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STUDY OF PERFORMANCE CHARACTERISTICS OF NOBLE
METAL THERMOCOUPLE MATERIALS TO 2000°C

by

P. Freeze, D. Thomas, S. Edelman, and J. Stern
National Bureau of Standards

SUMMARY

The research program sponsored by NASA involves investigation of three
performance characteristics of noble metal thermocouples: 1) effects of
catalysis; 2) effects of oxidizing atmospheres; 3) effects of severe and
mild temperature gradients.

Characteristic I is the effect of catalysis on the temperature indica-
tion of noble metal temperature sensors. Measurements have been made of
the effects of catalysis when platinum and platinum 13 rhodium thermoele-
ments at temperatures ranging from 1000°C to 1500°C were exposed to a
mixture of air and unburned gases flowing at gas velocities of 17 to 183
m/s. The thermoelements were exposed to the following mixtures by
volume:

(a) air + 1.0% carbon monoxide + 0.01% hydrogen

(b) air + 2.0% carbon monoxide + 0.01% hydrogen

(c) air + 1.0% hydrogen

(d) air +2.0% hydrogen

Measurements obtained with the gas mixtures indicate that the thermoele-
ment temperature rise caused by catalytic heating increases with
increasing gas velocity up to a velocity of 120 m/s. The temperature
rise tends to decrease with further increase of velocity. At gas
velocities ranging from 17 to 183 m/s, the rise in temperature (AT)
resulting from catalysis ranged between 35°C and 380°C.

Experimental observations suggested that the effects of catalysis would
reach a maximum value at some temperature below 1000°C. To evaluate the
temperature of maximum effect, additional measurements were therefore
made of the catalytic heating of various noble metal materials considered
for use in high temperature thermocouple systems. The materials chosen
were:

(a) platinum

(b) platinum 13 rhodium

(c) iridium

(d) iridium 40 rhodium



(e) Platinel 5335

(f) Platinel 7674

These thermoelements were exposed to mixtures of air + 0.5% butane
flowing at 0.1 and 0.2 m/s. Measurements were made from 25°C to
1450°C to determine the maximum temperature rise caused by catalytic
heating and the temperature at which the effect of catalysis
becomes insignificant. The results show that platinum exhibits the
largest temperature rise. The maximum rise in wire temperature (AT=165°C)
occurred upon exposure to a mixture of air + 0.5% butane flowing at
0.1 m/s of a sample wire that in air alone at the same velocity assumed
a temperature of 240°C. The catalytic effect (temperature rise) dropped
off rapidly below this level until at a wire temperature of 185°C it
was found to be insignificant. The maximum rise in wire temperature
occurred at different sample temperatures for the materials investigated.
Platinum 13 rhodium exhibted the smallest increase (AT=85°C) at a
sample temperature of 1090°C in a similar gas mixture flowing at the same
velocity.

Characteristic II is the thermoelectric stability of the iridium 40
rhodium to iridium thermocouple system for measuring temperature up
to 2000°C in oxidizing media. Measurements were made at a furnace
temperature of 1700°C. One thermocouple was heated in a nitrogen
atmosphere and the other in an air atmosphere. In this investigation,
nitrogen was the neutral reference environment. The behavior of a
thermocouple in nitrogen was compared with the behavior of a similar
thermocopule in an oxidizing atmosphere of air. The thermoelectric out-
put of the thermocouple which was heated in air exceeded that of the
sample in nitrogen. After a total heating time of 359 hours at 1700°C,
the difference between the temperature indications of the two thermo-
couples at a calibrating temperature of 1700°C was equivalent to about
9.4°C which is less than 1% of the calibration temperature.

Characteristic III is the effect of steep and moderate temperature
gradients on the accuracy and stability of thermocouple measurements. A
test facility for this study is under construction. A Nd:YAG laser will
be used to raise the thermocouple junction of a water-cooled probe to
2000°C. The concentration of heat applied in this manner to the thermo-
couple junction permits both gradual and steep gradients to be established
along the thermocouple lead wires. A water-cooled test cell capable of
systematically positioning the thermocouple is under construction. The
necessary instrumentation has been acquired. The assembly of the
necessary components is in progress.



INTRODUCTION

The importance of accurate temperature measurements in the development
and operation of jet engines is well recognized. Such measurements
determine the important operating characteristics of the engine and
permit the designer to identify for special attention component changes
that would most effectively improve engine performance. As engine
temperatures have increased, a need has arisen for temperature sensors,
such as thermocouples, capable of sustained operation in hot oxidizing
gases. For systems operating in the temperature range 1000°C to 2000°C it
becomes necessary to use noble metals such as platinum, rhodium, iridium
and their various alloys for thermocouples. Thus, it is important to
evaluate the performance characteristics of thermocouples fabricated
from these materials which then are used at high temperatures in
oxidizing environments containing products of combustion typical of those
that exist in the engine. Such an evaluation will bring about a better
understanding of the problems encountered in measuring temperatures
under static and dynamic conditions and thus help to minimize temperature
errors. Three performance characteristics have been selected for study.

