method 301 of MIL-STD 202D. The following details shall apply:

a. Magnitude of test voltage - 2.2 times applicable rated dc voltage.

b. Duration of application of test voltage - 3, +2 seconds.

c. Points of application of test voltage - between terminals.

d. Limiting value of surge current - 50 milliamps.

271
5.3 (continued)

When measured as specified, capacitors shall withstand the dc current potential without damage, breakdown or flashover.

5.4 Temperature Cycling

Capacitors shall be tested in accordance with Method 102A, Test Condition C, MIL-STD 202D. Examination and measurements shall be made after final cycle.

Capacitors shall be examined visually for evidence of mechanical damage; dielectric withstanding voltage (paragraph 5.3), capacitance (paragraph 5.1) and dissipation factor (paragraph 5.2) shall be measured as specified in the referenced paragraphs.

5.5 Vibration

The capacitors shall be tested in accordance with MIL-STD 202D, Method 204, Condition B, one sweep from 15 to 2000 cycles, with a time duration of 10 minutes. The following details shall apply.

a. Capacitors shall be rigidly mounted on a mounting fixture by normal mounting means. The mounting fixture shall be so constructed as to preclude any resonances within the test range.
5.5 (continued)

b. Measurements prior to vibration - Capacitors shall be set at approximately 90% to 95% of maximum rated capacitance, and capacitance shall be measured to four places.

c. Electrical-load conditions - During the test a potential of 125% of rated dc voltage shall be applied between the terminals of the capacitor.

d. Test Condition - Letter B.

e. Measurement during vibration - During the last cycle in each direction, an electrical measurement shall be made to determine intermittent contacts. Intermittent contacts of 0.5 ms or greater, or open or short circuiting shall be considered a failure.

f. Examination after vibration - Capacitors shall be visually examined for evidence of mechanical damage.

g. Final Measurements - After the final vibration cycle, the initial capacitance setting shall not be disturbed. The change in the initial setting as defined in paragraph 5.5b shall not exceed .03%. Dielectric withstanding voltage, capacitance and dissipation factor shall be measured as specified in paragraph 5.3, 5.1 and 5.2 respectively.
5.6 **Burn-in**

The capacitors shall be subjected to burn-in temperature of $125^\circ C$ for 168 hours $+16, -0$ hours. The following operating conditions shall apply:

a. The capacitors shall be subjected to the maximum rated voltage. The surge current shall not exceed 50 ma.

b. Measurement during and after exposure: At the conclusion of this test and while the capacitors are still held at the maximum rated temperature, the dielectric withstanding voltage and capacitance shall be measured as specified in Paragraph 5.3 and 5.1 respectively. The capacitors shall be returned to normal temperature and visually examined for evidence of mechanical damage. The capacitance and dissipation factor shall be measured as specified in Paragraph 5.1 and 5.2 respectively.

5.7 **External Visual**

The dimensions of each device shall conform to the configuration shown in Figure 1.
ELECTRICAL AND ENVIRONMENTAL TESTS

<table>
<thead>
<tr>
<th>Test</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>5.1</td>
</tr>
<tr>
<td>Dissipation Factor</td>
<td>5.2</td>
</tr>
<tr>
<td>Dielectric Withstanding Voltage</td>
<td>5.3</td>
</tr>
<tr>
<td>Temperature Cycling</td>
<td>5.4</td>
</tr>
<tr>
<td>Vibration</td>
<td>5.5</td>
</tr>
<tr>
<td>Burn-in</td>
<td>5.6</td>
</tr>
<tr>
<td>External Visual</td>
<td>5.7</td>
</tr>
</tbody>
</table>
FIGURE 1. LEAD CONFIGURATION OF RVC 12
PROCUREMENT SPECIFICATION
FOR
NYTRONICS INDUCTOR
PD-100

Document Number EPS-167

Prepared by
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
for
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 SCOPE</td>
<td>9-4</td>
</tr>
<tr>
<td>2.0 APPLICABLE DOCUMENTS</td>
<td>9-4</td>
</tr>
<tr>
<td>3.0 QUALITY ASSURANCE</td>
<td>9-4</td>
</tr>
<tr>
<td>3.1 Certificate of Compliance</td>
<td>9-4</td>
</tr>
<tr>
<td>3.2 Traceability</td>
<td>9-4</td>
</tr>
<tr>
<td>3.3 Record Retention</td>
<td>9-5</td>
</tr>
<tr>
<td>4.0 PREPARATION FOR DELIVERY</td>
<td>9-5</td>
</tr>
<tr>
<td>4.1 Unit Preparation and Packaging</td>
<td>9-5</td>
</tr>
<tr>
<td>4.2 Packing</td>
<td>9-5</td>
</tr>
<tr>
<td>4.3 Marking</td>
<td>9-5</td>
</tr>
<tr>
<td>4.4 Shipping Method</td>
<td>9-6</td>
</tr>
<tr>
<td>5.0 ELECTRICAL AND ENVIRONMENTAL TESTS</td>
<td>9-6</td>
</tr>
<tr>
<td>5.1 Dielectric Withstanding Voltage</td>
<td>9-6</td>
</tr>
<tr>
<td>5.2 Insulation Resistance</td>
<td>9-6</td>
</tr>
<tr>
<td>5.3 "Q" of Inductors</td>
<td>9-6</td>
</tr>
<tr>
<td>5.4 DC Resistance (DCR)</td>
<td>9-6</td>
</tr>
<tr>
<td>5.5 Temperature Cycling</td>
<td>9-7</td>
</tr>
<tr>
<td>5.6 Burn-In</td>
<td>9-7</td>
</tr>
</tbody>
</table>
1.0 SCOPE

This specification defines the high reliability requirements of Inductors for the Electron-Proton Spectrometer. The components shall be subjected to the specified tests in the order given.

2.0 APPLICABLE DOCUMENTS

MIL-STD 202D, Test Methods for Electronic and Electrical Parts

MSCM 8080, Manned Spacecraft Center Criteria and Standards

MIL-C-15305D, Coils, Fixed and Variable, General Specifications For

3.0 QUALITY ASSURANCE

3.1 Certificate of Compliance

A certificate of compliance signed by the quality control manager shall be included with all units shipped. It shall verify that the units were manufactured in accordance with this specification and that all requirements have been met.

3.2 Traceability

The Manufacturer will assure that traceability required by Standard 86 in MSCM 8080 can be provided. In addition, provisions will be made to record information relating to the specific tests performed and processes on each lot of parts. All traceability information will be supplied to LEC and/or NASA/MSC upon request.
3.3 Record Retention

The part supplier shall maintain and preserve records of evidence of compliance and traceability for a period of one year from date of acceptance by LEC. The supplier shall make his records available upon request.

4.0 PREPARATION FOR DELIVERY

4.1 Unit Preparation and Packaging

Each unit procured to this specification shall be clean, dry and packaged individually. The manner of packaging will afford adequate protection against corrosion, deterioration and physical damage during shipment from supply source to the first receiving activity.

4.2 Packing

The packaged units shall be packed in a manner that will afford adequate protection against damage during direct shipment from the supply source to the first receiving activity. This pack shall conform to the applicable carrier rules and regulations.

4.3 Marking

Each shipping container will be marked with the supplier's name and the part number.
4.4 Shipping Method

Unless otherwise specified, the supplier shall use his own delivery facilities if delivery is local, and air express if the distance is greater than 100 miles.

5.0 ELECTRICAL AND ENVIRONMENTAL TESTS

5.1 Dielectric Withstanding Voltage

The inductors shall be tested in accordance with Paragraph 4.8.2, MIL-C-15305D. There shall be no arcing, flashover, breakdown, or other damage.

5.2 Insulation Resistance

The inductors shall be tested in accordance with Paragraph 4.8.4, MIL-C-15305D. The insulation resistance shall be not less than 1000 megohms.

5.3 "Q" of Inductors

The test shall be performed using a Q meter such as Boonton RCA Model 260A, or equivalent, and Boonton RCA Q-standard, type 513A or equivalent. The tests shall be performed in accordance with Paragraph 4.8.8.3 of MIL-C-15305D. The "Q" of the inductors shall be 55 minimum at a frequency of 2.5 mHz.

5.4 DC Resistance (DCR)

Direct Current Resistance of the inductors shall be measured in accordance with Method 303, MIL-STD 202D. Test Current \(I_T = 110 \text{ mA} \). The unit shall be considered failed if the DCR is greater than 11.5 ohms.
5.5 **Temperature Cycling**

Inductors shall be tested in accordance with Method 102 of MIL-STD 202D. The following details shall apply:

a. Conditioning prior to first cycle - 15 minutes at standard temperature.

5.6 **Burn-In**

Inductors shall be tested in accordance with Method 108A of MIL-STD 202D. The following details shall apply:

a. Test temperature - 125°C ± 3°C

b. Length of Test - minimum of 168, +16, -0 hours

5.6.1 **Operating Conditions**

Inductors tested shall be subjected to the DC rated voltage. The rated current shall not be greater than 110 mA.

5.6.2 **Measurements During and After Exposure**

At the conclusion of this test and while the inductors are at the applicable test temperature, the insulation resistance shall be measured in accordance with Method 302, MIL-STD 202D, Condition C. The insulation resistance shall not be less than 1,000 megohms. The specimens shall be returned to 25°C and paragraph 5.1 through 5.4 shall be repeated.
PROCUREMENT SPECIFICATION

FOR

BARRY CONTROL VIBRATION ISOLATORS

LEC Document Number EPS-356

Revision A 5.2.1 (6.0 to 6.2)
Revision B 6.2 (by to to)

Prepared by
Lockheed Electronics Company, Inc.
Houston Aerospace Systems Division
Houston, Texas

Under Contract NAS 9-11373

for

National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas

284
PROCUREMENT SPECIFICATION

FOR

BARRY CONTROLS VIBRATION ISOLATOR

Prepared by:
Donald Vincent
Sr. Mech. Engineer

Approved by:
P. Gleeson
Reliability & Quality Assurance

B. C. Hall
Program Manager
PROCUREMENT SPECIFICATION FOR
BARRY CONTROLS VIBRATION ISOLATORS

1.0 SCOPE

1.1 Scope
This specification defines necessary procurement require-
ments for the Barrymount 6300 Series Isolator, to satisfy
design requirements and NASA Reliability and Quality
Assurance provisions for the Electron-Proton Spectrometer.

2.0 APPLICABLE DOCUMENTS
The following documents of the issue in effect on the date
of application should form a part of this specification to
the extent specified herein.

NBH 5300.4(1B) Reliability and Quality Assurance Provisions
for Aeronautical and Space System Contractors.

3.0 QUALITY ASSURANCE REQUIREMENTS

3.1 Inspection, Measuring and Test Equipment
The vendor shall maintain and control inspection, measuring
and test equipment in accordance with paragraph 1B705 of
NBH 5300.4(1B).

3.2 Inspection and Test Records
Inspection and test records shall include part number,
identification of each mount and each set of isolators,
number of defects found, kind of defects, and acceptance
number. Records of inspection and tests shall be delivered
to Lockheed.
3.3 Certificate of Compliance

A certificate of compliance signed by the Quality Control manager shall be included with the device shipment. It shall verify that the isolators were processed in accordance with this specification and that all requirements have been met.

3.4 Retention of Records

The part supplier shall maintain and preserve records of evidence of compliance for a period of one year from the date of acceptance of the item by LEC. The supplier shall make his records available upon request from LEC or NASA/MSC.

3.5 Traceability

The vendor shall assure that traceability required by Standard No. 86 in MSCM 8080 can be provided. Identification to the part production, assembly and test lot shall be recorded. All traceability information shall be supplied on request of LEC or NASA/MSC. This traceability requirement is for a one-way, backward traceability by part or lot code.

3.6 Preparation for Delivery

The isolators shall be packaged in a suitable container which will protect the body of the device during shipment.
4.1 Physical Requirements

4.1.1 The vibration isolator required shall be of the proportions of the Barrymount 6300 series isolator. However, the mounting flanges shall be modified to the dimensions shown in Fig. 4. Also, the spacer end plates shall be of the dimensions shown in Fig. 4A.

4.1.2 Material

The vibration isolators shall be made from silicone material which is 'Hi-Damp' Elastomer. Material shall be compatible with orbital vacuum (as low as 1×10^{-8} Torr). Maximum Mission duration is 56 days.

4.1.3 Package Format

The EPS electronics package as supported on the isolators will weigh 15.5 lbs. MAX., and be supported by 8 isolators. The location of the isolators, together with the size and C. G. position of the package is shown in Fig. 5.

4.1.4 Dynamic Envelope

Maximum permissable dynamic envelope for the package is shown in Fig. 6.

4.1.5 System (Mount) Natural Frequency

The system natural frequency shall be designed for 40 Hz and must fall in the frequency range of 35 - 50 Hz.
4.1.6 **Damping Ratio**

Desired Damping Ratio is .15, and shall not be less than .12.

4.1.7 **Central Bush**

The Centre Bush shall be capable of withstanding a load of 1700 lbs. (induced by the mounting screw tightening torque) without failure or affecting mount properties.

4.1.8 **Matching**

The mounts shall be provided in matched sets of (8) eight to eliminate as far as possible 'rocking' induced by variations in mount stiffness.

4.1.9 Mounts shall be marked and identified individually.

5.0 **TESTING**

5.1 All vibration isolation mounts shall be tested to determine their natural frequency and damping ratio in both vertical and horizontal axes, and this information provided to LEC.

5.2 **Dynamic Testing**

5.2.1 Isolation mounts shall be dynamically tested to the environmental requirements of 6.2. This test data shall be used to select the location of individual isolators within each matched set. Location of mounts and test data to be provided to LEC with matched sets of mounts.
5.3 Temperature Testing

5.3.1 The mounts must meet or exceed a temperature environment of -55° C to +125° C. The mounts shall be tested or available data analyzed to show that the mounts meet this requirement. Supporting data shall be furnished to LEC.

6.0 ENVIRONMENTAL REQUIREMENTS

6.1 Vibration

6.1.1 Random Vibration

The Random Vibration Criteria imposed on the EPS are as follows:

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>R-Axis</th>
<th>X-Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 to 125 Hz</td>
<td>+12 dB/oct increase</td>
<td>+6 dB/oct increase</td>
</tr>
<tr>
<td>125 to 500 Hz</td>
<td>2.0 g²/Hz</td>
<td>0.085 g²/Hz</td>
</tr>
<tr>
<td>500 to 670 Hz</td>
<td>-9 dB/oct decrease</td>
<td>+6 dB/oct increase</td>
</tr>
<tr>
<td>670 to 1100 Hz</td>
<td>0.8 g²/Hz</td>
<td>0.25 g²/Hz</td>
</tr>
<tr>
<td>1100 to 2000 Hz</td>
<td>-9 dB/oct decrease</td>
<td>-6 dB/oct decrease</td>
</tr>
</tbody>
</table>
The excitation shall act along each of the above axes for a duration of 140 seconds per axis. In addition, the spectral density shall be increased by 4 dB above the nominal for a duration of 10 seconds per axis. (See Fig. 1 for Instrument Axes)

One isolator shall be subjected to the dynamic response of the listed vibration criteria. The remaining isolators shall be qualified by similarity. The data from the analysis shall be sent to LEC.

6.1.2 Flight: 20 - 100 Hz +3 dB/octave Total Duration (increasing) -12 1/2 mins/Axis.
 100 - 2000 Hz Constant at 0.15 g²/Hz.

6.2 Sinusoidal

5-35 Hz @ .25 G peak along each of three orthogonal axes as follows: Sweep at 3 octaves per minute from 5 to 35 to 5 Hz.

The sinusoidal vibration test shall be accomplished on 100% of the isolators furnished to LEC.
6.3 Acceleration

The EPS is subjected to a gradually increasing acceleration load in the +X Axis for 140 seconds after lift-off. Fig. 2 shows the acceleration level versus time. The 10 second, 4 dB above nominal, burst occurs just prior to achieving Mach. 1, and its location relative to the acceleration level is also shown in Fig. 2.

One isolator shall be subjected to the dynamic response of the listed acceleration tests. The remaining isolators shall be qualified by similarity. The results of the analysis will be sent to LEC.

6.4 Shock

6.4.1 Test Shock

The EPS Shock Test is in accordance with MIL-STD-810B, Method 516, Procedures I and V. The shock pulse shape for Procedure I shall be as shown in Fig. 516 -1 of MIL-STD-810B. The peak value for Procedure I shall be 20 g, and the nominal duration of the pulse shall be 11 milliseconds.

Procedure I consists of three shocks in each direction applied along three mutually perpendicular axes of the test item (total of 18 shocks). The shock pulse shall be of a saw tooth shape with an amplitude of 20 g's and a duration of 11 milliseconds. The unit shall be operated after the test and the results compared with functional test results obtained before the shock test.
Procedure V consists of placing the unit on a wooden bench top at least 1 5/8 inches thick and performing the following: With the unit resting on its one flat surface lift one edge of the unit four inches and allow the unit to drop back freely to the horizontal bench top. Repeat using the other three edges as pivot points for a total of four drops. Functionally test unit and compare with previous test results.

One isolator shall be subjected to the dynamic response of the shock criteria listed below. The remaining isolators shall be qualified by similarity. The results of the analysis shall be sent to LEC.

6.4.2 Flight Shock

In addition to the Test Shock conditions of Para. C.1, the EPS is mounted in the command and service module fairing area. The pyrotechnic separation of the (SLA) from the CSM provides a shock response spectrum as shown in Fig. 3.

The Flight Shock shall be proven by analysis. A summary of the resulting data shall be sent to LEC.
FIG. 1 E.R.S. VIBRATION AXES.
Fig 2. Acceleration v Time.
FIG. 3. CSM FAIRING-SHOCK RESPONSE SPECTRUM.
FIG. 4. REQUIRED VIBRATION ISOLATOR PROFILE — ELECTRON-PROTON SPECTROMETER.

DV 6-17-71
LOCKHEED ELECTRONICS 2
HOUSTON, TEXAS.
Fig. 4a - REQUIRED HEIGHT AND FLANGE POSITION FOR ISOLATOR—ELECTRON-PROTON SPECTROMETER.
FIG. 5 VIBRATION MOUNT LOCATION.
* DIMS. APPLY TO 'X' & 'T' AXES

FIG. 6 MAXIMUM ALLOWABLE DYNAMIC ENVELOPE.
SECTION 10

SCREENING SPECIFICATION
FOR
TRANSISTOR SS3520

Document Number EPS-128

Prepared by
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
for
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas

301
SCREENING SPECIFICATION
FOR
TRANSISTOR SS 3520.

Prepared by: P. Gleeson
Reliability and Quality Assurance Engineer

Approved by: T. D. Lyons
Senior Aerospace Engineer

B. E. Curtsinger
Engineering Supervisor

B. C. Hall
Program Manager

Electron/Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company
Houston Aerospace Systems Division
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>1.0</th>
<th>SCOPE</th>
<th>10-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>APPLICABLE DOCUMENTS</td>
<td>10-5</td>
</tr>
<tr>
<td>3.0</td>
<td>REQUIREMENTS FOR TEST LABORATORY SUBCONTRACTORS</td>
<td>10-5</td>
</tr>
<tr>
<td>3.1</td>
<td>Facilities</td>
<td>10-5</td>
</tr>
<tr>
<td>3.2</td>
<td>Inspection, Measuring and Test Equipment</td>
<td>10-5</td>
</tr>
<tr>
<td>3.3</td>
<td>Calibration Records</td>
<td>10-6</td>
</tr>
<tr>
<td>3.4</td>
<td>Calibration Traceability</td>
<td>10-6</td>
</tr>
<tr>
<td>4.0</td>
<td>RELIABILITY AND QUALITY ASSURANCE PROVISIONS</td>
<td>10-6</td>
</tr>
<tr>
<td>4.1</td>
<td>General</td>
<td>10-6</td>
</tr>
<tr>
<td>4.2</td>
<td>Screening Inspections and Tests</td>
<td>10-7</td>
</tr>
<tr>
<td>4.3</td>
<td>Inspection and Test Data</td>
<td>10-7</td>
</tr>
<tr>
<td>4.4</td>
<td>Inspection and Test Records</td>
<td>10-7</td>
</tr>
<tr>
<td>4.5</td>
<td>Serialization</td>
<td>10-7</td>
</tr>
<tr>
<td>4.6</td>
<td>Reject Disposition</td>
<td>10-8</td>
</tr>
<tr>
<td>4.7</td>
<td>Marking of Acceptable Parts</td>
<td>10-8</td>
</tr>
<tr>
<td>4.8</td>
<td>Acceptance</td>
<td>10-8</td>
</tr>
<tr>
<td>4.9</td>
<td>Certificate of Compliance</td>
<td>10-8</td>
</tr>
<tr>
<td>4.10</td>
<td>Notification of Government Source Inspector</td>
<td>10-9</td>
</tr>
<tr>
<td>5.0</td>
<td>PREPARATION FOR DELIVERY</td>
<td>10-9</td>
</tr>
<tr>
<td>5.1</td>
<td>Type of Packaging</td>
<td>10-9</td>
</tr>
<tr>
<td>5.2</td>
<td>Packaging for Shipment</td>
<td>10-9</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>6.0</td>
<td>INSPECTION AND TEST METHODS</td>
<td>10-10</td>
</tr>
<tr>
<td>6.1</td>
<td>External Visual</td>
<td>10-10</td>
</tr>
<tr>
<td>6.2</td>
<td>Electrical</td>
<td>10-10</td>
</tr>
<tr>
<td>6.3</td>
<td>Electrical Intermediate</td>
<td>10-13</td>
</tr>
<tr>
<td>6.4</td>
<td>Environmental</td>
<td>10-14</td>
</tr>
<tr>
<td>6.5</td>
<td>Burn-In</td>
<td>10-15</td>
</tr>
<tr>
<td>6.6</td>
<td>Radiographic Examination</td>
<td>10-16</td>
</tr>
</tbody>
</table>
1.0 SCOPE

This document defines the necessary requirements for the screening of transistor SS3520 to satisfy NASA high reliability requirements for the Electron-Proton Spectrometer (EPS).

2.0 APPLICABLE DOCUMENTS

The following documents of the issue in effect on the date of application shall form a part of this specification to the extent specified herein.

MIL-STD 202D, Test Methods for Electronic and Electrical component parts
MIL-STD 750A, Test Methods for Semiconductor Devices
MIL-STD 883, Test Methods and Procedures for Microelectronics
NHB 5300.4(1A), Reliability Program Provisions for Aeronautical and Space Systems Contractors

3.0 REQUIREMENTS FOR TEST LABORATORY SUBCONTRACTORS

3.1 Facilities

The subcontractor shall provide and maintain adequate facilities for inspecting and testing electronic components described in this specification.

3.2 Inspection, Measuring and Test Equipment

The subcontractor shall maintain and control inspection, measuring and test equipment in accordance with
3.2 (continued)

NHB 5300.4 (1A). Upon request, the subcontractor shall submit to Lockheed Electronics Company (LEC) for approval, a listing of equipment and their intended usage.

3.3 Calibration Records

The subcontractor shall prepare and have available for review by LEC, a written procedure and schedule for the maintenance and calibration of such equipment based on type, accuracy, purpose and degree of usage. Records of calibration shall be maintained and the calibration due date, or other identification attesting the due date of the next calibration, shall be displayed on each item of this equipment.

3.4 Calibration Traceability

Standards used for calibration shall be traceable to the National Bureau of Standards (NBS). No more than five steps shall be used to establish traceability from actual inspection and test equipment to the NBS.

4.0 RELIABILITY AND QUALITY ASSURANCE PROVISIONS

4.1 General

The procedures and methods of testing the transistors in accordance with this specification shall meet the general requirements of MIL-STD-202D.
4.2 Screening Inspections and Tests

Each transistor supplied shall be submitted in the sequence specified to the inspections and tests of Table 1.

4.3 Inspection and Test Data

A summary of the transistor data obtained during each inspection or test shall be prepared and submitted with the transistors to LEC. This summary shall list all transistors that failed electrical tests and the number that failed each parameter. The raw test data shall also be delivered to LEC with the transistors.

4.4 Inspection and Test Records

Inspection and test records shall include part number, serial number, inspection or test number, number of defects found, kinds of defects, acceptance number and the disposition inspector's identity. Records of all inspections and tests shall be delivered to LEC along with the transistors.

4.5 Serialization

All transistors shall be serialized in a manner that will be permanent during use and testing periods.
4.6 **Reject Disposition**

Each transistor that fails the inspections and tests of Table 1 shall be marked with a red dot and placed in a reject bag, and tagged to note unit part number, serial number and inspection or test failed. These units shall also be delivered to LEC. Use 3M-401-5D paint for marking of parts.

4.7 **Marking of Acceptable Parts**

Transistors which meet the requirements of this specification shall be identified with a permanent green dot placed on the body of the transistor. The dot shall be placed on the body at a point which will not interfere with reading the manufacturers part number or date code identification. Use 3M-401-G3 paint for marking of parts.

4.8 **Acceptance**

Preliminary inspection for compliance with the requirements of this specification may be performed at origin by an authorized representative of the Government. Final acceptance for the Contracting Officer shall be performed by the assigned project engineer.

4.9 **Certificate of Compliance**

A certificate of compliance signed by the Quality Control manager shall be included with the device shipment. It shall verify that the transistors
were processed in accordance with this specification and that all requirements have been met.

