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OPERATIONAL FREQUENCY STABILITY OF RUBIDIUM AND CESIUM
FREQUENCY STANDARDS

John E. Lavery
Goddard Space Flight Center

INTRODUCTION

In the course of testing various rubidium and cesium frequency standards under operational con-
ditions for use in NASA tracking stations, about 55 unit-years of relative frequency measurements for
averaging times from 10 to 107 s have been accumulated at Goddard Space Flight Center (GSFC).
Statistics on the behavior of rubidium and cesium standards under controlled laboratory conditions
have been published by many institutions (see, for example, ref. 1), but it was not known to what
extent the lesser controlled environments of NASA tracking stations affected the performance of the
standards. The purpose of this report is to present estimates of the frequency stability of rubidium
and cesium frequency standards under operational conditions based on the data accumulated at GSFC.

Table 1.-Atomic Frequency Standards Used
in Experiments

Serial no. or
designation

Rb 107
Rb 136
Rb 138
CsllO
Csl36
Csl37
Csl38
Csl39
Csl52
Csl82
Csl85
Csl86
HM:

H-10 no. 2
NX-1

Manufacturer

Varian Associates
Varian Associates
Varian Associates
Hewlett-Packard Co.
Hewlett-Packard Co.
Hewlett-Packard Co.
Hewlett-Packard Co.
Hewlett-Packard Co.
Hewlett-Packard Co.
Hewlett-Packard Co.
Hewlett-Packard Co.
Hewlett-Packard Co."

Varian Associates

aAn experimental hydrogen maser developed at GSFC.
See ref. 2.

DATA DESCRIPTION

The three rubidium gas cells (designated Rb)
and nine cesium beam frequency standards (Cs)
on which the measurements were made, as well
as the two hydrogen masers (HM) used as refer-
ences for many of the tests, are listed in table 1
along with their serial numbers or designations
and their manufacturers. During the tests the
standards were kept in a laboratory at GSFC.
Except for the shielding built into the standards
themselves, there was no special control of the
ambient magnetic, electric, vibration, and tem-
perature conditions. The ambient magnetic and
electric conditions were typically noisy. The
standards were driven by ac power and were in
no way isolated by transformers. Vibration from
nearby air conditioning equipment and from
trucks at a nearby loading platform was not
shielded in any way. The ambient temperature
was typically between 298 and 303 K. There



were, however, several brief excursions to temperatures as low as 291 K and as high as 313 K due to
equipment problems. These conditions are less controlled than those in the NASA tracking stations.
Hence the stabilities of the standards when operating in the tracking stations should be at least as good
as the stabilities calculated in this paper.

The measurements made on the standards consisted of average relative frequency measurements
for varying averaging times. In some of the data sets, average relative frequency measurements were
missing or were bad because of ac power failure or recorder failure. All such points were a posteriori
linearly interpolated from the nearest earlier (in epoch time) good average relative frequency measure-
ment and the nearest later (in epoch time) good average relative frequency measurement.

The total number of measurements made for all types of data used in this report are given in
table 2. Data sets are said to be of the same "type" when the following parameters are the same for

Table 2.—Average Relative Frequency Data Sets

Type of data

Test
unit

Rb
Rb
Rb
Rb
Rb
Rb
Rb
Rb
Cs
Cs (10-s TC)
Cs (10-s TC)
Cs (10-s TC)
Cs(60-sTC)
Cs (60-s TC)
Cs (60-s TC)
Cs (60-s TC)
Cs (60-s TC)
Cs(60-sTC)
Cs
Cs

Reference
unit

Rb
Cs (10-s TC)
Cs (10-s TC)
Cs (10-s TC)
HM
HM
HM
HM
Cs
HM
HM
HM
HM
HM
HM
HM
HM
HM
HM
HM

Averaging
time
T O - S

3600
10

100
1000

10
100

1000
3600
3600

10
100

1000
10
10

100
100

1000
1 000
3600

604800

Dead
time
d, s

0.0
2.3
2.2
2.7
2.3
2.2
2.7

.0

.0

.2

.2

.2

.2
2.3

.2
2.2

.2
2.7
.0
.0

Number of
data sets m

2
1
1
1

13
10
9
7
3
8
8
8
8
3
8
3
8
1

13
1

Number of measurements

Totala

3090
1076

538
223

8473
6405
5 126

13320
8851
4841
4871
4787
4634
1904
4706
2496
4804

692
37404

88

Interpolated

0
18

1
0

67
16
15

308
263

0
11
25
0
2
0
0
3
0

1391
6

TC = time constant.
aTotal-number of measurements for all m data sets, including the interpolated measurements.