Characteristic I is a study of the effect of catalysis on the temperature
of noble metal thermoelements, particularly platinum and platinum 13
rhodium. Thermocouples made from noble metals and exposed to various
incompletely-burned gases that exist in some engine exhaust will experi-
ence catalytic burning on the surface of the thermocouple. This catalytic
reaction will raise the temperature of the thermocouple higher than the
ambient gas temperature being measured. Various investigators, Dahl
and Fiock [1]*, Stanforth [2], Olsen [3], Freeze, et al. [4] and R. L. Ash,
et al. [5], have observed and reported this chemical reaction effect.

The results of the Characteristic I studies at NBS under this contract
provide information over the originally planned temperature range of
1000°C to 1500°C, for various gas mixtures flowing at velocities between
17 and 183 m/s. The investigation suggested that catalysis error
probably reaches a maximum at some temperature below 1000°C. Earlier
studies reported by Olsen [3] showed that the temperature increase of a
thermoelement reached a maximum at a temperature below 760°C and that
the effect became negligible below 320°C. In view of these findings,
and to augment the previous studies, the catalytic effects of various
noble metal thermocouple materials were determined over the extended
temperature range 25°C to 1450°C.

Characterisitic II is a study of the performance of a thermocouple system
at temperatures up to 2000°C in oxidizing media. At present only thermo-
couples made of iridium and alloys of iridium appear suitable for use under
these conditions.

Feussner [6] in 1933 proposed the use of iridium-rhodium to iridium
thermocouples"for very high temperatures". Several alloys have been

[1]* Figures in brackets refer to literature references on page 20
of this paper.
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proposed by various experimenters for the positive wire of the thermo-
couple, chief among them being iridium-rhodium alloys containing 40, 50
and 60% of rhodium. The thermal emf's of wires of these compositions
are not widely different. The thermal emf of the iridium 50 rhodium
wire is slightly higher than that of the other two compositions (iridium
60 rhodium or iridium 40 rhodium). Carter [7] postulated that at high
temperatures, the iridium would volatilize preferentially from the
iridium-rhodium alloy and the alloy would change to one enriched in
rhodium. A change in emf resulting from the loss of iridium from the
iridium 40 rhodium wire will alter the emf to a maximum at iridium 50
rhodium composition. Additional loss of iridium would slightly decrease
the emf and thus the thermal output of this alloy would remain satisfac-
tory for a longer time than either of the others. It is also expected
that the high temperature limit will be somewhat greater for the alloy
containing more iridium.

Blackburn and Caldwell [8] studied the various alloys of iridium-rhodium
to iridium and developed comprehensive reference tables for use with
thermocouples made of these materials. Their work did not yield results
indicative of^the thermoelectric stability of various combinations nor
did they identify a preferred composition.

There is very little information available on the thermoelectric
stability of iridium and alloys of iridium in oxidizing atmospheres.
Rudnitskii and Tyurin [9] observed changes in thermal emf of the
iridium 60 rhodium to iridium system after 10 hours at 1800°C. The total
change did not exceed 0.8% of the measured temperature. Aleksaklin et al.
[10] observed that "at 2000°C the iridium 60 rhodium to iridium thermocouple
allows us with sufficient accuracy to measure the temperature, at least
briefly, for a period of 10 - 20 hours."

The current study is concerned with the iridium 40 rhodium to iridium
thermocouple. Its thermoelectric stability is being investigated at
temperatures up to 2000°C in an oxidizing environment (air).

Characteristic III is a study of the effects of temperature gradients on
the accuracy and stability of thermocouple indications. Practical temp-
erature measurements within a stream of hot gas are often complicated by
the presence of nonequilibrium conditions and of temperature gradients
that may be as great as many hundreds of degrees per centimeter.

The thermal emf developed by a thermocouple of homogeneous thermoelements
is a function of the junction temperature alone. However, if a thermo-
element is not homogeneous, the emf developed is a function not only of
the temperature of the junction, but also of the temperature distribution
along the element.

In the current investigation, thermocouple junctions protruding beyond
water-cooled sheaths will be exposed to controlled temperature gradients
at various temperatures from 1500°C to 2000°C. The effects of severe
(1500°C/cm) and moderate (400°C/cm) gradients on themocouple performance
will be determined and evaluated.
The test facility for this study is under construction.
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APPARATUS

The study of catalytic effects received first priority. It was conducted
in two facilities, one designed for high velocity studies and the other
for low velocity investigations. Figure 1 is a cross-section drawing
of the high velocity test facility used to determine the catalytic
heating effects on test samples at gas velocities between 17 and 183 m/s.