4.10 Notification of Government Source Inspector

The Government Representative who has been delegated quality assurance function at your test facility shall be notified immediately upon receipt of this order.

5.0 PREPARATION FOR DELIVERY

5.1 Type of Packaging

Each transistor shall be packaged in a suitable container which will protect the body and leads of the device during shipment. The rejected parts shall be identified and packaged separately from the acceptable items.

5.2 Packaging for Shipment

The transistors packaged in accordance with paragraph 5.1 shall be packed to afford protection against damage during direct shipment from the test laboratory to the receiving activity. Containers will comply with the carrier's rules and regulations applicable to the mode of transportation.
6.0 INSPECTION AND TEST METHODS

6.1 External Visual

The transistors shall be examined to verify that the materials, design, construction, marking and workmanship are in accordance with the applicable requirements.

6.2 Electrical

All electrical tests shall be performed at an ambient temperature of 25°C unless otherwise noted.

6.2.1 Collector-Base Cutoff Current

\[V_{CB} = 15 \text{ VDC} \]

\[I_E = 0 \]

The collector-base cutoff current shall be tested in accordance with Method 3036, Condition D, MIL-STD 750A.

The unit shall be considered failed if the \(I_{CBO} \) is greater than 10 nA dc.

6.2.2 Collector - Base Breakdown Voltage

\[I_C = 1.0 \, \mu\text{A dc} \]
6.2.2 (continued)

\[I_E = 0 \]

The collector - base breakdown voltage shall be tested in accordance with Method 3001.1, Condition D, MIL-STD 750A.

The unit shall be considered failed if \(BV_{CBO} \) is less than 35 VDC.

6.2.3 Emitter - Base Breakdown Voltage

\[I_E = 10 \mu A \text{ dc} \]

\[I_C = 0 \]

The emitter - base breakdown voltage shall be tested in accordance with Method 3026.1, Condition D, MIL-STD 750A.

The unit shall be considered failed if the \(BV_{EBO} \) is less than 3.0 VDC.

6.2.4 Collector - Emitter Breakdown Voltage

\[I_C = 3.0 mA \text{ dc (pulsed)} \]

\[I_B = 0 \]

Pulse width \(\leq 300 \mu s \)

Duty Cycle = 1%
6.2.4 (continued)

The collector – emitter breakdown voltage shall be tested in accordance with Method 3011.1, Condition D, MIL-STD 750A.

The unit shall be considered failed if the BV_{CEO} is less than 20 VDC.

6.2.5 Forward Current Ratio (h_{fe})

\[V_{CE} = 15 \text{ VDC} \]
\[I_C = 2.0 \text{ mA dc} \]
\[f = 1.0 \text{ kHz} \]

The forward transfer ratio shall be tested in accordance with Method 3206, MIL-STD 750A.

The unit shall be considered failed if the h_{fe} is less than 100.

6.2.6 Base – Emitter Saturation Voltage

\[I_C = 10 \text{ mA dc} \]
\[I_B = 1.0 \text{ mA dc} \]

The base-emitter saturation voltage shall be tested in accordance with Method 3066.1, MIL-STD 750A.
6.2.6 (continued)

The unit shall be considered failed if the $V_{BE(Sat)}$ is greater than 1.0 VDC.

6.2.7 Collector - Emitter Saturation Voltage

$I_C = 10$ mA dc

$I_B = 1.0$ mA dc

The collector - emitter saturation voltage shall be tested in accordance with Method 3071.1, MIL-STD 75CA.

The unit shall be considered failed if the $V_{CE(Sat)}$ is greater than 0.4 VDC.

6.2.8 Unity Gain Frequency

$V_{CE} = 15$ VDC

$I_C = 1$ mA

$f = 100$ MHz

The Unity Gain (f_t) shall be tested in accordance with Method 3261, Use, Method 3306.1, Condition A to determine the magnitude of the common emitter small-signal short-circuit transfer ratio. The unit shall be considered failed if the f_t is less than 500 MHz.

6.3 Electrical Intermediate

6.3.1 Forward - Current Transfer Ratio (h_{FE})

$V_{CE} = 2.0$ VDC

$I_C = 2.0$ mA dc (pulsed)

Pulse Width = 300 μs
6.3.1 (continued)

Duty Cycle = 1%.

The forward current transfer ratio \(h_{FE} \) shall be tested in accordance with Method 3076.1, MIL-STD 750A. The unit shall be considered failed if the \(h_{FE} \) is less than 75.

6.4 Environmental

6.4.1 High Temperature Storage

The transistor shall be exposed to a temperature of 200°C, +0°C, -10°C, for a period of 48 hours, +24 hours, -0 hours.

6.4.2 Temperature Cycling

The transistor shall be tested in accordance with MIL-STD 202D, Method 102, Condition C. The transistor shall be subjected to five cycles performed continuously.

6.4.3 Acceleration

The transistor shall be tested in accordance with MIL-STD 750A, Method 2006. The transistor shall be accelerated for one minute in the \(Y_1 \) plane at a level of 20,000 g's.

6.4.4 Fine Leak

The transistor shall be tested in accordance with MIL-STD 202D, Method 112, Condition C. The units shall be subjected to a pressure of 60 psig, ± 10 psig, in a helium atmosphere for a minimum period of four hours.
6.4.4 (continued)

The units shall then be placed in a mass spectrometer to measure helium leakage. Units exhibiting leak rates in excess of 10^{-8} atm-cc/sec shall be considered failed.

6.4.5 Gross Leak

The transistor shall be tested in accordance with MIL-STD 883D, Method 1014, Condition C, at a temperature of $125^\circ C \pm 10^\circ C$. The unit shall be submerged to a minimum of one inch into the hot liquid and observed for a minimum of one minute. Any unit emitting a continuous stream of bubbles shall be considered failed.

6.4.6 Vibration

Each transistor shall be tested in accordance with MIL-STD 202D, Method 204A, Cond. C. The following shall apply:

1. Non-operating
2. Perform 2.4.2 part 2 only. The entire frequency range of 55 to 2000 cycles (no return sweep) shall be traversed in 10 ± 3 minutes.
3. Paragraph 6.3, Electrical Intermediate, shall be run after completion of vibration testing.

6.5 Burn-In

6.5.1 Heat Sink

The transistor shall be mounted on a heat sink whose temperature will be maintained at $70^\circ C, +15^\circ C, -5^\circ C$.

315
6.5.2 Test Conditions

The collector to emitter voltage V_{CE} shall be set at 10 volts. The collector current I_C shall be set to 15 mA dc.

6.5.3 Test Length

The test shall be run for 168 hours, +12, -0 hours. Section 6.2 of this specification shall be rerun, and any transistor failing any portion of Section 6.2 shall be considered failed. Prior to the testing of Section 6.2, the transistor shall be allowed to return to ambient temperature (25°C).

6.6 Radiographic Examination

6.6.1 Procedure

The transistor shall be X-rayed in two mutually perpendicular planes. Maintain unit identity between units and film position.

6.6.2 Acceptance

Examine film, using 100X minimum magnification, and reject units having the following defects or characteristics:

a. Poor chip mounting: any unit displaying less than 50% contact between chip and mounting base.

b. Extraneous material: any unit displaying extraneous or foreign material that is not a normal portion of the product.
6.6.2 (continued)

c. Bonds and bond wires: any bond or bond wires that are misplaced, loose or extra. Bond wires that are within 0.005 inch of any area not electrically common with the bond wire.

d. Miscellaneous: any anomaly which, in the opinion of the inspector, will degrade performance or reliability of the unit.
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Para.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electrical</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Environmental</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>High Temperature Storage</td>
<td>6.4.1</td>
</tr>
<tr>
<td>2.2</td>
<td>Electrical</td>
<td>6.3</td>
</tr>
<tr>
<td>2.3</td>
<td>Temperature Cycling</td>
<td>6.4.2</td>
</tr>
<tr>
<td>2.4</td>
<td>Electrical</td>
<td>6.3</td>
</tr>
<tr>
<td>2.5</td>
<td>Fine Leak</td>
<td>6.4.4</td>
</tr>
<tr>
<td>2.6</td>
<td>Gross Leak</td>
<td>6.4.5</td>
</tr>
<tr>
<td>2.7</td>
<td>Electrical</td>
<td>6.3</td>
</tr>
<tr>
<td>2.8</td>
<td>Vibration</td>
<td>6.4.6</td>
</tr>
<tr>
<td>2.9</td>
<td>Burn-In</td>
<td>6.5</td>
</tr>
<tr>
<td>2.10</td>
<td>Radiographic Examination</td>
<td>6.6</td>
</tr>
</tbody>
</table>
SECTION 11.

SCREENING SPECIFICATION
FOR
TRANSISTOR 2N2609

Document Number EPS-214

Prepared by
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
for
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas

319
SCREENING SPECIFICATION
FOR
TRANSISTOR 2N2609

Prepared by: P. Gleeson
Reliability and Quality Assurance Engineer

Approved by: B. E. Curtsinger
Engineering Supervisor

B. C. Hall
Program Manager

Electron-Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company
Houston Aerospace Systems Division
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SCOPE</td>
<td>11-5</td>
</tr>
<tr>
<td>2.0</td>
<td>APPLICABLE DOCUMENTS</td>
<td>11-5</td>
</tr>
<tr>
<td>3.0</td>
<td>REQUIREMENTS FOR TEST LABORATORY SUBCONTRACTORS</td>
<td>11-5</td>
</tr>
<tr>
<td>3.1</td>
<td>Facilities</td>
<td>11-5</td>
</tr>
<tr>
<td>3.2</td>
<td>Inspection, Measuring and Test Equipment</td>
<td>11-5</td>
</tr>
<tr>
<td>3.3</td>
<td>Calibration Records</td>
<td>11-6</td>
</tr>
<tr>
<td>3.4</td>
<td>Calibration Traceability</td>
<td>11-6</td>
</tr>
<tr>
<td>4.0</td>
<td>RELIABILITY AND QUALITY ASSURANCE PROVISIONS</td>
<td>11-6</td>
</tr>
<tr>
<td>4.1</td>
<td>General</td>
<td>11-6</td>
</tr>
<tr>
<td>4.2</td>
<td>Screening Inspections and Tests</td>
<td>11-6</td>
</tr>
<tr>
<td>4.3</td>
<td>Inspection and Test Data</td>
<td>11-7</td>
</tr>
<tr>
<td>4.4</td>
<td>Inspection and Test Records</td>
<td>11-7</td>
</tr>
<tr>
<td>4.5</td>
<td>Serialization</td>
<td>11-7</td>
</tr>
<tr>
<td>4.6</td>
<td>Reject Disposition</td>
<td>11-7</td>
</tr>
<tr>
<td>4.7</td>
<td>Marking of Acceptable Parts</td>
<td>11-8</td>
</tr>
<tr>
<td>4.8</td>
<td>Acceptance</td>
<td>11-8</td>
</tr>
<tr>
<td>4.9</td>
<td>Certificate of Compliance</td>
<td>11-8</td>
</tr>
<tr>
<td>4.10</td>
<td>Notification of Government Source Inspector</td>
<td>11-8</td>
</tr>
<tr>
<td>5.0</td>
<td>PREPARATION FOR DELIVERY</td>
<td>11-9</td>
</tr>
<tr>
<td>5.1</td>
<td>Type of Packaging</td>
<td>11-9</td>
</tr>
<tr>
<td>5.2</td>
<td>Packaging for Shipment</td>
<td>11-9</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>6.0</td>
<td>INSPECTION AND TEST METHODS</td>
<td>11-9</td>
</tr>
<tr>
<td>6.1</td>
<td>External Visual</td>
<td>11-9</td>
</tr>
<tr>
<td>6.2</td>
<td>Electrical</td>
<td>11-9</td>
</tr>
<tr>
<td>6.3</td>
<td>Intermediate Electrical</td>
<td>11-12</td>
</tr>
<tr>
<td>6.4</td>
<td>Environmental</td>
<td>11-13</td>
</tr>
<tr>
<td>6.5</td>
<td>Burn-In</td>
<td>11-14</td>
</tr>
<tr>
<td>6.6</td>
<td>Radiographic Examination</td>
<td>11-15</td>
</tr>
</tbody>
</table>
1.0 SCOPE

This document defines the necessary requirements for the screening of transistor 2N2609 to satisfy NASA high reliability requirements for the Electron-Proton Spectrometer (EPS).

2.0 APPLICABLE DOCUMENTS

The following documents of the issue in effect on the date of application shall form a part of this specification to the extent specified herein.

MIL-STD 750A, Test Methods for Semiconductor Devices

MIL-STD 202D, Test Methods for Electronic and Electrical Component Parts

NHB5300.4(1A), Reliability Program Provisions for Aeronautical and Space Systems Contractors

3.0 REQUIREMENTS FOR TEST LABORATORY SUBCONTRACTORS

3.1 Facilities

The subcontractor shall provide and maintain adequate facilities for inspecting and testing electronic components described in this specification.

3.2 Inspection, Measuring and Test Equipment

The subcontractor shall maintain and control inspection, measuring and test equipment in accordance with NHB5300.4 (1A). Upon request, the subcontractor shall submit to
3.2 (continued)

Lockheed Electronics Company (LEC) for approval, a listing of equipment and their intended usage.

3.3 Calibration Records

The subcontractor shall prepare and have available for review by LEC, a written procedure and schedule for the maintenance and calibration of such equipment based on type, accuracy, purpose and degree of usage. Records of calibration shall be maintained and the calibration due date, or other identification attesting the due date of the next calibration shall be displayed on each item of this equipment.

3.4 Calibration Traceability

Standards used for calibration shall be traceable to the National Bureau of Standards (NBS). No more than five steps shall be used to establish traceability from actual inspection and test equipment to the NBS.

4.0 RELIABILITY AND QUALITY ASSURANCE PROVISIONS

4.1 General

The procedures and methods of testing the transistors in accordance with this specification shall meet the general requirements of MIL-STD 202D.

4.2 Screening Inspections and Tests

Each transistor supplied shall be submitted in the sequence specified to the inspections and tests of Table 1.
4.3 Inspection and Test Data

A summary of the transistor data obtained during each inspection or test shall be prepared and submitted with the transistors to LEC. This summary shall list all transistors that failed electrical tests and the number that failed each parameter. The raw test data shall also be delivered to LEC with the transistors.

4.4 Inspection and Test Records

Inspection and test records shall include part number, serial number, inspection or test number, number of defects found, kinds of defects, acceptance number and the disposition inspector's identity. Records of all inspections and tests shall be delivered to LEC along with the transistors.

4.5 Serialization

All transistors shall be serialized in a manner that will be permanent during use and testing periods.

4.6 Reject Disposition

Each transistor that fails the inspections and tests of Table 1 shall be marked with a red dot and placed in a reject bag, and tagged to note unit part number, serial number and inspection or test failed. These units shall also be delivered to LEC. Use 3M Company's 3M-401-5D paint for marking of parts.
4.7 Marking of Acceptable Parts

Transistors which meet the requirements of this specification shall be identified with a permanent green dot placed on the body of the transistor. The dot shall be placed on the body at a point which will not interfere with reading the manufacturer's part number or date code identification. Use 3M Company's 3M-401-G3 paint for marking of parts.

4.8 Acceptance

Preliminary inspection for compliance with the requirements of this specification may be performed at origin by an authorized representative of the Government. Final acceptance for the Contracting Officer shall be performed by the assigned project engineer.

4.9 Certificate of Compliance

A certificate of compliance signed by the Quality Control manager shall be included with the device shipment. It shall verify that the transistors were processed in accordance with this specification and that all requirements have been met.

4.10 Notification of Government Source Inspector

The Government Representative who has been delegated quality assurance function at your test facility shall be notified immediately upon receipt of this order.
5.0 PREPARATION FOR DELIVERY

5.1 Type of Packaging

Each transistor shall be packaged in a suitable container which will protect the body and leads of the device during shipment. The rejected parts shall be identified and packaged separately from the acceptable items.

5.2 Packaging for Shipment

The transistors packaged in accordance with paragraph 5.1 shall be packed to afford protection against damage during direct shipment from the test laboratory to the receiving activity. Containers will comply with the carrier's rules and regulations applicable to the mode of transportation.

6.0 INSPECTION AND TEST METHODS

6.1 External Visual

The transistors shall be examined to verify that the materials, design, construction, marking and workmanship are in accordance with the applicable requirements.

6.2 Electrical

All electrical tests shall be performed at an ambient temperature of 25°C unless otherwise noted.

6.2.1 Gate-Source Reverse Current

\[V_{DS} = 0 \]

\[V_{GS} = -5 \text{ V} \]

327
6.2.1 (continued)

Connect the transistor as shown in Figure 1. The specified DC voltage shall be applied between the gate and the source with the drain connected to the source.

The unit shall be considered failed if the I_{GSS} is greater than 30 nA.

6.2.2 Gate-Drain Breakdown Voltage

$$I_G = 1 \, \mu A$$

$$V_{DS} = 0$$

Connect the transistor as shown in Figure 2.
The voltage shall be gradually increased from zero to the specified minimum value of $BV_{GDS} = 30\text{V}$ or until the specified gate current is reached. The device is acceptable if the specified limit for BV_{GDS} is reached before the current reaches the specified value. If the specified current is reached first, the device is rejected.

6.2.3 Drain Current at Zero Gate Voltage

\[V_{DS} = -5\text{V} \]
\[V_{GS} = 0 \]

Connect the transistor as shown in Figure 3.

![Diagram](image)

FIGURE 3

The specified drain to source voltage is applied. The device is accepted if the drain current I_{DSS} falls between the following values:

\[I_{DSS}(\text{min}) = 2.0 \text{ mA} \]
\[I_{DSS}(\text{max}) = 10.0 \text{ mA} \]
6.2.4 Gate-Source Pinch-Off Voltage

\[V_{DS} = -5V \]
\[I_D = 1 \mu A \]

Connect the transistor as shown in Figure 4.

The drain-to-source voltage is applied and the gate-to-source voltage increased until the drain current reads 1 \(\mu A \), for \(V_p(\text{min})=1V \), \(V_p(\text{max})=4V \). The device is acceptable if the gate-to-source voltage (\(V_p \)) falls within the specified limits.

6.3 Intermediate Electrical

6.3.1 Drain-Current at Zero-Gate Voltage

\[V_{DS} = -5V \]
\[V_{GS} = 0 \]
6.3.1 (continued)

Connect the transistors as shown in Figure 3. The specified V_{DS} is applied. The device is acceptable if the drain current (I_{DSS}) falls between $I_{DSS} \text{(min)} = 2.0 \text{ mA}$ and $I_{DSS} \text{(max)} = 10.0 \text{ mA}$.

6.3.2 Gate-Source Reverse Current

\[V_{GS} = 5 \text{ V} \]
\[V_{DS} = 0 \]

Connect transistor as shown in Figure 1. The specified DC voltage shall be applied between the gate and the source with the drain connected to the source. The device is considered failed if the I_{GSS} is greater than 30 nA.

6.4 Environmental

6.4.1 High Temperature Storage

The transistor shall be exposed to a temperature of 200°C $+0^\circ\text{C}, -10^\circ\text{C}$ for a period of 48 hours, $+24$ hours, -0 hours.

6.4.2 Temperature Cycling

The transistor shall be tested in accordance with MIL-STD 202D, Method 102, Condition C. The transistor shall be subjected to five cycles performed continuously.

6.4.3 Acceleration

The transistor shall be tested in accordance with MIL-STD 750A, Method 2006. The transistor shall be accelerated for one minute in the Y_1 plane at a level of 20,000 g's.
6.4.4 Fine Leak

The transistor shall be tested in accordance with MIL-STD 202D, Method 112, Condition C. The units shall be subjected to a pressure of 60 psig ± 10 psig, in a helium atmosphere for a minimum period of four hours. The units shall then be placed in a mass spectrometer to measure helium leakage. Units exhibiting leak rates in excess of 10^{-8} atm-cc/sec shall be considered failed.

6.4.5 Gross Leak

The transistor shall be tested in accordance with MIL-STD 202D, Method 112, Condition A, using ethylene glycol at a temperature of 125°C, ± 10°C. The unit shall be submerged to a minimum of one inch into the hot liquid and observed for a minimum of one minute. Any unit emitting a continuous stream of bubbles shall be considered failed.

6.4.6 Vibration

Each device shall be tested in accordance with MIL-STD 202D, Method 204A, Condition C. The following shall apply.

1. Non-operating

2. Perform 2.4.2, Part 2 only

 (a) The entire frequency range of 55 to 2000 cycles (no return sweep) shall be traversed in 10 ± 3 minutes
6.4.6 (Continued)

3. Paragraph 6.3, Electrical Intermediate, shall be run after completion of vibration testing.

6.5 Burn-In

6.5.1 Heat Sink

The transistor shall be mounted on a heat sink whose temperature will be maintained at 70°C, +15°C, -5°C.

6.5.2 Test Conditions

\[V_{DS} = -5V \]
\[I_D = I_DSS \]

6.5.3 Test Length

The test shall be run for 168 hours, +12 hours, -0 hours. Section 6.2 of this specification shall be rerun, and any transistor failing any portion of Section 6.2 shall be considered failed.

6.6 Radiographic Examination

6.6.1 Procedure

The transistor shall be X-rayed in two mutually perpendicular planes. Maintain unit identity between units and film position.
6.6.2 Acceptance

Examine film, using 100X minimum magnification, and reject units having the following defects or characteristics.

a. Poor chip mounting: any unit displaying less than 50% contact between chip and mounting base.

b. Extraneous material: any unit displaying extraneous or foreign material that is not a normal portion of the product.

c. Bonds and bond wires: any bond or bond wires that are misplaced, loose or extra. Bond wires that are within 0.005 inch of any area not electrically common with the bond wire.

d. Miscellaneous: any anomaly which, in the opinion of the inspector, will degrade performance or reliability of the unit.
<table>
<thead>
<tr>
<th>Section</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Electrical</td>
<td>Para. 6.2</td>
</tr>
<tr>
<td>2.0 Environmental</td>
<td>Para. 6.4</td>
</tr>
<tr>
<td>2.1 High Temperature Storage</td>
<td>Para. 6.4.1</td>
</tr>
<tr>
<td>2.2 Electrical Intermediate</td>
<td>Para. 6.3</td>
</tr>
<tr>
<td>2.3 Temperature Cycling</td>
<td>Para. 6.4.2</td>
</tr>
<tr>
<td>2.4 Electrical</td>
<td>Para. 6.2</td>
</tr>
<tr>
<td>2.5 Fine Leak</td>
<td>Para. 6.4.4</td>
</tr>
<tr>
<td>2.6 Gross Leak</td>
<td>Para. 6.4.5</td>
</tr>
<tr>
<td>2.7 Electrical</td>
<td>Para. 6.2</td>
</tr>
<tr>
<td>2.8 Vibration</td>
<td>Para. 6.4.6</td>
</tr>
<tr>
<td>2.9 Burn-In</td>
<td>Para. 6.5</td>
</tr>
<tr>
<td>2.10 Radiographic Examination</td>
<td>Para. 6.6</td>
</tr>
</tbody>
</table>
SECTION 12

SCREENING SPECIFICATION FOR TRANSISTOR 2N5333

Document Number EPS-179

Prepared by Lockheed Electronics Company Houston Aerospace Systems Division Houston, Texas Under Contract NAS 9-11373 for National Aeronautics and Space Administration Manned Spacecraft Center Houston, Texas

336
SCREENING SPECIFICATION
FOR
TRANSISTOR 2N5333

Prepared by: P. Gleeson
Reliability and Quality Assurance Engineer

Approved by: B. E. Curtsinger
Engineering Supervisor

B. C. Hall
Program Manager

Electron-Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company
Houston Aerospace Systems Division
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SCOPE</td>
<td>12-4</td>
</tr>
<tr>
<td>2.0</td>
<td>APPLICABLE DOCUMENTS</td>
<td>12-4</td>
</tr>
<tr>
<td>3.0</td>
<td>REQUIREMENTS FOR TEST LABORATORY SUBCONTRACTORS</td>
<td>12-4</td>
</tr>
<tr>
<td>3.1</td>
<td>Facilities</td>
<td>12-4</td>
</tr>
<tr>
<td>3.2</td>
<td>Inspection, Measuring and Test Equipment</td>
<td>12-4</td>
</tr>
<tr>
<td>3.3</td>
<td>Calibration Records</td>
<td>12-5</td>
</tr>
<tr>
<td>3.4</td>
<td>Calibration traceability</td>
<td>12-5</td>
</tr>
<tr>
<td>4.0</td>
<td>RELIABILITY AND QUALITY ASSURANCE PROVISIONS</td>
<td>12-5</td>
</tr>
<tr>
<td>4.1</td>
<td>General</td>
<td>12-5</td>
</tr>
<tr>
<td>4.2</td>
<td>Screening Inspections and Tests</td>
<td>12-5</td>
</tr>
<tr>
<td>4.3</td>
<td>Inspection and Test Data</td>
<td>12-5</td>
</tr>
<tr>
<td>4.4</td>
<td>Inspection and Test Records</td>
<td>12-6</td>
</tr>
<tr>
<td>4.5</td>
<td>Serialization</td>
<td>12-6</td>
</tr>
<tr>
<td>4.6</td>
<td>Reject Disposition</td>
<td>12-6</td>
</tr>
<tr>
<td>4.7</td>
<td>Marking of Acceptable Parts</td>
<td>12-6</td>
</tr>
<tr>
<td>4.8</td>
<td>Acceptance</td>
<td>12-7</td>
</tr>
<tr>
<td>4.9</td>
<td>Certificate of Compliance</td>
<td>12-7</td>
</tr>
<tr>
<td>4.10</td>
<td>Notification of Government Source Inspector</td>
<td>12-7</td>
</tr>
<tr>
<td>5.0</td>
<td>PREPARATION FOR DELIVERY</td>
<td>12-8</td>
</tr>
<tr>
<td>5.1</td>
<td>Type of Packaging</td>
<td>12-8</td>
</tr>
<tr>
<td>5.2</td>
<td>Packaging for Shipment</td>
<td>12-8</td>
</tr>
<tr>
<td>6.0</td>
<td>INSPECTION AND TEST METHODS</td>
<td>12-8</td>
</tr>
<tr>
<td>6.1</td>
<td>External Visual</td>
<td>12-8</td>
</tr>
<tr>
<td>6.2</td>
<td>Electrical</td>
<td>12-8</td>
</tr>
<tr>
<td>6.3</td>
<td>Electrical Intermediate</td>
<td>12-11</td>
</tr>
<tr>
<td>6.4</td>
<td>Environmental</td>
<td>12-11</td>
</tr>
<tr>
<td>6.5</td>
<td>Burn-In</td>
<td>12-12</td>
</tr>
<tr>
<td>6.6</td>
<td>Radiographic Examination</td>
<td>12-13</td>
</tr>
</tbody>
</table>
1.0 SCOPE

This document defines the necessary requirements for the screening of Transistor 2N5333 to satisfy NASA high reliability requirements for the Electron-Proton Spectrometer (EPS).