each set: test unit,1 reference unit, duration or averaging time TO of each average relative frequency
measurement, and dead time d between successive measurements (that is, the time during which no
measurement was taken). The servo time constants are indicated only for the cesium standards and
only when TO < 1000 s. The difference in effect of a 10- and 60-s time constant for TO > 3600 s can
be neglected because the time constants in such cases are too small with respect to TO to have an
appreciable effect. The rubidium standards tested all have a fixed servo time constant which is on the
order of 1 ms.

Neither temperature effects nor long-term frequency drift was removed from the data before
analysis because the object of the tests was to measure the stability of the frequency standards under
operational conditions, where both temperature fluctuations and long-term frequency drift are present.

STATISTICAL ANALYSIS

Let there be given a set of in identical test frequency standards and a set of m identical reference
frequency standards. Let 4>n(f), 1 < « < m, denote the instantaneous fluctuations (measured in time
units) of the epoch time output of the nth test standard compared to the epoch time output of the nth
reference standard. Let yn (?) be the instantaneous (fractional) frequency fluctuation of the nth test
standard compared with the nth reference standard; i.e.,

(D
dt

Let yn(t) be the average relative (fractional) frequency fluctuation of the'rcth test standard compared
with the nth reference standard:

1 rt
y n v> = - I

r Jt
,(f)dt = — (2)

The constant T is called the averaging time of y(t). The Allan standard deviation a(2, T, r) of the fre-
quency fluctuations of the set of test standards compared with the set of reference standards is defined
to be (ref. 3)

/I Ĵ -i

""" (3)

where the symbol < > denotes infinite epoch time average. The analysis of all data listed in table 2 con-
sisted in the calculation of an estimate, which is denoted by s(2, T, r), of a(2, T, T) in the following
manner.

Taking any type of data from table 2, let the number of average relative frequency measurements
in the nth data set, K n < m , b e m n . Denote this nth set of average relative frequency measurements

'Although there are sometimes significant differences in the frequency stabilities of various rubidium standards, the three
rubidium standards listed in table 1 all had mutually close stabilities. For this reason, these rubidium standards will be considered to be
identical. Because the nine cesium standards listed in table 1 all had mutually close stabilities, they too will be considered to be identical.



n ( 0 i • F°rl: = 1. 2,. . . , mn - 1, denote the variance of the two average relative frequency
measurements jn(/) andyn(i + 1) by vn(i):

[?„ (/+!)-?„ (012

"„«)=— " . - (4)
2

The square root of the average over both / (1 < / < mn - 1) and n (1 < n < m) of these vn(f) is the
desired estimate of a(2, TQ + d, TO):

m '"n-1

I. I "„«

(5)

From the original data sets { yn\ ™J\ , 1 <'n < m, new data sets with averaging time TI = 2rQ and
dead time d (assumed small with respect to r0) can be approximated by defining

(6)
2

i= 1,2, . . . ,mn - 1 and n = 1, 2, . . . , m. Denote the variance of yn (i; 1) and yn (i + 2; 1) by un (/; 1):

[Jn(/ + 2 ; l ) - j 7 ( / ;1)]2
»„(/; D = — - - - (7)

2

/ = 1, 2, .. . , mn - 3 and n = 1, 2 , . . ., m. Estimate a(2, TI + d, r^) by2

(8)

I, K - 3)
n = l

Let fc be the exponent of the largest power of 2 contained in any of the mn , 1 < n < m. For
/ = 2, 3, . . . , k - 1, the data set {?„(*;/)} ™1~2' +l with averaging time T. = 27V0 and dead time d is
successively calculated from the data set (yn(i;j - 1)}^~2/ +1 by pairwise averaging:

yn (/;/) = - - - (9)

2Throughout this paper the convention is adopted that whenever a summand, e.g., mn - 3 in S^ici (m
n ~ 3), is less than zero, it is

treated as zero; and whenever a summation, e.g., £7["~3 vn(f', 1), has an upper limit that is less than the lower limit, it also is treated as
zero.