The apparatus is designed to enable pressurized gas to enter a plenum
chamber and then flow into a constricted test section in which a 7.6-cm
length of the sample is mounted parallel to the gas flow.

Since the test sample in the high velocity facility was mounted between
an upper and a lower test sample holder, it was necessary to design a
flexible electrical contact that would allow the test sample to expand
and contract without flexing, as it changed temperature. To achieve this,
the lower end of the test sample was attached to a small molybdenum
weight immersed in a metal to which the external electrical contact was
made. The metal, was a eutectic mixture, 24.5% indium -75.5% gallium,
with a melting point of 16°C.

The dry air and test gas mixtures used in the experiments were obtained
from commercial compressed gas cylinders. The nominal content of the
minor gas components was specified to be accurate within ±10%. All gas
mixtures of air plus carbon monoxide contained 0.01% hydrogen to stabilize
the catalytic burning.

All gases were initially passed through a calming chamber consisting of
a diffusing plate and a series of six diffusing screens.

The sample temperature was determined from measurements made with a
calibrated optical pyrometer.

The catalytic studies over the extended temperature range, 25°C to 1450°C,
were conducted at two velocities 0.1 and 0.2 m/s. Figure 2 shows the
facility. The apparatus consists of a water-cooled chamber with the test
sample mounted in the central region of the chamber and suspended between
two electrodes. Located in the side of the chamber is a Pyrex window
through which the test sample can be viewed with an optical pyrometer.

A non-turbulent flow was maintained over the test sample by placing in
the bottom of the test chamber a silver1 foil diffuser through which the
test gases flowed before passing over the test sample. Again gas mixtures
from compressed gas cylinders supplied by a commercial supplier were used.

The test samples were fabricated into a "U" shape with a 1.9-cm length
of the sample mounted perpendicular to the gas flow. All test samples

According to Olsen [3] oxidized silver is non-catalytic.



were 0.5-mm in diameter and 0.25-ram diameter voltage lead wires were
welded to the extreme ends of the 1.9-cra section of each sample. These
lead wires were of the same materials as the respective test samples.

The apparatus used to study the effects of an oxidizing medium on
the thermoelectric stability of the iridium 40 rhodium to iridium
thermocouple system is described by Freeze et al. [4]. Figure 3 shows
the thermocouple facility used for these studies. Figure 4 is a schematic
diagram of the test furnace and its associated equipment. Briefly, the
apparatus consists of a vertical furnace heated by a split tantalum tube
heating element, 10-cm in diameter and 80-cm long, in a helium atmosphere.
During operation of the furnace at temperatures between 1500°C and
2000°C, a hot zone uniform in temperature to within ±1% is maintained
inside the tantalum heating element over approximately 46-cm of its
length. Four zirconia test cells can be located inside the tantalum
element test zone to permit the comparison of two thermocouples in an
atmosphere of nitrogen (neutral reference environment) with two
thermocouples in air.

The furnace is provided with a tantalum well centrally located between
the zirconia test cells. It contains a calibrated tungsten 3 rhenium
to tungsten 25 rhenium thermocouple in a helium atmosphere for
measuring the nominal furnace temperature and provides a reference
signal for the furnace control during the prolonged heating periods.

The temperature of the hot zone is accurately determined by using a
calibrated optical pyrometer sighted on a small tantalum tube black-
body located at the end of the reference thermocouple well. A second
optical pyrometer can be sighted through the upper furnace window with
the tantalum thermocouple well as its target.

Radiation losses from the hot zone are reduced by surrounding the
tantalum heater with six layers of tantalum shield assemblies (top, bottom
and side). The furnace is enclosed in a dual-wall stainless steel water-
cooled jacket.

The furnace can be maintained at any temperature between 200°C and 2300°C.
The instrumentation for controlling the furnace includes a recorder
control system having a combination of manual and automatic modes of
operation. In the automatic mode, the controller and recorder system
utilizes the thermal output of the control thermocouple in the tantalum
well assembly as a reference to maintain a predetermined furnace
temperature within ±1/2%.

Provision is made to circulate either oxidizing or inert gases through
the zirconia test cells containing the sample thermocouples under test.



During the calibration periods the thermal emf's of the sample thermo-
couples can be switched to the desired read-out equipment.

Characteristic III Study of the effect of temperature gradient on the
accuracy and stability of thermocouple measurements up to 2000°C in
oxidizing, neutral and reducing atmospheres received third priority. The
apparatus for this investigation is being designed and constructed.

A Nd: YAG laser capable of heating iridium and iridium-rhodium alloys to
2000°C is being installed in the facility. The test section is being
designed and constructed. It will consist of a water-cooled chamber so
designed that a water-cooled temperature probe having an exposed iridium-
rhodium to iridium thermocouple junction can be mounted in the central
region of the chamber. Proper alignment assemblies are designed into
the facility for locating the thermocouple junction relative to the laser
heat source. A window is located in the side of the chamber through
which the thermocouple junction and segments of lead wires can be viewed
with an optical pyrometer.