2.0 APPLICABLE DOCUMENTS

The following documents of the issue in effect on the date of application shall form a part of this specification to the extent specified herein.

MIL-STD 202D, Test Methods for Electronic and Electrical Component Parts
MIL-STD 750A, Test Methods for Semiconductor Devices
MIL-STD 883, Test Methods and Procedures for Microelectronics
NHB53-0.4(1A), Reliability Program Provisions for Aeronautical and Space Systems Contractors

3.0 REQUIREMENTS FOR TEST LABORATORY SUBCONTRACTORS

3.1 Facilities

The subcontractor shall provide and maintain adequate facilities for inspecting and testing electronic components described in this specification.

3.2 Inspection, Measuring and Test Equipment

The subcontractor shall maintain and control inspection, measuring and test equipment in accordance with NHB5300.4(1A). Upon request, the subcontractor shall submit to Lockheed Electronics Company (LEC) for approval, a listing of equipment and their intended usage.
3.3 **Calibration Records**

The subcontractor shall prepare and have available for review by LEC, a written procedure and schedule for the maintenance and calibration of such equipment based on type, accuracy, purpose and degree of usage. Records of calibration shall be maintained and the calibration due date, or other identification attesting the due date of the next calibration, shall be displayed on each item of this equipment.

3.4 **Calibration Traceability**

Standards used for calibration shall be traceable to the National Bureau of Standards (NBS). No more than five steps shall be used to establish traceability from actual inspection and test equipment to the NBS.

4.0 **RELIABILITY AND QUALITY ASSURANCE PROVISIONS**

4.1 **General**

The procedures and methods of testing the transistors in accordance with this specification shall meet the general requirements of MIL-STD 202D.

4.2 **Screening Inspections and Tests**

Each transistor supplied shall be submitted in the sequence specified to the inspections and tests of Table 1.

4.3 **Inspection and Test Data**

A summary of the transistor data obtained during each inspection or test shall be prepared and submitted with
4.3 (continued)

the transistors to LEC. This summary shall list all transistors that failed electrical tests and the number that failed each parameter. The raw test data shall also be delivered to LEC with the transistors.

4.4 Inspection and Test Records

Inspection and test records shall include part number, serial number, inspection or test number, number of defects found, kinds of defects, acceptance number, and the disposition inspector's identity. Records of all inspections and tests shall be delivered to LEC along with the transistors.

4.5 Serialization

All transistors shall be serialized in a manner that will be permanent during use and testing periods.

4.6 Reject Disposition

Each transistor that fails the inspections and tests of Table 1 shall be marked with a red dot and placed in a reject bag, and tagged to note unit part number, serial number and inspection or test failed. These units shall also be delivered to LEC. Use Minnesota Mining and Manufacturing Co's 3M-401-5D paint for marking of parts. Mixing and application should be done in accordance with manufacturer's specification sheet.

4.7 Marking of Acceptable Parts

Transistors which meet the requirements of this specification shall be identified with a permanent green dot placed on the body of the transistor. The dot shall be placed
4.7 (continued)

on the body at a point which will not interfere with reading
the manufacturer's part number or date code identification.
Use Minnesota Mining and Manufacturing Co's 3M-401-G3 paint
for marking of parts. Mixing and application should be done
in accordance with manufacturer's specification sheet.

4.8 Acceptance

Preliminary inspection for compliance with the requirements
of this specification may be performed at origin by an
authorized representative of the Government. Final accep-
tance for the Contracting Officer shall be performed by
the assigned project engineer.

4.9 Certificate of Compliance

A certificate of compliance signed by the Quality Control
Manager shall be included with the device shipment. It
shall verify that the transistors were processed in accor-
dance with this specification and that all requirements
have been met.

4.10 Notification of Government Source Inspector

The Government Representative who has been delegated
quality assurance function at your test facility shall
be notified immediately upon receipt of this order.
5.0 PREPARATION FOR DELIVERY

5.1 Type of Packaging

Each transistor shall be packaged in a suitable container which will protect the body and leads of the device during shipment. The rejected parts shall be identified and packaged separately from the acceptable items.

5.2 Packaging for Shipment

The transistors packaged in accordance with Paragraph 5.1 shall be packed to afford protection against damage during direct shipment from the test laboratory to the receiving activity. Containers will comply with the carrier's rules and regulations applicable to the mode of transportation.

6.0 INSPECTION AND TEST METHODS

6.1 External Visual

The transistors shall be examined to verify that the materials, design, construction, marking and workmanship are in accordance with the applicable requirements.

6.2 Electrical

All electrical tests shall be performed at an ambient temperature of 25°C unless otherwise noted.

6.2.1 Collector Cutoff Current

\[V_{CE} = -40 \text{ VDC} \]
\[I_B = 0 \]
6.2.1 (continued)

The collector cutoff current shall be tested in accordance with Method 3036, Condition D, MIL-STD 750A.

The unit shall be considered failed if the I_{CEO} is greater than $-50 \mu A \text{ dc}$.

6.2.2 Collector-Emitter Breakdown Voltage

$I_C = -30 \text{ mA (pulsed)}$
$I_B = 0$
Pulse Width = 300 μs
Duty Cycle = 1%

The collector-emitter breakdown voltage shall be tested in accordance with Method 3001.1, Condition D, MIL-STD 750A.

The unit shall be considered failed if BV_{CEO} is less than -80 VDC.

6.2.3 Emitter-Base Voltage

$V_{CE} = -4 \text{ VDC}$
$I_C = -2A$
Pulse Width = 300 μsec
Duty Cycle = 1%

The emitter-base voltage shall be tested in accordance with Method 3026.1, Condition D, MIL-STD 750A.
The unit shall be considered failed if the V_{BE} is greater than -1.5 VDC.
6.2.4 Emitter Cutoff Current

\[V_{EB} = -4V \]
\[I_C = 0 \]

The emitter cutoff current shall be tested in accordance with Method 3061.1, Condition D, MIL-STD 750A.

The unit shall be considered failed if the \(I_{EBO} \) is greater than \(-1 \mu A\).

6.2.5 Forward-Current Transfer Ratio (\(h_{FE} \))

\[V_{CE} = -4 \text{ VDC} \]
\[I_C = -1 \text{ ADC (pulsed)} \]

Pulse Length = 300 \(\mu \text{s} \)

Duty Cycle = 1%

The forward current transfer ratio shall be tested in accordance with Method 3076.1, MIL-STD 750A.

The unit shall be considered failed if the \(h_{FE} \) is less than 30.

6.2.6 Collector-Emitter Saturation Voltage

\[I_C = -1.0 \text{ ADC (pulsed)} \]
\[I_B = -0.1 \text{ ADC (pulsed)} \]

Pulse Width = 300 \(\mu \text{s} \)

Duty Cycle = 1%

345
6.2.6 (continued)

The collector-emitter saturation voltage shall be tested in accordance with Method 3071.1, MIL-STD 750A.

The unit shall be considered failed if the $V_{CE(sat)}$ is greater than -0.45 VDC.

6.3 Electrical Intermediate

6.3.1 Forward-Current Transfer Ratio (h_{FE})

\[
\begin{align*}
V_{CE} &= -4 \text{ VDC} \\
I_C &= -1 \text{ ADC (pulsed)} \\
Pulse \text{ Width} &= 300 \mu\text{s} \\
Duty \text{ Cycle} &= 1\%
\end{align*}
\]

The forward current transfer ratio (h_{FE}) shall be tested in accordance with Method 3076.1, MIL-STD 750A.

The unit shall be considered failed if the h_{FE} is less than 30.

6.4 Environmental

6.4.1 High Temperature Storage

The transistor shall be exposed to a temperature of 200°C, $+0^\circ\text{C}$, -10°C, for a period of 48 hours, +24 hours, -0 hours.

6.4.2 Temperature Cycling

The transistor shall be tested in accordance with MIL-STD 202D, Method 102, Condition C. The transistor shall be subjected to five cycles performed continuously.
6.4.3 Acceleration

The transistor shall be tested in accordance with MIL-STD 750A, Method 2006. The transistor shall be accelerated for one minute in the Y₁ plane at a level of 20,000 g's.

6.4.4 Fine Leak

The transistor shall be tested in accordance with MIL-STD 202D, Method 112, Condition C. The units shall be subjected to a pressure of 60 psig ± 10 psig, in a helium atmosphere for a minimum period of four hours. The units shall then be placed in a mass spectrometer to measure helium leakage. Units exhibiting leak rates in excess of 10^{-8} atm-cc/sec shall be considered failed.

6.4.5 Gross Leak

The transistor shall be tested in accordance with MIL-STD 883D, Method 1014, Condition C, at a temperature of 125°C ± 10°C. The unit shall be submerged to a minimum of one inch into the hot liquid and observed for a minimum of one minute. Any unit emitting a continuous stream of bubbles shall be considered failed.

6.4.6 Vibration

Each device shall be tested in accordance with MIL-STD 202D, Method 204A, Condition C. The following shall apply.

1. Non-operating
6.4.6 (Continued)

2. Perform 2.4.2 Part 2 only

(a) The entire frequency range of 55 to 2000 cycles (no return sweep) shall be traversed in 10 ± 3 minutes

3. Paragraph 6.3, Electrical Intermediate, shall be run after completion of vibration testing.

6.5 Burn-In

6.5.1 Heat Sink

The transistor shall be mounted on a heat sink whose temperature will be maintained at 70°C, +15°C, -5°C.

6.5.2 Test Conditions

The collector to emitter voltage V_{CE} shall be set at -10V. The collector current I_C shall be set at -1 ADC.

6.5.3 Test Length

The test shall be run for 168 hours, +12 hours, -0 hours. Section 6.2 of this specification shall be rerun, and any transistor failing any portion of Section 6.2 shall be considered failed. Prior to the testing of Section 6.2, the transistor shall be allowed to return to ambient temperature (25°C).
6.6 Radiographic Examination

6.6.1 Procedure

The transistor shall be X-rayed in two mutually perpendicular planes. Maintain unit identity between units and film position.

6.6.2 Acceptance

Examine film, using 10X minimum magnification, and reject units having the following defects or characteristics:

a. Poor chip mounting: any unit displaying less than 50% contact between chip and mounting base.

b. Extraneous material: Any unit displaying extraneous or foreign material that is not a normal portion of the product.

c. Bonds and bond wires: any bond or bond wires that are misplaced, loose or extra. Bond wires that are within 0.005 inch of any area not electrically common with the bond wire.

d. Miscellaneous: any anomaly which, in the opinion of the inspector, will degrade performance or reliability of the unit.
<table>
<thead>
<tr>
<th>Section</th>
<th>Requirement</th>
<th>Para.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Electrical</td>
<td></td>
<td>6.2</td>
</tr>
<tr>
<td>2.0 Environmental</td>
<td></td>
<td>6.4</td>
</tr>
<tr>
<td>2.1 High Temperature Storage</td>
<td></td>
<td>6.4.1</td>
</tr>
<tr>
<td>2.2 Electrical</td>
<td></td>
<td>6.3</td>
</tr>
<tr>
<td>2.3 Temperature Cycling</td>
<td></td>
<td>6.4.2</td>
</tr>
<tr>
<td>2.4 Electrical</td>
<td></td>
<td>6.3</td>
</tr>
<tr>
<td>2.5 Fine Leak</td>
<td></td>
<td>6.4.4</td>
</tr>
<tr>
<td>2.6 Gross Leak</td>
<td></td>
<td>6.4.5</td>
</tr>
<tr>
<td>2.7 Electrical</td>
<td></td>
<td>6.3</td>
</tr>
<tr>
<td>2.8 Vibration</td>
<td></td>
<td>6.4.6</td>
</tr>
<tr>
<td>2.9 Burn-In</td>
<td></td>
<td>6.5</td>
</tr>
<tr>
<td>2.10 Radiographic Examination</td>
<td></td>
<td>6.6</td>
</tr>
</tbody>
</table>
SECTION 13

SCREENING SPECIFICATION
FOR
TRANSISTOR JAN2N3811

Document Number EPS-129

Prepared by
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
for
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas

351
SCREENING SPECIFICATION
FOR
TRANSISTOR 2N3811

Prepared by: P. Gleeson
Reliability and Quality Assurance Engineer

Approved by: W. A. Oliveira
Staff Engineer

B. E. Curtsinger
Engineering Supervisor

B. C. Hall
Program Manager

Electron-Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company
Houston Aerospace Systems Division

352
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SCOPE</td>
<td>13-5</td>
</tr>
<tr>
<td>2.0</td>
<td>APPLICABLE DOCUMENTS</td>
<td>13-5</td>
</tr>
<tr>
<td>3.0</td>
<td>REQUIREMENTS FOR TEST LABORATORY SUBCONTRACTORS.</td>
<td>13-5</td>
</tr>
<tr>
<td>3.1</td>
<td>Facilities</td>
<td>13-5</td>
</tr>
<tr>
<td>3.2</td>
<td>Inspection, Measuring and Test Equipment</td>
<td>13-6</td>
</tr>
<tr>
<td>3.3</td>
<td>Calibration Records</td>
<td>13-6</td>
</tr>
<tr>
<td>3.4</td>
<td>Calibration Traceability</td>
<td>13-6</td>
</tr>
<tr>
<td>4.0</td>
<td>QUALITY ASSURANCE PROVISIONS</td>
<td>13-6</td>
</tr>
<tr>
<td>4.1</td>
<td>General</td>
<td>13-6</td>
</tr>
<tr>
<td>4.2</td>
<td>Screening Inspections and Tests</td>
<td>13-7</td>
</tr>
<tr>
<td>4.3</td>
<td>Inspection and Test Data</td>
<td>13-7</td>
</tr>
<tr>
<td>4.4</td>
<td>Inspection and Test Records</td>
<td>13-7</td>
</tr>
<tr>
<td>4.5</td>
<td>Serialization</td>
<td>13-7</td>
</tr>
<tr>
<td>4.6</td>
<td>Reject Disposition</td>
<td>13-7</td>
</tr>
<tr>
<td>4.7</td>
<td>Marking of Acceptable Parts</td>
<td>13-8</td>
</tr>
<tr>
<td>4.8</td>
<td>Acceptance</td>
<td>13-8</td>
</tr>
<tr>
<td>4.9</td>
<td>Certificate of Compliance</td>
<td>13-8</td>
</tr>
<tr>
<td>4.10</td>
<td>Notification of Government Source Inspector</td>
<td>13-9</td>
</tr>
<tr>
<td>5.0</td>
<td>PREPARATION FOR DELIVERY</td>
<td>13-9</td>
</tr>
<tr>
<td>5.1</td>
<td>Type of Packaging</td>
<td>13-9</td>
</tr>
<tr>
<td>5.2</td>
<td>Packing for Shipment</td>
<td>13-9</td>
</tr>
<tr>
<td>6.0</td>
<td>INSPECTION AND TEST METHODS</td>
<td>13-9</td>
</tr>
<tr>
<td>6.1</td>
<td>External Visual</td>
<td>13-9</td>
</tr>
<tr>
<td>6.2</td>
<td>Electrical</td>
<td>13-10</td>
</tr>
<tr>
<td>6.3</td>
<td>Electrical Intermediate</td>
<td>13-12</td>
</tr>
</tbody>
</table>
SCOPE

This document defines the necessary requirements for screening of Transistor 2N3811 to satisfy NASA High Reliability requirements for the Electron-Proton Spectrometer (EPS).

2.0 APPLICABLE DOCUMENTS

The following documents of the issue in effect on the date of application shall form a part of this specification to the extent specified herein.

MIL-STD 202D, Test Methods for Electronic and Electrical component parts
MIL-STD 750A, Test Methods for Semiconductor Devices
MIL-STD 883, Test Methods and Procedures for Microelectronics
NHB 5300.4(1a), Reliability Program Provisions for Aeronautical and Space Systems Contractors

3.0 REQUIREMENTS FOR TEST LABORATORY SUBCONTRACTORS

3.1 Facilities

The subcontractor shall provide and maintain adequate facilities for inspecting and testing electronic components described in this specification.
3.2 Inspection, Measuring and Test Equipment

The subcontractor shall maintain and control inspection, measuring and test equipment in accordance with NHB 5300.4(1A). Upon request, the subcontractor shall submit to Lockheed Electronics Co. (LEC) for approval, a listing of equipment and their intended usage.

3.3 Calibration Records

The subcontractor shall prepare and have available for review by LEC, a written procedure and schedule for the maintenance and calibration of such equipment based on type, accuracy, purpose and degree of usage. Records of calibration shall be maintained and the calibration due date, or other identification attesting the due date of the next calibration, shall be displayed on each item of this equipment.

3.4 Calibration Traceability

Standards used for calibration shall be traceable to the National Bureau of Standards (NBS). No more than five steps shall be used to establish traceability from actual inspection and test equipment to the NBS.

4.0 QUALITY ASSURANCE PROVISIONS

4.1 General

The procedures and methods of testing the transistors in accordance with this specification shall meet the general requirements of MIL-STD 202D.
4.2 Screening Inspections and Tests

Each transistor supplied shall be submitted in the sequence specified to the inspections and tests of Table I.

4.3 Inspection and Test Data

A summary of the transistor data obtained during each inspection or test shall be prepared and submitted along with the transistors to LEC. This summary shall list all transistors that failed electrical tests and the number that failed each parameter. The raw test data shall also be delivered to LEC with the transistors.

4.4 Inspection and Test Records

Inspection and test records shall include part number, serial number, inspection or test number, number of defects found, kinds of defects, acceptance number and the disposition inspector's identity. Records of all inspections and tests shall be delivered to LEC along with the transistors.

4.5 Serialization

All transistors shall be serialized in a manner that will be permanent during the testing period.

4.6 Reject Disposition

Each transistor that fails the inspections and tests of Table I shall be marked with a red dot and placed in a
4.6 (continued)

reject bag and tagged to note unit part number, serial number and inspection or test failed. These units shall also be delivered to LEC. Use 3M-401-5D paint for marking of parts.

4.7 Marking of Acceptable Parts

Transistors which meet the requirements of this specification shall be identified with a permanent green dot placed on the body of the transistor. The dot shall be placed on the body at a point which will not interfere with reading the manufacturer's part number or date code identification. Use 3M-401-G3 paint for marking of parts.

4.8 Acceptance

Preliminary inspection for compliance with the requirements of this specification may be performed at origin by an authorized representative of the Government. Final acceptance for the Contracting Officer shall be performed by the assigned project engineer.

4.9 Certificate of Compliance

A certificate of compliance signed by the Quality Control manager shall be included with the device shipment. It shall verify that the transistors were processed in accordance with this specification and that all requirements have been met.
Notification of Government Source Inspector

The Government Representative who has been delegated quality assurance function at your test facility shall be notified immediately upon receipt of this order.

5.0 PREPARATION FOR DELIVERY

5.1 Type of Packaging

Each transistor shall be packaged in a suitable container which will protect the body and leads of the device during shipment. The rejected parts shall be identified and packaged separately from the acceptable items.

5.2 Packing for Shipment

The transistors packaged in accordance with Paragraph 5.1 shall be packed to afford protection against damage during direct shipment from the test laboratory to the receiving activity. Containers will comply with the carriers' rules and regulations applicable to the mode of transportation.

6.0 INSPECTION AND TEST METHODS

6.1 External Visual

The transistors shall be examined to verify that the materials, design, construction, marking and workmanship are in accordance with the applicable requirements.
6.2 Electrical

All electrical tests shall be performed at an ambient temperature of 25°C unless otherwise noted. Both sections of the dual device shall be tested separately as defined in paragraphs 6.2 and 6.3.

6.2.1 Collector-Base Cutoff Current

\[V_{CB} = 50 \text{ VDC} \]
\[I_{E} = 0 \]

The collector-base cutoff current shall be tested in accordance with Method 3036, Condition D, MIL-STD 750A.

The unit shall be considered failed if the \(I_{CBO} \) is greater than 0.01 \(\mu \text{ADC} \).

6.2.2 Collector-Base Breakdown Voltage

\[I_{C} = 10 \ \mu \text{ADC} \]
\[I_{E} = 0 \]

The collector-base breakdown voltage shall be tested in accordance with Method 3001.1, Condition D, MIL-STD 750A.

The unit shall be considered failed if \(BV_{CBO} \) is less than 60 VDC.

6.2.3 Emitter-Base Breakdown Voltage

\[I_{E} = 10 \ \mu \text{ADC} \]
\[I_{C} = 0 \]
2.3 (continued)

The emitter-base breakdown voltage shall be tested in accordance with Method 3026.1, Condition D, MIL-STD 750A.

The unit shall be considered failed if the BV_{EBO} is less than 5.0 VDC.

6.2.4 Collector-Emitter Breakdown Voltage

$I_C = 10 \text{ mA}_\text{dc}$
$I_B = 0 \text{ (pulsed)}$
Pulse Width = 300 \mu s
Duty Cycle = 1%

The collector-emitter breakdown voltage shall be tested in accordance with Method 3011.1, Condition D, MIL-STD 750A.

The unit shall be considered failed if the BV_{CEO} is less than 60 VDC.

6.2.5 Forward Current Transfer Ratio (H_{FE})

$V_{CE} = 5.0 \text{ VDC}$
$I_C = 100 \mu \text{A}_\text{dc}$
Pulse Length = 300 \mu s
Duty Cycle = 1%

The forward current transfer ratio shall be tested in accordance with Method 3076.1, MIL-STD 750A.
6.2.5 (continued)

The unit shall be considered failed if the \(h_{FE} \) is less than 300.

6.2.6 Base-Emitter Saturation Voltage

\[
I_C = 100 \, \mu\text{Adc} \\
I_B = 10 \, \mu\text{Adc}
\]

The base-emitter saturation voltage shall be tested in accordance with Method 3066.1, MIL-STD 750A.

The unit shall be considered failed if the \(V_{BE} \) (Sat) is greater than 0.7 VDC.

6.2.7 Collector-Emitter Saturation Voltage

\[
I_C = 100 \, \mu\text{Adc} \\
I_B = 10 \, \mu\text{Adc}
\]

The collector-emitter saturation voltage shall be tested in accordance with Method 3071.1, MIL-STD 750A.

The unit shall be considered failed if the \(V_{CE} \) (Sat) is greater than 0.2 VDC.

6.3 Electrical Intermediate

6.3.1 Forward Current Transfer Ratio \((h_{FE}) \)

\[
V_{CE} = 5.0 \, \text{VDC} \\
I_C = 100 \, \mu\text{Adc} \text{ (pulsed)}
\]
6.3.1 (continued)

Pulse Width = 300 μs
Duty Cycle = 1%

The forward current transfer ratio \(h_{FE} \) shall be tested in accordance with Method 3076.1, MIL-STD 750A.

The unit shall be considered failed if the \(h_{FE} \) is less than 300.

6.4 Environmental

6.4.1 High Temperature Storage

The transistor shall be exposed to a temperature of 200°C, +0°, -10°, for a period of 48 hours, +24 hours, -0 hours.

6.4.2 Temperature Cycling

The transistor shall be tested in accordance with MIL-STD 202D, Method 102, Condition C. The transistor shall be subjected to five (5) cycles performed continuously.

6.4.3 Acceleration

The transistor shall be tested in accordance with MIL-STD 750A, Method 2006. The transistor shall be accelerated for one minute in the Y plane at a level of 20,000 g's.
6.4.4 Fine Leak

The transistor shall be tested in accordance with MIL-STD 202D, Method 112, Condition C. The units shall be subjected to a pressure of 60 psig ± 10 psig, in a helium atmosphere for a minimum period of four hours. The units shall then be placed in a mass spectrometer to measure helium leakage. Units exhibiting leak rates in excess of 10^{-8} atm-cc/sec shall be considered failed.