i = \ , 2 , . . . , m n - 2 i + \ ; n = l , 2 , . . . , m ; j fixed. Denote the variance ofyn(i;j) and yn(i + 2]';/) by
«„(/;/):

«„(*;/) = (10)

/ = 1 , 2, . . . , mn - + 1 and « = 1 , 2, . . . , m. Estimate a(2, T;. + d, T}.) by

S(2 ,T .+d ,T f ) =

Z I «„(';/)
n =1 /= 1 (11)

An example of this procedure for zero dead time is presented in figure 1. The quantity v repre-
sents the variance between the ordinates of the two lines to which the dotted line near v points.
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RESULTS

For each type of data listed in table 2 and for each averaging time r. = 2/YQ , 0</ < & - 1 (r0 and
k change with the type of data), the estimate s(2, r. + d, T.) of a(2, T. + d, T.) was calculated.3 The
results are presented in table 3 and figure 2 for all data involving a rubidium standard as either the test
or the reference unit and in table 4 and figure 3 for the cesium versus cesium and cesium versus hydro-
gen maser data.

In order to use the data in tables 3 and 4 to estimate the frequency stability of the rubidium and
cesium standards tested, rather than the relative frequency stability of a comparison of two of these
standards or of a comparison of one of these standards to a hydrogen maser, the following procedure
is used. Denote the Allan standard deviations of the test standard versus a hypothetical perfect
standard, the reference standard versus a hypothetical perfect standard, and the test standard versus
the reference standard by aT(2, r + d, T), OR (2, T + d, T), and OTR (2, T + d, T), respectively. Because
the variances a|(2, T + d, r) and aR (2, T + d, T) are linear functions (in fact, weighted integrals) of the
respective power spectral densities of the test and reference standards (ref. 3), and because the power
spectral density of the comparison of two frequency standards is the sum of the power spectral densi-
ties of each of the standards, the following relation occurs:

a2
T_R(2, T + d,r) = a2

T(2, T + d,r) + a2
R (2, T + d, r) (12)

For comparisons of two identical standards (rubidium standard versus rubidium standard and
cesium standard versus cesium standard), oR(2,r + d,r) = aT(2, T + d, T). Hence, from relation (12),

oT_R(2, r + d, r)
a ( 2 , r + d,r)= - (13)

For all data for which a hydrogen maser was used as a reference, it is assumed that the instabilities of
the maser were sufficiently small so as to have

(14)

The normalized standard deviation oT(2, T, r) can be calculated from aT(2, T + d, T) by the
relation

oT(2, T + d, r)
a r(2,T,r)= - — ZZZ~

where B2 (r, ju) is a bias function (defined in ref. 4); r = (T + d)/r; and ju, representing the type of noise
of the standard for the fixed averaging time T and fixed dead time d, is determined from

or(2, T + d, T) « 7^/2 (16)

3The analysis was carried out by programs E00016 and E00036 of the GSFC Computer Program Library. Program E00016 is
for input relative phase data; program E00036 is for input relative frequency data. Although program E00016 reads relative phase data
as input, its output is the Allan standard deviation of relative frequency s(2,T.- + d, r-) defined in eqs. (5), (8), and (11). These two
programs are based on a program written by David W. Allan of the National Bureau of Standards, Boulder, Colo.
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Ĥ CS T}- OX 00

3
1— I
S— 'CO

<j



5 „ a
I O CC

JD
03

O
c
0)

§•

0!
73

CD

CC
I.

CM'
CD

fa fa fa

i 'Z)s NOI1VIA3Q aaVQNVlS AON3nD3HJ 3All\n3H



--

on

o

1
•o

55
|
'«
o

ca

t-
-c*

t 2

tn

•a

£
s
•o
° i_
0 « .-

B £ §
H S

1!

t.
'°~7

c x
b)

^
•V

t-

•3 8
"3 g.ts
S. 5 §
S D
H OS

S'1

^?

r°
b]

</>

•a

a

2 8
O C ^

8 - 1 1
* 3

21

C , « < , 0 0 « 0 « « « « 0 M N « C , N O . O i « M «

O - ^ - H mr^ tS r t - i — -H

t s t N f S < N c s t s n c s c N r - r - r - r - r - r - r - r - r - . o o o o o
0 < N < N < s n r ) « < N N N