TEST PROCEDURE

Characteristic I Measurements to determine the temperature rise caused
by catalytic heating were made in the high velocity facility over the
planned temperature range 1000°C to 1500°C. The velocity range was
from 17 to 183 m/s. Flow velocity in the test section was determined by
measuring the total pressure, static pressure, and temperature of the gas.

The test samples selected for the study were 0.5-mm diameter platinum
and platinum 13 rhodium. These noble metal elements were exposed to
the following gas mixtures by volume:
(a) air + 1.0% carbon monoxide + 0.01% hydrogen
(b) air + 2.0% carbon monoxide + 0.01% hydrogen
(c) air + 1.0% hydrogen
(d) air + 2.0% hydrogen
.(e) air

During a test, pressurized dry air is released into the calming chamber
where it strikes a diffusing plate and flows through a series of
diffusing screens which reduce the turbulence. With the dry air flowing
at a predetermined velocity over the thermoelement sample located in the
nozzle section, the electric current is increased until the sample
reaches a selected temperature in the desired range. The thermoelement
temperature is accurately determined using an optical pyrometer. This
procedure is repeated with a test mixture containing unburned gas flowing
over the sample at the same velocity as the dry air and with the same
electric current through the test sample. The difference between the two
measured temperatures is attributed mainly to catalytic combustion on the
surface of the sample. A small part of the temperature increase is
attributed to increased I2R heating resulting from the increase of sample
resistance with temperature (about 5% of the temperature indication in the
case of the highest observed catalytic effect of a platinum wire exposed
to air +2.0% hydrogen at 1380°C and a flow of 183 m/s.)

To verify that the increase in sample temperature of the platinum and the
platinum-rhodium alloy resulted from catalysis, a sample was prepared
of gold wire known to be non-catalytic. Although the wire failed
mechanically at a velocity of 31 m/s, measurements obtained at lower
velocities indicated no temperature rise in air + CO mixture at
temperatures up to the melting point of the gold sample.

Catalytic effects in the extended range from 25°C to 1450°C were studied
in the low velocity facility with test-gas velocities of 0.1 and 0.2 m/s.
The general experimental procedure for these studies was similar to that
described above for the high velocity facility. In the range 950°C to
1450°C the temperature of the test sample was measured with an optical
pyrometer. Lower temperatures, below the range of the optical pyrometer,
were measured by making use of the relationship between the sample's
electrical resistance and its temperature. This relationship was
derived for each test sample from measurements of electrical resistance
at 25°C and in the range 950°C to 1450°C.



The catalytic effects were evaluated for six noble metal thermocouple
materials: Platinum, platinum 13 rhodium, iridium, iridium 40
rhodium, Platinel 5355 , and Platinel 76742. (The composition of Platinel
5355 is stated by the manufacturer to be 55% palladium, 31% platinum
and 14% gold, and of Platinel 7674 to be 65% gold and 35% palladium.)

As previously discussed, the difference between the temperature of the
sample exposed to a gas mixture and its temperature in air when carrying
the same electric current is attributed largely to catalytic combustion
at the sample surface. A small fraction of the temperature difference
is attributable to increased electrical power dissipation in the sample
at the higher temperature as a result of the increased sample resistance
with temperature. This increased power dissipation is significant
at the lower test temperatures and corrections were applied to the
observed sample temperatures in the gas mixture to permit a closer
estimate of the temperature rise attributable to catalysis.

Characteristic II The thermoelectric stability of the iridium 40 rhodium
to iridium thermocouple system is being studied by comparing in the high
temperature furnace facility the thermal emf of a thermocouple immersed
in a test cell containing an atmosphere of nitrogen (reference neutral
atmosphere) with that of a thermocouple in a test cell containing an
oxidizing environment such as air. The thermocouples are first calibrated
by immersing them in the isothermal zone so that their junctions are
located in the plane of the center of the upper window of the furnace.
Then, for the prolonged heating phase of the test, the aging period, the
thermocouples are fully immersed in their respective zirconia test
cells to a position in the plane of the center of the lower sight window.
For recalibration the thermocouples are withdrawn to their previous
positions. Thus, the wire segments of each thermocouple that are exposed
to any temperature gradient during aging can not contribute to the
thermoelectric output so that the observed changes of thermal output can
be unambigously attributed to aging at the desired test temperature.

An optical pyrometer is sighted through each sight window to determine
the temperatures at the calibrating and aging positions of the test
samples. Proper corrections are applied for window transmission losses
and for emissivity of the tantalum tube at the upper window.