6.4.5 Gross Leak

The transistor shall be tested in accordance with MIL-STD 883D, Method 1014, Condition C, at a temperature of $125 \pm 10 ^ \circ C$. The unit shall be submerged to a minimum of one inch into the hot liquid and observed for a minimum of one minute. Any unit emitting a continuous stream of bubbles shall be considered failed.

6.4.6 Vibration

Each device shall be tested in accordance with MIL-STD-202D, Method 204A, Condition C. The following shall apply:

1. Non-operating
2. Perform 2.4.2 Part 2 only
 (a) The entire frequency range of 55 to 2000 cycles (no return sweep) shall be traversed in 10^3 minutes
3. Paragraph 6.3 Electrical Intermediate shall be run after Completion of Vibration Testing.

6.5 **Burn-In**

6.5.1 **Heat Sink**

The transistor shall be mounted on a heat sink whose temperature will be maintained at 70°C, +15°C, -5°C.

6.5.2 **Test Conditions**

The collector to emitter voltage V_{CE} shall be set at 34 volts. The collector current I_C shall be set to 3 mA each portion.

6.5.3 **Test Length**

The test shall be run for 168 hours, +12 hours, -0 hours. Section 6.2 of this specification shall be rerun, and any transistor failing any portion of Section 6.2 shall be considered failed. Prior to the testing of Section 6.2, the transistor shall be allowed to return to ambient temperature (25°C).

6.6 **Radiographic Examination**

365
6.6.1 Procedure

The transistors shall be X-rayed in two mutually perpendicular planes. Maintain unit identity between units and film position.

6.6.2 Acceptance

Examine film, using 100X minimum magnification, and reject units having the following defects or characteristics.

a. Poor chip mounting: any unit displaying less than 50% contact between chip and mounting base.

b. Extraneous material: any unit displaying extraneous or foreign material that is not a normal portion of the product.

c. Bonds and bond wires: any bonds or bond wires that are misplaced, loose or extra. Bond wires that are within 0.005 inch of any area not electrically common with the bond wire.

d. Miscellaneous: any anomaly which, in the opinion of the inspector, will degrade performance or reliability of the unit.
TABLE 1
ELECTRICAL AND ENVIRONMENTAL REQUIREMENTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Para.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Electrical</td>
<td>6.2</td>
</tr>
<tr>
<td>2.</td>
<td>Environmental</td>
<td>6.4</td>
</tr>
<tr>
<td>2.1</td>
<td>High Temperature Storage</td>
<td>6.4.1</td>
</tr>
<tr>
<td>2.2</td>
<td>Electrical</td>
<td>6.3</td>
</tr>
<tr>
<td>2.3</td>
<td>Temperature Cycling</td>
<td>6.4.2</td>
</tr>
<tr>
<td>2.4</td>
<td>Electrical</td>
<td>6.3</td>
</tr>
<tr>
<td>2.5</td>
<td>Fine Leak</td>
<td>6.4.4</td>
</tr>
<tr>
<td>2.6</td>
<td>Gross Leak</td>
<td>6.4.5</td>
</tr>
<tr>
<td>2.7</td>
<td>Electrical</td>
<td>6.3</td>
</tr>
<tr>
<td>2.8</td>
<td>Vibration</td>
<td>6.4.6</td>
</tr>
<tr>
<td>2.9</td>
<td>Burn-In</td>
<td>6.5</td>
</tr>
<tr>
<td>2.10</td>
<td>Radiographic Examination</td>
<td>6.6</td>
</tr>
</tbody>
</table>
SECTION 14

SCREENING SPECIFICATION
FOR
TRANSISTOR 2N4878

Document Number EPS-175

Prepared by
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
for
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas

368
SCREENING SPECIFICATION
FOR
TRANSISTOR 2N4878

Prepared by: P. Gleeson
Reliability and Quality Assurance Engineer

Approved by: T. D. Lyons
Senior Aerospace Engineer
B. E. Curtsinger
Engineering Supervisor
B. C. Hall
Program Manager

Electron-Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company
Houston Aerospace Systems Division
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SCOPE</td>
<td>14-5</td>
</tr>
<tr>
<td>2.0</td>
<td>APPLICABLE DOCUMENTS</td>
<td>14-5</td>
</tr>
<tr>
<td>3.0</td>
<td>REQUIREMENTS FOR TEST LABORATORY SUBCONTRACTORS</td>
<td>14-5</td>
</tr>
<tr>
<td>3.1</td>
<td>Facilities</td>
<td>14-5</td>
</tr>
<tr>
<td>3.2</td>
<td>Inspection, Measuring and Test Equipment</td>
<td>14-5</td>
</tr>
<tr>
<td>3.3</td>
<td>Calibration Records</td>
<td>14-6</td>
</tr>
<tr>
<td>3.4</td>
<td>Calibration Traceability</td>
<td>14-6</td>
</tr>
<tr>
<td>4.0</td>
<td>RELIABILITY AND QUALITY ASSURANCE PROVISIONS</td>
<td>14-6</td>
</tr>
<tr>
<td>4.1</td>
<td>General</td>
<td>14-6</td>
</tr>
<tr>
<td>4.2</td>
<td>Screening Inspections and Tests</td>
<td>14-6</td>
</tr>
<tr>
<td>4.3</td>
<td>Inspection and Test Data</td>
<td>14-7</td>
</tr>
<tr>
<td>4.4</td>
<td>Inspection and Test Records</td>
<td>14-7</td>
</tr>
<tr>
<td>4.5</td>
<td>Serialization</td>
<td>14-7</td>
</tr>
<tr>
<td>4.6</td>
<td>Reject Disposition</td>
<td>14-7</td>
</tr>
<tr>
<td>4.7</td>
<td>Marking of Acceptable Parts</td>
<td>14-8</td>
</tr>
<tr>
<td>4.8</td>
<td>Acceptance</td>
<td>14-8</td>
</tr>
<tr>
<td>4.9</td>
<td>Certificate of Compliance</td>
<td>14-8</td>
</tr>
<tr>
<td>4.10</td>
<td>Notification of Government Source Inspector</td>
<td>14-8</td>
</tr>
<tr>
<td>5.0</td>
<td>PREPARATION FOR DELIVERY</td>
<td>14-9</td>
</tr>
<tr>
<td>5.1</td>
<td>Type of Packaging</td>
<td>14-9</td>
</tr>
<tr>
<td>5.2</td>
<td>Packaging for Shipment</td>
<td>14-9</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>6.0</td>
<td>INSPECTION AND TEST METHODS</td>
<td>14-9</td>
</tr>
<tr>
<td>6.1</td>
<td>External Visual</td>
<td>14-9</td>
</tr>
<tr>
<td>6.2</td>
<td>Electrical</td>
<td>14-9</td>
</tr>
<tr>
<td>6.3</td>
<td>Electrical Intermediate</td>
<td>14-13</td>
</tr>
<tr>
<td>6.4</td>
<td>Environmental</td>
<td>14-13</td>
</tr>
<tr>
<td>6.5</td>
<td>Burn-In</td>
<td>14-15</td>
</tr>
<tr>
<td>6.6</td>
<td>Radiographic Examination</td>
<td>14-15</td>
</tr>
</tbody>
</table>
1.0 SCOPE

This document defines the necessary requirements for the screening of Transistor 2N4878 to satisfy NASA high reliability requirements for the Electron-Proton Spectrometer (EPS).

2.0 APPLICABLE DOCUMENTS

The following documents of the issue in effect on the date of application shall form a part of this specification to the extent specified herein.

MIL-STD 202D, Test Methods for Electronic and Electrical Component Parts
MIL-STD 750A, Test Methods for Semiconductor Devices
MIL-STD 883, Test Methods and Procedures for Microelectronics
NHB 5300.4(1A), Reliability Program Provisions for Aeronautical and Space Systems Contractors

3.0 REQUIREMENTS FOR TEST LABORATORY SUBCONTRACTORS

3.1 Facilities

The subcontractor shall provide and maintain adequate facilities for inspecting and testing electronic components described in this specification.

3.2 Inspection, Measuring and Test Equipment

The subcontractor shall maintain and control inspection, measuring and test equipment in accordance with NHB 5300.4(1A). Upon request, the subcontractor shall submit
3.2 (continued)

to Lockheed Electronics Company (LEC) for approval, a
listing of equipment and their intended usage.

3.3 Calibration Records

The subcontractor shall prepare and have available for
review by LEC, a written procedure and schedule for the
maintenance and calibration of such equipment based on
type, accuracy, purpose and degree of usage. Records of
calibration shall be maintained and the calibration due
date, or other identification attesting the due date of
the next calibration, shall be displayed on each item of
this equipment.

3.4 Calibration Traceability

Standards used for calibration shall be traceable to the
National Bureau of Standards (NBS). No more than five
steps shall be used to establish traceability from actual
inspection and test equipment to the NBS.

4.0 RELIABILITY AND QUALITY ASSURANCE PROVISIONS

4.1 General

The procedures and methods of testing the transistors in
accordance with this specification shall meet the general
requirements of MIL-STD 202D.

4.2 Screening Inspections and Tests

Each transistor supplied shall be submitted in the sequence
specified to the inspections and tests of Table 1.
4.3 Inspection and Test Data

A summary of the transistor data obtained during each inspection or test shall be prepared and submitted with the transistors to LEC. This summary shall list all transistor's that failed electrical tests and the number that failed each parameter. The raw test data shall also be delivered to LEC with the transistors.

4.4 Inspection and Test Records

Inspection and test records shall include part number, serial number, inspection or test number, number of defects found, kinds of defects, acceptance number, and the disposition inspector's identity. Records of all inspections and tests shall be delivered to LEC along with the transistors.

4.5 Serialization

All transistors shall be serialized in a manner that will be permanent during use and testing periods.

4.6 Reject Disposition

Each transistor that fails the inspections and tests of Table 1 shall be marked with a red dot and placed in a reject bag, and tagged to note unit part number, serial number and inspection or test failed. These units shall also be delivered to LEC. Use Minnesota Mining and Manufacturing Co.'s 3M-401-5D paint for marking of parts. Mixing and application should be done in accordance with manufacturer's specification sheet.
4.7 Marking of Acceptable Parts

Transistors which meet the requirements of this specification shall be identified with a permanent green dot placed on the body of the transistor. The dot shall be placed on the body at a point which will not interfere with reading the manufacturer's part number or date code identification. Use Minnesota Mining and Manufacturing Co.'s 3M-401-G3 paint for marking of parts. Mixing and application should be done in accordance with manufacturer's specification sheet.

4.8 Acceptance

Preliminary inspection for compliance with the requirements of this specification may be performed at origin by an authorized representative of the Government. Final acceptance for the Contracting Officer shall be performed by the assigned project engineer.

4.9 Certificate of Compliance

A certificate of compliance signed by the Quality Control Manager shall be included with the device shipment. It shall verify that the transistors were processed in accordance with this specification and that all requirements have been met.

4.10 Notification of Government Source Inspector

The Government Representative who has been delegated quality assurance function at your test facility shall be notified immediately upon receipt of this order.
5.0 PREPARATION FOR DELIVERY

5.1 Type of Packaging

Each transistor shall be packaged in a suitable container which will protect the body and leads of the device during shipment. The rejected parts shall be identified and packaged separately from the acceptable items.

5.2 Packaging for Shipment

The transistors packaged in accordance with Paragraph 5.1 shall be packed to afford protection against damage during direct shipment from the test laboratory to the receiving activity. Containers will comply with the carrier's rules and regulations applicable to the mode of transportation.

6.0 INSPECTION AND TEST METHODS

6.1 External Visual

The transistors shall be examined to verify that the materials, design, construction, marking and workmanship are in accordance with the applicable requirements.

6.2 Electrical

All electrical tests shall be performed at an ambient temperature of 25°C unless otherwise noted.

Note: All tests shall be performed on both transistors (dual package).
6.2.1 Collector Cutoff Current

\[V_{CB} = 45 \text{ VDC} \]
\[I_E = 0 \]

The collector cutoff current shall be tested in accordance with Method 3036, Condition D, MIL-STD 750A.

The unit shall be considered failed if the \(I_{CB0} \) is greater than 0.1 \(\mu \text{A} \) dc.

6.2.2 Collector-Base Breakdown Voltage

\[I_C = 10 \ \mu \text{A dc} \]
\[I_E = 0 \]

The collector-base breakdown voltage shall be tested in accordance with Method 3001.1, Condition D, MIL-STD 750A.

The unit shall be considered failed if \(BV_{CB0} \) is less than 60 VDC.

6.2.3 Emitter-Base Breakdown Voltage

\[I_E = 10 \ \mu \text{A dc} \]
\[I_C = 0 \]

The emitter-base breakdown voltage shall be tested in accordance with Method 3026.1, Condition D, MIL-STD 750A.

The unit shall be considered failed if the \(BV_{EB0} \) is less than 7.0 VDC.
6.2.4 Matching Characteristics

6.2.4.1 DC Current Gain Ratio

\[I_{C1} = 10 \mu A \]
\[I_{C2} = 10 \mu A \]
\[V_{CE1} = 5.0 \text{ V} \]
\[V_{CE2} = 5.0 \text{ V} \]

The forward current transfer ratio shall be tested in accordance with Method 3076.1, MIL-STD 750A.

The DC Current Gain Ratio \(h_{FE1} / h_{FE2} \) shall have the following characteristics:

\[\text{Min} = 0.9 \quad \text{Max} = 1.0 \]

Note: Lower of two \(h_{FE} \) is defined as \(h_{FE1} \).

6.2.4.2 Base-Emitter Voltage Differential

\[I_{C1} = 10 \mu A \]
\[I_{C2} = 10 \mu A \]
\[V_{CE1} = 5.0 \text{ V} \]
\[V_{CE2} = 5.0 \text{ V} \]

The base-emitter voltage shall be tested in accordance with Method 3066.1, Test Condition B, MIL-STD 750A.

Base Emitter Voltage Differential \(V_{BE1} - V_{BE2} \) shall be \(= 3.0 \text{ mV maximum.} \)
6.2.5 Forward Current Gain \((h_{FE}) \)

\[
\begin{align*}
V_{CE} &= 5 \text{ VDC} \\
I_C &= 10 \mu\text{A} \text{ dc}
\end{align*}
\]

The forward current gain shall be tested in accordance with Method 3076.1, MIL-STD 750A.

The unit shall be considered failed if the \(h_{FE} \) is less than 200.

6.2.6 Emitter Cutoff Current

\[
\begin{align*}
I_C &= 0 \\
V_{EB} &= 5.0 \text{ V}
\end{align*}
\]

The emitter cutoff current shall be tested in accordance with Method 3061.1, MIL-STD 750A.

The unit shall be considered failed if the \(I_{EB0} \) is greater than 0.1 nA.

6.2.7 Collector Saturation Voltage

\[
\begin{align*}
I_C &= 1.0 \text{ MA} \text{ dc} \\
I_B &= 0.1 \text{ MA} \text{ dc}
\end{align*}
\]

The collector saturation voltage shall be tested in accordance with Method 3071.1, MIL-STD 750A.
6.2.7 (continued)

The unit shall be considered failed if the $V_{CE} (\text{sat})$ is greater than 0.35 VDC.

6.3 Electrical Intermediate

Note: All tests shall be performed on both transistors (dual package).

6.3.1 Forward Current Gain (h_{FE})

\[
V_{CE} = 5.0 \text{ VDC} \\
I_{C} = 10 \mu\text{A dc}
\]

The forward current gain (h_{FE}) shall be tested in accordance with Method 3076.1, MIL-STD 750A.

The unit shall be considered failed if the h_{FE} is less than 200.

6.4 Environmental

Note: All tests shall be performed on both transistors (dual package).

6.4.1 High Temperature Storage

The transistor shall be exposed to a temperature of 200°C $+0^\circ\text{C}, -10^\circ\text{C}$, for a period of 48 hours, $+24$ hours, -0 hours.
6.4.2 Temperature Cycling

The transistor shall be tested in accordance with MIL-STD 202D, Method 102, Condition C. The transistor shall be subjected to five cycles performed continuously.

6.4.3 Acceleration

The transistor shall be tested in accordance with MIL-STD 750A, Method 2006. The transistor shall be accelerated for one minute in the Y_1 plane at a level of 20,000 g's.

6.4.4 Fine Leak

The transistor shall be tested in accordance with MIL-STD 202D, Method 112, Condition C. The units shall be subjected to a pressure of 60 psig \pm 10 psig, in a helium atmosphere for a minimum period of four hours. The units shall then be placed in a mass spectrometer to measure helium leakage. Units exhibiting leak ranges in excess of 10^{-8} atm-cc/sec shall be considered failed.

6.4.5 Gross Leak

The transistor shall be tested in accordance with MIL-STD 883D, Method 1014, Condition C, at a temperature of 125°C \pm 10°C. The unit shall be submerged to a minimum of one inch into the hot liquid and observed for a minimum of one minute. Any unit emitting a continuous stream of bubbles shall be considered failed.
6.4.6 Vibration

Each device shall be tested in accordance with MIL-STD-202D Method 204A Condition C. The following shall apply

1. Non-operating

2. Perform 2.4.2 Part 2 only
 (a) The entire frequency range of 55 to 2000 cycles (no return sweep) shall be traversed in 10±3 minutes

3. Paragraph 6.3 Electrical Intermediate shall be run after completion of vibration testing.

6.5 Burn-In

Note: All tests shall be performed on both transistors (dual package).

6.5.1 Heat Sink

The transistor shall be mounted on a heat sink. The transistor case temperature will be maintained at 70°C, ±5°C.

6.5.2 Test Conditions

The collector to emitter voltage V_{CE} shall be set at 30 volts. The collector current I_C shall be set to 5 ma each collector.
6.5.3 Test Length

The test shall be run for 168 hours, +12 hours, -0 hours. Section 6.2 of this specification shall be rerun, and any transistor failing any portion of Section 6.2 shall be considered failed. Prior to the testing of Section 6.2, the transistor shall be allowed to return to ambient temperature (25°C).

6.6 Radiographic Examination

Note: All tests shall be performed on both transistors (dual package).

6.6.1 Procedure

The transistor shall be X-rayed in two mutually perpendicular planes. Maintain unit identity between units and film position.

6.6.2 Acceptance

Examine film, using 100X minimum magnification, and reject units having the following defects or characteristics.

a. Poor chip mounting: any unit displaying less than 50% contact between chip and mounting base.

b. Extraneous material: any unit displaying extraneous or foreign material that is not a normal portion of the product.
6.6.2 (Continued)

c. Bonds and bond wires: any bond or bond wires that are misplaced, loose or extra. Bond wires that are within 0.005 inch of any area not electrically common with the bond wire.

d. Miscellaneous: any anomaly which, in the opinion of the inspector, will degrade performance or reliability of the unit.
Table 1

ELECTRICAL AND ENVIRONMENTAL REQUIREMENTS

<table>
<thead>
<tr>
<th>1.0</th>
<th>Electrical</th>
<th>Para. 6.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Environmental</td>
<td>Para. 6.4</td>
</tr>
<tr>
<td>2.1</td>
<td>High Temperature Storage</td>
<td>Para. 6.4.1</td>
</tr>
<tr>
<td>2.2</td>
<td>Electrical</td>
<td>Para. 6.3</td>
</tr>
<tr>
<td>2.3</td>
<td>Temperature Cycling</td>
<td>Para. 6.4.2</td>
</tr>
<tr>
<td>2.4</td>
<td>Electrical</td>
<td>Para. 6.3</td>
</tr>
<tr>
<td>2.5</td>
<td>Fine Leak</td>
<td>Para. 6.4.4</td>
</tr>
<tr>
<td>2.6</td>
<td>Gross Leak</td>
<td>Para. 6.4.5</td>
</tr>
<tr>
<td>2.7</td>
<td>Electrical</td>
<td>Para. 6.3</td>
</tr>
<tr>
<td>2.8</td>
<td>Vibration</td>
<td>Para. 6.4.6</td>
</tr>
<tr>
<td>2.9</td>
<td>Burn-In</td>
<td>Para. 6.5</td>
</tr>
<tr>
<td>2.10</td>
<td>Radiographic Examination</td>
<td>Para. 6.6</td>
</tr>
</tbody>
</table>

385
SCREENING SPECIFICATION
FOR
TRANSISTOR SS3520

Document Number EPS-128

Prepared by
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373
for
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas
SCREENING SPECIFICATION
FOR
TRANSISTOR SS 3520

Prepared by: P. Gleeson
Reliability and Quality Assurance Engineer

Approved by: T. D. Lyons
Senior Aerospace Engineer

B. E. Curtsinger
Engineering Supervisor

B. C. Hall
Program Manager

Electron/Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company
Houston Aerospace Systems Division
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SCOPE</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>APPLICABLE DOCUMENTS</td>
<td>1</td>
</tr>
<tr>
<td>3.0</td>
<td>REQUIREMENTS FOR TEST LABORATORY SUBCONTRACTORS</td>
<td>1</td>
</tr>
<tr>
<td>3.1</td>
<td>Facilities</td>
<td>1</td>
</tr>
<tr>
<td>3.2</td>
<td>Inspection, Measuring and Test Equipment</td>
<td>1</td>
</tr>
<tr>
<td>3.3</td>
<td>Calibration Records</td>
<td>2</td>
</tr>
<tr>
<td>3.4</td>
<td>Calibration Traceability</td>
<td>2</td>
</tr>
<tr>
<td>4.0</td>
<td>RELIABILITY AND QUALITY ASSURANCE PROVISIONS</td>
<td>2</td>
</tr>
<tr>
<td>4.1</td>
<td>General</td>
<td>2</td>
</tr>
<tr>
<td>4.2</td>
<td>Screening Inspections and Tests</td>
<td>3</td>
</tr>
<tr>
<td>4.3</td>
<td>Inspection and Test Data</td>
<td>3</td>
</tr>
<tr>
<td>4.4</td>
<td>Inspection and Test Records</td>
<td>3</td>
</tr>
<tr>
<td>4.5</td>
<td>Serialization</td>
<td>3</td>
</tr>
<tr>
<td>4.6</td>
<td>Reject Disposition</td>
<td>4</td>
</tr>
<tr>
<td>4.7</td>
<td>Marking of Acceptable Parts</td>
<td>4</td>
</tr>
<tr>
<td>4.8</td>
<td>Acceptance</td>
<td>4</td>
</tr>
<tr>
<td>4.9</td>
<td>Certificate of Compliance</td>
<td>4</td>
</tr>
<tr>
<td>4.10</td>
<td>Notification of Government Source Inspector</td>
<td>5</td>
</tr>
<tr>
<td>5.0</td>
<td>PREPARATION FOR DELIVERY</td>
<td>5</td>
</tr>
<tr>
<td>5.1</td>
<td>Type of Packaging</td>
<td>5</td>
</tr>
<tr>
<td>5.2</td>
<td>Packaging for Shipment</td>
<td>5</td>
</tr>
</tbody>
</table>
6.0 INSPECTION AND TEST METHODS
6.1 External Visual
6.2 Electrical
6.3 Electrical Intermediate
6.4 Environmental
6.5 Burn-In
6.6 Radiographic Examination
1.0 SCOPE

This document defines the necessary requirements for the screening of transistor SS3520 to satisfy NASA high reliability requirements for the Electron-Proton Spectrometer (EPS).

2.0 APPLICABLE DOCUMENTS

The following documents of the issue in effect on the date of application shall form a part of this specification to the extent specified herein.

MIL-STD 202D, Test Methods for Electronic and Electrical component parts
MIL-STD 750A, Test Methods for Semiconductor Devices
MIL-STD 883, Test Methods and Procedures for Microelectronics
NHB 5300.4(1A), Reliability Program Provisions for Aeronautical and Space Systems Contractors

3.0 REQUIREMENTS FOR TEST LABORATORY SUBCONTRACTORS

3.1 Facilities

The subcontractor shall provide and maintain adequate facilities for inspecting and testing electronic components described in this specification.

3.2 Inspection, Measuring and Test Equipment

The subcontractor shall maintain and control inspection, measuring and test equipment in accordance with
3.2 (continued)

NHB 5300.4 (1A). Upon request, the subcontractor shall submit to Lockheed Electronics Company (LEC) for approval, a listing of equipment and their intended usage.

3.3 Calibration Records

The subcontractor shall prepare and have available for review by LEC, a written procedure and schedule for the maintenance and calibration of such equipment based on type, accuracy, purpose and degree of usage. Records of calibration shall be maintained and the calibration due date, or other identification attesting the due date of the next calibration, shall be displayed on each item of this equipment.

3.4 Calibration Traceability

Standards used for calibration shall be traceable to the National Bureau of Standards (NBS). No more than five steps shall be used to establish traceability from actual inspection and test equipment to the NBS.

4.0 RELIABILITY AND QUALITY ASSURANCE PROVISIONS

4.1 General

The procedures and methods of testing the transistors in accordance with this specification shall meet the general requirements of MIL-STD-202D.
4.2 **Screening Inspections and Tests**

Each transistor supplied shall be submitted in the sequence specified to the inspections and tests of Table 1.

4.3 **Inspection and Test Data**

A summary of the transistor data obtained during each inspection or test shall be prepared and submitted with the transistors to LEC. This summary shall list all transistors that failed electrical tests and the number that failed each parameter. The raw test data shall also be delivered to LEC with the transistors.

4.4 **Inspection and Test Records**

Inspection and test records shall include part number, serial number, inspection or test number, number of defects found, kinds of defects, acceptance number and the disposition inspector's identity. Records of all inspections and tests shall be delivered to LEC along with the transistors.