0 0 0 0 0 0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- H < N ^ o o v o r ; 2 o o v o - . < N T f a > v o r l j o o v o n r ~ 2 o g r -

s s s
x a a

O u
H H
v) i/a
0 0

C 5 u

8 S S 2 R 2 s g ^ g | ^ a § 3 | § 5 3 i s ^ 2

M o » M r ^ r J M o i ( N f S f S f O ( n r o f n r ^ r n r n f n f O C N r s f S c s
O f S C S r S C N < N C S f S « N < N

o o o o o o o o o o o o o o o o o o o o o o o

(N

S S S
X DC I

R R Rf f f
0 0 0
vo *O ^O

mMmmmmmm--
O O O O O O O O O O O t N f S C S t N t S r J t N t N f S f N M . N

o

o o o o o o o o o o o o o o o o o o o o o o o
O O O O O O O O O O O — i ( N - ^ - O O ^ C N - < t o o v £ i O O O

s s
U I S

CJ U
H ' H
<P ¥
O 0

U 0 U

M » o » « o « * ^ « , - ^ »

o o o o o o o o o o o o o

o o o o o o o o o o o o o
o o o o o o o o o o o o o

S m S i s S S S o o S S ^ S !
-mr- ««« »2

s
X

o

^|SS|Sl|gS2^

r j e s r 4 ( S < N ( S c N c s o J r - l ( N ( N r ^ e N
t N < N < - J r J < N N t S n t N

o o o o o o o o o o o o o o

- m > 0 2 S -r-»02S

s
X

0

lsSsl is5slg£i§

( S f S C S t S n < N f S f S f S ( N C » f M r J f S

§ 0 0 0 0 0 0 0 0 0 0 0 0 0
o o o o o o o o o o o o o

%

R
¥
o

<3



O I

S 2
-6 <3

II

II

!u
s
I-
13z

<
DC
UJ
>

0
H

o
UJ
1C

>

<

•2

to

E
3

&

CO

£
.i
IT

b fa

'P + -1 'z)s NOiiviAaa auvoNVJ-S AONanoaad a A-uviaa

10



cc o

i i1 1

i

z
tu

z
o
cc

z
LU

0

o
cc
h-

§

\
\
\
\

-Q «
QC o

1-
UJ\IN

O
U

IA
N

3
 

T
V

z
O

cc
UJ
a.
0

0

/

A/

\
\\ \ \

\i

V

/
/

/ *y

r /

/I

60
-s

 T
C

\
\
\

,

/

/

f

^fĵ -:
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It is of interest to note that for the r and fj. of the data analyzed in this report, B2 (r, n) differs from
unity by less than 0.1 percent and can be ignored. Hence, for the data in this report,

aT (2 ,T,T)^aT (2 ,T + d,T) (17)

Of course, relation (17) is an exact equality whenever d = 0.

Using the estimates s(2, T + d, T) of aTR (2, r + d, T) from figures 2 and 3 in relations (13) and
(14) and using relation (17), the standard deviations oT(2, T, r) of the rubidium and cesium standards
tested can be estimated. These estimates of oT(2, r, T) are presented in figure 4 as the "operational
environment" curves. Also shown in figure 4 are curves taken from references 1 and 5 representing
the performance of rubidium and cesium standards in a "controlled environment." By "controlled
environment" is meant an experimental environment shielded from magnetic, electric, vibration, and
temperature effects much more than the "operational" environment in which the data presented in
figures 2 and 3 were taken.4 The upper curve for rubidium standards under a controlled environment
in figure 4 is taken from reference 5 and represents the measured performance of Varian rubidium
standards under controlled conditions. The lower curve for rubidium standards under a controlled
environment and the curve for cesium standards under a controlled environment in figure 4 are taken
from reference 1 and represent the measured performance of Hewlett-Packard rubidium and cesium
standards under controlled conditions.

CONCLUSIONS

From figure 4 it is apparent that an operational environment degrades the performance of the
rubidium standards (by up to one order of magnitude) for frequency averaging times between 10 and
103 s and that it degrades the performance of the cesium standards (by up to one order of magnitude),
for frequency averaging times between 3 X 104 and 2 X 107 s. For all other averaging times in the
range covered by the data in figure 4, the stabilities of the standards are not degraded by the opera-
tional conditions.
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