Measurements have been obtained on thermocouples aged at 1700°C. Two
thermocouples were prepared from contimous segments of iridium 40
rhodium and iridium wires, 0.8-mm in diameter. Each thermoelement was
first throughly cleaned using a soapy water rinse and finally a second
rinse with ethyl alcohol. The wires were then annealed in air at 1800°C
for five minutes. Thermocouples were formed by welding with an air-hydro-
gen flame. The lead wires of the thermocouples were threaded through
spiders fabricated of iridium disks and beryllia spacers. Since the
Registered trade name of Engelhard Minerals and Chemical Corporation.
Platinel 5355 is thermoelectrically positive and Platinel 7674 is
thermoelectrically negative relative to platinum.



axes of the thermocouples are vertical the mass of these spiders provide
tension in the thermocouple wires. The geometry of the spiders center
the wires within each zirconia test cell, thereby preventing contact
between the wires and the inner surface of the cells when the thermo-
couples are moved from the calibrating to their aging positions.

Two zirconia test cells were cleaned by heating the furnace to 1600°C
and then cooling in their respective atmospheres of air or nitrogen.
A thermocouple was then located 32.0-cm from the bottom of each test cell,
the calibrating station for the test. To insure the desired atmosphere
for each cell a positive flow of gas, 1 cm3/s was maintained at all times.

The furnace was then heated to a temperature of 1200°C. Measurements
were made to determine the temperature-emf relationship of the two
thermocouples, one in the oxidizing atmosphere and the other in the nitrogen
atmosphere. Observations were made at 50°C increments as the temp-
erature was increased over the range 1200°C to 1700°C.

The thermocouples were then immersed 30.5-cm deeper into their
respective test cells for the initial prolonged heating period. The
temperature during the aging period was maintained within ±4°C at 1700°C.

After the initial aging period was completed, the thermocouples were
returned to their calibration position for a second determination of
their temperature-emf relationships 1P ascertain whether any drift of
the thermoelectric output of the thermocouples had resulted from
the heating time. Twelve successive calibrations followed, bringing
each total exposure time at 1700°C to 33.0, 49.5, 71.5, 76.5, 82.0,
98.9, 115.6, 116.0, 211.0, 259.0, 309.0, and 359.0 hours, respectively.

After being heated for 359 hours, both thermocouples failed near their
junctions while being relocated in their respective aging positions.
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RESULTS AND DISCUSSION

Characteristic I The experimental study of catalysis by noble metal
thermocouple materials in the high velocity test facility has been
completed.

The temperature rise due to catalytic heating was measured for 0.5-mm
diameter platinum samples in four gas mixtures, air + 1.0% CO + 0.01% HZ',
air +2.0% CO + 0.01% H2; air + 1.0% H2; and air + 2.0% H2, flowing at gas
velocities between 17 and 183 m/s and at exposure temperatures from
1000°C to 1400°C.

Figure 5 is a plot showing results typical of those obtained from the
experiments. This plot shows the variation of catalytic error for a
platinum sample exposed to a mixture of air + 2.0% hydrogen, at various
velocities. It shows that the sample temperature rise at a particular
gas velocity decreased with increasing sample temperature. Also, the
catalytic heating values increased with increasing gas velocity up to
approximately 120 m/s and then decreased slightly with further increase
of velocity. The possiblity that some of this decrease could be the
result of poisoning of the test sample surface during testing has not been
investigated.

Figure 6 presents the results of measurements on platinum samples in a
gas mixture of air + 1.0% CO +0.01% H2 and in a mixture of air +2.0%
CO +0.01% H2, at a gas velocity of 153 m/s. The concentration of a
combustible in a given mixture affected the magnitude of the temperature
rise due to catalysis. At 1200°C the temperature rise obtained with
the 1.0% CO-air mixture was about 85°C compared with 172°C for a 2.0%
CO-air mixture, suggesting an approximately linear relationship between
the concentration of combustibles and the resulting error.

The catalytic temperature rise was determined for the platinum 13
rhodium wires of 0.51-mm diameter in two gas mixtures (air + 1.0% CO
+ 0.01% H2 and air + 1.0% H2) at velocities between 17 and 183 m/s.
Figure 7 shows the variation in catalytic rise for a sample
exposed to a gas mixture of air + 1.0% H2 for the range of
velocities investigated. The data obtained for this alloy are quite
similar to those for platinum under similar conditions.

Figure 8 presents the catalytic temperature rise for platinum and for
platinum 13 rhodium wires of equal diameter exposed to a mixture of
air + 1.0% CO + 0.01% H2 flowing at a velocity 183 m/s. The plot
indicates that at a wire temperature of 1200°C there was a temperature
rise of about 64°C for the alloy wire and 81°C for the platinum wire.
The catalytic error values for platinum 13 rhodium samples are between
80% and 90% of those obtained for the platinum samples.