4.5 **Serialization**

All transistors shall be serialized in a manner that will be permanent during use and testing periods.
4.6 Reject Disposition

Each transistor that fails the inspections and tests of Table 1 shall be marked with a red dot and placed in a reject bag, and tagged to note unit part number, serial number and inspection or test failed. These units shall also be delivered to LEC. Use 3M-401-5D paint for marking of parts.

4.7 Marking of Acceptable Parts

Transistors which meet the requirements of this specification shall be identified with a permanent green dot placed on the body of the transistor. The dot shall be placed on the body at a point which will not interfere with reading the manufacturers part number or date code identification. Use 3M-401-G3 paint for marking of parts.

4.8 Acceptance

Preliminary inspection for compliance with the requirements of this specification may be performed at origin by an authorized representative of the Government. Final acceptance for the Contracting Officer shall be performed by the assigned project engineer.

4.9 Certificate of Compliance

A certificate of compliance signed by the Quality Control manager shall be included with the device shipment. It shall verify that the transistors
were processed in accordance with this specification and that all requirements have been met.

4.10 Notification of Government Source Inspector

The Government Representative who has been delegated quality assurance function at your test facility shall be notified immediately upon receipt of this order.

5.0 PREPARATION FOR DELIVERY

5.1 Type of Packaging

Each transistor shall be packaged in a suitable container which will protect the body and leads of the device during shipment. The rejected parts shall be identified and packaged separately from the acceptable items.

5.2 Packaging for Shipment

The transistors packaged in accordance with paragraph 5.1 shall be packed to afford protection against damage during direct shipment from the test laboratory to the receiving activity. Containers will comply with the carrier's rules and regulations applicable to the mode of transportation.
6.0 INSPECTION AND TEST METHODS

6.1 External Visual

The transistors shall be examined to verify that the materials, design, construction, marking and workmanship are in accordance with the applicable requirements.

6.2 Electrical

All electrical tests shall be performed at an ambient temperature of 25°C unless otherwise noted.

6.2.1 Collector-Base Cutoff Current

\[V_{CB} = 15 \text{ VDC} \]

\[I_E = 0 \]

The collector-base cutoff current shall be tested in accordance with Method 3036, Condition D, MIL-STD 750A.

The unit shall be considered failed if the \(I_{CBO} \) is greater than 10 nA dc.

6.2.2 Collector - Base Breakdown Voltage

\[I_C = 1.0 \mu\text{A dc} \]
6.2.2 (continued)

\[I_E = 0 \]

The collector - base breakdown voltage shall be tested in accordance with Method 3001.1, Condition D, MIL-STD 750A.

The unit shall be considered failed if \(BV_{CBO} \) is less than 35 VDC.

6.2.3 Emitter - Base Breakdown Voltage

\[I_E = 10 \ \mu A \ \text{dc} \]

\[I_C = 0 \]

The emitter - base breakdown voltage shall be tested in accordance with Method 3026.1, Condition D, MIL-STD 750A.

The unit shall be considered failed if the \(BV_{EBO} \) is less than 3.0 VDC.

6.2.4 Collector - Emitter Breakdown Voltage

\[I_C = 3.0 \ \text{mA dc (pulsed)} \]

\[I_B = 0 \]

Pulse width \(\leq 300 \ \mu s \)

Duty Cycle = 1%
6.2.4 (continued)

The collector-emitter breakdown voltage shall be tested in accordance with Method 3011.1, Condition D, MIL-STD 750A.

The unit shall be considered failed if the BV_{CEO} is less than 20 VDC.

6.2.5 Forward Current Ratio (h_{fe})

$$V_{CE} = 15 \text{ VDC}$$

$$I_C = 2.0 \text{ mA dc}$$

$$f = 1.0 \text{ kHz}$$

The forward transfer ratio shall be tested in accordance with Method 3206, MIL-STD 750A.

The unit shall be considered failed if the h_{fe} is less than 100.

6.2.6 Base-Emitter Saturation Voltage

$$I_C = 10 \text{ mA dc}$$

$$I_B = 1.0 \text{ mA dc}$$

The base-emitter saturation voltage shall be tested in accordance with Method 3066.1, MIL-STD 750A.
6.2.6 (continued)

The unit shall be considered failed if the $V_{BE}(Sat)$ is greater than 1.0 VDC.

6.2.7 Collector - Emitter Saturation Voltage

$$I_C = 10 \text{ mA dc}$$

$$I_B = 1.0 \text{ mA dc}$$

The collector - emitter saturation voltage shall be tested in accordance with Method 3071.1, MIL-STD 750A.

The unit shall be considered failed if the $V_{CE}(Sat)$ is greater than 0.4 VDC.

6.2.8 Unity Gain Frequency

$$V_{CE} = 15 \text{ VDC}$$

$$I_C = 1 \text{ mA}$$

$$f = 100 \text{ MHz}$$

The Unity Gain (f_t) shall be tested in accordance with Method 3261, Use, Method 3306.1, Condition A to determine the magnitude of the common emitter small-signal short-circuit transfer ratio. The unit shall be considered failed if the f_t is less than 500 MHz.

6.3 Electrical Intermediate

6.3.1 Forward - Current Transfer Ratio (h_{FE})

$$V_{CE} = 2.0 \text{ VDC}$$

$$I_C = 2.0 \text{ mA dc (pulsed)}$$

Pulse Width = 300 μs
6.3.1 (continued)

Duty Cycle = 1%.

The forward current transfer ratio \(h_{FE}\) shall be tested in accordance with Method 3076.1, MIL-STD 750A.

The unit shall be considered failed if the \(h_{FE}\) is less than 75.

6.4 Environmental

6.4.1 High Temperature Storage

The transistor shall be exposed to a temperature of 200°C, +0°C, -10°C, for a period of 48 hours, +24 hours, -0 hours.

6.4.2 Temperature Cycling

The transistor shall be tested in accordance with MIL-STD 202D, Method 102, Condition C. The transistor shall be subjected to five cycles performed continuously.

6.4.3 Acceleration

The transistor shall be tested in accordance with MIL-STD 750A, Method 2006. The transistor shall be accelerated for one minute in the \(Y_1\) plane at a level of 20,000 g's.

6.4.4 Fine Leak

The transistor shall be tested in accordance with MIL-STD 202D, Method 112, Condition C. The units shall be subjected to a pressure of 60 psig, ± 10 psig, in a helium atmosphere for a minimum period of four hours.
6.4.4 (continued)

The units shall then be placed in a mass spectrometer to measure helium leakage. Units exhibiting leak rates in excess of 10^{-8} atm-cc/sec shall be considered failed.

6.4.5 Gross Leak

The transistor shall be tested in accordance with MIL-STD 883D, Method 1014, Condition C, at a temperature of $125^\circ C + 10^\circ C$. The unit shall be submerged to a minimum of one inch into the hot liquid and observed for a minimum of one minute. Any unit emitting a continuous stream of bubbles shall be considered failed.

6.4.6 Vibration

Each transistor shall be tested in accordance with MIL-STD 202D, Method 204A, Cond. C. The following shall apply:

1. Non-operating
2. Perform 2.4.2 part 2 only. The entire frequency range of 55 to 2000 cycles (no return sweep) shall be traversed in 10 ± 3 minutes.
3. Paragraph 6.3, Electrical Intermediate, shall be run after completion of vibration testing.

6.5 Burn-In

6.5.1 Heat Sink

The transistor shall be mounted on a heat sink whose temperature will be maintained at $70^\circ C, +15^\circ C, -5^\circ C$.
6.5.2 Test Conditions

The collector to emitter voltage V_{CE} shall be set at 10 volts. The collector current I_C shall be set to 15 mA dc.

6.5.3 Test Length

The test shall be run for 168 hours, +12, -0 hours. Section 6.2 of this specification shall be rerun, and any transistor failing any portion of Section 6.2 shall be considered failed. Prior to the testing of Section 6.2, the transistor shall be allowed to return to ambient temperature (25°C).

6.6 Radiographic Examination

6.6.1 Procedure

The transistor shall be X-rayed in two mutually perpendicular planes. Maintain unit identity between units and film position.

6.6.2 Acceptance

Examine film, using 100X minimum magnification, and reject units having the following defects or characteristics:

a. Poor chip mounting: any unit displaying less than 50% contact between chip and mounting base.

b. Extraneous material: any unit displaying extraneous or foreign material that is not a normal portion of the product.
6.6.2 (continued)

c. Bonds and bond wires: any bond or bond wires that are misplaced, loose or extra. Bond wires that are within 0.005 inch of any area not electrically common with the bond wire.

d. Miscellaneous: any anomaly which, in the opinion of the inspector, will degrade performance or reliability of the unit.
<table>
<thead>
<tr>
<th></th>
<th>ELECTRICAL AND ENVIRONMENTAL REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electrical</td>
</tr>
<tr>
<td>2</td>
<td>Environmental</td>
</tr>
<tr>
<td>2.1</td>
<td>High Temperature Storage</td>
</tr>
<tr>
<td>2.2</td>
<td>Electrical</td>
</tr>
<tr>
<td>2.3</td>
<td>Temperature Cycling</td>
</tr>
<tr>
<td>2.4</td>
<td>Electrical</td>
</tr>
<tr>
<td>2.5</td>
<td>Fine Leak</td>
</tr>
<tr>
<td>2.6</td>
<td>Gross Leak</td>
</tr>
<tr>
<td>2.7</td>
<td>Electrical</td>
</tr>
<tr>
<td>2.8</td>
<td>Vibration</td>
</tr>
<tr>
<td>2.9</td>
<td>Burn-In</td>
</tr>
<tr>
<td>2.10</td>
<td>Radiographic Examination</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Para. 6.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Para. 6.4</td>
</tr>
<tr>
<td>2.1</td>
<td>Para. 6.4.1</td>
</tr>
<tr>
<td>2.2</td>
<td>Para. 6.3</td>
</tr>
<tr>
<td>2.3</td>
<td>Para. 6.4.2</td>
</tr>
<tr>
<td>2.4</td>
<td>Para. 6.3</td>
</tr>
<tr>
<td>2.5</td>
<td>Para. 6.4.4</td>
</tr>
<tr>
<td>2.6</td>
<td>Para. 6.4.5</td>
</tr>
<tr>
<td>2.7</td>
<td>Para. 6.3</td>
</tr>
<tr>
<td>2.8</td>
<td>Para. 6.4.6</td>
</tr>
<tr>
<td>2.9</td>
<td>Para. 6.5</td>
</tr>
<tr>
<td>2.10</td>
<td>Para. 6.6</td>
</tr>
</tbody>
</table>
3.3.10.2 Restriction on Use of Transistors and Capacitors.
None of the restricted parts are used in the EPS.

3.3.10.3 Soldering NBH5300.4(3A)
The soldering techniques and requirements are imposed by the Quality Assurance Plan, Reliability Plan and Inspection during assembly. The requirements of NBH5300.4(3A) are by definition and implementation rather than by analysis.

3.3.10.4 Welding and Brazing
The welded techniques and requirements are imposed by the Quality Assurance Plan, Reliability Plan and Inspection during assembly. The requirements of MIL-W-6858 are by definition and implementation rather than by analysis.
3.3.10.7 Adhesive Bonding

The adhesive was selected on the basis of satisfactory performance in prior applications. The only area using adhesive is the strip heaters. All operations connected with bonding were conducted in a dust free area. Specific materials are described in the fabrication procedures. Bonding was accomplished according to manufacturer's recommended procedures. The specification used in this process is MIL-A-9067C.

3.3.10.9 Parts and Material Selection.

Refer to paragraph 3.3.9

3.3.10.9.1 Controlled Electrical, Electronic and Electromechanical (EEE) Parts

See EEE Parts List attached.
ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

LEC Document Number EPS-469

Prepared by
Lockheed Electronics Company
Houston Aerospace Systems Division
Houston, Texas

Under Contract NAS 9-11373

for the
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas

June, 1971

406
Electron-Proton Spectrometer Program
Advanced Programs Department
Lockheed Electronics Company, Inc.
Houston Aerospace Systems Division
Houston, Texas
The Electron-Proton Spectrometer EEE Parts List catalogs the electrical, electronic, and electromechanical (EEE) parts used in the EPS. The list is divided into sections each representing a particular assembly. The parts of each assembly are grouped by their generic name. Parts are identified by size, rating, material, and part numbers as applicable. Drawing designation, manufacture, specification number, method of qualification, qualification status, and number required are also shown.

Parts used on the EPS are procured to user's specifications that include reliability and quality assurance for each application. Electronic parts have been derated to obtain the best operating levels for prolonged reliability.
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO.</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
<th>QUANTITY PER SUB ASSEMBLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>RESISTOR - Selected</td>
<td>Metal</td>
<td>Hepco</td>
<td>RHC50</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R2</td>
<td>RESISTOR - 7.87kΩ, 1%, 1/20W, Film</td>
<td>Metal</td>
<td>Hepco</td>
<td>K7871FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R3</td>
<td>RESISTOR - 7.15kΩ, 1%, 1/20W, Film</td>
<td>Metal</td>
<td>"</td>
<td>RHC50</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 255kΩ, 1%, 1/20W, Film</td>
<td>Metal</td>
<td>"</td>
<td>RHC55</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R5</td>
<td>RESISTOR - 60kΩ, 1%, 1/20W, Film</td>
<td>Metal</td>
<td>"</td>
<td>K6040FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R6</td>
<td>RESISTOR - 1.21kΩ, 1%, 1/20W, Film</td>
<td>Metal</td>
<td>"</td>
<td>RHC50</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R7</td>
<td>RESISTOR - 100MΩ, 5%</td>
<td>Metal</td>
<td>Caddock</td>
<td>1712-100 Mag.</td>
<td>"</td>
<td>LEC Spec #168</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R8</td>
<td>RESISTOR - 2.55kΩ, 1%, 1/20W, Film</td>
<td>Metal</td>
<td>Hepco</td>
<td>K2551FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R9</td>
<td>RESISTOR - 93.1Ω, 1%, 1/10W, Film</td>
<td>Metal</td>
<td>"</td>
<td>RHC50</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R10</td>
<td>RESISTOR - 49.9Ω, 1%, 1/10W, Film</td>
<td>Metal</td>
<td>"</td>
<td>K4009FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R11</td>
<td>RESISTOR - 49.9kΩ, 1%, 1/20W, Film</td>
<td>Metal</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td>10</td>
</tr>
<tr>
<td>R12</td>
<td>RESISTOR - 4.99kΩ, 1%, 1/20W, Film</td>
<td>Metal</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R13</td>
<td>RESISTOR - Selected</td>
<td>Metal</td>
<td>Caddock</td>
<td>"</td>
<td>"</td>
<td>LEC Spec #168</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R14</td>
<td>RESISTOR - 2.67kΩ, 1%, 1/20W, Film</td>
<td>Metal</td>
<td>MEPCO</td>
<td>2671FS</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td>10</td>
</tr>
<tr>
<td>R15</td>
<td>RESISTOR - 80.6kΩ, 1%, 1/20W, Film</td>
<td>Metal</td>
<td>"</td>
<td>RHC50</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td>10</td>
</tr>
<tr>
<td>R16</td>
<td>RESISTOR - 3260kΩ, 1%, 1/20W, Film</td>
<td>Metal</td>
<td>"</td>
<td>3260FS</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R17</td>
<td>POTENTIOMETER - 500Ω</td>
<td>"</td>
<td>Hours</td>
<td>1-501</td>
<td>MIL-R-27208</td>
<td>LEC Spec #124</td>
<td>O 1</td>
<td>5</td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM No.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO OR DRAWING NO.</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>R18, R19</td>
<td>RESISTOR - 30.1Ω, 1%, 1/20W, Film</td>
<td>Metal</td>
<td>Nipco</td>
<td>RNC500 30R1FS</td>
<td>MIL-R-55182</td>
<td>Established</td>
<td>Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>C1</td>
<td>CAPACITOR - Variable, .6-1.8pF, 750V</td>
<td>JFD</td>
<td>RVC-12</td>
<td>103C</td>
<td>MIL-C-1818</td>
<td>Screen and</td>
<td>Burn-in</td>
<td>Q 1</td>
</tr>
<tr>
<td>C2</td>
<td>CAPACITOR - NPO, 1.0pF, 25%, 50V</td>
<td>USCC</td>
<td>RC33C180D</td>
<td>102C</td>
<td>T1-500</td>
<td>Screen and</td>
<td>Burn-in</td>
<td>Q 1</td>
</tr>
<tr>
<td>C3</td>
<td>CAPACITOR - 47μF, 10%, 6V, Tantalum</td>
<td>Kemet</td>
<td>RI0050</td>
<td>T120A356</td>
<td>MIL-C-39003</td>
<td>Established</td>
<td>Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>C4</td>
<td>CAPACITOR - 3.3μF, 10%, 15V, Tantalum</td>
<td>Kemet</td>
<td>K015R</td>
<td>K10020</td>
<td>MIL-C-39003</td>
<td>Established</td>
<td>Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>C5, C6,</td>
<td>CAPACITOR - .01μF, 10%, ceramic</td>
<td>Kemet</td>
<td>CX0060X</td>
<td>103FR</td>
<td>MIL-C-39003</td>
<td>Established</td>
<td>Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>C8</td>
<td>CAPACITOR - .01μF, 10%</td>
<td>Kemet</td>
<td>CX0060X</td>
<td>103FR</td>
<td>MIL-C-39003</td>
<td>Established</td>
<td>Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>C7, C9</td>
<td>CAPACITOR - 15μF, 10%</td>
<td>Kemet</td>
<td>K0200</td>
<td>22202</td>
<td>MIL-C-39003</td>
<td>Established</td>
<td>Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>C10</td>
<td>CAPACITOR - 0.01μF, 10%</td>
<td>Kemet</td>
<td>CK10060X</td>
<td>103FR</td>
<td>MIL-C-39003</td>
<td>Established</td>
<td>Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>C11</td>
<td>CAPACITOR - 100pF, 10%</td>
<td>Kemet</td>
<td>CK10060X</td>
<td>103FR</td>
<td>MIL-C-39003</td>
<td>Established</td>
<td>Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>Q1</td>
<td>TRANSISTOR - FET</td>
<td>Texas Instrument</td>
<td>J147TY-</td>
<td>2N4850/</td>
<td>FILM-5-1500/</td>
<td>Established</td>
<td>Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>Q2, Q4</td>
<td>TRANSISTOR - PHP, Fast Switching, Silicon</td>
<td>Motorola</td>
<td>J1N-TX</td>
<td>2N-3251A</td>
<td>322</td>
<td>Established</td>
<td>Reliability</td>
<td>Q 2</td>
</tr>
<tr>
<td>Q3</td>
<td>TRANSISTOR - NPN, Low Power, Silicon</td>
<td>Motorola</td>
<td>J1NTX</td>
<td>2N-2708</td>
<td>322</td>
<td>Established</td>
<td>Reliability</td>
<td>Q 2</td>
</tr>
<tr>
<td>CR1</td>
<td>DIODE - General Purpose, Silicon</td>
<td>Texas Instrument</td>
<td>J1NTX</td>
<td>1N449</td>
<td>322</td>
<td>Established</td>
<td>Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>CR2, CR3</td>
<td>DIODE - Silicon</td>
<td>Dickson</td>
<td>J1N4567A</td>
<td>322</td>
<td>Established</td>
<td>Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO.</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
<th>QUANTITY PER SUB ASSEMBLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1, L2, L4</td>
<td>Inductor - 100uH</td>
<td>J. W. Miller</td>
<td>9210-76</td>
<td>MIL-C-15305</td>
<td>Hi-Rel Testing</td>
<td>Q 1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>Inductor - 20mH</td>
<td>Collins</td>
<td>526-2930-130</td>
<td>MIL-C-15305</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connector - Screw Mount</td>
<td>Microdot</td>
<td>1594L4-0.5</td>
<td>MIL-C-38300A</td>
<td>Microdot</td>
<td>Q 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connector - Receptacle</td>
<td>Microdot</td>
<td>031-0070-.001</td>
<td>MIL-C-38300A</td>
<td>Microdot</td>
<td>Q 1</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Skylab Electron-Proton Spectrometer

EEE Parts List

Revision A (Update)

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Drawing Designation</th>
<th>Description and/or Drawing Title</th>
<th>MFG. Part No. or Drawing No</th>
<th>Specification</th>
<th>Method of Qualification</th>
<th>Qual. Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR2</td>
<td>Diode - 6.4V</td>
<td></td>
<td>1N4567A</td>
<td>MIL-S-19500</td>
<td>High-Roll Component</td>
<td>Q</td>
</tr>
<tr>
<td>CR3</td>
<td>Diode - 6.4V</td>
<td></td>
<td>1N4567A</td>
<td>MIL-S-19500</td>
<td>High-Roll Component</td>
<td>Q</td>
</tr>
<tr>
<td>R14, R21</td>
<td>Resistor - 2.67k, 1%</td>
<td></td>
<td>RNC50H</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
</tr>
<tr>
<td>R18</td>
<td>Resistor - 30.1k, 1%</td>
<td></td>
<td>RNC50H</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
</tr>
<tr>
<td>R19</td>
<td>Resistor - 30.1k, 1%</td>
<td></td>
<td>RNC50H</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
</tr>
<tr>
<td>R15, R20</td>
<td>Resistor - 80.6k, 1%</td>
<td></td>
<td>RNC50H</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
</tr>
<tr>
<td>R11</td>
<td>Resistor - 49.9k, 1%</td>
<td></td>
<td>RNC50H</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>Changed to 100k, 1%</td>
<td></td>
<td>RNC50H</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
</tr>
<tr>
<td>R16</td>
<td>Resistor - 49.9k, 1%</td>
<td></td>
<td>RNC50H</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>Changed to 69.8k, 1%</td>
<td></td>
<td>RNC50H</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>--------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>R13</td>
<td>RESISTOR - 5 Meg, 1%</td>
<td>Changed to 100k</td>
<td>Caddock</td>
<td>MK132</td>
<td>MIL-R-55102</td>
<td>Hi-Rel Testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Caddock</td>
<td>MK100k</td>
<td>MIL-R-55102</td>
<td>Hi-Rel Testing</td>
</tr>
</tbody>
</table>

SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST REVISION A (UPDATE)