These studies indicated that the temperature increases of the wire
samples tested increased with decreasing element temperature for a given
gas mixture flowing at a constant velocity. The results suggested
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that the catalytic error values reach a maximum at some temperature below
1000°C. In view of this, studies were conducted to determine the maximum
catalytic temperature increases for six thermocouple materials: platinum,
platinum 13 rhodium, iridium, iridium 40 rhodium, Platinel 5355 and
Platinel 7674. The materials were tested at temperatures over an
extended range of 25°C to 1450°C in air, and air +• 0.5% butane flowing
at velocities of 0.1 and 0.2 m/s. A platinum sample was tested in air,
and air + 2.0% hydrogen, at the same velocities.

Figure 9 shows the catalytic temperature rise for the platinum sample
in air + 0.5% butane as the temperature is decreased from 1200°C. At
a gas velocity of 0.1 m/s, the catalytic rise reached a maximum of 165°C
at a sample temperature of 240°C. At 0.2 m/s the maximum rise, 175°C,
was reached at 250°C. After reaching a maximum, the temperature increases
dropped very sharply to zero at 185°C and 170°C, respectively. For the
platinum 13 rhodium sample the temperature rise reached a maximum at
relatively high sample temperatures, about 1090°C and 1075°C, and then
decreased, but not monotonically, to zero at 360°C. The temperature
increases for platinum and the platinum 13 rhodium sample are almost
the same in the temperature range of 1100°C to 1200°C although the trends
of the curves differ.

Figure 10 is a plot of measurements obtained with a platinum sample
exposed to air + 2.0% hydrogen flowing at the same two velocities. In
this case, the temperature rise continues to increase with decreasing
temperatures, at both gas velocities, to the lowest wire temperature
observed, 25°C.

Catalytic rises were determined over the entire temperature range for
all six materials in an air + 0.5% butane mixture at the two velocities.
Table 1 summarizes the highlights of the test results; (a) the sample
temperature where the temperature rise, AT, is a maximum, (b) the
maximum AT and (c) the sample temperature where AT is zero. Also
included in Table 1 are the results with a sample of platinum exposed
to a mixture of 2.0% hydrogen in air.

It is noted that during the efficient operation of modern jet engines,
the concentrations of carbon monoxide, hydrogen and hydrocarbons in
the exhaust gas are a hundred times less than the concentrations used
in this study and thus, the catalytic heating of the thermoelements in
efficiently operated jet engines will be lower. In research on jet
engine combustors, however, high concentrations of incompletely-burned
gases may be encountered. In spark-ignition internal combustion
engines, for very rich mixtures the hydrogen and carbon monoxide concen-
tration may rise to the order of 10%, while higher-hydrocarbon content
may rise to 1%.

Characteristic II Observations to determine the thermoelectric stability
of the iridium 40 rhodium thermocouple system were begun. Preliminary
measurements were made with thermocouples made of 0.8-mm diameter wires.
One thermocouple was immersed in a nitrogen reference environment and

12
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the other in an oxidizing medium. Both were aged in 'an isothermal
zone for a cumulative heating time of 359 hours at 1700°C. Each of the
two thermocouples were initially calibrated using an optical pyrometer
to obtain the true temperature. The temperature-emf relations derived
from this initial calibration were used as a reference for all subsequent
measurements.

Figure 11 presents a summary of the cumulative changes in thermoelectric
output at a check temperature of 1700°C resulting from aging exposures
of the thermocouples at 1700°C. The changes represent the differences
between the thermocouple in a nitrogen environment and the thermocouple
located in air, the oxidizing environment. According to the convention
adopted here the negative sign indicates that the thermocouple in air has
the larger thermoelectric output at the check temperature. The
calibration of the thermocouple in the reference nitrogen atmosphere
remained stable throughout the successive aging periods. The changes
in thermal emf was never greater than 7 microvolts from the initial
calibration of the thermocouple. From the plot, it is evident that the
thermal emf of the thermocouple in the oxidizing environment continued
to increase for about the first 70 hours of heating time. During the next
45 hours there was no significant change in thermocouple emf. Additional
heating time resulted in a continuing decrease in emf output of the
thermocouple, suggesting that the thermoelectric output is maximum from
70 to 115 hours.

These changes in the temperature-emf relation of the thermocouple
resulting from the cumulative heating time at 1700°C suggest some in-
stability in the iridium 40 rhodium to iridium thermocouple system. The
change in thermoelectric output, corresponding to a change in temperature
indication that is less than 1% of the aging temperature, may be caused
by a change in composition of one of the components of the alloy element
resulting from selective oxidation and evaporation.

After 359 hours of cumulative heating, the wires of both thermocouples
had undergone structural changes making them extremely brittle and
causing them to fail. Sample lengths of wire were cut from each element
of the two thermocouples for microstructure examinations. Segments were
obtained from each of four elements about 0.3-mm from each junction
extending in length to about 2.4-cm from the junction. Such samples
are referred to as "near junction". Also the alloy leg exposed to the
air atmosphere showed oxidation and some melting had occurred along
the wire surface adjacent to the junction. About 7.5-cm from the
junction a reddish-brown coating was observed on this alloy element.
A segment was cut about 7.5 to 9.5 cm from the junction "in uniform
zone" for examination and comparison. Macrographs and photomicrographs
were made of the elements in their post anneal condition and again
following prolonged heating at 1700°C for 359 hours. Figure 12 presents
three pictures of wire segments cut from each annealed thermoelement
prior to their being formed into the two test thermocouples. The top
sample in the macrograph, 12a, shows the surface of the pure iridium
element and the bottom sample the iridium 40 rhodium wire. The regions
shown were not exposed to high temperatures after being annealed.

14



Figures 12b and 12c are longitudinal sections of the iridium and the
alloy wires showing microstructure in regions not exposed to high
temperatures.

Figure 13 shows photographs of the iridium 40 rhodium wire surface after
the 359 hours in air. The changes in structure appear greater than
experienced by the other elements in either medium and suggest the
possibility that this alloy may have experienced a change in composition
as well as structural deterioration. Figure 13a shows the surface of
the alloy wire that was exposed to the high temperature in an air
atmosphere. The specimen shown in the top photograph had a reddish-brown
coating. This section was obtained from a region farther from the
thermocouple junction than the lower sample, which was directly adjacent
to the junction. Figure 13b is a longitudinal section of the alloy wire
that was exposed to high temperatures in an air atmosphere. The
microstructure reveals a grain boundary phase and large smooth cornered
grains which indicate that melting had occurred. Figure 13c shows the
grain boundary phase in the photomicrograph, 13b. The evidence of melting
suggests that an oxide of rhodium was formed. Figure 13d is a longitudinal
section of the same wire farther from the thermocouple junction showing
erosion of the surface and the voids near the wire surface. Considerable
grain growth is also shown. Figure 13e presents an area having voids
along the edge shown in Figure 13d. These voids indicate diffusion of
the iridium into the atmosphere faster than it could be replenished by
diffusion of the metal behind it. The red-brown color of the coating
indicates that it is a rhodium oxide. Such an oxide would be expected
to form if the surface is rhodium rich. This would explain the increase
in emf of the thermocouple heated in air for the first 70 hours. The
maximum emf was reached as the composition presumably approached a
50-50 ratio. If the loss of iridium continued during additional heating
time, the rhodium content would eventually become greater in the alloy
leg of the thermocouple and its thermal output would slowly begin to
decrease, as observed.

In addition to the examinations of the microstructure of the wires, an
analysis of composition by the electron microprobe technique was made
to compare the compositions of the heated and unheated alloy wires and
to examine the edges of the wires heated in air for composition
changes. The purity of the iridium sample was also investigated.

Table 2 presents the results of the analysis of the alloy sample.
The weight fractions of iridium and rhodium in the unheated wire that
served as a reference was taken as 60 iridium 40 rhodium for comparison
with the heated wires, but the true composition has not been determined.

The changes in composition of the wire in the nitrogen test environment
were negligible, but the alloy in the oxidizing medium appears to have
changed appreciably. The grain boundaries near the thermocouple junction
of the sample heated in air, Figures 13b and 13c, contained a large
concentration of silicon. For the sample taken farther from the
junction of the wire heated in air, Figures 13d and 13e, voids were
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observed near the surface of the sample. There was also iridium
enrichment near the surface of the sample shown in Figure 13e.

A possible source of silicon is the magnesia stabilized zirconia test
cell. A spectrochemical analysis permits an estimate of silicon content
of 0.1 to 10 percent by weight in our test cells.

TABLE 2. - ANALYSIS OF COMPOSITION OF ALLOY SAMPLE

Speciman

12c

--

--

13b

13c

13d

13e

(unheated reference)

(heated in Na- near junction)

(heated in Na- uniform
temperature zone)

(heated in air - near junction)

(heated in air - grain boundary)

(heated in air - uniform
temperature zone)

(heated in air near surface)

Sample without numbers are not
shown in photographs.

Wt. Fraction
Ir

0.60

0.61

0.60

0.59

0.20

0.58

0.68

Wt. Fraction
Rh

0.40

0.39

0.40

0.39

0.75

0.38

0.32

Table 3 presents the weight fractions of iridium found in the iridium
wires. The pure iridium wire not exposed to high temperatures (Figure
12b) was used as a reference for unity concentration of iridium in
an ion microprobe analysis.

Some small composition changes were found. The possibility of con-
tamination of the iridium thermoelement by rhodium vaporized from the
alloy thermoelement was considered, but no rhodium was detected in any
of the wires by the ion microprobe analysis which could detect a rhodium
content as small as 0.1%.