TOP ASSEMBLY: NUMBER SEC9106425
NAME ELECTRON-PROTON SPECTROMETER
NEXT ASSEMBLY: NUMBER
NAME

ASSEMBLY: NUMBER SEC9107185-303
NAME DETECTOR LEAKAGE MONITOR

QUANTITY PER SUB ASSEMBLY

TOTAL ASSEMBLY

PAGE 2 OF 2
SKYLAB ELECTRON-PROTON SPECTROMETER EEE PARTS LIST

Top Assembly: Number
- **SEC39106425**
- **Name:** ELECTRON-PROTON SPECTROMETER

Next Assembly: Number
- **SEC39107190**
- **Name:** PREAMPLIFIER SLICE

Assembly: Number
- **SEC39107184**
- **Name:** DETECTOR BIAS-SUPPLY

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Drawing Designation</th>
<th>Description and/or Drawing Title</th>
<th>Mfg.</th>
<th>Mfg's Part No or Drawing No.</th>
<th>Specification</th>
<th>Method of Qualification</th>
<th>Qual. Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>RESISTOR - 14kΩ, 1%, 1/20W</td>
<td>Mepco RNC50H 1402FR</td>
<td>MIL-R-55102</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>RESISTOR - 13Ω, 5%, 1/4W</td>
<td>Allen Bradley RCR07G 130JP</td>
<td>MIL-R-39008</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>RESISTOR - 34.8kΩ, 1%, 1/20W</td>
<td>Mepco RNC50H 3402FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 22.1kΩ, 1%, 1/20W</td>
<td>Mepco RNC50H 2212FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>POTENTIOMETER - 10kΩ, 5%</td>
<td>Bourns 3262W 39103</td>
<td>MIL-R-27208</td>
<td>Hi-Rel Testing</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>RESISTOR - 1.0kΩ, 1%, 1/20W</td>
<td>Mepco RNC50H 1001FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>RESISTOR - 13kΩ, 1%, 1/20W</td>
<td>Mepco RNC50H 1302FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>CAPACITOR - 100pf, 200V, 10%</td>
<td>Kemet CKR075X 101K</td>
<td>MIL-C-39014</td>
<td>"</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>CAPACITOR - 3300pf, 200V, 10%</td>
<td>Kemet CKR056X 332KP</td>
<td>"</td>
<td>"</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>CAPACITOR - 18μf, 50V, 10%</td>
<td>Kemet T210C186 10K5PS</td>
<td>MIL-C-39003</td>
<td>"</td>
<td>Q 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C9, C10</td>
<td>CAPACITOR - 1000pf, 200V, 10%</td>
<td>Kemet CKR050X 102KP</td>
<td>MIL-C-39014</td>
<td>"</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>CAPACITOR - Selected</td>
<td>Kemet CKR065X</td>
<td>"</td>
<td>"</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CR1, CR2</td>
<td>DIODE</td>
<td>Texas Instruments JAN-TX-1N914</td>
<td>MIL-S-19500</td>
<td>"</td>
<td>Q 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Q1, Q2</td>
<td>TRANSISTOR</td>
<td>Texas Instruments JAN-TX-2N3421</td>
<td>"</td>
<td>"</td>
<td>Q 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>VOLTAGE REGULATOR</td>
<td>Advance Micro UA723/ B83</td>
<td>MIL-STD-883/Level A</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P1, P2</td>
<td>CONNECTOR</td>
<td>Microdot HCM1- 041-0.5</td>
<td>MIL-C-38500A</td>
<td>Hi-Rel Tested</td>
<td>Q 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QUAL. STATUS</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>R8</td>
<td>RESISTOR - 50kΩ, 1%, 3/4W</td>
<td>Caddock MK-132-50K</td>
<td>MIL-R-55182</td>
<td>Hi-Rel Testing</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R9, R11, R12</td>
<td>RESISTOR - 10kΩ, 1%, 1/2W</td>
<td>Caddock MG660-10K</td>
<td>"</td>
<td>Hi-Rel Testing</td>
<td>Q 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>RESISTOR - 100kΩ, 1%, 3/4W</td>
<td>Cadpac MK-132-100K</td>
<td>"</td>
<td>Hi-Rel Testing</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C4 - C7</td>
<td>CAPACITOR - .01μF, 1000V</td>
<td>Erie 820-1KV-X5T-103M</td>
<td>MIL-C-39014</td>
<td>Hi-Rel Testing</td>
<td>Q 4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>CAPACITOR - 1000pF, 200V</td>
<td>Kemet CKR038X 102KP</td>
<td>MIL-C-39014</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CR3 - CR8</td>
<td>DIODE</td>
<td>Texas Instruments JAN-TX-ING49</td>
<td>MIL-S-19500</td>
<td>Established Reliability</td>
<td>Q 6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO OR DRAWING NO</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QUAL. STATUS</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>R1</td>
<td>POTENTIOMETER - 10kΩ, 5%</td>
<td>Bourns</td>
<td></td>
<td>32600261</td>
<td>MIL-R-27208</td>
<td>Hi-Rel Testing</td>
<td>Q 11</td>
</tr>
<tr>
<td>R2a, R2b</td>
<td>RESISTOR - 44.2kΩ, 1%, 3/4W</td>
<td>Caddock</td>
<td></td>
<td>39103</td>
<td>MIL-R-55182</td>
<td>Hi-Rel Testing</td>
<td>Q 11</td>
</tr>
<tr>
<td>R3</td>
<td>RESISTOR - 140kΩ, 1%, 3/4W</td>
<td>Caddock</td>
<td></td>
<td>MK132</td>
<td>MIL-R-55182</td>
<td>Hi-Rel Testing</td>
<td>Q 11</td>
</tr>
<tr>
<td>R4, R28</td>
<td>RESISTOR - 165Ω, 1%, 2/20W</td>
<td>Nicco</td>
<td></td>
<td>RNC50H</td>
<td>1650FR</td>
<td>Established Reliability</td>
<td>Q 11</td>
</tr>
<tr>
<td>R4, R28</td>
<td>RESISTOR - 324Ω, 1%, 1/20W</td>
<td>"</td>
<td></td>
<td>RNC50H</td>
<td>3240FR</td>
<td>Established Reliability</td>
<td>Q 22</td>
</tr>
<tr>
<td>R4, R28</td>
<td>RESISTOR - 267Ω, 1%, 1/20W</td>
<td>"</td>
<td></td>
<td>RNC50H</td>
<td>2670FR</td>
<td>Established Reliability</td>
<td>Q 22</td>
</tr>
<tr>
<td>R4, R28</td>
<td>RESISTOR - 169Ω, 1%, 1/20W</td>
<td>"</td>
<td></td>
<td>RNC50H</td>
<td>1690FR</td>
<td>Established Reliability</td>
<td>Q 22</td>
</tr>
<tr>
<td>R5, R8</td>
<td>RESISTOR - 78.7kΩ, 1%, 1/20W</td>
<td>"</td>
<td></td>
<td>RNC50H</td>
<td>7872FR</td>
<td>Established Reliability</td>
<td>Q 44</td>
</tr>
<tr>
<td>R29, R33</td>
<td>RESISTOR - 80.6kΩ, 1%, 1/20W</td>
<td>"</td>
<td></td>
<td>RNC50H</td>
<td>8062FR</td>
<td>Established Reliability</td>
<td>Q 22</td>
</tr>
<tr>
<td>R6, R30</td>
<td>RESISTOR - 59kΩ, 1%, 1/20W</td>
<td>"</td>
<td></td>
<td>RNC50H</td>
<td>5902FR</td>
<td>Established Reliability</td>
<td>Q 22</td>
</tr>
<tr>
<td>R7, R31</td>
<td>RESISTOR - 4.87kΩ, 1%, 1/20W</td>
<td>"</td>
<td></td>
<td>RNC50H</td>
<td>4871FR</td>
<td>Established Reliability</td>
<td>Q 22</td>
</tr>
<tr>
<td>R9, R32</td>
<td>RESISTOR - 2.43kΩ, 1%, 1/20W</td>
<td>"</td>
<td></td>
<td>RNC50H</td>
<td>2431FR</td>
<td>Established Reliability</td>
<td>Q 44</td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO OR DRAWING NO</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>R12, R36</td>
<td>RESISTOR - 2.74kΩ, 1W, 1/20W</td>
<td>Ranco</td>
<td>RNC50H 2741FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>R13, R37</td>
<td>RESISTOR - 3.74kΩ, 1W, 1/20W</td>
<td>"</td>
<td>RNC50H 3741FR</td>
<td>"</td>
<td>"</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>R14, R15</td>
<td>RESISTOR - 25.5kΩ, 1W, 1/20W</td>
<td>"</td>
<td>RNC50H 2552FR</td>
<td>"</td>
<td>"</td>
<td>4</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>R16, R40</td>
<td>RESISTOR - 8.25kΩ, 1W, 1/20W</td>
<td>"</td>
<td>RNC50H 8252FR</td>
<td>"</td>
<td>"</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>R17, R41</td>
<td>RESISTOR - 1.13kΩ, 1W, 1/20W</td>
<td>"</td>
<td>RNC50H 1132FR</td>
<td>"</td>
<td>"</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>R18, R19</td>
<td>RESISTOR - 43.2Ω, 1W, 1/20W</td>
<td>"</td>
<td>RNC50K 4332FR</td>
<td>"</td>
<td>"</td>
<td>4</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>R20, R44</td>
<td>RESISTOR - 200Ω, 1W, 1/20W</td>
<td>"</td>
<td>RNC50H 2000FR</td>
<td>"</td>
<td>"</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>R21, R24</td>
<td>RESISTOR - 100Ω, 1W, 1/20W</td>
<td>"</td>
<td>RNC50K 1000FR</td>
<td>"</td>
<td>"</td>
<td>4</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>R22, R23</td>
<td>RESISTOR - 40.2Ω, 1W, 1/20W</td>
<td>"</td>
<td>RNC50K 4002FR</td>
<td>"</td>
<td>"</td>
<td>4</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>R25, R26</td>
<td>RESISTOR - 32.4Ω, 1W, 1/20W</td>
<td>"</td>
<td>RNC50K 3204FR</td>
<td>"</td>
<td>"</td>
<td>4</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>R27</td>
<td>RESISTOR - 215Ω, 1W, 1/20W</td>
<td>"</td>
<td>RNC50H 2150FR</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG</td>
<td>MFG'S PART NO OR DRAWING NO</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QUAL. STATUS</td>
<td>QUANTITY PER SUB ASSEMBLY</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>-----</td>
<td>------------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>R40</td>
<td>RESISTOR - 49.0k, 1%, 1/20W</td>
<td>Ranco</td>
<td>RRC350K</td>
<td>4900PR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>R50</td>
<td>RESISTOR - 100k, 1%, 1/20W</td>
<td>Ranco</td>
<td>RRC350K</td>
<td>1000PR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>5</td>
</tr>
<tr>
<td>C1, C16</td>
<td>CAPACITOR - 850pf, 50V</td>
<td>USCC</td>
<td>RC37C</td>
<td>051F</td>
<td>MIL-C-39014</td>
<td>Hi-Rel Testing</td>
<td>Q 2</td>
<td>8</td>
</tr>
<tr>
<td>C1, C16</td>
<td>CAPACITOR - 51pf, 50V</td>
<td>USCC</td>
<td>RC37C</td>
<td>516F</td>
<td>MIL-C-39014</td>
<td>Hi-Rel Testing</td>
<td>Q 2</td>
<td>2</td>
</tr>
<tr>
<td>C2, C17</td>
<td>CAPACITOR - 0.18uf, 50V</td>
<td>Kemet</td>
<td>T2100A-184K050RS</td>
<td>MIL-C-39003</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>C3, C7,</td>
<td>CAPACITOR - 0.01uf, 200V</td>
<td>Kemet</td>
<td>CKR068X</td>
<td>103KP</td>
<td>MIL-C-39014</td>
<td>Established Reliability</td>
<td>Q 8</td>
<td>40</td>
</tr>
<tr>
<td>C13, C18</td>
<td></td>
<td>USCC</td>
<td>RC37C8</td>
<td>RCD</td>
<td>MIL-C-39014</td>
<td>Hi-Rel Test Qual.</td>
<td>Q</td>
<td>8</td>
</tr>
<tr>
<td>C24, C28</td>
<td></td>
<td>USCC</td>
<td>RC37C2</td>
<td>R2D</td>
<td>MIL-C-39014</td>
<td>Hi-Rel Test Qual.</td>
<td>Q</td>
<td>2</td>
</tr>
<tr>
<td>C31, C32</td>
<td></td>
<td>USCC</td>
<td>RC37C7</td>
<td>220J</td>
<td>MIL-C-39014</td>
<td>Hi-Rel Test Qual.</td>
<td>Q</td>
<td>2</td>
</tr>
<tr>
<td>C4, C19</td>
<td>CAPACITOR - 5.0pf, 50V</td>
<td>USCC</td>
<td>RC37C2</td>
<td>200J</td>
<td>MIL-C-39014</td>
<td>Hi-Rel Test Qual.</td>
<td>Q</td>
<td>8</td>
</tr>
<tr>
<td>C4, C19</td>
<td>CAPACITOR - 2.2pf, 50V</td>
<td>USCC</td>
<td>RC37C7</td>
<td>100J</td>
<td>MIL-C-39014</td>
<td>Hi-Rel Test Qual.</td>
<td>Q</td>
<td>2</td>
</tr>
<tr>
<td>C5, C20</td>
<td>CAPACITOR - 10pf, 50V</td>
<td>Kemet</td>
<td>T210A335-</td>
<td>K015RS</td>
<td>MIL-C-39003</td>
<td>Established Reliability</td>
<td>Q 4</td>
<td>20</td>
</tr>
<tr>
<td>C6, C9</td>
<td>CAPACITOR - 3.3uf, 200V</td>
<td>Kemet</td>
<td>CKR068X</td>
<td>33KP</td>
<td>MIL-C-39014</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td>10</td>
</tr>
<tr>
<td>C7, C23</td>
<td></td>
<td>USCC</td>
<td>RC3715F</td>
<td>150PF</td>
<td>MIL-C-39014</td>
<td>Hi-Rel Test Qual.</td>
<td>Q 4</td>
<td>16</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DESCRIPTION</td>
<td>MFG.</td>
<td>MFG'S PART. NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QUAL. STATUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10, C11</td>
<td>CAPACITOR - 91pf, 50V</td>
<td>USCC</td>
<td>RC37C910F</td>
<td>MIL-C-39014</td>
<td>Hi-Rel Test Qual</td>
<td>Q 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25, C26</td>
<td>CAPACITOR - 33pf, 50V</td>
<td>"</td>
<td>RC12C33R3D</td>
<td>"</td>
<td>Q 2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12, C27</td>
<td>CAPACITOR - 3.9pf, 50V</td>
<td>"</td>
<td>RC12C39R9D</td>
<td>"</td>
<td>Q 2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12, C27</td>
<td>CAPACITOR - 1.5pf, 50V</td>
<td>"</td>
<td>RC12C15R5D</td>
<td>"</td>
<td>Q 2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12, C27</td>
<td>CAPACITOR - 2.7pf, 50V</td>
<td>"</td>
<td>RC12C27R7D</td>
<td>"</td>
<td>Q 2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12, C27</td>
<td>CAPACITOR - 1.0pf, 50V</td>
<td>"</td>
<td>RC12C10R0D</td>
<td>"</td>
<td>Q 2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14, C29</td>
<td>CAPACITOR - 68pf, 50V</td>
<td>"</td>
<td>RC37C680J</td>
<td>"</td>
<td>Q 2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14, C29</td>
<td>CAPACITOR - 27pf, 50V</td>
<td>"</td>
<td>RC37C270J</td>
<td>"</td>
<td>Q 2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15, C30</td>
<td>CAPACITOR - 180pf</td>
<td>USCC</td>
<td>RC37C181J</td>
<td>"</td>
<td>Hi-Rel Test Qual</td>
<td>Q 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15, C30</td>
<td>CAPACITOR - 68pf</td>
<td>"</td>
<td>RC37C680J</td>
<td>"</td>
<td>Hi-Rel Test Qual</td>
<td>Q 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15, C30</td>
<td>CAPACITOR - 100pf</td>
<td>"</td>
<td>RC37C101J</td>
<td>"</td>
<td>Hi-Rel Test Qual</td>
<td>Q 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QUAL. STATUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
<td>------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1 Thru Q4</td>
<td>TRANSISTOR - Dual</td>
<td>Intersil</td>
<td>2N4878</td>
<td>MIL-S-19500</td>
<td>LEC Hi-Rel Test Qual</td>
<td>Q 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q5 Thru Q8</td>
<td>TRANSISTOR</td>
<td>Motorola</td>
<td>2N4261</td>
<td>MIL-S-19500</td>
<td>LEC Hi-Rel Test Qual</td>
<td>Q 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9 Thru Q12</td>
<td>TRANSISTOR</td>
<td>Motorola</td>
<td>2N2709</td>
<td>MIL-S-19500</td>
<td>LEC Hi-Rel Test Qual</td>
<td>Q 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR1 Thru CR18</td>
<td>DIODE</td>
<td>Texas Instruments</td>
<td>1N4153</td>
<td>MIL-S-19500</td>
<td>Established Reliability</td>
<td>Q 18 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>CONNECTOR</td>
<td>Microdot</td>
<td>15P-4L4-0.5</td>
<td>MIL-C-38300A</td>
<td>Hi-Rel Test Qual</td>
<td>Q 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>CONNECTOR</td>
<td>Microdot</td>
<td>15S-4L40.5</td>
<td>MIL-C-388300</td>
<td>Hi-Rel Test Qual</td>
<td>Q 1 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO.</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>RESISTOR - Selected Value</td>
<td>Caddock</td>
<td>MK132</td>
<td>MIL-R-55182</td>
<td>Hi-Rel Test Qual</td>
<td>Q 1</td>
<td></td>
</tr>
<tr>
<td>R2, R9</td>
<td>RESISTOR - 3920, 1%, 1/20W</td>
<td>Hepco</td>
<td>3920FR</td>
<td>MIL-R-22097</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td></td>
</tr>
<tr>
<td>R3, R10</td>
<td>POTentiOMETER - 50N</td>
<td>Bourns</td>
<td>39500</td>
<td>MIL-R-22097</td>
<td>Hi-Rel Testing</td>
<td>Q 2</td>
<td></td>
</tr>
<tr>
<td>R4, R11</td>
<td>RESISTOR - Selected Value</td>
<td>Hepco</td>
<td>39500</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td></td>
</tr>
<tr>
<td>R5, R12</td>
<td>RESISTOR - 5490, 1%, 1/20W</td>
<td>-</td>
<td>39500</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td></td>
</tr>
<tr>
<td>R6, R13</td>
<td>POTentiOMETER - 500N</td>
<td>Bourns</td>
<td>39500</td>
<td>MIL-R-22097</td>
<td>Hi-Rel Testing</td>
<td>Q 2</td>
<td></td>
</tr>
<tr>
<td>R7, R14</td>
<td>RESISTOR - 13.7kΩ, 1%, 1/2-W</td>
<td>Hepco</td>
<td>1372FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>RESISTOR - Selected Value</td>
<td>Hepco</td>
<td>1372FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td></td>
</tr>
<tr>
<td>VR1</td>
<td>DIODE - Zener (IN4901A)</td>
<td>Dickson</td>
<td>DT710415D</td>
<td>MIL-S-19500</td>
<td>Hi-Rel Testing</td>
<td>Q 1</td>
<td></td>
</tr>
<tr>
<td>VR2</td>
<td>DIODE - Zener (IN4567A)</td>
<td>Dickson</td>
<td>DT710415C</td>
<td>MIL-S-19500</td>
<td>Hi-Rel Testing</td>
<td>Q 1</td>
<td></td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER

EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO OR DRAWING NO</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUALITY STATUS</th>
<th>QUANTITY PER SUB ASSEMBLY</th>
<th>TOTAL REQUIRED FOR ASSEMBLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R12</td>
<td>RESISTOR - 4.53kΩ, 1%, 1/20W</td>
<td></td>
<td>Nepec</td>
<td>RNC50H 4531FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R2, R13</td>
<td>RESISTOR - 3160Ω, 1%, 1/20W</td>
<td></td>
<td>Nepec</td>
<td>RNC50H 3161FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>RESISTOR - 1540Ω, 1%, 1/20W</td>
<td></td>
<td>Nepec</td>
<td>RNC50H 1541FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>RESISTOR - 1470Ω, 1%, 1/20W</td>
<td></td>
<td>Nepec</td>
<td>RNC50H 1471FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>RESISTOR - 1500Ω, 1%, 1/20W</td>
<td></td>
<td>Nepec</td>
<td>RNC50H 1501FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 580kΩ, 1%, 3/4W</td>
<td></td>
<td>Caddock</td>
<td>MK132</td>
<td></td>
<td>Hi-Rel Testing</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R4'</td>
<td>RESISTOR - 550kΩ, 1%, 3/4W</td>
<td></td>
<td>Caddock</td>
<td>MK132</td>
<td></td>
<td>Hi-Rel Testing</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 480kΩ, 1%, 3/4W</td>
<td></td>
<td>Caddock</td>
<td>MK132</td>
<td></td>
<td>Hi-Rel Testing</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 440kΩ, 1%, 3/4W</td>
<td></td>
<td>Caddock</td>
<td>MK132</td>
<td></td>
<td>Hi-Rel Testing</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 500kΩ, 1%, 3/4W</td>
<td></td>
<td>Caddock</td>
<td>MK132</td>
<td></td>
<td>Hi-Rel Testing</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R5 (1)</td>
<td>RESISTOR - 750Ω, 1%, 1/20W</td>
<td></td>
<td>Nepec</td>
<td>RNC50H 7500FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R5 (2)</td>
<td>RESISTOR - 715Ω, 1%, 1/20W</td>
<td></td>
<td>Nepec</td>
<td>RNC50H 7150FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R5 (3)</td>
<td>RESISTOR - 787Ω, 1%, 1/20W</td>
<td></td>
<td>Nepec</td>
<td>RNC50H 7870FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R5 (4)</td>
<td>RESISTOR - 1kΩ, 1%, 1/20W</td>
<td></td>
<td>Nepec</td>
<td>RNC50H 1001FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>R5 (5)</td>
<td>RESISTOR - 1.13kΩ, 1%, 1/20W</td>
<td></td>
<td>Nepec</td>
<td>RNC50H 1131FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 2 2 2 2 2 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QUALIFICATION</td>
<td>QUANTITY PER SUB ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>POTENTIOMETER - 1000, 5%</td>
<td>Bourns</td>
<td>32600H</td>
<td>39101</td>
<td>MIL-R-22097</td>
<td>Hi-Rel Testing</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R6</td>
<td>POTENTIOMETER - 5%, 2000</td>
<td>-</td>
<td>32600H</td>
<td>39201</td>
<td>MIL-R-22097</td>
<td>Hi-Rel Testing</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R7 (1)</td>
<td>RESISTOR - 4640, 1%, 1/20W</td>
<td>Nepeo</td>
<td>RNC50H</td>
<td>4640FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R7 (2)</td>
<td>RESISTOR - 6040, 1%, 1/20W</td>
<td>-</td>
<td>RNC50H</td>
<td>6040FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R7 (3)</td>
<td>RESISTOR - 4870, 1%, 1/20W</td>
<td>-</td>
<td>RNC50H</td>
<td>2940FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R7 (4)</td>
<td>RESISTOR - 2670, 1%, 1/20W</td>
<td>-</td>
<td>RNC50H</td>
<td>2670FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R7</td>
<td>RESISTOR - 2940, 1%, 1/20W</td>
<td>-</td>
<td>RNC50H</td>
<td>2940FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R8</td>
<td>RESISTOR - 2.10kΩ, 1%, 1/20W</td>
<td>-</td>
<td>RNC50H</td>
<td>2101FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R8</td>
<td>RESISTOR - 1.69kΩ, 1%, 1/20W</td>
<td>-</td>
<td>RNC50H</td>
<td>1691FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R9</td>
<td>POTENTIOMETER - 2000, 5%</td>
<td>Bourns</td>
<td>32600H</td>
<td>39201</td>
<td>MIL-R-22097</td>
<td>Hi-Rel Testing</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R9</td>
<td>POTENTIOMETER - 500, 5%</td>
<td>-</td>
<td>32600H</td>
<td>39500</td>
<td>MIL-R-22097</td>
<td>Hi-Rel Testing</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R10, R25</td>
<td>RESISTOR - 0000, Shorting Wire</td>
<td>-</td>
<td>RNC50H</td>
<td>1021FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R11</td>
<td>RESISTOR - 1.82kΩ, 1%, 1/20W</td>
<td>Nepeo</td>
<td>RNC50H</td>
<td>1821FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R11</td>
<td>RESISTOR - 1.78kΩ, 1%, 1/20W</td>
<td>Nepeo</td>
<td>RNC50H</td>
<td>1781FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R14</td>
<td>RESISTOR - 725kΩ, 1%, 3/4W</td>
<td>Caddock</td>
<td>MK132</td>
<td>MK132</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R14</td>
<td>RESISTOR - 750kΩ, 1%, 3/4W</td>
<td>Caddock</td>
<td>MK132</td>
<td>MIL-R-55102</td>
<td>Hi-Rel Testing</td>
<td>Q 1</td>
</tr>
<tr>
<td>R15, R16</td>
<td>RESISTOR - 169kΩ, 1%, 1/2W</td>
<td>Mapco</td>
<td>RNC50H</td>
<td></td>
<td>Established Reliability</td>
<td>Q 2</td>
</tr>
<tr>
<td>R17</td>
<td>RESISTOR - 1.0kΩ, 1%, 1/20W</td>
<td>Mapco</td>
<td>RNC50H</td>
<td></td>
<td>Established Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>R18, R19</td>
<td>RESISTOR - 100Ω, 1%, 1/20W</td>
<td>Mapco</td>
<td>RNC50H</td>
<td></td>
<td>Established Reliability</td>
<td>Q 2</td>
</tr>
<tr>
<td>R20, R21, R22</td>
<td>RESISTOR - 49.9kΩ, 1%, 1/20W</td>
<td>Mapco</td>
<td>RNC50H, 492FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 3</td>
</tr>
<tr>
<td>R23, R24</td>
<td>RESISTOR - 33.2kΩ, 1%, 1/20W</td>
<td>Mapco</td>
<td>RNC50K, 332FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 4</td>
</tr>
<tr>
<td>R26, R27</td>
<td>RESISTOR - 100kΩ, 1%, 1/20W</td>
<td>Mapco</td>
<td>RNC50H, 1001FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 2</td>
</tr>
<tr>
<td>R28</td>
<td>RESISTOR - 4.02kΩ, 1%, 1/20W</td>
<td>Mapco</td>
<td>RNC50H, 4021FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>R31</td>
<td>POTENTIOMETER - 100kΩ, 5%</td>
<td>Bourns</td>
<td>39104</td>
<td>MIL-R-22097</td>
<td>Hi-Rel Testing</td>
<td>Q 1</td>
</tr>
<tr>
<td>R32</td>
<td>RESISTOR - 36.5kΩ, 1%, 1/20W</td>
<td>Mapco</td>
<td>RNC50H, 3652FR</td>
<td>MIL-R-55102</td>
<td>Established Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>R33</td>
<td>RESISTOR - 158kΩ, 1%, 1/20W</td>
<td>Mapco</td>
<td>RNC50H, 1583FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>R34</td>
<td>RESISTOR - 30.1kΩ, 1%, 1/20W</td>
<td>Mapco</td>
<td>RNC50H, 3012FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>R35</td>
<td>RESISTOR - 97.6kΩ, 1%, 1/20W</td>
<td>Mapco</td>
<td>RNC50H, 976FR</td>
<td></td>
<td>Established Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>R36</td>
<td>POTENTIOMETER - 10kΩ, 5%</td>
<td>Bourns</td>
<td>39104</td>
<td>MIL-R-22097</td>
<td>Hi-Rel Testing</td>
<td>Q 1</td>
</tr>
</tbody>
</table>
Skylab Electron-Proton Spectrometer EEE Parts List