The preliminary data presented in figure 11 suggest the possibility that
the changes in thermal emf with the continued heating periods might
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result from a change in composition in the alloy element of the
iridium 40 rhodium to iridium thermocouple. These results could be
consistent with the plot shown in figure 14 from a paper by Blackburn
and Caldwell [11] which presents the change in thermal emf of
iridium-rhodium to iridium thermocouples with alloy composition at a
temperature of 1316°C. It is apparent that a loss of iridium from the
alloy results in an increase in thermal emf; reaching a. maximum at
the iridium 50 rhodium composition. Thereafter, as the alloy becomes
more rhodium enriched, the emf decreases.

However, the results of the examinations of the microstructure of the
wires and the analysis of their compositions did not conclusively support
this hypothesis.

TABLE 3. - ANALYSIS OF COMPOSITION OF IRIDIUM SAMPLE

Speciman Wt. fraction Ir.

12b (unheated reference)

(heated in N2 - uniform temperature
zone)

(heated in N% - near junction)

(heated in air - uniform temperature
zone)

(heated in air - near junction)

Samples without numbers are not
shown in photographs.

1.00 (by definition)

0.93

1.00

0.98

0.98

Characteristic III The design and construction of the test facility for
the study of gradient effects is underway. Adapters were constructed to
incorporate the heat source into the test rig. The heat source, a
Nd:YAG laser, is capable of heating the test thermocouple junction to
2000°C. A 10-cm focal length objective lens is used to focus the laser
beam on the thermocouple junction.

A water-cooled test section is being constructed to house the test
probe which is also water-cooled. The noble metal thermocouple elements
extend about 2.5-cm beyond the end of the water-cooled probe where the
wires are welded into a junction. Means were provided so that the test
probe can be accurately aligned with the concentrated beam from the laser
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source. A viewing window in the test facility permits optical pyrometer
measurements. This window permits temperature determinations to be made
at the thermocouple junction and at desired positions along the lead
wires of the thermocouple to observe the gradients, mild and severe,
that have been established. Gradients along the test thermocouple
elements ranging from 400°C/cm to 1500°C/cm can be achieved by varying
the length of exposed thermocouple elements protruding from the water-
cooled probe.
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CONCLUDING REMARKS

1. The results of these studies indicate that the accuracy of thermo-
couples made from noble metal materials (platinum, platinum 13
rhodium, iridium, iridium 40 rhodium, Platinel 5355 and Platinel
7674) used under similar conditions can be appreciably affected by
catalytic heating errors. The data indicate that the magnitude of
catalytic error is dependent on (a) velocity of the gas medium (b)
concentration of the combustible in the air-gas mixture (c) type
of combustible in the mixture, and (d) temperature of the noble metal
thermocouple.

2. Preliminary observations indicate that the iridium 40 rhodium to
iridium thermocouple combination can maintain its thermoelectric
stability within 1% of the test furnace temperature, 1700°C, for a
cumulative heating time of 359 hours, at one atmosphere pressure
of essentially still air as the oxidizing medium.

The wires of both the reference thermocouple in a nitrogen environ-
ment and the test thermocouple in air suffered structural changes
associated with enlarged grain growth. These changes resulted in
wire failure after 359 hours. This may have been caused by contamina-
tion from impurities, such as silicon, or from phase changes in the
wire structure due to the cumulative heating time.

The data on the instability effect and structural deterioration of the
thermocouple wires presented in this report are not complete. More
data will be obtained at higher temperatures to determine the
usefulness of the iridium 40 rhodium to iridium thermocouple system
under oxidizing conditions in the temperature range 1700°C to 2000°C.
These additional data will permit more generalized conclusions to be
drawn on the identity of the sources of error which affect thermo-
electric stability and life expectancy of this thermocouple system
and to suggest means of reducing them.

3. Evaluation of the effect of mild and severe temperature gradients
on the indications of noble metal thermocouples will be continued.
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I2a.- Magnification- X 16

Q

Magnification- X 100
I2a. Macrographs of wire samples (Unheated)

Top- Iridium sample
Bottom- Iridium 40Rhodium sample

b. Longitudinal section- Iridium sample
c. Longitudinal section- Iridium 40Rhodium sample

FIGURE 12.-WIRE STRUCTURE OF THERMOELEMENTS FOLLOWING
AN ANNEALING AT 1800 °C, FOR FIVE MINUTES
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Top-Region farther from thermocouple junction
Bottom-Region near thermocouple junction

b. Longitudinal section near junction

c. Area showing grain boundary phase in photomicrograph (b)

d. Longitudinal section, segment farther from junction

e. Area showing voids along the edge in photomicrograph (d)

FIGURE 13.- STRUCTURE OF IRIDIUM 40 RHODIUM WIRE
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