Top Assembly: Number
SEC39106425

Name
Electron-Proton Spectrometer

Next Assembly: Number
SEC39106675

Name
Discriminator Slice

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Drawing Designation</th>
<th>Description and/or Drawing Title</th>
<th>MFG.</th>
<th>MFG's Part No or Drawing No</th>
<th>Specification</th>
<th>Method of Qualification</th>
<th>Qual Status</th>
<th>Quantity Per Sub Assembly</th>
<th>Total Required Per Assy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 thru C7</td>
<td>Capacitor - 1uF, 10%, 100V</td>
<td>Kemar</td>
<td>CKRO6</td>
<td>MIL-C-19014</td>
<td>Established Reliability</td>
<td>Q</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>C8, C9</td>
<td>Capacitor - 220pF, 10%, 200V</td>
<td>Kemar</td>
<td>CKRO5</td>
<td>MIL-C-19014</td>
<td>Established Reliability</td>
<td>Q</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C10</td>
<td>Capacitor - 68uF, 10%, 15V</td>
<td>Kemar</td>
<td>T2100060 & 6K015RS</td>
<td>MIL-C-39003</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C11, C12</td>
<td>Capacitor - 0.01uF, 10%, 200V</td>
<td>Kemar</td>
<td>CKRO6</td>
<td>MIL-C-19014</td>
<td>Established Reliability</td>
<td>Q</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>C13, C18</td>
<td>Capacitor - 100pF, 10%, 200V</td>
<td>Kemar</td>
<td>CKRO5</td>
<td>MIL-C-19014</td>
<td>Established Reliability</td>
<td>Q</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C17</td>
<td>Capacitor - 2.2uF, 10%, 20V</td>
<td>Kemar</td>
<td>K0200S</td>
<td>MIL-C-39003</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>L1 thru L4</td>
<td>Inductor - 100uH</td>
<td>J. W. Miller</td>
<td>9210-76</td>
<td>MIL-C-15305</td>
<td>Established Reliability</td>
<td>Q</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Z6</td>
<td>Amplifier</td>
<td>Advance Micro</td>
<td>LM108/83</td>
<td>MIL-STD-6003-Level A</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CR1, CR2</td>
<td>Diode - Silicon, Switching</td>
<td>Texas Instruments</td>
<td>JA9-TX</td>
<td>MIL-S-19500-116</td>
<td>Established Reliability</td>
<td>Q</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CR3</td>
<td>Diode - Silicon Hot Carrier</td>
<td>Hewlett Packard</td>
<td>SN5473T</td>
<td>MIL-S-19500</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CR4</td>
<td>Diode - Silicon Hot Carrier</td>
<td>Signetics</td>
<td>SN526K</td>
<td>MIL-STD-6003-Level A</td>
<td>Established Reliability</td>
<td>Q</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Z1, Z2</td>
<td>Amplifier</td>
<td>Texas Instruments</td>
<td>SN5473S</td>
<td>MIL-STD-6003-Level A</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Z3</td>
<td>JK Flip-Flop</td>
<td>Harris Semiconductor</td>
<td>HA-2-15250-2</td>
<td>MIL-STD-6003-Level A</td>
<td>Established Reliability</td>
<td>Q</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Z4, Z5</td>
<td>Amplifier</td>
<td>Microdot</td>
<td>031-0070-001</td>
<td>MIL-C-3830A</td>
<td>Established Reliability</td>
<td>Q</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P3, P4</td>
<td>Connector - PCB Receptacle</td>
<td>Microdot</td>
<td>HCDM1-1544.4-.5</td>
<td>MIL-C-3830A</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P2</td>
<td>Connector - Screw Mount</td>
<td>Microdot</td>
<td>HCM1-2144.4-.5</td>
<td>MIL-C-3830A</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P1</td>
<td>Connector - Screw Mount</td>
<td>Microdot</td>
<td>HCM1-2144.4-.5</td>
<td>MIL-C-3830A</td>
<td>Established Reliability</td>
<td>Q</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ITEM</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>QUANTITY PER SUB ASSEMBLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-5</td>
<td>Hepco</td>
<td>RNC50H 7500FR 55102 MIL-R 2</td>
<td>RESISTOR - 750Ω, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Changed to 1.18k, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>Hepco</td>
<td>RNC50H 1101FR 55102 MIL-R 2</td>
<td>RESISTOR - 464Ω, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Changed to 69.8Ω, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>Caddock</td>
<td>MK112- 500K 55102 MIL-R</td>
<td>RESISTOR - 500Ω, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Changed to 100k, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>Hepco</td>
<td>RNC50H 1471FR 55102 MIL-R 2</td>
<td>RESISTOR - 1.47k, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Changed to 1.54k, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>Hepco</td>
<td>RNC50H 7150FR 55102 MIL-R 2</td>
<td>RESISTOR - 7150Ω, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Changed to 1.18k, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>Hepco</td>
<td>RNC50H 6040FR 55102 MIL-R 2</td>
<td>RESISTOR - 604Ω, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Changed to 69.8Ω, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>Caddock</td>
<td>MK112- 440K 55102 MIL-R</td>
<td>RESISTOR - 440k, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Changed to 100k, ℘ 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

Revision A (Update)

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO.</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3</td>
<td>RESISTOR - 1.50k, 1A</td>
<td>Meapo</td>
<td>RNC50H 1501FR</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Changed to 1.54k, 1A</td>
<td>Meapo</td>
<td>RNC50H 1541</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>0</td>
</tr>
<tr>
<td>R5</td>
<td>RESISTOR - 787Ω, 1A</td>
<td>Meapo</td>
<td>RNC50H 787ΩFR</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Changed to 1.18k, 1A</td>
<td>Meapo</td>
<td>RNC50H 1181FR</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>0</td>
</tr>
<tr>
<td>R7</td>
<td>RESISTOR - 497Ω, 1A</td>
<td>Meapo</td>
<td>RNC50H 487ΩFR</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Changed to 69.8Ω, 1A</td>
<td>Meapo</td>
<td>69R8ΩFR</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>0</td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 480k, 1A</td>
<td>Caddock</td>
<td>MK132-480K</td>
<td>MIL-R- 55182</td>
<td>Hi-Rel</td>
<td>Testing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Changed to 100k, 1A</td>
<td>Caddock</td>
<td>MK132-100K</td>
<td>MIL-R- 55182</td>
<td>Hi-Rel</td>
<td>Testing</td>
<td>1</td>
</tr>
<tr>
<td>R5</td>
<td>RESISTOR - 1.00k, 1A</td>
<td>Meapo</td>
<td>RNC50H 1001FR</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Changed to 1.18k, 1A</td>
<td>Meapo</td>
<td>RNC50H 1181FR</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>1</td>
</tr>
<tr>
<td>R7</td>
<td>RESISTOR - 294Ω, 1A</td>
<td>Meapo</td>
<td>RNC50H 294ΩFR</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Changed to 69.8Ω, 1A</td>
<td>Meapo</td>
<td>69R8ΩFR</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>1</td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 550k, 1A</td>
<td>Caddock</td>
<td>MK132-550K</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Changed to 100k, 1A</td>
<td>Caddock</td>
<td>MK132-100K</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>1</td>
</tr>
<tr>
<td>R5</td>
<td>RESISTOR - 1.13k, 1A</td>
<td>Meapo</td>
<td>RNC50H 1131FR</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Changed to 1.18k, 1A</td>
<td>Meapo</td>
<td>1181FR</td>
<td>MIL-R- 55182</td>
<td>Established</td>
<td>Reliability</td>
<td>1</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>------</td>
<td>--------------------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>RESISTOR - 2670, 1%</td>
<td>Mepco</td>
<td>RNC50H 2670FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>Changed to 69.80, 1%</td>
<td>Mepco</td>
<td>RNC50H 69R8FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 580K, 1%</td>
<td>Caddock</td>
<td>M132-580K</td>
<td>MIL-R-55182</td>
<td>Hi-Rel Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>Changed to 100K, 1%</td>
<td>Caddock</td>
<td>M132-100K</td>
<td>MIL-R-55182</td>
<td>Hi-Rel Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>POTENTIOMETER - 100R, 1%</td>
<td>Bourns</td>
<td>3260HM 39101</td>
<td>MIL-R-22097</td>
<td>Hi-Rel Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>Changed to 2000, 1%</td>
<td>Bourns</td>
<td>3260HM 39201</td>
<td>MIL-R-22097</td>
<td>Hi-Rel Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM NO</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO OR DRAWING NO</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QUALITY STATUS</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>-------</td>
<td>----------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>R20</td>
<td></td>
<td>RESISTOR - 49.9k, 1%</td>
<td>Merco</td>
<td>RNC50H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changed to 4.99k, 1%</td>
<td>Merco</td>
<td>4991FR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R28</td>
<td></td>
<td>RESISTOR - 100k, 1%</td>
<td>Merco</td>
<td>RNC50H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changed to 0Ω</td>
<td>Merco</td>
<td>10031FR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM</td>
<td>DRAWING NO.</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QUAL STATUS</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>R1</td>
<td></td>
<td>RESISTOR - 1.3kΩ, 1%, 1/20W</td>
<td>Mepco</td>
<td>RHC50H</td>
<td>1372FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td>RESISTOR - 33kΩ, 5%, 1/4W</td>
<td>Allen Bradley</td>
<td>RCR07G</td>
<td>330JF</td>
<td>MIL-R-39008</td>
<td>Q 1</td>
</tr>
<tr>
<td>R3</td>
<td></td>
<td>RESISTOR - 19.1kΩ, 1%, 1/20W</td>
<td>Mepco</td>
<td>RHC50H</td>
<td>1912FR</td>
<td>MIL-R-55182</td>
<td>Q 1</td>
</tr>
<tr>
<td>R4</td>
<td></td>
<td>RESISTOR - 47.5kΩ, 1%, 1/20W</td>
<td>Mepco</td>
<td>RHC50H</td>
<td>4752FR</td>
<td>MIL-R-55182</td>
<td>Q 1</td>
</tr>
<tr>
<td>R5</td>
<td></td>
<td>RESISTOR - 45.3kΩ, 1%, 1/20W</td>
<td>*</td>
<td>RHC50H</td>
<td>4532FR</td>
<td>MIL-R-55182</td>
<td>Q 1</td>
</tr>
<tr>
<td>R6</td>
<td></td>
<td>RESISTOR - 49.9kΩ, 1%, 1/20W</td>
<td>*</td>
<td>RHC50H</td>
<td>4992FR</td>
<td>MIL-R-55182</td>
<td>Q 1</td>
</tr>
<tr>
<td>R8</td>
<td></td>
<td>RESISTOR - 4.99kΩ, 1%, 1/20W</td>
<td>*</td>
<td>RHC50H</td>
<td>4991FR</td>
<td>MIL-R-55182</td>
<td>Q 1</td>
</tr>
<tr>
<td>R9</td>
<td></td>
<td>RESISTOR - 66kΩ, 1%, 1/20W</td>
<td>*</td>
<td>RHC50H</td>
<td>6660FR</td>
<td>MIL-R-55182</td>
<td>Q 1</td>
</tr>
<tr>
<td>R10</td>
<td></td>
<td>RESISTOR - 1.9kΩ, 1%, 1/20W</td>
<td>*</td>
<td>RHC50H</td>
<td>1911FR</td>
<td>MIL-R-55182</td>
<td>Q 1</td>
</tr>
<tr>
<td>R11</td>
<td></td>
<td>RESISTOR - 10kΩ, 1%, 1/20W</td>
<td>*</td>
<td>RHC50H</td>
<td>1002FR</td>
<td>MIL-R-55182</td>
<td>Q 1</td>
</tr>
<tr>
<td>R12</td>
<td></td>
<td>RESISTOR - 2.6kΩ, 1%, 1/20W</td>
<td>*</td>
<td>RHC50H</td>
<td>2611FR</td>
<td>MIL-R-55182</td>
<td>Q 1</td>
</tr>
<tr>
<td>R13</td>
<td></td>
<td>RESISTOR - 7.6kΩ, 1%, 1/20W</td>
<td>*</td>
<td>RHC50H</td>
<td>7601FR</td>
<td>MIL-R-55182</td>
<td>Q 1</td>
</tr>
<tr>
<td>R14</td>
<td></td>
<td>RESISTOR - 3.0kΩ, 1%, 1/20W</td>
<td>*</td>
<td>RCH07G</td>
<td>302JF</td>
<td>MIL-R-39008</td>
<td>Q 1</td>
</tr>
<tr>
<td>R16</td>
<td></td>
<td>RESISTOR - 100kΩ, 5%, 1/4W</td>
<td>Allen Bradley</td>
<td>RCH07G</td>
<td>104FR</td>
<td>MIL-R-39008</td>
<td>Established Reliability</td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R17</td>
<td>RESISTOR - 4.99kΩ, 1%, 1/20W.</td>
<td>Heppco</td>
<td>BIC50H</td>
<td>4991PR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>R18</td>
<td>RESISTOR - 20.0kΩ, 1%, 1/20W</td>
<td>"</td>
<td>BIC50H</td>
<td>2002PR</td>
<td>"</td>
<td>"</td>
<td>Q 1</td>
</tr>
<tr>
<td>R19</td>
<td>RESISTOR - 2.2MΩ, 5%, 1/4W</td>
<td>Allen Bradley</td>
<td>RC07G</td>
<td>225R</td>
<td>MIL-R-39008</td>
<td>Q 1</td>
<td></td>
</tr>
<tr>
<td>R20</td>
<td>RESISTOR - 1.2MΩ, 5%, 1/4W</td>
<td>"</td>
<td>RC07G</td>
<td>125R</td>
<td>"</td>
<td>"</td>
<td>Q 1</td>
</tr>
<tr>
<td>R21</td>
<td>RESISTOR - 100kΩ, 5%, 1/4W</td>
<td>"</td>
<td>RC07G</td>
<td>104R</td>
<td>"</td>
<td>"</td>
<td>Q 1</td>
</tr>
<tr>
<td>C1</td>
<td>CAPACITOR - 100pF, 10%, 200V</td>
<td>Kemet</td>
<td>CKR05</td>
<td>BX101KR</td>
<td>MIL-C-39014</td>
<td>Q 1</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>CAPACITOR - 10µF, 10%, 75V</td>
<td>"</td>
<td>CSR13G</td>
<td>186KR</td>
<td>MIL-C-39003</td>
<td>Q 1</td>
<td></td>
</tr>
<tr>
<td>Q1, Q2</td>
<td>TRANSISTOR - NPN, Amplifier</td>
<td>Texas Instruments</td>
<td>JAN-TX</td>
<td>3421</td>
<td>MIL-S-19500/376</td>
<td>Established Reliability</td>
<td>Q 2</td>
</tr>
<tr>
<td>Q3, Q4</td>
<td>TRANSISTOR - NPN, Power</td>
<td>"</td>
<td>JAN-TX</td>
<td>19500/393</td>
<td>MIL-S</td>
<td>Q 2</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>TRANSISTOR - FET, Silicon</td>
<td>"</td>
<td>JAN-TX</td>
<td>19500/296</td>
<td>MIL-S</td>
<td>LEC Spec F214</td>
<td>Q 1</td>
</tr>
<tr>
<td>A1</td>
<td>AMPLIFIER</td>
<td>Advance Micro</td>
<td>WA723</td>
<td>1883</td>
<td>MIL-STD-883/Level A</td>
<td>Established Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>C1</td>
<td>DIODE - Switching, Silicon</td>
<td>Texas Instruments</td>
<td>JAN-TX</td>
<td>1N914</td>
<td>MIL-S-19600/116</td>
<td>Established Reliability</td>
<td>C 1</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QUAL. STATUS</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Film Heater</td>
<td></td>
<td>Electro Film</td>
<td>112558-1</td>
<td>specification</td>
<td>LLC EPS</td>
<td>Specification Q</td>
</tr>
</tbody>
</table>

SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST REVISION A (UPDATE)
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL4</td>
<td>FILTER</td>
<td>Potter</td>
<td>8332-126</td>
<td>MIL-C-15305</td>
<td>Hi-Rel Testing</td>
<td>Q 1</td>
<td></td>
</tr>
<tr>
<td>FL2, FL3, FL5 - FL8</td>
<td>FILTER</td>
<td>Potter</td>
<td>8332-125</td>
<td>MIL-C-15305</td>
<td>Hi-Rel Testing</td>
<td>Q 6</td>
<td></td>
</tr>
<tr>
<td>O3</td>
<td>TRANSISTOR</td>
<td>Motorola</td>
<td>2N5533</td>
<td>MIL-S-19500</td>
<td>LEC Spec EPS-179</td>
<td>Q 1</td>
<td></td>
</tr>
<tr>
<td>C20, C21</td>
<td>CAPACITOR - 15pf, 75V</td>
<td>Komet</td>
<td>T210P156K 07SPB</td>
<td>MIL-C-39014</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUANTITY PER SUB ASSEMBLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>ITEM NO.</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>CR1, CR12-CR15 CR17-CR20</td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO.</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
<th>QTY</th>
<th>TOTAL REQ'D PER ASSEMBLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>RESISTOR - 33.2KΩ, 1/2, 1/10W</td>
<td>Mepco RNC50H-332FR</td>
<td></td>
<td>MIL-R-551B2</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>R7A, R7B</td>
<td>RESISTOR - 3.9KΩ, 5%, 1/2W</td>
<td>Allen Bradley RCR20G 392SP</td>
<td></td>
<td>MIL-R-39008</td>
<td>Q 2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>RESISTOR - 4.75KΩ, 1%, 1/10W</td>
<td>Mepco RNC50H 4751FR</td>
<td></td>
<td>MIL-R-551B2</td>
<td>Q 1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 1000, 5%, 1/4W</td>
<td>Allen Bradley RCR07G 101JP</td>
<td></td>
<td>MIL-R-39008</td>
<td>Q 1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>RESISTOR - 100, 5%, 1/4W</td>
<td>Allen Bradley RCR07G 100JP</td>
<td></td>
<td>MIL-R-39008</td>
<td>Q 1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>RESISTOR - 39.2KΩ, 1%, 1/20W</td>
<td>Mepco RNC50H 3922FR</td>
<td></td>
<td>MIL-R-551B2</td>
<td>Q 1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>RESISTOR - 5.62KΩ, 1%, 1/10W</td>
<td>Mepco RNC50H 5621FR</td>
<td></td>
<td>MIL-R-39008</td>
<td>Q 1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R8, R9</td>
<td>RESISTOR - 2.21KΩ, 1%, 1/20W</td>
<td>Mepco RNC50H 2211FR</td>
<td></td>
<td>MIL-R-39008</td>
<td>Q 2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>RESISTOR - 18.2KΩ, 1%, 1/20W</td>
<td>Mepco RNC50H 1822FR</td>
<td></td>
<td>MIL-R-39008</td>
<td>Q 1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>RESISTOR - To Be Determined</td>
<td>Mepco RNC50H</td>
<td></td>
<td>MIL-R-39008</td>
<td>Q 1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R12</td>
<td>RESISTOR - To Be Determined</td>
<td>Mepco RNC50H</td>
<td></td>
<td>MIL-R-39008</td>
<td>Q 1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C1, C8</td>
<td>CAPACITOR - 22µF</td>
<td>Kemet T210D226 K050P8</td>
<td></td>
<td>MIL-C-39003</td>
<td>Q 2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>CAPACITOR - 3300pF</td>
<td>Kemet CKK06 BX332KP</td>
<td></td>
<td>MIL-C-39014</td>
<td>Q 1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>TRANSISTOR</td>
<td>Texas Instruments ZN2222A</td>
<td></td>
<td>MIL-S-19500</td>
<td>Q 1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>TRANSISTOR</td>
<td>Texas Instruments ZN34121</td>
<td></td>
<td>MIL-S-19500</td>
<td>Q 1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>TRANSISTOR</td>
<td>Texas Instruments ZN6444A</td>
<td></td>
<td>MIL-S-19500</td>
<td>Q 1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>Q.</td>
<td>QUANTITY PER SUB ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>----</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Q5, Q6</td>
<td>TRANSISTOR</td>
<td>Texas Instruments</td>
<td>JAN TX</td>
<td>2N2907A</td>
<td>MIL-S-19500</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Q7</td>
<td>TRANSISTOR</td>
<td>Telodyne</td>
<td>JAN TX</td>
<td>2N2484</td>
<td>MIL-S-19500</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CR1</td>
<td>DIODE</td>
<td>Unitrode</td>
<td>UT4010</td>
<td>MIL-S-19500</td>
<td></td>
<td>Hi-Rel Spec. Tests</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CR2, CR3</td>
<td>DIODE</td>
<td>Texas Instruments</td>
<td>JAN TX</td>
<td>1N914</td>
<td>MIL-S-19500</td>
<td>Established Reliability</td>
<td>Q 4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CR5, CR6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR4</td>
<td>DIODE - Zener</td>
<td></td>
<td>Dickson</td>
<td>1N4567A</td>
<td>MIL-S-19500</td>
<td>Hi-Rel Spec. Tests</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO OR DRAWING NO</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
<th>QUANTITY PER SUB ASSEMBLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>R14</td>
<td>RESISTOR - 4.7kΩ, 5% , 1/4W</td>
<td>Dale</td>
<td>RC070G 472JP</td>
<td>MIL-R-39008</td>
<td>Established Reliability</td>
<td>0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R15</td>
<td>RESISTOR - 100Ω, 5% , 1/4W</td>
<td>Dale</td>
<td>RC070G 101JP</td>
<td>MIL-R-39008</td>
<td>Established Reliability</td>
<td>0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R16</td>
<td>RESISTOR - 47Ω, 5% , 1/4W</td>
<td>Dale</td>
<td>RC070G 470JP</td>
<td>MIL-R-39008</td>
<td>Established Reliability</td>
<td>0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R17</td>
<td>RESISTOR - 28kΩ, 1% , 1/20W</td>
<td>Mepco</td>
<td>2833R</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R38</td>
<td>RESISTOR - 10kΩ, 1% , 1/20W</td>
<td>Mepco</td>
<td>1033R</td>
<td>MIL-R-39008</td>
<td>Established Reliability</td>
<td>0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>CAPACITOR - 22µF, 50V</td>
<td>Kemet</td>
<td>T2100225 25K005S</td>
<td>MIL-C-39003</td>
<td>Established Reliability</td>
<td>0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>CAPACITOR - 4.7µF, 10V</td>
<td>Kemet</td>
<td>T2100475 10M005S</td>
<td>MIL-C-39003</td>
<td>Established Reliability</td>
<td>0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CR7</td>
<td>DIODE</td>
<td>Texas Instruments</td>
<td>1N914</td>
<td>MIL-S-19500</td>
<td>Established Reliability</td>
<td>0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CR8, CR9</td>
<td>DIODE</td>
<td>Texas Instruments</td>
<td>1N914</td>
<td>MIL-S-19500</td>
<td>Established Reliability</td>
<td>0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CR10</td>
<td>DIODE</td>
<td>Texas Instruments</td>
<td>1N645</td>
<td>MIL-S-19500</td>
<td>Established Reliability</td>
<td>0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Q8, Q9</td>
<td>TRANSISTOR</td>
<td>Texas Instruments</td>
<td>2N3421</td>
<td>MIL-S-19500</td>
<td>Established Reliability</td>
<td>0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Q10</td>
<td>TRANSISTOR</td>
<td>Texas Instruments</td>
<td>2N2484</td>
<td>MIL-S-19500</td>
<td>Established Reliability</td>
<td>0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QAL. STATUS</td>
<td>QTY PER SUB ASSEMBLY</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>C7, C10</td>
<td>CAPACITOR - 47µF, 20V</td>
<td>Kemet T210C476 K020NS</td>
<td>MIL-C-39008</td>
<td>Established Reliability</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16, C18</td>
<td>CAPACITOR - 3.9µF, 75V</td>
<td>Kemet T2100395 K075PS</td>
<td>"</td>
<td>Established Reliability</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12, C14</td>
<td>CAPACITOR - 68µF, 15V</td>
<td>Kemet T210CGH6 K015RS</td>
<td>"</td>
<td>Established Reliability</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR22, CR23</td>
<td>DIODE</td>
<td>Texas Instruments JAN CK 1N645</td>
<td>MIL-S-19500</td>
<td>Established Reliability</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO OR DRAWING NO</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R19</td>
<td>3262W-1-103</td>
<td>POTENTIOMETER - 10k</td>
<td>Bourns</td>
<td>MIL-R-27208</td>
<td>Hi-Pol Testing</td>
<td>Q 1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>u723</td>
<td>VOLTAGE REGULATOR</td>
<td>Fairchild</td>
<td>MIL-STD-883/Level A</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td></td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO.</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUALITY STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R18</td>
<td>RESISTOR - 11.5kΩ, 1%, 1/20W</td>
<td>Mepco ERC650H 1152FR</td>
<td>MIL-R-55182 Established Reliability</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R20, R22</td>
<td>RESISTOR - 6.9kΩ, 1%, 1/20W</td>
<td>Mepco ERC650H 6981FR</td>
<td>"</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R21</td>
<td>RESISTOR - 13Ω, 5%, 1/4W</td>
<td>Allen Bradley RCN07G 130JF</td>
<td>MIL-R-39008</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R39</td>
<td>RESISTOR - 15kΩ, 1%, 1/20W</td>
<td>Mepco ERC650H 153FR</td>
<td>MIL-R-55182</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>CAPACITOR - 1000pF, 200V</td>
<td>Kemet CKR05BX 102KP</td>
<td>MIL-C-39014</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>CAPACITOR - 100pF, 200V</td>
<td>Kemet CKR05BX 101KP</td>
<td>MIL-C-39014</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9, C11</td>
<td>CAPACITOR - 15μF, 20V</td>
<td>Kemet T210D156 1020H</td>
<td>MIL-C-39003</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13, C15</td>
<td>CAPACITOR - 22μF, 15V</td>
<td>Kemet T210H226 1015R</td>
<td>"</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17, C19</td>
<td>CAPACITOR - 3.9μF, 75V</td>
<td>Kemet T210D395 1070P</td>
<td>"</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>DIODE - Zener</td>
<td>Texas Instruments JAN TX 10718A</td>
<td>MIL-S-19500 Established Reliability</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO OR DRAWING NO</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QUAL. STATUS</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>FILTER</td>
<td>Potter</td>
<td>8336-001</td>
<td>MIL-C-15305</td>
<td>Hi-Rel Testing</td>
<td>Q, 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>FILTER</td>
<td>Potter</td>
<td>8332-125</td>
<td>MIL-C-15305</td>
<td>Hi-Rel Testing</td>
<td>Q, 4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER

EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3</td>
<td>RESISTOR - 2.7Ω, 1/4, 1/8W</td>
<td>Allen Bradley</td>
<td>RCO05G</td>
<td>MIL-R-39008</td>
<td>Established Reliability</td>
<td>0</td>
</tr>
<tr>
<td>C1, C3 - C6</td>
<td>CAPACITOR - 15pF, 75V</td>
<td>Kemet</td>
<td>T210D156</td>
<td>MIL-C-39003</td>
<td>Established Reliability</td>
<td>0</td>
</tr>
<tr>
<td>C2, C7</td>
<td>CAPACITOR - 1µF, 100V</td>
<td>Kemet</td>
<td>CK906</td>
<td>MIL-C-39014</td>
<td>Established Reliability</td>
<td>0</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>----------------------------------</td>
<td>------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>CR1, CR2</td>
<td>DIODE</td>
<td></td>
<td>Unitrode</td>
<td>1N4942</td>
<td>MIL-S-19500</td>
<td>Hi-Rel Testing</td>
</tr>
<tr>
<td>CR3 - CR6</td>
<td>DIODE</td>
<td></td>
<td>Unitrode</td>
<td>UT4010</td>
<td>MIL-S-19500</td>
<td>Hi-Rel Testing</td>
</tr>
<tr>
<td>R1</td>
<td>RESISTOR - 4.7Ω, 1%, 1/8W</td>
<td></td>
<td>Allen Bradley</td>
<td>RCR05G</td>
<td>MIL-R-39008</td>
<td>Established Reliability</td>
</tr>
<tr>
<td>R2</td>
<td>RESISTOR - .5Ω, 1%, 1W</td>
<td></td>
<td>Dale</td>
<td>RWR815</td>
<td>"</td>
<td>Established Reliability</td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 1.3Ω, 1%, 1W</td>
<td></td>
<td>Dale</td>
<td>RWR815</td>
<td>"</td>
<td>Established Reliability</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>------</td>
<td>--------------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. W. Miller</td>
<td>9210-76</td>
<td>MIL-C-15305</td>
<td>Hi-Rol Testing</td>
</tr>
<tr>
<td>L1, L2</td>
<td>INDUCTOR - 100μH</td>
<td></td>
<td>Union Carbide</td>
<td>CKR06BR</td>
<td>MIL-C-39014</td>
<td>Established Reliability</td>
</tr>
<tr>
<td>C1 - C2</td>
<td>CAPACITOR - .1μf, 100V</td>
<td></td>
<td>Allen Bradley</td>
<td>RCH05G</td>
<td>MIL-R-39008</td>
<td>Established Reliability</td>
</tr>
<tr>
<td>R1</td>
<td>RESISTOR - 1kΩ, 10%, 1/8W</td>
<td></td>
<td>Texas Instruments</td>
<td>JAN-TX</td>
<td>MIL-S-19500</td>
<td>Hi-Rol Testing</td>
</tr>
<tr>
<td>CRL1 - CRL2</td>
<td>DIODE</td>
<td></td>
<td></td>
<td>1N914</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER

EEE PARTS LIST

TOP ASSEMBLY NUMBER SEC39106425
NAME ELECTRON-PROTON SPECTROMETER
NEXT ASSEMBLY NUMBER SEC39106673
NAME DATA PROCESSOR

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO.</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUALITY STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3, R9, R14</td>
<td>RESISTOR - 4.99kΩ, 1%</td>
<td>Mepco</td>
<td>RNC500H</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 3</td>
</tr>
<tr>
<td>R5</td>
<td>RESISTOR - 9.53kΩ, 1%</td>
<td>Mepco</td>
<td>RNC500H</td>
<td>4922FR</td>
<td>Established</td>
<td>Q 1</td>
</tr>
<tr>
<td>R8</td>
<td>RESISTOR - Selected</td>
<td>Mepco</td>
<td>RNC500H</td>
<td>9532FR</td>
<td>Established Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>R7</td>
<td>POTENTIOMETER - 10kΩ</td>
<td>Bourns</td>
<td>3260HM 39103</td>
<td>MIL-R-27208</td>
<td>Hi-Rol Testing</td>
<td>Q 1</td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 11.3kΩ, 1%</td>
<td>Mepco</td>
<td>RNC500H</td>
<td>1132FR</td>
<td>Established Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>R2, R10</td>
<td>RESISTOR - 10MΩ, 1%</td>
<td>Caddock</td>
<td>MG600</td>
<td>MIL-R-55182</td>
<td>Hi-Rol Testing</td>
<td>Q 2</td>
</tr>
<tr>
<td>R6</td>
<td>RESISTOR - 47.5kΩ, 1%</td>
<td>Mepco</td>
<td>RNC500H</td>
<td>4752FR</td>
<td>Established Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>R11, R12, R13</td>
<td>RESISTOR - 49.9kΩ, 1%</td>
<td>Mepco</td>
<td>RNC500H</td>
<td>49922FR</td>
<td>Established Reliability</td>
<td>Q 3</td>
</tr>
<tr>
<td>Z1 thru Z9</td>
<td>INTEGRATED CIRCUIT</td>
<td>Advance Micro</td>
<td>LM108/803</td>
<td>MIL-STD-883/Level A</td>
<td>Hi-Rol</td>
<td>Q 3</td>
</tr>
<tr>
<td>Z4</td>
<td>INTEGRATED CIRCUIT</td>
<td>Advance Micro</td>
<td>LM 111/803/Level 1</td>
<td>MIL-STD-883/Level A</td>
<td>Hi-Rol</td>
<td>Q 1</td>
</tr>
<tr>
<td>Z5</td>
<td>INTEGRATED CIRCUIT</td>
<td>Dickson</td>
<td>DAS2132</td>
<td>MIL-STD-883/Level A</td>
<td>Hi-Rol</td>
<td>Q 1</td>
</tr>
<tr>
<td>VR1</td>
<td>DIODE - Zener</td>
<td>Dickson</td>
<td>1N4567A</td>
<td>MIL-S-19500</td>
<td>Hi-Rol</td>
<td>Q 1</td>
</tr>
<tr>
<td>CR2, CR3</td>
<td>DIODE</td>
<td>Texas Instruments</td>
<td>JANX1H914</td>
<td>MIL-S-15000</td>
<td>Hi-Rol</td>
<td>Q 2</td>
</tr>
<tr>
<td>L1, L2</td>
<td>INDUCTOR</td>
<td>Miller</td>
<td>MS90538-12</td>
<td>MIL-C-15305</td>
<td>Hi-Rol</td>
<td>Q 2</td>
</tr>
<tr>
<td>C15</td>
<td>CAPACITOR - 2μf</td>
<td>TW</td>
<td>X483G</td>
<td>MIL-C-39014</td>
<td>Established Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>C3, C4, C6, C7, C9, C10, C11, C13, C14</td>
<td>CAPACITOR - .1μF</td>
<td>Remet</td>
<td>CKR06BX 104KP</td>
<td>MIL-C-39014</td>
<td>Established Reliability</td>
<td>Q 9</td>
</tr>
<tr>
<td>C12</td>
<td>CAPACITOR - .01μF</td>
<td>Remet</td>
<td>CKR06BX 103KP</td>
<td>MIL-C-39014</td>
<td>Established Reliability</td>
<td>Q 1</td>
</tr>
<tr>
<td>C5, C8, C16</td>
<td>CAPACITOR - 100pf</td>
<td>Remet</td>
<td>CKR05BX 101KP</td>
<td>MIL-C-39014</td>
<td>Established Reliability</td>
<td>Q 3</td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO OR DRAWING NO.</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL STATUS</th>
<th>QUANTITY PER SUB ASSEMBLY</th>
<th>TOTAL REQUIRED PER ASSEMBLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21, 26, 28, 29, 31, 32, 33, 34</td>
<td>INTEGRATED CIRCUIT</td>
<td>Texas Instruments SN54L</td>
<td>MIL-STD- 003 Level H</td>
<td>Hi-Rel Testing</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22, 27, 29</td>
<td>"</td>
<td>Texas Instruments SN54L</td>
<td>MIL-STD- 003 Level H</td>
<td>Hi-Rel Testing</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23, 213, 215, 216</td>
<td>"</td>
<td>Texas Instruments 099-02</td>
<td>MIL-STD- 003 Level H</td>
<td>Hi-Rel Testing</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24, 214</td>
<td>"</td>
<td>Texas Instruments 737-02</td>
<td>MIL-STD- 003 Level H</td>
<td>Hi-Rel Testing</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>"</td>
<td>Advance Micro U496L</td>
<td>MIL-STD- 083 Level H</td>
<td>Hi-Rel Testing</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>"</td>
<td>Texas Instruments 307-02</td>
<td>MIL-STD- 083 Level H</td>
<td>Hi-Rel Testing</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>"</td>
<td>Texas Instruments 207-02</td>
<td>MIL-STD- 083 Level H</td>
<td>Hi-Rel Testing</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212, 217</td>
<td>"</td>
<td>Texas Instruments 047-02</td>
<td>MIL-STD- 083 Level H</td>
<td>Hi-Rel Testing</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>RESISTOR - 22kΩ, 1%, 1/20W</td>
<td>Mepco RNC50H</td>
<td>MIL-R-55162 Established Reliability</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2, R4</td>
<td>RESISTOR - 1.0kΩ, 1%, 1/20W</td>
<td>Mepco RNC50H</td>
<td>"</td>
<td>Established Reliability</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>RESISTOR - 10kΩ, 1%, 1/20W</td>
<td>Mepco RNC50H</td>
<td>"</td>
<td>Established Reliability</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>CAPACITOR - 100pF</td>
<td>USCC RC10G</td>
<td>MIL-C-39014</td>
<td>Established Reliability</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>CAPACITOR - 1.1μF</td>
<td>Kemar CKR06X</td>
<td>"</td>
<td>Established Reliability</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>CAPACITOR - 3.3μF</td>
<td>Kemar T210A335</td>
<td>MIL-C-39003 Established Reliability</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO.</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
<th>QUANTITY PER SUB ASSEMBLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>R14</td>
<td>RESISTOR - 100kΩ, 1%</td>
<td>Meapo</td>
<td>RNC50H</td>
<td>1003FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
</tr>
<tr>
<td>R12, R13</td>
<td>RESISTOR - 5.11kΩ, 1%</td>
<td>"</td>
<td>RNC50H</td>
<td>511IFR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td>2</td>
</tr>
<tr>
<td>R10, R11</td>
<td>RESISTOR - 8.66kΩ, 1%</td>
<td>"</td>
<td>RNC50H</td>
<td>8661FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 2</td>
<td>2</td>
</tr>
<tr>
<td>R9</td>
<td>RESISTOR - 24.9kΩ, 1%</td>
<td>"</td>
<td>RNC50H</td>
<td>2492FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
</tr>
<tr>
<td>R8</td>
<td>RESISTOR - 4.99kΩ, 1%</td>
<td>"</td>
<td>RNC50H</td>
<td>4991FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
</tr>
<tr>
<td>R7</td>
<td>RESISTOR - 16.2kΩ, 1%</td>
<td>"</td>
<td>RNC50H</td>
<td>1622FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
</tr>
<tr>
<td>R5</td>
<td>RESISTOR - 78.7kΩ, 1%</td>
<td>"</td>
<td>RNC50H</td>
<td>7872FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 21.5kΩ, 1%</td>
<td>"</td>
<td>RNC50H</td>
<td>2152FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
</tr>
<tr>
<td>R3</td>
<td>RESISTOR - 22.1kΩ, 1%</td>
<td>"</td>
<td>RNC50H</td>
<td>2212FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
</tr>
<tr>
<td>R2, R6, R15</td>
<td>RESISTOR - 10.0kΩ, 1%</td>
<td>"</td>
<td>RNC50H</td>
<td>1002FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 3</td>
<td>3</td>
</tr>
<tr>
<td>C1, C1, C3</td>
<td>DIODE</td>
<td>Texas Instruments</td>
<td>JANTX</td>
<td>1N014</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 3</td>
<td>3</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QUAL. STATUS</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>INTEGRATED CIRCUIT</td>
<td>Texas Instruments SNI54L</td>
<td>04T-02</td>
<td>MIL-STD-883 Level H</td>
<td>Hi-Rel Testing</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>22, 25, 26, 29, 210, 213</td>
<td></td>
<td>Texas Instruments SNI54L</td>
<td>94T-02</td>
<td>MIL-STD-883 Level H</td>
<td>Hi-Rel Testing</td>
<td>Q 6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>23, 24, 27, 28, 211, 212</td>
<td></td>
<td>Texas Instruments SNI54L</td>
<td>01T-02</td>
<td>MIL-STD-883 Level H</td>
<td>Hi-Rel Testing</td>
<td>Q 6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>214</td>
<td></td>
<td>Texas Instruments SNI54L</td>
<td>01T-02</td>
<td>MIL-STD-883 Level H</td>
<td>Hi-Rel Testing</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>CAPACITOR - 0.1µF</td>
<td>Noyes CKR06BX 104KP</td>
<td></td>
<td>MIL-C-39004</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>CAPACITOR - 3.3µF, 15V</td>
<td>Noyes T210A335 K015RE</td>
<td></td>
<td>MIL-C-39003</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>RESISTOR - 4.99kΩ, 1%</td>
<td>Noyes RN250F 4991Ω</td>
<td></td>
<td>MIL-R-55182</td>
<td></td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>RESISTOR - 10kΩ, 1%</td>
<td>Allen RC005G 100Ω</td>
<td></td>
<td>MIL-R-39008</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DRAWING DESIGNATION</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QUAL. STATUS</td>
<td>QUANTITY PER SUB ASSEMBLY</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>24, 216, 217, 220, 222</td>
<td>INTEGRATED CIRCUIT</td>
<td>Texas Instruments</td>
<td>SNJ54L</td>
<td>737-02</td>
<td>MIL-STD-883 Level H</td>
<td>Q-Rel Testing</td>
<td>Q-5</td>
<td>5</td>
</tr>
<tr>
<td>27, 213</td>
<td></td>
<td>Texas Instruments</td>
<td>SNJ54L</td>
<td>20T-02</td>
<td>MIL-STD-883 Level H</td>
<td></td>
<td>Q-2</td>
<td>2</td>
</tr>
<tr>
<td>23, 224, 225</td>
<td></td>
<td>Texas Instruments</td>
<td>SNJ54L</td>
<td>10T-02</td>
<td>MIL-STD-883 Level H</td>
<td></td>
<td>Q-3</td>
<td>3</td>
</tr>
<tr>
<td>22, 214, 218, 221</td>
<td></td>
<td>Texas Instruments</td>
<td>SNJ54L</td>
<td>04T-02</td>
<td>MIL-STD-883 Level H</td>
<td></td>
<td>Q-4</td>
<td>4</td>
</tr>
<tr>
<td>25, 215, 219, 223</td>
<td></td>
<td>Texas Instruments</td>
<td>SNJ54L</td>
<td>00T-02</td>
<td>MIL-STD-883 Level H</td>
<td></td>
<td>Q-4</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Texas Instruments</td>
<td>SNC54-01</td>
<td>01T-02</td>
<td>MIL-STD-883 Level H</td>
<td></td>
<td>Q-1</td>
<td>1</td>
</tr>
<tr>
<td>26, 226</td>
<td></td>
<td>Advance Micro</td>
<td>U4LJ06L051</td>
<td>MIL-STD-883 Level H</td>
<td></td>
<td>Q-2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td></td>
<td>National</td>
<td>LNJ11</td>
<td>MIL-STD-883 Level H</td>
<td>Q-Rel Testing</td>
<td>Q-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R2, R4, R17, R19, R13, R15, R21</td>
<td>RESISTOR - 1k, 5%</td>
<td>Allen Bradley</td>
<td>10235</td>
<td>MIL-R-39008</td>
<td>Established Reliability</td>
<td>Q-7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>R5, R6, R7, R20</td>
<td>RESISTOR - 10k, 5%</td>
<td>Allen Bradley</td>
<td>103JS</td>
<td></td>
<td></td>
<td>Q-4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>R1, R14, R16</td>
<td>RESISTOR - 22k, 5%</td>
<td>Allen Bradley</td>
<td>223JS</td>
<td></td>
<td></td>
<td>Q-3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>RESISTOR - 1000, 1%, 1/20W</td>
<td>Mepco</td>
<td>RHC50H</td>
<td>1000FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q-1</td>
<td>1</td>
</tr>
<tr>
<td>R12</td>
<td>RESISTOR - 2.94k, 1%, 1/20W</td>
<td>Mepco</td>
<td>RHC50H</td>
<td>294FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q-1</td>
<td>1</td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER

EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL. STATUS</th>
<th>QUANTITY PER SUB ASSEMBLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>R11</td>
<td>RESISTOR - 6.04kΩ, 14, 1/20W</td>
<td>Mepco</td>
<td>RNC50H 6041FR</td>
<td>MIL-R-55182</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
</tr>
<tr>
<td>R9</td>
<td>RESISTOR - 10.5kΩ, 14, 1/20W</td>
<td>Mepco</td>
<td>RNC50H 1052FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
</tr>
<tr>
<td>R10</td>
<td>RESISTOR - 51.1kΩ, 14, 1/20W</td>
<td>Mepco</td>
<td>RNC50H 5112FR</td>
<td>"</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
</tr>
<tr>
<td>C1, C2, C3</td>
<td>CAPACITOR - 100pF, 50V</td>
<td>USCC</td>
<td>RC10C10J</td>
<td>MIL-C-39014</td>
<td>Hi-Ral Vendor Test</td>
<td>Q 3</td>
<td>3</td>
</tr>
<tr>
<td>C5</td>
<td>CAPACITOR - 3.3μF, 15V</td>
<td>Kemet</td>
<td>T21033S K018S</td>
<td>MIL-C-39003</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
</tr>
<tr>
<td>C4</td>
<td>CAPACITOR - 0.1μF, 100V</td>
<td>Kemet</td>
<td>CKR068X 104KP</td>
<td>MIL-C-39014</td>
<td>Established Reliability</td>
<td>Q 1</td>
<td>1</td>
</tr>
<tr>
<td>CRL1</td>
<td>DIODE</td>
<td>Hewlett Packard</td>
<td>HP5062-2027</td>
<td>MIL-S-19500</td>
<td>Hi-Ral Vendor Test</td>
<td>Q 1</td>
<td>1</td>
</tr>
</tbody>
</table>
SKYLAB ELECTRON-PROTON SPECTROMETER
EEE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DRAWING DESIGNATION</th>
<th>DESCRIPTION AND/OR DRAWING TITLE</th>
<th>MFG.</th>
<th>MFG'S PART NO. OR DRAWING NO.</th>
<th>SPECIFICATION</th>
<th>METHOD OF QUALIFICATION</th>
<th>QUAL STATUS</th>
<th>QUANTITY PER SUB ASSEMBLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>01, 02</td>
<td>Q3</td>
<td>TRANSISTOR</td>
<td>Texas Instruments</td>
<td>JANTX 2N222</td>
<td>MIL-S-19500</td>
<td>Hi-Rel</td>
<td>Q</td>
<td>3</td>
</tr>
<tr>
<td>C1</td>
<td>CAPACITOR - 6800 pf, 50V</td>
<td>USCC</td>
<td>RC10C 682J</td>
<td>MIL-C-39014</td>
<td>Hi-Rel</td>
<td>Q</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C2, C3, C4, C5</td>
<td>CAPACITOR - 100pF, 50V</td>
<td>USCC</td>
<td>RC10C 101J</td>
<td>MIL-C-39014</td>
<td>Hi-Rel</td>
<td>Q</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>CAPACITOR - 0.1µF, 100V</td>
<td>Kemet</td>
<td>CKR068X 104KP</td>
<td>MEL-C-39014</td>
<td>Established</td>
<td>Q</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>CAPACITOR - 3.3µF, 15V</td>
<td>Kemet</td>
<td>2700K 133S</td>
<td>MEL-C-39003</td>
<td>Established</td>
<td>Q</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>RESISTOR - 5.62kΩ, 1%</td>
<td>Mepco</td>
<td>RNC50H 5621FR</td>
<td>MIL-R-55182</td>
<td>Established</td>
<td>Q</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R2, R3</td>
<td>RESISTOR - 4.99kΩ, 1%</td>
<td>Mepco</td>
<td>RNC50H 4991FR</td>
<td>*</td>
<td>Established</td>
<td>O</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>RESISTOR - 1.13kΩ, 1%</td>
<td>Mepco</td>
<td>RNC50H 1131FR</td>
<td>*</td>
<td>Established</td>
<td>Q</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>R5, R20</td>
<td>RESISTOR - 10kΩ, 5%</td>
<td>Allen Bradley</td>
<td>RCR050 103JS</td>
<td>*</td>
<td>Established</td>
<td>Q</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R21, R22</td>
<td>RESISTOR - 8kΩ, 5%</td>
<td>Allen Bradley</td>
<td>RCR050 183JS</td>
<td>*</td>
<td>Established</td>
<td>Q</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>R23</td>
<td>RESISTOR - 22kΩ, 5%</td>
<td>Allen Bradley</td>
<td>RCR050 223JS</td>
<td>*</td>
<td>Established</td>
<td>Q</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R4, R9, R11, R43</td>
<td>RESISTOR - 1.0kΩ, 5%</td>
<td>Allen Bradley</td>
<td>RCR050 102JS</td>
<td>Established</td>
<td>Q</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DESCRIPTION AND/OR DRAWING TITLE</td>
<td>MFG.</td>
<td>MFG'S PART NO. OR DRAWING NO.</td>
<td>SPECIFICATION</td>
<td>METHOD OF QUALIFICATION</td>
<td>QUAL. STATUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
<td>------</td>
<td>--------------------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21, 222</td>
<td>INTEGRATED CIRCUIT</td>
<td>Advance Micro</td>
<td>04564L</td>
<td>MIL-STD-003 Level A</td>
<td>Hi-Rel Testing</td>
<td>Q 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td></td>
<td>Texas Instruments</td>
<td>SN54L</td>
<td>MIL-STD-003 Level H</td>
<td></td>
<td>Q 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22, 24, 57, 214</td>
<td></td>
<td>Texas Instruments</td>
<td>74L-02</td>
<td>MIL-STD-003 Level H</td>
<td></td>
<td>Q 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td></td>
<td>Texas Instruments</td>
<td>305-02</td>
<td>MIL-STD-003 Level H</td>
<td></td>
<td>Q 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>217, 218</td>
<td></td>
<td>Texas Instruments</td>
<td>04T-02</td>
<td>MIL-STD-003 Level H</td>
<td></td>
<td>Q 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23, 221</td>
<td></td>
<td>Texas Instruments</td>
<td>01T-02</td>
<td>MIL-STD-003 Level H</td>
<td></td>
<td>Q 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28, 29, 211</td>
<td></td>
<td>Texas Instruments</td>
<td>00T-02</td>
<td>MIL-STD-003 Level H</td>
<td></td>
<td>Q 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213, 219, 220</td>
<td></td>
<td>Texas Instruments</td>
<td>01T-02</td>
<td>MIL-STD-003 Level H</td>
<td></td>
<td>Q 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td></td>
<td>Texas Instruments</td>
<td>01T-02</td>
<td>MIL-STD-003 Level H</td>
<td></td>
<td>Q 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.11 Standard Parts

Refer to paragraph 3.3.10.9.1

3.3.13 Fungus Resistance

The parts and materials used on the EPS were selected to resist fungus by the elimination of nutrients which could support such fungus. The electronic assemblies are conformal coated to further prevent surface and component exposure to fungus. Humidity tests have proved that the electronics and mechanical packaging are free of nutrients for fungus. The exposed surfaces of the baseplate has been chemically treated to prevent fungus and corrosion. All other components used on the EPS are sealed or otherwise free of fungus nutrients.

3.3.13 Corrosion Prevention

Metal and mechanical parts used in the EPS are of the corrosion resistant type. Areas that are exposed to possible corrosion has been suitably treated to prevent corrosion.

3.3.14 Interchangeability and Replaceability

The EPS was designed, as a total unit, to be replaceable on any flight of Skylab. Each subassembly was designed so a like assembly will have interchangeability and replaceability. It becomes necessary to calibrate the EPS after replacement of certain modules, however, this is expected in any equipment of this type. Spare subassemblies are designed to replace those in the EPS if it becomes necessary.
3.3.18 Storage

Ancillary hardware has a storage life of five years. The only parts or materials which are sensitive to age or storage environments are the EPS detectors which are not to be installed in the EPS instrument until approximately three weeks before launch. Control is maintained on these items by historical record card.